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ABSTRACT 

Knowledge of the processes of RNA interference, the regulation of gene expression by small 

RNAs (sRNAs), has grown at an unprecedented rate over the last 30 years. Some of the findings 

were literally revolutionary, as they revealed events that overturned many long-held notions. 

Many phenomena have been shown to be highly conserved and common to organisms of different 

species, but others are specific to certain lineages or have not yet been fully explored. There is also 

a lack of knowledge about the interconnection of numerous pathways – for example between 

silencing at the transcriptional (TGS, leading to the promoter methylation) and post-

transcriptional levels (PTGS, affecting mRNA stability or translation). The present work 

summarizes the findings of two published and two unpublished works and attempts to describe 

some of the less known sites of RNA interference using various plant model organisms. 

Research on Solanum tuberosum transgenic lines has revealed the ability of 5-azacytidine 

to restore the expression of transcriptionally silenced transgenes at the whole plant level. De novo 

regeneration from leaves of such plants can lead to re-silencing of reactivated transgenes and thus 

serves as a selection method to exclude lines prone to spontaneous silencing. The nature 

of changes in the expression of the two reporter genes indicated the coupling of PTGS and TGS, 

but also, the possibility of a gradual spread of methylation along the inserted T-DNA. Therefore, 

further research was aimed for the induction of PTGS and TGS at the cellular level in Nicotiana 

tabaccum BY-2 lines. Both approaches led to the generation of specific sRNAs matching 

predominantly to the target locus region, but sRNAs of a transitive nature outside the target locus 

also emerged. In particular, sRNAs from the terminator region could thus play a role 

in the propagation of methylation along the T-DNA, since the same terminator was used multiple 

times. The methylation of target loci was otherwise very accurate and did not spread to its 

surroundings during the monitored 10-14 days. 

In the last part of the work, I focused on proteins SAG18 and aPHC from Arabidopsis 

thaliana with a certain homology to the animal transmembrane dsRNA transporter, the protein 

SID-1. The study of SAG18 function in BY-2 cells did not demonstrate the effect of externally 

added sRNAs on the level of transcription of the targeted transgene, but the same negative results 

were obtained with SID-1 transporter from Caenorhabditis elegans. Analyses of double mutant 

plants in SAG18 and aPHC showed no significant changes in phenotype, but only indicated their 

possible role in the function of stomata guard cells. 

 

Key words: RNA interference, gene silencing, PTGS, TGS, sRNAs, transmembrane sRNAs 

transport, 5-azacytidine  
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ABSTRAKT 

Znalosti o procesech RNA interference, tedy regulace genové exprese prostřednictvím malých 

RNA (sRNA), se za posledních 30 let nebývale rozrostly. Některá zjištění byla doslova revoluční, 

neboť odhalila děje, které převrátily mnohé dosud zažité představy. Řada jevů se ukázala být 

značně konzervovaná a společná různým druhům organismů, jiné jsou však specifické pro určité 

vývojové větve či dosud ne zcela prozkoumané. Chybí také znalost o propojení četných drah – 

kupříkladu mezi umlčováním na transkripční (TGS, vedoucí k metylaci promotoru) 

a posttranskripční úrovni (PTGS, ovlivňující stabilitu mRNA či translaci). Předkládaná práce 

shrnuje poznatky dvou publikovaných a dvou dosud nepublikovaných prací a pokouší se 

prostřednictvím různých rostlinných modelových organismů popsat některá z méně známých míst 

RNA interference. 

 Výzkum na transgenních liniích Solanum tuberosum odhalil možnost obnovit pomocí 5-

azacytidinu expresi transkripčně umlčených transgenů na úrovni celých rostlin. Regenerace 

de novo z listů takovýchto rostlin může vést k opětovnému umlčení reaktivovaných transgenů 

a sloužit tak jako selekční metoda pro vyřazení linií náchylných k samovolnému umlčení. 

Charakter změn v expresi dvou sledovaných reportérových genů naznačoval spřažení PTGS 

a TGS, ale také, možnost postupného šíření metylace v rámci vnesené T-DNA. Další výzkum 

se proto věnoval na buněčné úrovni cílené indukci PTGS a TGS v liniích Nicotiana tabaccum 

BY-2. Oba přístupy vedly k tvorbě specifických sRNA cílených převážně do oblasti cílového 

lokusu, avšak objevily se též sRNA transitivní povahy, mimo cílový lokus. Zejména sRNA 

z oblasti terminátoru tak mohly hrát roli právě v šíření metylace podél T-DNA, neboť stejný 

terminátor byl použit vícekrát. Metylace cílového místa byla jinak velmi precizně cílená a nešířila 

se během sledovaných 10-14 dnů do svého okolí.  

 V poslední části práce jsem se zaměřil na proteiny SAG18 a aPHC z Arabidopsis thaliana 

s určitou homologií k živočišnému transmembránovému přenašeči dsRNA, proteinu SID-1. 

Studium funkce SAG18 v buňkách BY-2 nevedlo k prokázání vlivu externě přidaných sRNA 

na úroveň transkripce cíleného transgenu, stejné negativní výsledky byly získány i při testování 

SID-1 transportéru z Caenorhabditis elegans. Analýzy dvojitě mutantních rostlin v SAG18 

a aPHC také nevykazovaly žádné výrazné změny ve fenotypu, byla pouze naznačena jejich 

možná role ve fungování svěracích buněk průduchů. 

 

 

Klíčová slova: RNA interference, umlčování genů, PTGS, TGS, sRNA, transmembránový 

transport sRNA, 5-azacytidin  
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ABBREVIATIONS 

AA   amino acid 

AGO1-10  argonaute protein 1-10 

aPHC   putative alkaline phytoceramidase 

AS   antisense 

AzaC   5-Aza-2´deoxycytidin 

BS   bisulphite 

C. elegans  Caenorhabditis elegans 

CaMV 35S, P35S Cauliflower mosaic virus 35S constitutive promoter 

CMT2, 3  chromomethylase 2, 3 

DCL1, 2, 3, 4  dicer-like protein 1, 2, 3, 4 

DDM1   decrease in DNA methylation 1 

DME   demeter 

DML2, 3  demeter-like 2, 3 

DNMT1  DNA methyltransferase 1 

DPI   day post inoculation 

DRD1   defective in RNA-directed DNA methylation 1 

DRM1, 2  domains rearranged methyltransferase 1, 2 

dsRNA   double-stranded RNA 

FP   fluorescent proteins 

GFP   green fluorescent protein 

HEN1   HUA enhancer 1 

HIGS   host-induced gene silencing 

hc-siRNA  heterochromatic siRNA 

hpt   hygromycin phosphotransferase 

H3K9me  methylation of lysine 9 in histone 3 

IR   inverted repeat 

KAN   kanamycine 

LD   long day 

LMW   low molecular weight 

mC   methylcytosine 

mRNA   messenger RNA 
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MIR   microRNA gene 

miRNA   small microRNA 

MET1   methyltransferase 1 

nat-siRNA   natural cis-antisense transcript siRNA 

nptII   neomycin phosphotransferase 

ORF   open reading frame   

PD   plasmodesmata 

Pol II, IV, V   DNA-dependent RNA polymerase II, IV, V 

PPFD   photosynthetic photon flux density 

pri-miRNA   primary small microRNA 

PTGS    posttranscriptional gene silencing 

RdDM   small RNA-directed DNA methylation 

RDR1, 2, 6  RNA-dependent RNA polymerase 1, 2, 6 

RNAi   RNA interference 

ROS1   repressor of silencing 1 

RT-qPCR  quantitative real-time PCR 

SAG18   senescence associated gene 18 

SD   standard deviation 

SID   systemic RNAi defective 

sRNA   small ribonucleic acid 

sRNA*   non-guide passenger strand of small RNA 

SGS3   suppressor of gene silencing 3 

TAS   trans-acting non-coding genomic loci 

ta-siRNA  trans-acting siRNA 

TE   transposable element 

TGS   transcriptional gene silencing 

UT   unterminated 

v-siRNA  virus derived siRNA 

VIGS   virus-induced gene silencing 
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1. INTRODUCTION 

Plants have always been of great importance to mankind. Directly as a source of food, energy, 

building material, clothes or indirectly as a main producer of organic compound in the 

Earth’s ecosystem, an oxygen producer, a habitat creator or even an art inspirator. Their deeper 

study can also reveal some basic mechanisms, crucial for better understanding not only plant 

internal processes like photosynthesis, the key process for converting of light energy into 

chemical energy, but also core molecular apparatus shared by various eukaryotic cells. Although 

a lot of crucial studies is conducted on animal cells and then applied in a plant system, sometimes 

this order is inversed. 

Indeed, in 1990 Carolyn Napoli and her colleagues described RNA interference (RNAi) 

phenomenon by trying to overexpress chalcone synthase in pigmented petunia petals. 

Surprisingly, almost a half of plants showed completely unexpected phenotype – white flowering 

pattern (Napoli et al., 1990). Nevertheless antisense RNA was used for a gene downregulation 

much earlier (Izant and Weintraub, 1984). These “small steps” together have created a scaffold 

for detailed elemental RNAi characterization few years later by the team of Andrew Fire in 

research with microinjection of RNA into nematode Caenorhabditis elegans (Fire et al., 1998). 

The very same year few months later have Waterhouse et al. showed the same results also 

in plants. Finally, in 2006 Andrew Fire together with Craig C. Mello won the Nobel Prize in 

Physiology or Medicine for uncovering the process of RNA interference.  

Nowadays we know that the main purpose of this biochemical mechanism is to protect 

genome against invasive viral (Ratcliff et al., 1997), transposon (TE; Henderson and Jacobsen, 

2007) or transgene (Wassenegger et al., 1994) sequences and to regulate gene expression during 

plant development (Boerjan et al., 1994) and response to various stresses (Navarro et al., 2006). 

In the course of time the knowledge about RNAi exponentially grows and many applied 

biotechnological methods use its background. Nevertheless, several fundamental questions 

regarding RNAi processes remain unanswered, therefore this thesis is trying to shed light on some 

of them. 

 

1.1. The general principles of plant RNAi 

Plant RNAi is ingenious and very diverse set of pathways taking into consideration the existence 

of several plant protein paralogs and different regulatory routes. Nevertheless, basic machinery 

remains evolutionary conserved for most eukaryotic organisms – the regulation of gene 

expression by short non-coding 20-24 nt RNAs (sRNAs; Baulcombe, 2004).  
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sRNAs can be divided into two basic groups – microRNAs (miRNAs; Rhoades et al., 

2002) and small interfering RNAs (siRNAs; Elbashir et al., 2001; Hamilton and Baulcombe, 

1999; Ye et al., 2012). These crucial informative molecules are produced in cells by different 

routes, mostly from internal or external double stranded RNA (dsRNA) precursor by the 

enzymatic activity of an endoribonuclease of DICER-like (DCL) families (Schauer et al., 2002). 

Short sRNA duplexes gain 2nt 3´overhangs folowed by 2´O-methylation managed by the activity 

of enzyme HUA enhancer 1 (HEN1; Fig. 1.4.2a; Li et al., 2005). Guide strand of sRNA is then 

loaded into ARGONAUTE (AGO) protein creating effector ribonucleoprotein complex called 

RISC (RNA-induced silencing complex). Subsequently the expression of homologous sequences 

can be negatively affected by sRNA Watson-Crick base paring recognition in posttranscriptional 

gene silencing (PTGS; by mRNA cleavage or inhibition of protein translation; Baumberger and 

Baulcombe, 2005; Brodersen et al., 2008) or transcriptional gene silencing (TGS; by DNA or 

histone modification; Sijen et al., 2001; Vaucheret and Fagard, 2001). Some pathways use RNA-

dependent RNA polymerases (RDRs) creating or even amplifying the sRNA silencing signal 

(Voinnet, 2008).  

 

1.2. sRNA families and its biogenesis 

We can differentiate three major routes of sRNA biogenesis in flowering plants – 21-22 nt siRNAs 

produced by DCL2 and DCL4, 20-22 nt miRNAs made mainly by DCL1 and heterochromatic 

siRNAs (hc-siRNAs) formed by DCL3 activity. All these routes share unifying biochemical steps: 

i) dsRNA precursor formation, ii) dsRNA processing by DCL proteins, iii) non-guide passenger 

strand (sRNA*) removal and RISC effector complex formation, iv) complementary RNA/DNA 

recognition and its subsequent regulation (see Fig. 1.2; reviewed in Lee and Carroll, 2018). 

One of the main differences in sRNAs is the origin of their dsRNA precursor. For 

example, miRNAs (Fig. 1.2) are produced from primary single-stranded microRNA (pri-miRNA) 

intermediates during complex enzymatic pathway in Cajal bodies (Fujioka et al., 2007). Pri-

miRNA with its complicated imperfect secondary hairpin structure arises by the activity of 

polymerase II (Pol II) from non-coding microRNA genes (MIR; Reinhart et al., 2002; Lee et al., 

2004). Each gene gives only one miRNA (Meyers et al., 2008). The most essential for their 

biogenesis is DCL1 protein, but also DCL4 for generating an evolutionarily recent miRNAs in 

Arabidopsis thaliana (Amor et al., 2009). Matured miRNAs associate with AGO1 and are 

exported to the cytoplasm (Bologna et al., 2009, 2018) to guide usually PTGS during 

developmental processes through mRNA cleavage or translational repression (Rhoades et al., 

2002; Bartel et al., 2004). Relatively rare subgroup of A. thaliana, Oryza sativa and 

Physcomitrella patens longer miRNAs (23-27 nt) is also processed by DCL3 in collaboration with 
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RDR2 and Pol IV and associate with AGO4 controlling TGS. Nonetheless their origin is derived 

from MIR genes in contrast to hc-siRNA that are processed in a different way (see below; Vazquez 

et al., 2008; Chellappan et al., 2010). 

miRNAs are also important for production of 21 nt trans-acting siRNAs (see Fig. 1.2). 

These ta-siRNA are derived from transcripts of endogenous non-coding TAS genes (Allen et al., 

2005). Cleavage of miRNA and RDR6, DCL2/4/5 and AGO1/7 involvement are essential for 

their biogenesis (Peragine, 2004; Yoshikawa et al., 2005). In this process called transitivity, an 

initial pool of primary sRNAs (for example DCL1-dependent miRNA), directed against one 

region of a transcript, induces production of secondary siRNAs matching to dsRNA sector outside 

the primary RNA target sites (Yoshikawa et al., 2005). This remarkable system is highly 

dependent on suppressor of gene silencing 3 (SGS3; Yoshikawa et al., 2013) and is involved in 

the regulation of plant development (summarized in Singh et al., 2018). 

Generally, siRNAs are derived from long dsRNA precursors with perfect or near-perfect 

complementarity and diverse genesis. The most abundant class of siRNA are hc-siRNA, derived 

from heterochromatic regions and associated with deposition of repressive chromatin 

modifications at target DNA loci (see more in Chapter 1.4.2. and in Fig. 1.2. and 1.4.2a). Since 

their length is mostly 23-24 nt, they can be easily distinguished from other classes of endogenous 

plant small RNAs (Xie et al., 2004). hc-siRNAs have very strict requirements for specific protein 

members of the RDR, DCL and AGO families – for biogenesis Pol IV (Onodera et al., 2005; 

Wierzbicki et al., 2009; Haag and Pikaard, 2011) with subsequent processing by RDR2 and DCL3 

(Xie et al., 2004) and for function (target recognition) AGO3, 4, 6 or 9 (Qi et al., 2006; Havecker 

et al., 2010). 

The third most common group of siRNAs with endogenous origin are nat-siRNAs 

(Fig. 1.2). Compared to other types of siRNAs, which need RDR enzymes for dsRNA precursor 

synthesis, dsRNA precursors of 21-22 nt nat-siRNAs are thought to originate from the 

hybridization of independently transcribed complementary RNAs. Depending on their formation 

from transcripts off overlapping or non-overlapping genes we can differentiate cis- (transcripts 

from the same locus) or trans-nat-siRNAs. They often play an important role in the plant response 

to biotic or abiotic stresses (Borsani et al., 2005; Katiyar-Agarwal et al., 2007; Zhou et al., 2009). 

RDR-independent mechanism of endogenous siRNA formation is also used in case of naturally 

inverted genes, that are curiously abundant in A. thaliana genome and are thought to be an 

evolutionary precursors for MIR genes (Wang et al., 2011). 

RNA silencing can be also initiated by dsRNA of external provenance – derived from 

viruses or transgenes (see Chapter 1.5. and Fig.1.2). Virus derived siRNA (v-siRNA) formation 

can by triggered in a host by the presence of both RNA and DNA viruses (Pyott and Molnar, 
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2015). dsRNA processing is particularly driven by DCL2, DCL4 (sometimes also DCL1 and 3; 

Blevins et al., 2006; Deleris et al., 2006) and RDR1/6 (Wang et al., 2010). Emerging 21, 22, 24 

nt v-siRNAs associate with AGO1/2/7 and mediate PTGS or TGS of virus nucleic acids (Burgyán 

and Havelda, 2011). Deeper knowledge of RNA silencing mechanisms has enabled to evolve 

powerful tools for virus-resistant crop engineering during last decades (Abel et al., 1986; Scorza, 

1994; Shekhawat et al., 2012), even though diverse plant viruses have specific “counter-

defensive” proteins that suppress RNAi apparatus and enable viral replication and plant infection 

(Voinnet, 2005a; Lakatos et al., 2006; Guo et al., 2019).  

Transgene-derived siRNAs could by spontaneously created from aberrant sense 

transcripts by the activity of RDR polymerase (Fig. 1.2; Baulcombe, 2004). Aberrant can mean 

missing 5´cap, incorrect termination or even wrong folding (Gazzani et al., 2004; Herr et al., 

2006; Luo and Chen, 2007). siRNAs have typically 20-22 nt in length (produced by DCL2, 4 and 

associated with AGO1 in transgene mRNA cleavage) and 24 nt (AGO4 and RDR2 mediated small 

RNA-directed DNA methylation, RdDM; reed more in Chapter 1.4.2.; Mlotshwa et al., 2008; 

Wroblewski et al., 2014).  
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1.3. Post-transcriptional gene silencing 

PTGS is a process which preferentially took place in the cytoplasm to protect plant cell against 

invading RNAs, such as viruses or transgene derived RNAs (Ratcliff, 1997; Voinnet, 2005). But 

also, expression of endogenous genes involved in a stress response or plant body development is 

 

Fig. 1.2 RNA silencing pathways in plants (modified from Pyott and Molnar, 2015). 
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affected via PTGS (induced by nat-siRNA, miRNAs, ta-siRNA and some other types of sRNAs; 

see more in Chapter 1.2.; Bartel et al., 2004; Borsani et al., 2005). 

Basic mechanism of mostly 21-22 nt long si/miRNA formation, essential for the next 

steps in PTGS, was indicated in Chapters 1.1. and 1.2. The moment the siRNA was created, non-

guide passenger siRNA* strand removed and guide siRNA strand loaded into an AGO protein, 

effector RISC complex was established. This executive system ends with mRNA cleavage or 

protein translation inhibition (Baumberger and Baulcombe, 2005; Brodersen et al., 2008). 

In a model plant A. thaliana, AGO family involves 10 protein paralogs and DCL family 

4 protein paralogs, which have distinct roles in a broad spectrum of RNA silencing pathways 

(Margis et al., 2006; Hutvagner and Simard, 2008). The existence of multiple, partially redundant 

PTGS routes contributes to the high robustness of the PTGS process but complicates the 

characterization of individual pathways (Hoffer et al., 2011). Considering its efficiency, PTGS 

was exploited as the most commonly used research tool for targeted gene suppression in plants 

(Watson et al., 2005). The most frequent strategy is the expression of an inverted repeat construct. 

Its transcripts form a hairpin RNA structure, whose dsRNA part is processed to sRNAs. Those 

molecules can down-regulate internal or external genes (Eamens et al., 2008). 

However, little is know for example how is PTGS initiated de novo against elements that 

are not supposed to produce dsRNA (Parent et al., 2015). It has been also not fully understood 

how PTGS, its dynamics and reversibility vary when sRNAs are produced from different dsRNA 

procursors. Many questions were still not answered about interconnection of PTGS and TGS, that 

is why I come with “few pieces” in this thesis into this huge jigsaw puzzle. 

 

1.4. Chromatin epigenetic modifications 

The genetic information in every cell exists as a sequence of nucleotides in a DNA molecule, 

which is associated with interacting proteins forming together the so-called chromatin. 

In eukaryotic organism the structural subunit of chromatin is a nucleosome, DNA segment 

wrapped around a core of eight histone proteins. Epigenetic modifications of histone proteins and 

DNA represent an additional layer of information that affects the expression of underlying genes 

(Law and Jacobsen, 2010). 

  RNA-driven chromatin (DNA) modification was for the first time described in tobacco 

plants, where the accumulation of transgene derived RNA resulted in sequence-specific DNA 

methylation (Wassenegger et al., 1994). Few years later, sRNAs were determined as a causal 

molecules responsible for DNA methylation and histone 3 methylation at lysine 9 (H3K9me; 

Figure 1.4.2a) leading to the formation of heterochromatin (Hamilton et al., 2002). This type of 
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heterochromatic mark was then confirmed throughout the eukaryotic kingdoms, like in mice, 

C. elegans or Drosophila (for review see Castel and Martienssen, 2013), where unlike plants, 

DNA methylation is erased every generation (for review see Heard and Martienssen, 2014). On 

the other hand, histone modifications like acetylation or H3K4me are connected with euchromatic 

regions (Meyer, 2011). The whole picture of epigenetic chromatin modification and regulation of 

its structure is much more complicated and beyond the scope of introduction in this thesis. 

 

1.4.1. DNA methylation and demethylation 

DNA methylation, a key chromatin epigenetic modification, is evolutionarily ancient biochemical 

process contributing to regulation of gene expression, genome structure and integrity in 

Eukaryotes (Law and Jacobsen, 2010; Zemach et al., 2010). 

In plants, DNA methylation is usually introduced to cytosines in all sequence contexts – 

symmetric CG and CHG and asymmetric CHH (where H is A, T or C), leading mostly to the 

transcriptional repression (Henderson and Jacobsen, 2007). The most abundant form of methyl 

cytosine (mC) in plants, mCG, is maintained by methyltransferase 1 (MET1), plant homolog of 

DNMT1 (DNA methyltransferase 1; Jones and Taylor, 1981). This process is closely correlated 

with DNA replication (Jones et al., 2001). Methylation of non-CG sites is introduced by plant-

specific chromomethylases 2/3 (CMT2/3) through a self-reinforcing loop (H3K9me; Chapter 1.4.; 

Figure 1.4.2a; Du et al., 2015) and by DRM2/1 via the RdDM pathway (Chapter 1.4.2.; Figure 

1.4.2a; Zhong et al., 2014). DNA methyltransferases need chromatin remodeling proteins like 

DDM1 (decrease in DNA methylation 1) and DRD1 (defective in RNA-directed DNA 

methylation 1) for their proper functioning and access to histones (see also Chapter 1.5.1.; Kanno 

et al., 2004; Zemach et al., 2013). 

Genome-wide analysis of DNA methylation in A. thaliana using the bisulphite-Illumina 

sequencing revealed overall levels of 24% CG, 6.7% CHG and 1.7% CHH methylation. Major 

part of CG sites is highly methylated (80-100 %) or unmethylated, while CHHs are either 

unmethylated or methylated at ~10 %. CHG methylation is uniformly distributed at the level of 

20-100 % (Cokus et al., 2008). The CG, CHG and CHH methylation occurs together 

predominantly in repeat-rich pericentromeric heterochromatic regions, concurrently heavily 

producing 24nt siRNAs (see Chapter 1.4.2.). Differently, almost exclusive CG methylation was 

detected in about one third of transcribed gene bodies, whereas only ~5 % of genes show 

methylation within their promoter regions (Zhang et al., 2006; Cokus et al., 2008). In fact, 

methylation in the promoter arrests the transcription (TGS), while CG methylation in the gene 

body does not (very often accompanying PTGS; Lister et al., 2008; Lunerová-Bedřichová et al., 

2008; Bewick and Schmitz, 2017). In case of transgenes, silencing is usually followed by 
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methylation of both the promoter and the transcribed protein coding sequence (Fojtova et al., 

2003). 

Even though in most cases DNA methylation is a stable epigenetic mark, limited levels 

of methylation are noticed during early stages of plant development (Bouyer et al., 2017). This 

depletion of methylation can either appear passively, by DNA replication in the absence of 

functional maintenance methylation routes, or actively, by the elimination of methylated 

cytosines (Elhamamsy, 2016). In A. thaliana DNA glycosylases hold the function of active 

demethylation – mainly repressor of silencing 1 (ROS1), demeter-like 2/3 (DML2/3) and 

endosperm-specific demeter (DME; for more details read Law and Jacobsen, 2010). This 

demethylation has several functions including an important role in TE inactivation during 

gametogenesis (read more in Chapter 1.4.2. and 1.5.1.; Slotkin et al., 2009; Law and Jacobsen, 

2010). 

Another possibility how to negatively manipulate DNA methylation is to block MET1 

activity by artificial application of methylation-inhibitors like 5-Aza-2´deoxycytidin (AzaC) or 

zebularine, but this can heavily affect plant growth and development, which is also connected 

with induction of DNA damage (Fieldes et al., 2005; Baubec et al., 2009; Marfil et al., 2012; 

Nowicka et al., 2019).  

 

1.4.2. RNA-directed DNA methylation 

Regulation of gene expression can be at transcriptional or posttranscriptional level (Chapter 1.3.)  

and is driven typically by specific size categories of sRNAs – 21-22 nt for PTGS and 24 nt 

for RdDM and transcriptional gene silencing. In canonical RdDM, which serves primarily for the 

maintaining of DNA methylation, sRNAs are produced from transcripts of plant specific pol IV 

(Fig. 1.4.2a; Law et al., 2013; Cuerda-Gil and Slotkin, 2016). Nascent transcript is immediately 

transcribed into dsRNA by RDR2 (Smith et al., 2007) and processed by DCL3 into one 24 nt 

siRNA. It is stabilized by 2´O-methylation (Li et al., 2005) and guide strand is typically 

incorporated into AGO4 or AGO6 (Havecker et al., 2010). AGO-carried sRNA then associates 

with other important proteins at non-protein-coding scaffold transcript of Pol V and manages 

de novo methylation of corresponding loci through domains rearranged methyltransferase 

2 (DRM2; Wierzbicki et al., 2008; Matzke and Mosher, 2014). When DNA methylation is settled, 

heterochromatin can be created by other chromatin modifying enzymes and remodeler complexes 

(for more details see Matzke and Mosher, 2014). 
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In the past decade, several research groups described alternative non-canonical RdDM 

pathways which combine other proteins of RNAi machinery and sometimes even routes from 

PTGS. Mostly they does not need Pol IV or RDR2 for production of siRNAs (Herr et al., 2005; 

Pontier et al., 2012; Nuthikattu et al., 2013). i) One possibility is to use hairpin Pol II-derived 

transcripts of inverted repeats or microRNA genes and process them by DCL3 into 24 nt sRNAs 

or by DCL 2/4 into 21-22 nt sRNAs (without involvement of RDRs; see Fig. 1.4.2b; Cuerda-Gil 

and Slotkin, 2016; Panda et al., 2016). This alternative way of RdDM can serve for some TE loci 

(Slotkin et al., 2005). ii) Another possibility is coupling PTGS to RdDM through the creation of 

secondary 21-22 nt sRNAs by the activity of AGO1, RDR6 and SGS3 (Cuerda-Gil and Slotkin, 

2016; Lee and Carroll, 2018). Typical target of such a pathway could be TAS loci (Wu et al., 

2012). Detailed overview of all possible RdDM routes is reviewed in Matzke and Mosher (2014) 

and Cuerda-Gil and Slotkin (2016).  

 

Fig. 1.4.2a Model for the canonical RNA-directed DNA methylation in Arabidopsis thaliana 

(modified from Haag and Pikaard, 2011). 
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1.5. sRNA movement in plants 

Remarkably, some sRNAs can participate in cellular processes at different sites other than their 

origin. They can be transported from cell-to-cell and travel over long distance. This systemic 

character of silencing signal represented by nucleic acids was assumed in studies with plants 

exhibiting silencing (PTGS or TGS) of transgenic reporters (Palauqui et al., 1997; Voinnet and 

Baulcombe, 1997), even though some evidences were known from earlier studies with petunia 

(Napoli et al., 1990; Jorgensen, 1995). Historical observations of mobile silencing prefigure the 

cardinal discovery that double-stranded RNA could lead to sequence-specific silencing (Fire et 

al., 1998). At the very same year Voinnet et al. (1998) showed by sophisticated grafting 

experiments that the silencing signal could by transported to sink organs by phloem vasculature. 

This hypothesis was also supported by tests with cadmium inhibition of phloem transport 

(Ghoshroy et al., 1998). More recently, a much wider world of sRNAs of external provenance 

was revealed in cross-kingdom interactions. Cross-kingdom RNAi is the process in which sRNA 

regulation of gene expression is induced between two individuals of unrelated species coming 

from different kingdoms, like a plant host and its interacting pest/pathogen/parasite/mutualistic 

symbiont (Weiberg and Jin, 2015). Such an interaction can occur in both ways – i) sRNAs 

produced for example by parasites and pathogens can be translocated into plant host cells and 

trigger gene silencing of host defense genes (Weiberg et al., 2013) or ii) in a phenomenon called 

HIGS (host-induced gene silencing) plant-produced RNAi signal can trigger silencing of e.g. 

some essential pathogen gene (Nunes and Dean, 2012), in case of viruses we refer to VIGS (virus-

induced gene silencing; Lu et al., 2003). Very recently Cai et al. (2018) showed that this type of 

sRNA-mediated communication between A. thaliana and pathogen Botrytis cinerea is done by 

the secretion of exosome-like extracellular vesicles. 

 

Fig. 1.4.2b Model for an alternative RdDM pathway (modified from Guerda-Gill and Slotkin 2016). 
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Generally, when the silencing signal is established in a plant cell, it can symplastically 

spread as siRNA (Dunoyer et al., 2010; Zhang et al., 2014) or miRNA (Juarez et al., 2004) through 

plasmodesmata (PD) for a short range, presumably by passive diffusion into small number of 

surrounding cells (as shown in Fig. 1.5a; Himber et al., 2003; Pyott and Molnar, 2015). In addition 

to the short-range movement of RNA silencing, a long-range mechanism uses also PDs but needs 

an amplification of sRNAs by secondary sRNA synthesis (for more information read Chapter 1.2. 

and see Fig. 1.5b). Difference between short- and long-range cell-cell silencing depends on the 

biogenesis pathways producing the sRNAs (Felippes et al., 2011). Systemic transport of silencing 

signal to distant tissues is dependent on phloem vasculature (illustrated in Fig. 1.5c; Voinnet et 

al., 1998). All classes of RNA molecules, including 21-24 nt sRNAs and miRNAs were detected 

in phloem (Yoo et al., 2004; Buhtz et al., 2008; Molnar et al., 2010; Kehr and Kragler, 2018). It 

was shown in study of Palauqui et al. (1997), that silencing signal moved from lower (older) parts 

mostly to the upper, younger tissues. Although our knowledge about the intercellular siRNA and 

miRNA transport within plants is growing, detailed mechanism and key players remain mostly 

ambiguous (Kehr and Kragler, 2018). Critical step can be for example up- and unloading of 

sRNAs through apoplast in apoplastic phloem loaders. 

Transport of sRNAs to symplastically isolated cells, likely takes place in a different way 

than by PD. Simultaneously biochemical processes are in these “special regions” highly regulated 

from outside during plant development or stresses. Such examples could be stomata guard cells 

(Voinnet et al., 1998) or a vegetative nucleus and generative cells in mature pollen grains (Slotkin 

et al., 2009). In the following Chapter 1.5.1., I focused on sRNA movement in A. thaliana pollen 

grains, which is relatively well characterized. 
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1.5.1. Mobile sRNAs during male gametogenesis 

Endogenous siRNAs play also crucial regulatory role during gamete development in plants. I will 

concentrate here only on description of sRNA action in A. thaliana sperm cell, thought analogical 

process has been reported in female gametes (Olmedo-Monfil et al., 2010). Mature pollen grain 

at the end of male gametogenesis (for more details read McCormick, 1993) consists of three cells 

– larger (vegetative) cell encapsulating 2 smaller (generative) sperm cells  (as shown in Fig. 1.5.1). 

Vegetative cell fate is particularly to support and deliver both sperm cells for fertilization of the 

egg cell and the central cell of the female gametophyte. Another essential purpose was discovered 

by Slotkin et al. in 2009 as an ingenious system for sperm cell DNA protection against the 

mutagenic activity of TEs. Downregulation of chromatin remodeling ATPase DDM1 in 

vegetative nucleus leads to the reactivation of many genomic loci (containing typically TEs) and 

subsequent massive siRNAs production. These siRNAs then presumably move to sperm cells and 

assure silencing of the same TEs in their genomic DNA by small RNA-directed DNA methylation 

(RdDM, Chapter 1.4.2a.; Slotkin et al., 2009). This important tool maintains intact TEs in the next 

generation preventing deleterious effects of their transposition in the germ line (Slotkin et al., 

 

Fig. 1.5 All kinds of traditional sRNAs movements in plant body (Pyott and Molnar, 2015). 

 

a 

b 

c 
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2009; Pyott and Molnar, 2015). The main uncertainty of understanding this process stays in 

visualization and detection of particular sRNAs and their movement. 

How these siRNAs can overcome the plasmatic membrane of the generative cell isolating 

cytosols of those two separated cells in pollen grain remains unclear. Some authors had considered 

long cytoplasmic extensions (McCormick, 2004), which were not confirmed later. One might 

expect even endo/exocytosis (Cai et al., 2018), that works for animal cells (summarized in Jose, 

2015). Nevertheless, the discovery of a transmembrane protein indispensable for systemic RNA 

silencing in animal body of Caenorhabditis elegans (Winston et al., 2002), suggested that special 

RNA transporters should be also taken into account. The system of sRNA movement between 

animal cells, which are not interconnected by cytoplasmic “sleeves”, opened the huge field of 

research focused on manipulation of gene expression by externally supplied RNAs (for example 

Feinberg and Hunter, 2003; Mon et al., 2012). However, to test the hypothesis, that sRNAs can 

move between symplasticaly isolated cells with the help of protein transporters, will be 

a challenge in plant cells generally interconnected by PD. 

 

1.6. sRNA movement in Caenorhabditis elegans 

The huge breakthrough in the RNAi field was done in dsRNA delivery studies with C. elegans 

(Fire et al., 1998; Timmons and Fire, 1998). Nevertheless, the systemic nature of RNAi, where 

dsRNA for example injected into one tissue lead to the silencing in other tissues, remained 

mysterious until the discovery of very first candidate gene, SID-1, in the systemic RNAi defective 

screen by Winston et al. in 2002. Since then, the world of animal systemic RNAi has been 

uncovered with increasing intensity. 

 

Fig. 1.5.1 Model of TE derived siRNA movement from vegetative nucleus to sperm cell in mature 

pollen grain (Slotkin et al., 2009). 
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 SID-1 was shown to be a transmembrane channel with 11 predicted transmembrane 

domains (Fig. 1.6a). It was documented to be crucial for dsRNA import into the cytoplasm 

(as illustrated in Fig. 1.6b), but not required for the export of mobile dsRNA from muscles or 

intestinal cells of C. elegans (Jose et al., 2009; Shih and Hunter, 2011; Whangbo et al., 2017). Its 

homologues were found in all yet sequenced vertebrates, many invertebrates and even 

in phylogenetically unrelated amoeba Dictyostelium discoideum (Fig. 9.1.; Winston et al., 2002; 

Feinberg and Hunter, 2003). Functional conservation has been approved by the expression of 

C. elegans SID-1 in different species (Feinberg and Hunter, 2003; Xu et al., 2013), enabling 

a passive uptake of dsRNA (Feinberg and Hunter, 2003). SID-1 is also fundamental and 

absolutely required for inheritance of silencing by dsRNA (Wang and Hunter, 2017), although 

the precise molecular function and biochemical activity remain pending (Liberman et al., 2019). 

 

Another player involved in the systemic RNAi in C. elegans is SID-2. Analysis of sid-2 

(qt13) mutant worms showed full sensitivity to systemic RNAi initiated by microinjection or 

transgenic expression of dsRNA targeting somatic and germ-line-expressed genes, but at the same 

time they were resistant to feeding RNAi (orally administrated dsRNA; Winston et al., 2007). 

Thus, SID-2 is required likely for endocytosis-mediated uptake of silencing information (from 

environment into gut cells) but not for RNAi spreading among cells (Winston et al., 2007; 

Rocheleau, 2012). SID-2 works as a single-pass transmembrane receptor protein with low 

sequence conservation (unlike SID-1) even within other nematodes (Fig. 1.6b; McEwan et al., 

2012; Jose, 2015).  

 

Fig. 1.6a SID-1 predicted topological model with post-translational modifications. It has rich 

extracellular domain (~300 AA) and highlighted key residue Ser-536 (Li et al., 2015). 
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The screen of Jose et al. (2012) for RNAi defective worms uncovered SID-3 protein as 

a conserved tyrosine kinase required for the efficient import of dsRNA. Without SID-3, cells 

perform RNA silencing well but the rate of dsRNA import is poor (Jose et al., 2012). In the same 

year another single-pass transmembrane protein SID-5 was also discovered that partially 

colocalizes with endosomes and could play some role in the vesicle transport (Hinas et al., 2012). 

A model of intercellular spreading of RNAi in C. elegans mediated by SIDs factors is described 

in the Fig. 1.6b. More information about interconnections between RNAi and transgenerational 

epigenetic inheritance is summarized in Minkina and Hunter, 2018.  

 

  

 

Fig. 1.6b Model of RNAi in C. elegans showing involvement of SID proteins (modified from 

Rocheleau 2012). 

       dsRNA 

       dsRNA 
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2. MAIN AIMS AND HYPOTHESIS 

Research presented in this thesis aimed to shed light on several not deeply understood 

mechanisms of RNAi with possible impact not only to basic, but especially to applied research. 

Combination of different plant model organisms helps us to use their benefits for achieving our 

goals described below. 

 

(I) Reactivation of silenced transgenes in Solanum tuberosum plants at the whole plant level: 

Hypothesis: Can we restore the expression of transcriptionally silenced transgenes in plants? 

  Are there any factors which can induce silencing of transgenes?  

a. reactivation of transgene expression after its spontaneous silencing at TGS level;  

b. determination of the methylation and the transcription profile of restored 

transgenes; 

c. discovery of factors which can lead to the re/silencing of introduced transgenes; 

d. investigation of the transition between PTGS and TGS and subsequent spread of 

methylation within T-DNA. 

 

(II) PTGS and TGS dynamics and their interconnections: 

Hypothesis: What are the effects of different silencers on PTGS dynamics? 

What is the course and the dynamics of early stages of de novo DNA methylation 

in TGS? 

What type of sRNAs are involved in promoter RdDM and how rapidly they arise? 

a. assessment of the methylation pattern accompanying PTGS;  

b. appraisal of the methylation character in TGS; 

c. pinpointing the transcription level of targeted genes; 

d. investigation of siRNA origin, level and dynamics. 

 

(III) Uncovering of plant sRNA transporters: 

Hypothesis: Do plants have special sRNA transporters analogical to animal SID-1?  

a. selection of plant candidate genes, homological to animal dsRNA transporter;  

b. preparation of plant mutant material with modified expression of such genes; 

c. evaluation of phenotype changes in mutants and investigation of sRNA transport 

between symplasticaly isolated cells. 
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3. MATERIALS AND METHODS1 

3.1. Plant material, cultivation conditions and transformation 

Potato plants (Solanum tuberosum L. cv. Désirée) were cultivated in vitro on the LS medium 

(Linsmaier and Skoog, 1965), containing 3% (w/v) sucrose in a cultivation room under long-day 

photoperiod (16 h light, 8 h dark; 23 °C; PPFD approximately 200 µmol m-2 s-1). Sub-cultivation 

interval was 4-6 weeks. Transformation of leaf explants taken from 4-week-old plants was 

performed according to Dietze et al. (1995) using Agrobacterium tumefaciens strain C58C1RifR 

carrying a helper plasmid pGV2260 (Deblaere et al., 1985) and modified binary vector pCP60 

(Fig. 1.3a-a; Bolte et al., 2004; Nocarova and Fischer, 2009). T-DNA introduced into plants 

consists of two genes – CaMV35S::rsGFP and Pnos::nptII (read more in Tyč et al., 2017). For 

this work two lines that spontaneously silenced expression of both transgenes (R17 with a single 

insertion and R28 with multiple insertions) were selected from the collection described in 

Nocarova et al. (2010). 

 The tobacco BY-2 cell line (Nicotiana tabacum L. cv. Bright Yellow; Nagata et al., 1992) 

was cultivated in the modified MS medium (Murashige and Skoog, 1962). MS salts (Merck) were 

supplemented with 200 mg/L K2HPO4, 100 mg/L myo-Inositol, 3% (w/v) sucrose, 1 mg/L vitamin 

B1, and 1µM 2,4-Dichlorophenoxyacetic acid, pH adjusted to 5.8 with 1M KOH. Cultures were 

kept at 27 °C in 100mL Erlenmeyer flasks on an orbital shaker IKA KS501 at 110 rpm (IKA 

Labortechnik) in a darkroom. The cell lines were normally sub-cultured weekly by 1 mL into 30 

mL fresh media, “continually exponential cultures” were sub-cultured every 3–4 days by 1.5 mL. 

The transformation protocol was used as reported by Dvořáková et al. (2012). Non-homogeneous 

cultures (in the respect of fluorescent protein fluorescence) were sub-cloned according to 

Nocarova and Fischer (2009) before starting the experiments. The list of all prepared transgenic 

lines is presented in Table 3.1 below. 

 

 

 

 

 

____________________ 

1 This chapter describes in detail particularly the methods and plant material which were not include in 

attached joint publications avoiding repetition. 
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Tab. 3.1 The list of used transgenic BY-2 lines, their genetic background and main purpose. 

 

Arabidopsis thaliana ecotype Columbia (Col-0) plants were grown in Jiffy soil pellets 

under the same conditions as S. tuberosum plants. For the hairy root length analysis, the seedlings 

were grown in vitro on vertical agar plates (12 cm side) with 0.2x MS medium (MS/5) 

supplemented with 1% (w/v) sucrose and 1% (w/v) agar. Plates with seeds were stratified at 4 °C 

for 48 h and then cultured as mentioned above. A. thaliana genotypes used in this study were Col-

0 (wt), sag18 (SALK_022062), aphc (SALK_003875) obtained from NASC T-DNA mutant 

collection (Scholl et al., 2000).  

name binary vector 
gene    

sequence 11 

gene    

sequence 21 

selection 

marker 
Figure reference 

GREEN1 pCP60 rsGFP  KanR 3.1a-a [1] 

IR8C2 
pCP60 

pER8 

rsGFP 

IR-rsGFP 
 

KanR 

HygR 

3.1a-a 

3.1a-b 
[2] 

GRED1 pGREEN0129 rsGFP mCherry HygR 3.1a-c this thesis 

GRED2 pGREEN0129 rsGFP TagRFP HygR 3.1a-d this thesis 

GRSA2 
pGREEN0129 

pGREEN0029 

rsGFP 

AtSAG18 

TagRFP 

 

HygR 

KanR 

3.1a-d 

3.1b-a 
this thesis 

GRCE2 
pGREEN0129 

pGREEN0029 

rsGFP 

CeSID-1 

TagRFP 

 

HygR 

KanR 

3.1b-d  

3.1b-b 
this thesis 

SAF pGREEN0029 
AtSAG18         

E-GFP fusion 
 KanR 3.1b-c this thesis 

CEF pGREEN0029 
CeSID-1          

E-GFP fusion 
 KanR 3.1b-d this thesis 

References: [1] Nocarova and Fischer, 2009 

                    [2] (Čermák et al. submitted) 

Notes:         1 sequence in additional data 9.5. 

                   2 super-transformed 
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Fig. 3.1a Maps of binary vectors 1/2 used (a-d) and prepared (c, d) during this thesis. Figures for 

(a, b) were kindly provided by Adéla Přibylová. Processed by ApE-A plasmid Editor v2.0.61. 
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Fig. 3.1b Maps of binary vectors 2/2 used and prepared during this thesis. Processed by ApE-A 

plasmid Editor v2.0.61. 
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3.2. Transgene reactivation 

Reactivation of transgene expression via de novo regeneration is based on the S. tuberosum 

transformation protocol from Dietze et al. (1995). Leaf explants from 4-week-old leaves from 

selected in vitro plants with silenced transgene expression were grown for three days on the callus-

inducing medium in 6 cm plastic Petri dishes. Afterwards, the leaf segments were transferred to 

the same medium but supplemented with freshly added 10 µM AzaC and cultured for four days 

(Sigma-Aldrich; 20 mM stock in filter-sterilized water solution, stored at -20 °C few weeks). 

The explants were subsequently transferred every two weeks to the shoot-inducing medium 

supplemented only with kanamycin (50 mg/l). Newly developed shoots were then cultivated in LS 

medium and selected lines were assessed for restored transgene expression at protein (Chapter 

3.3) or transcript levels (Chapter 3.4). For more details, please, see Tyč et al. (2017). 

 

3.3. Fluorescence analysis 

Methods for fluorescence assessment differed depending on the plant material. In whole plants, 

reporter genes were examined as described in Tyč et al. (2017), using fluorescent microscopes 

Olympus Provis AX70 and Olympus BX51. Pictures were processed with Lucia software 

(Laboratory Imaging), Zoner Photo Studio (Zoner software) or Helicon Focus (Helicon Soft Ltd).  

Fluorescence of tobacco BY-2 cell line in calli was also analyzed by microscopes or as 

described in (Čermák et al. submitted), measured on photo-documenting system G:BOX 

(SynGene). Images were processed using software NIS-Elements 3.10 (Laboratory Imaging) with 

measuring all pixels from each calli, excluding non-homogenous ones and subtracting 

background of wt callus. Statistical analyses were done by Wilcoxon signed-rank test and 

Wilcoxon rank-sum test in R 3.4.4.  

Fluorescence of tobacco BY-2 cells in suspension cultures was analyzed at the single-cell 

level using flow-cytometer LSR II (BD biosciences). Protoplasts for flow-cytometry were 

prepared as described in Chapter 3.8. and in Přibylová et al. (2019). On average about 14000 cells 

were measured per sample. The data were processed by Flowing Software or FlowJo vX.0.7 with 

the selection of live protoplasts as described in (Klíma et al., 2019). BY-2 cell lines with the GFP 

protein fusions (i.e. SAF and CEF lines; see Tab. 3.1) were analyzed by confocal microscopes 

Leica TCS SP2 and Zeiss LSM 880. 
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3.4. Transcription analysis 

Transcript levels of selected genes were evaluated by RT-qPCR. RNA was isolated from 100 mg 

of frozen sample using the phenol-chloroform isolation protocol (White and Kaper., 1989) 

or RNeasy® Plant Mini Kit (QIAGEN; Tyč et al., 2017). The quantity and quality were checked 

by the gel electrophoresis and NanoDrop 2000. cDNA preparation and transcripts quantification 

of selected genes were performed as described in Bustin et al. (2009) and Tyč et al. (2017). 

Shortly: RNA was transcribed using RevertAid Reverse Transcriptase (Thermo Fisher Scientific) 

and oligoT23 primer. Determination of transcripts was done on a LightCycler 480 (Roche) using 

the iQ TM SYBR Green Supermix (BioRad,) with primer pairs for TagRFP (5´-

GAGGGAAAGCCATACGAGGG-3´ and 5´-AAGTGGTAACCCTCTCCCATG-3´), EF1α (5´-

TACTGCACTGTGATTGATGCT-3´ and 5´-AGCAAATCATTTGCTTGACAC-3´) and rsGFP 

(5´-GAGACACCCTCGTCAACAGG-3´ and 5´-TGGTCTGCTAGTTGAACGCTT-3´) 

or primers listed in Attachments 10.2. (Tyč et al., 2017), in Attachments 10.6. (Přibylová et al., 

2019) and Attachments 10.4. (Čermák et al. submitted). The specificity of the RT-qPCR was 

performed bymelting curve analysis (using the LightCycler 480 software). The resulting data 

were processed by LinRegPCR software (Ramakers et al., 2003) and MS Excel 2016. Calculated 

transcript concentrations were normalized to the EF1α or TagRFP (hereinafter RFP) transcript 

levels. For statistical analysis, we used one-way ANOVA. 

 

3.5. DNA methylation analysis 

The method for DNA methylation analysis was described in detail in (Tyč et al., 2017). In brief, 

the genomic DNA of analyzed plants was extracted by the DNeasy Plant Mini Kit (Qiagen), 

EcoRI digested, purified by phenol-chloroform and modified by EpiTect Bisulfite Kit (Qiagen). 

Selected regions of interest were PCR amplified with primer pairs listed in Attachments 10.2. 

(Tyč et al., 2017), Attachments 10.6. (Přibylová et al., 2019) and Attachments 10.4. (Čermák et 

al. submitted). The PCR products were cloned into pDrive vector (QIAGEN PCR Cloning Kit) 

and 6-12 clones per sample were sequenced and analyzed in MS Excel 2016 and web-based tool 

pKismeth (Gruntman et al. 2008). For statistical analysis, we used two-sample t test (Tyč et al., 

2017) or Wilcoxon rank-sum test in R 3.4.4. (Čermák et al. submitted).  

 

3.6. sRNA analysis 

Analysis of sRNAs was described in depth in Přibylová et al. (2019). sRNA library was prepared 

using the combinatorial probe-anchor synthesis (cPAS)-based BGISEQ-500 sequencing platform 

(BGI, China), giving highly reproducible results, comparable with other NGS platforms 
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(Fehlmann et al., 2016). Briefly, RNA was extracted from 100 mg (fresh weight) sample using 

RNeasy Plant Mini Kit (Qiagen) and checked for quantity and quality. A fraction of 18–45 nt long 

sRNAs were recovered from 15% urea-polyacrylamide gel. Extracted sRNAs were supplied with 

adaptors, transcribed to cDNA and circularized those proper ones, creating DNA nanoballs 

needed for sequencing. Acquired sRNA library was processed in the software Geneious 9.1.8 

(Biomatters) and MS Excel 2016. Only siRNAs matching with the respective T-DNA sequence 

were used for further analyses.  

 

3.7. Preparation of sRNA solution for BY-2 treatment 

BY-2 cell line IR8C (Tab 3.1), was obtained by the super-transformation of two T-DNAs – 

i) CaMV35S::rsGFP and ii) rsGFP inverted repeat controlled by the VGE system allowing for β-

estradiol (hereinafter estradiol or ESTR) inducible expression (Zuo et al., 2000; Čermák et al. 

subbmited). Suspension culture of IR8C was kept in the exponential phase and induced by adding 

of 2 µM estradiol in DMSO (Sigma-Aldrich) to induce production of high levels of sRNAs 

against rsGFP (hereinafter GFP). As a control we treated IR8C only with DMSO. 72 h after 

the treatment, 100 mg (fresh weight) aliquots of filtrated cells (Nalgene filter) were harvested and 

stored in -80 °C. RNA was isolated from samples treated by estradiol using phenol-chloroform 

extraction (White and Kaper, 1989). The quantity and quality were checked by the gel 

electrophoresis and NanoDrop 2000 (Thermo Fisher Scientific). Quaternary of samples were 

taken together. One half of samples was enriched for low molecular weight (LMW) RNA fraction 

by 20% (w/v) PEG 8000 and 2M NaCl precipitation (Rosas-Cárdenas et al., 2011). Both halves 

were taken together creating the mixture of total RNA and LMW fraction with approximate RNA 

concentration 2.5 µg/µl. Considering its usage for BY-2 protoplast treatment and RNA instability, 

0.9M d-mannitol and RiboLock™ RNase inhibitor (Thermo Fisher Scientific) were added 

tocreate a final solution – 1.25 µg/µl RNA, 0.45M d-mannitol and 1 U/µl of RiboLock. RNA 

solution was used for BY-2 protoplast treatment to indirectly observe presumed movement of 

sRNAs through membrane channels into the recipient cell cytosol.  

 

3.8. Treatment of BY-2 protoplasts with sRNA solution 

Continually exponential suspension cultures of BY-2 cell line GRED213, GRSA33 and GRCE1 

were selected and cultivated under conditions described above (Chapter 3.1.; Table 3.1). Sterile 

protoplast were prepared according to (Přibylová et al., 2019), briefly – 1.5 mL (GRCE1) or 2 

mL (GRSA33 and GRED213) of the cell culture were taken and drained from the medium. 3 mL 

of protoplast enzyme mixture in 0.45M d-mannitol were added to the cells in the sterile 6-well 
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cell-culture plate in a dark for 3 h at 26 °C with gentle shaking on an orbital shaker. The mixture 

was enriched with MS medium with 0.4M sucrose after the incubation. Protoplasts were gently 

centrifuged (200 RCF, 5 min) without braking. 100 µL of protoplasts from each variant was taken 

and frozen as a point 0. The rest of protoplasts was divided into four samples per variant – and 

treated/untreated with 100 µg of sRNAs solution prepared as described in previous Chapter 3.6. 

100 µL of protoplasts from each variant was taken and frozen after 6 and 24 h of their cultivation 

in conditions for the 6-well plate described above. Treated protoplasts were assessed by RT-qPCR 

for EF1α, RFP and GFP transcript levels. For statistical analysis, we used one-way ANOVA with 

post hoc Tukey’s HSD test. 

 

3.9. Assessment of growth and yield parameters  

A. thaliana plants (60 together) of different genotypes (wt, sag18 aphc) were grown in Jiffy pellets 

(1 plant per pellet), randomly distributed in trays under the conditions described before. The 

maximal stem length of each plant was measured six weeks after germination. Other parameters 

were evaluated six weeks later, when the plants were completely desiccated. The aboveground 

part of plants was harvested and completely dried. Shoots and seeds were separated for each plant 

using certified sieve. The weight of both parameters was measured and calculated together with 

other parameters for each plant in MS Excel 2016. Statistics was done in R 3.4.4. using linear 

models. 

 

3.10. Hairy root measurement 

Surface-sterilized seeds of A. thaliana wt, sag18, aphc, sag18 aphc genotypes were sowed in one 

line approximately 3 cm from an edge of a plate (MS/5) and 0.75 mm from each other, one plate 

per genotype. Plates were kept for 2 days in a fridge at 4 °C, then moved to cultivation room and 

grown under conditions described in Chapter 3.1 in slanting position, seeds up. After 4-6 days, 

when the root system was in average length 15 mm, 12-15 rooting plants were documented on 

stereomicroscope SZX7s (Olympus) equipped with camera EOS 60D (Canon). Pictures were 

analyzed using NIS-Elements 3.10 (Laboratory Imaging, CZ) and all hairy roots were measured 

and calculated from the hypocotyl till the tip. Data were processed using MS Excel 2016 and 

statistically assessed in R 3.4.4. using linear mixed-effects model, the differences within 

significant terms and interactions were post-hoc tested by Tukey’s HSD pairwise comparison of 

least-square means according to Lenth (2016). 
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3.11. Arabidopsis thaliana infection by Botrytis cinerea  

Five-week-old plants of wt, sag18, aphc and sag18 aphc genotypes were treated with 6-µl drops 

containing spores of Botrytis cinerea strain BMM (5x104 spores/mL in PDB medium) by applying 

one drop on one leaf (Kroumanová et al., 2019). Together four leaves of similar developmental 

stage per one plant were infected. Plants were kept for 24 h in a high humidity dark box in 

laboratory conditions (25 °C) and then transferred into the cultivation room inside of high 

humidity transparent box (same conditions as for S. tuberosum, except ten-times lower 

irradiance). Relative lesion sizes of 20 leaves per variant were measured at 3 days after the 

infection. Statistics was done in R 3.4.4. using linear model. 

 

3.12. Transpiration rate and stomatal conductance analyzes  

Two different methods were used to measure transpiration rate of A. thaliana plants. The first 

method was derived from an old gravimetric method of Ivanov (1918). Leaves of four-week-old 

plants were measured by weighing every 2 minutes. Leaves of similar developmental stage (1 per 

plant) were gradually detached one after another from 3-6 plants, exposed to intensive light (table-

lamp) and weighed for 12 minutes to monitor the water loss by transpiration through 

plasmodesmata. The cut was done by scissors the same way to minimize differences between 

samples in water loss by the wound. Data were processed using MS Excel 2016 and statistically 

assessed in R 3.4.4. using linear mixed-effects model, the differences within significant terms and 

interactions were post-hoc tested by Tukey’s HSD pairwise comparison of least-square means 

according to Lenth (2016). 

 Second method used photosynthesis measuring system TPS-1 (PP Systems), which 

passes a measured flow of air over a leaf sealed into a chamber. The TPS-1 first analyzes the CO2 

and H2O in the air going to the cuvette and then in the air leaving the cuvette. From the flow rate 

and the change in the CO2 and H2O concentrations, the transpiration rate of water and stomatal 

conductance are determined. The average leaf area for the measurement in the TPS-1 chamber 

was calculated as 2.4 cm2. Leaves at similar developmental stage (1 per plant) were gradually 

detached from four-week-old well-watered plants (11 per variant), put into the measuring 

chamber and exposed to an intensive light (table-lamp). Data for the stomatal conductance and 

the transpiration rate were collected and dataset analyzed using MS Excel 2016 and statistically 

assessed in R 3.4.4. using linear mixed-effect model with Poisson distribution. 
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4. SUMMARY OF PUBLISHED AND UNPUBLISHED RESULTS 

4.1. Publication 1 – Tyč et al., 2017, published 

Transgenesis of plant genomes during either basic or applied research is always accompanied by 

negatively accepted phenomenon of spontaneous transgene silencing. This leads to the PTGS 

accompanied by possible cytosine methylation of target sequences and transcriptional inactivation 

of introduced reporter gene/genes even years after the transformation event (Nocarova et al., 

2010). Such a transgenic well characterized plant is basically useless for other research. In this 

study, we focused on finding of possibility of restoration the transgene transcription at the whole 

plant level. Subsequently we tested conditions which would provoke the silencing again in these 

reactivated lines, since T-DNA insertions in these lines were demonstrably susceptible to 

spontaneous silencing. Such an opportunity to have a test for disqualification of silencing-

susceptible lines in early stages of the selection process would be very tempting.  

We treated potato plants (Solanum tuberosum L.; for more details read Chapter 3.1) with 

spontaneously silenced transgenes encoding the green fluorescent protein (GFP) and the 

neomycin phosphotransferase (nptII) by a demethylation drug, AzaC. Reactivation of transgene 

expression was assessed using quantitative real-time PCR (RT-qPCR) and methylation analysis. 

Plants with reactivated transgene expression were then tested in stress conditions that were 

hypothesized to potentially trigger re-silencing. 

We determined 10µM AzaC concentration as an optimal for S. tuberosum treatment from 

experiments with apical cuttings, where 40µM concentration inhibited the growth, whereas 5µM 

was fully comparable with untreated control. The AzaC half-life was estimated to be 

approximately 2 days, because the inhibition effect of 40µM AzaC stored for 4 days in cultivation 

room correlated visually with cuttings treated by freshly added 10µM AzaC (Attachments 10.1.). 

GFP reactivation was no visible in shoot cuttings after AzaC treatment, possibly owing to limited 

transport efficiency of this drug. Therefore, we used de novo regeneration technique, where new 

shoot arises from a single cell of calli, which was in a contact with AzaC supplemented media. 

Selective media was also enriched with kanamycine for better selection of reactivated plants. 

5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum 

tuberosum) at the whole plant level 

Tyč, D.1, Nocarová, E.1, Sikorová, L.1, Fischer, L.1* 

1Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 44 

Prague 2, Czech Republic 

*Corresponding author 

Original research article, Plant Cell Reports 36:8 (IF2018 = 3.499) 
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Combination of the selection marker, kanamycine (KAN), and AzaC caused stress and browning 

of the explants and inhibited the calli growth. Thus, we treated calli for four days by AzaC, 

separately from KAN treatment, which came after (Attachments 10.1.). This approach led to 

regeneration of several KAN resistant plants. Some plants derived from a multicopy line R17 also 

exhibited reactivated GFP expression, but only resistant plants with temporary GFP expression 

were derived from a single-copy line R28 (see Attachments 10.2.). Data were confirmed by the 

RT-qPCR analysis (Attachments 10.1.). To see whether reactivation of silenced transgene really 

correlated with promoter demethylation, methylation level of Pnos promoter and adjacent 5´part 

of nptII gene was determined in a single-copy line R28 and its reactivated “daughter” line R28A. 

Indeed, highly hypomethylated pattern of Pnos was observed in the reactivated line R28A with 

also hypomethylated nptII region (Attachments 10.1.).  

Findings in this study indicate the possibility of using de novo regeneration method for 

early negative selection of transgenic S. tuberosum plants with tendency to silencing. Further 

analysis needs to be done to check applicability in other plant systems. 

In conclusion, the most important findings of this work are: 

• Transient 10µM AzaC treatment of S. tuberosum leaf segments during de novo 

regeneration gave rise to plants with restored expression of previously silenced 

transgenes at the whole plant level. 

• Kanamycine and GFP expression was rescued in some regenerated plants and confirmed 

by RT-qPCR analysis and fluorescent microscopes. 

• The methylation of nptII protein coding sequence and Pnos promoter region was 

significantly lower in plants regenerated after AzaC treatment. 

• De novo regeneration of S. tuberosum plants from leaf segments could trigger transgene 

silencing and thus this procedure might be used to test susceptibility of transgenic plants 

to spontaneous silencing. 

4.1.1. Statement of contribution 

I, PhD candidate, hereby declare that I prepared reactivated lines, tested the factors affecting re-

silencing and performed RT-qPCR analysis. Together with other authors I carried out the 

methylation analysis, microscopic evaluation, analyzed the data, summarized the results and 

wrote the manuscript and contributed to the revisions. 
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4.2. Publication 2 – (Čermák et al. submitted) 

While in first publication we studied the possibility of restoration transgene expression after its 

silencing, second publication was trying to respond to a question how can influence the origin 

of key RNAi regulator, sRNA, the development of PTGS. We selected the BY-2 as a model 

system, because it performs unique homogenously responding material with high proliferation 

rate, convenient for detail analysis by molecular techniques at single cell level. We aroused a GFP 

reporter gene silencing using XVE inducible system (Chapter 3.7.; Zuo et al., 2000) with 

the combination of three different silencers, in order to investigate its sensitivity, strength, time 

course, methylation rate or even sRNAs population. 

 We created three transgenic BY-2 lines by the transformation of different silencers into 

the line with stable GFP expression, namely AS (GFP in antisense orientation), IR (inverted 

repeat of GFP) and UT (unterminated GFP), all under the estradiol inducible promoter 

(Attachments 10.3.). Only lines with enough, high and homogenous GFP fluorescence were used 

in hundreds of calli for population analysis or in three suspension lines per variant for analysis in 

detail. GFP fluorescence of calli was assessed after estradiol application by G:BOX measuring 

efficiency, strength and speed of silencing. For detail analysis in suspensions, we determined at 

first the inducibility of XVE system by treatment of cells with estradiol in dilution series. After 

that we treated lines in suspensions with 2µM estradiol for 14 days and for other 21 days without 

estradiol, pinpointing by precise sampling GFP fluorescence at protein level (flow-cytometry) 

and transcript level (qRT-PCR), DNA methylation state (bisulfite conversion and McrBC assay) 

and sRNAs analysis (BGISEQ-500 sequencing).  

We discovered from the population study that IR variant was fastest and strongest in 

silencing. AS variant was lower and UT at the same level as control (Attachments 10.3.). 

Strikingly, if construct of UT silencer with the start codon was transformed into the wt BY-2 cells, 

around 50 % of lines showed some GFP fluorescence (Attachments 10.4.). We also found out that 

some IR lines were reacting on even 500x lower estradiol concentration than generally used 2µM. 

Unexpected variations in posttranscriptional gene silencing induced by 

differentially produced dsRNAs in tobacco cells 

Čermák, V.1, Tyč, D.1, Přibylová, A.1, Fischer, L.1* 

1Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 44 

Prague 2, Czech Republic 

*Corresponding author 

Original research article, Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 

(IF2018 = 4.599), submitted 
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At the same time, cells were at the edge of the response to induction, because these low 

concentrations showed non-homogenous population of two states – active and silenced 

(Attachments 10.3., 10.4.). Time course of 14 days of estradiol application and 21 days without 

demonstrated that IR lines reacted homogenously, very quickly and returned after dropping off 

on the same level as before (transcription analysis of GFP; Attachments 10.3.). Simultaneously, 

high production of sRNAs during induction and declining after removal of ESTR (Attachments 

10.3.) was accompanied by the massive target GFP methylation (Attachments 10.3.). AS lines 

were slightly slower compared to IR lines, but returned also on the same level as before 

(Attachments 10.3.). Level of sRNAs in AS lines was lower than IR and showed interesting 

shifted ratio in behalf of reverse strand (Attachments 10.3.), but there was no DNA methylation 

of target GFP during whole experiment (Attachments 10.3.). Reaction of UT lines after ESTR 

treatment was the slowest and the most heterogeneous. Nevertheless, after removal of the inducer 

many cells were still able to keep GFP silencing state (Attachments 10.3., 10.4.), which was 

confirmed by persisting level of sRNAs (Attachments 10.3.). UT lines also showed some DNA 

methylation, even established before induction (Attachments 10.3., 10.4.). 

Ultimately, the most important findings of this work are: 

• We established the experimental system based on transgenic BY-2 lines enabling the 

effective induction of silencing introduced transgene. 

• Some lines from IR variant of GFP were possibly inducing silencing at 500 x lower ESTR 

concentration then usually used and exhibited specific binary silencing in cells. 

• IR line further showed fastest and deepest silencing of GFP accompanying with the 

highest level of sRNAs and target DNA methylation. 

• The line with AS of GFP was lower in response to silencing induction but demonstrated 

medium level of sRNAs with shifted ratio in favor of Rev strand and no target methylation. 

• Some unterminated constructs can be translated to a functional protein. 

4.2.1. Statement of contribution 

I, PhD candidate, hereby declare that I participated together with other authors in the methylation, 

the RT-qPCR and the flow-cytometry analysis. I also contributed to the writing of the manuscript 

and approved the final version and revisions. 
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4.3. Publication 3 – Přibylová et al., 2019, published 

DNA methylation of promoter cytosines gives rise to inactivation of expression following gene. 

In previous publications we focused on the reactivation of gene expression in S. tuberosum plants 

using demethylation drug and on the study of PTGS development when provoked by sRNAs 

of different origin. While in this work we wanted to deliberately elicit TGS in transgenic tobacco 

BY-2 cell line, in order to investigate not well-known initial phases of RdDM. 

 Three independent lines of BY-2 were prepared by the super-transformation of “mother 

line” expressing steadily GFP under CaMV 35S promoter (P35S). This second independent 

transformation event introduced into the “mother line” an inverted repeat of a part P35S under 

estradiol inducible promoter (Attachments 10.5.). Exponentially cultivated BY-2 lines were then 

either treated or not with estradiol to produce siRNAs against P35S in front of downstream GFP. 

For ten days we harvested cells in selected timepoints and analyzed the data for assessment 

of the silencer and target GFP level by the RT-qPCR, GFP fluorescence by the flow-cytometry, 

P35S methylation, and the existence of P35S-derived siRNAs by BGISEQ-500 sequencing. 

 GFP fluorescence of all three BY-2 lines, measured by the flow-cytometry in isolated 

protoplasts, was declining until loss in 10 days (Attachments 10.5.). Line 8 and 19 were chosen 

for deeper analysis because their response to estradiol was highly homogenous (Attachments 

10.6.). Decrease of GFP transcript assessed by the RT-qPCR reached its minimum in 2 days while 

the transcription of hairpin quickly increased within the first 3 h, reaching maximum in 2 days 

(Attachments 10.5.). Difference between observed GFP fluorescence and absenting GFP 

transcript is given by the protein stability. We analyzed also the methylation state of not only 

the P35S target sequence (379 nt), but also in adjacent regions (104 nt up- and 82 nt down-stream). 

The target region was highly methylated in almost 80 % of C positions in two days after induction 

(Attachments 10.5.), whereas adjacent regions were methylated just slightly (Attachments 10.6.). 

There were observed also slightly different patterns in comparison with symmetric and 

asymmetric methylations (CHH declined after two days maximum, whereas CG and CHG 

gradually increased and got at maxima in 3 days; Attachments 10.5.). Analysis of siRNAs fitting 

Detailed insight into the dynamics of the initial phases of de novo RNA-directed 

DNA methylation in plant cells 

Přibylová, A.1, Čermák, V.1, Tyč, D.1, Fischer, L.1* 

1Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 44 

Prague 2, Czech Republic 

*Corresponding author 

Original research article, Epigenetics & Chromatin 12:1 (IF2018 = 4.185) 
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to both T-DNAs (comprising inducer and target part) showed some small differences between 

lines. Whereas siRNAs from line 8 aimed principally the target P35S region in both the inductor 

inverted repeat and target promoter, siRNAs from line 19 displayed besides same pattern also 

relevant number of siRNAs from hygromycin phosphotransferase (hpt) expression cassette 

(Attachments 10.6.). Surprisingly, low level of siRNAs against P35S were also found even 

in untreated cells. When we looked closer to the siRNA seq, the most siRNAs sitting along 

the target region were 21 nt and 22 nt in length; Attachments 10.5 and 10.6.). The coverage of the 

target sequence by siRNAs was not homogenous – there were found strand and line specific 

“peaks” with bigger siRNA density indicating higher siRNA stability or production (Attachments 

10.5.).  

Main findings of this work are: 

• GFP fluorescence of all 3 lines was decreasing until its loss in 10 days, while the level 

of GFP transcript decreased in 2 days after induction in selected lines. 

• The methylation of target sequence in P35S promoter came very fast, promptly after 

occurrence of relevant siRNAs, it reached its maximum in 2 days (in CHH) or escalated 

for 10 days (in CG and CHG). 

• Formerly presented methyl-cytosines in target locus did not affect de novo methylation 

or its accuracy.  

• The presence of RNA hairpin led to the high production of specific 21- and 22 nt siRNAs 

which covered not only P35S of target or inducer, but also hpt cassette. 

• The coverage of target region showed some specific pattern of siRNAs in quantity.  

4.3.1. Statement of contribution  

I, PhD candidate, hereby declare that I carried out together with other authors the methylation, 

the RT-qPCR and the flow-cytometry analysis. I read and approved the final manuscript and 

revisions. 
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4.4. Unpublished data – Tyč et Fischer 

Investigation of little-known phenomenon of non-symplastic movement of a silencing signal was 

highly motivated by the observation made few years ago in the study of GFP-expressing tobacco 

BY-2 cell lines in our laboratory (Nocarová and Fischer, unpublished). Dr. Nocarová observed 

during her study focused on cloning of BY-2 cells (Nocarova and Fischer, 2009), that some GFP 

expressing lines silenced the GFP expression when mixed together with a line that had 

spontaneously silenced GFP expression. This effect could be caused either by the differences 

in proliferation rate of both lines – the silenced line could simply overgrowth the non-silenced 

one, or by spontaneous initiation of silencing in the line that until then had actively expressed 

GFP. Nonetheless, the silencing could also be hypothetically induced by the movement 

of a specific or a general silencing signal between the cells of the silenced and non-silenced line.  

In very same year Slotkin et al. (2009) published a breakthrough article about the possible 

non-symplastic movement of TE-derived sRNAs in A. thaliana pollen (for more details read 

Chapters 1.4. and 1.5.). In plants, the silencing signal, in the form of sRNAs moves through PD, 

but the existence of another route for the sRNA transport between symplasticaly isolated cells can 

be expected. We checked the situation in animals, because the RNAi apparatus is conserved 

in many aspects in various Eukaryotes and cells in animal tissue have no interconnections like PD 

in plants. Indeed, in the near past SID-1 protein was discovered as a transmembrane transporter 

of dsRNAs, precursors of sRNAs, in nematodes (read more in Chapter 1.6.; Winston et al., 2002; 

Feinberg and Hunter, 2003).  

Can plant cells import sRNAs from apoplast? 

Tyč, D.1, Fischer, L.1 

1Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 44 

Prague 2, Czech Republic 

 

Original research, presented at: 13th Student Days of Experimental Plant Biology, Czech 

Society of Experimental Plant Biology (CSEPB), 2015 September 7-8, Brno, Czech Republic. 

L1-4 

The most important achieved data are included in the PhD thesis. However, the main goal to 

reveal the transport of sRNAs in plants with a help of special transporter proteins was not 

accomplished.  
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4.4.1. Plant SAG18 as a candidate homolog gene to SID-1 

SID-1 protein sequence (NM_071971.7; NCBI GenBank; The C. elegans Sequencing 

Consortium, 1998) was used to find possible plant homologs in A. thaliana using tBLASTn. We 

obtained Senescence Associated Gene 18 (SAG18; NM_105788) with unknown function (Miller 

et al., 1999; see Fig 4.4.1a for protein alignment). Another tBLASTn search was done, using SID-

1 protein homolog of Dictyostelium discoideum (XM_001732989.1; NCBI GenBank; Eichinger 

et al., 2005) that belongs to a different phylogenetic branch Amoebozoa, with the same hit 

in SAG18. The reverse searches with SAG18 as a query returned back to SID-1 proteins 

as the closest homologs in animals and D. discoideum. 

 Also, other possible homologues of SAG18 in A. thaliana were checked using BLASTp 

(PSI-BLAST algorithm), that found putative alkaline phytoceramidase (aPHC; NP_001190292.1; 

Tabata et al., 2000; see all 3-protein alignment in Chapter 9.1.). To further compare the SID-1 

and its putative homologs in plants, secondary structures of C. elegans SID-1 and A. thaliana 

SAG18 were calculated by PROTTER (Omasits et al., 2014) and Phobius webtool (combined 

transmembrane topology and signal peptide predictor; Figure 4.4.1b and 4.4.1c). Both proteins 

were predicted to have multiple transmembrane helices, but their number was higher in SID-1, 

which also differed in having a great extracellular domain (Fig. 4.4.1a-c and Figure 1.6a from Li 

et al., 2015). This part also includes some key residues for protein function (see alignment 

in Chapter 9.1.; Li et al., 2015). Other important residues for C. elegans SID-1 protein function 

are in homological regions, from which Ser-536 is highly conservative also in SAG18 or aPHC 

homological positions (see alignments in Chapters 9.1. and 9.2.; Li et al., 2015). 

Comparison of selected green plants (Viridiplantae) SAG18 homologs showed high 

sequence conservation (see Figure 9.1. and phylogenetic tree in 9.3.). Therefore, we checked also 

the expression profile in A. thaliana by the Genevestigator database. It was shown that SAG18 

is highly expressed in many tissues with the first positions occupied by sperm cells and stomata 

guard cells that are symplastically isolated and in the hairy root cells, which are at the interface 

with the environment and whose cell wall is permeable for water solutes (Figure 4.4.1d). 

Although the predicted structures of SAG18 and SID-1 differ, it could be possible that 

the function done by SID-1 was split in the plant evolution into two separate proteins, one 

of which is SAG18. So, we decided to study SAG18 and aPHC as proteins that could be 

responsible for the SID-1 function, transmembrane transport of RNA, in A. thaliana. As a model 

for the investigation of SAG18 role we used tobacco BY-2 cell line and for the whole plant study, 

we chose A. thaliana for its available wide collection of mutant lines. 
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Fig. 4.4.1a Protein alignment of Arabidopsis thaliana SAG18 and Caenorhabditis elegans SID-1 with 

highlighted protein topology (calculated by Phobius for SAG18 and for SID-1 from Li et al., 2015). 
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Fig. 4.4.1b Model of Caenorhabditis elegans SID-1 protein secondary structure (calculated by the 

Protter from the UniProt data Q9GZC8). 

 

Fig. 4.4.1c Model of Arabidopsis thaliana SAG18 protein secondary structure (calculated by the 

Protter from the Phobius data Q9C989). 
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Fig. 4.4.1d Level of Arabidopsis thaliana SAG18 expression intensity on Affymetrix genome array 

(Genevestigator). 
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4.4.2. Arabidopsis thaliana double mutant preparation and phenotyping 

We ordered seeds of A. thaliana (Col-0) T-DNA insertion mutants from the SALK collection (see 

more in Table 4.4.2a) and designed primers for genotyping (see more in Table 9.4) to select 

homozygous mutants in F2 generation. Neither sag18 nor aphc showed any obvious phenotypic 

alterations (see Figure 4.4.2a). We cross them to obtain in F2 generation double mutants, sag18 

aphc, which were again with no visible change of phenotype (see Figure 4.4.2a). We grew these 

mutants for additional three inbred generations to let some possible changes in phenotype 

manifest, with the idea that SAG18 could be involved in TE inactivation in pollen grain, thus 

the phenotype changes caused by TE reactivation could develop through generations (considering 

Mirouze et al., 2009; Slotkin et al., 2009). But no visible changes in the phenotype of any mutant 

appeared (see Figure 4.4.2a). 

 

Tab. 4.4.2a Arabidopsis thaliana SALK mutant lines used in this study. 

 

Since SAG18 and aPHC are highly expressed in various tissues (for SAG18 see Figure 

4.4.1.d, for aPHC data are not shown) and there is no other homologue present in the A. thaliana 

genome, we tried to find any phenotype alteration in the mutant plants that would help to reveal 

the function of these proteins, regardless of whether in sRNA transport or in another processes. 

As the SAG18 gene is the most expressed in sperm cells, we first tested the efficiency 

of mutant alleles transmission to the next generation progeny, but no statistically significant 

difference between the theoretical and the experimentally determined ratio of the respective 

genotypes was observed in the progeny of self-fertilization of heterozygous SAG18 sag18 aPHC 

aphc plant (see Tables 4.4.2b-c). 

polymorphism locus gene 
polymorphism 

site 

NASC 

stock 
phenotype 

SALK_022062 AT1G71190 SAG18 exon N522062 non available 

SALK_003875 AT5G11870 aPHC exon N503875 non available 
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Fig. 4.4.2a F2 and F5 generations after self-fertilization of A. thaliana wt, sag18, aphc and sag18 

aphc double mutants, grown in 16 h long-day (LD) photoperiod in Jiffy pelets with no visible 

differences in phenotype. Scale bar for 20-day-old seedlings is 2 cm, while for 40-day-old plants is 4 cm. 
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Tab. 4.4.2b Phenotypic ratio in F2 generation after self-fertilization (28 plants) of heterozygous Arabidopsis 

thaliana mutant plants for both genes together. 

Pearson's Chi-squared test, p-value = 0.1006 

 

Tab. 4.4.2c Phenotypic ratio in F2 generation after self-fertilization (28 plants) of heterozygous Arabidopsis 

thaliana mutant plants for each gene separately. 

Pearson's Chi-squared test, p-value = 0.9249 

 

We also checked other important parameters, which could be affected by the mutation in 

SAG18 or aPHC genes. We focused on the measurement of parameters related to the tissues where 

both genes are highly expressed (see Figure 4.4.1d) – the yield and the stem and hairy roots 

parameters. We compared the wt and the double mutant (30 plant per genotype), because the most 

severe differences may be expected due to mutation of both genes. When stems were fully 

developed, they were assessed per each plant. Immediately after senescence, during which 

SAG18 expression increases, all desiccated plants were harvested and measured separately for 

the shoot and the total seed weight. Index ratio was determined as the ratio weights of harvested 

seeds to the total shoot for each plant (for more details see methods in Chapter 3.9.). But again, 

no significant differences were found out between the wt and the double mutant plants (see Figure 

4.4.2b – charts a, b, c and d. Hairy root assessment was done in three biological replicates with 

12-15 plants of each variant (wt, sag18, aphc, sag18 aphc; see Figure 4.4.2c) as described in 

methods (Chapter 3.10.). No differences were seen for the number of hairy roots per plant or for 

their length between any variants (Figure 4.4.2b – charts e and f). 

  

genotype AABB AABb AaBB AaBb AAbb Aabb aaBb aaBB aabb 

# theoretical  1/16 2/16 2/16 4/16 1/16 2/16 2/16 1/16 1/16 

% theoretical 6.25 12.5 12.5 25 6.25 12.5 12.5 6.25 6.25 

# real  1/28 5/28 3/28 5/28 1/28 5/28 6/28 2/28 0/28 

% real 3.57 17.86 10.71 17.86 3.57 17.86 21.43 7.14 0 

genotype AA Aa aa genotype BB Bb bb 

# theoretical  1/4 1/2 1/4 # theoretical  1/4 1/2 1/4 

% theoretical 25 50 25 % theoretical 25 50 25 

# real  7/28 13/28 8/28 # real  6/28 16/28 6/28 

% real 25 46.43 28.57 % real 21.43 57.14 21.43 
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Fig. 4.4.2b Phenotyping of Arabidopsis thaliana wt, sag18, aphc and sag18 aphc double mutants 

grown in 16 h long-day (LD) photoperiod on the soil for (a, b, c and d) or on the MS/5 medium for 

(e, f). Stem length in (a) was calculated as a maximal length per each plant. (b) and (c) were measured 

when plants were desiccated. Harvest index in (d) was calculated as the ratio of harvested seeds to 

total shoot for each plant. And hairy roots were measured from pictures of 4-6 days old seedlings 

rooting in vitro on vertical agar plates using NIS-elements software. Error bars indicate the SD of 12-

15 plants. Statistically there were no significant differences between wt and mutants for all 

measurements using linear models.  
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RNA movement (thus possible SAG18 and aPHC involvement) is very important also 

in trans-kingdom host-parasite interactions (read more in Chapter 1.5.; Liu and Chen, 2018). 

Considering no phenotype changes in double mutant plants (for the putative transporters) we 

decided to check if they could not be involved in response to pathogen infection. Botrytis cinerea 

was selected as a suitable pathogen, in which mutations in proteins important for sRNAs transport 

lead to higher pathogenicity (Cai et al., 2018). We analyzed the size of lesions developed after 

B. cinerea in A. thaliana plants (5 plants per genotype – wt, sag18, aphc, sag18 aphc; for more 

details read Chapter 3.11.). As in all previous comparisons, there were no statistically significant 

differences (see results in Figure 4.4.2d). 

       

Fig. 4.4.2c Hairy root analysis of Arabidopsis thaliana wt, sag18, aphc and sag18 aphc double 

mutants grown in 16 h long-day (LD) photoperiod on MS/5. Scale bar 4 mm. The white arrows define 

measured part of a root under hypocotyl, an enlargement on the left is showing hairy roots in detail.  
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4.4.3. Guard cell analysis reveals possible differences 

We also evaluated guard cell function, aware of the high expression rate of SAG18 (Fig. 4.4.1d) 

and aPHC, in order to find their possible alternative function. The hypothesis was, that 

the mutation in both genes may negatively affect guard cell function that would result in altered 

stomata conductance and thus also the rate of transpiration. We applied two methods to analyze 

stomatal function on three different genotypes (wt, sag18, sag18 aphc) – the photosynthesis 

measuring system TPS-1 and the gravimetric method (Chapter 3.12.). Both approaches showed 

interestingly the same trends of reduced speed of stomatal closing in the double mutants. Plants 

       

Fig. 4.4.2d Infection of Arabidopsis thaliana wt, sag18, aphc and sag18 aphc double mutants by 

Botrytis cinerea. (a) A. thaliana leaves after 3 DPI (days post inoculation) by fungi, scale bar 10 mm. 

(b) relative lesion sizes of A. thaliana leaves. Error bars indicate the SD of 20 leaves. No statistical 

difference was found between variants using linear model.  

a 

b 
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with sag18 and sag18 aphc mutations exhibited significantly higher water loss (see Figure 4.4.3 

c) and concurrently higher stomatal conductance and transpiration rate measured by TPS-1 (see 

Figure 4.4.3 a, b). Deeper analysis using all possible genotypes in quantity larger set of plants 

and inclusion of other A. thaliana guard cell mutants should be done to verify the results. 

 

  

       

Fig. 4.4.3 Stomata guard cell analysis of Arabidopsis thaliana wt, sag18, and sag18 aphc double 

mutants measured for (a, b) by photosynthesis measuring system TPS-1 and for (c) using gravimetric 

method. (a, b) stomatal conductance and transpiration rate was measured every 2 and 5 minutes. Error 

bars indicate the SD of 11 leaves. (c) water loss by transpiration was evaluated every 2 minutes using 

gravimetric method together for 12 minutes. The lines represent 3-6 leaves. Statistics showed 

difference in pairs wt:sag18 aphc (p-value = 0,007) and wt:sag18 (p-value = 0,0027) using linear 

mixed-effects model with post-hoc Tukey’s HSD test.  
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4.4.4. Investigation of sRNA movement between individual cells of BY-2 cell line 

Tobacco BY-2 cell line  represents an important plant model of mitotically dividing cells with few 

limits (absence of mutant lines and genome instability; Kovarik et al., 2012, not later confirmed 

by Srba et al., 2016), but also with many advantages (high proliferation rate, easy handling, easy 

transformation and selection, easy epigenetic marks investigation; Nagata et al., 1992; Srba et al., 

2016; Přibylová et al., 2019; Čermák et al., submitted).  

As mentioned above, we observed that the percentage of cells with silenced GFP 

expression increased in time in the mixture of BY-2 cells actively expressing GFP and cells that 

had the expression spontaneously silenced. To study this phenomenon, we established more 

controlled experimental system, which fulfilled following requirements – i) active expression 

of SAG18 homolog; ii) simple differentiation between cell populations that act as putative donors 

and acceptors of the silencing signal (sRNA); iii) efficient production of specific sRNAs 

in the donor cells; iv) possible overcome of mechanical barrier in sRNAs movement and; 

v) simple detection of sRNAs movement effects. 

 Weak transcription of tobacco homolog of SAG18 in BY-2 cell line was proved by semi-

quantitative RT-PCR amplification of SAG18 from cDNA using primer pairs 5´-

CTGAGCAGAACTTGAGCTTC-3´ and 5´-TCCCTTCAACGTGATTCCTC-3´ (Fig. 4.4.4a). 

 

The first approach was to mix two BY-2 lines with different T-DNA background and 

the potential for sRNA movement observation. Binary vector with two independent fluorescent 

marker proteins was prepared by classical recombinant DNA techniques (GRED1; see Tab 3.1. 

and Fig. 3.1a-c) and transformed into BY-2 creating putative acceptor line. IR8C putative sRNAs 

donor line contained P35S::GFP and the cassette for GFP as inverted repeat under estradiol 

inducible promoter (see Tab 3.1; Chapter 3.7.; Fig. 3.1a-b and Čermák et al. submitted). 

The hypothesis was that sRNAs against GFP will be produced in response to the estradiol 

induction and they will move from the IR8C cells into the GRED1 cells, where they negatively 

       

Fig. 4.4.4a PCR amplification of SAG18 from cDNA of BY-2 suspension (faint band), BY-2 callus 

and Nicotiana tabacum (positive control). NC means negative control. 1.2% agarose gel in 0.5x TAE. 

In-gel staining by GelRed (Biotium, Inc.). Captured and processed by G:BOX (SynGene). 
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affect GFP expression. We expected that in such a mixture of BY-2 cells, we would see two types 

of cells – without any fluorescence (from IR8C, with GFP silenced by the internal sRNAs) and 

cells with red fluorescence of mCherry, but reduced GFP fluorescence (from GRED1, where 

the GFP was silenced by external sRNAs). However, GRED1 showed weak mCherry 

fluorescence. Thus GRED2 (Tab 3.1 and Fig. 3.1a-d) was created using RFP and subsequently 

GRED213 and GRED235 lines with two independent T-DNA insertions were selected and used 

in further analysis. 

 Line IR8C was at first tested for sufficient sRNAs production by the estradiol treatment 

(Chapter 3.7.). Fast reduction of GFP expression proved massive production of sRNAs against 

GFP in the treated line and its usability as a potential donor of sRNAs (see Figure 4.4.4b). This 

was also later confirmed in detail by flow-cytometry in Publication 2 (Chapter 4.2., Attachments 

10.3. and 10.4., Čermák et al. submitted). In the pilot experiment, IR8C was induced and after 

72 h mixed with GRED213 or GRED235 lines with no visible changes in GFP fluorescence after 

another 72 h (data not shown).  
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4.4.4.1. Externally supplied sRNAs against GFP did not cause changes in GFP fluorescence 

of the acceptor line  

Considering that SID-1 (putative SAG18 homolog) was shown to be important for dsRNA uptake, 

but not for the export (Shih and Hunter, 2011), we decided to use frozen IR8C donor line. 

The application of liquid nitrogen on IR8C sample might improve the release of dRNAs after 

the destruction of cells during thawing.  

Line IR8C was treated with estradiol or DMSO (control) and harvested after three days 

of induction (read more in Chapter 3.7; see Fig. 4.4.4b). Each frozen sample contained 0.5 ml 

of IR8C line presumably with or without sRNAs against GFP, depending on the estradiol 

treatment. Two acceptor lines (GRED213 and GRED235) were grown as suspensions under 

       

Fig. 4.4.4b Pictures of tobacco BY-2 cell line IR8C from fluorescent microscope showing a reduction 

in GFP expression during continual estradiol treatment. Processed by Adobe Photoshop CS6. Scale 

bar 200 µm. 
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conditions described above (Chapter 3.1.). When lines achieved homogeneity and exponential 

growth (sub-cultivation interval 3-4 days), both were treated with sterile frozen 0.5 ml of IR8C 

(with or without estradiol addition before freezing). After four days they were analyzed for GFP 

expression without any visible differences (Chapter 3.3; data not shown). Therefore, both lines 

were treated again with frozen IR8C, this time with 5 ml per variant. After three days there was 

no sign of fluorescence changes between variants, so another dose of frozen cells was added. Each 

line was overall treated with 11 ml of frozen IR8C cells per variant. Lines were kept 

in the exponential growth for another 14 days and then harvested and analyzed by flow-cytometry 

(Chapter 3.3.).  

Strikingly GFP fluorescence was lower in GRED213 after the putative sRNA treatment 

(46% decrease compared to the line treated with estradiol-induced frozen IR8C; Fig. 4.4.4.1a-a). 

Nevertheless, trends in RFP fluorescence were almost the same (47% decrease after the treatment; 

Fig. 4.4.4.1a-b) although we expected that sRNAs from IR8C line would affect only 

the fluorescence of GFP. In the second analyzed line GRED235 fluorescence of both GFP and 

RFP declined about three times compared with untreated control. This decrease was practically 

equal in both IR8C-treated variants irrespective of their estradiol treatment (Fig. 4.4.4.1a-c, d). 

The above described experiments did not indicate that our hypothesis that sRNAs can 

move between BY-2 cells or that sRNAs from the medium can be internalized by BY-2 cells 

to influence the GFP fluorescence. Nevertheless, presumed small decrease in GFP fluorescence 

after sRNAs treatment could be masked by newly synthesized GFP if the imported sRNAs are 

unable to induce production of secondary sRNAs in the recipient cell. Thus we considered 

to block the synthesis of new fluorescent proteins (which could hide a potential small decrease 

of GFP after sRNAs treatment) by adding cycloheximide (CHX; Imanishi et al., 1998). 

Simultaneously, we also tried to prevent any possible barrier (like cell wall) for sRNAs uptake 

on the recipient side, therefore we decided to treat freshly prepared protoplasts (Chapter 3.8.). 
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Fig. 4.4.4.1a Fluorescence of reporter proteins in protoplasts of tobacco BY-2 cell line after estradiol 

treatment measured by low-cytometry. (a) GFP and (b) RFP fluorescence of GRED213 line; (c) GFP 

and (d) RFP fluorescence of GRED235 line; the colours of curves in the histograms are equivalent 

to those in table of mean. 
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 Protoplasts of GRED213 and GRED235 lines were treated with 100µM CHX according 

to Imanishi et al. (1998) to investigate if CHX could effectively block synthesis of new GFP. 

Fluorescence of GFP and RFP was measured for three days using flow-cytometry. Data showed 

decrease in fluorescence of GFP independently of treatment but strikingly increase in RFP 

fluorescence during time (Fig. 4.4.4.1b). This could be caused by differences in lifetime of both 

proteins, considering mostly dropping ratio of living cells during time because of stress from long 

time protoplasts cultivation (Tab. 4.4.4.1b). Difference in GFP between treated and untreated 

variants was expected in opposite way – CHX treatment was assumed to lead to decrease of GFP 

because of blocking new proteins synthesis. But we did not realize that CHX is also blocking 

a synthesis of proteasome proteins (McKeehan and Hardesty, 1969) thus the lifetime of proteins 

could be prolonged.  

 

Tab. 4.4.4.1b Flow-cytometry data from GRED lines treatment with cycloheximide. 

 

 

 

 

Line treatment day # count 
# count  

live 
% live 

GFP 

mean 

RFP 

mean 

GRED213 none 0 30000 14788 49 59290 4465 

GRED213 CHX 1 30000 11188 37 46642 5754 

GRED213 none 1 30000 10967 37 48620 5578 

GRED213 CHX 2 30000 11100 37 47210 6531 

GRED213 none 2 30000 3338 11 44625 6527 

GRED213 CHX 3 31355 4146 13 40538 6932 

GRED213 none 3 24130 6797 28 16365 7809 

GRED235 none 0 30000 9448 32 24485 2746 

GRED235 CHX 1 30000 10464 35 20970 3657 

GRED235 none 1 30000 5323 18 20954 3323 

GRED235 CHX 2 30000 3919 13 17335 3827 

GRED235 none 2 30000 4269 14 11433 4684 

GRED235 CHX 3 11660 4835 42 20213 4313 

GRED235 none 3 3545 79 2 10622 4078 
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4.4.4.2. Externally supplied sRNAs against GFP did not cause changes in GFP transcript 

level of the acceptor line  

Since the CHX treatment did not help to prevent possible problematic monitoring of small 

decrease in GFP fluorescence after sRNAs treatment we decided to investigate the level of GFP 

rather at the transcript basis by RT-qPCR analysis. Concurrently we prepared also another 

transgenic BY-2 lines with overexpressed SAG18 or even SID-1 proteins to intensify the changes 

in GFP expression due to sRNAs movement. Furthermore, we applied the RiboLock RNase 

       

Fig. 4.4.4.1b Time course of GFP (a) and RFP (b) fluorescence in two GRED2 tobacco BY-2 cell 

lines after CHX treatment, measured in protoplasts by flow-cytometry. 
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inhibitor during sRNAs solution preparation to protect sRNAs before RNase degradation 

(Chapter 3.7.). 

 Transgenic BY-2 lines were prepared, increasing the level of – i) SAG18 gene from 

A. thaliana or ii) already known transporter of sRNAs – SID-1 from Caenorhabditis elegans, both 

these genes controlled by strong CaMV 35S promoter. Thus, GRED213 line was super-

transformed either by P35S::AtSAG18 or P35S::CeSID-1, formatting GRSA respectively GRCE 

lines (see Chapter 3.1., Fig. 3.1b-a, b, Tab. 3.1). The gene for SID-1 was amplified from cDNA 

of Caenorhabditis elegans strain N2, kindly provided by Dr. Libusová (Charles University, 

Faculty of Science, Department of Cell Biology) using 2 primer pairs (for the first part 5´-

GTTCACAATGATTCGTGTTTATTTGAT-3´, 5´-AGCATTTGGCCATGGAGTGA-3´ and for 

the second part 5´-TCACTCCATGGCCAAATGCT-3´ and 5´-TGAAAAACCGGATAGGGA 

AAACAA-3´). Concurrently 5´-part of CeSID-1 was modified with the plant signal sequence 

from HyPRP gene (see Dvořková et al., 2012 and sequence in Attachments 9.5.) by classical 

molecular techniques. The sequence of SAG18 was amplified by RT-PCR from cDNA 

of A. thaliana ecotype Col-0 using primer pair (5´-TCTCATCTCTCTCTGAAGTAG-3´, 5´-

ATCTACCGAGTCTCTTCGAC-3´). The presence of transcripts for both introduced genes 

in super-transformed GRED213 line was checked by semi-quantitative RT-PCR using primer 

pairs listed above (data not shown). 

 We also checked proper protein localization SAG18 and SID-1 by their fusion with E-

GFP. Binary vectors with c-terminal E-GFP fusions and “GASQA” linker were prepared for both 

proteins (Chapter 3.1. and Attachments 9.5.) and transformed into the BY-2 wt line. Two novel 

BY-2 lines were derived after selection – SAF (AtSAG18::E-GFP fusion) and CEF (CeSID-1::E-

GFP fusion; see Chapter 3.1.; Fig. 3.1b-c, d; Tab. 3.1). A confocal microscopy, thereafter, 

confirmed proper localization of both proteins in comparison with GREEN1 line (Chapter 3.1.; 

Fig. 3.1a-a Tab. 3.1) with free cytosolic GFP (Fig. 4.4.4.2a-a, b) and NtRGS::rsGFP line with 

a membrane localization (kindly provided as a positive control by Mgr. Šonka; Fig. 4.4.4.2a-c, 

d). Both newly introduced proteins (AtSAG18 and CeSID-1) were localized during exponential 

phase of growth in the plasma membrane (Fig. 4.4.4.2a-e, g, i, j), while in the starving stationary 

cells mostly in the vacuole (but, it should be noted that we observed such a localization also 

in the case of other plasma membrane-localized proteins; Fig. 4.4.4.2a-f, h). 
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When the proper localization of AtSAG18 and CeSID-1 in our heterologous system was 

verified, we prepared an experiment testing the possibility of sRNAs movement into protoplasts 

of 3 different BY-2 lines – GRED213, GRSA33 and GRCE1. By this complex approach we tried 

to overcome the most problematic points mentioned in the introduction of Chapter 4.4.4.  

       

Fig. 4.4.4.2a Localization of AtSAG18 and CeSID-1 E-GFP fusions in tobacco BY-2 cell line 

in comparison with controls. Confocal pictures were captured from LSM 880 (Zeiss) using filters 

for GFP (a-l) and Nomarski contrast (i-l), processed by ZEN lite (Zeiss) and Adobe Photoshop CS6. 

Scale bars are 50 µm. (a, c, e, g, i, j, k) represent cells in exponential phase, rest in stationary phase; 

(a, b) imagine free cytosolic rsGFP (line GREEN1 Chapter 3.1.); (c, d) NtRGS::rsGFP fusion; (e, f, 

i) show SAF line (AtSAG18::E-GFP; Chapter 3.1.); (g, h, j) represent CEF line (CeSID-1::E-GFP; 

Chapter 3.1.) and (k, l) show wt. 
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Protoplasts were prepared from three different lines (GRED213, GRSA33 and GRCE1) 

and treated with sRNA solution against GFP according to Chapters 3.7. and 3.8. Potential changes 

in the expression of GFP and RFP were evaluated by qRT-PCR as described in Chapter 3.4 with 

elongation factor EF1α as an internal standard.  

GRED213 “mother” line showed the expected reduction of GFP transcripts 24 h after 

the treatment compared with time 0, but completely opposite reaction 6 h after the treatment 

(Fig. 4.4.4.2b-a). RFP transcription was mostly reduced in time 0 (Fig. 4.4.4.2b-b). When we 

compared the ratio of both fluorescent protein transcripts, it was growing in favor of the GFP 

mRNA (Fig. 4.4.4.2b-c). Transcription of RFP and GFP in BY-2 line with overexpressed CeSID-

1, GRCE1, was increasing in time. Exposure to sRNAs caused higher transcription of both GFP 

and RFP (Fig. 4.4.4.2b-a, b). GFP transcription in GRSA line 6 h after the treatment was 

descendent, but this trend disappeared 24 h after the treatment (Fig. 4.4.4.2b-a). RFP transcription 

was more or less the same independently of the treatment (Fig. 4.4.4.2b-b).  

We further decided to examine the effect of the presence of a proven or putative 

sRNAs/dsRNA transporter by normalization the data of line GRED213, which should show 

higher GFP transcript levels (lower silencing) compared to the other two lines if SID-1 or SAG18 

acted as functional sRNA/dsRNA importers. The level of GFP was declining 6 h after 

the treatment in GRCE and GRSA lines, supporting our hypothesis, but after 24 h trends were 

totally inverse (Fig. 4.4.4.2c-a). Also, the level of RFP, used as an internal standard, showed high 

differences after the treatment which we did not expected considering the treatment with RNAs 

isolated from the line expressing GFP. 

To summarize the results – tobacco BY-2 cell line GRED213 was not reacting at the level 

of GFP transcription to externally added sRNAs against the GFP. Moreover, lines overexpressing 

additional SID-1 or SAG18 genes were responding non-homogeneously during monitored 24 h, 

independently of the sRNAs treatment. Visible alterations in both GFP and RFP levels likely 

resulted from random changes in the experimental system, but not because of the movement 

of GFP derived sRNAs into the cells. 
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Fig. 4.4.4.2b Time course of GFP and RFP transcript levels after the treatment with sRNAs against 

GFP (+), measured in protoplasts of three different BY-2 lines by RT-qPCR. The relative transcript 

levels were related to time 0 that was set to 1.0 and normalized to the internal standard EF1α (for a, 

b) or RFP (for c). Error bars in all plots represent standard deviation. 
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Fig. 4.4.4.2c Time course of GFP and RFP transcript levels after the treatment with sRNAs against 

GFP (+), measured in protoplasts of GRSA and GRCE BY-2 lines by RT-qPCR and normalized to 

GRED213 line. The relative transcript levels were related to time 0 that was set to 100 % and 

normalized to the internal standard EF1α (for a, b) or RFP (for c). Error bars in all plots indicate 

standard deviation. 
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5. DISCUSSION 

The presented work covers a wide range of topics, some of which were studied in collaboration 

with other colleagues and which are individually discussed in the attached manuscripts. 

The separate discussion here will therefore focus in particular on several selected topics and raised 

questions which emerged exclusively during my own research on PhD thesis. Namely, I focus 

on discussion of the development of suitable methods for studying of transgene silencing, 

on the usage of appropriate plant model system for visualization of changes provoked 

by transgene silencing and also on the role of putative transmembrane transporters of sRNAs. 

RNA interference is a conserved and very complex mechanism of regulation gene 

expression in eukaryotic organisms (Baulcombe, 2004). Alpha and omega for this process is 

the gene silencing through dsRNA formation which leads to the sequence-specific degradation 

of mRNA, blocking of translation of complementary transcripts or inhibition of transcription 

by modifications of chromatin. Before the discovery of the mechanism of RNAi (Fire and Mello, 

1998), RNA silencing induced by antisense RNA was taken as just an autonomous internal 

“stoichiometric issue” – it was supposed that the introduced antisense RNA molecule interacted 

with target mRNA through the Watson-Crick base pairing to prevent corresponding protein 

biosynthesis (van der Krol et al., 1988). Nonetheless, further numerous analysis using more and 

more sophisticated techniques and various eukaryotic model organisms revealed that this 

homology-dependent RNA silencing is a part of the world of small non-coding RNAs that is much 

larger than anyone expected. Gradually, the involvement in the defense against transposable 

elements was uncovered (Henderson and Jacobsen, 2007) as well as the role of RNA interference 

in the regulation of internal or external genes (Eamens et al., 2008). This opened extensive reverse 

and forward genetic approaches. Nowadays we know that RNAi plays also pivotal role 

in the whole body development, the response to abiotic or even biotic stresses and in the formation 

of additional information level in establishing and maintaining chromatin organization (Law and 

Jacobsen, 2010). 

 

5.1. Monitoring of transgene PTGS switch to TGS needs deeper analysis 

The preparation of genetically modified plants became during last 40 years a routine matter 

for many different species, although some groups of crops were challenging due to difficulties 

in establishment of stable and regenerative somatic tissue culture (Cheng et al., 1997; Sidorova et 

al., 2019). Nevertheless, the regular usage of genetically modified plants in basic or applied 

research was always endangered by unpredictable and unstable level of transgene expression 

caused by many factors (Baulcombe, 2019) like the random character of T-DNA integration (Kim 
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et al., 2007), the T-DNA nature itself (De Bolle et al., 2003) or the number of integrated T-DNA 

copies (Tang et al., 2007), but nearly always tightly interconnected with the RNA interference.  

These findings were crucial also for my starting point, when I continued in the work 

of Nocarova et al. (2010). They observed successive spontaneous silencing of tandem reporter 

genes in vegetatively propagated potato (Solanum tuberosum) plants, even more than four years 

after the transformation event. Assessment of the T-DNA copy number (by Southern 

hybridization) showed that lines with small copy number have weaker tendency to spontaneous 

silencing in agreement with Tang et al. (2007). Their further analysis of GFP and nptII expression 

at the transcript (semi-quantitative RT-PCR) and the protein levels (immunodetection on Western 

blots) over a long period of time revealed that silencing of the two reporter genes differed 

(Nocarova et al., 2010). Results indicated that the GFP was first silenced at the PTGS level 

in some lines which later developed to the TGS in agreement with the hypothesis already 

formulated by Fojtova et al. (2003). In contrast, the nptII seemed to be silenced directly at the TGS 

level. This was supported by assessing the effects of AzaC treatment of lines showing spontaneous 

silencing. AzaC treatment inhibits cytosine methylation (Santi et al. 1984) that is needed 

to maintain TGS (Fojtova et al., 2003), so this treatment can serve as an indirect method 

distinguishing PTGS and TGS (read more in Chapters 1.4.1. and 3.2.). However detailed analysis 

of methylation pattern and precise monitoring of both genes at the transcription level supporting 

or refusing this hypothesis was missing. 

In the follow-up study (Tyč et al., 2017) we optimized the AzaC treatment of potato leaf 

explants from lines with transcriptionally silenced transgenes. We succeeded to reactivate 

silenced transgenes at the whole plant level in comparison with studies, where they restored 

transcriptionally silenced genes only at cell, organ or tissue levels (Wang and Waterhouse 2000; 

Emani et al., 2002; Kanazawa et al., 2007; Tyunin et al., 2012). Nevertheless, it should be noted 

that in case of GFP we observed very often only temporary restoration of expression, seen only 

in calli, that indicated re-silencing of the transgene during subsequent de novo regeneration. Both 

transgenes were restored only in 30 % of regenerants derived from the line R17 bearing multi 

copy T-DNA insertions, while regenerants of R28 line (supposed to carry a single copy insertion) 

restored only nptII gene at the whole plant level. Obtaining lines with reactivated nptII was made 

possible by careful comparison of the promoter methylation via bisulfite modification, confirming 

that the silencing was at the transcriptional level. At the same time, it turned out that the R28 line 

was not present as a single copy, but probably double copy, and only one insertion was reactivated 

by the demethylation. 

These results support the hypothesis that both Pnos and nptII methylation dramatically 

declined after AzaC treatment, but only in some T-DNA insertions. Some studies depicted 
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the stability of T-DNA methylation pattern in time (Kunz et al., 2003), contrary others pointed 

out the dissemination of DNA methylation after transposon insertion (Martin et al., 2009). 

However, neither detailed analysis of cytosine methylation in Pnos nor nptII could answer 

the question, if methylation had been spreading upstream into the nptII cassette from 

the methylated GFP cassette. 

 

5.2. Inducible system together with precise sRNAs analysis allow description of PTGS 

in detail 

In the experiments with potato plants mentioned above, an important phenomenon of spontaneous 

silencing at the whole plant level was studied. However, this system was inappropriate 

for an accurate study of the onset of PTGS and the spread of related methylations in time. 

Therefore, we switched to another important plant model – tobacco BY-2 cell line, with many 

advantages mentioned above that enable more detailed analysis (Nagata et al., 1992; Srba et al., 

2016). We decided to use it in a combination with the system for inducible expression of silencing 

RNAs. The utilization other advanced high value-added techniques, such as flow-cytometry, 

qRT-PCR and parallel sequencing of sRNAs, allowed to describe the initial phases of PTGS, but 

also to better understand the events observed in potatoes, such as PTGS switch to TGS 

or the connection between GFP silencing and follow-up nptII silencing.  

In our study (Čermák et al. submitted), we provoked PTGS of GFP by the production 

of sRNAs that dated back to different source RNAs. Flow-cytometry and qRT-PCR data showed 

that the speed and the strength of silencing were highly dependent on the origin and amount 

of sRNAs (supported by sRNAs sequencing). The most effective PTGS was induced via 

an inverted repeat construct (IR) producing hairpin RNA, in agreement with Wang and 

Waterhouse (2000) or Wesley et al. (2001). This type of silencing is frequently present also 

in endogenous genes and their homologues in trans (Muskens et al., 2000) with dominance of 21 

nt sRNAs (Yoshikawa et al., 2005; Zicola et al., 2019), consistent with data receiving from 

expression of the P35S hairpin (Přibylová et al., 2019). However, in IR-induced PTGS of GFP, 

a dominant group of sRNAs was 22 nt in length, which was also noticed by Dalakouras et al. 

(2019). DNA methylation was also observed in unterminated (UT) variant, but it was not found 

in variant with antisense orientation (AS). Concurrently, we did not observe the spreading 

of methylation upstream to the P35S promoter in any variant, as we supposed in studies with 

potato plants. When we looked closer to the distribution of sRNAs (which are necessary for DNA 

methylation) along the target or silencer T-DNAs for all variants we did not find any significant 

number of sRNAs against the P35S. Interestingly in AS and UT variants there were frequent 

transitive sRNAs against Tnos terminator, which lies downstream of the GFP, as well as hpt and 
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nptII resistance genes. Investigation of 5' transitivity in these resistance genes showed sRNAs 

only from the hpt, but not from the nptII gene with the same terminator. The two silenced tandem 

transgenes (GFP, nptII) studied in potato also shared the same Tnos terminator. So, it is possible 

that the methylation of nptII gene and its promoter (Pnos) in our study Tyč et al. (2017) could be 

caused by transitivity spreading from the Tnos terminator via sRNAs. However, both mentioned 

studies (Čermák et al. submitted) and Přibylová et al. (2019) showed very high preciseness 

of methylation with very small spill-over outside of the targeted sequence in the short-term 

exposure to sRNAs – 14 or 10 days, respectively. Such a DNA methylation outside of the target 

sequence was also observed in short flanking regions in the T6 generation of the A. thalina 

transgenic line without apparent long-range spread (Zicola et al., 2019). It should be also noted 

that both methylation analysis did not cover the whole target and inductor T-DNAs, including 

nptII and hpt gene (Přibylová et al., 2019; Čermák et al. submitted). Therefore, we don’t know 

if the sRNAs aligning to the hpt gene were enough to cause the methylation.  

Another question remains – why we did not observe also sRNAs against nptII gene which 

share the same terminator as hpt gene? We can assume that these differences were caused 

by the distinct nature of sequences situated upstream of the Tnos. However the presumptive 

spreading of methylation from transcribed region into the promoter in research with potatoes 

(Nocarova et al., 2010; Tyč et al., 2017) had much longer time (months to years) comparing 

the situation observed in tobacco cells (Přibylová et al., 2019; Čermák et al. submitted) 

or in Arabidopsis (Zicola et al., 2019). It should also be borne in mind that we used two different 

plant systems and cell differentiation and the whole plant context could also play an important 

role in the methylation processes observed in potatoes, as confirmed by study Weinhold et al. 

(2013). To elucidate the possibility of upstream methylation spreading in the tandem arrangement 

of transgenes, it would be suitable to monitor the methylation of both the target and the inducer 

T-DNAs over a longer time horizon, including sRNAs transitivity analysis. The possible effect 

of sequence differences between terminators and resistance genes on the spread of methylation 

could be revealed by the modification of T-DNAs by unifying sequences of the downstream 

resistance gene. Arrangements with different terminators could also bring interesting results.  

 

5.3. Use of potato lines prone to silencing 

Our analyses on potato identified transgenic lines that showed silencing of the reporter genes 

at the TGS level and whose expression could therefore be restored by AzaC treatment (Nocarova 

et al., 2010; Tyč et al., 2017). We hypothesized that plants regenerated from cells with AzaC 

reactivated transgene expression had larger tendency to be spontaneously silenced again, because 

the T-DNA insertions present in these lines had been silenced spontaneously once.  If we found 
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conditions that would trigger the silencing in such susceptible lines, such treatment could be used 

for early preselection of newly prepared transgenic lines to remove those that are prone 

to spontaneous silencing during subsequent cultivation. We found that unlike other treatments, 

regeneration de novo from leaf segments could be potentially used for this purpose because about 

10 % of shoots regenerated from leaves of reactivated plants exhibited re-silencing. Our genetic 

material with proven tendency in spontaneous silencing thus represented a valuable tool that 

helped us to find that de novo regeneration in vitro stimulates transgene silencing. It is not a big 

surprise considering dynamic epigenetic changes during dedifferentiation and redifferentiation 

processes (Brettell and Dennis, 1991; Weinhold et al., 2013; Lee and Seo, 2018). However, it 

is absolutely necessary to test this method also on other plant models, since Weinhold et al. (2013) 

observed in contrast to us the restoration of transgene expression during de novo regeneration 

in Nicotiana attenuata. 

 

5.4. The key role of sRNAs in RNAi and their systemic movement 

Previous studies on the tobacco BY-2 cell line, whether focusing on the effect of sRNAs 

of various origins on PTGS dynamics (Čermák et al. submitted) or the initial phase of TGS 

(Přibylová et al., 2019), have shown the great importance of detailed analysis of sRNAs, as key 

players in RNAi (Hamilton and Baulcombe, 1999). We were particularly interested in their length, 

amount and distribution with respect to the target sites and their relation to DNA methylation. It 

turned out that next generation sequencing methods can provide such data with high information 

value (Fehlmann et al., 2016). However, the investigation of the involvement of these small RNAs 

in the processes distant from the site of their formation far exceeded the scope of the above works. 

Progress in the discovery of small RNA mobility is briefly described in the introductory chapter 

of this thesis. Here, I would rather focus on the interesting aspects and unexplored areas that led 

to our searching for specific transmembrane transporters of small RNAs in plants.  

Early studies, since the very first description of RNAi in C. elegans (Fire et al., 1998), 

have suggested that a silencing signal in the form of dsRNA may spread between nematode tissues 

or even pass through the gut wall from digested bacteria (Timmons and Fire, 1998). But 

the mechanism was unknown until 2002, when Winston and colleagues discovered 

the transmembrane protein responsible for the systemic RNAi, SID-1. In plants, the systemic 

nature of RNAi has been studied mainly in connection with plant transformation (Voinnet et al., 

1998), virus-induced gene silencing (VIGS; Jones et al., 1999), grafting experiments (Palauqui et 

al., 1997) or even plant-pathogen interactions (Weiberg et al., 2013). Over time, it has been shown 

that the silencing signal in the form of sRNAs is transported between cells through plasmodesmata 

for the short-distance movement and via phloem for the long distance systemic movement 
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(Voinnet et al., 1998). However, very few studies have questioned if and how sRNAs are 

transferred between cells that are inherently free of plasmodesmata (e.g. stomata guard cells or 

vegetative nucleus and sperm cells in pollen; Voinnet et al., 1998; Himber et al., 2003; Slotkin et 

al., 2009) or how sRNAs are transferred from/to the external environment (Himber et al., 2003; 

Voinnet, 2005; Patton et al., 2015; Pyott and Molnar, 2015). Some hypothesized transmembrane-

associated transporters and receptors (Pyott and Molnar, 2015), others favored secretion through 

vesicles (Cai et al., 2018). Together with the observation described in the introduction to Chapter 

4.4. on spontaneous silencing of GFP after mixing two tobacco lines, we decided to search for 

and to investigate the presence of a plant homolog of the animal dsRNA transporter protein SID-1. 

 

5.5. SAG18 and aPHC as putative homologs of SID-1 

Comparing of protein sequences for C. elegans SID-1 and D. discoideum SID-1 from another 

phylogenetic branch of Amoebozoa with a plant sequences database, we found a very weak 

putative plant homologue of these proteins in A. thaliana, Senescence Associated Gene 18 

(SAG18; Fig. 4.4.1c; Miller et al., 1999). The function of SAG18 is unknown, but SAG18 

orthologues are conserved across the embryophytes (see Chapters 9.2. and 9.3.). Due to the highly 

probable gene duplications in plants during the evolution (summarized in Soltis et al., 2014), 

a candidate paralog in A. thaliana, putative alkaline phytoceramidase (aPHC; Tabata et al., 2000), 

was found in the database. Although both proteins showed very low sequence similarity to SID-

1, predicted transmembrane localization of SAG18 and aPHC supported the hypothesis of 

relatedness (Fig. 4.4.1a and Chapter 9.1.). The transmembrane localization of AtSAG18 was also 

confirmed in vivo in transformed tobacco line BY-2 by its fusion with GFP (Fig. 4.4.2a). 

However, it should be noted that SAG18 and aPHC lack the 5´-rich region of SID-1, which also 

contains some key residues for protein functionality in animal systems (see Fig. 4.4.1a and 9.1.; 

Li et al., 2015). On the other hand, some key residues, such as Ser-536, are consistent with SID-

1 in both plant proteins (Chapter 9.1.; Li et al., 2015). Over the years, other nematode proteins 

have been discovered that are involved in the transport of small RNAs between different tissues 

or from the external environment – SID-2 (McEwan et al., 2012), SID-3 (Jose et al., 2012) and 

SID-5 (Hinas et al., 2012), which together form the vesicular transport system with receptor 

kinases and transmembrane transporters (Fig. 1.6b; Rocheleau, 2012). Comparison of their 

protein sequences with plant databases revealed only partial structural homology, e.g. for SID-2 

in plant PIRLs (plant-specific family of leucine-rich repeat proteins; data not shown). 

Other indicia suggesting SAG18 involvement in sRNA transport were expression profiles 

of SAG18 and aPHC in A. thaliana in the Genevestigator database (Fig. 4.4.1d). Both proteins 

showed a high level of expression in many tissues and especially in sperm cells or stomata guard 
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cells, where we expected their increased participation in the transport of sRNAs across 

membranes due to the absence of plasmodesmata (according to Voinnet, 2008; Himber et al., 

2003; Slotkin et al., 2009). Mutant plants with a double mutation in both candidate proteins were 

prepared, but no visible change of phenotype was observed even during several generations 

of self-fertilization (Fig. 4.4.2a, b). We assumed, when the SAG18 and aPHC proteins might be 

involved, for example, in ensuring inactivation of TEs in generative cells, as suggested 

by the study of Slotkin et al., 2009 (Fig. 1.5.1). Thus, possible changes could manifest themselves 

with an increasing number of generations. Similarly, in the transfer of methylation pattern 

via small RNAs to generations (Zicola et al., 2019).  

Since the participation of small RNA transporter proteins in host-induced gene silencing 

(HIGS) interactions can also be expected, we also tested effects of mutations in the candidate 

genes on the degree of susceptibility to Botrytis cinerea (Weiberg et al., 2013). However, there 

was no significant difference in the degree of pathogen damage in sag18 aphc double mutants or 

wt plants (Fig. 4.4.2d). Until recently, the group of Cai et al. (2018) found two A. thaliana genes, 

tetraspanin-like 8 and 9, that are important in silencing of B. cinerea virulence genes. 

Simultaneously, they showed that sRNAs are transported to the fungal host via extracellular 

vesicles and not directly through membrane transporters as we supposed. However, this vesicle-

mediated transport of sRNAs between plant and fungal cells still does not contradict the existence 

of special transmembrane transporters of RNAs for in planta communication, given the situation 

described above in C. elegans. Together with findings about possible role of ceramides 

in endosomal transport by Trajkovic et al. (2008), it might be possible the coupling of special 

transporters together with vesicular transport (as aPHC is annotated as putative ceramidase). 

However, it is also possible that the SAG18 and aPHC proteins may be involved in other transport 

or signaling processes, as suggested by a pilot gravimetric comparison of the activity of stomata 

guard cells in the double mutant and wt plants (Fig. 4.4.3). Further study could focus on more 

detailed analyzes of this hypothesis, including other known A. thaliana mutants affected 

in different processes involved in stomata closure and regulation of their activity (Eisenach and 

De Angeli, 2017). Due to the change of my research focus towards applied research in different 

institute, these analyses could not be performed because of time constraints. 

 

5.6. Testing of possible transmembrane transport of sRNAs in tobacco BY-2 line 

The use of tobacco BY-2 cell line, albeit to some extent an artificial system, to monitor the non-

symplastic (transmembrane) transport of small RNAs in plants was based on the observation 

of spontaneous silencing of GFP in various mixed transgenic lines (Nocarova et Fischer, 

unpublished). To facilitate the investigation, a system of two transgenic lines was created, where 
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one served as a donor of sRNAs against GFP and the other as their acceptor carrying GFP and 

at the same time RFP in the tandem arrangement. The donor became the IR8C line carrying two 

different T-DNAs – i) P35S::GFP and ii) the cassette for GFP as inverted repeat under estradiol 

inducible promoter (Čermák et al. submitted). Induction of this line with estradiol showed 

a significant reduction in GFP expression within three days, suggesting massive production 

of sRNAs (Fig. 4.4.4b). The legitimacy of our choice was then confirmed by the detailed 

sequencing analysis confirming presence of sRNAs against GFP, especially from the central and 

5' regions of the gene and the predominant length 22 > 21 > 24 nt (Čermák et al. submitted). 

A number of studies suggest precisely this length of sRNAs as being suitable for transport 

minimally by the phloem (Yoo et al., 2004; Buhtz et al., 2008; Molnar et al., 2010; Kehr and 

Kragler, 2018). 

In the first phases of the study, we tried to mix two lines described above without obvious 

consequences for GFP expression in the acceptor line (data not shown). However, if we assume 

that SAG18, whose expression we confirmed in BY-2 (Fig. 4.4.4a), is a homologue of SID-1, 

an dsRNA importer in animals (Shih and Hunter, 2011), then sRNA may not be released 

effectively from donor cells. Therefore, for further experiments, we harvested and frozen the 

donor suspension after induction in liquid nitrogen and assumed that the cells were disrupted 

during thawing and their contents spilled out, including sRNAs. However, to avoid possible RNA 

lability due to RNase activity (Garcia et al., 2017), we used a total extract of all RNAs, 

simultaneously enriched in the low molecular weight (LMW) RNA fraction (Rosas-Cárdenas et 

al., 2011) and finally stabilized with the RNase inhibitor protein, RiboLock. Although some 

studies indicate considerable stability of mobile forms of sRNA in animal extracellular fluids 

(Knipp, 2014), we preferred a conservative approach and sought to protect sRNAs, recognizing 

that other studies suggest protection of extracellular RNA by membrane vesicles (Patton et al., 

2015; Cai et al., 2018). It also offered the opportunity to test the application of other transportable 

nucleic acid forms, such as 18-22 nt long antisense oligodeoxynucleotides (AODN). These are 

now successfully used to study the role of genes especially in the germinating pollen tubes 

(Bezvoda et al., 2014), but modifications of its backbone appear to adversely affect 

the transportability by specific carriers such as SID-1 (Shih et Hunter, 2011). 

To seek changes in GFP expression, we finally chose qRT-PCR (Gachon et al., 2004) 

for precise monitoring of transcript level. When setting up the experiment to treat BY-2 transgenic 

lines with the isolated RNA extract, we decided also to use lines overexpressing A. thaliana 

SAG18 gene and C. elegans SID-1 as additional controls. The proper membrane localization 

of both proteins was confirmed in tobacco BY-2 lines by the fusion with E-GFP (Fig. 4.4.2a). 

By including the SID-1 variant, we tested also the functionality of the animal RNA transporter 

in plant cells, which to our knowledge, has not yet been tested in the plant system. 
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The functionality of C. elegans SID-1 in heterologous animal systems, like the expression 

of C. elegans SID-1 in mouse embryonic stem cells (Tsang et al., 2007), Bombyx mori cells (Xu 

et al., 2013) or even Drosophila cells (Feinberg and Hunter, 2003), facilitated the passive uptake 

of dsRNA into the recipient animal cells (Feinberg and Hunter, 2003). At the same time, it is 

surprising that Drosophila lacks a functional homolog of SID-1, but the presence of nematode 

SID-1 facilitates dsRNA uptake (Winston 2002). Nevertheless, in our system with tobacco 

protoplasts, we were unable to prove the effect of the addition of RNAs on the transcript level 

of target gene (Fig. 4.4.2b). It would be appropriate to check the stability of the RNA transcript 

over time by qRT-PCR and its functionality also in animal systems, such as nematodes. 

The character of the RNA extract could also play a role, because SID-1 is known for its affinity 

towards dsRNA as shown in Winston et al. (2002), who successfully used 100 bp dsRNA in their 

study on Drosophila. However, high levels of dsRNA cannot be expected in our total RNA extract 

due to the activity of DCL proteins. 

The design of our experiment did not allow to directly monitor the internalization 

of RNAs into BY-2 cells, only their potential impact on the reporter gene transcription. Therefore, 

it is also possible that RNAs were internalized, but their amount in the cells was not high enough 

to induce changes that could be seen at the level of transcription. Such a dependence on exceeding 

the threshold level was indicated by the binary nature of silencing during very low induction that 

we observed in the study of (Čermák et al. submitted). The RNA sequencing data from this study 

(obtained after the end of experiments with sRNA transmembrane transport) also showed that 

PTGS can be accompanied with the formation of transitive sRNAs from the Tnos terminator. 

Since this region was used for both GFP and RFP cassettes in our system, such terminator-

specific sRNAs could also negatively affect the expression of primarily non-targeted RFP. 

However, it should be noted that these sRNAs occurred only when PTGS was induced by 

antisense RNAs and RNAs without terminator, but not by the inverted repeat variant which was 

the case of the IR8C acceptor line.  Even so, it would be necessary to modify the target T-DNA 

and use at least different terminators for possible future studies. So, considering all aspects, it 

seems more likely that the role of SAG18 could be different, as suggested by the study of stomata 

guard cells (Chapter 4.4.3.). It is also possible that plants do not have any specialized transporter 

of sRNAs, e.g. due to the nature of the cell wall.  
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6. SUMMARY 

During this doctoral thesis, the findings of two scientific publications, one submitted manuscript 

and also the original yet unpublished results concerning selected mechanisms of RNA 

interference in plants were summarized. Specifically, the possibility of restoration the expression 

of silenced transgene at the transcriptional level and testing the susceptibility of potato lines 

to spontaneous silencing (Tyč et al., 2017), the initial phases of silencing at the transcriptional 

(TGS; Přibylová et al., 2019) and posttranscriptional (PTGS; Čermák et al. submitted) level. 

An important part is also the outputs devoted to the possible transmembrane (non-symplastic) 

transport of small RNAs (sRNAs). Here I will focus mainly on those results that were closely 

related to my dissertation. 

 

6.1. The expression of previously silenced transgenes can be restored at the whole plant level 

The results of the first publication showed that short-term exposure of transgenic Solanum 

tuberosum explants to the demethylating drug 5-azacytidine can restore the expression 

of transcriptionally silenced transgenes. This can lead to generation of whole plants with 

reactivated expression when 5-azacytidine treatment is combined with de novo regeneration. 

In the studied potato lines, transcript analyzes, and promoter methylation confirmed a temporary 

or permanent restoration of the studied transgenes expression. It has been shown that plants with 

reactivated expression of the transgenes of interest still have an increased tendency to spontaneous 

silencing again. This occurred to an increased extent, especially during de novo regeneration from 

leaf segments. It is therefore possible to use this method as a "trigger" for silencing in newly 

derived transgenic lines in order to eliminate susceptible ones. Unfortunately, the potato model 

organism did not allow optimal observation of the transition from PTGS to TGS and the possible 

association between the spread of methylation within the tandem arrangement of both monitored 

transgenes. 

 

6.2. The nature of posttranscriptional silencing depends on the origin of small RNAs 

In the second publication, we deliberately induced PTGS with three different estradiol-inducible 

constructs in the Nicotiana tabaccum BY-2 cell line. Detailed analysis of the expression of 

the silencing-targeted transgene showed a dramatic decrease during the first days after induction, 

especially in the case of silencing induced by inverted repeat (IR). Parallel sequencing revealed 

high levels of specific sRNAs. IR-induced silencing was also accompanied by extensive 

methylation of the target region, which, however, did not spread to the promoter and, apart from 

CG methylation, decreased after inducer removal. The transition from PTGS to TGS did not occur 
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in such a short time horizon. An interesting finding was the high level of transitive sRNAs against 

the Tnos terminator observed in lines with antisense or unterminated GFP-induced PTGS. This 

suggests an alternative way of spreading methylation along the T-DNA, different from what we 

expected from our potato studies. 

 

6.3. The methylation of promoter induced by small RNAs is very accurate and rapid 

The knowledge of TGS dynamics is also useful to understanding the relationship between PTGS 

and TGS. In the third publication, we thus specifically induced TGS in the BY-2 cell line. 

The study showed that the massive formation of sRNAs from the promoter sequence leads to 

the rapid onset of precise methylation of the target promoter and the gradual associated 

attenuation of downstream transgene expression. However, some sRNAs also came from regions 

outside the promoter, such as the Tnos terminator or the hpt gene. 

 

6.4. The plant protein SAG18 and its homologue aPHC probably do not serve to transport 

sRNAs 

For a possible role in sRNA transmembrane transfer, candidate plant proteins SAG18 and aPHC 

were selected based on homology to the animal dsRNA transporter, SID-1 protein. The study 

confirmed plasma membrane localization of SAG18 in BY-2 cells. The system of two transgenic 

lines was also developed to study the possible transmembrane transport of sRNAs by both 

the plant protein SAG18 and the animal SID-1. The donor line efficiently produced 

the appropriate sRNAs, but their addition to the protoplasts of the acceptor lines did not alter 

the expression of the target transgene. Arabidopsis thaliana plants double mutated in the SAG18 

and aPHC genes did not show obvious changes in phenotype compared to wild type plants, nor 

did they reveal the effect of mutations on several tested parameters related to the sites of SAG18 

and aPHC expression. Only an insignificant trend was observed in the change of transpiration 

of plants with the double mutation indicating a possible role of the monitored proteins 

in the activity of the stomata or its regulation.  
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7. ZÁVĚRY PRÁCE 

Během této doktorské práce byly shrnuty poznatky dvou vědeckých publikací, jednoho podaného 

manuskriptu a též originální dosud nepublikované výsledky věnující se vybraným mechanizmům 

RNA interference u rostlin. Konkrétně se jednalo o možnosti obnovení exprese transgenu 

umlčeného na transkripční úrovni a testování náchylnosti linií bramboru ke spontánnímu umlčení 

(Tyč et al., 2017), počátečním fázím umlčování na transkripční (TGS; Přibylová et al., 2019) 

a posttranskripční úrovni (PTGS; Čermák et al. podáno). Významný díl představují též výstupy 

věnované možnému transmembránovému (nesymplastickému) transportu malých RNA (sRNAs). 

Zde se zaměřím zejména na ty výsledky, které úzce souvisely s vlastní disertační prací. 

 

7.1. Expresi dříve umlčených transgenů lze obnovit na úrovni celých rostlin 

Výsledky první publikace prokázaly, že krátkodobé vystavení explantátů z transgenních rostlin 

bramboru (Solanum tuberosum) demetylační droze 5-azacytidinu může obnovit expresi 

transkripčně umlčených transgenů. V kombinaci s de novo regenerací lze takto získat celé rostliny 

s reaktivovanou expresí. U studovaných linií bramboru analýzy transkriptů i metylace promotoru 

potvrdily dočasné či trvalé obnovení exprese transgenů. Ukázalo se, že rostliny s reaktivovanou 

expresí sledovaných transgenů mají i nadále zvýšenou tendenci k opětovnému spontánnímu 

umlčování. K tomu docházelo ve zvýšené míře zejména během regenerace de novo z listových 

segmentů. Nabízí se tedy možné užití této metody jako „spouštěče“ umlčování u nově 

odvozených transgenních linií s cílem vyřadit ty náchylné. Bohužel modelový organismus 

bramboru příliš neumožňoval dostatečně osvětlit pozorovaný přechod PTGS na TGS a možnou 

spojitost mezi šířením metylace v rámci tandemového uspořádání obou sledovaných transgenů. 

 

7.2. Charakter posttranskripčního umlčování závisí na původu malých RNA 

Ve druhé publikaci jsme záměrně navozovali PTGS třemi různými estradiol-inducibilními 

konstrukty u buněčné linie tabáku (Nicotiana tabaccum) BY-2. Detailní analýza exprese 

transgenu cíleného k umlčování ukázala dramatický pokles již během prvních dnů od indukce, 

zejména v případě umlčování indukovaného invertovanou repeticí (IR). Paralelní sekvenování 

odhalilo vysoké hladiny specifických sRNAs. Umlčování indukované IR bylo též provázeno 

rozsáhlou metylací cílové oblasti, která se však nešířila do promotoru a s výjimkou CG metylace 

poklesla po odstranění induktoru. K přechodu PTGS na TGS v takto krátkém časovém horizontu 

nedošlo. Zajímavým zjištěním byla vysoká hladina transitivních sRNAs proti Tnos terminátoru 

u linií, kde bylo PTGS indukováno GFP v antisense orientaci či bez terminátoru. Jejich 
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přítomnost tak naznačuje alternativní způsob šíření metylace podél T-DNA, než jsme 

předpokládali v našich studiích s bramborami. 

 

7.3. Metylace promotoru indukovaná malými RNA je velmi přesná a rychlá 

Pro pochopení vztahů mezi PTGS a TGS je i klíčová znalost dynamiky TGS. Ve třetí publikaci 

jsme tak cíleně indukovali TGS u buněčné linie BY-2. Studie prokázala, že mohutná tvorba 

sRNAs z promotorové sekvence vede k rychlému nástupu přesné metylace cílového promotoru 

a postupnému souvisejícímu útlumu exprese „downstream“ transgenu. Některé sRNA však 

pocházely i z oblastí mimo promotor, například Tnos terminátoru či hpt genu. 

 

7.4. Rostlinný protein SAG18 a jeho homolog aPHC nejspíš neslouží k transportu sRNA 

Pro možnou roli v transmembránovém přenosu sRNA byly na základě homologie s živočišným 

transportérem dsRNA, SID-1 proteinem, vytipovány kandidátní rostlinné proteiny SAG18 

a aPHC. Studie na buněčné úrovni v BY-2 liniích potvrdila membránovou lokalizaci SAG18. Byl 

také vytvořen systém dvou transgenních linií pro studium možného transmembránového 

transportu sRNAs prostřednictvím jak rostlinného proteinu SAG18, tak i živočišného SID-1. 

Donorová linie efektivně tvořila příslušné sRNAs, jejichž přídavek k protoplastům akceptorových 

linií však nevyvolal změnu exprese cílového transgenu. Rostliny huseníčku (Arabidopsis 

thaliana) dvojitě mutované v genech SAG18 a aPHC nevykazovaly zjevné změny ve fenotypu 

ve srovnání s rostlinami nemutantními a ani u nich se nepodařilo odhalit vliv mutací na řadu 

testovaných parametrů souvisejících s místem jejich výrazné exprese. Pouze byl pozorován 

nesignifikantní trend ve změně transpirace rostlin s dvojitou mutací, naznačující možnou roli 

sledovaných proteinů v činnosti průduchů či její regulaci.   



81 

 

8. REFERENCES 

Abel, P.P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T., Beachy, R.N., 1986. Delay of 

disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. 

Science, 232, pp. 738–743. DOI: 10.1126/science.3457472 

Allen, E., Xie, Z., Gustafson, A.M., Carrington, J.C., 2005. microRNA-directed phasing during trans-acting 

siRNA biogenesis in plants. Cell, 121, pp. 207–221. DOI: 10.1016/j.cell.2005.04.004 

Amor, B. Ben, Wirth, S., Merchan, F., Laporte, P., Hirsch, J., Maizel, A., Mallory, A., Deragon, J.M., 

Vaucheret, H., Thermes, C., 2009. Novel long non-protein coding RNAs involved in. Genome 

research, pp. 57–69. DOI: 10.1101/gr.080275.108.1 

Bartel, D.P., Lee, R., Feinbaum, R., 2004. MicroRNAs : Genomics , Biogenesis , Mechanism , and Function 

Genomics : The miRNA Genes 116, pp. 281–297. 

Baubec, T., Pecinka, A., Rozhon, W., Mittelsten Scheid, O., 2009. Effective, homogeneous and transient 

interference with cytosine methylation in plant genomic DNA by zebularine. Plant Journal, 57, pp. 

542–554. DOI: 10.1111/j.1365-313X.2008.03699.x 

Baulcombe, D., 2004. RNA silencing in plants. Nature, 431, pp. 356–63. DOI: 10.1038/nature02874 

Baulcombe, D.C., 2019. How virus resistance provided a mechanistic foundation for RNA silencing. Plant 

Cell, 31, pp. 1395–1396. DOI: 10.1105/tpc.19.00348 

Baumberger, N., Baulcombe, D.C., 2005. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively 

recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences 

of the United States of America, 102, pp. 11928–33. DOI: 10.1073/pnas.0505461102 

Bewick, A.J., Schmitz, R.J., 2017. Gene body DNA methylation in plants. Current Opinion in Plant 

Biology, 36, pp. 103–110. DOI: 10.1016/j.pbi.2016.12.007 

Bezvoda, R., Pleskot, R., Žárský, V., Potocký, M., 2014. Plant Cell Morphogenesis. Methods in Molecular 

Biology 1080, pp. 231–236. DOI: 10.1007/978-1-62703-643-6 

Blevins, T., Rajeswaran, R., Shivaprasad, P. V., Beknazariants, D., Si-Ammour, A., Park, H.S., Vazquez, 

F., Robertson, D., Meins, F., Hohn, T., Pooggin, M.M., 2006. Four plant Dicers mediate viral small 

RNA biogenesis and DNA virus induced silencing. Nucleic Acids Research, 34, pp. 6233–6246. DOI: 

10.1093/nar/gkl886 

Boerjan, W., Bauw, G., Van Montagu, M., Inze, D., 1994. Distinct phenotypes generated by overexpression 

and suppression of S-adenosyl-L-methionine synthetase reveal developmental patterns of gene 

silencing in tobacco. Plant Cell, 6, pp. 1401–1414. DOI: 10.1105/tpc.6.10.1401 

Bologna, N.G., Iselin, R., Abriata, L.A., Sarazin, A., Pumplin, N., Jay, F., Grentzinger, T., Dal Peraro, M., 

Voinnet, O., 2018. Nucleo-cytosolic Shuttling of ARGONAUTE1 Prompts a Revised Model of the 

Plant MicroRNA Pathway. Molecular Cell, 69, pp. 709- 719.e5. DOI: 10.1016/j.molcel.2018.01.007 

Bologna, N.G., Mateos, J.L., Bresso, E.G., Palatnik, J.F., 2009. A loop-to-base processing mechanism 

underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO Journal, 28, pp. 3646–

3656. DOI: 10.1038/emboj.2009.292 

Bolte, S., Brown, S., Satiat-Jeunemaitre, B., 2004. The N-myristoylated Rab-GTPase m-Rabmc is involved 

in post-Golgi trafficking events to the lytic vacuole in plant cells. Journal of cell science, 117, pp. 

943–954. DOI: 10.1242/jcs.00920 

Borsani, O., Zhu, J., Verslues, P.E., Sunkar, R., Zhu, J.-K., 2005. Endogenous siRNAs derived from a pair 

of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123, pp. 1279–91. 

DOI: 10.1016/j.cell.2005.11.035 

Bouyer, D., Kramdi, A., Kassam, M., Heese, M., Schnittger, A., Roudier, F., Colot, V., 2017. DNA 

methylation dynamics during early plant life. Genome Biology, 18, pp. 1–12. DOI: 10.1186/s13059-

017-1313-0 

Brettell, R.I.S., Dennis, E.S., 1991. Reactivation of a silent Ac following tissue culture is associated with 

heritable alterations in its methylation pattern. MGG Molecular & General Genetics, 229, pp. 365–

372. DOI: 10.1007/BF00267457 

 

 



82 

 

Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, 

L., Voinnet, O., 2008. Widespread translational inhibition by plant miRNAs and siRNAs. Science 

(New York, N.Y.), 320, pp. 1185–90. DOI: 10.1126/science.1159151 

Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C., Kehr, J., 2008. Identification and characterization 

of small RNAs from the phloem of Brassica napus. Plant Journal, 53, pp. 739–749. DOI: 

10.1111/j.1365-313X.2007.03368.x 

Burgyán, J., Havelda, Z., 2011. Viral suppressors of RNA silencing. Trends in plant science, 16, pp. 265–

72. DOI: 10.1016/j.tplants.2011.02.010 

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, 

M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T., 2009. The MIQE guidelines: Minimum 

information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, pp. 

611–622. DOI: 10.1373/clinchem.2008.112797 

Cai, Q., Qiao, L., Wang, M., He, B., Lin, F.M., Palmquist, J., Huang, S. Da, Jin, H., 2018. Plants send small 

RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 360, pp. 1126–

1129. DOI: 10.1126/science.aar4142 

Castel, S.E., Martienssen, R.A., 2013. RNA interference in the nucleus : roles for small RNAs in 

transcription , epigenetics and beyond. Nature Reviews Genetics, 14, pp. 100–112. DOI: 

10.1038/nrg3355 

Chellappan, P., Xia, J., Zhou, X., Gao, S., Zhang, X., Coutino, G., Vazquez, F., Zhang, W., Jin, H., 2010. 

siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Research, 38, 

pp. 6883–6894. DOI: 10.1093/nar/gkq590 

Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., 1997. Genetic Transformation of 

Wheat Mediated by Agrobacterium tumefaciens pp. 971–980. 

Clustal Omega, a new multiple sequence alignment program that uses seeded guide trees and HMM profile-

profile techniques to generate alignments [https://www.ebi.ac.uk/Tools/msa/clustalo/] 

Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., 

Pellegrini, M., Jacobsen, S.E., 2008. Shotgun bisulphite sequencing of the Arabidopsis genome 

reveals DNA methylation patterning. Nature, 452, pp. 215–9. DOI: 10.1038/nature06745 

Cuerda-Gil, D., Slotkin, R.K., 2016. Non-canonical RNA-directed DNA methylation. Nature Plants, 2, pp. 

16163. DOI: 10.1038/nplants.2016.163 

Čermák, V., Tyč, D., Přibylová, A., Fischer, L. Unexpected variations in posttranscriptional gene silencing 

induced by differentially produced dsRNAs in tobacco cells. BBA - Gene Regulatory Mechanisms, 

submitted  

Dalakouras, A., Lauter, A., Bassler, A., Krczal, G., Wassenegger, M., 2019. Transient expression of intron-

containing transgenes generates non-spliced aberrant pre-mRNAs that are processed into siRNAs. 

Planta, 249, pp. 457–468. DOI: 10.1007/s00425-018-3015-6 

Database of Nucleotide Sequences, NCBI GenBank [http://www.ncbi.nlm. nih.gov/nuccore] 

Database of Protein Sequences, UniProt [https://www.uniprot.org/] 

De Bolle, M.F.C., Butaye, K.M.J., Coucke, W.J.W., Goderis, I.J.W.M., Wouters, P.F.J., van Boxel, N., 

Broekaert, W.F., Cammue, B.P. a., 2003. Analysis of the influence of promoter elements and a matrix 

attachment region on the inter-individual variation of transgene expression in populations of 

Arabidopsis thaliana. Plant Science, 165, pp. 169–179. DOI: 10.1016/S0168-9452(03)00156-0 

Deblaere, R., Bytebier, B., de Greve, H., Deboeck, F., Schell, J., van Montagu, M., Leemans, J., 1985. 

Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. 

Nucleic Acids Research, 13, pp. 4777–4788. DOI: 10.1093/nar/13.13.4777 

Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K.D., Carrington, J.C., Voinnet, O., 2006. 

Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science (New York, 

N.Y.), 313, pp. 68–71. DOI: 10.1126/science.1128214 

Dietze J, Blau A, Willmitzer L. 1995. Agrobacterium-mediated transformation of potato (Solanum 

tuberosum). In: Potrykus I, Spangenberg G, eds. Gene transfer to plants. Berlin: Springer-Verlag, 24–

29. 



83 

 

Du, J., Johnson, L.M., Jacobsen, S.E., Patel, D.J., 2015. DNA methylation pathways and their crosstalk 

with histone methylation. Nature Reviews Molecular Cell Biology, 16. DOI: 10.1038/nrm4043 

Dunoyer, P., Schott, G., Himber, C., Meyer, D., Takeda, A., Carrington, J.C., Voinnet, O., 2010. Small 

RNA duplexes function as mobile silencing signals between plant cells. Science (New York, N.Y.), 

328, pp. 912–6. DOI: 10.1126/science.1185880 

Dvořková, L., Srba, M., Opatrny, Z., Fischer, L., 2012. Hybrid proline-rich proteins: Novel players in plant 

cell elongation? Annals of Botany, 109, pp. 453–462. DOI: 10.1093/aob/mcr278 

Eamens, A., Wang, M.-B., Smith, N. a, Waterhouse, P.M., 2008. RNA silencing in plants: yesterday, today, 

and tomorrow. Plant physiology, 147, pp. 456–68. DOI: 10.1104/pp.108.117275 

Eichinger, I., Pachebat, J.A., Glöckner, G., Rajandream, M.A., Sucgang, R., et al., 2005. The genome of 

the social amoeba Dictyostelium discoideum. Nature, 435, pp. 43–57. DOI: 10.1038/nature03481 

Eisenach, C., De Angeli, A., 2017. Ion Transport at the Vacuole during Stomatal Movements. Plant 

Physiology, 174, pp. 520–530. DOI: 10.1104/pp.17.00130 

Elbashir, S.M., 2001. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & 

Development, 15, pp. 188–200. DOI: 10.1101/gad.862301 

Elhamamsy, A.R., 2016. DNA methylation dynamics in plants and mammals: overview of regulation and 

dysregulation. Cell Biochemistry and Function,. DOI: 10.1002/cbf.3183 

Emani, C., Sunilkumar, G., Rathore, K.S., 2002. Transgene silencing and reactivation in sorghum. Plant 

Science, 162, pp. 181–192. DOI: 10.1016/S0168-9452(01)00559-3 

Fehlmann, T., Reinheimer, S., Geng, C., Su, X., Drmanac, S., Alexeev, A., Zhang, C., Backes, C., Ludwig, 

N., Hart, M., An, D., Zhu, Z., Xu, C., Chen, A., Ni, M., Liu, J., Li, Yuxiang, Poulter, M., Li, 

Yongping, Stähler, C., Drmanac, R., Xu, X., Meese, E., Keller, A., 2016. cPAS-based sequencing on 

the BGISEQ-500 to explore small non-coding RNAs. Clinical Epigenetics, 8, pp. 1–11. DOI: 

10.1186/s13148-016-0287-1 

Feinberg, E.H., Hunter, C.P., 2003. Transport of dsRNA into cells by the transmembrane protein SID-1. 

Science (New York, N.Y.), 301, pp. 1545–7. DOI: 10.1126/science.1087117 

Felippes, F.F. De, Ott, F., Weigel, D., 2011. Comparative analysis of non-autonomous effects of tasiRNAs 

and miRNAs in Arabidopsis thaliana. Nucleic Acids Research, 39, pp. 2880–2889. DOI: 

10.1093/nar/gkq1240 

Fieldes, M.A., Schaeffer, S.M., Krech, M.J., Brown, J.C.L., 2005. DNA hypomethylation in 5-azacytidine-

induced early-flowering lines of flax. Theoretical and Applied Genetics, 111, pp. 136–149. DOI: 

10.1007/s00122-005-2005-9 

Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific 

genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, pp. 806–811. 

DOI: 10.1038/35888 

Fojtova, M., Van Houdt, H., Depicker, A., Kovarik, A., 2003. Epigenetic Switch from Posttranscriptional 

to Transcriptional Silencing Is Correlated with Promoter Hypermethylation. Plant Physiology, 133, 

pp. 1240–1250. DOI: 10.1104/pp.103.023796 

Fujioka, Y., Utsumi, M., Ohba, Y., Watanabe, Y., 2007. Location of a possible miRNA processing site in 

SmD3/SmB nuclear bodies in arabidopsis. Plant and Cell Physiology, 48, pp. 1243–1253. DOI: 

10.1093/pcp/pcm099 

Gachon, C., Mingam, A., Charrier, B., 2004. Real-time PCR: What relevance to plant studies? Journal of 

Experimental Botany, 55, pp. 1445–1454. DOI: 10.1093/jxb/erh181 

Garcia, R.A., Pepino Macedo, L.L., Do Nascimento, D.C., Gillet, F.X., Moreira-Pinto, C.E., Faheem, M., 

Basso, A.M.M., Mattar Silva, M.C., Grossi-de-Sa, M.F., 2017. Nucleases as a barrier to gene 

silencing in the cotton boll weevil, Anthonomus grandis. PLoS ONE, 12, pp. 1–22. DOI: 

10.1371/journal.pone.0189600 

Gazzani, S., Lawrenson, T., Woodward, C., Headon, D., Sablowski, R., 2004. A link between mRNA 

turnover and RNA interference in Arabidopsis. Science, 306, pp. 1046–1048. DOI: 

10.1126/science.1101092 

Ghoshroy, S., Freedman, K., Lartey, R., Citovsky, V., 1998. Inhibition of plant viral systemic infection by 

non-toxic concentrations of cadmium 13, pp. 591–602. 



84 

 

Guo, Z., Li, Y., Ding, S.W., 2019. Small RNA-based antimicrobial immunity. Nature Reviews Immunology, 

19, pp. 31–44. DOI: 10.1038/s41577-018-0071-x 

Gruntman E, Qi Y, Slotkin RK, Roeder T et al (2008) Kismeth: analyzer of plant methylation states through 

bisulfite sequencing. BMC Bioinform 9:371. doi:10.1186/1471-2105-9-371 

Haag, J.R., Pikaard, C.S., 2011. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA 

for plant gene silencing. Nature reviews. Molecular cell biology, 12, pp. 483–92. DOI: 

10.1038/nrm3152 

Hamilton, A., Voinnet, O., Chappell, L., Baulcombe, D., 2002. Two classes of short interfering RNA in 

RNA silencing. The EMBO journal, 21, pp. 4671–9. 

Hamilton, A.J., 1999. A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. 

Science, 286, pp. 950–952. DOI: 10.1126/science.286.5441.950 

Hamilton, A.J., Baulcombe, D.C., 1999. A Species of Small Antisense RNA in Posttranscriptional Gene 

Silencing in Plants. Science, 286, pp. 950–952. DOI: 10.1126/science.286.5441.950 

Havecker, E.R., Wallbridge, L.M., Hardcastle, T.J., Bush, M.S., Kelly, K.A., Dunn, R.M., Schwach, F., 

Doonan, J.H., Baulcombe, D.C., 2010. The arabidopsis RNA-directed DNA methylation argonautes 

functionally diverge based on their expression and interaction with target loci. Plant Cell, 22, pp. 

321–334. DOI: 10.1105/tpc.109.072199 

Heard, E., Martienssen, R.A., 2014. Transgenerational epigenetic inheritance: Myths and mechanisms. 

Cell, 157, pp. 95–109. DOI: 10.1016/j.cell.2014.02.045 

Henderson, I.R., Jacobsen, S.E., 2007. Epigenetic inheritance in plants. Nature, 447, pp. 418–424. DOI: 

10.1038/nature05917 

Herr, A.J., Jensen, M.B., Dalmay, T., Baulcombe, D.C., 2005. RNA polymerase IV directs silencing of 

endogenous DNA. Science, 308, pp. 118–120. DOI: 10.1126/science.1106910 

Herr, A.J., Molnàr, A., Jones, A., Baulcombe, D.C., 2006. Defective RNA processing enhances RNA 

silencing and influences flowering of Arabidopsis. Proceedings of the National Academy of Sciences 

of the United States of America, 103, pp. 14994–15001. DOI: 10.1073/pnas.0606536103 

Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C., Voinnet, O., 2003. movement of RNA silencing 

22, pp. 4523–4533. 

Hinas, A., Wright, A.J., Hunter, C.P., 2012. SID-5 is an endosome-associated protein required for efficient 

systemic RNAi in C. elegans. Current biology : CB, 22, pp. 1938–43. DOI: 

10.1016/j.cub.2012.08.020 

Hoffer, P., Ivashuta, S., Pontes, O., Vitins, A., Pikaard, C., Mroczka, A., Wagner, N., Voelker, T., 2011. 

Posttranscriptional gene silencing in nuclei. Proceedings of the National Academy of Sciences of the 

United States of America, 108, pp. 409–14. DOI: 10.1073/pnas.1009805108 

Hutvagner, G., Simard, M.J., 2008. Argonaute proteins: key players in RNA silencing. Nature reviews. 

Molecular cell biology, 9, pp. 22–32. DOI: 10.1038/nrm2321 

Imanishi, S., Hashizume, K., Kojima, H., Ichihara, A., Nakamura, K., 1998. An mRNA of tobacco cell, 

which is rapidly inducible by methyl jasmonate in the presence of cycloheximide, codes for a putative 

glycosyltransferase. Plant and Cell Physiology, 39, pp. 202–211. DOI: 

10.1093/oxfordjournals.pcp.a029358 

Ivanov, L. A. (1918) On the method of the determination of transpiration of plants in natural conditions. In 

Russian. – Lesn. Zhurn. 48: 1–7. 

Izant, J.G., Weintraub, H., 1984. Inhibition of thymidine kinase gene expression by anti-sense RNA: A 

molecular approach to genetic analysis. Cell, 36, pp. 1007–1015. DOI: 10.1016/0092-

8674(84)90050-3 

Jones, L., Hamilton,  a J., Voinnet, O., Thomas, C.L., Maule,  a J., Baulcombe, D.C., 1999. RNA-DNA 

interactions and DNA methylation in post-transcriptional gene silencing. The Plant cell, 11, pp. 

2291–301. 

Jones, L., Ratcliff, F., Baulcombe, D.C., 2001. RNA-directed transcriptional gene silencing in plants can 

be inherited independently of the RNA trigger and requires Met1 for maintenance. Current biology : 

CB, 11, pp. 747–57. 



85 

 

Jones, P.A., Taylor, S.M., 1981. Hemimethylated duplex DNAs prepared from 5-azacytidine-treated cells. 

Nucleic Acids Research, 9, pp. 2933–2947. DOI: 10.1093/nar/9.12.2933 

Jorgensen, R.A., 1995. Cosuppression , Flower Color Patterns , and Metastable Gene Expression States 

306. 

Jose, A.M., 2015. Movement of regulatory RNA between animal cells. Genesis,. DOI: 10.1002/dvg.22871 

Jose, A.M., Kim, Y.A., Leal-ekman, S., Hunter, C.P., 2012. Conserved tyrosine kinase promotes the import 

of silencing RNA into Caenorhabditis elegans cells. PNAS, 109, pp. 14520–14525. DOI: 

10.1073/pnas.1201153109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1201153109 

Jose, A.M., Smith, J.J., Hunter, C.P., 2009. Export of RNA silencing from C. elegans tissues does not 

require the RNA channel SID-1. Proceedings of the National Academy of Sciences of the United 

States of America, 106, pp. 2283–2288. DOI: 10.1073/pnas.0809760106 

Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., Timmermans, M.C.P., 2004. microRNA-mediated 

repression of rolled leaf1 specifies maize leaf polarity. Nature, 428, pp. 84–88. DOI: 

10.1038/nature02363 

Kanazawa, A., O’Dell, M., Hellens, R.P., 2007. Epigenetic inactivation of chalcone synthase-A transgene 

transcription in petunia leads to a reversion of the post-transcriptional gene silencing phenotype. 

Plant and Cell Physiology, 48, pp. 638–647. DOI: 10.1093/pcp/pcm028 

Kanno, T., Mette, M.F., Kreil, D.P., Aufsatz, W., Matzke, M., Matzke, A.J.., 2004. Involvement of Putative 

SNF2 Chromatin Remodeling Protein DRD1 in RNA-Directed DNA Methylation. Current Biology, 

14, pp. 801–805. DOI: 10.1016/j.cub.2004.04.037 

Katiyar-Agarwal, S., Gao, S., Vivian-Smith, A., Jin, H., 2007. A novel class of bacteria-induced small 

RNAs in Arabidopsis. Genes and Development, 21, pp. 3123–3134. DOI: 10.1101/gad.1595107 

Kehr, J., Kragler, F., 2018. Long distance RNA movement. New Phytologist, 218, pp. 29–40. DOI: 

10.1111/nph.15025 

Kim, S.I., Veena, Gelvin, S.B., 2007. Genome-wide analysis of Agrobacterium T-DNA integration sites in 

the Arabidopsis genome generated under non-selective conditions. Plant Journal, 51, pp. 779–791. 

DOI: 10.1111/j.1365-313X.2007.03183.x 

Klíma, P., Čermák, V., Srba, M., Müller, K., Petrášek, J., Šonka, J., Fischer, L. and Opatrný, Z. (2019) 

Plant Cell Lines in Cell Morphogenesis Research: From Phenotyping to -Omics. In F. Cvrčková and 

V. Žárský, eds. Plant Cell Morphogenesis: Methods and Protocols. Methods in Molecular Biology. 

New York, NY: Springer New York, pp. 367–376. 

Kovarik, A., Lim, K.Y., Soucková-Skalická, K., Matyasek, R., Leitch, A.R., 2012. A plant culture (BY-2) 

widely used in molecular and cell studies is genetically unstable and highly heterogeneous. Botanical 

Journal of the Linnean Society, 170, pp. 459–471. DOI: 10.1111/j.1095-8339.2012.01280.x 

Kroumanová, K., Kocourková, D., Daněk, M., Lamparová, L., Pospíchalová, R., Malínská, K., Krčková, 

Z., Burketová, L., Valentová, O., Martinec, J., Janda, M., 2019. Characterisation of arabidopsis 

flotillins in response to stresses. Biologia Plantarum, 63, pp. 144–152. DOI: 10.32615/bp.2019.017 

Kunz, C., Narangajavana, J., Jakowitsch, J., Park, Y.D., Delon, T.R., Kovarik, A., Koukalová, B., Van Der 

Winden, J. V., Moscone, E., Aufsatz, W., Metre, M.F., Matzke, M., Matzke, A.J.M., 2003. Studies 

on the effects of a flanking repetitive sequence on the expression of single-copy transgenes in 

Nicotiana sylvestris and in N. sylvestris-N. tomentosiformis hybrids. Plant Molecular Biology, 52, 

pp. 203–215. DOI: 10.1023/A:1023937006311 

Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E.J., Carrington, J.C., Liu, Y.-P., Dolja, V. V, Calvino, 

L.F., López-Moya, J.J., Burgyán, J., 2006. Small RNA binding is a common strategy to suppress 

RNA silencing by several viral suppressors. The EMBO journal, 25, pp. 2768–80. DOI: 

10.1038/sj.emboj.7601164 

Law, J. a, Jacobsen, S.E., 2010. Establishing, maintaining and modifying DNA methylation patterns in 

plants and animals. Nature reviews. Genetics, 11, pp. 204–20. DOI: 10.1038/nrg2719 

Law, J.A., Du, J., Hale, C.J., Feng, S., Krajewski, K., Palanca, A.M.S., Strahl, B.D., Patel, D.J., Jacobsen, 

S.E., 2013. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. 

Nature, 498. DOI: 10.1038/nature12178 

 



86 

 

Lee, C.H., Carroll, B.J., 2018. Evolution and Diversification of Small RNA Pathways in Flowering Plants. 

Plant & cell physiology, 59, pp. 2169–2187. DOI: 10.1093/pcp/pcy167 

Lee, K., Seo, P.J., 2018. Dynamic Epigenetic Changes during Plant Regeneration. Trends in Plant Science, 

23, pp. 235–247. DOI: 10.1016/j.tplants.2017.11.009 

Lee, Y., Kim, M., Han, J., Yeom, K.-H., Lee, S., Baek, S.H., Kim, V.N., 2004. MicroRNA genes are 

transcribed by RNA polymerase II. The EMBO journal, 23, pp. 4051–60. DOI: 

10.1038/sj.emboj.7600385 

Lenth, R. V., 2016. Least-squares means: The R package lsmeans. Journal of Statistical Software, 69. DOI: 

10.18637/jss.v069.i01 

Li, J., Yang, Z., Yu, B., Liu, J., Chen, X., 2005. Methylation protects miRNAs and siRNAs from a 3’-end 

uridylation activity in Arabidopsis. Current biology : CB, 15, pp. 1501–7. DOI: 

10.1016/j.cub.2005.07.029 

Li, W., Koutmou, K.S., Leahy, D.J., Li, M., 2015. Systemic RNA Interference Deficiency-1 (SID-1) 

extracellular domain selectively binds long double-stranded RNA and is required for RNA transport 

by SID-1. Journal of Biological Chemistry, 290, pp. jbc.M115.658864. DOI: 

10.1074/jbc.M115.658864 

Liberman, N., Wang, S.Y., Greer, E.L., 2019. Transgenerational epigenetic inheritance: from phenomena 

to molecular mechanisms. Current Opinion in Neurobiology, 59, pp. 189–206. DOI: 

10.1016/j.conb.2019.09.012 

Linsmaier, E.M., Skoog, F., 1965. Organic Growth Factor Requirements of Tobacco Tissue Cultures. 

Physiologia Plantarum, 18, pp. 100–127. DOI: 10.1111/j.1399-3054.1965.tb06874.x 

Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., Ecker, J.R., 2008. 

Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis. Cell, 133, pp. 523–

536. DOI: 10.1016/j.cell.2008.03.029 

Liu, L., Chen, X., 2018. Intercellular and systemic trafficking of RNAs in plants. Nature Plants, 4, pp. 869–

878. DOI: 10.1038/s41477-018-0288-5 

Lu, R., Martin-Hernandez, A.M., Peart, J.R., Malcuit, I., Baulcombe, D.C., 2003. Virus-induced gene 

silencing in plants. Methods, 30, pp. 296–303. DOI: 10.1016/S1046-2023(03)00037-9 

Lunerová-Bedřichová, J., Bleys, A., Fojtová, M., Khaitová, L., Depicker, A., Kovařík, A., 2008. Trans-

generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional 

silencing event. Plant Journal, 54, pp. 1049–1062. DOI: 10.1111/j.1365-313X.2008.03475.x 

Luo, Z., Chen, Z., 2007. Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted 

by RDR6-mediated RNA silencing in Arabidopsis. The Plant cell, 19, pp. 943–58. DOI: 

10.1105/tpc.106.045724 

Marfil, C.F., Asurmendi, S., Masuelli, R.W., 2012. Changes in micro RNA expression in a wild tuber-

bearing Solanum species induced by 5-Azacytidine treatment. Plant Cell Reports, 31, pp. 1449–1461. 

DOI: 10.1007/s00299-012-1260-x 

Margis, R., Fusaro, A.F., Smith, N.A., Curtin, S.J., Watson, J.M., Finnegan, E.J., Waterhouse, P.M., 2006. 

The evolution and diversification of Dicers in plants. FEBS Letters, 580, pp. 2442–2450. DOI: 

10.1016/j.febslet.2006.03.072 

Martin, A., Troadec, C., Boualem, A., Rajab, M., Fernandez, R., Morin, H., Pitrat, M., Dogimont, C., 

Bendahmane, A., 2009. A transposon-induced epigenetic change leads to sex determination in melon. 

Nature, 461, pp. 1135–1138. DOI: 10.1038/nature08498 

Matzke, M.A., Mosher, R.A., 2014. RNA-directed DNA methylation: An epigenetic pathway of increasing 

complexity. Nature Reviews Genetics, 15, pp. 394–408. DOI: 10.1038/nrg3683 

Mccormick, S., 2004. Control of Male Gametophyte Development 16, pp. 142–154. DOI: 

10.1105/tpc.016659.Control 

McCormick, S., 1993. Male Gametophyte Development. The Plant Cell, 5, pp. 1265. DOI: 

10.2307/3869779 

McEwan, D.L., Weisman, A.S., Hunter, C.P., 2012. Uptake of extracellular double-stranded RNA by SID-

2. Molecular cell, 47, pp. 746–54. DOI: 10.1016/j.molcel.2012.07.014 

McKeehan, W., Hardesty, B., 1969. The mechanism of cycloheximide inhibition of protein synthesis in 



87 

 

rabbit reticulocytes. Biochemical and Biophysical Research Communications, 36, pp. 625–630. DOI: 

10.1016/0006-291X(69)90351-9 

Meyer, P., 2011. DNA methylation systems and targets in plants. FEBS letters, 585, pp. 2008–15. DOI: 

10.1016/j.febslet.2010.08.017 

Meyers, B.C., Axtell, M.J., Bartel, B., Bartel, D.P., Baulcombe, D., Bowman, J.L., Cao, X., Carrington, 

J.C., Chen, X., Green, P.J., Griffiths-Jones, S., Jacobsen, S.E., Mallory, A.C., Martienssen, R.A., 

Poethig, R.S., Qi, Y., Vaucheret, H., Voinnet, O., Watanabe, Y., Weigel, D., Zhui, J.K., 2008. Criteria 

for annotation of plant microRNAs. Plant Cell, 20, pp. 3186–3190. DOI: 10.1105/tpc.108.064311 

Miller, J.D., Arteca, R.N., Pell, E.J., 1999. Senescence-associated gene expression during ozone-induced 

leaf senescence in Arabidopsis. Plant physiology, 120, pp. 1015–24. DOI: DOI 

10.1104/pp.120.4.1015 

Minkina, O., Hunter, C.P., 2018. Intergenerational Transmission of Gene Regulatory Information in 

Caenorhabditis elegans. Trends in Genetics, 34, pp. 54–64. DOI: 10.1016/j.tig.2017.09.012 

Mirouze, M., Reinders, J., Bucher, E., Nishimura, T., Schneeberger, K., Ossowski, S., Cao, J., Weigel, D., 

Paszkowski, J., Mathieu, O., 2009. Selective epigenetic control of retrotransposition in Arabidopsis. 

Nature, 461, pp. 1–5. DOI: 10.1038/nature08328 

Mlotshwa, S., Pruss, G.J., Peragine, A., Endres, M.W., Li, J., Chen, X., Poethig, R.S., Bowman, L.H., 

Vance, V., 2008. Dicer-like2 plays a primary role in transitive silencing of transgenes in Arabidopsis. 

PLoS ONE, 3. DOI: 10.1371/journal.pone.0001755 

Molnar, A., Melnyk, C.W., Bassett, A., Hardcastle, T.J., Dunn, R., Baulcombe, D.C., 2010. Small silencing 

RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science (New York, 

N.Y.), 328, pp. 872–5. DOI: 10.1126/science.1187959 

Mon, H., Kobayashi, I., Ohkubo, S., Tomita, S., Lee, J., Sezutsu, H., Tamura, T., Kusakabe, T., 2012. 

Effective RNA interference in cultured silkworm cells mediated by overexpression of Caenorhabditis 

elegans SID-1. RNA biology, 9, pp. 40–46. 

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue 

cultures. Physiologia Plantarum 15: 473–497. 

Muskens, M.W., Vissers,  a P., Mol, J.N., Kooter, J.M., 2000. Role of inverted DNA repeats in 

transcriptional and post-transcriptional gene silencing. Plant molecular biology, 43, pp. 243–60. 

Nagata, T., Nemoto, Y., Hasezawa, S., 1992. Tobacco BY-2 Cell Line as the “HeLa” Cell in the Cell 

Biology of Higher Plants. International Review of Cytology, Vol 132, 132, pp. 1–30. DOI: 

10.1016/S0074-7696(08)62452-3 

Napoli, C., Lemieux, C., Jorgensen, R., 1990. Introduction of a Chimeric Chalcone Synthase Gene into 

Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant cell, 2, pp. 

279–289. DOI: 10.1105/tpc.2.4.279 

Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D.G., 2006. 

A Plant miRNA Contributes to Antibacterial Resistance by A Plant miRNA Contributes to 

Antibacterial Resistance by Repressing Auxin Signaling Antibacterial Resistance by Repressing 

Auxin Signaling. Science, 312, pp. 436–439. DOI: 10.1126/science.1126088 

Nocarova, E., Fischer, L., 2009. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse 

and reduce high natural heterogeneity of transgene expression. BMC plant biology, 9, pp. 44. DOI: 

10.1186/1471-2229-9-44 

Nocarova, E., Opatrny, Z., Fischer, L., 2010. Successive silencing of tandem reporter genes in potato 

(Solanum tuberosum) over 5 years of vegetative propagation. Annals of botany, 106, pp. 565–72. 

DOI: 10.1093/aob/mcq153 

Nowicka, A., Tokarz, B., Zwyrtková, J., Dvořák Tomaštíková, E., Procházková, K., Ercan, U., Finke, A., 

Rozhon, W., Poppenberger, B., Otmar, M., Niezgodzki, I., Krečmerová, M., Schubert, I., Pecinka, 

A., 2019. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with 

transcriptional gene silencing and induction of DNA damage. Plant Journal, DOI: 10.1111/tpj.14612 

Nunes, C.C., Dean, R.A., 2012. Host-induced gene silencing: A tool for understanding fungal host 

interaction and for developing novel disease control strategies. Molecular Plant Pathology, 13, pp. 

519–529. DOI: 10.1111/j.1364-3703.2011.00766.x 



88 

 

 

 

Nuthikattu, S., McCue, A.D., Panda, K., Fultz, D., DeFraia, C., Thomas, E.N., Slotkin, R.K., 2013. The 

initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 

nucleotide small interfering RNAs. Plant physiology, 162, pp. 116–31. DOI: 10.1104/pp.113.216481 

Olmedo-Monfil, V., Durán-Figueroa, N., Arteaga-Vázquez, M., Demesa-Arévalo, E., Autran, D., 

Grimanelli, D., Slotkin, R.K., Martienssen, R.A., Vielle-Calzada, J.P., 2010. Control of female 

gamete formation by a small RNA pathway in Arabidopsis. Nature, 464, pp. 628–632. DOI: 

10.1038/nature08828 

Omasits, U., Ahrens, C.H., Müller, S., Wollscheid, B., 2014. Protter: Interactive protein feature 

visualization and integration with experimental proteomic data. Bioinformatics, 30, pp. 884–886. 

DOI: 10.1093/bioinformatics/btt607 

Onodera, Y., Haag, J.R., Ream, T., Costa Nunes, P., Pontes, O., Pikaard, C.S., 2005. Plant nuclear RNA 

polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell, 

120, pp. 613–22. DOI: 10.1016/j.cell.2005.02.007 

Palauqui, J.-C., Elmayan, T., Pollien, J.-M., Vaucheret, H., 1997. Systemic acquired silencing: transgene-

specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced 

scions. The EMBO Journal, 16, pp. 4738–4745. DOI: 10.1093/emboj/16.15.4738 

Panda, Kaushik, Ji, L., Neumann, D.A., Daron, J., Schmitz, R.J., Slotkin, R.K., 2016. Full-length 

autonomous transposable elements are preferentially targeted by expression-dependent forms of 

RNA-directed DNA methylation. Genome Biology, 17. DOI: 10.1186/s13059-016-1032-y 

Parent, J.S., Jauvion, V., Bouché, N., Béclin, C., Hachet, M., Zytnicki, M., Vaucheret, H., 2015. Post-

transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and 

differs from silencing intentionally triggered by antisense transgenes. Nucleic Acids Research, 43, 

pp. 8464–8475. DOI: 10.1093/nar/gkv753 

Patton, J.G., Franklin, J.L., Weaver, A.M., Vickers, K., Zhang, B., Coffey, R.J., Ansel, K.M., Blelloch, R., 

Goga, A., Huang, B., L’Etoille, N., Raffai, R.L., Lai, C.P., Krichevsky, A.M., Mateescu, B., Greiner, 

V.J., Hunter, C., Voinnet, O., McManus, M.T., 2015. Biogenesis, delivery, and function of 

extracellular RNA. Journal of extracellular vesicles, 4, pp. 27494. DOI: 10.3402/jev.v4.27494 

Peragine, A., 2004. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production 

of trans-acting siRNAs in Arabidopsis. Genes & Development, 18, pp. 2368–2379. DOI: 

10.1101/gad.1231804 

Phobius, a combined transmembrane topology and signal peptide predictor [http://phobius.sbc.su.se/] 

Pontier, D., Picart, C., Roudier, F., Garcia, D., Lahmy, S., Azevedo, J., Alart, E., Laudié, M., Karlowski, 

W.M., Cooke, R., Colot, V., Voinnet, O., Lagrange, T., 2012. NERD, a Plant-Specific GW Protein, 

Defines an Additional RNAi-Dependent Chromatin-Based Pathway in Arabidopsis. Molecular Cell, 

48, pp. 121–132. DOI: 10.1016/j.molcel.2012.07.027 

Protter, the open-source tool for visualization of proteoforms and interactive integration of annotated and 

predicted sequence features together with experimental proteomic evidence 

[http://wlab.ethz.ch/protter/start/] 

Přibylová, A., Čermák, V., Tyč, D., Fischer, L., 2019. Detailed insight into the dynamics of the initial 

phases of de novo RNA-directed DNA methylation in plant cells. Epigenetics & Chromatin, 12, pp. 

1–14. DOI: 10.1186/s13072-019-0299-0 

Pyott, D.E., Molnar, A., 2015. Going mobile: Non-cell-autonomous small RNAs shape the genetic 

landscape of plants. Plant Biotechnology Journal, 13, pp. 306–318. DOI: 10.1111/pbi.12353 

Qi, Y., He, X., Wang, X.-J., Kohany, O., Jurka, J., Hannon, G.J., 2006. Distinct catalytic and non-catalytic 

roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature, 443, pp. 1008–12. DOI: 

10.1038/nature05198 

Ratcliff, F., 1997. A Similarity Between Viral Defense and Gene Silencing in Plants. Science, 276, pp. 

1558–1560. DOI: 10.1126/science.276.5318.1558 

Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., Bartel, D.P., 2002. 1212bReinhart et 

al.2002.pdf. Trends in Plant Science, 7, pp. 1616–1626. DOI: 10.1101/gad.1004402.of 



89 

 

Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., Bartel, D.P., 2002. Prediction of plant 

microRNA targets. Cell, 110, pp. 513–20. 

Rocheleau, C.E., 2012. RNA interference: Systemic RNAi SIDes with endosomes. Current biology : CB, 

22, pp. R873-5. DOI: 10.1016/j.cub.2012.08.039 

Rosas-Cárdenas, F.D.F., Durán-Figueroa, N., Vielle-Calzada, J.-P., Cruz-Hernández, A., Marsch-Martínez, 

N., de Folter, S., 2011. A simple and efficient method for isolating small RNAs from different plant 

species. Plant methods, 7, pp. 4. DOI: 10.1186/1746-4811-7-4 

Schauer, S.E., Jacobsen, S.E., Meinke, D.W., Ray, A., 2002. DICER-LIKE1: Blind men and elephants in 

Arabidopsis development. Trends in Plant Science, 7, pp. 487–491. DOI: 10.1016/S1360-

1385(02)02355-5 

Scholl, R.L., May, S.T., Ware, D.H., 2000. Seed and Molecular Resources for Arabidopsis. Plant 

Physiology, 124, pp. 1477–1480. DOI: 10.1104/pp.124.4.1477 

Scorza, R., 1994. Scorza et al_1994_Plant Cell Rep_Transgenic plums express the plum pox virus coat 

protein gene.pdf. 

Shekhawat, U.K.S., Ganapathi, T.R., Hadapad, A.B., 2012. Transgenic banana plants expressing small 

interfering RNAs targeted against viral replication initiation gene display high-level resistance to 

banana bunchy top virus infection. Journal of General Virology, 93, pp. 1804–1813. DOI: 

10.1099/vir.0.041871-0 

Shih, J.D., Hunter, C.P., 2011. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA (New York, N.Y.), 

17, pp. 1057–65. DOI: 10.1261/rna.2596511 

Sidorova, T., Mikhailov, R., Pushin, A., Miroshnichenko, D., 2019. Agrobacterium -Mediated 

Transformation of Russian Commercial Plum cv . “ Startovaya ” ( Prunus domestica L .) With Virus-

Derived Hairpin RNA Construct Confers Durable Resistance to PPV Infection in Mature Plants. 

Frontiers in Plant Science, 10, pp. 1–15. DOI: 10.3389/fpls.2019.00286 

Sijen, T., Vijn, I., Rebocho,  a, van Blokland, R., Roelofs, D., Mol, J.N., Kooter, J.M., 2001. Transcriptional 

and posttranscriptional gene silencing are mechanistically related. Current biology : CB, 11, pp. 436–

40. 

Singh, A., Gautam, V., Singh, S., Sarkar Das, S., Verma, S., Mishra, V., Mukherjee, S., Sarkar, A.K., 2018. 

Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. 

Planta, 248, pp. 545–558. DOI: 10.1007/s00425-018-2927-5 

Slotkin, R.K., Freeling, M., Lisch, D., 2005. Heritable transposon silencing initiated by a naturally 

occurring transposon inverted duplication. Nature Genetics, 37, pp. 641–644. DOI: 10.1038/ng1576 

Slotkin, R.K., Vaughn, M., Borges, F., Tanurdzić, M., Becker, J.D., Feijó, J. a, Martienssen, R. a, 2009. 

Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell, 136, 

pp. 461–72. DOI: 10.1016/j.cell.2008.12.038 

Smith, L.M., Pontes, O., Searle, I., Yelina, N., Yousafzai, F.K., Herr, A.J., Pikaard, C.S., Baulcombe, D.C., 

2007. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal 

between cells in Arabidopsis. The Plant cell, 19, pp. 1507–21. DOI: 10.1105/tpc.107.051540 

Soltis, D.E., Visger, C.J., Soltis, P.S., 2014. The polyploidy revolution then...and now: Stebbins revisited. 

American Journal of Botany, 101, pp. 1057–1078. DOI: 10.3732/ajb.1400178 

Srba, M., Černíková, A., Opatrný, Z., Fischer, L., 2016. Practical guidelines for the characterization of 

tobacco BY-2 cell lines. Biologia Plantarum, 60, pp. 13–24. DOI: 10.1007/s10535-015-0573-3 

Tabata, S., Kaneko, T., Nakamura, Y. et al., 2000. Sequence and analysis of chromosome 5 of the plant 

Arabidopsis thaliana. Nature, 408, pp.823-826. 

Tang, W., Newton, R.J., Weidner, D.A., 2007. Genetic transformation and gene silencing mediated by 

multiple copies of a transgene in eastern white pine. Journal of Experimental Botany, 58, pp. 545–

554. DOI: 10.1093/jxb/erl228 

The C.elegans Sequencing Consortium, 1998. Genome Sequence of the Nematode C.&amp;nbsp;elegans: 

A Platform for Investigating Biology. Science, 282, pp. 2012–2018. DOI: 

10.1126/science.282.5396.2012 

Timmons, L., Fire, A., 1998. Specific interference by ingested dsRNA. Nature, 395, pp. 854–854. DOI: 

10.1038/27579 



90 

 

 

 

Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., 

Simons, M., 2008. Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes. 

Science, 319, pp. 1244–1247. DOI: 10.1126/science.1153124 

Tsang, S.Y., Moore, J.C., Huizen, R. Van, Chan, C.W.Y., Li, R. a., 2007. Ectopic expression of systemic 

RNA interference defective protein in embryonic stem cells. Biochemical and Biophysical Research 

Communications, 357, pp. 480–486. DOI: 10.1016/j.bbrc.2007.03.187 

Tyč, D., Nocarová, E., Sikorová, L., Fischer, L., 2017. 5-Azacytidine mediated reactivation of silenced 

transgenes in potato (Solanum tuberosum) at the whole plant level. Plant Cell Reports, 36, pp. 1311–

1322. DOI: 10.1007/s00299-017-2155-7 

Tyunin, A.P., Kiselev, K. V., Zhuravlev, Y.N., 2012. Effects of 5-azacytidine induced DNA demethylation 

on methyltransferase gene expression and resveratrol production in cell cultures of Vitis amurensis. 

Plant Cell, Tissue and Organ Culture, 111, pp. 91–100. DOI: 10.1007/s11240-012-0175-0 

van der Krol, A.R., Mol, J.N.M., Stuitje, A.R., 1988. Antisense genes in plants: an overview. Gene, 72, pp. 

45–50. DOI: 10.1016/0378-1119(88)90126-6 

Vaucheret, H., Fagard, M., 2001. Transcriptional gene silencing in plants: targets, inducers and regulators. 

Trends in genetics : TIG, 17, pp. 29–35. 

Vazquez, F., Blevins, T., Ailhas, J., Boller, T., Meins, F., 2008. Evolution of Arabidopsis MIR genes 

generates novel microRNA classes. Nucleic Acids Research, 36, pp. 6429–6438. DOI: 

10.1093/nar/gkn670 

Voinnet, O., 2008. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends in plant 

science, 13, pp. 317–28. DOI: 10.1016/j.tplants.2008.05.004 

Voinnet, O., 2005a. Induction and suppression of RNA silencing: Insights from viral infections. Nature 

Reviews Genetics, 6, pp. 206–220. DOI: 10.1038/nrg1555 

Voinnet, O., 2005b. Non-cell autonomous RNA silencing. FEBS letters, 579, pp. 5858–71. DOI: 

10.1016/j.febslet.2005.09.039 

Voinnet, O., Baulcombe, D.C., 1997. Systemic signalling in gene silencing. Nature, 389, pp. 553. DOI: 

10.1038/39215 

Voinnet, O., Vain, P., Angell, S., Baulcombe, D.C., 1998. Systemic Spread of Sequence-Specific Transgene 

RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic Promoterless DNA. 

Cell, 95, pp. 177–187. DOI: 10.1016/S0092-8674(00)81749-3 

Wang, E., Hunter, C.P., 2017. SID-1 functions in multiple roles to support parental RNAi in caenorhabditis 

elegans. Genetics, 207, pp. 547–557. DOI: 10.1534/genetics.117.300067 

Wang, M.B., Waterhouse, P.M., 2000. High-efficiency silencing of a β-glucuronidase gene in rice is 

correlated with repetitive transgene structure but is independent of DNA methylation. Plant 

Molecular Biology, 43, pp. 67–82. DOI: 10.1023/A:1006490331303 

Wang, X., Laurie, J.D., Liu, T., Wentz, J., Liu, X.S., 2011. Computational dissection of Arabidopsis 

smRNAome leads to discovery of novel microRNAs and short interfering RNAs associated with 

transcription start sites. Genomics, 97, pp. 235–243. DOI: 10.1016/j.ygeno.2011.01.006 

Wang, X.B., Wu, Q., Ito, T., Cillo, F., Li, W.X., Chen, X., Yu, J.L., Ding, S.W., 2010. RNAi-mediated 

viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proceedings 

of the National Academy of Sciences of the United States of America, 107, pp. 484–489. DOI: 

10.1073/pnas.0904086107 

Wassenegger, M., Heimes, S., Riedel, L., Sänger, H.L., 1994. RNA-directed de novo methylation of 

genomic sequences in plants. Cell, 76, pp. 567–76. 

Waterhouse, P.M., Graham, M.W., Wang, M.-B., 1998. Virus resistance and gene silencing in plants can 

be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National 

Academy of Sciences, 95, pp. 13959–13964. 

Watson, J.M., Fusaro, A.F., Wang, M.B., Waterhouse, P.M., 2005. RNA silencing platforms in plants. 

FEBS Letters, 579, pp. 5982–5987. DOI: 10.1016/j.febslet.2005.08.014 



91 

 

Weiberg, A., Jin, H., 2015. Small RNAs-the secret agents in the plant-pathogen interactions. Current 

Opinion in Plant Biology, 26, pp. 87–94. DOI: 10.1016/j.pbi.2015.05.033 

 

Weiberg, A., Wang, M., Lin, F.-M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H.-D., Jin, H., 2013. Fungal 

small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science (New 

York, N.Y.), 342, pp. 118–23. DOI: 10.1126/science.1239705 

Weinhold, A., Kallenbach, M., Baldwin, I.T., 2013. Progressive 35S promoter methylation increases 

rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biology, 

13. DOI: 10.1186/1471-2229-13-99 

Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., 

Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G., Waterhouse, P.M., 2001. 

Construct design for efficient, effective and high- throughput gene silencing in plants 27, pp. 581–

590. 

Whangbo, J.S., Weisman, A.S., Chae, J., Hunter, C.P., 2017. SID-1 domains important for dsRNA import 

in Caenorhabditis elegans. G3: Genes, Genomes, Genetics, 7, pp. 3887–3899. DOI: 

10.1534/g3.117.300308 

White, J.L. and Kaper, J.M. (1989) A simple method for detection of viral satellite RNAs in small plant 

tissue samples. J. Virol. Methods, 23, 83–93. 

Wierzbicki, A.T., Haag, J.R., Pikaard, C.S., 2008. Noncoding transcription by RNA polymerase Pol 

IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell, 135, pp. 635–

48. DOI: 10.1016/j.cell.2008.09.035 

Wierzbicki, A.T., Ream, T.S., Haag, J.R., Pikaard, C.S., 2009. RNA polymerase V transcription guides 

ARGONAUTE4 to chromatin. Nature genetics, 41, pp. 630–4. DOI: 10.1038/ng.365 

Winston, W.M., Molodowitch, C., Hunter, C.P., 2002. Systemic RNAi in C. elegans requires the putative 

transmembrane protein SID-1. Science (New York, N.Y.), 295, pp. 2456–9. DOI: 

10.1126/science.1068836 

Winston, W.M., Sutherlin, M., Wright, A.J., Feinberg, E.H., Hunter, C.P., 2007. Caenorhabditis elegans 

SID-2 is required for environmental RNA interference. Proceedings of the National Academy of 

Sciences of the United States of America, 104, pp. 10565–70. DOI: 10.1073/pnas.0611282104 

Wroblewski, T., Matvienko, M., Piskurewicz, U., Xu, H., Martineau, B., Wong, J., Govindarajulu, M., 

Kozik, A., Michelmore, R.W., 2014. Distinctive profiles of small RNA couple inverted repeat-

induced post-transcriptional gene silencing with endogenous RNA silencing pathways in 

Arabidopsis. Rna, 20, pp. 1987–1999. DOI: 10.1261/rna.046532.114 

Wu, L., Mao, L., Qi, Y., 2012. Roles of DICER-LIKE and ARGONAUTE proteins in TAS-derived small 

interfering RNA-triggered DNA methylation. Plant Physiology, 160, pp. 990–999. DOI: 

10.1104/pp.112.200279 

Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S.E., 

Carrington, J.C., 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS 

biology, 2, pp. E104. DOI: 10.1371/journal.pbio.0020104 

Xu, J., Nagata, Y., Mon, H., Li, Z., Lee, J.M., 2013. Soaking RNAi-mediated modification of Sf9 cells for 

baculovirus expression system by ectopic expression of Caenorhabditis elegans pp. 5921–5931. DOI: 

10.1007/s00253-013-4785-1 

Ye, R., Wang, W., Iki, T., Liu, C., Wu, Y., Ishikawa, M., Zhou, X., Qi, Y., 2012. Cytoplasmic assembly 

and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Molecular cell, 46, pp. 

859–70. DOI: 10.1016/j.molcel.2012.04.013 

Yoo, B.-C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y.M., Lough, T.J., 

Lucas, W.J., 2004. A systemic small RNA signaling. The Plant cell, 16, pp. 1979–2000. DOI: 

10.1105/tpc.104.023614.specialized 

Yoshikawa, M., Iki, T., Tsutsui, Y., Miyashita, K., Scott Poethig, R., Habu, Y., Ishikawa, M., 2013. 3′ 

fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex 

with RISC and SGS3. Proceedings of the National Academy of Sciences of the United States of 

America, 110, pp. 4117–4122. DOI: 10.1073/pnas.1217050110 

Yoshikawa, M., Peragine, A., Park, M.Y., Poethig, R.S., 2005. A pathway for the biogenesis of trans-acting 



92 

 

siRNAs in Arabidopsis. Genes & Development, 19, pp. 2164–2175. DOI: 10.1101/gad.1352605 

 

 

Zemach, A., Kim, M.Y., Hsieh, P.H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., Harmer, S.L., 

Zilberman, D., 2013. The arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases 

to access H1-containing heterochromatin. Cell, 153, pp. 193–205. DOI: 10.1016/j.cell.2013.02.033 

Zemach, A., McDaniel, I.E., Silva, P., Zilberman, D., 2010. Genome-wide evolutionary analysis of 

eukaryotic DNA methylation. Science (New York, N.Y.), 328, pp. 916–9. DOI: 

10.1126/science.1186366 

Zhang, W., Kollwig, G., Stecyk, E., Apelt, F., Dirks, R., Kragler, F., 2014. Graft-transmissible movement 

of inverted-repeat-induced siRNA signals into flowers pp. 106–121. DOI: 10.1111/tpj.12622 

Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W.-L., Chen, H., Henderson, I.R., Shinn, P., 

Pellegrini, M., Jacobsen, S.E., Ecker, J.R., 2006. Genome-wide high-resolution mapping and 

functional analysis of DNA methylation in arabidopsis. Cell, 126, pp. 1189–201. DOI: 

10.1016/j.cell.2006.08.003 

Zhong, X., Du, J., Hale, C.J., Gallego-Bartolome, J., Feng, S., Vashisht, A.A., Chory, J., Wohlschlegel, 

J.A., Patel, D.J., Jacobsen, S.E., 2014. Molecular mechanism of action of plant DRM de novo DNA 

methyltransferases. Cell, 157, pp. 1050–1060. DOI: 10.1016/j.cell.2014.03.056 

Zhou, X., Sunkar, R., Jin, H., Zhu, J.K., Zhang, W., 2009. Genome-wide identification and analysis of small 

RNAs originated from natural antisense transcripts in Oryza sativa. Genome Research, 19, pp. 70–

78. DOI: 10.1101/gr.084806.108 

Zicola, J., Liu, L., Tänzler, P., Turck, F., 2019. Targeted DNA methylation represses two enhancers of 

FLOWERING LOCUS T in Arabidopsis thaliana. Nature Plants, 5, pp. 300–307. DOI: 

10.1038/s41477-019-0375-2 

Zuo, J., Niu, Q.W., Chua, N.H., 2000. Technical advance: An estrogen receptor-based transactivator XVE 

mediates highly inducible gene expression in transgenic plants. The Plant journal : for cell and 

molecular biology, 24, pp. 265–73. 

 

 

 

 

 

 

 

  



93 

 

9. ADDITIONAL DATA 

9.1. SID-1, SAG18 and aPHC alignment with highlighted key residues of SID-1 from 

Caenorhabditis elegans (red rectangles). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Arth = Arabidopsis thaliana 
Cael = Caenorhabditis elegans 

Didi = Dictyostelium discoideum 
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9.2. Alignment of chosen embryophyte SAG18 with highlighted conservative Serin. 
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9.3. A phylogenetic tree from SAG18 protein sequences from selected genera of 

Archaeplastida. The tree was constructed using Neighbor-Joining method in Geneious sftw. 
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9.4. Primers used for genotyping 

Tab. 9.4. Primer pairs for Arabidopsis thaliana SALK mutant lines genotyping. 

 

9.5. Gene sequences used in non-published studies 

>rs-GFP 

atgagtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaa

ttttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaa

ctacctgttccatggccaacacttgtcactactttcacttatggtgttcaatgcttttcaagatacccagatcatatg

aagcggcacgacttcttcaagagcgccatgcctgagggatacgtgcaggagaggaccatctctttcaaggacgacggg

aactacaagacacgtgctgaagtcaagtttgagggagacaccctcgtcaacaggatcgagcttaagggaatcgatttc

aaggaggacggaaacatcctcggccacaagttggaatacaactacaactcccacaacgtatacatcacggcagacaaa

caaaagaatggaatcaaagctaacttcaaaattagacacaacattgaagatggaagcgttcaactagcagaccattat

caacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcg

aaagatcccaacgaaaagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggat

gaactatacaaataa 

 

>E-GFP 

atggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccac

aagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggc

aagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccac

atgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgac

ggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgac

ttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgac

aagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccac

taccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctg

agcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatg

gacgagctgtacaagtga 

 

>mCherry 

atggtgagcaagggcgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctcc

gtgaacggccacgagttcgagatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaag

gtgaccaagggtggccccctgcccttcgcctgggacatcctgtcccctcagttcatgtacggctccaaggcctacgtg

aagcaccccgccgacatccccgactacttgaagctgtccttccccgagggcttcaagtgggagcgcgtgatgaacttc

gaggacggcggcgtggtgaccgtgacccaggactcctccctgcaggacggcgagttcatctacaaggtgaagctgcgc

ggcaccaacttcccctccgacggccccgtaatgcagaagaagaccatgggctgggaggcctcctccgagcggatgtac

cccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcggccactacgacgctgaggtc

aagaccacctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctcc

cacaacgaggactacaccatcgtggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctg

tacaagtaa 

 

>TagRFP 

atggtgagtaaaggtgaagagttgattaaagagaacatgcatatgaagttatacatggagggaactgtcaataatcac

cactttaagtgtacatcagagggtgagggaaagccatacgagggaacccaaactatgagaatcaaagtagtggaggga

ggtcctcttccatttgcttttgatatactagcaacaagtttcatgtatggttccaggaccttcattaaccatactcag

ggaatccctgacttctttaaacagtcttttcctgaaggttttacatgggagagggttaccacttacgaggacggtgga

gtcttgacagcaacccaggacacttcattacaagatggatgcctaatatacaatgtgaaaattaggggtgtgaatttc

cctagtaacggaccagttatgcagaagaaaacactaggttgggaagctaatactgaaatgttgtaccctgccgacgga

ggtttagaaggtagatccgacatggcccttaagctagtcggaggtggacacttgatctgtaactttaaaaccacatat

aggtctaagaagccagcaaagaatctaaaaatgcctggtgtttactatgtggaccatagactagaaaggataaaagaa

primer 

name 
sequence  target 

melting 

temperature 

Fw1 5´CCTGAGAATCTCATCTCTCTC3´ SAG18  

Rev1 5´AGTAGCATCGTTTGGGTGAAG3´ SAG18  

Rev-insert 5´ACAACACTCAACCCTATCTCG3´ pROK2  

Fw2 5´CGTAGACGTTTAGAGCGGTC3´ aPHC  

Rev2 5´TACACATGCACAGAGACAGAG3´ aPHC  
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gcagacaaagaaacttacgtggagcaacatgaggtcgccgtcgctaggtattgcgacttaccttccaagctaggtcac

aaattgaactaa 

 

>Arabidopsis_thaliana_SAG18(AtSAG18) 

atgaagaagcgaacgatgtccgcgtggggatcggcgattttaatcttcataatacttatgatcgtcactcccacaatc

cctcaatctcaggcttaccacaatttcgccgatcaacgctccttcctcgggattccaaattttttaaacgtcatctcc

aacttccctttcctcatcatcggccttattggtcttatcctctgcttttacccagaagattactttagctttagtttg

cgaggtgagaaaataggatggacttgcttttacatcggtgtagctgctgttgcttttggatcttcttactatcatctt

cacccaaacgatgctactctcctctgggatcgtcttcccatgactattgctttcacatcaatcatggctatatttgta

atcgagaggattgatgagcataagggtacttactccattgctcctttacttcttgctggtcttgttagcattttgtat

tggaggtttttcgatgaccttaggccatatgctttggttcagtttgttccttgcattgtgattccgttgatggctatt

ttattgcctccaatgtatacacattccacttattggctatgggctgcagggttctatctcttagccaaggtggaagaa

gctgcggataagcctatatatagctggactcatcatattattagtgggcattctctgaagcatctgtgtgccgctatg

gtccctgtcttccttaccctcatgcttgcgaaaagaaccgttcaaactgagaggattagcttgtataagacatggaag

aaaggatccgaggaagaacggttcgagcatagctactccaacgttgcagtcgaagagactcggtag 

 

>Nicotiana_tabacum_SAG18(NtSAG18) 

atgaggaagagaagtgtgtgggcatggggagttgcaatcttctgcttcgtagtgctaatgattgtcactcctgcaatt

cctcagtctcaagaatatcataattttgctgatcaacgccagtttttggggattcccaacgcgctgaatgtggtttcg

aatttccctttccttgtgatcggtctaataggtcttgtactttgtcaccacggtaactatttcaagctgagcttgcaa

ggagagctttggggttggacatgcttctatattggtgtggcagccgttgcttttgggtcctcatactatcatctcaac

ccaaatgatgctagtcttgtgtgggatagattgccaatgactgtggcatttacttctatcgttgctatctttattatt

gaaagaatagatgaaagaaagggaactttgtctctcattccattgcttctggctggtgtaattagtatcatgtattgg

aggttctttgaggatctccgtccttatgcggtagttcagtttgtgccgtgcctagccatcccagtcatggctatcttg

ttacctccaatgtacactcattccacttattggttgtgggctgcaggattttatcttttagctaagattgaagaagca

gcggataggccaatctacaactggactcatcacatcgtcagtggccacacgctcaaacatttatgtgctgcaatggtg

cctgtcttcttgacattaatgcttgcaaaaagggacactgaaacaaataggatcagtttatatcaaagctggagaata

tcttggagtaaagcaaaagaaaatggagcagaagtggagagttacacttgtacttattcaagtgtcccagttgaggaa

tcacgttga 

 

>Arabidopsis_thaliana_SAG18-E-GFP_fusion(AtSAG18-E-GFP_fusion) 

atgaagaagcgaacgatgtccgcgtggggatcggcgattttaatcttcataatacttatgatcgtcactcccacaatc

cctcaatctcaggcttaccacaatttcgccgatcaacgctccttcctcgggattccaaattttttaaacgtcatctcc

aacttccctttcctcatcatcggccttattggtcttatcctctgcttttacccagaagattactttagctttagtttg

cgaggtgagaaaataggatggacttgcttttacatcggtgtagctgctgttgcttttggatcttcttactatcatctt

cacccaaacgatgctactctcctctgggatcgtcttcccatgactattgctttcacatcaatcatggctatatttgta

atcgagaggattgatgagcataagggtacttactccattgctcctttacttcttgctggtcttgttagcattttgtat

tggaggtttttcgatgaccttaggccatatgctttggttcagtttgttccttgcattgtgattccgttgatggctatt

ttattgcctccaatgtatacacattccacttattggctatgggctgcagggttctatctcttagccaaggtggaagaa

gctgcggataagcctatatatagctggactcatcatattattagtgggcattctctgaagcatctgtgtgccgctatg

gtccctgtcttccttaccctcatgcttgcgaaaagaaccgttcaaactgagaggattagcttgtataagacatggaag

aaaggatccgaggaagaacggttcgagcatagctactccaacgttgcagtcgaagagactcggggagcttctcaagct

aagcttatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaac

ggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcacc

accggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctacccc

gaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaag

gacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggc

atcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatg

gccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgcc

gaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtcc

gccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctc

ggcatggacgagctgtacaagtga 

 

>Caenorhabditis_elegans_SID-1(native_CeSID-1) 

atgattcgtgtttatttgataattttaatgcatttggtgattggtttaacccagaacaattcaactacaccttcgcca

attatcacctcaagtaacagctctgtacttgtattcgagatttcttcaaaaatgaaaatgatcgaaaaaaagctggaa

gccaacacagtccatgtccttcgcctggaattagatcaaagtttcatattagatttaaccaaagtcgccgcggaaatc

gttgattcttcgaaatacagtaaagaagacggtgttatactcgaagtaacagtttcaaatggccgtgatagtttttta

ttgaaacttccgacggtttatccgaacttgaagctctatactgacggaaaactgctcaatccgctcgttgagcaagat

ttcggggcgcacagaaagaggcacaggataggcgaccctcatttccatcaaaacctgatcgtaaccgtgcagtctcga

ttgaatgctgatatagattataggcttcatgtgactcatttggatcgggcccaatatgattttctgaagttcaagacg

ggacagaccacgaaaacgttgtcgaatcagaagctgacgtttgtcaagccgattggattttttttgaattgcagcgaa

caaaatatttcccaattccacgtcacattgtacagtgaagatgatatttgtgcaaatctgataactgtgccggcgaat

gaatccatctatgatcgatcagtgatttccgataaaactcacaatcgacgtgtcctatcattcaccaaaagagccgac

atttttttcactgaaactgaaatctcgatgttcaaatcattccgaatcttcgtcttcatagctcccgatgattctgga

tgttctaccaacacatcacgcaaaagtttcaacgagaaaaagaaaatatcttttgaattcaaaaaactggaaaatcaa

tcatacgccgtcccgacggctttgatgatgatatttctgacgacaccgtgtcttttgttccttccaattgtgattaat

attatcaagaatagcagaaaattggcaccatcacaatcaaatcttatctcattttctccagttccgtctgagcaacgg
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gacatggatttgagccatgatgagcagcagaatacgagctcagaactcgaaaataatggagaaattccagcagcagaa

aatcaaattgttgaagagatcacggctgaaaatcaagaaacgagcgtagaagagggaaaccgggaaattcaagttaaa

attccgttgaaacaggattcattatcactccatggccaaatgcttcaatatcccgttgcaataattctcccagttctc

atgcacacagctatcgaattccataaatggacgacatctacaatggcaaatcgcgacgaaatgtgcttccacaatcat

gcgtgtgctcggccattgggagaacttcgagcttggaataatatcatcaccaatataggatatactctttatggagcc

atcttcattgttttgtcgatatgtagaagaggccgtcatgagtattctcatgtttttggtacatatgaatgcacactt

ttagatgtgactattggtgttttcatggttttgcaatcaattgctagtgccacttatcatatttgccccagtgatgtg

gcttttcagtttgatacgccgtgcatccaagttatctgtggacttctcatggtccgtcagtggtttgttcgtcacgaa

tctccatcaccagcctatacaaatatcctactagttggagttgtctccttgaactttctaatatctgcattctccaaa

acatcatatgtccgattcatcatcgctgtaattcatgtcattgtcgttggatcgatctgtttggcaaaggaaagatcc

ttgggatcggaaaaattaaaaactcgatttttcatcatggccttctcgatgggaaatttcgcagcaatcgtgatgtat

ctgacgctttcggcgtttcatttgaatcaaatagccacgtattgctttattataaattgtatcatgtatctgatgtac

tatggatgcatgaaagttttacatagcgagagaataacgtcgaaggctaaactttgtggagctctgtcactgctcgcg

tgggctgttgccggatttttcttctttcaagatgatacagattggacgagatctgcggcggcgagccgagcactcaac

aagccatgcctgctactcggcttcttcggttcccacgatttatggcacatcttcggagcattggccggtcttttcaca

ttcattttcgtctcctttgttgatgatgatctcattaatacacgcaaaacttcgattaacattttctag 

 

>Caenorhabditis_elegans_SID-1_with_NtHYPRP_signal_sequence(CeSID-1) 

atggagaagttcaatgtagctagaatcttattgttccttctccaacttggaactttgttcattgcgcatgcacagaac

aattcaactacaccttcgccaattatcacctcaagtaacagctctgtacttgtattcgagatttcttcaaaaatgaaa

atgatcgaaaaaaagctggaagccaacacagtccatgtccttcgcctggaattagatcaaagtttcatattagattta

accaaagtcgccgcggaaatcgttgattcttcgaaatacagtaaagaagacggtgttatactcgaagtaacagtttca

aatggccgtgatagttttttattgaaacttccgacggtttatccgaacttgaagctctatactgacggaaaactgctc

aatccgctcgttgagcaagatttcggggcgcacagaaagaggcacaggataggcgaccctcatttccatcaaaacctg

atcgtaaccgtgcagtctcgattgaatgctgatatagattataggcttcatgtgactcatttggatcgggcccaatat

gattttctgaagttcaagacgggacagaccacgaaaacgttgtcgaatcagaagctgacgtttgtcaagccgattgga

ttttttttgaattgcagcgaacaaaatatttcccaattccacgtcacattgtacagtgaagatgatatttgtgcaaat

ctgataactgtgccggcgaatgaatccatctatgatcgatcagtgatttccgataaaactcacaatcgacgtgtccta

tcattcaccaaaagagccgacatttttttcactgaaactgaaatctcgatgttcaaatcattccgaatcttcgtcttc

atagctcccgatgattctggatgttctaccaacacatcacgcaaaagtttcaacgagaaaaagaaaatatcttttgaa

ttcaaaaaactggaaaatcaatcatacgccgtcccgacggctttgatgatgatatttctgacgacaccgtgtcttttg

ttccttccaattgtgattaatattatcaagaatagcagaaaattggcaccatcacaatcaaatcttatctcattttct

ccagttccgtctgagcaacgggacatggatttgagccatgatgagcagcagaatacgagctcagaactcgaaaataat

ggagaaattccagcagcagaaaatcaaattgttgaagagatcacggctgaaaatcaagaaacgagcgtagaagaggga

aaccgggaaattcaagttaaaattccgttgaaacaggattcattatcactccatggccaaatgcttcaatatcccgtt

gcaataattctcccagttctcatgcacacagctatcgaattccataaatggacgacatctacaatggcaaatcgcgac

gaaatgtgcttccacaatcatgcgtgtgctcggccattgggagaacttcgagcttggaataatatcatcaccaatata

ggatatactctttatggagccatcttcattgttttgtcgatatgtagaagaggccgtcatgagtattctcatgttttt

ggtacatatgaatgcacacttttagatgtgactattggtgttttcatggttttgcaatcaattgctagtgccacttat

catatttgccccagtgatgtggcttttcagtttgatacgccgtgcatccaagttatctgtggacttctcatggtccgt

cagtggtttgttcgtcacgaatctccatcaccagcctatacaaatatcctactagttggagttgtctccttgaacttt

ctaatatctgcattctccaaaacatcatatgtccgattcatcatcgctgtaattcatgtcattgtcgttggatcgatc

tgtttggcaaaggaaagatccttgggatcggaaaaattaaaaactcgatttttcatcatggccttctcgatgggaaat

ttcgcagcaatcgtgatgtatctgacgctttcggcgtttcatttgaatcaaatagccacgtattgctttattataaat

tgtatcatgtatctgatgtactatggatgcatgaaagttttacatagcgagagaataacgtcgaaggctaaactttgt

ggagctctgtcactgctcgcgtgggctgttgccggatttttcttctttcaagatgatacagattggacgagatctgcg

gcggcgagccgagcactcaacaagccatgcctgctactcggcttcttcggttcccacgatttatggcacatcttcgga

gcattggccggtcttttcacattcattttcgtctcctttgttgatgatgatctcattaatacacgcaaaacttcgatt

aacattttctga 

 

>Caenorhabditis_elegans_SID-1-with_NtHYPRP_signal_sequence_E-GFP_fusion(CeSID-

1-E-GFP_fusion) 

atggagaagttcaatgtagctagaatcttattgttccttctccaacttggaactttgttcattgcgcatgcacagaac

aattcaactacaccttcgccaattatcacctcaagtaacagctctgtacttgtattcgagatttcttcaaaaatgaaa

atgatcgaaaaaaagctggaagccaacacagtccatgtccttcgcctggaattagatcaaagtttcatattagattta

accaaagtcgccgcggaaatcgttgattcttcgaaatacagtaaagaagacggtgttatactcgaagtaacagtttca

aatggccgtgatagttttttattgaaacttccgacggtttatccgaacttgaagctctatactgacggaaaactgctc

aatccgctcgttgagcaagatttcggggcgcacagaaagaggcacaggataggcgaccctcatttccatcaaaacctg

atcgtaaccgtgcagtctcgattgaatgctgatatagattataggcttcatgtgactcatttggatcgggcccaatat

gattttctgaagttcaagacgggacagaccacgaaaacgttgtcgaatcagaagctgacgtttgtcaagccgattgga

ttttttttgaattgcagcgaacaaaatatttcccaattccacgtcacattgtacagtgaagatgatatttgtgcaaat

ctgataactgtgccggcgaatgaatccatctatgatcgatcagtgatttccgataaaactcacaatcgacgtgtccta

tcattcaccaaaagagccgacatttttttcactgaaactgaaatctcgatgttcaaatcattccgaatcttcgtcttc

atagctcccgatgattctggatgttctaccaacacatcacgcaaaagtttcaacgagaaaaagaaaatatcttttgaa

ttcaaaaaactggaaaatcaatcatacgccgtcccgacggctttgatgatgatatttctgacgacaccgtgtcttttg

ttccttccaattgtgattaatattatcaagaatagcagaaaattggcaccatcacaatcaaatcttatctcattttct

ccagttccgtctgagcaacgggacatggatttgagccatgatgagcagcagaatacgagctcagaactcgaaaataat

ggagaaattccagcagcagaaaatcaaattgttgaagagatcacggctgaaaatcaagaaacgagcgtagaagaggga
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aaccgggaaattcaagttaaaattccgttgaaacaggattcattatcactccatggccaaatgcttcaatatcccgtt

gcaataattctcccagttctcatgcacacagctatcgaattccataaatggacgacatctacaatggcaaatcgcgac

gaaatgtgcttccacaatcatgcgtgtgctcggccattgggagaacttcgagcttggaataatatcatcaccaatata

ggatatactctttatggagccatcttcattgttttgtcgatatgtagaagaggccgtcatgagtattctcatgttttt

ggtacatatgaatgcacacttttagatgtgactattggtgttttcatggttttgcaatcaattgctagtgccacttat

catatttgccccagtgatgtggcttttcagtttgatacgccgtgcatccaagttatctgtggacttctcatggtccgt

cagtggtttgttcgtcacgaatctccatcaccagcctatacaaatatcctactagttggagttgtctccttgaacttt

ctaatatctgcattctccaaaacatcatatgtccgattcatcatcgctgtaattcatgtcattgtcgttggatcgatc

tgtttggcaaaggaaagatccttgggatcggaaaaattaaaaactcgatttttcatcatggccttctcgatgggaaat

ttcgcagcaatcgtgatgtatctgacgctttcggcgtttcatttgaatcaaatagccacgtattgctttattataaat

tgtatcatgtatctgatgtactatggatgcatgaaagttttacatagcgagagaataacgtcgaaggctaaactttgt

ggagctctgtcactgctcgcgtgggctgttgccggatttttcttctttcaagatgatacagattggacgagatctgcg

gcggcgagccgagcactcaacaagccatgcctgctactcggcttcttcggttcccacgatttatggcacatcttcgga

gcattggccggtcttttcacattcattttcgtctcctttgttgatgatgatctcattaatacacgcaaaacttcgatt

aacattttcggagcttctcaagctaagcttatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctg

gtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaag

ctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggc

gtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtc

caggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctg

gtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactac

aacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatc

gaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgac

aaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttc

gtgaccgccgccgggatcactctcggcatggacgagctgtacaagtga 

 

>nptII(KanR) 

atgattgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaa

cagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgac

ctgtccggtgccctgaatgaactccaagacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgca

gctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtca

tctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacc

tgcccattcgaccaccaagcgaaacatcgcatcgagcgaggacgtactcggatggaagccggtcttgtcgatcaggat

gatctggacgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcggatgcccgacggcgag

gatctcgtcgtgacccagggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgac

tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagcttggcggc

gaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttctt

gacgagttcttctga 

 

>IR-rsGFP 

ttatttgtatagttcatccatgccatgtgtaatcccagcagctgttacaaactcaagaaggaccatgtggtctctctt

ttcgttgggatctttcgaaagggcagattgtgtggacaggtaatggttgtctggtaaaaggacagggccatcgccaat

tggagtattttgttgataatggtctgctagttgaacgcttccatcttcaatgttgtgtctaattttgaagttagcttt

gattccattcttttgtttgtctgccgtgatgtatacgttgtgggagttgtagttgtattccaacttgtggccgaggat

gtttccgtcctccttgaaatcgattcccttaagctcgatcctgttgacgagggtgtctccctcaaacttgacttcagc

acgtgtcttgtagttcccgtcgtccttgaaagagatggtcctctcctgcacgtatccctcaggcatggcgctcttgaa

gaagtcgtgccgcttcatatgatctgggtatcttgaaaagcattgaacaccataagtgaaagtagtgacaagtgttgg

ccatggaacaggtagttttccagtagtgcaaataaatttaagggtaagttttccgtatgttgcatcaccttcaccctc

tccactgacagaaaatttgtgcccattaacatcaccatctaattcaacaagaattgggacaactccagtgaaaagttc

ttctcctttactcatgtcgacgaattcagattctctgcccttgttgtctcagtaagttaataatgtctttgttttgtt

aaattgtgcaatcatctcgtttaaactgctaaatagaacacactagtaagaatagcaaccatgccttacaatcactat

gatattatattatcttctaggaaggtaaaatagcagcaaaaattctatatctggctcaaagaaactttgtgatggttc

atagagtaacttaaaactgctcatttttggaatgtttatattgtcatctatagttcatgttcctttagtgatcaactg

ctttatgctttgtgtcctttttttgatgtcctgtgtctaagagagaaaatttctaaagatttgcaacttgatcatgta

gggagctaatgctgaaggagttcaatcacgaattctggatccatgagtaaaggagaagaacttttcactggagttgtc

ccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaaca

tacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccatggccaacacttgtcactactttc

acttatggtgttcaatgcttttcaagatacccagatcatatgaagcggcacgacttcttcaagagcgccatgcctgag

ggatacgtgcaggagaggaccatctctttcaaggacgacgggaactacaagacacgtgctgaagtcaagtttgaggga

gacaccctcgtcaacaggatcgagcttaagggaatcgatttcaaggaggacggaaacatcctcggccacaagttggaa

tacaactacaactcccacaacgtatacatcacggcagacaaacaaaagaatggaatcaaagctaacttcaaaattaga

cacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtcctt

ttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtcctt

cttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaataa 

 


