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Introduction
In change-point analysis, there are two main tasks, testing a presence of a change-
point in data and estimating the change-point and other parameters of assumed
model, while the change can be abrupt or gradual. The thesis aims at estimation
in gradual change model. In such models, the change appears gradually, e.g.
the mean value of the outcome changes from constant to linear after the change-
point. Such behaviour appears often in real world processes, e.g. in continuous
manufacturing, where quality of the products is not the same because of the start-
up period of the production line. After some time, the process stabilises and the
expected quality of the product does not show any trend. In such scenario, the
trend is present at the beginning up to the change-point and the process stabilises
after the change-point, i.e. the mean value of the outcome becomes constant.

It is important to estimate the point-of-stabilisation (the change-point) in
order to guarantee the same quality of the products and to minimise waste of
material during the start-up phase. In this situation, we want to estimate the
change-point and the other parameters of the model and construct the confi-
dence interval for the change-point, either using the asymptotic results or using
bootstrap approximation.

We modify results from Hušková [1998], Hlávka and Hušková [2017] and
Jarušková [2001] to fit into the PoSt context, namely we change the time or-
dering in linear model from Hušková [1998] and Hlávka and Hušková [2017]
and we assume general variance of the random errors in quadratic model from
Jarušková [2001]. Further, we introduce a nonpolynomial model with a change-
point, namely the Emax model. In comparison to the quadratic model, the Emax
model keeps monotonicity which is a common assumption in various scientific
applications. In a quadratic model it sometimes happen that the trend changes
its monotonicity near the change-point. We show how to construct confidence in-
tervals for the change-point using asymptotic results or bootstrap and we discuss
how to interpret and use them in practice to verify the stability of the process.
Also, we simulate the coverage of confidence intervals based on the asymptotic
results and bootstrap for different locations of the change-point and sample sizes
and we compare both methods. We also explore what happens, when the model
is incorrectly specified.

In Chapter 1, we describe methods for testing the presence of the change-
point in various models and methods for estimation of the change-point and
other parameters available in literature.

Next, we aim at estimation in polynomial change models in Chapter 2. We
describe the estimation using least squares method in gradual change models
with arbitrary polynomial trend and we state general formulae for the estimators.
For the linear model, the asymptotic results were derived in Hušková [1998], the
results for the quadratic model in Jarušková [2001]. We introduce the Emax model
(which is used in dose-response studies, see e.g.MacDougall [2006]), by including a
change-point into the model and we derive estimators of the unknown parameters
in this model.

In Chapter 3, we introduce the point-of-stabilisation model which can be
used e.g. in drug continuous manufacturing, where it captures the product out-
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put quality containing a trend during a start-up period of the production line
and after the stabilisation. In this context, the change-point represents the time
the production line stabilises, so called point-of-stabilisation (PoSt). We briefly
discuss testing in PoSt model and the differences against testing in linear gradual
change model discussed in previous chapter. Next, we aim at estimation of un-
known parameters in the model, we modify the formulae from previous sections
to take into account time ordering in PoSt context and we state the asymptotic
distribution of modified estimators. We construct confidence intervals for the
change-point and discuss their connection to testing the stability of the produc-
tion process in practice. Next, we run simulations to verify asymptotic results,
we compare the asymptotic distribution of estimators with the simulated dis-
tribution with finite sample sizes. We also calculate the coverage of confidence
intervals for the change-point for more parameter combinations using both the
asymptotic distribution and bootstrap approximation.

Next, in Chapter 4 we discuss the case when homoscedasticity (which is as-
sumed in previous models) is not fulfilled and we show how to modify the esti-
mators to take heteroscedasticity of the random errors into account by assuming
multiple measurements at each time i to be able to estimate the variance for each
time i. We show the method on the linear PoSt model, but it applies analogously
also to other models.

In Chapter 5, we generalise the linear PoSt model by assuming more compli-
cated trend than linear before the change-point. First, we discuss the quadratic
PoSt model, we run simulations to compare the asymptotic and the simulated
distribution of the estimators. We show how to construct confidence intervals
and we calculate their coverage for both methods. Then, we focus on the Emax
PoSt model introduced in Section 2.3. For this model, we show the simulated
distribution of the estimators since the asymptotic results for this model with
change-point are not available and we calculate the coverage of confidence inter-
vals constructed using bootstrap.

In Chapter 6, we explore what happens, when the model for the data is
incorrectly specified and the variance structure of the errors (heteroscedasticity
or homoscedasticity) is assumed incorrectly, which can often happen in reality
and it should be explored. We calculate the coverage of confidence intervals for
the change-point for more locations of the change-point. In the first scenario, the
assumed model is more complex than the true model. In the second scenario, the
situation is inverse, the true model is more complicated than the assumed model.
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1. Gradual change model
Change-point analysis is a part of statistical analysis examining a situation when
the underlying probability distribution of data changes in time. The change can
be abrupt (e.g. jump in mean value) or gradual, which will be our case. Gradual
change model represents a situation when a trend in data gradually changes or
appears at unknown change-point. In the usual setup, the expectation is assumed
to be constant up to an unknown change-point κ. After κ, a monotonic trend
starts to appear. For example, the expected value can be constant up to κ and
it starts following a linear trend after κ, as in Figure 1.1.

Let us assume that observations Y1, . . . , Yn follow polynomial change-point
model with unknown change-point κ

Yi = β0 + β1

(︄
i− κ

n

)︄+

+ β2

⎛⎝(︄i− κ

n

)︄+
⎞⎠2

+ · · · + βd

⎛⎝(︄i− κ

n

)︄+
⎞⎠d + ei, (1.1)

where d ∈ N, c+ denotes positive part of c, i.e. c+ = max{0, c}, i = 1, . . . , n,
Random errors e1, . . . , en are iid and satisfy E ei = 0, var ei = σ2 > 0 and
E |ei|2+∆ < ∞ for some ∆ > 0. The parameter d represents the degree of poly-
nomial trend after change-point κ. For i ≤ κ we have Yi = β0 + ei.

One of the main tasks concerning model (1.1) is finding the asymptotic distri-
bution of estimators of the unknown parameters of the model. The second task
is testing a presence of the change-point.
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Figure 1.1: Gradual change model with linear trend and with right-sided asymp-
totic 95% confidence interval for change-point κ given by (2.9).
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1.1 Testing
Testing the presence of change-point can be viewed as testing the null hypothesis
H0 : κ = n (there is no change-point and constant model holds) against the al-
ternative H1 : κ < n. Jarušková [1998b] developed a testing procedure in gradual
change model (1.1) with d = 1. Testing in a more general model

Yi = µ+ δ

⎛⎝(︄i− κ

n

)︄+
⎞⎠α + ei

for some known α > 0 was discussed in Hušková and Steinebach [2000]. Unlike
d in model (1.1), the parameter α was assumed to be continuous. For α = 0, the
change is abrupt and for α = 1, the model is equivalent to (1.1) with d = 1.

In Rusá [2015], testing a presence of change-point in panel data setup was
examined and test statistics for testing the change in trend was developed. We can
imagine panel data as a situation when N subjects are followed over period of time
T. The author assumed the data to be in form Xit, i = 1, . . . , N, t = 1, . . . , T,
where the observation Xit was measured on i-th subject at time t. The author
developed tests for testing the presence of the change-point t0 in such data when
assuming a linear trend in time which changes after the change-point, i.e.

Xit = µi + βi t+ δi (t− t0)+ + eit, i = 1, . . . , N, t = 1, . . . , T, 1 < t0 < T,

where µi, γi are unknown parameters and ei are random errors.

1.2 Estimation
Parameter estimation together with determining the asymptotic distribution in
model (1.1) for the case d = 1 (linear trend) was discussed in Hušková [1998].
The same results were derived in Jarušková [1998a] as a special case of a more
general model. Hušková [1999] derived the asymptotic distribution of the least-
squares estimators for more general case d = 1 and

[︂(︁
(i− κ) /n

)︁+]︂α for known
α > 0 instead of

(︁
(i− κ) /n

)︁+ , for some known α > 0.
Estimation with quadratic trend (d = 2) was discussed in Jarušková [1998a]

and in Jarušková [2001]. Jarušková [1998a] worked with model

Yi = α0 + α1

(︄
i

n

)︄
+ · · · + αp

(︄
i

n

)︄p
+ β

⎛⎝(︄i− κ

n

)︄+
⎞⎠q + ei, i = 1, . . . , n,

for some known p = 0, 1, . . . , q > 1 and random error ei as in (1.1). This model
represents a situation when the change affects only the highest degree of polyno-
mial trend and the other coefficients are nuisance parameters. The author derived
estimators for this case together with their asymptotic distribution. Linear trend
discussed in Hušková [1998] is a special case of this model.

In Jarušková [2001], the model captured the change in both the linear and
quadratic term. On the other hand, the author assumed the parameters describ-
ing the expected value before the change-point to be known and without loss of
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generality set to zero, leading to

Yi = β

(︄
i− κ

n

)︄+

+ γ

⎛⎝(︄i− κ

n

)︄+
⎞⎠2

+ ei.

The asymptotic distribution of unknown parameters κ, β, γ was derived. Also,
a small simulation study concerning the limit distribution was done.

In Döring [2015], the model represented a situation with asymmetric regression
function with change at unknown change-point θ. Both parts before and after θ
could have different degree of smoothness. Specifically, the regression function
had form

fθ,p,q,a(x) = g0(x,a) · ✶[0,1](x)
+ g1(x,a) · (θ − x)p ✶[0,θ)(x) + g2(x,a) · (x− θ)q ✶(θ,1](x),

where θ ∈ [0, 1] denotes change-point, p, q ∈ [0,∞) are degrees of smoothness
and a ∈ Rd represents a vector of nuisance parameters. Further, functions
g0, g1, g2 : Rd+1 → R were assumed to be two times continuously differentiable.
The behaviour of least squares estimators of (θ, p, q,a) was studied, based on
observations (Xi, Yi), i = 1, . . . , n, where Yi = fθ,p,q,a(Xi) + ei for each i.
Random errors ei were assumed to be iid with E (ei|X) = 0 a.s. and suitably
integrable. Consistency of estimators and their limit behaviour was then studied
and it turned out it depends on b = min(p, q). For b ≥ 1

2 the derived estimators
were asymptotically normal with higher rate of convergence of the change-point
estimator in case b = 1

2 . For b < 1
2 , the asymptotic distribution can be represented

as a unique maximiser of a fractional Brownian motion with drift.
Model (1.1) with d = 1 is a special case of this situation with g0 = β0, g1 = 0,

g2 = β1, Xi = i/n, θ = κ/n and q = 1.
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2. Estimation in gradual change
model
Model of gradual change can be used in various ways, e.g. in industry and in me-
teorological measurements. In this chapter, we discuss estimation in polynomial
change model. In linear gradual change model, we present the asymptotic results
derived in Hušková [1998], we construct confidence intervals for the change-point
and shortly discuss their interpretation. Next, we move to quadratic model and
we introduce the Emax model.

For simplicity, let us define

xi,k =
(︄
i− k

n

)︄+

, i = 1, . . . , n; k ∈ (1, n)

x ·k = 1
n

n∑︂
i=1

xi,k, k ∈ (1, n) .

Model (1.1) has unknown parameters β = (β0, . . . , βd)⊤, σ2 and κ. Parameters
β, κ can be estimated by least squares method. The estimators are given as a
solution of minimization problem

min
β0,...,βd ∈ R
k∈ (1,n)

n∑︂
i=1

(︂
Yi − β0 − β1xi,k − · · · − βdx

d
i,k

)︂2
.

Denoting

Y =

⎛⎜⎜⎜⎜⎜⎝
Y1
Y2
...
Yn

⎞⎟⎟⎟⎟⎟⎠ , X ·k =

⎛⎜⎜⎜⎝
1 x1,k x2

1,k . . . xd1,k
...

1 xn,k x2
n,k . . . xdn,k

⎞⎟⎟⎟⎠ ,
we can rewrite our minimization task as

min
β0,...,βd ∈ R
k∈ (1,n)

∥Y − X ·kβ∥ = min
β0,...,βd ∈ R
k∈ (1,n)

(Y − X ·kβ)⊤ (Y − X ·kβ) . (2.1)

Direct calculations give specific forms of the estimators of β, κ. We have

ˆ︁κ = arg min
k∈ (1,n)

Y ⊤
(︃
I − X ·k

(︂
X⊤

·kX ·k
)︂−1

X⊤
·k

)︃
Y

= arg min
k∈ (1,n)

Y ⊤Y − Y ⊤X ·k
(︂
X⊤

·kX ·k
)︂−1

X⊤
·kY

= arg max
k∈ (1,n)

Y ⊤X ·k
(︂
X⊤

·kX ·k
)︂−1

X⊤
·kY .

(2.2)

Remark. Estimation of the change-point can be equivalently done using coefficient
of determination. For given k ∈ (1, n) , assume a linear model with response Y
and model matrix X ·k. Denote R2

k the coefficient of determination of the model
and ˆ︂Y = X ·k

(︂
X⊤

·kX ·k
)︂−1

X⊤
·kY fitted values. Then
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R2
k = 1 −

∑︁n
i=1

(︂
Yi − ˆ︁Yi)︂2

∑︁n
i=1

(︂
Yi − Y

)︂2 = 1 −
Y ⊤Y − Y ⊤X ·k

(︂
X⊤

·kX ·k
)︂−1

X⊤
·kY∑︁n

i=1

(︂
Yi − Y

)︂2 .

The expression Y ⊤Y − Y ⊤X ·k
(︂
X⊤

·kX ·k
)︂−1

X⊤
·kY is minimised in (2.2). Using

the equation above, we rewrite the argument of minimisation and we obtain an
equivalent formula to estimate the change-point:

ˆ︁κ = arg min
k∈ (1,n)

(︂
1 −R2

k

)︂ n∑︂
i=1

(︂
Yi − Y

)︂2
= arg max

k∈ (1,n)
R2
k . (2.3)

Vector of parameters β can be estimated by

ˆ︁β =
(︂
X⊤

·ˆ︁κX ·ˆ︁κ)︂−1
X⊤

·ˆ︁κ Y . (2.4)

The parameter σ2 can be estimated by

ˆ︁σ2 = 1
n

n∑︂
i=1

(︂
Yi − ˆ︁β0 − ˆ︁β1xi,ˆ︁κ − · · · − ˆ︁βdxdi,ˆ︁κ)︂2

. (2.5)

The formulae hold also for a situation with general matrix X depending on k,
i.e.

Xk =

⎛⎜⎜⎜⎝
1 x1(k)⊤

...
1 xn(k)⊤

⎞⎟⎟⎟⎠ ,
for vectors xi(k) ∈ Rd, i = 1, . . . , n depending on k. This case will be discussed
in Section 2.3.

2.1 Linear trend
Assume the data Y1, . . . , Yn satisfy for each i = 1, . . . , n

Yi = β0 + β1 xi,κ + ei = β0 + β1

(︄
i− κ

n

)︄+

+ ei, (2.6)

where random errors ei are as in model (1.1) and κ ∈ {1, . . . , n}. Estimation and
the asymptotic distribution of estimators in this model was discussed in Hušková
[1998]. Similarly as in Hlávka and Hušková [2017], we estimate κ on a continuous
scale by

ˆ︁κ = arg max
k∈ (1,n)

(︃∑︁n
i=1 Yi

(︂
xi,k − x ·k

)︂)︃2

∑︁n
i=1

(︂
xi,k − x ·k

)︂2 , (2.7)

which is equivalent to (2.2) for d = 1.
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Estimators of β0, β1 are given by (2.4). In the assumed model, they can also
be expressed as ˆ︁β0 = Y n − ˆ︁β1 x ·ˆ︁κ

ˆ︁β1 =
∑︁n
i=1 Yi

(︂
xi,ˆ︁κ − x ·ˆ︁κ)︂∑︁n

i=1

(︂
xi,ˆ︁κ − x ·ˆ︁κ)︂2 .

(2.8)

The estimator ˆ︁κ can be equivalently calculated using a coefficient of determination
R2 as in remark in previous section.

The parameter σ2 can be estimated by

ˆ︁σ2 = 1
n

n∑︂
i=1

(︂
Yi − ˆ︁β0 − ˆ︁β1xi,ˆ︁κ)︂2

.

Hušková [1998] derived the asymptotic distribution of estimators ˆ︁κ, ˆ︁β0 and ˆ︁β1
in this model.
Theorem 1. Assume Y1, . . . , Yn are independent and satisfy model (2.6). Let, as
n → ∞,

β1 = O(1), β2
1n

(log logn) −→ ∞

and
κ = [nθ]

for some θ ∈ (0, 1).
Then, as n → ∞,

β1

σ

ˆ︁κ− κ√
n

√︄
θ (1 − θ)
1 + 3θ

D−−→ N(0, 1).

Proof. Hušková [1998, Theorem A].

The asymptotic distribution of the estimator ˆ︁κ can be used to construct
asymptotic confidence intervals for the change-point κ.

Often, one-sided confidence intervals are desired, because of their interpreta-
tion and connection to testing the stability of the production process, which will
be further discussed in Chapter 3. From Theorem 1, we obtain the right-sided
confidence interval

(−∞, cU) =

⎛⎜⎝−∞, ˆ︁κ+ u1−α
ˆ︁σ√

nˆ︂β1

⌜⃓⃓⎷ 1 + 3ˆ︁θˆ︁θ(1 − ˆ︁θ)
⎞⎟⎠ , (2.9)

where uα denotes the α-quantile of N(0, 1) and ˆ︁θ = ˆ︁κ/n. The time cU can be
interpreted as the time after which the mean value of Yi significantly differs from
β0, see Figure 1.1. From duality of confidence intervals and hypothesis testing,
this confidence interval is connected to testing the null hypothesis H0 against the
alternative H1, where

H0 : κ ≥ κ0

H1 : κ < κ0

9



for some constant κ0. We reject H0 if κ0 ̸∈ (−∞, cU).
It holds E Yi = β0 for i = 1, . . . , κ and E Yi = β0 + β1xi,κ for i = κ, . . . , n.

Therefore, κ > κ0 means the trend does not influence Yκ0 since the change-point
occurs after κ0, see Figure 1.1. We can equivalently formulate hypotheses above
as

H0 : E Yκ0 = β0

H1 : E Yκ0 ̸= β0.

Similarly, left-sided confidence interval

(cL,∞) =

⎛⎜⎝ˆ︁κ− u1−α
ˆ︁σ√

nˆ︂β1

⌜⃓⃓⎷ 1 + 3ˆ︁θˆ︁θ(1 − ˆ︁θ) , ∞

⎞⎟⎠ ,
is connected to testing

H0 : κ ≤ κ0

H1 : κ > κ0

for some κ0 and rejecting H0 if κ0 ̸∈ (cL,∞). The interpretation of the confi-
dence intervals, the connection to testing and their use in practice will be further
discussed in point-of-stabilisation context in Chapter 3.

2.2 Quadratic trend with reversed time
In reality, the data usually follow more complicated trend than linear. We will now
focus on model with quadratic trend. Moreover, the model will be formulated with
„reversed“ time ordering similarly as in Jarušková [2001] which will be further
used in Chapter 3 concerning PoSt model. Unlike in previous section, here the
trend is present up to the change-point and after the change-point the data do
not show any trend. For clarity, we will denote the change-point in the „reversed“
context by ψ instead of κ and the data by Zi instead of Yi.

Assume we have data Z1, . . . , Zn from model

Zi = β0 + β1

(︄
ψ − i

n

)︄+

+ β2

⎛⎝(︄ψ − i

n

)︄+
⎞⎠2

+ ei, (2.10)

where random errors e1, . . . , en satisfy E ei = 0, var ei = σ2 > 0 and we have ψ ∈
{1, . . . , n}. Unknown parameters are β0, β1, β2, ψ and σ2. This model represents
the situation when data follow a quadratic trend up to an unknown change-point
ψ and become stable after ψ. In our model, both the linear and the quadratic
term are present up to ψ, unlike in Jarušková [1998a], where the change occurred
only at the quadratic term.

We distinguish two situations depending on whether β0 is known or not, since
the asymptotic distributions differ.
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2.2.1 Known β0

When β0 is known, we can assume without loss of generality that β0 = 0, otherwise
we could work with ˜︂Zi = Zi − β0, i = 1, . . . , n. The model (2.10) simplifies to

Zi = β1

(︄
ψ − i

n

)︄+

+ β2

⎛⎝(︄ψ − i

n

)︄+
⎞⎠2

+ ei, (2.11)

where random errors ei are as in (2.10). This model was studied in Jarušková
[2001] with known σ2 = 1. Denote xsp,i =

(︃(︂
ψ−i
n

)︂+
)︃s

for s = 1, 2 and

Xp · =

⎛⎜⎜⎜⎜⎜⎝
xp,1 x2

p,1
xp,2 x2

p,2
... ...

xp,n x2
p,n

⎞⎟⎟⎟⎟⎟⎠ .

Point estimates can be derived similarly as in previous chapters. We have

ˆ︁ψ = arg max
p∈ (1,n)

Z⊤Xp ·
(︂
X⊤
p ·Xp ·

)︂−1
X⊤
p ·Z

or, while denoting R2
p the coefficient of determination of the linear model with

response Y and model matrix Xp · , as

ˆ︁ψ = arg max
p∈ (1,n)

R2
p . (2.12)

The vector of parameters β = (β1, β2)⊤ can be estimated similarly as before by

ˆ︁β =
(︃
X⊤ˆ︁ψ · Xˆ︁ψ ·

)︃−1
X⊤ˆ︁ψ · Z.

The asymptotic distribution of the estimators differs depending on β1. It is
normal for the case β1 ̸= 0. If β1 = 0 we obtain non-normal asymptotic distri-
bution, see Jarušková [2001]. Moreover, we have to deal with unknown variance
σ2.

Let θψ = ψ/n ∈ [δ, 1 − δ] for a known constant δ ∈ (0, 1/2) and ˆ︁θψ = ˆ︁ψ/n.
Theorem 2. Suppose model (2.11) holds and β1 ̸= 0. Then

√
n
(︂ˆ︁θψ − θψ, ˆ︁β1 − β1, ˆ︁β2 − β2

)︂⊤

has asymptotically a zero-mean normal distribution with a variance-covariance
matrix G, where

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9σ2

β2
1θψ

−(36β1−18β2θψ)σ2

β2
1θ

2
ψ

30β1σ2

β2
1θ

3
ψ

−(36β1−18β2θψ)σ2

β2
1θ

2
ψ

(︂
36β2

2θ
2
ψ+144β1β2θψ+192β2

1

)︂
σ2

β2
1θ

3
ψ

−(180β1+60β2θψ)β1θψσ
2

β2
1θ

5
ψ

30β1σ2

β2
1θ

2
ψ

−(180β1+60β2θψ)β1θψσ
2

β2
1θ

5
ψ

180σ2

θ5
ψ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Proof. We will use Theorem A from Jarušková [2001] but we have to take into
account more general variance of random errors ei than σ2 = 1.

Define Z∗
i = Zi

σ
. Using definition of model (2.11), we have

Z∗
i = β1

σ

(︄
ψ − i

n

)︄+

+ β2

σ

⎛⎝(︄ψ − i

n

)︄+
⎞⎠2

+ ei
σ

= β∗
1

(︄
ψ − i

n

)︄+

+ β∗
2

⎛⎝(︄ψ − i

n

)︄+
⎞⎠2

+ e∗
i

denoting β∗
i = βi/σ and e∗

i = ei/σ. We have var e∗
i = 1 and the matrix Xp · does

not change neither does the change-point ψ. Also, the data Z∗
1 , . . . , Z

∗
n satisfy the

model used in Jarušková [2001], which is the same as our model (2.11) but having
random errors with variance equal to 1.

One can estimate β∗ and ψ from Z∗
1 , . . . , Z

∗
n as usually. We have

ˆ︁ψ = arg max
p∈ (1,n)

Z∗⊤Xp ·
(︂
X⊤
p ·Xp ·

)︂−1
X⊤
p ·Z

∗

= arg max
p∈ (1,n)

Z⊤Xp ·
(︂
X⊤
p ·Xp ·

)︂−1
X⊤
p ·Z

and ˆ︁β∗ =
(︃
X⊤ˆ︁ψ · Xˆ︁ψ ·

)︃−1
X⊤ˆ︁ψ · Z∗ =

(︃
X⊤ˆ︁ψ · Xˆ︁ψ ·

)︃−1
X⊤ˆ︁ψ · Z/σ =

ˆ︁β
σ
.

Using Theorem A from Jarušková [2001] we obtain

√
n

⎛⎜⎜⎜⎜⎝
ˆ︁θψ − θψˆ︁β∗

1 − β∗
1ˆ︁β∗

2 − β∗
2

⎞⎟⎟⎟⎟⎠ D−−→ N (0,G∗) ,

i.e. the vector has asymptotically normal distribution with a zero mean vector
and a variance - covariance matrix G∗, where G∗ is the inverse matrix of matrix

G∗−1 =

⎛⎜⎜⎜⎜⎝
β∗

1
2θψ + 2β∗

1β
∗
2θ

2
ψ + 4β∗

2
2θ3
ψ/3 . . . . . .

β1θ
2
ψ/2 + 2β∗

2θ
3
ψ/3 θ3

ψ/3 . . .

β∗
1θ

3
ψ/3 + β∗

2θ
4
ψ/2 θ4

ψ/4 θ5
ψ/5

⎞⎟⎟⎟⎟⎠ .

By inverting the matrix, we calculate

G∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

9
β∗

1
2θψ

. . . . . .

−36β∗
1 −18β∗

2θψ
β∗

1
2θ2
ψ

36β∗
2

2θ2
ψ+144β∗

1β
∗
2θψ+192β∗

1
2

β∗
1

2θ3
ψ

. . .

30β∗
1

β∗
1

2θ3
ψ

−180β∗
1

2θψ+60β∗
1β

∗
2θ

2
ψ

β∗
1

2θ5
ψ

180
θ5
ψ

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

We need the asymptotic distribution for the estimators θψ, β1, β2 from our
original model (2.11). Define a linear transformation
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g

⎛⎜⎜⎝xy
z

⎞⎟⎟⎠ =

⎛⎜⎜⎝ x
σy
σz

⎞⎟⎟⎠ .
Since g is continuous, we obtain by using continuous mapping theorem (The-

orem 2.3 in Van der Vaart [1998])

√
n

⎛⎜⎜⎜⎜⎜⎝g
⎛⎜⎜⎜⎜⎝
ˆ︁θψˆ︁β∗

1ˆ︁β∗
2

⎞⎟⎟⎟⎟⎠− g

⎛⎜⎜⎜⎝
θψ

β∗
1

β∗
2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠

D−−→ N
(︂
0,DgG∗D⊤

g

)︂
,

where Dg is a the transformation matrix. In our case

Dg =

⎛⎜⎜⎝1 0 0
0 σ 0
0 0 σ

⎞⎟⎟⎠ .
Denote G = D⊤

g G∗Dg. Using β∗
i = βi/σ, the matrix G equals

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
β∗

1
2 θψ

. . . . . .

−(36β∗
1 −18β∗

2 θψ)σ
β∗

1
2 θ2
ψ

(︂
36β∗

2
2 θ2
ψ+144β∗

1 β
∗
2 θψ+192β∗

1
2
)︂
σ2

β∗
1

2 θ3
ψ

. . .

30β∗
1 σ

β∗
1

2 θ3
ψ

−

(︂
180β∗

1
2 θψ+60β∗

1 β
∗
2 θ

2
ψ

)︂
σ2

β∗
1

2 θ5
ψ

180σ2

θ5
ψ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9σ2

β2
1 θψ

. . . . . .

−(36β1−18β2 θψ)σ2

β2
1 θ

2
ψ

(︂
36β2

2 θ
2
ψ+144β1 β2 θψ+192β2

1

)︂
σ2

β2
1 θ

3
ψ

. . .

30β1 σ2

β2
1 θ

3
ψ

−

(︂
180β2

1 θψ+60β1 β2 θ2
ψ

)︂
σ2

β2
1 θ

5
ψ

180σ2

θ5
ψ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Especially we obtain from Theorem 2 the asymptotic marginal distributions

√
n
(︂ˆ︁θψ − θψ

)︂√︄β2
1θψ

9σ2
D−−→ N (0, 1)

√
n
ˆ︁β1 − β1√
vβ1

D−−→ N (0, 1)

√
n
(︂ ˆ︁β2 − β2

)︂√︄ θ5
ψ

180σ2
D−−→ N (0, 1) ,
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while denoting vβ1 =

(︂
36β2

2θ
2
ψ+144β1β2θψ+192β2

1

)︂
σ2

β2
1θ

3
ψ

.

Since σ2 is unknown, we estimate it by ˆ︁σ2 = 1
n

∑︁n
i=1

(︃
Zi − ˆ︁β1xi,ˆ︁κ − ˆ︁β2x

2
i,ˆ︁κ
)︃2
.

Using Cramer-Slutsky theorem (Theorem B.10 in Anděl [2007]) we have

√
n
(︂ˆ︁θψ − θψ

)︂√︄β2
1θψ

9ˆ︁σ2 =
√
n
(︂ˆ︁θψ − θψ

)︂√︄β2
1θψ

9σ2
σˆ︁σ D−−→ N (0, 1) ,

using σ2ˆ︁σ2
P−→ 1 as n → ∞. Using analogous argumentation we obtain

√
n
(︂ˆ︁θψ − θψ

)︂√︄ ˆ︁β2
1
ˆ︁θψ

9ˆ︁σ2
D−−→ N (0, 1)

√
n
ˆ︁β1 − β1√︂ˆ︁vβ1

D−−→ N (0, 1)

√
n
(︂ ˆ︁β2 − β2

)︂ ⌜⃓⃓⎷ ˆ︁θ5
ψ

180ˆ︁σ2
D−−→ N (0, 1) ,

where ˆ︁vβ1 =

(︂
36ˆ︁β2

2ˆ︁θ2
ψ+144 ˆ︁β1 ˆ︁β2ˆ︁θψ+192ˆ︁β2

1

)︂ˆ︁σ2

ˆ︁β1
2ˆ︁θ3
ψ

. Using the definition of θψ we have

ˆ︁ψ − ψ√
n

√︄ ˆ︁β2
1
ˆ︁θψ

9ˆ︁σ2
D−−→ N (0, 1) .

Next theorem gives the asymptotic distribution when β1 = 0.

Theorem 3. Suppose model (2.11) holds, β1 = 0 and β2 ̸= 0. Let (U1, U2, U3)⊤

be a normal vector with zero mean and variance-covariance matrix⎛⎜⎜⎝ θψ θ2
ψ/2 θ3

ψ/3
θ2
ψ/2 θ3

ψ/3 θ4
ψ/4

θ3
ψ/3 θ4

ψ/4 θ5
ψ/5

⎞⎟⎟⎠ .
Let us introduce a random variable X = −U1 + 4

ψ
U2 − 10

3ψ2U3 having a normal
distribution N(0, θψ/9) and U+ = max(0, X/β2). Then as n → ∞

√
n
(︂ˆ︁θψ − θψ

)︂2 D−−→ 9
θψ

U+ ≡ max

⎛⎜⎝0,N
⎛⎝0, 9σ2

β2
2θψ

⎞⎠
⎞⎟⎠ ,

√
n ˆ︁β2

1
D−−→ 36σ

θψ
β2

2 U+ ≡ max
⎛⎝0,N

(︄
0, 144β2

2σ
2

θψ

)︄⎞⎠ ,
√
n
(︂ ˆ︁β2 − β2

)︂ D−−→ −30σ
θ3
ψ

β2U+ − 60σ
θ4
ψ

U2 + 80σ
θ5
ψ

U3.
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Proof. We will proceed similarly as in Theorem 2 and we will use Theorem B
from Jarušková [2001]. Define Z∗

i = Zi
σ
, it holds

Z∗
i = β2

σ

⎛⎝(︄ψ − i

n

)︄+
⎞⎠2

+ ei
σ

= β∗
2

⎛⎝(︄ψ − i

n

)︄+
⎞⎠2

+ e∗
i

denoting β∗
i = βi/σ and e∗

i = ei/σ. From the data Z∗
1 , . . . , Z

∗
n we obtain estimatorsˆ︁θψ, ˆ︁β∗

1 ,
ˆ︁β∗

2 . The data Z∗
1 , . . . , Z

∗
n satisfy the model in Jarušková [2001]. Define

U∗
+ = max(0, X/β∗

2) = σU+ by using Theorem B in Jarušková [2001] we obtain

√
n
(︂ˆ︁θψ − θψ

)︂2 D−−→ 9
θψ

U∗
+ ≡ max

⎛⎜⎝0,N
⎛⎝ 9
β∗

2
2θψ

⎞⎠
⎞⎟⎠ ,

√
n ˆ︁β∗

1
2 D−−→ 36

θψ
β∗

2
2 U∗

+ ≡ max

⎛⎜⎝0,N
⎛⎝144β∗

2
2

θψ

⎞⎠
⎞⎟⎠ ,

√
n
(︂ ˆ︁β∗

2 − β∗
2

)︂ D−−→ −30
θ3
ψ

β∗
2U

∗
+ − 60

θ4
ψ

U2 + 80
θ5
ψ

U3 .

Since the change-point ψ is the same in data Z1, . . . , Zn and Z∗
1 , . . . , Z

∗
n, by using

β∗
i = βi/σ we obtain

√
n
(︂ˆ︁θψ − θψ

)︂2 D−−→ 9
θψ
σ U+ ≡ max

⎛⎜⎝0,N
⎛⎝ 9σ2

β2
2θψ

⎞⎠
⎞⎟⎠ .

Using a linear transformation g(x) = σ2x and continuous mapping theorem (The-
orem 2.3 in Van der Vaart [1998]) we obtain, as n → ∞,

√
n ˆ︁β∗

1
2σ2 =

√
n ˆ︁β2

1
D−−→ 36σ2

θψ
β∗

2
2 U∗

+ = 36
θψ
β2

2σ U+ ≡ max
⎛⎝0,N

(︄
144β2

2σ
2

θψ

)︄⎞⎠ .
By using a linear transformation g(x) = σx and continuous mapping theorem,
we obtain

√
n σ

(︂ ˆ︁β∗
2 − β∗

2

)︂
=

√
n
(︂ ˆ︁β2 − β2

)︂ D−−→ −30
θ3
ψ

β2σU+ − 60σ
θ4
ψ

U2 + 80σ
θ5
ψ

U3.

The asymptotic results can be used to construct the confidence intervals for
unknown parameters. The two-sided (5.1) and right-sided (5.2) confidence inter-
vals for the change-point ψ based on Theorem 2 are stated in Chapter 5 and their
coverage is examined in simulations.

2.2.2 Unknown β0

With unknown β0, we have model (2.10). The estimation of unknown parameters
can be done similarly as in Chapter 2 with d = 2.
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Keeping the notation xsp,i =
(︃(︂

ψ−i
n

)︂+
)︃s

for s = 1, 2, we have

Xp · =

⎛⎜⎜⎜⎜⎜⎝
1 xp,1 x2

p,1
1 xp,2 x2

p,2
... ... ...
1 xp,n x2

p,n

⎞⎟⎟⎟⎟⎟⎠ .

The change-point ψ can be estimated similarly as in (2.2) by

ˆ︁ψ = arg max
p∈ (1,n)

Z⊤Xp ·
(︂
X⊤
p ·Xp ·

)︂−1
X⊤
p ·Z.

According to remark from the first Section, we can equivalently estimate ψ by
ˆ︁ψ = arg max

p∈ (1,n)
R2
p, (2.13)

where R2
p denotes the coefficient of determination of the linear regression model

with response Z and model matrix Xp · .

Parameters β = (β0, β1, β2)⊤ can then be estimated as in (2.4), i.e.

ˆ︁β =
(︃
X⊤ˆ︁ψ · Xˆ︁ψ ·

)︃−1
X⊤ˆ︁ψ · Z . (2.14)

With model (2.10) we do not have any other simpler formula of ˆ︁β, ˆ︁ψ as in (2.8)
since the matrix Xp · is more complicated in this case.

Denote θψ = ψ/n. Assuming var ei = 1, it can be proved, that as n → ∞ and
β1 ̸= 0

√
n
(︂ˆ︁θψ − θψ

)︂ D−−→ N

⎛⎜⎝0, 9 − 5θψ
β2

1θψ
(︂
1 − θψ

)︂
⎞⎟⎠

and if β1 = 0, β2 ̸= 0 and n → ∞

√
n
(︂ˆ︁θψ − θψ

)︂2 D−−→ max

⎛⎜⎜⎝0,N

⎛⎜⎝0, 9 − 5θψ
β2

2θψ
(︂
1 − θψ

)︂
⎞⎟⎠
⎞⎟⎟⎠ ,

using Remark 3 in Jarušková [2001] and arguments as in Theorem 4 with „re-
versed“ time ordering.

Similarly as in Theorem 2 we can modify the results for the case with σ2 ̸= 1.
Suppose β1 ̸= 0 and define Z∗

i = Zi/σ. By using Remark 3 from Jarušková [2001]
for data Z∗

1 , . . . , Z
∗
n we obtain

√
n
(︂ˆ︁θψ − θψ

)︂ D−−→ N

⎛⎜⎝0,

(︂
9 − 5θψ

)︂
σ2

β2
1θψ

(︂
1 − θψ

)︂
⎞⎟⎠ . (2.15)

If β1 = 0 and β2 ̸= 0 we have

√
n
(︂ˆ︁θψ − θψ

)︂2 D−−→ max

⎛⎜⎜⎝0,N

⎛⎜⎝0,

(︂
9 − 5θψ

)︂
σ2

β2
2θψ

(︂
1 − θψ

)︂
⎞⎟⎠
⎞⎟⎟⎠ ,
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2.3 Emax model
We now focus on Emax model, which is often used in dose-response studies where
it models the output with respect to patients with different doses, see e.g. Mac-
Dougall [2006], but it can be used also in other contexts.

Let us have data Z1, . . . , Zn measured at times i = 1, . . . , n from the Emax
model

Zi = βlowAs + βincr
i

i+ γ
+ ei

= βlowAs + βincr
1

1 + γ
i

+ ei

where βlowAs is the baseline (the lower asymptote), βincr represents the effect and
γ denotes the time when the effect is one half. Random errors are assumed to
have zero expectation and variance σ2. With βincr > 0 the expected value of Yi
increases from βlowAs towards βlowAs + βincr.

Now, we include a change-point ψ to the Emax model. For time i before
change-point ψ we have

Zi = βlowAs + βincr
1

1 + γ
i

+ ei

and for i ≥ ψ, we have

Zi = βlowAs + βincr
1

1 + γ
ψ

+ ei.

We can rewrite these formulae together as

Zi = βlowAs + βincr
1

1 + γ
min(i,ψ)

+ ei. (2.16)

Before change-point, the data follow the Emax model and after ψ the expected
value of Zi remains the same as for Zψ, see Figure 2.1.

We focus on the Emax model with a change-point. The parameters of the
model are ψ, γ, σ2 and β = (βlowAs, βincr)⊤ . The estimation proceeds similarly
as in polynomial gradual change model, we only have more general xp,i. Denote

xp,i; c = 1
1 + c

min(p,i)

and

Xp, ·; c =

⎛⎜⎜⎜⎝
1 xp,1; c
... ...
1 xp,n; c

⎞⎟⎟⎟⎠ .
The model (2.16) can be written as Y = Xψ, ·; γ β + e where e = (e1, . . . , en)⊤ ,
therefore we can use formulae from Section 2 to estimate the parameters, we only
have more general model matrix X.
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During the estimation, we solve

min
p, c∈ (1,n)

β ∈ R

∥Y − Xp, ·; cβ∥ = min
p, c∈ (1,n)

β ∈ R

(︂
Y − Xp, ·; cβ

)︂⊤ (︂
Y − Xp, ·; cβ

)︂
.

Similarly as in (2.2) we obtain

ˆ︁ψ, ˆ︁γ = arg min
p, c∈ (1,n)

Y ⊤
(︃
I − Xp, ·; c

(︂
X⊤
p, ·; cXp, ·; c

)︂−1
X⊤
p, ·; c

)︃
Y

= arg max
p, c∈ (1,n)

Y ⊤Xp, ·; c
(︂
X⊤
p, ·; cXp, ·; c

)︂−1
X⊤
p, ·; cY ,

(2.17)

where the minimisation is done over two parameters, p and c. With estimated
change-point ψ and the time of the half effect γ, we can estimate parameters
β = (βlowAs, βincr)⊤ by

ˆ︁β =
(︃
X⊤ˆ︁ψ, ·;ˆ︁γ Xˆ︁ψ, ·;ˆ︁γ

)︃−1
X⊤ˆ︁ψ, ·;ˆ︁γ Y (2.18)

and σ2 by
ˆ︁σ2 = 1

n

n∑︂
i=1

(︂
Yi − ˆ︁βlowAs − ˆ︁βincrxi;ˆ︁ψ,ˆ︁γ)︂2

. (2.19)

The distribution of derived estimators can be approximated using bootstrap,
the procedure will be described in more detail in Chapter 5.
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3. Linear point-of-stabilisation
model
In this chapter, we work with the gradual change model with linear trend. More-
over, we modify the model to fit into context of so-called point-of-stabilisation
(PoSt), which was mentioned in Section 2.2.

In drug manufacturing process, the continuous manufacturing started replac-
ing batch process because of its better properties, described e.g. in Lee et al.
[2015] and in Schaber et al. [2011]. In continuous manufacturing, the product
is moving through the production line and mixing as applied continuously in-
stead of applying it to whole batch in batch process. Continuous manufacturing
is more agile and robust, since often in classical batch process manufacturing,
the outputs from one step of production are tested, stored and transported to
the next step, which takes some time and increases costs. On the other hand,
continuous manufacturing eliminates these factors as the outputs of one step are
tested and immediately transported to the next step. It also shortens the supply
chain since in batch process manufacturing, the materials can be shipped across
several countries before they are applied in next step of the process, see e.g. Lee
et al. [2015].

Continuous manufacturing can be scaled-up in a easier way than batch ma-
nufacturing either by increasing flow rate of the line or by creating a new one,
and can therefore prevent drug shortage in case of unforeseen situations. The
cost effectiveness was studied e.g. in Schaber et al. [2011] and it turned out
that continuous manufacturing brings savings compared to the batch process,
especially when more sophisticated processes of continuous manufacturing are
used.

During the start-up period of the production line, the final products do not
have the same quality. This brings material waste during this starting phase of
manufacturing.

The goal is to find the so-called point-of-stabilisation (PoSt), when the process
becomes stable and it stops showing the trend observed in early phase. This
problem can be viewed as a simple modification of the change-point estimation
in gradually changing sequence with monotonic trend. Point estimate as well as
confidence interval (usually right-sided) for change-point is desired.

Here, we suppose the linear trend to be present up to an unknown change-point
ψ (the PoSt) and diminish after ψ, similarly as in Section 2.2. In continuous drug
manufacturing, the part before ψ represents the start-up period with unstable
output quality. Assume we have data Z1, . . . , Zn satisfying

Zi = β0 + β1

(︄
ψ − i

n

)︄+

+ ei. (3.1)

Random errors e1, . . . , en are supposed to be as in model (1.1). Model (3.1) is
similar to model (1.1) for d = 1 but the time is in reversed order, see Figures
3.3 and 1.1. Also, the expected value the output variable Z is often increasing
before the change-point by having β1 < 0. After the process becomes stable, i.e.
after the unknown time ψ, the output quality of the drug product (e.g. a tablet)
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does not show any trend. Therefore, in the point-of-stabilisation context, we use
notation as in Section 2.2 and 2.3 where the trend was also assumed to be present
up to the change-point ψ.

3.1 Testing in PoSt model
The main focus is on the estimation, therefore we just briefly discuss testing in
PoSt model (3.1) and differences compared to models from previous chapters.
Similarly as in Chapter 1, tests about the change-point (here denoted ψ) can be
developed. But in model (3.1), the situation is slightly different because the trend
appears at the beginning and diminishes afterwards.

Under the null hypothesis H0 : ψ = n, the trend is present in all the data
and there is no change-point while at Chapter 1, H0 : κ = n corresponded
to a situation without any trend and constant model. Under the alternative
H1 : ψ < n, the trend diminishes after ψ and the change is present in our data.
Again, in Chapter 1, H1 corresponded to situation when the trend appeared after
the change-point.

3.2 Estimation in PoSt model
We will derive the estimates of unknown parameters in model (3.1) and their
asymptotic distribution as in Hušková [1998] while taking into account the re-
versed time ordering.

As in Section 2.2, denote xp,i =
(︁
(p− i) /n

)︁+ and xp · =
(︂∑︁n

i=1 xp,i
)︂
/n. The

matrix Xp · has form

Xp · =

⎛⎜⎜⎜⎜⎜⎝
1 xp,1
1 xp,2
... ...
1 xp,n

⎞⎟⎟⎟⎟⎟⎠ .
In this situation, the unknown change-point ψ can be estimated similarly as in
(2.2). Denoting Z = (Z1, . . . , Zn)⊤ and assuming model (3.1), we have for each
p ∈ (1, n)

Z⊤Z − Z⊤Xp ·
(︂
X⊤
p ·Xp ·

)︂−1
X⊤
p ·Z =

n∑︂
i=1

(︂
Zi − Z

)︂2
−
∑︁n
i=1 Zi

(︂
xp,i − xp ·

)︂2

∑︁n
i=1

(︂
xp,i − xp ·

)︂2 .

Therefore the estimator ˆ︁ψ of the change-point ψ can be calculated as in (2.2) or
equivalently as

ˆ︁ψ = arg max
p∈ (1,n)

(︃∑︁n
i=1 Zi

(︂
xp,i − xp ·

)︂)︃2

∑︁n
i=1

(︂
xp,i − xp ·

)︂2 . (3.2)

The shape of minimised function depends on the location of ψ, see Figure 3.1
created with n = 50, β0 = β1 = 2 and ψ = [n/4], [n/2], [3n/4].

Similarly as in (2.4), the estimator ˆ︁β of β has form

ˆ︁β =
(︃
X⊤ˆ︁ψ · Xˆ︁ψ ·

)︃−1
X⊤ˆ︁ψ · Z,
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Figure 3.1: Function to be maximised in linear PoSt model for n = 50,
β0 = β1 = 2 and ψ = [n/4], [n/2], [3n/4].

specifically in our case
ˆ︁β0 = Zn − ˆ︁β1 xˆ︁ψ ·

ˆ︁β1 =
∑︁n
i=1 Zi

(︂
xˆ︁ψ,i − xˆ︁ψ ·

)︂
∑︁n
i=1

(︂
xˆ︁ψ,i − xˆ︁ψ ·

)︂2 .

The variance σ2 can be estimated similarly as in (2.5) by

ˆ︁σ2 = 1
n

n∑︂
i=1

(︂
Yi − ˆ︁β0 − ˆ︁β1xˆ︁ψ,i)︂2

.

The asymptotic distribution of the estimators can be derived similarly as
in Hušková [1998]. We only have reverse time ordering and therefore slightly
different model in our case. We have to modify our data a little bit and then use
the theorems from Hušková [1998].

Theorem 4. Let the variables Z1, . . . , Zn satisfy (3.1) and be independent. Let,
as n → ∞,

ψ = [nθψ]
for some θψ ∈ (0, 1).
Then, as n → ∞,

β1

σ

ˆ︁ψ − ψ√
n

⌜⃓⃓⃓
⎷(︂1 − θψ

)︂
θψ

4 − 3θψ
D−−→ N(0, 1). (3.3)
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Proof. We would like to use Theorem 1 from Hušková [1998] but we have to
modify our data to fit model (1.1).

Define Yi = Zn−i+1 for i = 1, . . . , n. Then

Zn−i+1 = β0 + β1

(︄
ψ − (n− i+ 1)

n

)︄+

+ en−i+1 = β0 + β1

(︄
i− κ

n

)︄+

+ ˜︁ei,
where κ = n− ψ + 1 and ˜︁ei = en−i+1. The data Yi, . . . , Yn satisfy a model

Yi = β0 + β1

(︄
i− κ

n

)︄+

+ ˜︁ei
= β0 + β1xi,κ + ˜︁ei,

where β0, β1 are as in (3.1). This is like the original model (3.1) with „reversed“
time and new change-point κ = n−ψ+ 1. We are going to apply the theorem to
data Y1, . . . , Yn to derive the asymptotic distribution of the estimator of κ. Then
we show it can be used also for the estimator of ψ.

The estimators of β0, β1, σ
2 given by (2.8) and (2.2) calculated from Y1, . . . , Yn.

are the same as if calculated using Z1, . . . , Zn. This can be seen from formulae
(2.8), (2.2) and the fact that xi,k = xp,n−i+1 for each i, k and p = n− k + 1.

The change-point κ can be estimated as

ˆ︁κ = arg max
k∈ (1,n)

(︃∑︁n
i=1 Yi

(︂
xi,k − x ·k

)︂)︃2

∑︁n
i=1

(︂
xi,k − x ·k

)︂2 (3.4)

and it holds ˆ︁κ = n− ˆ︁ψ + 1.
Further, θψ = ψ

n
= n−κ+1

n
= n+1

n
− θκ while denoting θκ = k

n
. The parameter

β1 is assumed not to depend on n, therefore as n → ∞

β1 = O(1), β2
1n

(log log n) → ∞ .

From Theorem 1 we have, as n → ∞,

β1

σ

ˆ︁κ− κ√
n

√︄
θκ (1 − θκ)

1 + 3θκ
D−−→ N(0, 1).

Since ˆ︁κ−κ = ψ− ˆ︁ψ and θκ = n+1
n

− θψ → 1− θψ as n → ∞, we have as n −→ ∞,

β1

σ

ˆ︁ψ − ψ√
n

⌜⃓⃓⃓
⎷(︂1 − θψ

)︂
θψ

4 − 3θψ
D−−→ N(0, 1).

Similarly, we obtain the asymptotic distribution of the other estimators using
results from Hušková [1998].
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Theorem 5. Let the assumptions of Theorem 4 be satisfied. Then, as n → ∞,

√
n
(︂ ˆ︁β1 − β1

)︂ D−−→ N

⎛⎜⎝0, 12σ2

θ3
ψ

(︂
4 − 3θψ

)︂
⎞⎟⎠,

√
n
(︂ ˆ︁β0 − β0

)︂ D−−→ N
(︄

0, 4σ2

4 − 3θψ

)︄
,

ˆ︁σ2 − σ2 = oP
(︂
(log log n)−1

)︂
,

Proof. Hušková [1998, Theorem B].

We will now examine the results of Theorem 4 in more detail. Denote

V (θ) =
√︄

1 + 3θ
θ (1 − θ) .

We can rewrite the results of Theorem 1 (model (1.1) with d = 1) as

β1

σ

ˆ︁κ− κ√
n V (θ)

D−−→ N(0, 1),

where θ = κ/n. The term V (θ) can be consistently estimated by V (ˆ︁θ). The
expression V (θ) is part of the variance of ˆ︁θ − θ and changes with changing θ.

In model (3.1) with change-point ψ (representing PoSt) we work with „reverse“
time ordering. To be able to transform the data Z1, . . . , Zn to data satisfying
Theorem 1 we introduced „reversed“ change-point κ = n − ψ + 1. We can write
θψ = ψ/n = (n + 1)/n − θκ, where θκ = κ/n and θψ → 1 − θκ for n → ∞. The
asymptotic distribution of ˆ︁ψ in Theorem 4 can be written as

β1

σ

ˆ︁ψ − ψ√
nV (1 − θψ)

D−−→ N(0, 1)

where V (1 − θψ) =
√︃

4−3θψ
(1−θψ)θψ . We see values of V (1 − θψ) as a function of θψ

in Figure 3.2. The minimum lies at θ = 2/3 and values increases for smaller or
bigger θψ. The highest values of V (1 − θψ) are for small θψ. One could expect
such behaviour as this represents the situation when we do not have enough data
before change.
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model (3.1).

3.3 Confidence intervals
The estimator ˆ︁ψ of the point-of-stabilisation ψ is given by (3.2). Theorem 4 can
then be used to construct confidence intervals for the change-point ψ. Often, one-
sided confidence interval for ψ is desired because of its equivalence to hypothesis
testing. In practice, we are often facing a one-sided problem because we want to
be sure the stabilisation was achieved and the quality of the product is guaranteed.
In that case, we want to verify the stability of the process at given time ψ0, i.e.
that no trend is present at ψ0. The trend is assumed to be caused by the start-up
period of the production line, which stabilises at time ψ. Therefore we want to
test, whether at given time ψ0, the output quality of products is without any
trend or equivalently whether ψ < ψ0, because the trend is present up to ψ, see
Figure 3.3. We put the desired case as the alternative and we obtain

H0 : ψ ≥ ψ0

H1 : ψ < ψ0 .

Using the results of Theorem 4 we reject H0 if and only if

β1

σ

ˆ︁ψ − ψ0√
n

⌜⃓⃓⃓
⎷
(︂
1 − ˆ︁θψ)︂ ˆ︁θψ
4 − 3ˆ︁θψ ≤ uα

where uα denotes the α-quantile of standard normal distribution. From duality
of testing and confidence intervals, the set of values θ0 for which we do not reject
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Figure 3.3: Linear PoSt model with the right-sided 95% confidence interval for
point-of-stabilisation ψ given by (3.5).

H0 with given data represents (if they form an interval) the confidence interval
for θ with an asymptotic coverage 1 − α. Since H0 is not rejected when the test
statistic is greater than uα = −u1−α we obtain an interval

(−∞, cU) =

⎛⎜⎜⎝−∞, ˆ︁ψ + u1−α
ˆ︁σ√

nˆ︁β1

⌜⃓⃓⃓
⎷ 4 − 3ˆ︁θψˆ︁θψ (︂1 − ˆ︁θψ)︂

⎞⎟⎟⎠ , (3.5)

Therefore when we reject H0 if ψ0 does not lie in this interval, such test will have
an asymptotic significance level α.

On the other hand, we can also test

H0 : E Zψ0 = β0

H1 : E Zψ0 ̸= β0 .

Under H0, no trend is present at ψ0 because the change-point ψ occurred before
ψ0, therefore it is equivalent to testing

H0 : ψ ≤ ψ0

H1 : ψ > ψ0 .
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Under the alternative, the true change-point is located after ψ0 and therefore the
trend is still present at ψ0. We test these hypothesis when we want to verify the
presence of the trend at ψ0 (the alternative) or equivalently, when we want to
verify that the process is unstable. Using the results of Theorem 4 we reject H0
if and only if

β1

σ

ˆ︁ψ − ψ0√
n

⌜⃓⃓⃓
⎷
(︂
1 − ˆ︁θψ)︂ ˆ︁θψ
4 − 3ˆ︁θψ ≥ u1−α

where uα denotes the α-quantile of standard normal distribution. From duality
of testing and confidence intervals, the set of values θ0 for which we do not reject
H0 with given data represents (if they form an interval) the confidence interval
for θ with an asymptotic coverage 1 − α. Since H0 is not rejected when the test
statistic is lower than u1−α we obtain an interval

(cL,∞) =

⎛⎜⎜⎝ ˆ︁ψ − u1−α
ˆ︁σ√

nˆ︁β1

⌜⃓⃓⃓
⎷ 4 − 3ˆ︁θψˆ︁θψ (︂1 − ˆ︁θψ)︂ , ∞

⎞⎟⎟⎠ . (3.6)

Hence if we construct this interval and we reject the hypothesis of stable process
at ψ0 (no trend present) in favour of present trend (H1) at time ψ0 if ψ0 does not
lie in the confidence interval, such test will have an asymptotic significance level
α.

Using again the results of Theorem 4, the two-sided confidence interval for ψ
has form

⎛⎜⎜⎝ ˆ︁ψ − u1−α
2

ˆ︁σ√
nˆ︁β1

⌜⃓⃓⃓
⎷ 4 − 3ˆ︁θψˆ︁θψ (︂1 − ˆ︁θψ)︂ , ˆ︁ψ + u1−α

2

ˆ︁σ√
nˆ︁β1

⌜⃓⃓⃓
⎷ 4 − 3ˆ︁θψˆ︁θψ (︂1 − ˆ︁θψ)︂

⎞⎟⎟⎠ . (3.7)

3.4 Known β0

So far, we assumed β0 to be unknown. There are cases when we can assume β0
to be known. For example, in PoSt model (3.1), β0 represents the mean value of
products output quality after the start-up period and it can assumed to be 1, since
the quality is often represented by percentage of given target, e.g. percentage of
targeted drug load in one tablet.

Assume β0 to be known and without loss of generality it can be set to zero.
In PoSt model, the β0 is usually 1 but we can define ˜︂Zi = Zi − 1 and work with
data ˜︂Z1, . . . , ˜︂Zn. With β0 = 0 we get for p ∈ (1, n)

Xp · =

⎛⎜⎜⎜⎜⎜⎝
xp,1
xp,2

...
xp,n

⎞⎟⎟⎟⎟⎟⎠ .
The estimates of ψ and β1 have form
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ˆ︁ψ = arg max
p∈ (1,n)

(︂∑︁n
i=1 Zixp,i

)︂2

∑︁n
i=1 x

2
p,i

,

ˆ︁β1 =
∑︁n
i=1 Zixˆ︁ψ,i∑︁n
i=1 x

2ˆ︁ψ,i .
The asymptotic distribution of ˆ︁ψ also changes. Using results from Hlávka and

Hušková [2017] and similar arguments as in Theorem 4, it holds, as n → ∞,

β1

σ

ˆ︁ψ − ψ√
n

√︄
θψ
4

D−−→ N(0, 1),

√
n
(︂ˆ︂β1 − β1

)︂√︄ θ3
ψ

3σ2
D−−→ N(0, 1).

3.5 Simulations
In this section, we run simulations to validate the asymptotic distribution, we
construct confidence intervals based on the asymptotic distribution and bootstrap
and we simulate their coverage for different parameter choices.

First, we examine results of Theorem 4 and Theorem 5. To visualise the
convergence to the asymptotic distribution with finite sample sizes, we simulate
1000 samples and draw their histogram together with a curve representing the
asymptotic distribution.

Properties of estimator ˆ︁ψ depend on σ, location of the true ψ and sample size
n. We start with investigating σ, see Figure 3.4. For small σ, the variance of
the asymptotic distribution is small and the histogram nicely approximates the
density of the asymptotic distribution. For σ = 0.05, simulated values of ˆ︁ψ are
very near the true value ψ = 25. With increasing σ, the variance of the asymptotic
distribution also increases and the estimators are more dispersed, see Figure 3.4.

We also obtain different results for different locations of the change-points,
see Figure 3.5. With change-point located at small time i, estimators are more
dispersed than for larger times i. Similar behaviour caused by the shape of the
variance as a function of θψ was discussed after Theorem 5, see Figure 3.2. The
results are similar for β0 unknown and known.

For estimators ˆ︁β, we simulate 1000 samples of ˆ︁β0, ˆ︁β1 when β0 is unknown and
1000 samples of ˆ︁β1 when β0 is known and assumed to be zero and we draw their
histograms together with the asymptotic distribution for different values of σ, see
Figure 3.6 and 3.7. The histograms approximate the asymptotic distribution of β0
nicely for all selected σ but the situation is worse for β1, see Figure 3.6. Simulated
values have higher variance than the variance of the asymptotic distribution.
For σ = 0.3, some of the simulated ˆ︂β1 differ from true β1 by more than one.
With known β0, the situation is similar, see Figure 3.7. The simulated values
of ˆ︁β1 are again more dispersed than they should be according to the asymptotic
distribution, especially for larger σ.
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Asymptotic and simulated distribution of ψ̂
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Asymptotic and simulated distribution of ψ̂
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Asymptotic and simulated distribution of ψ̂
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σ = 0.3

Figure 3.4: Asymptotic and simulated distribution of ˆ︁ψ in linear PoSt model with
unknown β0 for n = 50, ψ = 25, β = (2, 2)⊤ and σ = 0.05, 0.1, 0.3.

Asymptotic and simulated distribution of ψ̂, unknown β0

0 10 20 30 40 50

Asymptotic and simulated distribution of ψ̂, known β0

0 10 20 30 40 50

Figure 3.5: Asymptotic and simulated distribution of ˆ︁ψ in linear PoSt model for
different ψ, with known and unknown β0, n = 50, ψ = [n/4], [n/2], [3n/4], β =
(0, 2)⊤ and σ = 0.1.
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Asymptotic and simulated distribution of β̂0
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Figure 3.6: Asymptotic and simulated distribution of ˆ︁β in linear PoSt model with
unknown β0, n = 50, ψ = 25, β = (5, 5)⊤ and σ = 0.05, 0.1, 0.3.
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Figure 3.7: Asymptotic and simulated distribution of ˆ︂β1 in linear PoSt model
with known β0, n = 50, ψ = 25, β1 = 5 and σ = 0.05, 0.1, 0.3.
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3.5.1 Confidence intervals coverage
Now, we run simulations to get the coverage of two-sided and right-sided asymp-
totic confidence interval for ψ given by (3.7) and (3.5). Further, we construct the
intervals using bootstrap. The coverage and the average length of the interval
are compared for the two methods.

We run the simulations in more setups, for all we set parameters to values
β0 = 2, β1 = 2, σ = 0.03. Confidence intervals (CI) are all computed with α =
0.05. The number of repetitions N and the number of bootstrap samples B are
set to 1000. We try different sample sizes n = 25, 50, 100 and for each n we set
change-point to ψ = [n/4], [n/2], [3n/4]. We generate the data Z1, . . . , Zn from
model (3.1) with normally distributed errors ei having var ei = σ2. The bootstrap
confidence interval for ψ is constructed as follows.

1. Estimate unknown parameters by ˆ︁ψ, ˆ︁β0, ˆ︁β1 and ˆ︁σ using data Z1, . . . , Zn.

2. For b = 1, . . . , B, where B is the number of bootstrap samples:

(a) Sample e∗
1,b, . . . , e

∗
n,b from N(0, ˆ︁σ2).

(b) Calculate Z∗
i,b = ˆ︁β0 + ˆ︁β1

(︃ ˆ︁ψ−i
n

)︃+
+ e∗

i,b for i = 1, . . . , n.

(c) Estimate ψ from Z∗
1,b, . . . , Z

∗
n,b and denote it ˆ︁ψ∗

b .

3. Let q∗
n,B(α) denote the α sample quantile calculated from ˆ︁ψ∗

1, . . . ,
ˆ︁ψ∗
B. Con-

struct bootstrap confidence interval for ψ as(︂
2 ˆ︁ψ − q∗

n,B(1 − α/2), 2 ˆ︁ψ − q∗
n,B(α/2)

)︂
.

By bootstrap, we want to approximate the quantiles of
√
n
(︂ ˆ︁ψ − ψ

)︂
by using

quantiles of
√
n
(︂ ˆ︁ψ∗ − ˆ︁ψ)︂, denoted by r∗

n(α). These quantiles can be further
approximated by r∗

n,B(α) calculated from B Monte Carlo simulations. Then, the
(1 − α) 100% bootstrap confidence interval for ψ has form(︄ ˆ︁ψ −

r∗
n,B

(︁
1 − α/2

)︁
√
n

, ˆ︁ψ −
r∗
n,B

(︁
α/2

)︁
√
n

)︄
.

Denoting q∗
n,B(α) the α−quantile calculated from ˆ︁ψ∗

1, . . . ,
ˆ︁ψ∗
B we then obtain

r∗
n,B (α) =

√
n
(︂
q∗
n,B(α) − ˆ︁ψ)︂ and we can rewrite the interval as

(︂
2 ˆ︁ψ − q∗

n,B(1 − α/2), 2 ˆ︁ψ − q∗
n,B(α/2)

)︂
.

Results for the two-sided confidence interval are summarised in Table 3.1.
For lowest n = 25, the coverage of both types of CI is lower than 95% and it is
increasing with increasing ψ. Bootstrap CI have higher coverage by 0.1% than
asymptotic CI for ψ = 6, 12 and lower coverage for ψ = 19. The bootstrap CI is
also slightly wider. For n = 50, 100, the coverages are slightly smaller than 95%.
For both n, the coverage is similar for both types of CI. The average length is
similar, again slightly larger for bootstrap CI and it decreases with increasing ψ.
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In general, bootstrap CI have better coverage for ψ = [n/4], [n/2] for all chosen
n but all the results are very similar.

The results for the right-sided interval (3.5) are summarised in Table 3.2, the
setup is the same as for two-sided interval. Here, we monitor mean distance
cU − ψ. For the asymptotic interval, this distance is equal to the average of
cU i − ψ where cU i denotes the lower bound of the confidence interval interval for
the i-th repetition, i = 1, . . . , N . For the bootstrap interval, it is equal to the
average of cU i−ψ across all repetitions where for each repetition i = 1, . . . , N , cU i
denotes the upper bound of bootstrap CI calculated from B bootstrap samples.
In general, the coverages are similar to coverages for two-sided CI.

Coverage Coverage
n ψ asymptotic CI bootstrap CI Mean length Mean length

[%] [%] asymptotic CI bootstrap CI

6 88.8 90.9 0.77 0.86
n = 25 12 90.8 90.9 0.58 0.61

19 93.3 93.0 0.56 0.57
12 92.2 94.0 1.13 1.22

n = 50 25 94.1 94.4 0.85 0.86
38 93.2 93.0 0.82 0.83
25 94.9 95.0 1.61 1.66

n = 100 50 94.3 95.2 1.22 1.23
75 94.5 94.7 1.18 1.18

Table 3.1: Coverage and average length of a two-sided confidence interval (CI)
for ψ in linear PoSt model based on asymptotic distribution and bootstrap for
β = (2, 2)⊤ , σ = 0.02, B = 1000.

Coverage Coverage
n ψ asymptotic CI bootstrap CI Mean distance Mean distance

[%] [%] cU − ψ asymptotic cU − ψ bootstrap

6 88.0 88.7 0.30 0.33
n = 25 12 89.7 90.2 0.24 0.25

19 93.5 93.0 0.24 0.24
12 92.6 92.1 0.47 0.49

n = 50 25 94.5 94.3 0.36 0.37
38 93.7 93.6 0.34 0.34
25 94.6 95.6 0.68 0.70

n = 100 50 94.2 93.8 0.52 0.52
75 94.3 93.8 0.50 0.50

Table 3.2: Coverage of a right-sided confidence interval (CI) (−∞, cU) for ψ and
average distance cU − ψ in linear PoSt model based on asymptotic distribution
and bootstrap for β = (2, 2)⊤ , σ = 0.02, B = 1000.

32



4. Heteroscedasticity in linear
PoSt model
In applications, the assumption of homoscedasticity is not always met. We often
face a situation when the variance of random error varies accross time i = 1, . . . , n.
For example, observations may have larger variance when the trends occurs and
the variance may decrease as they stabilise. Therefore, it is convenient to collect
multiple observations at each time i to verify the assumption of homoscedasticity
or to adjust the methods if heteroscedasticity may be present.

We work with the PoSt model

Zi = β0 + β1

(︄
ψ − i

n

)︄+

+ ei (4.1)

from Chapter 3 but the described procedure to derive the estimates and bootstrap
under is analogous for a model with general polynomial trend from Chapter 2.
Model with repeated measurements can be written as

Zij = β0 + β1

(︄
ψ − i

n

)︄+

+ eij, i = 1, . . . , n and j = 1, . . . ,mi. (4.2)

Here we assume having different number of observations mi at each time i. Under
the homoscedasticity assumption it holds var eij = σ2, under heteroscedasticity
assumption we have var eij = σ2

i .
Under homoscedasticity and if mi = m for all i, we can proceed similarly as

in previous chapters by taking sample means of observations at each i instead of
individual observations. For each i the sample mean has variance σ2/m.

Now, let us assume heteroscedasticity and possibly different numbers of ob-
servations mi at each time i. Under this setup, we work with sample means
Zi = ∑︁mi

j=1 Zij/mi at each time i = 1, . . . , n.
We solve

min
β0,β1 ∈ R
p∈ (1,n)

n∑︂
i=1

mi∑︂
j=1

(︂
Zij − β0 − β1xp,i

)︂2 1
σ2
i

and we can rewrite the minimised expression as

n∑︂
i=1

mi∑︂
j=1

(︂
Zij − β0 − β1xp,i

)︂2 1
σ2
i

=
n∑︂
i=1

mi∑︂
j=1

(︂
Zij − Zi + Zi − β0 − β1xp,i

)︂2 1
σ2
i

=

=
n∑︂
i=1

mi∑︂
j=1

(︂
Zij − Zi

)︂2

σ2
i

+
n∑︂
i=1

(︂
Zi − β0 − β1xp,i

)︂2 mi

σ2
i

.

Since the first part does not depend on p and β0, β1 we can rewrite the min-
imisation task as

min
β0,β1 ∈ R
p∈ (1,n)

n∑︂
i=1

(︂
Zi − β0 − β1xp,i

)︂2 1
wi

(4.3)

denoting wi = σ2
i

mi
= varZi.
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Denoting Z =
(︂
Z1, . . . , Zn

)︂⊤
, the minimised term can be written in matrix

form as
n∑︂
i=1

(︂
Zi − β0 − β1xp,i

)︂2 1
wi

=
(︂
Z − Xp ·β

)︂⊤
W
(︂
Z − Xp ·β

)︂
where

W =

⎛⎜⎜⎜⎝
1
wi

. . . 0
... ... ...
0 . . . 1

wn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
m1
σ2

1
. . . 0

... ... ...
0 . . . mn

σ2
n

⎞⎟⎟⎟⎠ .
Matrix W−1 is the variance matrix of vector Z.

As the variances σ2
i are unknown, we have to estimate them first by sample

variances ˆ︁σ2
i = 1

mi−1
∑︁mi
j=1

(︂
Zij − Zi

)︂2
. These estimators are used to estimate wi

by ˆ︂wi = ˆ︁σ2
i /mi and matrix W by matrix ˆ︂W consisting of estimators ˆ︂wi.

Therefore instead of (4.3) we solve

min
β0,β1 ∈ R
p∈ (1,n)

(︂
Z − Xp ·β

)︂⊤ ˆ︂W (︂
Z − Xp ·β

)︂
. (4.4)

Proceeding as in Chapter 2, we obtain

ˆ︁ψ = arg min
p∈ (1,n)

Z
⊤ˆ︂WZ − Z

⊤ˆ︂WXp ·
(︂
X⊤
p ·
ˆ︂WXp ·

)︂−1
X⊤
p ·
ˆ︂WZ

= arg max
p∈ (1,n)

Z
⊤ˆ︂WXp ·

(︂
X⊤
p ·
ˆ︂WXp ·

)︂−1
X⊤
p ·
ˆ︂WZ

(4.5)

For the estimator of β we have

ˆ︁β =
(︃
X⊤ˆ︁ψ ·

ˆ︂WXˆ︁ψ ·

)︃−1
X⊤ˆ︁ψ ·

ˆ︂WZ.

For the linear case, we can rewrite the formula for ˆ︁ψ and we obtain

ˆ︁ψ = arg max
p∈ (1,n)

(︄∑︁n
i=1 Zi/ˆ︂wi (︃xp,i −

∑︁n

i=1 xp,i/ ˆ︁wi∑︁n

i=1 1/ ˆ︁wi
)︃)︄2

∑︁n
i=1 x

2
p,i/ˆ︂wi − (∑︁n

i=1 xp,i/ ˆ︁wi)∑︁n

i=1 1/ ˆ︁wi
.

In Figure 4.1, variability of the simulated data varying at each time is visualised
using boxplots calculated from repeated observations at each time i. The vari-
ability differs particularly for small i and gets smaller as the trend diminishes.
The parameters are estimated by ˆ︁ψ and ˆ︁β.

For heteroscedasticity and varying numbers of observations mi, we use boot-
strap to approximate the distribution of the estimated parameters and to con-
struct confidence intervals.

The bootstrap procedure runs as follows:

1. Given data Zi,j, i = 1, . . . , n, j = 1, . . . ,mi, estimate ˆ︁σ2
i ,
ˆ︂W, ˆ︁ψ and ˆ︁β using

formulae above.
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2. For b = 1, . . . , B, where B is the number of bootstrap samples:

(a) Sample e∗
1,b, . . . , e

∗
n,b where e∗

i,b is sampled from N(0, ˆ︁σ2
i /mi).

(b) Calculate Z∗
i,b = ˆ︁β0 + ˆ︁β1

(︃ ˆ︁ψ−i
n

)︃+
+ e∗

i,b for i = 1, . . . , n.

(c) Estimate ψ by ˆ︁ψ∗
b calculated from Z

∗
1,b, . . . , Z

∗
n,b as above using ˆ︂W .

3. Let q∗
n,B(α) denote the α sample quantile calculated from ˆ︁ψ∗

1, . . . ,
ˆ︁ψ∗
B. Con-

struct bootstrap confidence interval for ψ as(︂
2 ˆ︁ψ − q∗

n,B(1 − α/2), 2 ˆ︁ψ − q∗
n,B(α/2)

)︂
.
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Figure 4.1: Boxplots of repeated measurements at each time i from heteroscedas-
tic model (4.2) with estimated change-point ψ and estimated curve using ˆ︁β.
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5. Nonlinear PoSt models
In this chapter, we extend linear PoSt model to nonlinear PoSt models using
results about quadratic and Emax model from Section 2.2 and 2.3. Then, we run
simulations to visualise the asymptotic distribution of estimators together with
histograms of simulated values for different parameter choices. Coverage of con-
fidence intervals based on asymptotic results and/or bootstrap is also calculated
and selected methods are compared.

5.1 Quadratic model
Quadratic change-point model discussed in Section 2.2 is already formulated in
PoSt context, i.e. assuming trend up to change-point ψ and stable data after ψ.
Therefore, we can use results from theorems in Section 2.2.

Assuming β0 is unknown and β1 ̸= 0 the asymptotic both-sided (1 − α) 100%
confidence interval for the change-point ψ from (2.15) has form⎛⎜⎝ ˆ︁ψ − u1−α

2

σ
√
nˆ︁β1

⌜⃓⃓⎷ 9 − 5θψ
θψ
(︂
1 − θψ

)︂ , ˆ︁ψ + u1−α
2

σ
√
nˆ︁β1

⌜⃓⃓⎷ 9 − 5θψ
θψ
(︂
1 − θψ

)︂
⎞⎟⎠ (5.1)

and the right-sided confidence interval has form⎛⎜⎝−∞, ˆ︁ψ + u1−α
σ

√
nˆ︁β1

⌜⃓⃓⎷ 9 − 5θψ
θψ
(︂
1 − θψ

)︂
⎞⎟⎠ (5.2)

As for linear PoSt model in Chapter 3 we first visualise the asymptotic and
simulated distribution of the parameter estimators and then calculate the cover-
age of the confidence intervals based on the asymptotic results and bootstrap.

Similarly as in linear PoSt model, for small values of σ, the simulated values
of ˆ︁ψ are not so dispersed as for larger σ, see Figure 5.1 created with known β0 = 0
and n = 50, ψ = 25, β1 = β2 = 5 and σ = 0.05, 0.1, 0.3. In all cases, the simulated
values provide a reasonable approximation of the asymptotic distribution.

As in linear PoSt model, simulated values are most dispersed for the lowest ψ
representing the earliest location of the change-points, see Figure 5.2 calculated
with β = (0, 5, 5)⊤ , n = 50 and σ = 0.1. For larger ψ, the simulated values are not
so dispersed. The results are similar for both the cases with known and unknown
β0.

Next, we plot similar plots for estimators of β1, β2 in the case with known
β0 and β1 ̸= 0, see Figure 5.3. For the smallest chosen σ the asymptotic and
the simulated distribution are very similar. The asymptotic distributions of β2
have a slightly larger variance then variance of β1 and the simulated values are
more dispersed then for β1. For the highest chosen σ, some of the simulated ˆ︂β2
underestimate the real β2, few of them are even negative. We also get some large
values of ˆ︂β1 with the same σ.
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Asymptotic and simulated distribution of ψ̂

22 23 24 25 26 27 28

σ = 0.05

Asymptotic and simulated distribution of ψ̂

22 23 24 25 26 27 28

σ = 0.1

Asymptotic and simulated distribution of ψ̂

10 15 20 25 30 35 40

σ = 0.3

Figure 5.1: Asymptotic and simulated distribution of ˆ︁ψ in quadratic PoSt model
with known β0 = 0 for n = 50, ψ = 25, β1 = β2 = 5 and σ = 0.05, 0.1, 0.3.
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Asymptotic and simulated distribution of ψ̂
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Asymptotic and simulated distribution of ψ̂
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Figure 5.2: Asymptotic and simulated distribution of ˆ︁ψ in
quadratic PoSt model for different ψ, with known and un-
known β0, n = 50, ψ = [n/4], [n/2], [3n/4], β = (0, 5, 5)⊤ and σ = 0.1.

Asymptotic and simulated distribution of β̂1
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σ = 0.05

Asymptotic and simulated distribution of β̂2
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σ = 0.05

Asymptotic and simulated distribution of β̂1
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σ = 0.1

Asymptotic and simulated distribution of β̂2
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σ = 0.1

Asymptotic and simulated distribution of β̂1
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σ = 0.3

Asymptotic and simulated distribution of β̂2

−40 −30 −20 −10 0 10

σ = 0.3

Figure 5.3: Asymptotic and simulated distribution of ˆ︁β1 and ˆ︁β2 in quadratic PoSt
model with known β0, n = 50, ψ = 25, β1 = β2 = 5 and σ = 0.05, 0.1, 0.3.
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5.1.1 Confidence intervals coverage
Now, we run simulations to calculate the coverage of the two-sided and right-sided
confidence interval for change-point ψ in based on asymptotic distribution and
bootstrap. We set n = 25, 50, 100 and for every n we have ψ = [n/4], [n/2], [3n/4].
For all combinations of n and ψ, we assume β0 to be unknown and we set
β0 = β1 = β2 = 3, σ = 0.03, number of repetitions N = 1000 and number
of bootstrap samples B = 700. We set smaller B than in simulations at linear
PoSt model because estimation of the change-point in quadratic model is more
time consuming. For the linear model, we estimated ψ as the argument of the
maximum of (3.2) using Brent minimisation method (with negative sign) imple-
mented in R, see Brent [2013]. For quadratic model, results of this method were
poor therefore we chose conjugate gradients method (see Fletcher and Reeves
[1964]) which appeared to be more time consuming but estimators ˆ︁ψ were more
accurate.

The bootstrap procedure to construct the two-sided confidence interval for ψ
runs as follows.

1. Estimate unknown parameters by ˆ︁ψ, ˆ︁β0, ˆ︁β1, ˆ︁β2 and ˆ︁σ,
2. For b = 1, . . . , B, where B is the number of bootstrap samples

(a) Sample e∗
1,b, . . . , e

∗
n,b from N(0, ˆ︁σ2)

(b) Calculate Z∗
i,b = ˆ︁β0 + ˆ︁β1 xˆ︁ψ,i + ˆ︁β2 x

2ˆ︁ψ,i + e∗
i,b for i = 1, . . . , n

(c) Estimate ψ from Z∗
1,b, . . . , Z

∗
n,b and denote it ˆ︁ψ∗

b

3. Let q∗
n,B(α) denote the α sample quantile calculated from ˆ︁ψ∗

1, . . . ,
ˆ︁ψ∗
B. Con-

struct bootstrap confidence interval for ψ as(︂
2 ˆ︁ψ − q∗

n,B(1 − α/2), 2 ˆ︁ψ − q∗
n,B(α/2)

)︂
.

Results are summarised in Table 5.1. The two-sided confidence interval (5.1)
based on the asymptotic distribution has the lowest coverage for the lowest ψ at
each n and the coverage increases as ψ increases. For ψ = [3n/4], the coverage
is higher than 95%. For the lowest ψ = [n/4] we have the highest coverage for
n = 50.

Confidence interval based on bootstrap has lower coverage than asymptotic
confidence intervals for ψ = [n/2], [3n/4] and higher coverage than asymptotic
confidence interval for ψ = [n/4] except for n = 50. Similarly as for the asymp-
totic CI, the coverage is lowest for the lowest ψ = [n/4]. Also, the bootstrap
interval is wider for ψ = [n/4] than the asymptotic interval and shorter for the
other location of ψ.

We calculate the coverage also for the right-sided interval (5.2) based on
asymptotic results and right-sided interval based on bootstrap. Results are sum-
marised in Table 5.2, the coverage is similar as for the two-sided interval. The
coverage is lowest for the lowest ψ = [n/4] and it increases with increasing ψ.
The bootstrap has better coverage for ψ = [n/4] than the asymptotic confidence
interval and slightly lower for other selected values of ψ.
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Coverage Coverage
n ψ asymptotic CI bootstrap CI Mean length Mean length

[%] [%] asymptotic CI bootstrap CI

6 77.1 88.3 1.11 1.87
n = 25 12 92.8 90.7 0.91 0.87

19 97.2 90.9 0.95 0.74
12 89.7 88.3 1.68 1.69

n = 50 25 95.4 94.2 1.35 1.24
38 98.1 95.4 1.41 1.08
25 81.2 83.8 2.26 1.82

n = 100 50 95.5 91.6 1.93 1.63
75 98.5 93.4 2.02 1.51

Table 5.1: Coverage and average length of a two-sided confidence interval (CI)
for ψ in quadratic model based on asymptotic distribution and bootstrap for
β0 = β1 = β2 = 3, σ = 0.03, B = 700.

Coverage Coverage
n ψ asymptotic CI bootstrap CI Mean distance Mean distance

[%] [%] cU − ψ asymptotic cU − ψ bootstrap

6 72.1 88.1 0.24 0.75
n = 25 12 90.1 87.7 0.35 0.34

19 95.5 91.0 0.39 0.31
12 86.6 89.2 0.57 0.69

n = 50 25 94.7 93.5 0.55 0.49
38 97.6 93.7 0.57 0.42
25 73.5 82.5 0.35 0.60

n = 100 50 93.0 91.9 0.68 0.68
75 97.0 93.2 0.79 0.64

Table 5.2: Coverage of a right-sided confidence interval (CI) for ψ and average dis-
tance cU −ψ in quadratic model based on asymptotic distribution and bootstrap
for β0 = β1 = β2 = 3, σ = 0.03, B = 700.
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5.2 Emax model
In this section, we examine the Emax model with change-point ψ discussed in
Section 2.3 which can be used also in PoSt context. The model

Zi = βlowAs + βincr
1

1 + γ
min(i,ψ)

+ ei

= βlowAs + βincr + xψ,i; γ + ei

represents non-polynomial generalisation of the PoSt model. For the Emax model
we do not have asymptotic results, therefore we visualise simulated distributions
together with the real value of parameters.

As discussed in Section 2.3 in Chapter 2, the parameter βlowAs represents the
lower asymptote i.e. the situation with no effect. We often want to estimate
the mean value of the response after the change-point, which was denoted by β0
in polynomial PoSt models. In Emax model with change-point, this value can
be calculated as βlowAs + βincr/

(︂
1 + γ

ψ

)︂
and it equals E Zψ. When generating

data from Emax model (e.g. for the figures or when constructing the confidence
intervals), one of inputs is the value β0, from which we calculate βlowAs such that,
after the change-point, the mean value of the response will be the given β0. The
data are then generated with this calculated βlowAs and estimation proceeds as
described in Section 2.3.

We plot the simulated distribution for different combinations of parameters,
similarly as in previous section. For σ = 0.05, the simulated distribution of ˆ︁ψ
is centered in the true ψ and it estimates ψ nicely, see Figure 5.4 created with
n = 50, ψ = 25, βincr = 2, γ = 25 and σ = 0.05, 0.1, 0.3. For higher values of σ,
the estimates of the change-points are more dispersed.

In Emax model, we observe different behaviour with different location of
change-point compared to linear and quadratic PoSt model. We have the small-
est variance of the simulated distribution for the lowest ψ and the most dis-
persed values of ˆ︁ψ for the highest ψ, see Figure 5.5 created with n = 50, ψ =
[n/4], [n/2], [3n/4], βincr = 2, γ = 25 and σ = 0.1.

Next, we look at the simulated distribution of ˆ︁βlowAs and ˆ︁βincr, see Figure 5.6
created with n = 50, ψ = 25, βincr = 2, γ = [n/2] and σ = 0.05, 0.1, 0.3.. The
parameter βlowAs was calculated such that the mean value after the change-point
equals 5, as discussed above. The simulated distribution of ˆ︁βlowAs is centered
around the true value and it is more dispersed as σ increases. For ˆ︁βincr, the
situation is similar, but the simulated histogram seems slightly nonsymmetric,
we have more values exceeding the true βincr than we would expect.

5.2.1 Confidence intervals coverage
The confidence intervals for Emax model can be constructed using bootstrap. We
describe the bootstrap process to construct the two-sided confidence interval for
the change-point ψ.

1. Estimate ˆ︁ψ, ˆ︁γ, ˆ︁β = (βlowAs, βincr)⊤ and ˆ︁σ2 from data Z1, . . . , Zn.

2. For b = 1, . . . , B where B is selected number of bootstrap samples:
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(a) Sample e∗
1,b, . . . , e

∗
n,b from N(0, ˆ︁σ2).

(b) Calculate Z∗
i,b = ˆ︁βlowAs + ˆ︁βincr xˆ︁ψ,i;ˆ︁γ + e∗

i,b for i = 1, . . . , n.

(c) Estimate ψ from Z∗
1,b, . . . , Z

∗
n,b and denote it ˆ︁ψ∗

b .

3. Let q∗
n,B(α) denote the α sample quantile calculated from ˆ︁ψ∗

1, . . . ,
ˆ︁ψ∗
B. Con-

struct bootstrap confidence interval for ψ as(︂
2 ˆ︁ψ − q∗

n,B(1 − α/2), 2 ˆ︁ψ − q∗
n,B(α/2)

)︂
.

In Figure 5.7 we see generated data with n = 50, ψ = 25, γ = 25, βincr = 5,
σ = 0.1 and βlowAs = 0.2 with 95% right-sided confidence interval for ψ con-
structed using bootstrap with B = 1000.

We run simulations to calculate the coverage of the two-sided and right-sided
confidence interval for n = 25, 50, 100, ψ = [n/4], [n/2], [3n/4]. We further set
B = 1000, N = 1000, σ = 0.03, γ = ψ, βincr = 3 and we calculate βlowAs such
that the mean value of the response after the change-points equals 3.

Results for the two-sided confidence interval are summarised in Table 5.3. In
general, the coverage in almost all cases is below 95%. For n = 25, the coverage

Simulated distribution of ψ̂

22 23 24 25 26 27 28

σ = 0.05

Simulated distribution of ψ̂

22 23 24 25 26 27 28

σ = 0.1

Simulated distribution of ψ̂

22 23 24 25 26 27 28

σ = 0.3

Figure 5.4: Simulated distribution of ˆ︁ψ in Emax model with n = 50, ψ = 25,
βincr = 2, γ = [n/2] and σ = 0.05, 0.1, 0.3.
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is lowest and it is the highest for ψ = [3n/4]. For the other choices of n, we have
the highest coverage for the lowest ψ = [n/4]. Similar behaviour was also visible

Simulated distribution of ψ̂

0 10 20 30 40 50

Figure 5.5: Simulated distribution of ˆ︁ψ in Emax model for n = 50, ψ =
[n/4], [n/2], [3n/4], βincr = 5, γ = 25 and σ = 0.1.

Asymptotic and simulated distribution of β̂lowAs
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Asymptotic and simulated distribution of β̂incr
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σ = 0.05

Asymptotic and simulated distribution of β̂lowAs
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σ = 0.1

Asymptotic and simulated distribution of β̂incr
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σ = 0.1

Asymptotic and simulated distribution of β̂lowAs

2.0 2.2 2.4 2.6 2.8 3.0

σ = 0.3

Asymptotic and simulated distribution of β̂incr

4 5 6 7 8 9

σ = 0.3

Figure 5.6: Simulated distribution of βlowAs and βincr in Emax model for with
n = 50, ψ = 25, βincr = 5, γ = 25 and σ = 0.05, 0.1, 0.3. The βlowAs was
calculated such that the mean value of the response after the change-points equals
5.
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in Figure 5.5 where the estimators were less dispersed for the lowest ψ.
For the right-sided confidence interval, the results were similar as for the two-

sided interval, see Table 5.4.
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Figure 5.7: Emax model with 95% right-sided confidence interval for ψ for n =
50, ψ = 25, γ = 25, βincr = 5, σ = 0.1, βlowAs = 0.2 and B = 1000.
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Coverage
n ψ bootstrap CI Mean length

[%] bootstrap CI

6 83.0 1.09
n = 25 12 88.9 1.38

19 91.1 1.98
12 94.7 1.56

n = 50 25 92.8 2.07
38 91.8 2.95
25 95.8 2.11

n = 100 50 93.6 2.96
75 94.6 4.18

Table 5.3: Coverage and average length of a two-sided confidence interval (CI) for
ψ in Emax model based on bootstrap for βincr = 3, γ = ψ, σ = 0.03. The βlowAs
was calculated such that the mean value of the response after the change-points
equals 3.

Coverage
n ψ bootstrap CI Mean distance

[%] cU − ψ bootstrap

6 79.9 0.41
n = 25 12 87.3 0.53

19 90.1 0.79
12 95.3 0.66

n = 50 25 93.4 0.84
38 90.5 1.13
25 96.1 0.87

n = 100 50 92.9 1.21
75 92.2 1.70

Table 5.4: Coverage of a right-sided confidence interval (CI) for ψ and average
distance cU −ψ in Emax model based on bootstrap for βincr = 3, γ = ψ, σ = 0.03.
The βlowAs was calculated such that the mean value of the response after the
change-points equals 3.
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6. Model misspecification
With real data, it is often difficult to correctly specify the model that the data
come from and whether the assumption of homoscedasticity of random errors
is fulfilled. In this chapter, we discuss a situation when the model is incorrectly
specified and we run simulations to find out how it influences the coverage of con-
fidence intervals. We use results from previous chapters about PoSt models and
we also address the wrong assumption of heteroscedasticity or homoscedasticity.
We present two scenarios, one where we assume more complicated model than
the data come from and second with less complex model than the true model.

For each scenario, we describe the assumed and the true model and assump-
tions concerning variances of the random errors. We run simulations and calcu-
late the coverage of the confidence intervals for the change-point ψ and we discuss
possible issues of misspecifying the model with real data.

In whole chapter, we assume we have mi measurements at each i = 1, . . . , n
from given model and we set mi = 20. By assuming this, we can estimate the
variance at each time i. We set n = 50, number of repetitions N = 1000, number
of bootstrap samples B = 1000 and we try different locations of the change-point,
ψ = [n/4], [n/2], [3n/4].

We run simulations with σ = 0.03 and under heteroscedasticity, we set

σi = σ
(︂
1 + 1.5 · ✶[i≤ψ]

)︂
, i = 1, . . . , n, (6.1)

where ✶[x] denotes the indicator function. This represents the situation, when the
variance is bigger until the manufacturing line stabilises, i.e. before the change-
point ψ.

During the estimation, we estimate the variance σ2
i at time i by the sample

variance and we construct the weight matrix ˆ︂W as discussed in Chapter 4. This
matrix is then used in estimation of the change-point and other parameters and
in the bootstrap procedure.

Under the homoscedasticity assumption, we assume variances are the same
for all i = 1, . . . , n and we set σ = 0.03. It can be estimated by the „pooled“
estimator of variance similarly as in Hlávka and Hušková [2017]. Denoting ˆ︁σ2

i the
sample variance at time i, the pooled estimator is defined as

ˆ︁σ2
pooled =

∑︁n
i=1 (mi − 1) ˆ︁σ2

i∑︁n
i=1 (mi − 1) .

In each scenario, we generate data from the true model with the correct as-
sumption of the variance structure (homoscedasticity or heteroscedasticity), we
estimate unknown parameters using the (incorrect) assumed model and variance
structure and we construct two-sided and right-sided confidence interval for ψ
using bootstrap in the assumed model and variance structure. We also construct
the confidence intervals using the true model for comparison.

In Emax model (2.16), the mean value of the output is increasing with βincr > 0
and decreasing with βincr < 0 up to the change-point ψ. Inversely, in a linear PoSt
model, the mean value is increasing with β1 < 0 and decreasing with β1 > 0,
similarly in quadratic PoSt model. To keep the same trend of the output variable,
we manually change the sign of βincr in Emax model when generating data and
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during estimation. When we set β1 = b, and generate the data using Emax model,
they will be generated using βincr = −b. Similarly during estimation, estimating
using Emax model on data with decreasing trend will resolve in ˆ︁βincr > 0 by
estimating the parameter βincr and then changing the sign.

6.1 Overspecified model
In this section, we deal with a situation, when the assumed model for the data is
more complicated than the true model from which the data are.

Let the true model for the data Zi,j, i = 1, , . . . , n, j = 1, . . . 20 be a linear
PoSt model with homoscedastic random errors, i.e.

Zij = β0 + β1

(︄
ψ − i

n

)︄+

+ eij,

and var ei = σ2 is same for all i = 1, . . . , n. We set β = (2, 2)⊤ and σ = 0.03.
In this setup, we try constructing the confidence interval assuming hetero-

scedasticity in linear, quadratic and Emax model. We also add the coverage for
the true model and homoscedasticity.

One can expect the overspecification will not have such a big impact on the
coverage as in the underspecification scenario. Results are summarised in Table
6.1.

With correctly specified model, i.e. linear PoSt model with homoscedastic
errors, the coverage is around 95% and it is the highest for ψ = [3n/4]. When
heteroscedasticity is assumed in the linear model, the coverage is a bit lower,
around 92%, and slightly higher for the right-sided interval compared to the two-
sided interval.

When assuming quadratic model, the coverage decreases to values around 88%
for the two-sided interval and 92% for the right-sided interval.

The situation changes when assuming the Emax model. The coverage for
ψ = 12 is only 40% and it is zero for the other locations of ψ. For the right-sided
confidence interval, the coverage is 100%. This happens because by assuming Emax
model and heteroscedasticity, we tend to have ˆ︁ψ > ψ, see the left side of Figure
6.1. This is because ˆ︁ψ is found by maximizing a function (2.17) and the function
has its maximum at larger values than ψ when using data from the homoscedastic
linear model, see the right side of Figure 6.1 plotted for ψ = 25. Therefore the
two-sided confidence interval does not cover true change-point ψ and the upper
limit cU of the right-sided confidence interval exceeds ψ. For ψ = 25, the average
distance cU − ψ equals 2.3 and for ψ = 38 it equals 5.3 therefore the „bias“ of
the estimator increases with increasing ψ. The situation is similar when assuming
homoscedastic Emax model.

In general, assuming heteroscedasticity when homoscedasticity holds brings
slightly lower coverage of the confidence intervals. When more complex poly-
nomial model (the quadratic model) is assumed, the coverage drops a bit more
to approximately 92% coverage of the right-sided interval. The problem occurs,
when we incorrectly assume the data are from Emax model since the estimator ˆ︁ψ
tends to overestimate ψ because of the shape of maximised function.
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Assumed Both-sided Right-sidedAssumed variace Change-point CI coverage CI coveragemodel structure [%] [%]

12 95.2 94.0
linear homoscedastic 25 95.5 94.5

38 96.2 95.5
12 91.8 92.3

linear heteroscedastic 25 91.7 92.1
38 91.8 93.5
12 88.7 90.0

quadratic heteroscedastic 25 85.4 92.1
38 91.1 92.0
12 40.4 100.0

Emax heteroscedastic 25 0.0 100.0
38 0.0 100.0

Table 6.1: Coverage of bootstrap 95% confidence intervals for ψ in the correct and
in the overspecified model, the true model is homoscedastic linear PoSt model
with n = 50, σ = 0.03, β0 = β1 = 2.
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Figure 6.1: Estimation when assuming heteroscedastic Emax model and the true
model is homoscedastic linear with ψ = 25, n = 50, β0 = β1 = 2. Left: Histogram
of simulated ˆ︁ψ. Right: Function to be maximised when estimating ψ for one
simulated data.

48



6.2 Underspecified model
In this section, we deal with a situation, when the data are assumed to be from
a simpler model than they really are.

Let true model for the data Zi,j, i = 1, , . . . , n, j = 1, . . . 20 be a quadratic
PoSt model

Zij = β0 + β1

(︄
ψ − i

n

)︄+

+ β2

⎛⎝(︄ψ − i

n

)︄+
⎞⎠2

+ eij

with heteroscedastic random errors with var eij = σ2
i defined by (6.1) and param-

eters β0 = β1 = β2 = 2.
With this data, we estimate parameters and we construct bootstrap confidence

intervals assuming homoscedasticity in linear, quadratic and Emax model. We can
expect the coverage will be lower than in overspecified scenario since we assume
simpler model than the true model.

The results are summarised in Table 6.2. When the true model is assumed,
the coverage is also lower than 95%. It is possible, that in some cases the change-
point was incorrectly estimated because of more dispersed data before the change-
point and the confidence interval, constructed from samples generated using this
„shifted“ estimators, did not cover the true change-point. Smaller values σ2

i or
larger β1, β2 would probably make the coverage higher. The coverage of the
right-sided interval is higher, around 90%.

With incorrectly specified model, the coverage varies and estimators are in
general not reliable.

When quadratic model with homoscedasticity is assumed, the coverage is
lower, we have 74% coverage for ψ = 12, 50.3% for ψ = 25 and 93.9% for ψ = 38
for the two-sided confidence interval. For the right-sided interval, the coverage is
higher for ψ = 12, 25 compared to two-sided interval.

When assuming linear model, the situation changes. For ψ = 12 the coverage
is < 25% and it is 0 for the other chosen ψ for both types of intervals. This
happens, because by incorrectly assuming linear model we tend to have ˆ︁ψ < ψ,
see the left side of Figure 6.2, since the maximum of maximised function (2.2)
for linear PoSt model is not the true change-point ψ, see the right side of Figure
6.2. Therefore, both the two-sided and the right-sided confidence intervals do not
cover the true ψ.

The situation is again different for the Emax model. We get coverage higher
than 75% for ψ = 12, 25 and the coverage drops to only 0.1% for ψ = 38. Again,
the coverage of the right-sided interval is much higher, we often obtain ˆ︁ψ > ψ
similarly as in the overspecification scenario.

When we are not sure about the assumption of homoscedasticity, it is therefore
safer to assume heteroscedasticity since otherwise the coverage is not reliable.
Also, we should not assume simpler model since it yields in very low coverage.
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Assumed Both-sided Right-sidedAssumed variace Change-point CI coverage CI coveragemodel structure [%] [%]

12 87.4 90.4
quadratic heteroscedastic 25 84.3 90.5

38 91.2 90.4
12 20.6 16.4

linear homoscedastic 25 0.0 0.0
38 0.0 0.0
12 74.0 79.4

quadratic homoscedastic 25 50.3 89.2
38 93.9 92.4
12 87.5 91.8

emax homoscedastic 25 77.9 99.7
38 0.1 100.0

Table 6.2: Coverage of bootstrap 95% confidence intervals for ψ in the correct
and in the underspecified model, the true model is heteroscedastic quadratic PoSt
model with n = 50, β0 = β1 = β2 = 2 and σi given by (6.1) with σ = 0.03.
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Figure 6.2: Estimation when assuming homoscedastic linear PoSt model and
the true model is heteroscedastic quadratic with ψ = 25, n = 50, unknown β0
and β0 = β1 = β2 = 2. Left: Histogram of simulated ˆ︁ψ. Right: Function to be
maximised when estimating ψ for one simulated data.
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Conclusion
In the thesis, we dealt with gradual change model, mostly in point-of-stabilisation
(PoSt) context. First, we reviewed available methods, we briefly discussed testing
the presence of the change-point and in more detail, we discussed the estimation
in gradual change models with polynomial trend and also in more general setups,
such as panel data, in Chapter 1.

In Chapter 2, we first introduced least squares estimators of unknown pa-
rameters in gradual change model with polynomial trend as in Hušková [1998]
and we stated their asymptotic results. In Section 2.2 we introduced the model
with quadratic trend and „reversed“ time ordering which is used in PoSt con-
text. For the quadratic model, we stated estimators of unknown parameters and
asymptotic results derived in Jarušková [2001] where we extended used theorems
by assuming general variance σ. In Section 2.3, we introduced the Emax model
in its general form used e.g. in dose-response studies in MacDougall [2006] and
we modified the model by including the change-point and we derived estimators
similarly as in linear change model.

In Chapter 3, we introduced the linear PoSt model, motivated by estimating
the point-of-stabilisation in continuous manufacturing process. We made use of
estimators derived in previous section about linear and general polynomial trend.
When deriving the asymptotic distribution, we translated results from Hušková
[1998] into reversed time settings used in PoSt context. Next, we used derived
results to construct confidence intervals for the change-point, we discussed the
connection to testing and we explained how they can be used in practice to verify
the stability of the production process. In Section 3.5 we visualised the difference
between the asymptotic distribution and the simulated distribution for various
sample sizes n, locations of the change-point ψ and variance σ. Here, we found
out properties of the change-point estimator ˆ︁ψ depend on the variance σ and also
on the location of the true change-point, the best approximation is for the highest
value ψ = [3n/4] among all selected locations of ψ. We calculated the coverage of
two-sided and right-sided confidence interval for ψ based on asymptotic results
and on bootstrap. For higher n, the coverage was similar for all selected loca-
tions of ψ and for n = 100, the coverage was around 94.5%. for the asymptotic
confidence interval. Using bootstrap, the coverage was in most cases slightly
higher and the bootstrap confidence interval was on average also a bit wider. For
the right-sided interval, the asymptotic confidence interval had slightly higher
coverage than the bootstrap interval.

Therefore, when assuming linear PoSt model and calculating right-sided con-
fidence interval, we would recommend to use the interval based on the asymptotic
distribution. On the other hand, for the change-point located early in the data
(e.g. ψ = [n/4]), bootstrap provides slightly better coverage as we saw in Table
3.2 for n = 25, 100.

In Chapter 4, we showed how to modify the estimation process when ho-
moscedasticity is not fulfilled by using multiple measurements and estimating
the variance σ2

i for each time i. We described the bootstrap procedure to get the
confidence interval for the change-point since in this situation we do not have any
asymptotic results.
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We then aimed at nonlinear PoSt models in Chapter 5, namely quadratic and
Emax model. We discussed the construction of confidence intervals, which can be
used in practice, and we visualised the simulated and the asymptotic distribution.
For the quadratic model, the approximation was similar as in linear PoSt model.

We calculated the coverage of confidence intervals as in the linear PoSt model.
For the quadratic model, the difference in coverage for different locations of ψ
was more evident. For ψ = [n/4] the coverage was the lowest for all chosen n and
the coverage increased with increasing ψ. Here, bootstrap confidence intervals had
slightly lower coverage similarly as in linear PoSt model. For right-sided bootstrap
interval coverage, results were similar as for two-sided confidence interval.

Therefore, when assuming quadratic model, we would again recommend using
the confidence interval based on asymptotic results. On the other hand, bootstrap
confidence interval provides better coverage in the case of „early“ change-point,
in our case ψ = [n/4], similarly as in linear PoSt model.

Next, we visualised the simulated distribution for the Emax model in PoSt
context together with true values of parameters. We found out that estimators
of the change-point are less dispersed for lower values of θ, compared to linear
and quadratic PoSt model. The coverage of bootstrap confidence intervals for ψ
in Emax model was slightly below 95% and it was the highest for ψ = [n/4].

In the end in Chapter 6, we discussed what happens when the true model
is not correctly specified and when incorrect assumption of homoscedasticity or
heteroscedasticity is done. When assuming more complex model than the true
model and hetroscedasticity when homoscedasticity is fulfilled, the coverage for
ψ was slightly lower, but still mostly above 91% for the right-sided confidence
interval, see Table 6.1. When Emax model was assumed, the coverage of the
two-sided interval was only 40% for ψ = [n/4] and none of bootstrap confidence
intervals covered the true ψ for ψ = [n/2], [3n/4]. For the right-sided interval, we
had 100% coverage since the estimated change-points tend to overestimate the
true ψ because of the shape of maximised function, see Figure 6.1.

When assuming less complex model and homoscedasticity while heteroscedas-
tic quadratic model holds, the results were not reliable, see Table 6.2. When as-
suming correct model and homoscedasticity, the coverage of the right-sided confi-
dence interval was around 85%. When assuming linear homoscedastic model, the
coverage was below 20% because estimators ˆ︁ψ tend to underestimate the true ψ,
see Figure 6.2. When assuming the Emax model, the situation was similar as in
overspecification scenario, we again tend to have ˆ︁ψ > ψ and the coverage of the
right-sided confidence interval was mostly higher than 95%.

Therefore, when one is not sure about homoscedasticity, we would recom-
mend to assume heteroscedasticity, which brings only small drop in coverage
if homoscedasticity holds. Also, assuming a simpler model yields in very low
coverage, we would therefore recommend assuming model with more complex
polynomial trend. On the other hand, misspecifying the Emax model results in
„biased“ change-point estimator because of the shape of maximised function.
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M. Hušková and J. Steinebach. Limit theorems for a class of tests of gradual
changes. Journal of statistical planning and inference, 89(1-2):57–77, 2000.
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