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4 Abstract 
 

Polyploidization, hybridization and various reproductive strategies significantly contribute 

to plant evolution and diversity. Their direct influence on plant evolution is especially 

apparent in the Rosaceae family and is also mirrored in its still partly unclear and reticulate 

phylogeny. Two model genera were chosen to add a piece of knowledge to the puzzle 

of polyploidization, hybridization and apomixis in the Rosaceae. 

The results demonstrate both the creative and destructive force of hybridization and 

polyploidization, particularly in the genus Prunus. A significant proportion of wild 

Prunus fruticosa populations under examination underwent hybridization and genetic erosion. 

Crop-to-wild hybridization with both cultivated sour and sweet cherries has resulted in two 

morphologically indistinguishable hybrids markedly differing in ploidy level and reproductive 

potential. On the one hand, a triploid block was manifested in sterile triploid hybrids, but, 

on the other, partial fertility of tetraploid hybrids allowed repeated backcrossing 

(i.e. introgression). The crop-to-wild phenomenon has significant consequences for both 

conservation and agriculture. 

Polyploidization and hybridization are frequently accompanied by apomixis among 

the Rosaceae. Apomixis may play a substantial role in the stabilization of newly arisen 

genotypes (microspecies). Although particular lineages are reflected by a specific genome 

size/ploidy level and reproductive pattern (e.g. in Hieracium, Pilosella, Rubus, Sorbus), 

Cotoneaster integerrimus s.l. in the Western Carpathians did not show any significant 

differentiation in this respect. The whole group was found to be homogeneously tetraploid 

and facultatively apomictic. Besides prevailing pseudogamy combined with minor sexuality, 

different apomictic pathways were identified (e.g. autonomous apomixis or haploid 

parthenogenesis). The potential for further polyploidization is supported by a minor 

proportion of BIII individuals. By contrast, Cotoneaster tomentosus clearly differed in both 

ploidy level and reproduction mode, being pentaploid and obligately apomictic. 

To sum up, the effects of the detected crop-to-wild hybridization in cherries were 

markedly determined by the ploidy level. Homoploid hybridization represents a gene-flow 

bridge towards endangered Prunus fruticosa whereas heteroploid crosses result in sterile 

triploid progeny. On the other hand, polyploid and facultatively apomictic 

Cotoneaster integerrimus s.l. exhibited a homogenous cytotype and breeding pattern 

in the entire study area. The take-home message of the presented case studies emphasizes 

substantially different consequences of analogous evolutionary drivers in the Rosaceae family 

(polyploidy, hybridization and reproductive strategies). 
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5 Abstrakt 
 

Polyploidizace, hybridizace a způsob reprodukce významnou měrou ovlivňují evoluci 

a diverzitu rostoucích rostlin. Přímý vliv těchto mechanismů na vývoj rostlin je zřejmý 

zejména v čeledi Rosaceae (růžovité) a odráží se také v jejich doposud částečně nejasné 

a komplikované fylogenezi. K získání dalších poznatků poodhalujících vliv polyploidizace, 

hybridizace a apomixie na čeleď Rosaceae byly vybrány dvě modelové skupiny druhů. 

 Výsledky předkládané práce ukazují, že hybridizace a polyploidizace má, konkrétně 

v rodu Prunus, jak konstruktivní tak destruktivní charakter. U významné části studovaných 

populací plané Prunus fruticosa (třešně křovité) byla prokázána hybridizace a genetická 

eroze. Jedná se o tzv. „crop-to-wild“ křížení planě rostoucích druhů s druhy pěstovanými 

člověkem. Třešeň křovitá se kříží s oběma příbuznými pěstovanými druhy, třešní i višní, za 

vzniku dvou morfologicky neodlišitelných hybridů, které se však jednoznačně odlišují ploidií 

a reprodukčním potenciálem. Vznikají jak sterilní triploidní hybridi (uplatňuje se triploidní 

blok), tak částečně fertilní tetraploidní kříženci, kteří se mohou dále zpětně křížit a dochází 

tak k tzv. introgresi. Křížení tohoto planě rostoucího druhu s druhy pěstovanými má tak 

významné důsledky pro ochranu přírody i samotné zemědělství, resp. šlechtitelství.  

 Běžně se spolu s polyploidizací a hybridizací v čeledi Rosaceae vyskytuje také 

apomixie. Ta může hrát důležitou roli pro stabilizaci nově vzniklých genotypů (mikrospecií). 

Takové linie bývají charakterizovány určitou ploidií/velikostí genomu a typem reprodukce 

(např. u rodu Hieracium, Pilosella, Rubus, Sorbus). K tomu však v případě komplexu 

Cotoneaster integerrimus s.l. v Západních Karpatech nedošlo, protože žádná taková 

diferenciace prokázána nebyla. Celý komplex je totiž tetraploidní a fakultativně apomiktický. 

Vedle převažující pseudogamie kombinované se zbytkovou sexualitou byly identifikovány 

také další různé typy apomixie (např. autonomní apomixie nebo haploidní partenogeneze). 

Detekce BIII jedinců, i když v malém množství, ukázala na potenciál k další polyploidizaci. 

Oproti tomu pentaploidní a obligátně apomiktický Cotoneaster tomentosus byl jak stupněm 

ploidie, tak i reprodukčním způsobem jednoznačně definovaný.  

 Lze tedy shrnout, že míra "crop-to-wild" křížení je u třešní výrazně ovlivněna ploidní 

úrovní. Zatímco homoploidní hybridizace umožňuje genový tok směrem k ohrožené 

Prunus fruticosa, při heteroploidním křížení vzniká sterilní triploidní potomstvo. Nicméně 

v případě polyploidního a fakultativně apomiktického komplexu Cotoneaster integerrimus s.l. 

byl zjištěn stejný cytotyp i reprodukční způsob v rámci celé studované oblasti. Na základě 

výsledků předkládaných dílčích studií je tedy třeba zdůraznit, že podobné evoluční 

mechanismy v čeledi Rosaceae (polyploidie, hybridizace a různé způsoby reprodukce) vedou 

k podstatně odlišným důsledkům. 
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6 Introduction 
 

The family Rosaceae is one of the most heterogeneous, ubiquitous and biosystematically most 

complex groups of vascular plants. Because of its enormous diversity (92 genera and 2,805 

species; Stevens 2020), it ranks among the twenty largest families of vascular plants 

in the world (Christenhusz and Byng 2016). This family includes important crops and also 

critical and intricate groups such as Alchemilla, Crataegus, Potentilla, Rosa, Rubus or Sorbus 

(e.g. Judd et al. 2016; Herklotz and Ritz 2017; Dickinson 2018). Important sources of this 

complexity and variability include polyploidization, hybridization and apomixis resulting 

in reticulate evolution (e.g. Dickinson et al. 2007; Zhang et al. 2017). The enormous 

complexity of the Rosaceae has defeated attempts to reconstruct the family’s phylogeny and 

devise a comprehensive taxonomic treatment (Potter et al. 2007a; Majeský et al. 2017; Zhang 

et al. 2017). 

 

 

6.1 Microevolutionary forces in the Rosaceae family 
 

The family Rosaceae is well known as an evolutionarily dynamic group, which is also 

mirrored in its complex biosystematics (e.g. Dickinson et al. 2007). The intricate family 

classification has repeatedly been modified to better reflect the deep relationships among its 

groups (see the Phylogeny and classification section below). Difficulties are caused mainly 

by frequent interspecific hybridization, polyploidization, apomixis and resulting rapid 

radiation (Robertson et al. 1991; Vamosi and Dickinson 2006; Campbell et al. 2007; Whitton 

et al. 2008). 

 

 

6.1.1 Hybridization 
 

Hybridization is defined as crossing between different entities, for example two genetically 

distinct populations (Barton and Hewitt 1985) or species (i.e. interspecific hybridization; 

Wissemann 2007; Soltis and Soltis 2009). Interspecific hybridization, together 

with polyploidization, plays an important role in plant evolution. On the one hand, 

hybridization may be a potent force of speciation (Wissemann 2007; Abbott et al. 2013) and 

on the other, it can also cause the extinction of species (Todesco et al. 2016). Nevertheless, it 

is still difficult to predict whether a hybridization event will be favourable for speciation 

(Abbott et al. 2013). 

Hybridization may be considered from various viewpoints. Homoploid hybridization 

is crossing between species with the same ploidy whereas heteroploid hybridization, 

frequently resulting in allopolyploidy (see below) is hybridization between species taking 

place at different ploidy levels (Soltis and Soltis 2009; Yakimowski and Rieseberg 2014). 

Newly formed hybrids may backcross with their parents or another hybrid and repeated 

backcrossing can lead to the transfer of genetic material from one species to another 

(i.e. introgression; Anderson 1948; Soltis and Soltis 2009). Introgressive hybridization may 

happen symmetrically towards parental taxa or unidirectionally (e.g. Price and Rich 2007; 

Delplancke et al. 2012). Extensive interbreeding of two (or more) species results in the 

formation of a hybrid swarm, which is a mix of parental species, F1, F2 and later- 

-generation hybrids, and backcrosses with one or both parental species (Soltis and Soltis 

2009). So-called chloroplast capture through hybridization and introgression represents 

the most extreme case of hybridization and leads to the complete replacement of nuclear 
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DNA whereas original uniparentally inherited chloroplast DNA remains (Rieseberg and 

Soltis 1991). 

The distribution of spontaneous hybridization among taxa is not random, but some 

phylogenetic groups are biologically predisposed to the formation and maintenance 

of hybrids (Ellstrand et al. 1996). It is possible to trace up the traits that these groups share; 

these are primarily outcrossing, a perennial life cycle and reproductive modes that stabilized 

hybridity (e.g. apomixis, vegetative spread, permanent odd polyploidy; Ellstrand et al. 1996). 

Newly arisen hybrids can be intermediate between their parent species (Kellner et al. 

2012; Christensen et al. 2014), almost identical with one of the parents, or show a new 

combination of characters not possessed by any of the parents (Schanzer and Kutlunina 

2010). Although initial hybrids often struggle because of odd ploidy numbers (Comai 2005), 

a lack of appropriate mating partners (Soltis and Soltis 2009), unsuitable habitat conditions 

(Schnitzler et al. 2014) or reduced reproductive fitness (Vítová et al. 2015), they are able 

to stabilize using polyploidization (Hegarty and Hiscock 2005), transition in reproduction 

(selfing, apomixis; Abbott and Lowe 2004; Lepší et al. 2015) and adaptation 

to environmental condition (Feurtey et al. 2017). Thus, interspecific hybridization is 

a mechanism promoting adaptive evolution and speciation (Rieseberg et al. 2003). 

Hybrid speciation can be realized at the homoploid level, but the establishment 

of hybrid progeny is probably facilitated by allopolyploid speciation (Hegarty and Hiscock 

2005). Whereas the fitness of homoploid hybrids is strongly reduced due to backcrossing 

with parental taxa, genome duplication protects hybrid genetic integrity and enables rapid 

speciation (Rieseberg and Willis 2007). 

Nevertheless, interspecific hybridization may also have an adverse effect and promote 

extinction (Rhymer and Simberloff 1996; Ellstrand et al. 2013; Todesco et al. 2016). If there 

are no effective reproductive barriers and taxa grow in sympatry, they have an opportunity 

to partake in almost unrestricted hybridization (Rhymer and Simberloff 1996). If there is 

a series of repeated backcrosses (introgression), by which genes of one species are 

transferred into another, this blurs the boundaries between species (Anderson 1948). So, 

in the resulting hybrid swarms, pure species are overbalanced by various types of hybrids 

(Omasheva et al. 2017), and in extreme cases they may be completely replaced by them 

(Boratyński et al. 2003). It may seem that extinction by hybridization directly depends 

on the fertility of newly arisen hybrids, which are involved in numerous series 

of spontaneous hybridization (i.e. genetic swamping, Fig. 1; Todesco et al. 2016). However, 

also sterile F1 hybrids may cause serious difficulties in populations because the wasteful 

production of maladaptive hybrids reduces the number of appropriate mating partners and 

promotes undesirable competition for natural resources (i.e. demographic swamping, Fig. 2; 

Todesco et al. 2016). The risk of hybridization becomes more serious especially in low- 

-abundant (i.e. often rare) species crossing with numerous ones (Levin et al. 1996). 

Commercial crops, which are often close relatives of wild species, are exactly such 

ubiquitous, abundant species and often alien at that (Hyams 1971). They can easily hybridize 

with their wild congeners, and many cases of so-called crop-to-wild hybridization have 

already been detected (e.g. Ellstrand et al. 1999, 2013). 
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Fig. 1: Illustration of genetic swamping published in Todesco et al. (2016). Genetic swamping causes 

the extinction of the rare lineage after hybridization between a rare lineage (red flowers) and a common lineage 

(yellow flowers). Hybrids are at least partially fertile and viable and replace pure parental genotypes. In contrast 

to demographic swamping, not all parental alleles themselves are removed. Rare, common and hybrid genotype 

percentages per generation are represented by the colour-coded bars on the right side. 

 

 

 
Fig. 2: Illustration of demographic swamping published in Todesco et al. (2016). Demographic swamping results 

in population extinction of the rare lineage after hybridization between a rare lineage (red flowers) and 

a common lineage (yellow flowers). Unfit hybrid individuals (light and dark orange flowers) disappear entirely 

with all rare alleles of their lineage. Rare, common, and hybrid genotype percentages per generation are 

represented by the colour-coded bars on the right side. 
 

 

6.1.2 Polyploidization 
 

Polyploidization is currently considered an essential driver of plant biodiversity (Landis et al. 

2018). Although previous opinions regarded polyploidization as mere ‘evolutionary noise’ or 

‘dead end’ (De Wet 1970) of evolution, the recent paradigm emphasizes the key role 

of polyploidy in the evolution of plants and their speciation (e.g. Rieseberg and Willis 2007; 
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Soltis et al. 2010). Polyploidization (whole-genome duplication) is the doubling 

of chromosomal material. This duplication can basically arise in two ways. 

Autopolyploidization includes genome doubling in a single species whereas 

allopolyploidization involves hybridization of different species with associated chromosome 

doubling (Landis et al. 2018). Nevertheless, a continuous spectrum of polyploids besides 

these two extremes occurs in nature. It is therefore sometimes difficult to recognize between 

these two categories and, moreover, many polyploids behave cytogenetically as diploids 

(Leitch and Bennett 1997). 

Although it was traditionally assumed that allopolyploids greatly prevail in nature, 

the current view is that autopolyploid and allopolyploid taxa are similarly frequent (Barker et 

al. 2016). Autopolyploids have been overlooked in nature (Parisod et al. 2010) because they 

represent cryptic polyploid species hardly distinguishable by morphological traits (moreover 

still often without any taxonomic rank; Soltis et al. 2010; Barker et al. 2016). Somatic 

doubling traditionally represents another possible origin of polyploidy. This process is 

characterized by an increasing of the chromosome number in somatic tissue because 

of disorders in mitosis. However, well documented cases of somatic doubling are rare 

(Primula ×kewensis; Harlan and deWet 1975), but somatic polyploidization is frequently 

experimentally induced using the mitotic poison colchicine (e.g. Pavlíková et al. 2017; 

Wahlang et al. 2019). 

Polyploidy has been studied since the beginning of the last century, and over time 

the percentage of angiosperm species suspected of having undergone a polyploid event has 

steadily increased (Masterson 1994; Otto and Whitton 2000; Soltis et al. 2009). Finally, it is 

currently assumed that evolution of all angiosperms included palaeopolyploid events (even 

in the case of Amborella; Jiao et al. 2011). Moreover, about a third of all polyploids were 

formed recently (e.g. in the genera Spartina, Senecio, Cardamine or Tragopogon) and some 

species arose only within the past 150 years (Soltis and Soltis 2009; Rice et al. 2015).  

Unreduced gametes (having the full somatic chromosome number) which arise 

from errors during cell division are suspected to play an essential role in polyploid formation 

(Harlan and deWet 1975; Ramsey and Schemske 1998; Barker et al. 2016). Nevertheless, 

their abundance is generally low in natural populations (Ramsey and Schemske 1998). 

For this reason, the probability of fusion of two unreduced gametes forming a new polyploid 

seems to be low. Fusion of an unreduced gamete with a normal reduced gamete, resulting 

in a triploid individual (i.e. a triploid bridge), is probably more frequent in wild populations 

(Ramsey and Schemske 1998). Subsequent backcrossing with one of the parents or a triploid 

leads to polyploid formation. Most triploids are at least partially fertile, producing 1x, 2x or 

3x gametes (Harlan and deWet 1975; Husband 2004). 

Whole-genome duplication in plants directly affects various substantial characters and 

traits (incl. ecology, invasiveness; Francis et al. 2008; Herben et al. 2012; Te Beest et al. 

2012). Polyploidization causes changes at the cellular and tissue levels via the so-called 

nucleotypic effect (e.g. cell size, nuclear volume, cell cycle duration; Doyle and Coate 2019). 

In addition, polyploids differ in physiological and ecological traits from their diploid 

congeners (e.g. ecological preferences and tolerance, stress resistance, competition or 

plant/animal interactions; Levin 1983; Soltis et al. 2004; Thompson et al. 2004). Whole- 

-genome duplication also significantly affects the reproductive system (e.g. break-down 

of self-incompatibility, shift to or greater asexual reproduction; Levin 1983) and may promote 

the production of viable hybrid seeds due to re-establishment of normal endosperm 

cellularization (overcoming of an endosperm-based reproductive barrier; Lafon-Placette et al. 

2017). Thus, polyploids may immediately survive and adapt to conditions other than those 

inhabited by their diploid progenitors (Levin 1983).  
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A current study concluded that ancient polyploidization was tightly linked to changes 

in the rate of diversification and that polyploidization events were followed by an increase 

in species richness in some angiosperm clades (Landis et al. 2018). The significant role 

of polyploidy in the formation of diversity may also be traced at the regional level. 

For example, a comprehensive study of the Pyrenean flora found the taxonomic diversity 

of genera with only diploid species to be markedly lower than that of those with polyploid 

species (Petit and Thompson 1999). Polyploidy has been identified as a direct source 

of diversity (species richness) even within the family Rosaceae (Vamosi and Dickinson 2006). 

 

 

6.1.3 Apomixis 
 

Last but not least, apomixis (i.e. agamospermy, asexual production of maternal progeny 

through seeds or cloning through seeds; Hörandl 2007) is a microevolutionary process 

effectively involved in the speciation of a significant part of vascular plants (León-Martínez 

and Vielle-Calzada 2019). Apomixis may promote newly arisen polyploids or hybrids, 

stabilize their reproduction and facilitate their reproductive isolation from their parents 

(Wissemann 2007). The definition of apomixis in the wide sense includes all forms 

of asexuality such as vegetative reproduction by means of bulbs, layers and other vegetative 

particles or simple fragmentation. In the current restricted sense of the term, apomixis 

(i.e. agamospermy), as also used here, was defined already by Stebbins (1950) seventy years 

ago as all types of apomictic reproduction in which embryos and seeds are formed by asexual 

means. Circumvention of both meiosis and fertilization is an essential feature of apomictic 

seed production. Therefore, apomictically derived embryos developing in seeds are usually 

cytologically and genetically identical with their maternal parent (Stebbins 1950). 

Pathways by which apomictic seeds can be formed can be divided into three broad 

categories – adventitious embryony (sporophytic apomixis) and diplospory and apospory 

(gametophytic apomixis, Fig. 3; Stebbins 1950; Dickinson 2018). Adventitious embryony is 

the simplest pathway because embryos develop directly from somatic cells (i.e. from 

sporophytic tissue of the nucellus or ovule integument), so the gametophytic stage is 

completely omitted (best known in Citrus, Fig. 3; Stebbins 1950; Richards 1997; Dickinson 

2018). Gametophytic apomixis is characterized by the circumvention of meiosis and 

the consequent production of unreduced megaspores (i.e. apomeiosis). Diplospory is 

the situation when meiosis fails (or is abnormal) and the megaspore mother cell develops 

into an unreduced megagametophyte (Fig. 3). In apospory, the unreduced megagametophyte 

develops mitotically from a somatic cell of the ovule (usually from a nucellar cell, Fig. 3) 

instead of the megaspore mother cell (Hörandl 2007; Whitton et al. 2008). Whereas 

diplospory is more likely to be linked to obligatory apomixis because it directly interferes 

with sexual gametophyte development, meiosis in the megaspore mother cell of aposporous 

apomicts usually progresses normally. Thus, apospory often represents a facultative apomictic 

pathway involving the production of both sexual and apomictic gametophytes (Whitton et al. 

2008). 



11 

 

 
 

Fig. 3: Main developmental pathways of embryo sac formation in sexual and apomictic flowering plants, 

published in Hojsgaard and Hörandl (2019). MMC = megaspore mother cell; MC = megaspore; NC = nucellus 

cell; BIII hybrid = offspring produced by fertilization of unreduced egg cells. The size of nuclei corresponds 

to the relative ploidy level. For details, see the respective paper (pathways C and D are described in the included 

article on page 128–129). 
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However, the realization of meiosis does not necessarily mean the successful 

formation of a sexual gametophyte. In the aposporous apomictic species Poa pratensis, 

the functional megaspore usually experiences normal meiosis but starts to degenerate soon 

after the end of meiotic division whereas some nucellar cells enlarge to become aposporous 

initials and prepared to divide (Albertini et al. 2001). Nevertheless, in rare cases, 

megagametogenesis starts exactly the same but the development of the embryo sac never 

finishes successfully and the young megagametophyte degenerates, being surrounded by cells 

resembling aposporous initials (Albertini et al. 2001). Although the production of more than 

one embryo in a single seed (i.e. polyembryony; Naumova 1993) is a primary characteristic 

of adventitive embryony (Naumova 1993), it is also indicated in some aposporous apomicts 

(e.g. Poa alpina, P. pratensis, Potentilla argentea, P. verna, Ranunculus auricomus; Richards 

1997). Several aposporous initials were detected in the ovule of P. pratensis, resulting 

in several aposporous embryo sacs, which reached full development in most of cases. 

However, only one embryo sac was normally oriented with the egg apparatus toward the 

micropyle (Albertini et al. 2001). The simultaneous occurrence of sexual and asexual seeds 

in one inflorescence and an analogous process within the same inflorescence or even 

the ovule were also detected in Hieracium subgenus Pilosella (Krahulcová and Krahulec 

2000; Bicknell et al. 2003). One to eight aposporous initials in the nucellus of Crataegus 

pruinosa were found to occur simultaneously and two to four of them developed into mature 

embryo sacs (Muniyamma and Phipps 1979). The above suggests that there is some kind 

of competition in the embryo sac of aposporous apomicts (as in the case of adventitious 

embryony; Richards 1997), but the details of the processes still remain unclear (Whitton et al. 

2008). 

The second essential feature of gametophytic apomixis is parthenogenesis (i.e. embryo 

development without fertilization; Hörandl 2007). A developed megagametophyte, 

represented by a mature embryo sac, consists of unreduced genetically maternal cells (formed 

by diplospory or apospory). One of these cells (most commonly the egg cell) develops 

parthenogenetically into an embryo (Fig. 3). The resulting embryo is therefore unreduced and 

genetically maternal (Hörandl 2007). 

Endosperm formation nourishing the embryo and enabling its development is essential 

for both sexual and apomictic seeds. Apomictic plants can be divided into two groups 

depending on whether they require pollen for proper endosperm development. Whereas 

the endosperm of autonomous apomicts develops independently without any pollen 

contribution, so-called pseudogamous apomicts require fusion of a sperm cell with the polar 

nucleus for successful endosperm development. Pseudogamy (Fig. 3) is closely linked 

to apospory (almost all aposporous plants are pseudogamous). On the contrary, autonomous 

endosperm development is associated with diplospory (Czapik 1996; Richards 1997). 

Moreover, pseudogamy is also linked to self-compatibility and it brings benefits 

in maintaining at least some viable pollen and increasing fecundity because inbreeding 

depression can be excluded in apomicts (Noirot et al. 1997). Conversely, autonomous 

apomixis seems to be associated rather with a decrease of male fertility (e.g. male sterility 

in autonomous apomictic Townsendia; Thompson et al. 2008).  

In contrast to widespread polyploidization, only about 1% of angiosperms (vs 3% 

of pteridophytes) are considered substantially apomictic (Whitton et al. 2008; Liu et al. 2012). 

Among the 326 apomictic genera, adventitious embryony (148 genera) represents the most 

frequent apomictic type, mainly in tropical and subtropical woody plants of the families 

Rutaceae, Celastraceae and Orchidaceae (Naumova 1993; Carman 1997; Richards 1997; 

Hojsgaard et al. 2014). It is followed by gametophytic apomixis – 110 aposporous and 68 

diplosporous predominantly temperate herbaceous genera (Richards 1997; Hojsgaard et al. 

2014). Three-quarters of these are restricted just to three families – Rosaceae, Poaceae and 
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Asteraceae (Hojsgaard et al. 2014). Whereas the Rosaceae and Poaceae are predominantly 

aposporous, the Asteraceae are more frequently diplosporous (Whitton et al. 2008). The broad 

taxonomic distribution of apomixis (32 apomictic-containing orders, Hojsgaard et al. 2014) 

suggests its multiple origins (Whitton et al. 2008). Although searching for predispositions 

to gametophytic apomixis is complicated, polyploidization, hybridization and production 

of unreduced gametes in high frequencies are important factors allowing gametophytic 

apomixis to evolve (Richards 1997; Whitton et al. 2008). The genetic mechanisms underlying 

both gametophytic and sporophytic apomixis have not yet been sufficiently explained. 

Various authors have discussed global deregulation of sexual reproductive development, 

invoking a unique trigger initiating apomictic formation, a few mutations within 

the reproductive pathway, simple Mendelistic inheritance or complex control involving 

multiple loci (Garcia et al. 1999; Grimanelli et al. 2001; Ozias-Akins 2006). Research 

activities are primarily aimed to engineer apomixis in sexual crop species that would enable 

the production of progeny genotypically identical to the desirable maternal parent (Ozias- 

-Akins 2006). 

On the one hand, an apomictic reproductive mode brings several advantages, including 

assured reproduction (even in the absence of pollination), avoidance of the ‘cost of meiosis’ 

and thus the production of all offspring with the same fitness as the mother and, finally, fixing 

and spreading an extremely fit genotype. In the case of polyploids and hybrids, apomixis 

represents a unique opportunity to be highly heterozygous (therefore vigorous), fixing this 

heterozygosity and escape from sterility (Richards 1997). On the other hand, apomictic 

reproduction also causes the accumulation of disadvantageous mutations (Müller’s ratchet) 

and an inability to recombine new advantageous mutants capable of adapting 

to environmental change, a very narrow population niche and, finally, a lack of adaptive fine- 

-tuning in hybrids to a particular environmental condition in comparison to their parents 

(Richards 1997). The tendency of apomicts to be distributed largely at higher latitudes than 

their sexual relatives and to occupy previously glaciated areas is called geographical 

parthenogenesis (e.g. Kearney 2005; Hörandl et al. 2008; Mráz et al. 2009). This success 

of apomicts in colonization is caused by a combination of factors acting together, and these 

not occur frequently enough to replace their sexual counterparts. The overall predominance 

of sexuality can therefore be explained by the rare establishment of apomixis (Hörandl 2006).  

 

 

6.2 Phylogeny and classification of Rosaceae 
 

Although the family Rosaceae is highly economically important and widespread, especially 

in temperate regions, phylogenetic relationships, particularly at the intrafamiliar level, have 

long been poorly understood (Potter et al. 2007a). The classification and view of phylogeny 

changed gradually over time as new progressive methods became available. The numbers 

of genera and species presented in the literature over the last decades differ depending 

on the taxonomic treatment used (92 genera / 2,805 species; Stevens 2020; vs 115 genera  

/ 3,000 species; Tachtadžjan 1966). Various approaches have been employed for the 

reconstruction of phylogenetic relationships within the family. The first phylogenies and 

classifications were based on morphology (e.g. fruits; Rohrer et al. 1991). Later, molecular 

phylogenetic analyses began to play major role in the evaluation of family relationships  

(e.g. Potter et al. 2007a; Xiang et al. 2016; Zhang et al. 2017). Various molecular markers 

have been used for this purpose, sometimes supplemented by morphological and anatomical 

data (e.g. Campbell et al. 1995; Xiang et al. 2016). The most significant molecular tools 

employed in the study of the Rosaceae include the sequencing of different regions of nDNA 

(18S and 5.8S genes of rDNA, GBSSI 1 and 2 genes, ITS spacer, PGIP gene, PPO gene) and 
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cpDNA (matK gene, ndhF gene, rbcL gene, trnK exons, trnL intron, trnL-trnF spacer; Morgan 

et al. 1994; Campbell et al. 1995; Evans et al. 2000; Potter et al. 2002, 2007a). The most 

current studies employ nuclear and plastid phylogenomics identifying hundreds of nuclear 

genes (Xiang et al. 2016) and whole-chloroplast DNA (i.e. plastome; Zhang et al. 2017). 

 

 

6.2.1 Current Rosaceae phylogeny and classification 
 

Rosids, and particularly the order Rosales, are higher taxonomic ranks where the Rosaceae 

family is currently nested. The circumscription of these groups has been changed to reflect 

molecular phylogenies based on sequences of both chloroplast and nuclear genes and repeats 

(Wang et al. 2009; Zhao et al. 2016; Stevens 2020). Strong support has been found that 

the Rosales order, consisting of nine families (Rosaceae, Barbeyaceae, Dirachmaceae, 

Rhamnaceae, Elaeagnaceae, Ulmaceae, Cannabaceae, Moraceae, Urticaceae), is 

monophyletic, and twelve molecular markers well supported all relationships within 

the family (Zhang et al. 2011). 

The former division of the Rosaceae family into four subfamilies (Rosoideae, 

Spiraeoideae, Prunoideae, Maloideae; e.g. Valentine and Chater 1968) based on fruit types 

was not supported by the distribution of base chromosome numbers, various chemicals 

constituents or chloroplast and nuclear DNA sequences (Judd et al. 2016). Recent phylogenies 

bringing insight into deep relationships within the Rosaceae (Xiang et al. 2016; Zhang et al. 

2017, for details see Fig. 4) support the classification into three subfamilies (identically 

as Potter et al. 2007a) – Dryadoideae, Rosoideae and Amygdaloideae (i.e. Spiraeoideae 

in Potter et al. 2007a) and their subdivision into sixteen tribes (see Supp. 1). Strong support 

for the monophyly of all clades was found and the relationships among them were fully 

resolved (Zhang et al. 2017). Four clades were identified within the tribe Maleae (Zhang et al. 

2017). Numerous whole-genome duplications were confirmed in the evolution 

of the Rosaceae (Xiang et al. 2016). Moreover, molecular clock analysis allowed to estimate 

the time of divergence of the family and its particular tribes and genera. Crown clades 

of the Rosaceae diverged probably during the Late Cretaceous around 101.6 Ma (Xiang et al. 

2016; Zhang et al. 2017). The origins and history of the multiple fruit types within 

the Rosaceae were also reconstructed using transcriptomic and genomic datasets. 

The independent evolution of fleshy fruits from dry fruits has been suggested and it probably 

happened multiple times (for details see Xiang et al. 2016). 
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Fig. 4: Phylogenetic reconstruction of the Rosaceae family published in Xiang et al. (2016). The reconstruction 

was based on maximum likelihood analysis using a dataset of concatenated 113 gene sequences. Numbers 

associated with nodes indicate bootstrap values obtained by maximum likelihood analyses. Asterisks (*) indicate 

100% support. 
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Thus, the new non-fruit based classification consisting of three subfamilies is widely 

accepted (Judd et al. 2016; Xiang et al. 2016; Zhang et al. 2017; Stevens 2020; Fig. 4). 

The Dryadoideae are newly recognized as a subfamily, based on their association 

with symbiotic nitrogen-fixing actinobacteria of the genus Frankia. The Rosoideae are 

delimited more narrowly (see below). Lastly, the Amygdaloideae are much broader 

because of the inclusion of the former Spiraeoideae and Maloideae (Judd et al. 2016). 

The narrow definition of the Rosoideae is a result of removing the tribe Dryadeae 

as a distinct subfamily called the Dryadoideae and the tribes Kerrieae and Sorbarieae 

into the subfamily Amygdaloideae (Judd et al. 2016; Xiang et al. 2016; Zhang et al. 2017; 

Stevens 2020). The Rosoideae in the current circumscription therefore consist of six tribes 

(Agrimonieae, Potentilleae, Colurieae, Ulmarieae), two being monotypic (Roseae, Rubeae; 

for the genera included; see Supp. 1 and 2; Xiang et al. 2016; Zhang et al. 2017; Stevens 

2020). 

The newly delimited N-fixing Dryadoideae subfamily includes only four genera 

(Dryas, Purshia, Cercocarpus, Chamaebatia; see Supp.1) occurring mostly in western North 

America (Dryas is circumboreal; Judd et al. 2016; Xiang et al. 2016; Zhang et al. 2017; 

Stevens 2020). 

The taxonomic concept of the newly defined broad subfamily Amygdaloideae (former 

Spiraeoideae in Potter et al. 2007a), including members of the former subfamilies Maloideae 

and Prunoideae, is not completely uniform (see Supp. 1 and 2). The subfamily consists of nine 

tribes (Maleae, Gillenieae, Spiraeeae, Sorbarieae, Amygdaleae, Kerrieae, Exochordeae, 

Neillieae, Lyonothamneae; Xiang et al. 2016; Zhang et al. 2017) but their name and 

circumscription vary slightly among authors (Stevens 2020). The tribe Amygdaleae, 

characterized by a base chromosome number of 8 and drupelets (Stevens 2020), contains 

species that were previously included in the former subfamily Amygdaloideae (i.e. genus 

Prunus). Pome-bearing genera of the former subfamily Maloideae (i.e. Cotoneaster, Malus, 

Pyrus, Sorbus…) are defined by the base chromosome number of 17, and four copies 

of the GBSSI gene currently form the subtribe Malinae (former Pyrinae in Potter et al. 2007a; 

see Supp. 2) and, together with Vauquelinia and Kageneckia (Xiang et al. 2016; Zhang et al. 

2017), the tribe Maleae (former Pyreae in Potter et al. 2007a; Judd et al. 2016; see Supp. 2). 

Moreover, also the supertribe Pyrodae, including the tribe Maleae together with Gillenia and 

Lindleya, is strongly supported in current phylogenies (although Gillenia may also be 

classified within the tribe Gillenieae in a sister relationship with the Maleae; Potter et al. 

2007a; Xiang et al. 2016; Zhang et al. 2017; see Supp. 1 and 2). 

 

 

6.2.2 History of the phylogeny and classification of the Rosaceae family  
 

Strong molecular evidence for the monophyly of the Rosaceae was reported repeatedly 

by various authors (e.g. Morgan et al. 1994; Evans et al. 2000; Potter et al. 2002, 2007a), 

but the intrafamiliar classification changed over the last century, both as to the number and 

composition of subfamilies. The oldest and for a long time the most widely adopted 

taxonomic treatment based on fruit morphology used four subfamilies (Spiraeoideae, 

Rosoideae, Maloideae, Prunoideae; e.g. Valentine and Chater 1968). Moreover, Tachtadžjan 

(1987) added three more subfamilies (Quillajeoideae, Dichotomanthoideae, Prinsepioideae) 

and further subdivisions (tribes). Four traditionally recognized subfamilies are characterized 

by the type of fruit – the Spiraeoideae by follicles, Rosoideae by achenes, drupes or drupelets, 

Maloideae by fleshy pomes and Prunoideae by drupes (Valentine and Chater 1968). Although 

further molecular analyses supported some of the traditional groups, they also showed that 

fruit types cannot correctly elucidate relationships across the Rosaceae (e.g. Morgan et al. 
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1994; Potter et al. 2007a). Thus, a new intrafamiliar classification substantially influenced 

by molecular phylogenetic studies was adopted for the Rosaceae. 

The first molecular phylogenetic study employing chloroplast DNA sequencing (rbcL 

gene) supported groups comparable to three traditional subfamilies (Maloideae, 

Amygdaloideae, Rosoideae), but with some modifications (Morgan et al. 1994). By contrast, 

the fourth traditional subfamily Spiraeoideae was evaluated as polyphyletic, consisting 

of several distinct evolutionary lineages. The subfamily Rosoideae was subdivided by base 

chromosome number (members with x = 9 were well separated from members with x = 8 or 

7). The subfamily Maloideae consisted of members with a base chromosome number of either 

17 or 15 and also included some taxa from the former subfamily Spiraeoideae. Prunoideae 

was the subfamily with the lowest support, comprising besides the genus Prunus in its 

traditional sense also three other genera (Prinsepia, Oemleria, Exochorda), all with a base 

chromosome number of 8. The incidence of more than one fruit type in all subfamilies 

revealed the base chromosome number as a better indicator of phylogenetic relationships 

among the Rosaceae than the traditionally used type of fruit (Morgan et al. 1994). 

Another molecular phylogeny based on the low-copy nuclear gene GBSSI exhibited 

duplication of this gene predating the evolution of the Rosaceae. The whole family thus 

possesses at least two loci of this gene (Evans et al. 2000). Moreover, additional duplication 

occurred in the subfamily Maloideae. So, two copies of this gene (GBSSI 1 and GBSSI 2) 

were found in diploid taxa with a base chromosome number of 7, 8 or 9 (subfamily 

Spiraeoideae, Rosoideae, Prunoideae) and four copies (GBSSI 1A, GBSSI 1B, GBSSI 2A, 

GBSSI 2B) in diploid taxa with a base chromosome number of 15 or 17 (subfamily 

Maloideae; Evans et al. 2000; Potter et al. 2007a). Analyses of chloroplast matK and trnL- 

-trnF sequences (Potter et al. 2002) showed similar clades as those based on the chloroplast 

rbcL gene (Morgan et al. 1994), corresponding to traditional subfamilies but with some 

modifications. Three main lineages diverged in the early evolution of the whole Rosaceae 

family – Rosoideae s.str. clade (x = 7, occasionally 8, lacking the ability to accumulate 

sorbitol), actinorhizal Rosaceae clade (x = 9, able to form symbiotic relationships with N- 

-fixing bacteria and prone to sorbitol accumulation, recent Dryadoideae) and the rest  

of the family (Potter et al. 2002). Whereas the subfamilies Maloideae and Rosoideae were 

found to be monophyletic, the Prunoideae and Spiraeoideae turned out to be polyphyletic. 

The strongly supported monophyletic subfamily Maloideae included, besides members 

with a base chromosome number of 17, also Vauquelinia (x = 15, capsule), Kageneckia 

(x = 17, follicle) and other taxa producing pomes (i.e. Maloideae s.l.; Potter et al. 2002). 

The first modern and still accepted, more or less without change, classification of the 

Rosaceae family was proposed based on a compilatory molecular study using ten nucleotide 

sequence datasets for nuclear and chloroplast regions (many of the data used had already been 

published; Potter et al. 2007a). Although monophyletic groups closely corresponding with 

some previously defined subfamilies and tribes were resolved and strongly supported, no 

previous classifications were confirmed entirely. Three subfamilies were revealed – two large 

ones, the Rosoideae and Spiraeoideae, and a small one, the Dryadoideae. Thus, the former 

subfamily Rosoideae was divided into the Rosoideae (s.str.) and the Dryadoideae. 

The Rosoideae (s.str.) were composed of taxa with a base chromosome number of 7 and 8 and 

producing achenes, acheneta or drupeta. The remaining taxa with x = 9, traditionally 

belonging to Rosoideae based on achene production, were found to fall outside it. 

The subfamily Dryadoideae was characterized by a base chromosome number of 9 and 

symbiotic nitrogen fixation (via associations with Frankia actinobacteria). The subfamily 

Spiraeoideae (i.e. Amygdaloideae in Xiang et al. 2016; Zhang et al. 2017) was formed as 

a combination of the former Amygdaloideae, Maloideae and Spiraeoideae, including various 

types of fruits and chromosome numbers (8, 9, 15, 17). Taxa traditionally belonging to the 
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Maloideae because they bear pomes (or polypyrenous drupes) were ranked into subtribe 

Pyrinae (Potter et al. 2007a). The evolution of Rosaceae fruits was complex and resulted in 

multiple fruit types in each of several clades. The two largest subfamilies were further 

subdivided into one supertribe, three tribes and three subtribes within the Rosoideae, and two 

supertribes, seven tribes and one subtribe within the Spiraeoideae (subtribes Rosodeae and 

Kerriodae were newly described; for details see Supp. 2). Nevertheless, phylogenetic 

relationships among clades were often weakly supported (Potter et al. 2007a). Worth pointing 

out is the closer relation of several taxa with x = 15 and 17, which produce follicles 

(traditionally classified within the Spiraeoideae), to the Maloideae (pome bearing). This again 

confirms that base chromosome numbers better indicate the phylogenetic relationships across 

the Rosaceae than fruit type (Potter et al. 2007a). Although phylogenetic studies mentioned 

above were limited by a low number of loci, their resolution is comparable to that of current 

studies employing phylogenomics (analysing whole transcriptomic and genomic datasets). 

 

 

6.2.3 The origin of subtribe Malinae – a model group for studying 

the complex evolution of the Rosaceae 
 

Various authors have studied in detail particular subclades and tried to evaluate more deeply 

the relationships within them (e.g. Neillieae, Oh and Potter 2005; Spiraeeae, Potter et al. 

2007b; Pyrinae, Campbell et al. 2007; Pyreae, Lo and Donoghue 2012). The subtribe Malinae, 

grouping taxa producing pomes or polypyrenous drupes, has been of the greatest interest 

in the last decades (Robertson et al. 1991; Campbell et al. 1995; Aldasoro et al. 2005), 

especially because of its unusual base chromosome number of 17 (with the sole exception 

of the early branching genus Vauquelinia with x = 15; Goldblatt 1976; Robertson et al. 1991). 

It has been supposed that hybridization played important role in the formation of this 

extraordinary number. The hypothesis of the hybrid origin of the subtribe Malinae, holding 

that the whole subtribe arose by hybridization between primitive or ancestral members 

of the former Amygdaloideae with x = 8 and former Spiraeoideae with x = 9 (Sax 1931), was 

suggested since the 1950s (Stebbins 1950). Nevertheless, a phylogenetic analysis based 

on the GBSSI gene including wide range of taxa across the Rosaceae with different base 

chromosome numbers brought completely new insight into the evolution of the Malinae 

(Evans et al. 2000; Evans and Campbell 2002). The long-held hypothesis of hybrid origin was 

not supported. On the one hand, former genera of the Spiraeoideae (Kageneckia and 

Vauquelinia) were found to be the closest relatives of the subtribe Malinae in all four GBSSI 

clades, but on the other, the study showed that ancestral member of the former 

Amygdaloideae did not participate in the origin of the subtribe Malinae (Evans et al. 2000). 

A new alternative hypothesis invoked hybridization and polyploidization in a lineage 

including the ancestors of Gillenia (x = 9; Evans et al. 2000; Evans and Campbell 2002; 

Velasco et al. 2010) and subsequent aneuploid reduction of x = 18 (Evans and Campbell 

2002). Intergeneric hybridization and genome duplication involved in the evolution 

of the Malinae causes difficulties in reconstructions of its relationships (Campbell et al. 2007). 

Moreover, the timing and occurrence of whole-genome duplication still remain unclear 

(Xiang et al. 2016) and rapid ancient radiation is suggested (Campbell et al. 2007). Gillenia 

was resolved as a sister clade based on both the GBSSI 1 and the GBSSI 2 gene (Evans and 

Campbell 2002; Potter et al. 2002). Based on its distribution in the southeast of the United 

States, it has been proposed that the subtribe Malinae originated in North America (Evans and 

Campbell 2002). Thus, the subtribe Malinae contains, besides taxa with a base chromosome 

number 15 and 17, also genus Gillenia (x = 9) and forms a strongly supported monophyletic 

group (Evans and Campbell 2002; Potter et al. 2007a). 



19 

 

6.3 Rosaceae as a focus of applied science 
 

An extraordinarily high number of Rosaceae species are under scientific scrutiny because 

of their economical/agricultural significance (Fig. 5; Potter et al. 2002; Simpson 2006; Judd et 

al. 2016). Reflecting the significance of model groups within the Rosaceae, entire genomes 

of members of six genera have already been sequenced – Fragaria (6 species), 

Malus ×domestica, Prunus armeniaca, P. avium, P. domestica, P. dulcis, P. persica, 

P. yedoensis, Pyrus (3 species), Rosa (2 species) and Rubus occidentalis (Fig. 5; GDR 

database – Jung et al. 2019). Primary research benefits from the intensive focus and 

the knowledge obtained can be applied back in general plant biosystematics and to less 

economically important taxa (e.g. Prunus cerasus; Horvath et al. 2008 or Malus ×domestica; 

Volk et al. 2015). 

 
Fig. 5: Rosaceae crops showing variation in fruit types, published in Shulaev et al. (2008). The genomes of all 

included genera have already been sequenced. A = Prunus persica (peach) – fleshy drupe; B = Prunus 

armeniaca (apricot) – fleshy drupe; C = Malus ×domestica (apple) – pome; D = Fragaria ×ananassa 

(strawberry) – achenes; E = Rosa ×hybrida (rose) – achene; F = Pyrus communis (pear) – pome; G = Prunus 

avium (sweet cherry) – fleshy drupe; H = Prunus domestica (plum) = fleshy drupe; I = Rubus idaeus (raspberry) 

– drupelets. 
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These model taxa are predominantly species bearing edible berries  

(Fragaria – strawberry, Rubus – raspberry and blackberry) and tree fruit species known 

as stone fruits (Prunus armeniaca – apricot, P. domestica – plum, P. persica – peach and 

nectarine, P. avium – sweet cherry, P. cerasus – sour cherry, P. dulcis – almond) and 

pomiferous fruits (Malus ×domestica – apple, Pyrus communis – pear, Cydonia – quince or 

Eriobotrya – loquat). The world production of five major commercial fruit groups belonging 

to the family (apple, peach and nectarine, pear, plum, and sloe and strawberry) reached 

approximately 153 million tons in 2017 (FAO 2020). 

The most important ornamental cultivars include herbs, such as Alchemilla (lady’s 

mantle), Fillipendula (meadowsweet) and Potentilla (cinquefoil), and woody plants 

such as Chaenomeles (flowering quince), Cotoneaster, Crataegus (hawthorn), Pyracantha 

(firethorn), Rosa (rose), Sorbus (rowan) and Spiraea (bridal wreath; Simpson 2006; Judd et al. 

2016). Last but not least, Rosa is also cultivated for essential oils (Simpson 2006), and wood 

from Prunus serotina is used in the manufacture of furniture (several genera provide timber; 

Judd et al. 2016). 

 

 

6.3.1. Importance of wild relatives in breeding programmes 
 

Nevertheless, the overall genetic variation of these crops is restricted compared to their wild 

related species and their economical yields directly depend on the existence of suitable 

relative/crossable plants with agronomically important characters. The assessment and 

maintenance of genetic diversity of wild relatives are crucial for the development of new 

cultivars (De Andrés et al. 2012). Wild plant genetic resources provide a repository of suitable 

characters using for the selection of resistant, highly productive varieties and allow 

the preservation of adaptability to environmental and other changes. Continuous breeding 

using wild relatives is therefore a way to improve crop genetic resources. Adequate 

knowledge and evaluation of existing genetic diversity in wild plant populations and 

the efficient management of crop genetic resources are therefore fundamental for both basic 

and applied science (Mondini et al. 2009). Cherry breeding may serve as a model example 

of how wild germplasm may be used as a source of novel genetic diversity. Whereas Prunus 

avium (sweet cherry) cultivars were found to be genetically restricted to Greece, wild 

P. avium populations exhibited genetic variation suggesting that wild germplasm may be 

useful in cherry breeding programmes (Ganopoulos et al. 2013). Similarly, high diversity 

levels of wild Prunus fruticosa (ground cherry) populations observed in Serbia promise great 

potential for breeding new cherry varieties and rootstocks for sweet and sour cherry (Barać et 

al. 2017). The main characters favouring this wild cherry species in breeding programmes is 

adaptation to abiotic stress in severe climate conditions of steppes and prairies, including 

resistance to low temperature and drought, late-blooming, a shrubby habit and abundant roots 

(Iezzoni and Mulinix 1992; Dzhangaliev et al. 2003; Pruski 2007; Iezzoni 2008). Breeding 

new winter-hardy, drought-resistant and late-blooming cultivars and cultivated shrub cherries 

that can grow steadily in northern environments is crucially economical important for fruit 

growers on prairies (e.g. in Canada) and for soil conservation on dry slopes (Pruski 2007). 
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6.4 Microevolutionary processes of selected model genera of the 

Rosaceae 
 

The Rosaceae are a family with an enormously high incidence of hybridization and 

polyploidization (Ellstrand et al. 1996; Dickinson et al. 2007; Stace et al. 2015; Marques et al. 

2018). The incidence and frequency of overall hybridization were evaluated in only a few 

geographical areas that are hard to compare (Iberian Peninsula, Scandinavia, British Isles and 

Great Plains in North America). For this reason, various features of hybridization are outlined 

in the text bellow. Half of all hybrids reported from the Iberian Peninsula were found to be 

restricted to four families, one of them being the Rosaceae (the others were Plumbaginaceae, 

Lamiaceae and Orchidaceae; Marques et al. 2018). Likewise, the family Rosaceae, along with 

the Asteraceae, Salicaceae and Poaceae, belonged to the families with the most hybrids 

in Scandinavia, the British Isles and on the Great Plains (Ellstrand et al. 1996). It has been 

found that in families where hybridization prevails, polyploidization is also frequent (Marques 

et al. 2018). Thus, as in the case of hybridization, the frequency of polyploids in the Rosaceae 

was markedly above average in the Iberian Peninsula (as well as in the families 

Caryophyllaceae, Poaceae and Liliaceae; Marques et al. 2018). Moreover, polyploidization 

occurred numerous times in the evolution of the Rosaceae (Evans and Campbell 2002; 

Vamosi and Dickinson 2006). So, hybridization is a common phenomenon in this family; 

however, not only crossing between species, but also intergeneric hybridization, was 

described within it (Campbell et al. 1991; Robertson et al. 1991; Fig. 6). However, a high 

frequency of intergeneric hybrids is not present throughout the family but is predominantly 

restricted to the subtribe Malinae, namely to genera such as Amelanchier, Aronia, 

Chaenomeles, Cotoneaster, Crataegus, Cydonia, Malus, Mespilus, Pyrus and Sorbus. Their 

hybrid origin is further illustrated by recent intergeneric hybrids, such as ×Amelasorbus, 

×Sorbaronia, ×Sorbocotoneaster, ×Sorbopyrus, ×Pyracomeles, ×Pyronia, ×Crataegomespilus 

and ×Crataegosorbus, repeatedly described in the field and also bred in dendrological gardens 

(e.g. Kovanda 1965; Krügel 1990; Robertson et al. 1991; Hejný and Slavík 1992; Stace et al. 

2015). Such intergeneric compatibility in the subtribe Malinae suggests limited genetic 

divergence (Kovanda 1965; Campbell et al. 1995) and weak overall hybridization barriers 

which, however, do not necessarily mirror the close relationship among the genera (Robertson 

et al. 1991). Nevertheless, the fertility of newly arisen intergeneric hybrids differs and some 

of them are largely sterile or produce few seeds (Campbell et al. 1991). 
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Fig. 6: Published intergeneric hybrids in the subtribe Malinae, summarized in Robertson et al. (1991). Dashed 

lines represent frequently occurring hybrids within Sorbus s.l. For details see the respective paper. 

 

Hybridization in the Rosaceae is concentrated only in a few genera, but interbreeding 

is all the more frequent within them. For the Mediterranean region, four genera were reported 

to include a remarkable number of hybrids occurring in the Iberian Peninsula, one of them 

being Rosa including 75% of hybrid taxa (Marques et al. 2018). Other Rosaceae genera 

with high rates of hybrids in the Iberian Peninsula include Geum (50% of hybrid taxa), 

Prunus and Agrimonia (both with 33% of hybrid taxa), Crataegus (29% of hybrid taxa) and 

Potentilla (9% of hybrid taxa). The genus Rosa is the most extensively hybridizing genus 

of the Rosaceae also in the British Isles and on the Great Plains; moreover, the genera Sorbus, 

Spiraea, Rubus and Potentilla include significant numbers of hybrid taxa in the British Isles 

(Ellstrand et al. 1996; Stace et al. 2015). 

As mentioned above, the great biological significance of polyploidization and 

hybridization in Rosaceae (and overall in plants) evolution is indisputable, but even 

in the Rosaceae, these processes are also linked with gametophytic apomixis and fertilization 

of unreduced female gametes (Dickinson 2018). Apomixis in the Rosaceae family is mostly 

found in the tribe Pyreae and the subfamily Rosoideae (Dickinson et al. 2007; Dickinson 

2018). Particularly in tribe Pyreae, apomictic reproduction has been detected, for example, 

in the genera Sorbus, Cotoneaster or Crataegus (Dickinson 2018). Alchemilla, Potentilla and 

Rubus are examples of apomictic genera belonging to the subfamily Rosoideae (moreover, 

the genus Rosa exhibits traits of both apomictic and sexual reproduction; Werlemark et al. 

1999; Dickinson et al. 2007). Nevertheless, some genera, such as Prunus, Eriobotrya and 

Fragaria, represent polyploid genera where spontaneous hybridization occurs 

without detected apomixis (Dickinson 2018). 

From a biosystematic point of view, the Rosaceae family is intricate and includes 

several levels of complexity. That is why some of the widely studied genera mentioned below 

serve as model examples exhibiting this complexity. These genera are hierarchically arranged 

to reflect the influence of different proportions of polyploidization, hybridization and 

apomixis on the evolution and diversification of the Rosaceae. The evolution of Prunus, 

Eriobotrya and Fragaria is influenced by polyploidization and hybridization (e.g. Guo et al. 

2006; Horvath et al. 2008; Kamneva et al. 2017; Wang et al. 2017). In the genus Rosa, these 
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processes are supplemented by a unique mode of reproduction combining sexual and asexual 

features (hemisexuality; e.g. Ritz and Wissemann 2003). Asexual reproduction via apomixis 

plays a certain role in the genera Malus, Crataegus and Potentilla, but sexual reproduction 

and hybridization still prevail (e.g. Kron and Husband 2009; Lo et al. 2009; Dobeš et al. 

2015). The influence of apomixis significantly increases in the genus Rubus and Sorbus where 

asexual breeding represents an undisputed force of diversification, manifested in established 

apomictic lineages, together with ongoing polyploidization and hybridization (e.g. Šarhanová 

et al. 2012; Lepší et al. 2019). Finally, the genus Alchemilla consists of long-standing 

hybridogenous apomictic species that are higher polyploids and reproduce obligatorily 

by apomixis (e.g. Czapik 1996; Gehrke et al. 2008). 

 

 

6.4.1 Prunus 
 

The genus Prunus includes many crops of high economical importance, but its taxonomy is 

notoriously problematic and reliable discriminating characters are still missing (Nielsen and 

Olrik 2001). The circumscription and systematics of the genus differ from author to author. Its 

definition as one genus is supported by molecular markers (Bortiri et al. 2001), but particular 

genera are sometimes separated (e.g. Cerasus, Amygdalus, Padus; Bertová 1992). 

The traditional intrageneric classification consists of five subgenera and several sections 

– subgenera Prunus (plums and apricots), Amygdalus (almonds and peaches), Cerasus 

(cherries), Laurocerasus and Padus (Bortiri et al. 2001, 2006). One molecular phylogenetic 

study (Bortiri et al. 2001) revealed two major lineages, one clade including the subgenera 

Padus, Laurocerasus and Cerasus, and the other including Prunus, Amygdalus, 

Emplectocladus and one section of Cerasus. Nevertheless, another molecular phylogeny did 

not support the distinction of the subgenera Padus and Laurocerasus or the subgeneric 

classification in general (Wen et al. 2008). However, the subgeneric classification and 

relationships among groups still remain unclear. 

The genus Prunus consists of diploid, rather self-incompatible species, besides 

polyploid, self-compatible species. Whereas almonds, apricots and peaches are diploid, 

cherries are both diploid and tetraploid. Finally, plums have been reported to be diploid, 

tetraploid, pentaploid and hexaploid (Darlington and Wylie 1955; Hanelt 1997; Corredor et al. 

2004; Verde et al. 2013; Žabka et al. 2018). Both autopolyploidy and allopolyploidy have 

been described in the genus Prunus. Cherries can serve as a model example. Allotetraploid 

Prunus cerasus (sour cherry, 2n = 32; Iezzoni 2008) arose from spontaneous hybridization 

of diploid Prunus avium (sweet cherry, 2n = 16; Iezzoni 2008) and tetraploid Prunus fruticosa 

(2n = 32; Scholz and Scholz 1995). Fusion of a reduced diploid female gamete of P. fruticosa 

and an unreduced diploid male gamete of P. avium was proved based on GISH, C-banding 

(Schuster and Schreibner 2000), AFLP, cpDNA and microsatellites (Horvath et al. 2008). 

Similarly, the formation of the allotetraploid cultivar Prunus ×gondouinii (Duke cherry, 

2n = 32; Webb 1968) involved the participation of an unreduced gamete of P. avium and 

a reduced gamete of P. cerasus. By contrast, Prunus fruticosa is thought to be autotetraploid 

(Tavaud et al. 2004; Fig. 7). 
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Fig. 7: Hypothesis on the relationships among four Prunus species (cherries) published in Tavaud et al. (2004). 

A = haploid genome from P. avium. F = haploid genome from P. fruticosa. *P. avium is thought to produce 

diploid gametes.  

 

Only a few studies have dealt with crop-to-wild gene flow in Prunus species 

(Delplancke et al. 2012). Wild and cultivated almonds were the subject of one of them. 

The native wild almond Prunus orientalis and its domesticated counterpart, cultivated almond 

(Prunus dulcis), were examined for putative crop-to-wild gene flow in Southwest Asia based 

on nuclear and chloroplastic microsatellites. In comparison to cherries and apples (discussed 

below and above), P. orientalis is not considered an ancestor of cultivated almond 

(Zeinalabedini et al. 2010). The two species differ morphologically. Whereas wild 

P. orientalis is a thorny shrub with white tomentose shoots, leaves and fruits, cultivated 

almond is a non-spiny tree with numerous brachyblasts and relatively large leaves. The study 

revealed that gene flow between the species occurred commonly, and hybridization was found 

to be symmetric (bidirectional). Genes of cultivated almond could therefore be spontaneously 

introgressed into wild Prunus orientalis, and, in addition, hybrids showed an intermediate 

phenotype with large, green and tomentose leaves. 

Crop-to-wild gene flow from cultivated plums into wild Prunus spinosa (blackthorn or 

sloe) is also discussed (e.g. Vander Mijnsbrugge et al. 2016; Žabka et al. 2018). Both Prunus 

insititia (damson) and Prunus domestica (plum) represent cultivated plums, but their 

relationship and origin have not yet been sufficiently elucidated and are sometimes considered 

the same species (Woldring 2000; Nielsen and Olrik 2001). In addition, Prunus cerasifera 

(cherry plum) consists of both wild and cultivated forms (Hanelt 1997). Relationships among 

cultivated and wild species are far from fully understood. Although AFLP analysis resulted 

in three genetic clusters (P. cerasifera, P. domestica + P. insititia, P. spinosa + P. ×fruticans), 

intra-population coherence was often more obvious than its interspecific counterpart. Thus, 

the concept including fewer but more diverse species groups has been suggested to be more 

reliable than distinguishing between several species (Depypere et al. 2009). The great 

morphological variation observed in P. spinosa (Nielsen and Olrik 2001) and its large-fruited 

forms led to the assumption of hybridization events. The hybrid taxon Prunus ×fruticans and 

even other hybrid taxa resulting from crossing between P. spinosa and all three of its 

cultivated relatives have been supposed (Hanelt 1997; Nielsen and Olrik 2001; Žabka et al. 

2018). Nevertheless, distinguishing hybrids with P. spinosa was found to be difficult and it 

has been suggested that P. ×fruticans is an old, abandoned fruit crop (Hanelt 1997). Although 

AFLP-based analysis clustered together P. spinosa and P. ×fruticans, morphometrics 
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of leaves and endocarps enabled their separation (Depypere et al. 2009). Results derived 

from morphological and phenological variation confirmed historical crop-to-wild gene flow 

between P. spinosa and P. insititia (including subsequent backcrossing with P. spinosa), 

resulting in P. ×fruticans. Nevertheless, hybridization events have occurred already for a long 

time and probably without adverse effects on abundant wild populations of P. spinosa 

occurring across Europe (Vander Mijnsbrugge et al. 2016). 

 

 

6.4.2 Eriobotrya 
 

One analogous example of a commercial crop substantially affected by polyploidization and 

hybridization is the genus Eriobotrya. This genus is commonly known and also investigated 

because of Eriobotrya japonica, so-called loquat, a horticulturally valuable subtropical plant 

that is grown for fruit or as an ornamental tree. A study of 21 loquat cultivars revealed 

prevailing diploidy but also detected minor polyploidy in 0.68% of accessions. Three ploidy 

levels were identified: prevailing triploids and in a minority also tetraploids and pentaploids 

(Guo et al. 2006). These results suggest that, occasionally, unreduced gametes may arise and 

form high ploidy levels in Eriobotrya. Interspecific hybridization of two Eriobotrya japonica 

cultivars and wild Eriobotrya bengalensis was tested experimentally with the aim to breed 

a new cold-resistant cultivar. Hybrids were successfully obtained and both parental species 

exhibited good compatibility in both directions (Wang et al. 2017). For these reasons, possible 

spontaneous hybridization within wild Eriobotrya species or between potentially escaped 

cultivars and wild congeners cannot be ruled out. 

 

 

6.4.3 Fragaria 
 

The genus Fragaria is one of the most important model taxa within the Rosaceae. Its genome 

has already been sequenced and the genus serves as a model group in studies of introgressive 

hybridization (Shulaev et al. 2011; Hirakawa et al. 2014; Kamneva et al. 2017). Fragaria is 

generally known as strawberry (cultivated octoploid Fragaria ×ananassa), a highly valuable 

commercial crop. It currently consists of 22 species, ten of which are polyploids, ranging 

from the tetraploid to the decaploid level (Shulaev et al. 2011; Kamneva et al. 2017). Their 

evolutionary history, including hybridization events and thus their allopolyploid origin, was 

revealed based on a current study employing NGS data analysis (Kamneva et al. 2017). 

Diploid Fragaria vesca is used as a versatile experimental plant system, and its genome has 

already been sequenced. It has the smallest sequenced plant genome besides Arabidopsis 

(Shulaev et al. 2011). 

Natural hybridization of Fragaria species at a heteroploid level was reported 

from California (Bringhurst and Khan 1963; Bringhurst and Senanayake 1966). Hybridization 

involving the participation of unreduced gametes between octoploid Fragaria chiloensis and 

diploid F. vesca resulted in the formation of nonaploid, hexaploid and pentaploid hybrids 

aggressively competing with F. chiloensis. The presence of other euploid levels (3x, 4x, 10x, 

12x, 16x) in natural conditions was suggested based on at least partial fertility of hybrids, 

production of unreduced gametes and backcrossing (Bringhurst and Senanayake 1966). 

That is why researchers are examining the possibility of unintentional crossing between 

cultivated octoploid strawberry and its wild diploid relatives. A survey done in Switzerland 

found that wild bee (Osmia bicornis), a common flower visitor of Fragaria species, did not 

discriminate between wild and cultivated strawberries and thus represents a potential vector 

for gene flow (Schulze et al. 2012). Nevertheless, a study of F. vesca populations occurring 
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in the vicinity of strawberry farms in Switzerland and Germany revealed no hybrids (not even 

among morphologically deviating individuals) using microsatellite markers. By contrast, 

hand-crosses of the same plant material resulted in clear hybrids with a microsatellite pattern 

combining traits of both parents (Schulze et al. 2011). The breeding programme developing 

the hybrid acting as a bridge between cultivated and related wild strawberry (overcoming 

reproducing barriers preventing desirable gene flow) also brought other insights into crop-to- 

-wild strawberry hybridization. Although low production of achenes was detected in both 

directional crosses of wild and cultivated strawberry, hybridization between wild Fragaria 

species produces large numbers of achenes. In addition, homoploid crosses had a greater 

percentage of germination compared to heteroploid crosses, which resulted in no or very few 

germinating seeds (Luque et al. 2019). 

Although it has been confirmed that species of the genus Fragaria reproduce sexually 

(Dobeš et al. 2015), apomixis has also been discussed (Nosrati et al. 2010; Dziadczyk et al. 

2011; Leszczuk et al. 2018). Apomictic reproduction has been supposed 

based on the production of morphologically maternal progeny in experimental interploid 

crosses of various Fragaria taxa. Nevertheless, based on RAPD analysis, the progeny was 

found to be hybrid, probably due to heterozygosity of the pollen parent (Nosrati et al. 2010). 

Apomixis as a commercially important trait in crop species is, of course, studied in Fragaria 

×ananassa cultivars and facultative apomixis has been suggested to occur in three of them 

(Dziadczyk et al. 2011; Leszczuk et al. 2018). In addition, dioecious octoploid Fragaria taxa 

possess sex-chromosomes and, in contrast to the majority of plants, females are 

heteromorphic (ZW; Charlesworth and Charlesworth 1978; Spigler et al. 2008; Goldberg et 

al. 2010). Moreover, the ability to repeatedly change the genomic location of its sex region 

and thus possibly adaptively gather and lock new genes into linkage with sex has been 

recently identified in this genus (Tennessen et al. 2018). 

 

 

6.4.4 Rosa 
 

The evolution of the polyploid and hybrid genus Rosa is complicated by versatile 

reproduction strategies. Especially the section Caninae (dogroses) is notoriously regarded 

as a biosystematically complex and intricate group, mainly because of its allopolyploid 

constitution, skewed maternal inheritance and ongoing hybridization (Herklotz and Ritz 

2017). Dogroses are mostly pentaploid (base chromosome number 7), but tetraploids, 

hexaploids and rarely heptaploids or octoploids also occur (Klášterská and Natarajan 1974; 

Pachl 2011). They are considered complex allopolyploids, as multiple hybridization events 

have been proved by employing nuclear ribosomal DNA data. The formation of their genome 

involved crossing between members of different rose sections and now extinct Protocaninae 

(Ritz et al. 2005). 

Although dogroses are known for their elusive morphological variation, they are 

clearly characterized by their unique meiotic behaviour referred to as Canina-type meiosis 

(Fig. 8). This type of meiosis facilitates sexual reproduction at odd-number ploidy levels and 

combines sexual and asexual reproduction in one cell (i.e. hemisexuality; Werlemark et al. 

1999; Ritz and Wissemann 2003; Nybom et al. 2004). Each somatic cell of a pentaploid 

dogrose contains 14 homologous chromosomes (normally recombining and forming seven 

bivalents during meiosis) and 21 additional chromosomes (non-pairing neither recombining 

and forming 21 univalents during meiosis). Fertile haploid pollen grains produced 

by unbalanced meiosis contain 7 chromosomes and tetraploid egg cells contain 28 

chromosomes (similarly, tetraploid plants produce haploid pollen grains and triploid egg cells, 

Fig. 8). This heterogamous system leads to a permanently pentaploid organism and 
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matroclinal inheritance. As a result, the nuclear genome of dogroses consists of 80% 

of the maternal genome and 20% of the paternal genome (Ritz and Wissemann 2003; Ritz et 

al. 2005). 

 
Fig. 8: Diagram of Canina-type meiosis of the genus Rosa sect. Caninae (dogroses), published in Ritz et al. 

(2011). Pentaploid dogroses (2n = 5x = 35) produce haploid pollen grains (1n = 1x = 7) and tetraploid egg cells 

(1n = 4x = 28). Fertilization of haploid pollen grains and tetraploid egg cells restores the pentaploid somatic 

level of the next generation. Red chromosomes form bivalents. White, grey and black chromosomes represent 

univalents. 

 

In addition, numerous cases of hybridization were detected among extant dogrose 

species (e.g. Schanzer and Kutlunina 2010; Ritz and Wissemann 2011). Remarkably, 

spontaneous gene flow from the invasive neophyte Rosa rugosa into the native endangered 

species Rosa mollis was revealed in Germany (Kellner et al. 2012). Despite pentaploid 

parents, products of hybridization were often hexaploid (Ritz and Wissemann 2003, 2011). 

It has been hypothesized that hybrids were formed because of the production of unreduced 

gametes that facilitate meiosis by providing two highly homologous chromosome sets needed 

for proper bivalent formation in meiosis (Ritz and Wissemann 2011; Herklotz and Ritz 2017). 

One study of dogroses in Central and Southeastern Europe confirmed this hypothesis 

by revealing reciprocal spontaneous hybridization between sect. Caninae and Rubigineae (8% 

and 32% of hybridogenic individuals, respectively). Unreduced egg cells were detected 

in subsect. Rubigineae. The prevalence of Rubigineae hybrids has been explained 

by the facilitated production of unreduced female gametes, which simplify meiosis in 

Rubigineae plants, and also by the higher abundance of Caninae plants (i.e. its greater pollen 

production; Herklotz and Ritz 2017). 

 

 

6.4.5 Malus 
 

Another example of an intensively studied genus with a fully sequenced genome is the genus 

Malus (Velasco et al. 2010). Compared to the previous genera, apomixis also plays a marginal 

role, besides polyploidization and hybridization (Kron and Husband 2009). The genus Malus 

is familiar to everyone because of the domestic apple, Malus ×domestica, a valuable 
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temperate fruit tree. The origin of domesticated apple turned out to be really complex, 

involving a number of hybridization events. Four primary progenitor wild diploid species, 

M. sylvestris, M. sieversii, M. orientalis and M. prunifolia, were revealed based on chloroplast 

markers (Nikiforova et al. 2013; Volk et al. 2015; Fig. 9). Although these wild species possess 

undesirable fruit and growth habits, their resistance to biotic and abiotic stress makes them 

beneficial for plant breeders. Thus, knowledge on historical introgression in the domesticated 

apple and haplotype sharing among Malus species can play an important role in introgressive 

breeding programmes (Volk et al. 2015). 

 

 
Fig. 9: Relationship between cultivated Malus ×domestica and its four primary wild relatives based 

on chloroplast genome sequences published in Volk et al. (2015) and modified by Bramel and Volk (2019). 

 

Crossing between seven diploid Malus populations showed 1% incidence of non- 

-diploid hybrids (triploids, tetraploids and aneuploids). Moreover, a unique pattern of gametes 

was observed based on microsatellites markers. Whereas unreduced eggs exclusively 

exhibited euploidy (producing triploid and tetraploid offspring), unreduced sperms preserved 

both euploidy and aneuploidy (producing triploid, tetraploid and aneuploid offspring; 

Considine et al. 2012). Therefore, the presence of unreduced gametes, albeit at a very low 

frequency, was able to induce putative autopolyploidization events in the genus Malus 

evolution (Velasco et al. 2010). Besides historical introgression events, hybridization 

among Malus species is still ongoing (e.g. Coart et al. 2006; Kron and Husband 2009; 

Cornille et al. 2013; Ruhsam et al. 2018). Hybrid seeds were detected in natural population 

of tetraploid Malus coronaria (crab apple) growing in sympatry with introduced diploid 

M. ×domestica in Canada, employing ploidy level analysis and isozyme markers (Kron and 

Husband 2009). It was found that although more than a quarter of all seeds were hybrid 

(mainly triploid and pentaploid), all growing trees were tetraploid M. coronaria. This suggests 

that hybrid adults are rare or absent in nature. In addition, analysis of reproductive modes 

revealed besides sexual seeds (3x, 4x, 5x, 6x, 8x) also apomictic seeds (2x, 4x; Kron and 

Husband 2009). This type of hybridization represents so-called crop-to-wild hybridization, 

which has been recently repeatedly reported from various areas.  
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In Europe, recent studies evaluated the risk of hybridization between rare wild 

Malus sylvestris (crab apple) and cultivated domesticated apple (M. ×domestica) and its 

implications for conservation strategies and breeding programmes, both at local and Europe- 

-wide level, employing mainly microsatellite markers (e.g. Cornille et al. 2015; Feurtey et al. 

2017; Ruhsam et al. 2018). A study examining crop-to-wild hybridization across Europe 

revealed that 36.7% of M. sylvestris samples were of hybrid origin and 37 individuals were 

misidentified pure Malus ×domestica (Cornille et al. 2013). Human activities, including apple 

production and creation of disturbances modifying the diversity of apple pollinators, have 

been found to be important factors influencing the rate of crop-to-wild interspecific 

introgression (Cornille et al. 2015). Introgression of domesticated apple into wild 

Malus sylvestris was detected also in Western Europe (mainly Belgian accessions). The study 

revealed that accessions sampled as M. sylvestris included both cultivars and hybrids (11%), 

based on sharing of rare haplotypes (Coart et al. 2006). Similar results were obtained 

in northern Britain. Hybridization was detected at a higher frequency: 27% of the samples 

were classified as hybrids and only 3% were classified as pure Malus ×domestica. Moreover, 

80% of the hybrids backcrossed to Malus sylvestris. One-third of trees could not be accurately 

identified based on traditional morphological characters (leaf size, hairiness, fruit size). 

Nevertheless, the authors admitted possible overestimation of the hybridization rate caused 

by the presence of some hybrids in their dataset that probably represented cultivated and 

escaped trees and not a product of natural hybridization (Ruhsam et al. 2018).  

Substantial current crop-to-wild gene flow was also revealed at local scale 

in populations of wild apples in a French forest (Dourdan forest). Hybrids and domesticated 

apples showed greater fitness than Malus sylvestris. In addition, poor genetic diversity was 

found in source seeds for the reintroduction of wild apple in agroforestry programmes 

attempting to support wild populations by promoting genetically genuine wild genotypes. 

Moreover, some seeds were even found to be introgressed or from misidentified different 

species. Nature protection should therefore focus on M. sylvestris populations with high 

genetic diversity, free of M. ×domestica introgressions and occurring far from cultivated 

apples (pollen dispersal over distances of up to 4 km; Feurtey et al. 2017). By contrast, 

another local study in a French forest (Rhine valley) found a high level of genetic diversity 

of pure M. sylvestris, only few hybrids and no escaped cultivars. In addition, hybrids and 

cultivars were found to be clearly disadvantaged in humid conditions of the floodplain forest 

in comparison to well-adapted M. sylvestris. Nevertheless, wild apple populations were faced 

with regeneration difficulties stemming not from hybridization but from hydrological changes 

and changes in forestry practices. Therefore, from a genetic point of view, M. sylvestris 

populations in the Rhine valley are a valuable source for wild apple conservation programmes 

(Schnitzler et al. 2014). 

Besides M. sylvestris, other ancestral progenitors of cultivated apple, Malus sieversii 

and M. orientalis have been examined for putative crop-to-wild gene flow (Cornille et al. 

2013; Omasheva et al. 2017). An investigation of native M. orientalis populations 

in the Caucasus and native M. sieversii populations in Central Asia revealed crop-to-wild 

gene flow from cultivated apples, but in lower frequencies (3.2% and 14.8% of hybrids, 

respectively) in comparison to M. sylvestris populations in Europe. However, a study 

of M. sieversii in Kazakhstan found very different frequencies of hybrids in particular 

populations. Although two populations showed almost no admixture, all remaining 

populations contained significant proportions of hybrids, ranging from 8 to even 95%. So, 

together with loss of natural habitats, hybridization with cultivated apples is the reason 

why rare M. sieversii is threatened by extinction in Kazakhstan (Omasheva et al. 2017). 
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6.4.6 Crataegus 
 

In the case of the polyploid and hybridizing genus Crataegus (hawthorn), apomixis is vastly 

important and its incidence varies. The genus Crataegus consists of numerous hard 

to distinguish species (even DNA barcoding provides poor taxonomic resolution; Zarrei et al. 

2015) studied mostly in North America (e.g. Lo et al. 2009; Christensen et al. 2014; Zarrei et 

al. 2014; Coughlan et al. 2017). This complexity is derived from easy crossing among species 

(incl. introgression; Lo et al. 2009) supplemented by apomictic reproduction and polyploidy 

(Dickinson 2018). The former tendency to describe newly formed hybrids as new species, 

even based solely on morphology, and the fact that some species names seem to be synonyms 

also contribute to the taxonomic problems (Christensen 1992; Dönmez 2004; Christensen and 

Zieliński 2008). Although various ploidy levels, including diploid, triploid, tetraploid, 

pentaploid and hexaploid, have been described in the genus, tetraploids are the most frequent, 

followed by diploids (Talent and Dickinson 2005; Lo et al. 2013). The reproduction differs 

depending on the ploidy level. Whereas diploids produce sexual seeds, polyploids are 

facultative apomicts (Lo et al. 2009, 2013). Aposporous gametophytic apomixis requires 

pollen contribution for proper endosperm formation (pseudogamy; Muniyamma and Phipps 

1979; Talent and Dickinson 2007; Kolarčik et al. 2018). Seed analysis of various polyploid 

Crataegus species detected two types of seeds: In the first, which are predominant, a single 

sperm cell has contributed to the endosperm, and in the second, which are rare, two sperm 

cells contributed to the endosperm (i.e. polyspermy; Scott 2007; Talent and Dickinson 2007). 

Natural hybridization (incl. introgression) was indicated at both the homoploid and 

the heteroploid level across the whole distribution range of Crataegus (e.g. Greece 

– Christensen 1992; Turkey – Dönmez 2004; Syria – Albarouki and Peterson 2007; North 

America – Lo et al. 2009; Christensen et al. 2014). Crosses between introduced diploid 

Crataegus monogyna and two diploid species, Crataegus punctata and Crataegus suksdorfii, 

native in North America resulted in the formation of two diploid hybrids. Strikingly, 

the hybrids were relatively easy to recognize because the leaf shape morphology of introduced 

Old World C. monogyna markedly differed that of New World plants and their hybrids were 

intermediate between them (Christensen et al. 2014). An allopolyploid origin of North 

American Crataegus species, involving repeated hybridization events and the participation 

of unreduced female gametes, was indicated also based on nuclear ribosomal sequencing 

(Zarrei et al. 2014). Moreover, a few species were classified as autotriploids, so besides 

allopolyploidy, autopolyploidy is also demonstrated in Crataegus (Lo et al. 2009; Zarrei et al. 

2014). 

Various studies have dealt with geographical parthenogenesis by comparing sexual 

diploids and apomictic polyploids, mainly in Crataegus series Douglasianae in North 

America (Lo et al. 2009, 2010, 2013, Coughlan et al. 2014, 2017). Relevant studies mostly 

include the following three species: Crataegus suksdorfii comprises sexual self-incompatible 

diploids and apomictic auto- and allopolyploids (3x, 4x), which are largely allopatric 

in distribution (Coughlan et al. 2014). Crataegus douglasii is self-compatible pseudogamous 

apomictic allotetraploid, but rarely also pentaploid. Crataegus gaylussacia is an apomictic 

autotriploid. Studies have repeatedly demonstrated geographical parthenogenesis. Polyploid 

apomicts (C. douglasii in particular) have a wider range and broader ecological amplitude 

compared to sexual diploids, which exhibit the smallest ranges alongside apomictic 

autotriploids (Lo et al. 2013; Coughlan et al. 2014, 2017). The greatest within-population 

variation was found in sexual diploids, in contrast to the lowest variation in triploid apomicts. 

Whereas frequent gene flow was indicated in C. douglasii populations, local populations 

of C. suksdorfii were markedly differentiated, leading to allopatric speciation (Lo et al. 2009). 

Independently arisen polyploid apomictic lineages of C. suksdorfii occupy more 
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environmentally varied habitats than diploids and it has been suggested that they have great 

potential to expand into new environmental niches (Lo et al. 2013). Moreover, whereas 

allopolyploids exhibited a more dispersal-oriented strategy and ability to colonize new 

habitats, sexual diploids and apomictic autotriploids showed a competition-oriented strategy 

(Coughlan et al. 2014, 2017). Thus, the strong dispersal and colonization ability of apomictic 

polyploids was manifested by geographically widespread and ecologically generalist 

(occurring in variable habitats) clones of hybrid origin in the Pacific Northwest (Coughlan et 

al. 2017). Nevertheless, it has been revealed that the reproduction of tetraploid, predominantly 

apomictic Crataegus crus-galli is accompanied by outcrossing and selfing. Thus, 

the reproductive assurance of Crataegus tetraploids is derived from a combination of pollen 

fertility, self-compatibility and pseudogamous apomixis (Lo et al. 2010). 

 

 

6.4.7 Potentilla 
 

The same microevolutionary processes involved in the diversification of Crataegus, outlined 

above have resulted in a similar pattern of variation in the genus Potentilla. Various ploidy 

levels and reproduction modes were reported from the Potentilla group (Dobeš et al. 2013a, 

2015). Whereas diploids reproduced sexually, polyploids were presumed to be apomicts 

(e.g. Potentilla argentea consisted of sexual diploids and hexaploid apomicts; Paule et al. 

2011). Moreover, also tetraploids showed sexual reproduction contrasting with apomictic 

higher polyploids (penta- to octoploids) in Potentilla puberula (Dobeš et al. 2013b). 

Recurrent hybridization events, multiple origin of hybrids and backcrossing gave rise to new 

hybrid forms, some of which got stabilized by apomixis and thus became established lineages 

(e.g. three different lineages of hybrid Potentilla alpicola; Paule et al. 2012). The resulting 

extensive morphological variation accompanied by the occurrence of different cytotypes has 

led to the recognition of species groups or aggregates (e.g. Potentilla collina, P. argentea), 

including several forms treated by some authors as species, subspecies, variants or, 

if apomixis is involved, as microspecies (Tomasz and Kołodziejek 2008). Nevertheless, 

widely conceived circumscriptions not treating, for example, different cytotypes and genetic 

lineages or populations inhabiting special types of bedrock as the separate taxa are also 

common (e.g. P. argentea s.l., Paule et al. 2011; P. crantzii; Paule et al. 2015). 

 

 

6.4.8 Rubus 
 

The polyploid and hybrid genus Rubus exhibits an important shift in reproductive strategies, 

as apomixis frequently prevails over sexuality in many lineages. The genus Rubus is well 

known for its taxonomic complexity and also a favourite commercial crop (raspberry and 

blackberry). The contributions of polyploidization, hybridization and apomixis to its evolution 

have made the genus taxonomically difficult (Majeský et al. 2017). This is also mirrored 

in extensive morphological variation and the usage of several infrageneric ranks 

such as subgenera, sections and series (Šarhanová et al. 2017). Thus, the genus Rubus is 

enormously rich in species (763 only in Europe; Kurtto et al. 2010), and many new species 

are still being described (e.g. Trávníček and Žíla 2011; Velebil et al. 2016). To avoid 

enormous amounts of descriptions and names, a pragmatic species concept, which considers 

the size of the distributional area, has gained general adoption (Weber 1996; Kurtto et al. 

2010). In this concept, a taxon is considered a species only if it is morphologically stable and 

has a sufficiently wide distribution area (i.e. at least 50 km wide); and local hybrid 

morphotypes (biotypes) are ignored (Weber 1996; Kurtto et al. 2010). 
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The genus Rubus is traditionally classified into twelve subgenera, 

of which Idaeobatus (raspberries), Malachobatus and Rubus (blackberries) are the three 

largest (Alice and Campbell 1999). Nevertheless, the vast majority of European species 

belong to the single subgenus Rubus (bramble), sect. Rubus and sect. Corylifolii (Kurtto et al. 

2010). Most European brambles are tetraploid, but their ploidy levels range from diploid to 

hexaploid (Kurtto et al. 2010; Krahulcová et al. 2013). Whereas only four species are sexual 

diploids in Europe, all remaining species are polyploid apomicts maintaining various degrees 

of residual sexuality (Kurtto et al. 2010; Šarhanová et al. 2012; Krahulcová et al. 2013). 

Moreover, automixis (i.e. the fusion and subsequent parthenogenetic development 

of two egg nuclei in a reduced embryo sac; Antonius and Nybom 1995), a special type 

of reproduction combining both sexual and parthenogenetic processes, has been described 

in the genus Rubus. It differs from apomixis in that apomeiosis is absent. Particularly, 

the sexual process is manifested in the formation of a reduced embryo sac during normal 

meiosis. However, the reduced unfertilized egg cell then divides into two egg cells which 

subsequently fuse and thus restore the chromosome number. Then they develop 

parthenogenetically and form an embryo (Asker and Jerling 1992; Antonius and Nybom 

1995). Molecular evidence of automixis was found by crossing experiments with raspberry 

and blackberry cultivars. Although automictic reproduction inherently brings detrimental 

homozygotization (e.g. exhibited in reduced vigour and fruiting ability), complete 

homozygotization has been suggested to be valuable in plant breeding (Antonius and Nybom 

1995). 

Comparison of the occurrence of apomicts and sexual diploids shows signs 

of geographical parthenogenesis. On the one hand, diploids prevail in southern warm regions 

(Mediterranean, Macaronesia) and are rare in temperate Central or Western Europe. 

On the other, polyploids mostly occur in Central and Western Europe and in the southern 

Caucasus; however, they are less successful and less spread in warmer regions (Kurtto et al. 

2010; Sochor et al. 2017). Analyses of a huge amount of seeds of Rubus subgen. Rubus 

employing FCSS revealed high variation in reproductive modes linked to ploidy level 

(Šarhanová et al. 2012). Although diploids were exclusively sexual, triploids reproduced 

strictly apomictically. However, tetraploids exhibited the greatest reproductive variation 

based on pseudogamous facultative apomixis enabling sexual reproduction. However, not 

only ploidy level, but also external environmental factors, played an important role 

in the type of Rubus reproduction. Rubus bifrons was able to switch its reproductive mode 

in response to environmental conditions (higher temperature and lack of outcrossing 

increased sexuality). Tetraploid ser. Glandulosi exhibit geographical parthenogenesis caused 

by different incidence of apomicts compared to sexual diploids. Although strictly sexual 

reproduction was detected in the Western Carpathians (Moravia), partial apomixis was 

indicated in southwest of the Bohemian Massif. In addition, there are indications of both 

increases ploidy level, caused by fertilization of unreduced embryo sacs (i.e. BIII individuals), 

and decreases in ploidy level via the phenomenon of polyhaploidy. The study showed 

that the recent evolution of brambles is connected with preserved sexual reproduction 

in ser. Glandulosi, members of which are nearly fully sexual in some regions and easily 

hybridize, especially with R. bifrons, and enabling the formation of new hybridogenous 

populations. Species from ser. Radula were formed similarly as a result of past hybridization 

events and subsequent apomictic stabilization (Šarhanová et al. 2012). The origin 

of apomictic taxa was examined in detail based on microsatellite and chloroplast markers 

(Šarhanová et al. 2017). The data confirmed the hybrid origin of apomict microspecies 

of ser. Radula resulting from crosses between sexual members of ser. Glandulosi and 

apomictic ser. Discolores (pollen donor). Different parental taxa from these series gave rise 

to the distinct genotypes of individual apomictic microspecies, which were probably further 
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stabilized by clonal reproduction. Thus, the combination of sexual and apomictic 

reproduction of Rubus species enables both the generation of new, genetically distinct 

apomictic lineages and the production of clonal offspring, respectively (Šarhanová et al. 

2017). 

A reconstruction of the evolutionary history of European brambles using nuclear and 

chloroplast markers has revealed that all European polyploids were derived from six sexual 

diploids, two of which are already extinct. Extreme reticulate evolution was detected and 

putative parents of hybridogenous taxa were suggested (Sochor et al. 2015). The first 

allopolyploidization event in the evolution of the genus Rubus has been dated to before 

the last glaciation and post-glacial gene flow from diploids to polyploids has been detected 

employing both next generation and Sanger sequencing of nuclear and plastid regions and 

niche modelling (Sochor et al. 2017). The study indicated that the Iberian Peninsula and 

Morocco served as refugia during the Last Glacial Maximum. Population bottlenecks were 

detected in the Eastern Mediterranean and the Caucasus. Northwestern Europe was 

recolonized from a southern refugium in the post-glacial period (Sochor et al. 2017). Thus, 

the obvious evolutionary and ecologically success of brambles is manifested by their species 

richness, widespread distribution in a vast diversity of habitats and high invasive potential 

(Caplan and Yeakley 2010; Sochor et al. 2015). 

 

 

6.4.9 Sorbus 
 

Analogous processes leading to similar results take place in the species-rich genus Sorbus 

(rowan). The genus consists of five primary diploid sexual species (S. aria, S. aucuparia, 

S. chamaemespilus, S. torminalis, S. domestica) and polyploid apomicts (Liljefors 1953). All 

primary diploids (excluding S. domestica) are able to hybridize with S. aria and further 

backcross with both parents (Kurtto et al. 2018). The origin of hybrids is polytopic and is 

followed by backcrossing with their parents and stabilization of their reproduction 

by apomixis (e.g. Nelson-Jones et al. 2002; Robertson et al. 2004; Lepší et al. 2015, 2019). 

New apomictic hybrids are described as new species (microspecies) based on unique 

morphology (minute but stable characters), distribution, karyology and genotypic variation 

(e.g. Lepší et al. 2008, 2009, 2015; Robertson et al. 2010; Vít et al. 2012). 

 

 

6.4.10  Alchemilla 
 

Finally, in the genus Alchemilla polyploidization, hybridization and apomixis have resulted 

in a complete prevalence of long-existing hybrid apomictic species (only a few sexual species 

in Europe; Gehrke et al. 2008; Majeský et al. 2017). Because the level of polyploidy is very 

high (diploids are absent), spanning from the lowest chromosome count of 2n = 96 

to the highest count of 2n = 152 among European taxa, and because the chromosomes are 

very small, chromosome numbers are inaccurate and presented rather as ranges (Fröhner 

1990; Kurtto et al. 2007; Gehrke et al. 2008). Male meiosis shows signs of disorders resulting 

in very low pollen fertility and even sterility (Fröhner 1990). Aposporous apomixis 

with independent (autonomous) endosperm formation (Fröhner 1990; Czapik 1996) is 

suggested to be almost obligatory, resulting in a lack of current hybridization (Majeský et al. 

2017). The systematics of Alchemilla are highly difficult and still unresolved because 

of the microevolutionary processes mentioned above, clonal growth and intricate morphology 

(e.g. heteroblastic plasticity – differing morphologies of leaves, instability in flower 

characters; Notov and Kusnetzova 2004; Gehrke et al. 2008). Not surprisingly, a large number 
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of apomictic microspecies has been described as a separate species based on its putative 

obligatory apomictic reproduction, distinctive morphological traits, distribution area and 

ecological niches (Fröhner 1990; Majeský et al. 2017). Nevertheless, a continuum 

in morphological traits, and an ensuing inability to practically distinguish many described 

microspecies, has been indicated in Estonia (Sepp and Paal 1998). Nowadays, 433 species are 

recognized in Europe (Kurtto et al. 2007) and the circumscription of the genus Alchemilla 

in the wide sense (i.e. as the subtribe Alchemillinae, including Aphanes and Lachemilla; 

Notov and Kusnetzova 2004) has been confirmed based on morphology and phylogenetic 

relationships derived from chloroplast and nuclear markers (Gehrke et al. 2008). 

 

 

6.5 Model species 
 

This thesis deals with the influence of microevolutionary processes on the diversity and 

evolution of two selected Rosaceae model genera – Prunus and Cotoneaster. Based 

on the incidence of evolutionary drivers mentioned above, the two genera represent opposite 

extremes of a spectrum and thus enable a suitable comparison. The genus Prunus, particularly 

cherries, consists of both diploid and polyploid, strictly sexual species that readily hybridize 

with each other (Wójcicki 1991; Wójcicki and Marhold 1993; Iezzoni 2008). However, 

hybridization does not lead to the establishment of distinct separate lineages. Rather, repeated 

backcrosses result in advanced hybrids and hybrid swarms. Therefore, hybridization 

as an adverse force disrupting the integrity of species is presumed in this case (Wójcicki 1991; 

Wójcicki and Marhold 1993). However, hybridization has not yet been examined using 

a multidisciplinary approach applied across a wider geographic area. By contrast, 

the evolution of the genus Cotoneaster has involved polyploidy, hybridization and apomixis, 

which together represent a significant diversification force resulting in great diversity 

of lineages/taxa occurring almost all over the world, albeit of uncertain taxonomic value 

(Baranec 1992; Kutzelnigg 1994; Dickoré and Kasperek 2010; Kurtto et al. 2013a). 

Nevertheless, the variation in cytotype and reproductive traits has never been examined 

across a wider geographic area. 

 

 

6.5.1 Prunus fruticosa, Prunus cerasus and Prunus avium 
 

Three species of the genus Prunus, particularly cherries, were chosen to examine the pattern 

of presumed interspecific hybridization under natural conditions. On the one hand, 

Prunus fruticosa (ground cherry, Fig. 10) is a rare shrub adapted to the hard conditions 

of steppes occurring from Central Europe to Central Asia (Meusel et al. 1965a; Bilz et al. 

2011). Although this cherry species is not cultivated as a commercial crop, it is being used 

in breeding programmes for its stress resistance, and its future potential for breeding is 

undisputable (e.g. Pruski 2007). On the other hand, the remaining two tree-like species, 

Prunus avium (sweet cherry, Fig. 11) and Prunus cerasus (sour cherry, Fig. 11), represent 

ubiquitous cultivated crops of high economic value. Whereas P. avium is a native taxon 

in Europe, P. cerasus is an allochthonous species of unclear origin (probably Southwest Asia; 

Sinskaya 1969; Scholz and Scholz 1995; Kurtto et al. 2013b). Both P. fruticosa and 

P. cerasus are tetraploids, in contrast to diploid P. avium (e.g. Scholz and Scholz 1995; 

Iezzoni 2008). 
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Fig. 10: Prunus fruticosa (ground cherry) on Stawska Góra (eastern Poland). Photo by Petr Vít. 

 

The great morphological variation of P. fruticosa observed in Central Europe has led 

to presumptions about interspecific hybridization with cultivated cherries (i.e. crop-to-wild 

hybridization; Wójcicki 1991; Wójcicki and Marhold 1993). The incidence of tetraploid 

hybrids (Prunus ×eminens, Fig. 11) resulting from crossing between P. fruticosa and 

P. cerasus was putatively determined based on morphological investigations from Central 

Europe (Wójcicki 1991; Wójcicki and Marhold 1993; Lepší et al. 2011). By contrast, triploid 

hybrids (Prunus ×mohacsyana, Fig. 11) between P. fruticosa and P. avium were reported only 

rarely (Wójcicki 1988; Wójcicki and Marhold 1993). Unintentional human influence 

manifested in ubiquitous cherry cultivation enabling interspecific hybridization and 

the destruction of suitable habitats have been supposed to be the main factors affecting 

the decrease of P. fruticosa populations in Central Europe (Wójcicki 1988, 1991; Wójcicki 

and Marhold 1993; Boratyński et al. 2003; Lepší et al. 2011). For detailed information 

about the cherry species under study, see the Introduction and Methods sections 



36 

 

of the corresponding articles on pages 57–59, 94–96. The present thesis analyses the extent 

of interspecific hybridization between P. fruticosa and cultivated cherries under natural 

conditions, based on genome size and ploidy level analysis accompanied by multivariate 

morphometrics supplemented by embryological analysis, to evaluate the conservation 

implications of crop-to-wild gene flow for wild populations of the rare species Prunus 

fruticosa in Central Europe. 

 

 
Fig. 11: Variation in the shape of the leaf lamina of the Prunus species under study. Depicted are individuals 

of P. fruticosa sampled at Hnanice, Český Krumlov (CZ) and Slanec (SK), P. cerasus at the Central Institute 

for Supervising and Testing in Agriculture at Lysice (CZ), Salka (SK), P. avium at Hnanice (CZ), Salka (SK), 

P. ×eminens at Ptáčov, Chvalov, Ústí nad Labem (CZ), P. ×mohacsyana at Ptáčov, Český Krumlov (CZ). 

 

 

6.5.2 Cotoneaster integerrimus s.l. and Cotoneaster tomentosus 
 

The diversity of European Cotoneaster taxa, spineless deciduous shrubs inhabiting dry rocky 

habitats, is especially linked to mountain ranges – the Alps and the Carpathians (Browicz 

1968; Baranec 1992; Kutzelnigg 1994; Fryer and Hylmö 2009; Kurtto et al. 2013a). Two 

‘basic’ closely related species are recognized in Europe: Cotoneaster integerrimus s.l. (Fig. 12 

and 13) and Cotoneaster tomentosus (Fig. 14). Although Cotoneaster integerrimus s.l. is 

a morphologically variable species considered a group of taxa (microspecies) of unclear 

taxonomical value (Dickoré and Kasperek 2010; Kurtto et al. 2013a), C. tomentosus 

(syn. C. nebrodensis) is a morphologically well defined, distinct taxon (Kutzelnigg 1994). 

 Various distinct species concepts are used to describe the complexity 

of C. integerrimus s.l. in Europe. There are several microspecies concepts (Hrabětová-Uhrová 

1961, 1962; Baranec 1992; Fryer and Hylmö 2009) and a few broad concepts (e.g. Dickoré 

and Kasperek 2010; Sennikov 2010) also used in comprehensive floras (Kurtto et al. 2013a). 

Using a narrow species complex, various taxa were treated as separate microspecies 
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from different parts of Europe: Cotoneaster scandinavicus and Cotoneaster kullensis 

from Northern Europe, Cotoneaster pyrenaicus, Cotoneaster juranus and 

Cotoneaster raboutensis from Southwest Europe (the Alps and the Pyrenees), 

Cotoneaster laxiflorus, Cotoneaster alaunicus and Cotoneaster matrensis from Central 

Europe (the Western Carpathians). Nevertheless, the circumscriptions of most of the species 

listed is uncertain, contradict each other and sometimes they are considered synonyms or 

hybrids (Browicz 1968; Baranec 1992; Kovanda 1992; Kutzelnigg 1994; Dickoré and 

Kasperek 2010; Kurtto et al. 2013a). Only C. laxiflorus (syn. C. melanocarpus) seems to be 

widely accepted, but its native occurrence in Europe has been disputed because its core 

distribution range spans from Russia (Siberia) to Mongolia and the north of China (Dickoré 

and Kasperek 2010). For the reasons above, we agree with the broad species concept recently 

proposed by Dickoré and Kasperek (2010), treating the majority of microspecies 

within C. integerrimus s.l., with the sole exception of C. tomentosus in Central Europe.  

In the present thesis, the narrow concept of C. integerrimus s.l. is used for practical reasons 

to test relevance of microspecies. 

 

 
 

Fig. 12: Variation in the colour of pomes of tetraploid Cotoneaster integerrimus s.l. The depicted individuals 

occurred by the town of Moravský Krumlov, Havraníky (vineyards at Šobes, Czechia) and Piatra Neamt 

(Romania), respectively. Photo by Michael Macek and Filip Kolář. 
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Fig. 13: Red and blue pomes present on one individual of tetraploid Cotoneaster integerrimus s.l. by the town 

of Moravský Krumlov (saint Florián, Czechia) in October 2017. 
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Fig. 14: Cotoneaster tomentosus with typically elliptical leaves and hairy (tomentose) pomes, sampled 

in Tomášovský výhľad (Čingov, Slovakia). Photo by Tomáš Urfus. 

 

The distribution of C. tomentosus is restricted to mountainous regions of Central, 

Southeast and Southwest Europe, including the Alps, the Pyrenees, the Apennines and 

the Carpathians. The range of C. integerrimus s.l. in wide sense is much broader, extending 

from most of Europe to Central and East Asia (Meusel et al. 1965b). Various ploidy levels 

have been reported from European Cotoneaster taxa (2x, 3x, 4x, 5x, 6x), but tetraploids seem 

to be most common (e.g. Browicz 1968; Baranec 1992; Kovanda 1992; Kutzelnigg 1994; 

for details see Introduction section of the corresponding article on page 122–123 below). 

A putative hybrid origin of some European species has been suggested (Browicz 1968; 

Baranec 1992; Kutzelnigg 1994). Whereas sexual reproduction has been reported for diploids, 

polyploids, which prevail, have been found to be apomictic (Sax 1954; Hjelmquist 1962). 

However, reproduction data are restricted only to few pieces of evidence, often indirect (Sax 

1954; Hjelmquist 1962; Kroon 1975; Bartish et al. 2001). Moreover, cytotype diversity has 

never been observed across a wider part of Europe and karyological data are available only 

from a limited number of individuals (see Online Resource 1 of the corresponding article 

on page 139–141). For detailed information on the Cotoneaster species under study, see 

the Introduction and Methods sections of the corresponding article on page 121–125. 

The present thesis examines the cytotypic and reproductive pattern of Cotoneaster taxa 

occurring in the Western Carpathians, discussing the diversity of the genus Cotoneaster 

in Central Europe and its compatibility with recent taxonomic treatments.  



40 

 

6.6 Aims of the thesis 
 

This thesis examines the significance of polyploidization, hybridization and reproductive 

strategies in the speciation of two model Rosaceae genera, Prunus and Cotoneaster, using 

the methodical approaches of flow cytometry (genome size and ploidy level analyses, flow 

cytometric seed screen), multivariate morphometrics and embryology. Analysis of the data 

obtained is useful in drawing conclusions and devising hypotheses regarding 

microevolutionary processes possibly leading to consequences relevant for the biosystematics, 

conservation and economic utilization of species within the Rosaceae family. The research 

presented here was commenced with the following questions in mind, answers to which are 

given in the articles forming the remainder of this thesis: 

 

(1) What is the evolutionary potential of polyploidization in the Rosaceae? 

 

(2) What are the consequences of hybridization in the evolution and diversity 

of the family? 

 

(3) To what extent do distinct reproductive strategies contribute to the evolution 

of the Rosaceae and how do they affect diversity?  

 

(4) What are the applicable conservation and economical consequences of such 

evolutionary forces?  
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6.8 Supplements 
 

Supp. 1: Circumscription and taxonomic division of the Rosaceae based on current nuclear 

and plastid phylogenomics published in Xiang et al. 2016 and Zhang et al. 2017. 

 

Subfamily Tribe Example of included genera 

Rosoideae Agrimonieae Acaena, Sanguisorba 

  Potentilleae Alchemilla, Fragaria, Potentilla 

  Roseae Rosa 

  Colurieae Geum, Waldsteinia 

  Rubeae Rubus 

  Ulmarieae Filipendula 

Dryadoideae  Dryadeae Cercocarpus, Chamaebatia, Purshia, Dryas 

Amygdaloideae Maleae 
Malus, Pyrus, Sorbus, Crataegus, Mespilus, 
Cotoneaster, Vauquelinia, Kageneckia 

  Gillenieae Gillenia 

  Kerrieae Kerria, Rhodotypos 

  Exochordeae Exochorda, Oemleria, Prinsepia 

  Sorbarieae Sorbaria, Adenostoma 

  Amygdaleae Prunus, Pygeum, Maddenia 

  Lyonothamneae Lyonothamnus 

  Spiraeeae Spiraea, Aruncus 

  Neillieae Physocarpus, Neillia 
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Supp. 2: First modern classification of the Rosaceae based on nucleotide sequence data 

from nuclear and chloroplast regions published in Potter et al. 2007a. Names of the taxa 

of different ranks and their circumscription have often been used to this day. 

 

Subfamily Supertribe Tribe Subtribe Example of included genera 

Rosoideae Rosodae Sanguisorbae Sanguisorbinae  Acaena, Sanguisorba 

      Agrimoniinae  Agrimonia, Spenceria 

    Potentilleae  Fragariinae  Alchemilla, Fragaria 

      Potentilla   

    Rosa     

    Colurieae    Geum, Sieversia 

    Rubus     

  Filipendula       

Dryadoideae  
      

Cercocarpus, Chamaebatia, 
Cowania, Purshia, Dryas 

Spiraeoideae 
(recent 
Amygdaloideae) 

Lynothamnus 

      

    Sorbarieae    Adenostoma, Sorbaria 

    Spiraeeae    Aruncus, Spiraea 

    Amygdaleae    Prunus, Pygeum, Maddenia 

    Neillieae    Neillia, Physocarpus 

  
Pyrodae  

Pyreae  

(recent Maleae)  
Pyrinae  
(recent Malinae) 

Amelanchier, Crataegus, 
Mespilus, Malus, Cotoneaster, 
Pyrus, Sorbus 

      Vauquelinia   

      Kageneckia   

      Lindleya   

    Gilenia     

  Kerriodae  Kerrieae    Kerria, Rhodotypos 

    
Osmaronieae 

  
Exochorda, Oemleria, 
Prinsepia 
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7 Case studies 
 

7.1 Case study I 
 

Macková, L., Vít, P., Ďurišová, Ľ., Eliáš, P., & Urfus, T. (2017): Hybridization 

success is largely limited to homoploid Prunus hybrids: a multidisciplinary 

approach. – Plant Systematics and Evolution 303: 481–495.  

doi: https://doi.org/10.1007/s00606-016-1385-4 
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Abstract  
 

Prunus fruticosa is a rare shrub occurring in Eurasian thermophilous forest-steppe alliances. 

The species frequently hybridizes with cultivated Prunus species in Europe (allochthonous 

tetraploid P. cerasus and partly indigenous diploid P. avium). Propidium iodide flow 

cytometry, distance-based morphometrics, elliptic Fourier analysis and embryology were 

employed to evaluate the extent of hybridization in six Slovak populations. Flow cytometric 

analyses revealed three ploidy levels: diploid (P. avium), triploid (P. ×mohacsyana) and 

tetraploid (P. fruticosa, P. ×eminens and P. cerasus). In addition, P. fruticosa and P. cerasus, 

at the tetraploid level, were found to differ in absolute genome size. An embryological 

evaluation suggested the existence of a triploid block in P. ×mohacsyana and significant 

potential for hybridization among tetraploid taxa (indicated also by a continuous distribution 

of genome size data and further mirrored by morphometrics). Although hybrids significantly 

differ in ploidy level and embryological characteristics, they are almost indistinguishable 

using morphological characters. Hybridization with P. cerasus thus turns out to be 

a significant threat to wild populations of P. fruticosa compared to the relatively weak 

influence of P. avium. 

 

Keywords: absolute genome size, embryology, interspecific hybridization, morphometrics, 

polyploidy, Prunus fruticosa 

 

 

Introduction 

 
Interspecific hybridization is considered to be a generally frequent phenomenon 

in angiosperms (e.g. Stace et al. 2015), and its significant role as a major mechanism 

generating evolutionary novelties (and consequently plant diversity) is widely accepted 

(Hegarty and Hiscock 2005; Wissemann 2007; Abbott et al. 2013). On the other hand, 

hybridization can also be markedly disadvantageous. The sole presence of hybrids 

in a population may decrease its fitness due to competition for abiotic and biotic resources 

(such as space, nutrition, radiation or pollinators; Buerkle et al. 2000; Bleeker et al. 2007).  

A more complex source of danger is repeated backcrossing (introgression), which may 

cause genetic erosion of particular taxa (Rhymer and Simberloff 1996) and thus blurs 

differences between species (finally leading to genetic assimilation or extinction of species). 
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Low-abundant populations (frequent in rare species) may suffer from hybridization 

with widespread congeners (Levin et al. 1996). Moreover, their hybridization may be 

significantly influenced by humans. Human-triggered changes in species distribution allowed 

contact and hybridization between previously allopatric species (e.g. Pericallis D. Don 

species, van Hengstum et al. 2012; Picris hieracioides L., Slovák et al. 2012, 2014; Knautia 

arvensis Coult., Rešetnik et al. 2014; Spartina alterniflora Loisel., Ainouche and Gray 2016; 

Helianthus annuus L., Owens et al. 2016). Commercially grown species (e.g. cereals, oil 

crops, fruit trees, often non-indigenous; Hyams 1971) represent common and abundant 

congeners that may affect pure populations (e.g. Aegilops peregrina (Hack.) Maire and 

Weiller and wheat, Weissmann et al. 2005; Oryza rufipogon Griff. and cultivated rice in Asia, 

Song et al. 2006; Coffea arabica L. and coffee cultivars in Ethiopia, Aerts et al. 2013; 

Medicago falcata L. and cultivated alfalfa in Estonia, Kaljund and Leht 2013).  

Although numerous cultivated plants originated in Europe (e.g. Apium graveolens L., 

or varieties of Brassica; Hyams 1971), there are only a few reported cases of hybridization 

between cultivars and pure, indigenous populations, for which Wójcicki (1991a) proposed 

the term anthropohybridization. One scarcely studied example is that of hybridization 

between cultivated Prunus cerasus L. (non-indigenous) and Prunus avium (L.) L. 

(indigenous) with the rare species Prunus fruticosa Pall. (Wójcicki 1988, 1991a; Wójcicki 

and Marhold 1993).  

Prunus fruticosa (ground cherry) is a rare member of the native central European fruit 

tree flora and is included in a number of European red lists (e.g. Bilz et al. 2011). It is 

a Eurasian steppe or forest-steppe shrub species (Meusel et al. 1965; Jäger and Seidel 1995) 

of high ornamental, vegetation and horticultural importance. It occurs in relic thermophilous 

shrub alliances and is a diagnostic species of continental deciduous thickets (Prunion 

fruticosae), a priority habitat of the Natura 2000 network (Chytrý et al. 2010). Due to its 

drought and frost resistance, low height, fruit taste and ability to hybridize with other Prunus 

species, P. fruticosa is a suitable taxon for breeding new cherry cultivars (Iezzoni and Mulinix 

1992; Dzhangaliev et al. 2003; Pruski 2007; Iezzoni 2008). Although P. fruticosa is not 

cultivated in Europe, it has considerable agricultural importance in Russia and Western 

Canada (Pruski 2007; Iezzoni 2008) and is promoted as a new crop suitable 

for the inhospitable climatic conditions of steppe areas (Pruski 2007). Prunus fruticosa is 

considered an entomogamous self-incompatible autotetraploid (2n = 32; e.g. Scholz and 

Scholz 1995; Tavaud et al. 2004; Pruski 2007; Iezzoni 2008). Clonal reproduction probably 

plays an important role in local spreading (via root sprout shoots; Wójcicki 1991b; Scholz and 

Scholz 1995). Prunus fruticosa represents low completely glabrous shrub with small (1.5–2.5 

cm) obovate leaves at short shoots, flowering white flowers in umbels and bearing dark red 

globose drupes (Webb 1968).  

Tetraploid Prunus cerasus (sour cherry; 2n = 32; Scholz and Scholz 1995; Iezzoni 

2008; Das et al. 2011) and diploid P. avium (sweet cherry; 2n = 16; Scholz and Scholz 1995; 

Iezzoni 2008) are closely related Prunus species that are common in nature as well 

as in cultivation. Prunus cerasus probably originated in Southwest Asia (Sinskaya 1969; 

Kurtto et al. 2013) and is widely cultivated in Europe, whereas P. avium is autochthonous 

(e.g. Scholz and Scholz 1995). Both species are allogamous and selfincompatible (in case 

of tetraploid P. cerasus self-compatibility was observed too; Hauck et al. 2002; Marchese et 

al. 2010) with ability to clonal reproduction (Dzhangaliev et al. 2003). Prunus cerasus and 

P. avium represent trees with well-defined trunk (Wójcicki 1988), bigger and beneath 

pubescent leaves in contrast to P. fruticosa, flowering the similar but bigger flowers 

as P. fruticosa and bearing the same but only bigger red globose drupes various in taste (sweet 

or bitter; Webb 1968). Prunus cerasus is considered allopolyploid resulted from the fusion 

of a reduced female gamete of P. fruticosa and an unreduced male gamete of P. avium based 
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on cpDNA and microsatellites (Horvath et al. 2008), GISH, C-banding (Schuster and 

Schreibner 2000) and AFLP (Tavaud et al. 2004). Interspecific hybridization is one 

of the main factors thought to be responsible for the drop in abundance of tetraploid 

P. fruticosa (Wójcicki 1991a). It hybridizes with tetraploid P. cerasus, resulting  

in the tetraploid Prunus ×eminens Beck (2n = 32; Webb 1968; Marhold and Wójcicki 1992; 

Scholz and Scholz 1995). Intermediate morphotypes have been reported at some localities, 

so hybridization is a suspected cause of local extinction of true P. fruticosa (Wójcicki and 

Marhold 1993; Boratyński et al. 2003; Lepší et al. 2011). A further threat to the genetic 

integrity of P. fruticosa may stem from hybridization with diploid P. avium. Their triploid 

hybrid Prunus ×mohacsyana Kárpáti (2n = 24; Oldén and Nybom 1968) has rarely been 

reported from Slovakia (Wójcicki and Marhold 1993) and Hungary (Wójcicki 1988). 

Moreover, other extremely rare hybrids have been described (Prunus ×javorkae Kárpáti; 

P. fruticosa × Prunus mahaleb L.), including the triple hybrid Prunus ×stacei Wójcicki 

(P. fruticosa × P. cerasus × P. avium; Wójcicki 1991b; Hrotkó and Facsar 1996). Some 

of the other significant threats to P. fruticosa in Central Europe apart from hybridization are 

loss of suitable habitats, landscape fragmentation, natural succession and changes in human 

landscape use (Ivanišová 2009; Chytrý et al. 2010; Lepší et al. 2011). 

Hybridization of Prunus fruticosa has scarcely been studied. Existing studies are based 

mainly on morphological examination of herbarium vouchers (Wójcicki 1988, 1991a; 

Wójcicki and Marhold 1993; Lepší et al. 2011). Our multidisciplinary approach (distance- 

-based morphometrics, elliptic Fourier analysis, genome size estimation, embryological 

techniques) allowed us to explicitly discriminate between Prunus ×eminens and 

Prunus ×mohacsyana, evaluate the reproductive potential of all the taxa involved and outline 

conservation concerns.  

The specific aims of our study were to: (1) assess the patterns of interspecific 

hybridization involving Prunus fruticosa under natural conditions, (2) reveal morphological 

characters suitable for the delimitation of species and hybrids, (3) evaluate the conservation 

consequences of interspecific hybridization involving P. fruticosa and (4) compare 

the reproductive potential of P. fruticosa and its hybrids with other Prunus species. 

 

 

Materials and methods 

 
Sampling 

 

Samples of six natural populations of Prunus fruticosa, P. ×eminens and P. ×mohacsyana 

were collected between 2012 and 2014 in two regions of south-western Slovakia (see Fig. 1, 

Table 1). Four of them are located near the city of Nitra, and two are near the town 

of Štúrovo. Our criteria for representative selection of populations were twofold: (1) 

the occurrence of P. fruticosa and its hybrids and (2) the purity of P. fruticosa populations. 

From each population, 2–15 individuals were sampled. Each population sample contained 

plants which were as distant from each other as possible to cover potential cytotype 

variability. Each sample from a single individual was represented by a branchlet 

with vegetative short-shoot leaves. To thoroughly describe the patterns of hybridization and 

other microevolutionary phenomena, additional samples of P. avium and P. cerasus were also 

included in the study. Both comprise 10 accessions sampled in Central Europe (approximately 

50% of them directly from the study populations; see Table 1 for locality details) and 10 

cultivars provided by the Central Institute for Supervising and Testing in Agriculture, 

covering the spectrum of the most frequently cultivated cultivars. In the cases of P. cerasus 

and P. avium, particular individuals instead of natural population were collected, because 
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these taxa are scattered in the landscape (allochthonous P. cerasus, autochthonous 

but frequently cultivated P. avium). Moreover, the identification of natural populations is 

highly complicated in fruit trees (e.g. in Malus; Gross et al. 2012). The taxa were determined 

based on the ploidy level (indicating triploid Prunus ×mohacsyana and diploid P. avium), 

then in the case of tetraploids based on the presence of hairs on the abaxial surface 

of the lamina (glabrous P. fruticosa vs. hairy P. ×eminens and P. cerasus) and growth 

form (shrubby P. fruticosa and P. ×eminens vs. tree-like P. cerasus).  

 

 
Fig. 1: Sample localities of Prunus taxa in south-western Slovakia. P1 = P. fruticosa, Nitra Pyramída hill; 

P2 = P. fruticosa, Salka the Sovie Vinohrady; P3 = P. ×mohacsyana, Nitra Pyramída hill; P4 = P. ×mohacsyana, 

Nitra forest edge; P5 = P. ×mohacsyana, Štúrovo the Vŕšok II hill; P6 = P. ×eminens, Nitra St. Urban church. 

 

Samples collected from 111 individuals (30 Prunus fruticosa, 13 P. ×eminens, 

28 P. ×mohacsyana, 20 P. avium and 20 P. cerasus) were analysed using three types 

of analyses – absolute genome size analysis using flow cytometry (FCM), distance-based 

morphometrics and elliptic Fourier analysis (see Table 1 for numbers of samples for each 

analysis). For flow cytometry, fresh plant material was used. For morphometrics, dry plant 

material was used (short-shoot leaves taped onto sheets of cardboard). Moreover, a subset 

of 34 individuals (20 P. fruticosa, 3 P. ×eminens and 11 P. ×mohacsyana) was sampled 

for the investigation of development stage using embryological techniques. 
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Table 1: Study sites and numbers of samples used in particular analyses. 

 

Taxon 
Num-
ber of 
indiv. 

Locality GPS  FCM 

Distance-
based 

morpho-
metrics 

Elliptic 
Fourier 

analyses 

Embry-
ology 

Fruit 
set 

analy-
ses 

P. fruticosa 15 
Nitra 
Pyramída 
hill (SK) 

48°20′32.8′′N, 
18°06′15.6′′E 

15 30 30 10 3 

P. fruticosa 15 

Salka the 
Sovie 
Vinohrady 
(SK) 

47°53′14.3′′N, 
18°43′05.1′′E 

15 30 29 10 x 

P. ×eminens 13 
Nitra St. 
Urban 
church (SK) 

48°19′50.7′′N, 
18°05′49.6′′E 

13 26 26 3 1 

P. ×mohacsyana 11 
Nitra 
Pyramída 
hill (SK) 

48°20′32.4′′N, 
18°06′18.3′′E 

11 22 22 9 3 

P. ×mohacsyana 2 
Nitra 
forest edge 
(SK) 

48°20′13.9′′N, 
18°06′11.9′′E 

2 4 4 1 1 

P. ×mohacsyana 15 
Štúrovo 
the Vŕšok II 
hill (SK) 

47°49′06.3′′N, 
18°38′37.0′′E 

15 30 30 1 x 

P. cerasus 2 Sedlec (CZ) 
48°47′35.9′′N, 
16°41′37.3′′E 

2 4 4 x x 

P. cerasus 2 Milá (CZ) 
50°26′1.50′′N, 
13°45′26.58′′E 

2 4 2 x x 

P. cerasus 4 Kamýk (CZ) 
50°33′49.3′′N, 
14°07′08.2′′E 

4 8 0 x x 

P. cerasus 2 Salka (SK) 
47°53′13.7′′N, 
18°43′08.8′′E 

2 4 4 x x 

P. cerasus 10 

Central 
Institute 
for 
Supervising 
and 
Testing in 
Agriculture 
– Želešice 
(CZ) 

49°07′09.6′′N, 
16°35′40.4′′E 

10 20 20 x x 

P. avium 1 
Hnanice 
(CZ) 

48°48′06.2′′N, 
15°58′59.0′′E 

1 2 2 x x 

P. avium 4 Salka (SK) 
47°53′16.7′′N, 
18°43′08.9′′E 

4 8 6 x x 



61 

 

Taxon 
Num-
ber of 
indiv. 

Locality GPS  FCM 

Distance-
based 

morpho-
metrics 

Elliptic 
Fourier 

analyses 

Embry-
ology 

Fruit 
set 

analy-
ses 

P. avium 1 
Štúrovo 
(SK) 

47°49′03.6′′N, 
18°38′34.3′′E 

1 2 2 x x 

P. avium 4 Zobor (SK) 
48°19′50.8′′N, 
18°05′49.6′′E 

4 8 8 x x 

P. avium 10 

Central 
Institute 
for 
Supervising 
and 
Testing in 
Agriculture 
– Lysice 
(CZ) 

49°27′24.0′′N, 
16°33′23.0′′E 

10 20 20 x x 

Total 111 x x 111 222 209 34 8 

 

 

Flow cytometry 

 

Absolute genome size was estimated using propidium iodide flow cytometry of 111 

individuals (see Table 1). Bellis perennis L. (2C = 3.38 pg; Schönswetter et al. 2007) was 

used as the internal standard. About 1.5 cm2 of fresh laminar tissue together with 1.8 cm2 

of the internal standard was chopped in 0.5 ml of ice-cold Otto I buffer (0.1 M citric acid, 

0.5% Tween 20; Otto 1990) in a Petri dish. The suspension was filtered through a 42-µm 

nylon mesh and incubated for at least 20 min at room temperature. The suspension was then 

stained by a solution containing 1 ml of Otto II buffer (0.4 M Na2HPO4·12 H2O; Otto 1990), 

β-mercaptoethanol (final concentration of 2 µl/ml), propidium iodide and RNase IIA (both 

at final concentrations of 50 µg/ml). Finally, each sample was run through a Partec CyFlow 

flow cytometer (Partec GmbH, Münster, Germany) equipped with a green solid-state laser 

(Cobolt Samba, 532 nm, 100 mW). Fluorescence intensity of at least 3000 particles was 

recorded. Most of the samples were analysed twice, and average absolute genome size was 

calculated from these values. Variation between two different measurements did not exceed 

3%. Flow cytometry analyses were calibrated by chromosome counts (at least two counted 

individuals per ploidy level; standard karyologic methodology with lacto-propionic orcein 

staining described in Lepší et al. 2008). The resulting histograms were analysed using FloMax 

version 2.4d. Absolute genome size values were visualized as boxplots in PAST 2.17 

(Hammer et al. 2001). One-way ANOVA followed by Tukey’s HSD test was used 

to ascertain the significance of genome size differences between species. Values of genome 

size were log-transformed before the ANOVA. 

The genus Prunus belongs to the Rosaceae family, whose members are known 

to contain significant amounts of secondary metabolites, which can negatively affect analyses 

(Loureiro et al. 2006). To minimize their negative effect, we optimized the standard procedure 

by less chopping larger parts of the lamina (1.5 cm2 of tissue) and extending the incubation 

time to at least 20 min. 
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Distance-based morphometrics 

 

Vegetative characters on short-shoot leaves were selected based on the literature (Wójcicki 

1988, 1991a; Wójcicki and Marhold 1993; Lepší et al. 2011) and our own field observations. 

Altogether 8 characters on 222 leaves (two leaves per individual; see Table 1) were measured 

using a digital calliper (accuracy 0.01 mm; Proteco) and a stereo microscope (Olympus SZ51, 

Olympus, Tokyo, Japan; magnification 40×). Plant height was measured in the field. Abaxial 

hairs were measured on at least four leaves per individual and then averaged. Plant height, 

shape of the laminar tip, adaxial hairs and abaxial hairs were evaluated using semiquantitative 

scales (see Table 2). 

 
Table 2: Measured characters of Prunus fruticosa, P. ×eminens, P. ×mohacsyana, P. cerasus and P. avium. 

 

Character Unit 

Plant height 
1 = to 50 cm, 2 = 50-100 cm, 3 = over 100 cm,  
4 = tree 

Laminar length mm 

Laminar width mm 

The widest part of lamina to tip mm 

Laminar length/width (ratio of length and 
width of lamina) 

– 

Shape of lamina tip 
1 = obtuse, 2 = obovate, 3 = eliptic with aristate 
apex, 4 = eliptic with broadly acuminate apex 

Adaxial hairs (level of hairs on the adaxial 
surface of lamina) 

1 = glabrous, 2 = short hairs, 3 = long hairs 

Abaxial hairs (level of hairs on the abaxial 
surface of lamina) 

1 = glabrous, 2 = scattered pubescent, 3 = sparsely 
pubescent, 4 = densely pubescent 

 

The data matrix was evaluated using multivariate statistical methods in R (version 

3.1.2; R Core Team 2013) following procedures (descr.tax, cormat.s, pca.calc) described 

in detail by Koutecký (2015). Basic descriptive statistics including the minimum, maximum, 

average and the 25 and 75% percentile were calculated for each taxon studied. Correlations 

of morphological characters were tested using Spearman’s correlation coefficient in R. 

The structure of the data was determined using principal component analysis (PCA). 

Discriminant analysis was not included, because two essential morphological characters were 

used to separate tetraploid groups (plant height, abaxial hairs). 

 

Elliptic Fourier analysis 

 

Short-shoot leaves without petioles were taped onto sheets of cardboard paper. A total of 209 

leaves were analysed − two leaves from each individual, whenever possible (see Table 1). 

Only well-developed leaves with an undivided shape were suitable for elliptic Fourier 

analysis, so 13 partly damaged leaves were excluded. The prepared leaves were scanned 

at 300 dpi using a desktop scanner CanoScan 8800F (Canon, Tokyo, Japan). The SHAPE 1.3 

package (Iwata and Ukai 2002) was then used for leaf shape analysis based on elliptic Fourier 

descriptors (Kuhl and Giardina 1982). Using the ChainCoder routine, leaf shapes were 

converted into chain codes, and the CHC2NEF programme converted these chain codes 

into coefficients of elliptic Fourier descriptors (EFDs, using 20 harmonic axes). 

These coefficients, representing shape variables (mathematical shape descriptors), were used 
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to calculate the scores of principal components (PCs) using the PrinComp function, 

which also reconstructed the leaf shape, corresponding to values of +2 and −2 standard 

deviations on the first and second component axis and average leaf shape of each taxon (see 

Lepší et al. 2008 for details). 

 

Embryological analyses 

 

Buds and flowers from 34 individuals (see Table 1) were sampled for embryological analyses 

in the years 1998–2014. Individual developmental stages were assembled from the collected 

material, and the whole reproductive cycle was characterized based on the state 

of reproductive organs and fruit development. Part of the data was extracted from the work 

of Chudíková et al. (2012); however, the original data set was completely re-evaluated and 

substantially enlarged.  

Earlier developmental stages (buds and flowers) were fixed in the Navashin fixative 

(Berlyn and Mikshe 1976), and later developmental stages (fruits) were fixed in the FAA 

(formaldehyde, acetic acid, 96% ethanol and water; 1:0.5:5:3.5) tissue fixative. The fixed 

material was embedded in paraffin. Series of 5–10-µm thick sections were prepared using 

an Olympus CUT 4055 rotary microtome (Olympus, Tokyo, Japan). The sections were 

stained with Heidenhain hematoxylin (Sigma) and differentiated in 2.5% ammonium ferrous 

sulphate (Erdelská 1986). Microscope slides were examined under an Olympus BX 41 light 

microscope equipped with an Olympus E 520 digital camera (Olympus, Tokyo, Japan). 

 

Fruit set analyses 

 

The fruit set of Prunus fruticosa and its hybrids (estimated in 2014) was analysed for 

8 individuals of P. fruticosa (3 individuals), P. ×eminens (1 individual) and P. ×mohacsyana 

(4 individuals). Three ramets were marked on each individual. Flowers and fully developed 

fruits were counted, and the total fruit set was expressed as the percentage of the total number 

of fruits per population divided by the total number of flowers. 

 

 

Results 
 

Genome size and DNA ploidy level 

 

Diploid, triploid and tetraploid DNA ploidy level was inferred from absolute genome size 

values for 111 accessions of Prunus fruticosa, P. ×eminens, P. ×mohacsyana, P. cerasus and 

P. avium. Prunus avium was proved to be diploid (mean 2C = 0.73), and the heteroploid 

hybrid P. ×mohacsyana was proved to be triploid (mean 2C = 1.02 pg). The homoploid 

hybrid P. ×eminens, by contrast, was tetraploid (mean 2C = 1.34 pg), as were P. fruticosa 

(mean 2C = 1.31 pg) and P. cerasus (mean 2C = 1.42 pg). The three tetraploid taxa tended 

to differ in absolute genome size (see Fig. 2, Online Resource 1), although an overlap 

occurred (constituting a continual series; see Online Resource 2). Absolute genome size 

significantly differed among the five analysed groups (F = 2426, p<2e-16). The three tetraploid 

taxa differed significantly (F = 73.07, p<2e-16) in the ANOVA. Separate Tukey’s HSD tests 

for all taxa and tetraploid taxa only revealed five and three groups, respectively. Detailed 

cytometric results (including 2C, SD, CV, variation among repeated measurements and 

illustrative histograms) are summarized in Online Resource 3.  
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Fig. 2: Comparison of absolute genome size (pg) of Prunus taxa under study (diploid P. avium, triploid 

P. ×mohacsyana, tetraploid P. fruticosa, P. ×eminens and P. cerasus). 

 

Flow cytometric results (together with morphometrics, see below) revealed the co- 

-occurrence of pure, tetraploid Prunus fruticosa and triploid Prunus ×mohacsyana 

in the population on the Pyramída hill in Nitra. Genome size data indicate that hybrids were 

also able to form recently isolated populations (tetraploid P. ×eminens – Nitra St. Urban 

church, and triploid P. ×mohacsyana – Nitra forest edge, Štúrovo, Vŕšok II hill). 

 

Distance-based morphometrics 

 

Eight characters on 222 leaves of Prunus fruticosa, P. ×eminens, P. ×mohacsyana, P. cerasus 

and P. avium were included in the evaluation of descriptive statistics (see Online Resource 4). 

Laminar length and the widest part of lamina to tip were tightly correlated (Spearman’s 

correlation coefficient 0.96), nevertheless, the widest part of lamina to tip describes leaf shape 

which could be an important additional information, and still PCA is not negatively affected 

by high levels of correlation values of characters. Three groups of putative parental taxa were 

well separated along the first component axis in the principal component analysis (the first 

and the second axis explaining 70.2 and 12.8%, respectively). The two hybrids, by contrast, 

together formed a compact, overlapping cluster (see Fig. 3). Laminar width, laminar length 

and the widest part of lamina to tip were the most tightly correlated with the first component 

axis (see Table 2 for character details; see Online Resource 5 for the table of eigenvectors). 

Thus, P. fruticosa was well differentiated from both hybrids on the basis of 8 morphological 

characters. Even in the separate analysis excluding P. avium and P. cerasus, both hybrids 
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overlapped markedly, and P. fruticosa remained well separated (Fig. 4; see Online Resource 5 

for the table of eigenvectors). 

 

 
 
Fig. 3: Principal component analysis (PCA) using 8 morphological characters of 222 leaves Prunus fruticosa, 

P. ×eminens, P. ×mohacsyana, P. cerasus and P. avium. PC 1 explains 70.2% of the variability, PC 2 12.8%. 

 

 
Fig. 4: Ordination diagram of principal component analysis (PCA) based on 142 leaves (8 characters measured) 

of Prunus fruticosa, P. ×eminens and P. ×mohacsyana. The first component axis (PC 1) accounts for 62.2% 

of the variation (PC 2–14.9%). 

 

Elliptic Fourier analysis 

 

Principal component analysis based on standardized elliptic Fourier descriptors of 209 leaves 

exhibited a similar pattern as distance-based morphometrics. Prunus fruticosa formed 

a mostly compact group that was partly distinct from both hybrids (P. ×eminens and 

P. ×mohacsyana). Prunus avium also tended to form a separate group (see Fig. 5), 

while P. cerasus and the hybrids were clustered together. Nevertheless, the separation was not 

as evident as in the distance-based morphometrics (compare with Fig. 3, 4). The first 

component axis (explaining 64.2% of the variation) corresponded to relative leaf width, and 
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the second component axis reflected differences between the two distinct groups (explaining 

19.2% of the variation) based on variation in the shape of the leaf base and the shape 

of the leaf tip.  

 

 
Fig. 5: Principal component analysis (PCA) of Fourier coefficients describing variability in the shape 

of the lamina of 209 leaves of Prunus fruticosa, P. ×eminens, P. ×mohacsyana, P. cerasus and P. avium. PCA 

scores are standardized by the standard deviation (the scale is in units of standard deviation). Shown along 

the first two PC axes are leaf shape reconstructions (petiole connection on the left) corresponding to values  

of -2 SD, 0 and +2 SD. 

 

Thus, leaves of Prunus fruticosa tended to be obovate with an obtuse apex, leaves 

of Prunus cerasus formed an elliptic shape with a broadly acuminate apex, and P. avium 

tended to be elliptic with an aristate apex. By contrast, intermediate leaves of the hybrids 

P. ×eminens and P. ×mohacsyana frequently formed an elliptic shape with a broadly 

acuminate apex, never obtuse or with an aristate apex. Average leaf shapes of the individual 

taxa are illustrated in Fig. 6. The elliptic Fourier analysis did not find significant differences 

between the two groups of hybrids (P. ×eminens and P. ×mohacsyana). 

 

 
Fig. 6: Average shapes of Prunus leaves (petiole connection on the left). 
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Embryology 

 

Development of the female gametophyte 

Functional megaspores were observed in Prunus fruticosa and P. ×eminens (75 and 50%), 

while degeneration of all megaspore tetrads was frequently recorded in P. ×mohacsyana 

(90.0%; see Online Resource 6a), probably due to disturbances of meiosis (for summarized 

and simplified results see Table 3). Antipodes of the Prunus female gametophyte were nearly 

degenerated, so the mature female gametophyte contained an egg apparatus, which consisted 

of an egg cell, two synergids and a secondary nucleus that arose by fusion of two polar nuclei 

before fertilization (see Online Resource 6b). Mature female gametophytes were common 

in the ovules of P. fruticosa and also of P. ×eminens. Although mature female gametophytes 

were sporadically present in the ovules of P. ×mohacsyana (25%), several failures were 

observed during megagametogenesis, which led to the formation of incomplete or 

unorganized female gametophytes (three-, four- and six-nucleate with disturbed polarity). 

Two- and four-nucleate bipolar female gametophytes with degenerated nuclei were also 

recorded. Prunus ×mohacsyana ovules (100.0%) did not contain a functional female 

gametophyte at the time of anthesis as a result of megasporogenesis and megagametogenesis 

failures. 

 

Development of the male gametophyte 

Degeneration of sporogenous cells during differentiation of sporogenous tissue was observed, 

accompanied by degeneration of the tapetum layer (tetraploid Prunus fruticosa and 

P. ×eminens – 14.7 and 20.0% vs. triploid P. ×mohacsyana – 37.5%). Failures in tapetum 

differentiation in the early developmental stages of P. ×mohacsyana were also followed 

by disturbances in the differentiation of sporogenous cells and microsporocytes (50% 

of disturbed in case of P. ×mohacsyana, manifested by, e.g. atypical shape; compare Online 

Resource 6c and 6d).  

In Prunus fruticosa and P. ×eminens, a regular course of microsporogenesis was 

observed (see Online Resource 6e, f, g), but several disorders in microsporogenesis were 

recorded in P. ×mohacsyana (reaching 85.7%; see Online Resource 6h, i, j), resulting 

in a completely undeveloped pollen grain set leading to complete male sterility (up to 100%; 

see Online Resource 6i). Microspores exhibited considerable shape and size variation 

after the release of microspores from tetrads and their subsequent growth; the protoplasts were 

strongly vacuolated (see Online Resource 6h, j). We sporadically observed monads where 

the size of nuclei showed that they contained a non-reduced number of chromosomes (most 

likely resulting in further observed giant pollen grains; see Online Resource 6i).  

The postfertilization pattern was analogous to traits in male and female reproductive 

structures in particular taxa (i.e. regular double fertilization and developed embryos 

in Prunus fruticosa and P. ×eminens vs. degenerated embryos in P. ×mohacsyana resulting 

in no mature fruit observed; see Online Resource 6k, l). 
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Table 3: Ratios of irregularly developed reproductive female and male structures (to the total number 

of analysed samples) and fruit set (fruits/flowers). 
 

Stages of development P. fruticosa P. ×eminens P. ×mohacsyana 

Female   

Percentage of degeneration of 
all archespore cells 

12.5% (1/8) 33.3% (1/3) 66.7% (8/12) 

Percentage of degenerated 
tetrad of megaspores 

25.0% (2/8) 50.0% (2/4) 90.0% (9/10) 

Percentage of incomplete and 
degenerated female 
gametophyte or ovules without 
female gametophyte 

11.4% (0+3+5/70) 36.8% (3+2+2/19) 75.0% (5+11+26/56) 

Percentage of completely 
degenerated ovules (without 
zygota or embryo) 

10.7% (3/28) 25.0% (3/12) 100% (30/30) 

Male   

Percentage of damaged 
sporogenous tissue 

14.7% (5/34) 20.0% (2/10) 37.5% (9/24) 

Percentage of irregularly formed 
microsporocytes 

0% (0/25) 0% (0/5) 50.0% (10/20) 

Percentage of disturbances of 
microsporogenesis 

21.1% (4/19) 50.0% (5/10) 85.7% (30/35) 

Percentage of irregularly formed 
microspores 

0% (0/30) 9.1% (1/11) 72.7% (16/22) 

Percentage of degenerated 
pollen grains (entire grains in 
specimen) 

0% (0/30) 0% (0/10) 100% (33/33) 

Fruits   

Fruit set 1.8% (3/166) 0.4% (1/251) 0% [0/(58+251)] 

 

 

Discussion 

 
The applied methodology combines embryology, flow cytometry and morphometrics. Used 

methods have their limitations and advantages. Flow cytometry usually produces large 

amounts of data, but the particles passing through the flow cytometer are not under visual 

control, so it is impossible to differentiate between nuclei and debris, for example. In addition, 

serious problems may arise due to the influence of secondary metabolites (e.g. reduced 

fluorescence and measurement accuracy; Doležel et al. 2007). It may also be difficult 

to interpret the results (e.g. different genome size vs. aneuploidy or evidence of backcrossing 

of homoploid hybrids in cases of small differences in absolute genome size; Loureiro et al. 

2010). Embryology, by contrast, enables direct (visual) observation of particular 

reproductive stages, but depends on capturing the right ontogenetic stage of the tissue under 

study and on observing characters visually (e.g. absence of reproductive phases in samples or 

the presence of secondary metabolites). Moreover, because of the destructive nature of this 

method and the need for observing different reproductive stages, numerous individual 

samples of different ontogenetic stage must be analysed. However, as embryology is time- 
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-consuming and fraught with technical difficulties, only small numbers of individuals are 

usually analysed (Bhojwani and Bhatnagar 1983; Herr 1984). Traditionally used 

morphometric approaches are substantially disadvantaged by limited ability of shape 

description; nevertheless, this may be overcome by combination with geometric 

morphometrics (including elliptic Fourier analysis; Těšitel et al. 2009; Hanušová et al. 2014; 

Kabátová et al. 2014). Apparent limitation of morphometric approach is interference 

of phenotypic plasticity which could blur the discriminative morphological trend of particular 

species.  

Absolute genome size is frequently employed as a neutral marker within groups 

of closely related taxa (Murray 2005). Small differences in genome size should be interpreted 

with caution (Doležel and Bartoš 2005; Šmarda and Bureš 2006), especially to avoid 

methodological artefacts (Greilhuber et al. 2005). We are nevertheless convinced that our 

results are not negatively influenced by methodological artefacts (due to symmetric peaks 

of our histograms, relatively high range 49 plant genome sizes – over 17% and proven 

reproducibility of measurements). The Rosaceae family is challenging to study by flow 

cytometry due to its higher contents of secondary metabolites, which directly influence 

coefficients of variation of resulting peaks. To avoid the exclusion of the entire family from 

cytometric research, higher coefficients of variation are generally accepted (Baird et al. 1994; 

Jedrzejczyk and Sliwinska 2010; Dobeš et al. 2013). The coefficients of variation of our 

analyses also reached higher values (1.33–5.95). To exclude the negative influence 

of secondary metabolites (and higher coefficients of variation), we tested the stability 

of the analyses by taking repeated measurements.  

Differences between obtained genome size values (intra- and interspecific variation) 

can generally be connected with (1) changes in chromosome sets (aneuploidy, polyploidy, 

chromosomal heteromorphism, presence of B chromosomes or sex chromosomes; Bennetzen 

et al. 2005; Šmarda and Bureš 2010) or (2) differential accumulation of transposable elements 

(Bennetzen et al. 2005; Michael 2014). There are also other processes that should be 

mentioned in relation to genome size variation, such as sequence length polymorphism, 

genome duplication, punctual insertions/deletions and irregular recombination (Petrov 2001; 

Šmarda and Bureš 2010). We can, however, exclude a possible influence of these phenomena 

based on literature data and our calibration by chromosome counts, which cover the whole 

interval of measured genome sizes. 

 

Introgressive hybridization 

 

The heteroploid hybrid combination is mirrored by a rather discrete genome size pattern. 

At the tetraploid level, by contrast, flow cytometry revealed a continuum of genome sizes that 

can be interpreted as a result of frequent backcrossing. Prunus ×eminens is evidently linking 

the two putative parental taxa. Thus, together with the embryological results, flow cytometry 

supports the hypothesis of frequent gene flow among tetraploids and possible backcrossing 

(put forward by Marhold and Wójcicki 1992; Haeupler and Muer 2007), but it has never been 

proven.  

We are aware that Prunus fruticosa and P. ×eminens were determined based 

on a single character (presence of abaxial hairs). Although its reliability has been proven 

by statistical approaches (high values of PCA eigenvectors; see Online Resource 5), three 

other quantitative characters (laminar width, laminar length and the widest part of lamina 

to tip) were slightly more correlated with the first component axis in the principal component 

analysis of all the taxa (see Online Resource 5). We are, however, convinced that the presence 

of abaxial hair, being a semiquantitative character, is more useful for determining taxa 

in the field than other mentioned leaf traits.  
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Both morphometric approaches indicated introgressive hybridization, especially 

in the direction of Prunus cerasus (see Fig. 3, 5). We conclude, based on morphometric data, 

that the genome size continuum observed in this study indicates introgressive hybridization. 

The same conclusion was reached, for example, by Suda et al. (2007) and Urfus et al. (2014) 

in the genus Pilosella Hill. or by Hanušová et al. (2014) in Diphasiastrum Holub. Of course, 

for a reliable confirmation of parentage and the direction of hybridization, more sensitive  

(e.g. AFLP, microsatellites) and uniparentally inherited markers (cpDNA markers) will have 

to be employed.  

Homoploid hybridization (Prunus fruticosa × P. cerasus) indicated asymmetric type 

of introgressive hybridization (backcrossing towards P. fruticosa; see Fig. 2). Asymmetric 

tendencies in introgressive hybridization were documented several times (Quercus L.; Petit et 

al. 2004). Potential impact of introgressive hybridization is further enhanced at secondary 

habitats (especially at anthropogenically disturbed sites), which represent opportunity 

to establish new hybrid populations with diminished influence of exclusion via competition  

(e.g. Viola lutea subsp. sudetica (Willd.) Nyman, Krahulcová et al. 1996; Banksia L.f., 

Lamont et al. 2003; Argyranthemum frutescens (L.) Sch. Bip., Fjellheim et al. 2009). 

In specific cases disturbed habitats enable establishment of highly intricate hybrid swarms 

(Pilosella Hill; Křišťálová et al. 2010; Urfus et al. 2014). In perspective of conservation 

genetics introgression is frequently linked to secondary habitat whereas the original primary 

habitat populations remain unspoiled (e.g. Pinus uncinata subsp. uliginosa (G.E.Neumann ex 

Wimm.) Businský; Bastl et al. 2008). Prunus fruticosa is contrary endangered 

by introgression even within its primary habitats (shrub alliances and continental deciduous 

thickets, Chytrý et al. 2010). 

 

Conservation consequences 

 

Based on our data, the cultivation of Prunus cerasus, which can introgressively hybridize 

with P. fruticosa, represents a substantially higher conservation risk for P. fruticosa 

than the cultivation of P. avium, hybridization with which leads to mostly sterile F1 triploid 

hybrids. Introgressive homoploid hybridization may cause slow, invisible genetic erosion 

(Levin et al. 1996). The most efficient conservation strategy is to protect the most isolated 

pure populations of P. fruticosa. Several studies carried out in Central Europe indicate 

that the risks of introgression should be taken seriously. Hybridization of rare, low-abundant 

species often threatens small, isolated populations, because they cannot counterbalance 

the increasing number of hybrids (Vít et al. 2014). The risk of genetic erosion can be further 

enhanced if the participating taxa are of distant provenances (P. cerasus probably came 

from Southwest Asia; Sinskaya 1969; Kurtto et al. 2013). Although the triploid hybrids most 

probably do not participate in further backcrossing, they represent a serious complication 

for the conservation of P. fruticosa. They tend to occupy niches of P. fruticosa, compete 

with it for resources and decrease the number of its potential sexual partners, and even tend 

to overgrow lower P. fruticosa shrubs (Lepší et al. 2011).  

 

Embryological evidence  

 

High triploid hybrid sterility was observed during our embryological study. Sterility 

of Prunus ×mohacsyana was manifested in both male and female gametophytes. This pattern 

markedly differs from standard reproductive traits observed in the tetraploid hybrid 

(P. ×eminens). Ovules with undeveloped or missing female gametophytes at the time 

of anthesis occur frequently in cultivated taxa or cultivars of hybrid origin (also among other 

Prunus species; Furukawa and Bukovac 1989; Egea and Burgos 1994). Male sterility 
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of triploid hybrid individuals is most likely connected with a failure of meiosis caused 

by an imbalance between the participating genomes. A similar pattern, accompanied 

by serious disturbances of microsporogenesis manifested by unequal distribution 

of chromosomes to the poles and the elimination of chromosomes during meiotic division, has 

been recorded in three triploid species of the genus Crataegus L. (manifested also 

by the presence of morphologically and karyologically diverse or giant pollen grains; Ptak 

1989). Moreover, differences in exine morphology have been observed in several cultivars 

of P. cerasus (tetracolpate pollen instead of tricolpate and ‘‘giant’’ pollen grains; Miaja et al. 

2000) or abnormalities in tapetum development and irregularities in exine development have 

been reported (e.g. Prunus salicina Lindl.; Radice et al. 2008). 

Pollen germination is often significantly reduced in hybrids, but the extent 

of the reduction is highly variable (Ramsey and Schemske 1998). Low pollen germination has 

been observed in cultivars of tetraploid Prunus cerasus (<25%; Miaja et al. 2000). 

On the other hand, Rybnikárová (2010) reported markedly higher pollen germination 

(between 29.0 and 58.33%) in the pentaploid (2n = 40; Scholz and Scholz 1995) heteroploid 

hybrid Prunus ×fruticans Weihe (Prunus insititia L. × Prunus spinosa L.).  

All embryological observations confirm that the triploid block is highly efficient 

in preventing further hybridization events. A similar pattern has been observed also in other 

sterile triploid hybrids (Ekrt et al. 2009; Ferriol et al. 2012; Duszynska et al. 2013; Samadi et 

al. 2013; Hanzl et al. 2014; Zozomová-Lihová et al. 2014). On the other hand, triploid hybrids 

may also be fertile, highly viable, producing 1x, 2x, 3x gametes, and able to contribute 

significantly to further hybridization events and ploidy diversification (Ramsey and Schemske 

1998; Husband 2004; Henry et al. 2005; Hayashi et al. 2009). A tendency towards producing 

ploidy-variable gametes has also been observed in early stages of microsporogenesis, but it 

has not been proven among mature gametes of Prunus ×mohacsyana. On the other hand, there 

is a strong potential for introgression (including backcrossing) in tetraploid hybrids 

(P. ×eminens), based on our embryological analyses. 

 

Taxonomical consequences 

 

Our study revealed several morphological characters that are highly efficient for determining 

the taxa concerned (except hybrids). Prunus cerasus and P. avium are tree-like in growth 

form, while the other taxa dealt with in this study are shrubs (P. fruticosa, P. ×eminens and 

P. ×mohacsyana). The character (abaxial hairs) used for distinguishing P. fruticosa (glabrous) 

from hybrids (hairs) is one of the most useful. Other suitable key characters are laminar size 

(laminar width, laminar length, the widest part of lamina to tip – see Table 2 for details; 

P. fruticosa has smaller leaves than hybrids), the shape of the leaf apex (P. fruticosa – obtuse 

to obovate, P. avium – elliptic with an aristate apex, P. cerasus – elliptic with a broadly 

acuminate apex vs. intermediate hybrids – obovate to elliptic with a broadly acuminate apex, 

never obtuse or with an aristate apex) and ploidy level (tetraploid P. fruticosa, P. cerasus and 

P. ×eminens, triploid P. ×mohacsyana and diploid P. avium). Although the presence 

of abaxial hairs, leaf size and apex characters are useful for identifying the homoploid hybrid 

P. ×eminens, we cannot assume that they are useful also for identifying introgressants.  

Thus, populations of P. fruticosa, especially those in which P. ×eminens occurs, might be 

better treated as potentially backcrossed, especially with regard to our embryological results 

(high potential for backcrossing in both male and female reproductive structures). 
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Conclusions 
 

Our study revealed three ploidy levels: diploid (Prunus avium), triploid (P. ×mohacsyana) 

and tetraploid (P. fruticosa, P. ×eminens and P. cerasus) in six selected populations and 

additional material from surrounding regions. The tetraploids, moreover, tended to differ 

in absolute genome size. An embryological evaluation confirmed the existence of a triploid 

block in P. ×mohacsyana and significant potential for introgressive hybridization among 

tetraploid taxa. Morphometrics, flow cytometry and embryology jointly revealed frequent 

backcrossing. Although hybrids differ in ploidy level and embryological characteristics, they 

are almost indistinguishable at the morphological level. Hybridization with P. cerasus 

nevertheless turns out to be a significant threat to wild populations of P. fruticosa in contrast 

to the relatively weak danger posed by hybridization with P. avium. 
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Supplementary material 

 

 
Online Resource 1: Absolute genome size (pg) of taxa of the genus Prunus under study.  

2C = nuclear DNA content of somatic cells, SD = standard deviation, CV = coefficient 

of variance of the sample, N = number of individuals. 

Taxa 
Average 

2C 
Range of 

2C 
Median SD 

Average 
CV 

N 

P. avium 0.73 0.70–0.77 0.73 0.02 4.81 20 

P. ×mohacsyana 1.02 0.99–1.10 1.01 0.03 5.03 28 

P. fruticosa 1.31 1.25–1.37 1.30 0.03 4.45 30 

P. ×eminens 1.34 1.26–1.39 1.37 0.04 4.16 13 

P. cerasus 1.42 1.35–1.47 1.42 0.03 3.91 20 

 

Online Resource 2: Absolute genome size (pg) variation of 111 individuals 

of Prunus fruticosa, P. ×eminens, P. ×mohacsyana, P. cerasus and P. avium. Orange-marked 

individuals were used in the embryological analysis.  

 

  



79 

 

Online Resource 3: Table of ploidy levels and absolute genome size data 

for Prunus fruticosa, P. ×eminens, P. ×mohacsyana, P. cerasus and P. avium (index = ratio 

between sample and internal standard peak, CV = coefficient of variance of the sample,  

GS = absolute genome size) accompanied by illustrative histograms of each ploidy level  

(A = diploid P. avium, B = triploid P. ×mohacsyana, C = tetraploid P. ×eminens). 

    
PI – 
1strun 

    
PI – 
2ndrun 

          

Sample name Sample Index 
CV 

sample 
CV 

Bellis 
Index 

CV 
sample 

CV 
Bellis 

GS 
[pg] 

SD 
Diffe-

rence [%] 

P. fruticosa P1-1 2.658 3.32 2.44 X X X 1.27 X X 

P. fruticosa P1-2 2.677 3.46 2.23 X X X 1.26 X X 

P. fruticosa P1-3 2.604 4.07 2.22 X X X 1.30 X X 

P. fruticosa P1-4 2.631 3.13 2.29 X X X 1.28 X X 

P. fruticosa P1-5 2.592 5.09 2.39 X X X 1.30 X X 

P. fruticosa P1-6 2.621 3.85 2.36 X X X 1.29 X X 

P. fruticosa P1-7 2.701 4.23 2.22 X X X 1.25 X X 

P. fruticosa P1-8 2.611 4.96 2.31 X X X 1.29 X X 

P. fruticosa P1-9 2.563 5.82 3.50 2.513 4.49 2.70 1.33 0.019 1.99 

P. fruticosa P1-10 2.505 1.33 4.56 2.576 3.80 2.36 1.33 0.026 2.83 

P. fruticosa P1-11 2.474 5.29 2.59 2.513 3.11 1.87 1.36 0.015 1.58 

P. fruticosa P1-12 2.523 4.40 2.08 2.507 4.14 2.84 1.34 0.006 0.64 

P. fruticosa P1-13 2.598 4.83 1.94 2.563 3.35 1.94 1.31 0.013 1.37 

P. fruticosa P1-14 2.566 5.16 2.38 2.541 4.60 4.02 1.32 0.009 0.98 

P. fruticosa P1-15 2.602 4.41 2.37 2.585 5.12 3.58 1.30 0.006 0.66 

P. fruticosa P2-1 2.604 4.36 2.75 X X X 1.30 X X 

P. fruticosa P2-2 2.601 4.21 2.57 X X X 1.30 X X 

P. fruticosa P2-3 2.614 5.00 2.65 X X X 1.29 X X 

P. fruticosa P2-4 2.611 5.19 2.79 X X X 1.29 X X 

P. fruticosa P2-5 2.559 5.36 2.95 X X X 1.32 X X 

P. fruticosa P2-6 2.607 5.48 3.01 X X X 1.30 X X 

P. fruticosa P2-7 2.596 3.93 2.62 X X X 1.30 X X 

P. fruticosa P2-8 2.626 4.39 2.80 X X X 1.29 X X 

P. fruticosa P2-9 2.586 4.78 2.47 X X X 1.31 X X 

P. fruticosa P2-10 2.663 4.30 2.83 X X X 1.27 X X 

P. fruticosa P2-11 2.584 4.31 2.43 2.538 3.96 2.88 1.32 0.017 1.81 

P. fruticosa P2-12 2.497 5.77 2.66 2.428 4.24 3.27 1.37 0.027 2.84 

P. fruticosa P2-13 2.491 4.29 2.11 2.463 5.33 2.03 1.36 0.011 1.14 

P. fruticosa P2-14 2.504 5.64 2.51 2.460 5.76 3.04 1.36 0.017 1.79 

P. fruticosa P2-15 2.600 4.95 2.67 2.673 3.60 2.25 1.28 0.025 2.81 

P. ×mohacsyana P3-1 3.367 4.68 2.73 X X X 1.00 X X 

P. ×mohacsyana P3-2 3.307 4.78 2.40 X X X 1.02 X X 

P. ×mohacsyana P3-3 3.301 5.86 2.52 3.308 4.22 1.51 1.02 0.002 0.21 

P. ×mohacsyana P3-4 3.265 5.41 3.55 3.300 4.47 2.72 1.03 0.008 1.07 

P. ×mohacsyana P3-5 3.154 4.99 2.67 3.235 4.24 2.69 1.06 0.019 2.57 

P. ×mohacsyana P3-6 3.246 5.19 2.27 3.257 4.75 2.91 1.04 0.002 0.34 
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PI – 
1strun 

    
PI – 
2ndrun 

          

Sample name Sample Index 
CV 

sample 
CV 

Bellis 
Index 

CV 
sample 

CV 
Bellis 

GS 
[pg] 

SD 
Diffe-

rence [%] 

P. ×mohacsyana P3-7 3.217 5.80 2.87 3.190 4.76 2.78 1.06 0.006 0.85 

P. ×mohacsyana P3-8 3.320 5.14 2.63 3.261 5.47 2.78 1.03 0.013 1.81 

P. ×mohacsyana P3-9 3.350 5.87 2.27 3.339 5.74 2.55 1.01 0.002 0.33 

P. ×mohacsyana P3-10 3.342 5.75 2.90 3.280 4.88 2.62 1.02 0.014 1.89 

P. ×mohacsyana P3-11 3.294 5.25 3.06 3.380 5.15 3.00 1.01 0.018 2.61 

P. ×mohacsyana P4-1 3.345 2.74 2.87 3.303 5.72 2.14 1.02 0.009 1.27 

P. ×mohacsyana P4-2 3.213 5.30 1.90 3.269 5.73 2.70 1.04 0.013 1.74 

P. ×mohacsyana P5-1 3.370 5.17 2.53 X X X 1.00 X X 

P. ×mohacsyana P5-2 3.346 4.41 2.50 X X X 1.01 X X 

P. ×mohacsyana P5-3 3.343 5.28 2.76 X X X 1.01 X X 

P. ×mohacsyana P5-4 3.399 5.62 2.13 X X X 0.99 X X 

P. ×mohacsyana P5-5 3.350 4.16 2.96 X X X 1.01 X X 

P. ×mohacsyana P5-6 3.363 4.65 3.08 X X X 1.01 X X 

P. ×mohacsyana P5-7 3.362 5.73 2.34 X X X 1.01 X X 

P. ×mohacsyana P5-8 3.300 5.46 2.71 X X X 1.02 X X 

P. ×mohacsyana P5-9 3.418 3.04 2.10 X X X 0.99 X X 

P. ×mohacsyana P5-10 3.366 5.65 3.00 X X X 1.00 X X 

P. ×mohacsyana P5-11 3.036 5.41 3.11 3.082 5.65 3.63 1.10 0.012 1.52 

P. ×mohacsyana P5-12 3.248 5.17 3.23 3.223 5.58 2.84 1.04 0.006 0.78 

P. ×mohacsyana P5-13 3.339 5.95 2.45 3.364 4.15 2.74 1.01 0.005 0.75 

P. ×mohacsyana P5-14 3.429 4.11 2.05 3.338 4.55 1.76 1.00 0.019 2.73 

P. ×mohacsyana P5-15 3.120 5.09 1.80 3.090 4.58 3.35 1.09 0.007 0.97 

P. ×eminens P6-1 2.431 4.00 2.20 X X X 1.39 X X 

P. ×eminens P6-2 2.460 4.44 2.62 X X X 1.37 X X 

P. ×eminens P6-3 2.476 4.10 2.75 X X X 1.37 X X 

P. ×eminens P6-4 2.470 4.77 2.82 X X X 1.37 X X 

P. ×eminens P6-5 2.472 3.88 2.69 X X X 1.37 X X 

P. ×eminens P6-6 2.514 4.10 2.80 X X X 1.34 X X 

P. ×eminens P6-7 2.585 3.55 2.54 X X X 1.31 X X 

P. ×eminens P6-8 2.442 5.82 3.42 X X X 1.38 X X 

P. ×eminens P6-9 2.575 4.66 2.70 X X X 1.31 X X 

P. ×eminens P6-10 2.557 3.48 2.72 X X X 1.32 X X 

P. ×eminens P6-11 2.609 5.33 2.64 2.542 3.76 3.27 1.31 0.024 2.64 

P. ×eminens P6-12 2.693 4.18 2.71 2.672 2.45 2.01 1.26 0.007 0.79 

P. ×eminens P6-13 2.488 4.15 1.90 2.460 3.89 3.51 1.37 0.011 1.14 

P. cerasus Lys PC1 2.302 3.54 2.32 2.340 4.03 2.48 1.46 0.017 1.65 

P. cerasus Lys PC2 2.451 2.94 1.98 2.425 3.42 1.77 1.39 0.010 1.07 

P. cerasus Lys PC3 2.394 3.56 2.30 2.374 3.89 2.19 1.42 0.008 0.84 

P. cerasus Lys PC6 2.338 4.14 2.36 2.322 4.24 2.90 1.45 0.007 0.69 

P. cerasus Lys PC7 2.355 3.88 2.10 2.355 4.76 2.83 1.44 0.000 0.00 

P. cerasus Lys PC8 2.379 3.07 1.95 2.381 4.81 2.88 1.42 0.001 0.08 
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PI – 
1strun 

    
PI – 
2ndrun 

          

Sample name Sample Index 
CV 

sample 
CV 

Bellis 
Index 

CV 
sample 

CV 
Bellis 

GS 
[pg] 

SD 
Diffe-

rence [%] 

P. cerasus Lys PC9 2.404 5.31 3.04 2.404 4.41 2.26 1.41 0.000 0.00 

P. cerasus Lys PC10 2.397 3.17 1.52 2.376 3.87 2.98 1.42 0.009 0.88 

P. cerasus Lys PC11 2.339 2.18 1.91 2.365 4.31 2.59 1.44 0.011 1.11 

P. cerasus Lys PC12 2.374 4.92 2.88 2.414 3.84 1.84 1.41 0.017 1.68 

P. cerasus P33-PC1 2.345 2.83 1.97 X X X 1.44 X X 

P. cerasus P33-PC2 2.372 5.10 2.26 X X X 1.42 X X 

P. cerasus P76-PC1 2.350 4.31 3.10 X X X 1.44 X X 

P. cerasus P76-PC2 2.329 3.72 2.70 X X X 1.45 X X 

P. cerasus P82-PC1 2.499 3.26 2.43 X X X 1.35 X X 

P. cerasus P82-PC2 2.486 5.10 2.71 X X X 1.36 X X 

P. cerasus P82-PC5 2.442 2.99 2.62 X X X 1.38 X X 

P. cerasus P82-PC6 2.399 3.36 2.90 X X X 1.41 X X 

P. cerasus P128-PC1 2.296 4.20 2.50 X X X 1.47 X X 

P. cerasus P128-PC2 2.378 4.28 3.18 X X X 1.42 X X 

P. avium Zel-PA12 4.476 5.46 2.86 X X X 0.76 X X 

P. avium Zel-PA35 4.606 4.61 2.51 X X X 0.73 X X 

P. avium Zel-PA38 4.630 5.52 2.96 X X X 0.73 X X 

P. avium Zel-PA40 4.723 3.91 2.25 X X X 0.72 X X 

P. avium Zel-PA42 4.657 3.50 1.98 X X X 0.73 X X 

P. avium Zel-PA47 4.634 4.63 2.35 X X X 0.73 X X 

P. avium Zel-PA48 4.422 4.34 2.02 X X X 0.76 X X 

P. avium Zel-PA49 4.459 5.52 2.15 X X X 0.76 X X 

P. avium Zel-PA50 4.763 5.60 3.44 X X X 0.71 X X 

P. avium Zel-PA51 4.844 4.55 2.42 X X X 0.70 X X 

P. avium P115-PC1 4.391 5.36 2.74 X X X 0.77 X X 

P. avium P125-PC1 4.659 4.98 2.46 X X X 0.73 X X 

P. avium P125-PC2 4.713 4.88 2.20 X X X 0.72 X X 

P. avium P127-PC1 4.397 4.97 2.47 X X X 0.77 X X 

P. avium P127-PC2 4.611 5.85 2.58 X X X 0.73 X X 

P. avium P130-PC1 4.657 4.41 2.37 X X X 0.73 X X 

P. avium P134-PC1 4.704 3.55 2.05 X X X 0.72 X X 

P. avium P135-PC1 4.802 4.04 2.08 X X X 0.70 X X 

P. avium P140-PC1 4.622 5.68 2.98 X X X 0.73 X X 

P. avium P140-PC2 4.640 4.75 2.19 X X X 0.73 X X 
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Online Resource 4: Basic descriptive statistics for traits of Prunus fruticosa, P. ×eminens, 

P. ×mohacsyana, P. cerasus and P. avium (minimum, maximum, average, and 25% and 75% 

quantile). 

Taxa/characters 
Plant 

height 

Laminar 
lenght 
(mm) 

Laminar 
width 
(mm) 

The widest 
part of 

lamina to 
tip (mm) 

Ratio of 
lenght 

and width 
of lamina  

Shape of 
lamina 

tip 

Level of 
hairs on the 

adaxial 
surface of 

lamina 

Level of 
hairs on the 

abaxial 
surface of 

lamina 

Prunus 
fruticosa 

min 1 13.37 6.43 4.84 1.69 1 1 1 

25% 
quantile 

1 16.64 8.12 6.15 1.94 1 1 1 

average 1 18.80 8.86 7.04 2.13 1.53 1.16 1 

75% 
quantile 

1 20.30 9.73 7.87 2.27 2 1.25 1 

max 1 25.87 11.77 10.47 2.82 3 2 1 

Prunus 
×eminens 

min 3 29.66 14.96 10.13 1.70 2 1 1.50 

25% 
quantile 

3 38.81 18.67 14.82 1.89 3 1 2.50 

average 3 41.15 20.02 17.39 2.06 2.88 1.19 2.85 

75% 
quantile 

3 45.13 21.39 19.72 2.21 3 1.25 3.25 

max 3 50.87 26.18 22.94 2.31 3 2 4 

Prunus 
×mohacsyana 

min 1 21.66 8.37 10.73 1.56 2 1 1.25 

25% 
quantile 

2 28.37 12.95 12.58 1.88 3 1 1.75 

average 2.57 33.53 16.29 15.07 2.10 2.88 1.06 2.27 

75% 
quantile 

3 39.26 19.23 17.36 2.32 3 1 2.75 

max 3 50.25 26.07 21.54 2.95 3 1.75 4 

Prunus cerasus 

min 3 36.82 20.86 17.67 1.45 3 1 2 

25% 
quantile 

4 49.25 29.58 23.01 1.60 3 1 3 

average 3.9 57.72 32.67 26.63 1.77 3.48 1.11 3.23 

75% 
quantile 

4 62.86 35.60 29.12 1.91 4 1 4 

max 4 85.66 46.29 40.18 2.29 4 2.50 4 

Prunus avium 

min 4 60.20 30.76 29.88 1.55 4 1 4 

25% 
quantile 

4 86.00 43.99 43.09 1.82 4 2 4 

average 4 98.61 51.34 50.50 1.95 4 1.98 3.95 

75% 
quantile 

4 113.77 57.72 57.42 2.07 4 2 4 

max 4 127.11 71.94 69.57 2.63 4 3 3.50 
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Online Resource 5: Eigenvector values of the first two axes of principal component analysis 

(8 morphological traits) Prunus fruticosa, P. ×eminens, P. ×mohacsyana, P. cerasus and 

P. avium (natural and cultivated). Highlighted are the signs and values of eigenvectors 

that contribute most to the distribution of objects along the first axis. See Table 2 

for characters abbreviations. PF = P. fruticosa, PE = P. ×eminens, PM = P. ×mohacsyana,  

PC = P. cerasus, PA = P. avium. 

Dataset Character Eigenvectors 

PF, PE, PM, PC, PA   PC1 PC2 

  

plant height 0.377022 -0.246918 

laminar length 0.404488 0.136678 

laminar width 0.406687 -0.013642 

the widest part of lamina to tip 0.402547 0.145780 

lamina length/width  -0.157943 0.803334 

shape of lamina tip 0.368504 0.016545 

adaxial hairs 0.256984 0.502352 

abaxial hairs 0.374197 -0.030586 

PF, PE, PM   PC1 PC2 

  

plant height 0.417087 -0.111662 

laminar length 0.429537 0.042236 

laminar width 0.420463 -0.207836 

the widest part of lamina to tip 0.433166 0.048850 

lamina length/width  -0.042484 0.816209 

shape of lamina tip 0.368942 0.239791 

adaxial hairs -0.056427 0.430417 

abaxial hairs 0.368792 0.176663 
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Online Resource 6: Figures of embryological observations. 

Development of female gametophyte  

 

1 – Ovule with degenerate Prunus ×mohacsyana megaspores, (Nitra Pyramída hill, 16. 4. 

2014), Bar = 50 µm 

2 – Ovule with mature female P. fruticosa gametophyte, (Nitra Pyramída hill, 16. 4. 2014), 

Bar = 50 µm 

FG – female gametophyte, Me – megaspores, Sy – synergids 
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Development of male gametophyte  

 

3 – Atypical shape of Prunus ×mohacsyana microsporocytes, (Nitra Pyramída hill, 20. 3. 

2014), Bar = 50 µm 

4 – Typical shape and size of P. fruticosa microsporocytes, (Nitra Pyramída hill, 20. 3. 2014), 

Bar = 50 µm 

5 – Normally developed microspores in P. fruticosa anther (Nitra Pyramída hill, 29. 3. 2014), 

Bar = 50 µm 

6 – One-celled pollen grain in P. ×eminens (Nitra St. Urban church, 16.4.2004), Bar = 50 µm 

7 – Anthers with mature pollen grains of P. fruticosa (Salka the Sovie Vinohrady, 10. 4. 

1999), Bar = 50 µm 

8 – Microspores various size and shape of P. ×mohacsyana, (Nitra Pyramída hill, 29.3.2014), 

Bar = 50 µm 

9 – Giant pollen grain and undeveloped pollen grains in anther of P. ×mohacsyana, (Nitra 

Pyramída hill, 16.4.2014), Bar = 50 µm 

10 – Highly vacuolated cells of tapetum of P. ×mohacsyana, (Štúrovo the Vŕšok II hill, 4. 4. 

2003), Bar = 50 µm 

E – epidermis, End – endothecium, GPG – giant pollen grains, Mi – microspores,  

Msc – microsporocytes, PG – pollen grains, T – tapetum. 
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Fertilization 

 

11 – Late globular embryo of Prunus fruticosa, (Nitra Pyramída hill, 9.5.2014), Bar = 100 µm  

12 – Ovary with two degenerate unfertilized ovules of P. ×mohacsyana, (Nitra Pyramída hill, 

29. 4. 2014), Bar = 100 µm 

Em – embryo, En – endosperm, Ov – ovule. 
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7.2 Case study II  
 

Macková, L., Vít, P., & Urfus, T. (2018): Crop‐to‐wild hybridization 

in cherries – Empirical evidence from Prunus fruticosa. – Evolutionary 

Applications 11:1748–1759. doi: https://doi.org/10.1111/eva.12677 
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Abstract 

 
Crop cultivation can lead to genetic swamping of indigenous species and thus pose a serious 

threat for biodiversity. The rare Eurasian tetraploid shrub Prunus fruticosa (ground cherry) is 

suspected of hybridizing with cultivated allochthonous tetraploid P. cerasus and 

autochthonous diploid P. avium. Three Prunus taxa (447 individuals of P. fruticosa, 43 

of P. cerasus and 73 of P. avium) and their hybrids (198 individuals) were evaluated using 

analysis of absolute genome size/ploidy level and multivariate morphometrics. Flow 

cytometry revealed considerable differentiation in absolute genome size at the tetraploid level 

(average 2C of P. fruticosa = 1.30 pg, average 2C of P. cerasus = 1.42 pg, i.e., a 9.2% 

difference). The combination of methods used allowed us to ascertain the frequency 

of hybrids occurring under natural conditions in Central Europe. The morphological 

evaluation of leaves was based upon distance-based morphometrics supplemented by elliptic 

Fourier analysis. The results provided substantial evidence for ongoing hybridization (hybrids 

occurred in 39.5% of P. fruticosa populations). We detected homoploid introgressive 

hybridization with alien P. cerasus at the tetraploid level. We also found previously 

overlooked but frequent triploid hybrids resulting from heteroploid hybridization 

with indigenous P. avium, which, however, probably represent only the F1 generation. 

Although both hybrids differ in ploidy, they cannot be distinguished using morphometrics. 

Hybrids are frequent and may endanger wild populations of genuine P. fruticosa via direct 

niche competition or, alternatively or in addition, via introgression at the homoploid level  

(i.e., genetic swamping). The cultivation of cherries thus substantially threatens the existence 

of genuine P. fruticosa. 

 

Keywords: absolute genome size, cherry, crop-to-wild gene flow, hybridization, 

introgression, ploidy level, Prunus 

 

 

Introduction 

 
Human activities significantly contribute to the reduction in global plant diversity  

(e.g. Frankham et al. 2010). Intensively studied phenomena such as degradation accompanied 

by fragmentation of natural habitats usually cause changes in the distribution of species, 

including extinction events or invasions (Corlett 2016). However, the adverse effects 

of hybridization on plant diversity have scarcely been evaluated (Ellstrand and Elam 1993; 

Levin et al. 1996; Rhymer and Simberloff 1996; Todesco et al. 2016). Besides invasive taxa 
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(e.g. Hejda et al. 2009), hybridization with commercial crops poses a significant threat 

to indigenous species (Ellstrand et al. 1999). The potential repercussions of hybridization 

have been repeatedly demonstrated (Todesco et al. 2016). However, even though commercial 

crops are ubiquitous, the topic of crop-to-wild hybridization has been addressed by relatively 

few empirical studies (e.g. Arrigo et al. 2011; Aerts et al. 2013). 

Hybridization as an evolutionary process (together with polyploidization) significantly 

contributes to the diversity of vascular plants (Soltis and Soltis 2009). It may lead 

to evolutionary novelties and the establishment of new species. On the other hand, 

when reproduction barriers leak, hybridization followed by backcrossing may lead 

to the extinction of parental species (Rhymer and Simberloff 1996). The production of hybrid 

seeds increases, and the reproduction success of parental species is significantly reduced 

(Levin et al. 1996). Hybrids with the same or greater fitness as their parental species can 

significantly affect the populations of their parents (genetic swamping; Todesco et al. 2016). 

Last but not least, even the mere production of sterile hybrid individuals may lead 

to the extinction of rare parents through the wasteful production of maladapted hybrids, which 

decreases the number of potential mating partners, and by competition for resources and 

suitable niches (i.e., demographic swamping; Todesco et al. 2016).  

Some rare (i.e., low abundance) species can hybridize with their widespread congeners 

(e.g. introgression of Morus L., Burgess et al. 2005; Rumex L., Ruhsam et al. 2015, 

which in extreme cases may lead to local extinction as a result of demographic or genetic 

swamping (Ellstrand and Elam 1993; Todesco et al. 2016). Introgressive hybrid swarms 

typically occur in transitional or peripheral habitats (e.g. Čertner et al. 2015; Raudnitschka et 

al. 2007). In addition, anthropogenic activities may promote the formation of hybrid swarms 

by enhancing secondary contact between species (e.g. Hanušová et al. 2014) or by creating 

open habitats suitable for the survival and expansion of hybrids (Wójcicki 1991). 

Hybridization with ubiquitously cultivated commercial, ornamental and consumer plants 

poses a threat to some indigenous species (Ellstrand et al. 2013). 

Crop-to-wild gene flow has been documented in several indigenous plant species and 

may lead to the establishment of aggressive weeds or even the extinction of rare species 

(Ellstrand et al. 1999, 2013). So far, only a few human-induced (i.e., with the participation 

of crop plants) cases of hybridization have been reported. Spontaneous introgression of wild 

Prunus orientalis (Duhamel) by cultivated Prunus dulcis (Mill.) D. A. Webb in south-west 

Asia (Delplancke et al. 2012) and genetic erosion of the rare wild species  

Malus sylvestris (L.) Mill. in Belgium by domesticated apple (Malus domestica Borkh.; Coart 

et al. 2006) often serve as model examples. One extreme case of crop-to-wild gene flow is 

the genus Aegilops L. in the Mediterranean, where more than one quarter of some wild 

populations bear signs of introgression from wheat (Arrigo et al. 2011). Besides conservation 

consequences, genetic swamping of wild relatives via hybridization with crops can lead 

to tremendous economic losses because wild taxa serve as an essential gene pool resource 

for breeding programmes (Ganopoulos et al. 2013; Barać et al. 2017).  

A prime example of a species endangered by human-induced gene flow 

from cultivated crops is Prunus fruticosa Pall. (ground cherry), a rare and morphologically 

variable relict Eurasian shrub of steppes and forest steppes (Meusel et al. 1965; Jäger and 

Seidel 1995; Rhodes and Maxted 2016). It is tetraploid (2n = 32 chromosomes; Oldén and 

Nybom 1968; Scholz and Scholz 1995) and self-incompatible (also propagated by root shoots; 

Scholz and Scholz 1995; Pruski 2007). Prunus fruticosa is of potentially considerable 

importance in cherry breeding programmes, as it possesses suitable characters for growing 

in steppe conditions (Iezzoni and Mulinix 1992; Dzhangaliev et al. 2003; Pruski 2007; Iezzoni 

2008; Barać et al. 2017). Widely cultivated sour and sweet cherries (Prunus cerasus L. and 

Prunus avium (L.) L.) are close relatives of P. fruticosa and easily hybridize with it  
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(e.g. Scholz and Scholz 1995). Whereas diploid P. avium is an indigenous European taxon  

(2n = 16; Webb 1968; Marhold and Wójcicki 1992; Jäger and Seidel 1995), tetraploid 

P. cerasus in Europe is an alien species that occasionally escapes from cultivation (e.g. Webb 

1968; Scholz and Scholz 1995). Prunus cerasus has been proven to be an allotetraploid  

that has originated through hybridization of P. fruticosa and P. avium (2n = 32; Oldén and 

Nybom 1968; Schuster and Schreibner 2000; Tavaud et al. 2004; Horvath et al. 2008). 

The enormous morphological variation of Prunus fruticosa has been repeatedly 

ascribed to interspecific hybridization (e.g. Chrtek 1992; Scholz and Scholz 1995).  

On the basis of morphology (the purported discriminative characters being plant height and 

hairs on the abaxial surface of the lamina), two types of hybrids have been described 

(Wójcicki 1988; Lepší et al. 2011). One of them, Prunus ×eminens Beck  

(P. fruticosa × P. cerasus; 2n = 4x = 32; Webb 1968; Wójcicki 1991; Scholz and Scholz 

1995), has been reported to be abundant (35% of hybrids estimated in the Czech Republic and 

Slovakia; Wójcicki & Marhold, 1993) and partly fertile (Macková et al. 2017) 

whereas the other, Prunus ×mohacsyana Kárpáti (P. fruticosa × P. avium; 2n = 3x = 24; 

Oldén and Nybom 1968; Marhold and Wójcicki 1992), has been recorded only extremely 

rarely (Wójcicki and Marhold 1993; Scholz and Scholz 1995; Macková et al. 2017) and has 

been confirmed to be sterile (Macková et al. 2017). Thus, hybridization appears to be a major 

threat to P. fruticosa that is directly connected with human activities such as the cultivation 

of cherries (Wójcicki 1991; Wójcicki and Marhold 1993; Boratyński et al. 2003).  

In contrast to morphology, which has hitherto been used to indicate P. fruticosa 

hybridization, nuclear DNA content represents a highly reproducible species-specific marker 

(Loureiro et al. 2010) and is convenient for the delimitation of Prunus taxa because particular 

species differ in their ploidy level or absolute genome size (e.g. Baird et al. 1994; Maghuly et 

al. 2010; García‐Verdugo et al. 2013; Macková et al. 2017). Without the use of additional 

markers (e.g. genome size or ploidy level), it is often difficult to accurately identify hybrids 

and pure individuals based on morphology only (Ruhsam et al. 2015; Vítová et al. 2015), and 

this can result in the misled protection of hybrid populations (Kabátová et al. 2014; Vít et al. 

2014). 

The main goal of this study was to examine the extent of interspecific hybridization 

of the rare species Prunus fruticosa with wild and cultivated cherries (P. cerasus and 

P. avium) and to evaluate the impact of hybridization on pure Prunus fruticosa populations 

in Central Europe. To meet this goal, we addressed the following questions: (a) Do ploidy 

level and absolute genome size correlate with patterns of morphology and delimit Prunus taxa 

on a large spatial scale? (b) What is the frequency of hybrids under natural conditions?  

and (c) May the presence of hybrids indicate that populations of P. fruticosa are under threat 

from hybridization (incl. introgression)? To find answers to these questions, we collected 

fresh plant material in natural populations, estimated their nuclear DNA content using flow 

cytometry and employed distance-based morphometrics together with elliptic Fourier analysis 

to describe the variation in short-shoot leaves. 

 

 

Materials and methods 

 
Sampling 

 

Samples from the Central European area (76 populations – 46 Prunus fruticosa,  

12 Prunus ×mohacsyana, 10 Prunus ×eminens, eight mixed) were collected in 2010–2013 

in the Czech Republic (54 populations), Slovakia (13 populations) and Poland (seven 

populations; marginally also in Romania – two populations; Figure 1, Supporting information 
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Table S1). Samples of the putative parents Prunus cerasus (43 individuals from 12 locations) 

and Prunus 

avium (73 individuals from 38 locations) were also collected in the study area for a better 

understanding of ongoing microevolutionary processes. Each population sample (usually  

5–10 individuals, depending on population size) was represented by a branchlet 

with vegetative short-shoot leaves. Sampled individuals were as distant from each other 

as possible to avoid the collection of clonally emerged individuals. Individuals growing 

together in one place obviously separated from another place were considered a discrete 

population. As regards P. cerasus and P. avium, about three individuals were sampled 

from each location because these cultivated taxa are scattered in the landscape instead 

of constituting numerous populations.  

 

 
Fig. 1: Sample locations of Prunus fruticosa and its hybrids in Central Europe. 
 

The taxa were determined based on their ploidy level (indicating triploid 

Prunus ×mohacsyana and diploid P. avium). Tetraploids were differentiated based 

on the presence of hairs on the abaxial surface of the lamina (glabrous P. fruticosa vs hairy 

P. ×eminens and P. cerasus) and growth form (shrubby P. fruticosa and P. ×eminens vs tree- 

-like P. cerasus).  

In total, plant material from 761 individuals of Prunus taxa (447 P. fruticosa, 99 

Prunus ×mohacsyana, 99 P. ×eminens, 43 P. cerasus and 73 P. avium) were used for three 

types of analyses – absolute genome size analysis using flow cytometry (FCM), distance- 

-based morphometrics and elliptic Fourier analysis. Dry plant material was used (short-shoot 

leaves taped on to sheets of cardboard) for morphometrics, and fresh plant material was 

necessary for flow cytometric analysis. 

 

Flow cytometry (FCM) 

 

Ploidy levels/absolute genome sizes of 761 individuals (see Supporting information Table S1 

for samples details) were estimated using a Partec CyFlow instrument (Partec GmbH, 

Münster, Germany) equipped with a green solid-state laser (Cobolt Samba, 532 nm, 100 

mW). A slightly modified procedure following (Doležel et al. 2007) was adopted 

for the isolation and of staining nuclei. Bellis perennis L. (2C = 3.38 pg; Schönswetter et al. 

2007) was used as the internal standard. About 1.5 cm2 of fresh laminar tissue together 
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with 1.8 cm2 of the internal standard was chopped in 0.5 ml of ice-cold Otto I buffer  

(0.1 M citric acid, 0.5% Tween 20; Doležel et al. 2007) in a Petri dish. The suspension was 

filtered through a 42-μm nylon mesh filter and incubated for at least 20 min at room 

temperature. The suspension was then stained by a solution containing 1 ml of Otto II buffer 

(0.4 M Na2HPO4·12 H2O; Doležel et al. 2007), β-mercaptoethanol (final concentration  

of 2 μl/ml), propidium iodide and RNase IIA (both at the final concentrations of 50 μg/ml). 

Subsequently, stained samples were run through the flow cytometer. Isolated stained nuclei 

were excited with a laser beam, and the fluorescence intensity of 3,000 particles was recorded.  

Because of the significant amounts of secondary metabolites contained in Prunus 

material (typical of the whole Rosaceae), which complicate FCM analyses, certain 

optimization steps had to be carried out (for details, see Macková et al. 2017). Although most 

of the samples were measured at one time point only, we checked the stability of FCM 

measurements over a long time period (from May to August, 18 individuals from three 

locations). Variation between two different measurements did not exceed 4% (for information 

on the stability of FCM measurements over short periods; see Macková et al. 2017). 

The whole range of measured absolute genome size values was calibrated by chromosome 

counts (standard karyological methodology; e.g. Lepší et al. 2008).  

Resulting FCM histograms were analysed using FloMax (version 2.4d, Partec, 

Münster, Germany). Absolute genome size values were visualized as boxplots in PAST 2.17c 

(Hammer et al. 2001) and as scatter plots in Microsoft Excel 2010. One-way ANOVA 

followed by Tukey’s HSD test in PAST 2.17c (Hammer et al. 2001) was used to ascertain 

the significance of absolute genome size differences between species. 

 

Distance-based morphometrics 

 

To examine morphological variation of the Prunus taxa under study, 17 characters  

(13 primary, four ratio) – eight vegetative and nine generative (see Table 1) – were selected 

based on the literature (Wójcicki 1988, 1991; Wójcicki and Marhold 1993; Lepší et al. 2011) 

and own field observations. Well-developed short-shoot leaves (two leaves per individual) 

and flowers were measured using a digital calliper (accuracy 0.01 mm) and a stereo 

microscope (Olympus SZ51; magnification 40×). Most of the time, only short-shoot leaves 

were observed (because of their narrower range of variation; Marhold and Wójcicki 1992). 

Plant height was measured in the field. Abaxial hairs were measured on at least four leaves 

per individual and then averaged. Plant height, shape of laminar tip, adaxial hairs and abaxial 

hairs were evaluated using semiquantitative scales (see Table 1). In total, 1,422 leaves (see 

Supporting information Table S1 for samples details) and only 84 flowers were measured 

because the flowering period was very short. Because P. fruticosa scarcely bears fruits 

(Chudíková et al. 2012), no fruits were included in the study.  
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Tab. 1: List of measured characters on vegetative and generative organs of Prunus taxa under study used 

in distance-based morphometric analysis. 
 

Description of character Abbreviation Unit 

Plant height Height 
1 = to 50 cm, 2 = 50-100 cm, 3 = over 100 
cm, 4 = tree 

Laminar length Length mm 

Laminar width Width mm 

Distance from the widest part of 
the lamina to the laminar tip 

Widest to tip mm 

Shape of laminar tip Tip 
1 = obtuse, 2 = obovate, 3 = elliptic with 
aristate apex, 4 = elliptic with broadly 
acuminate apex 

Adaxial hairs (density of hairs on 
the adaxial surface of lamina) 

Adax hairs 
1 = glabrous, 2 = short hairs, 3 = long hairs,  
4 = long and also short hairs 

Abaxial hairs (density of hairs on 
the abaxial surface of lamina) 

Abax hairs 
1 = glabrous, 2 = scattered pubescent, 3 = 
sparsely pubescent, 4 = densely pubescent 

Laminar length/width (ratio of 
length and width of the lamina) 

Length/width – 

Petal length – mm 

Petal width – mm 

Hypanthium length – mm 

Sepal length – mm 

Sepal width – mm 

Peduncle length – mm 

Petal length/width (ratio of length 
and width of the petal) 

– – 

Sepal length/width (ratio of length 
and width of the sepal) 

– – 

Hypanthium length/sepal length 
(ratio of hypanthium and sepal 
length) 

– – 

 

The data matrix was evaluated using multivariate statistical methods in PAST 2.17c 

(Hammer et al. 2001). Basic descriptive statistics, including the minimum, maximum, mean 

and the 25th and 75th percentile, were computed for each of the vegetative characters of all 

taxa under study. Principal component analysis (PCA) was employed to visualize the basic 

structure of the data in Canoco 5 (ter Braak and Šmilauer 2012). Absolute genome size was 

passively projected on to PCA diagrams using a local regression (loess) model in Canoco 5 

(ter Braak and Šmilauer 2012). Redundancy analysis (RDA; van den Wollenberg 1977) 

with a Monte Carlo permutation test (999 permutations) performed in Canoco 5 (ter Braak 

and Šmilauer 2012) and correlation analysis carried out in R 3.4.3 (R Core Team, 2017; 

visualized using Microsoft Excel 2010) were used to test for a link between morphological 

variation (represented by PC1 scores of distance-based PCA) and absolute genome size. 
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Elliptic Fourier analysis 

 

Shape contours of 1,407 leaves (see Supporting information Table S1 for samples details) 

were investigated using elliptic Fourier analysis. Only well-developed leaves were included 

in the analysis (15 partly damaged leaves were excluded). Two leaves of each individual were 

taped on to a sheet of cardboard paper and scanned (scanner Canon MP270 series Printer; 300 

dpi). For leaf shape analysis based on elliptic Fourier descriptors (Kuhl and Giardina 1982), 

the SHAPE 1.3 package (Iwata and Ukai 2002) was employed. The leaf shapes were 

converted into chain codes using ChainCoder, and the CHC2NEF programme converted these 

chain codes into coefficients of elliptic Fourier descriptors (using 20 harmonic axes). These 

coefficients were used to calculate the scores of principal components using the PrinComp 

function. The PrinComp routine also allowed the reconstruction of the leaf shape, 

corresponding to values of +2 and −2 standard deviations on the first and second component 

axes (see Lepší et al. 2009 and Macková et al. 2017, for details). The first and second 

component axes were visualized using Microsoft Excel 2010. 

 

 

Results 

 
Absolute genome size and DNA ploidy level 

 

Ploidy levels and absolute genome sizes of 761 Prunus accessions were ascertained by flow 

cytometry (see Supporting information Table S1 for samples details). Three ploidy levels 

were detected: diploid (P. avium; average 2C = 0.73 pg), triploid (P. ×mohacsyana; average 

2C = 1.01 pg) and tetraploid (P. fruticosa, P. ×eminens and P. cerasus; Figure 2, Supporting 

information Table S2). Moreover, the three tetraploid taxa tended to differ in absolute genome 

size (P. fruticosa – average 2C = 1.30 pg, P. ×eminens – average 2C = 1.36 pg,  

P. cerasus – average 2C = 1.42 pg, i.e., a 9.2% difference between parental taxa; Supporting 

information Table S2). Absolute genome size values of tetraploid taxa formed a continuous 

series of partly overlapping values (Figure 2). Nevertheless, absolute genome size differed 

significantly between all analysed groups (F4, 755 = 8826, p < 0.001) as well as between 

the three tetraploid taxa (F2, 585 = 311.8, p < 0.001) in ANOVA. Separate Tukey’s HSD tests 

revealed five and three groups for all and for the three tetraploid taxa, respectively. 
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Fig. 2: Absolute genome size variation of the five Prunus taxa under study. PI-stained nuclei isolated from 761 

leaves. Three ploidy levels were detected: diploid (2x), triploid (3x) and tetraploid (4x). The values are 

in picograms (pg). Orange-highlighted individual represent triploid with a well-developed trunk. A histogram 

of simultaneous flow cytometric analyses of three ploidy levels is in the right corner. Peak designations:  

2x = diploid P. avium, 3x = triploid Prunus tree form, 4x = tetraploid P. cerasus. 
 

Distance-based morphometrics 

 

Morphometric variation of 1,422 leaves (see Supporting information Table S1 for samples 

details) was analysed using distance-based morphometrics (for descriptive statistics; see 

Supplementary Table S3). Principal component analysis (PCA) of all five taxa under study, 

based on eight vegetative characters of leaves, revealed three obvious groups of putative 

parental taxa: P. fruticosa, P. cerasus and P. avium (although P. cerasus and P. avium partly 

overlapped; Figure 3). The hybrids P. ×mohacsyana and P. ×eminens formed a compact, 

overlapping cluster between their putative parents (the first and the second axes explaining 

66.5 and 13.7% of the variation, respectively; Figure 3). The distance from the widest part 

of the lamina to the laminar tip, laminar width and laminar length was the most tightly 

correlated (see Supporting information Figure S1) with the first component axis.  

Thus, the eight vegetative characters measured on leaves could not distinguish 

between the hybrids. The hybrids grouped together even in the case of PCA using characters 

on generative organs (84 flowers – 42 P. fruticosa, 27 P. ×mohacsyana, 15 P. ×eminens; 

Supporting information Figure S2). PCA of only tetraploid taxa showed clearly distinguished 

putative parental taxa (P. fruticosa and P. cerasus) with the hybrid P. ×eminens scattered 

between them with a partial overlap (the first and the second axes explaining 59.5 and 15.5% 

of the variation, respectively; Figure 4). It is important that absolute genome size 

appeared to be well correlated with the first PCA axis; absolute genome size tended 

to increase from P. fruticosa to P. cerasus (see the perpendicularly oriented loess curves 

in Figure 4). The significant association between leaf morphology and absolute genome size 

of tetraploid taxa was further confirmed by RDA (p = 0.001, 999 permutations); absolute 

genome size explained 31.9% of the variation (Supporting information Figure S3A). Five 

morphological characters (Width, Widest to tip, Length, Abax hairs, Height, Tip) exhibited 
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strong positive correlation with the canonical/genome size axis (see Table 1 for character 

abbreviations; Supporting information Figure S3B). Moreover, a significant correlation 

between leaf morphology (represented by PC1 scores) and absolute genome size was found  

(r = 0.729; t = 35.3, df = 1097, p < 0.001), explaining 53% of the overall variation (Figure 5). 

 

 
 
Fig. 3: Ordination diagram of principal component analysis using eight vegetative morphological characters 

of 1,422 leaves of Prunus taxa under study. 

 

 
 
Fig. 4: Correspondence of morphological variation and absolute genome size in three Prunus taxa studied. 

Ordination diagram of principal component analysis based on eight vegetative morphological characters of 1,099 

leaves of tetraploid Prunus taxa. Absolute genome size (values in pg DNA) is passively projected 

on to the diagram using a local regression (loess) model. 
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Fig. 5: Correlation analysis of tetraploid Prunus taxa (1,099 individuals) under study, showing a link 

between morphology (represented by the first principal component scores) and absolute genome size, explaining 

53% of the overall variation (r = 0.729; t = 35.3, df = 1097, p < 0.001). 
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Elliptic Fourier analysis 

 

Variation in the shape contours of 1,407 leaves (see Supporting information Table S1 

for samples details) was evaluated using elliptic Fourier analysis. The groups of Prunus taxa 

under study overlapped more in comparison with distance-based morphometrics (Figure 6). 

Prunus avium formed the most differentiated cluster, while the P. fruticosa cluster was 

distinguished only partly. Nevertheless, both overlapped with other Prunus taxa 

in the principal component analysis. On the contrary, P. cerasus and both hybrids were 

scattered between these two clusters and formed a linked and completely overlapping cluster 

(Figure 6). The first component axis (68.8%) explained the most variation but was not 

taxonomic specific (variation in relative leaf width), while the second component axis 

(13.9%), describing variation in the shape of the leaf base and the shape of the leaf tip, 

reflecting differences between the taxa studied. The most differentiated groups, P. avium and 

P. fruticosa, had elliptic leaves with an aristate apex and obovate leaves with an obtuse apex, 

respectively. Prunus cerasus, P. ×eminens and P. ×mohacsyana clustered together and tended 

to form elliptic leaves with a broadly acuminate apex, never obtuse or with an aristate apex 

(Figure 6). Thus, leaf shape represents a suitable additional character for the determination 

of parental Prunus taxa; however, it fails to distinguish hybrids (similar to distance-based 

morphometrics). 

 

 
Fig. 6: Ordination diagram of principal component analysis of Fourier coefficients describing variability 

in laminar shape of 1,407 leaves of the Prunus taxa under study. PCA scores are standardized to unit variance 

(units in standard deviation, SD). Reconstructed leaf contours (petiole connection on the left) corresponding 

to values of −2 SD, 0 and +2 SD are shown along the PC axes. 
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Frequency of hybrids under natural conditions 

 

Our multidisciplinary approach has revealed that only 60.5% of populations previously 

reported to represent genuine Prunus fruticosa did not include hybrids; actually, 39.5% 

of the populations were of hybrid origin (randomly spatially distributed). Most of the hybrid 

populations under study were composed exclusively of individuals belonging to one 

of the hybrids; 15.8% of populations consisted solely of P. ×mohacsyana and 13.2% solely 

of P. ×eminens. Only 1.3% of populations included both hybrids. At last, 9.2% 

of the populations analysed were mixed (i.e., composed of P. fruticosa and one of its hybrids). 

 

 

Discussion 

 
Absolute genome size/ploidy level estimation coupled with morphometrics allowed us 

to identify the Prunus species and hybrids concerned (which occurred in 39.5% 

of populations under study). Homoploid hybridization between the tetraploid parental taxa 

Prunus fruticosa and P. cerasus produces tetraploid hybrids (P. ×eminens). By contrast, 

heteroploid hybridization between P. fruticosa with P. avium generates triploids 

(P. ×mohacsyana). The frequencies of the two hybrids turned out to be almost equal 

in the study area. In contrast to previous attempts to assess the rate of hybridization, which 

were based solely on morphometrics, our multidisciplinary approach revealed a continuous 

pattern, pointing to introgression.  

Flow cytometry has been employed in several descriptive or local studies of Prunus 

(Dickson et al. 1992; Bennett and Leitch 1995; Macková et al. 2017) and published genome 

size values fall within the range of measured values presented here. The morphological 

pattern is also analogous to those found in previous studies (Wójcicki 1991; Wójcicki and 

Marhold 1993; Lepší et al. 2011). Traditionally used morphological characters (abaxial hairs 

and plant height; Wójcicki 1988; Lepší et al. 2011) have turned out to be more suitable 

in the field than the first three characters identified by morphometrics (i.e., distance 

from the widest part of the lamina to the laminar tip, laminar width and laminar length). 

However, the morphology-based determinations of hybrid groups used in previous studies 

were probably not correct (Wójcicki 1991; Wójcicki and Marhold 1993; Lepší et al. 2011; 

Chudíková et al. 2012). Until now, almost all hybrids had been suggested to be tetraploid 

(P. ×eminens; Wójcicki 1991; Wójcicki and Marhold 1993; Lepší et al. 2011), but our data 

show that the frequency of triploid hybrids, which is roughly 50%, had been considerably 

underestimated. Leaf shape (elliptic Fourier analysis) seems to be a useful complementary 

trait for distinguishing between pure Prunus species and hybrids, and a similar pattern was 

also detected in one local study of P. fruticosa (Czech Republic; Lepší et al. 2011). Thus, 

based on DNA ploidy level knowledge, the results of previous studies (Wójcicki 1991; 

Wójcicki and Marhold 1993; Lepší et al. 2011; Chudíková et al. 2012) might have to be 

substantially reevaluated. 

 

Identity of hybrids 

 

Due to the broad range of absolute genome sizes possessed by the parental species and their 

hybrids, it is almost impossible to distinguish cytometrically between F1 hybrids and their 

more complex backcrossed counterparts at the homoploid level (i.e., 4x). Moreover, 

an intermediate genome size does not necessarily indicate an F1 hybrid. To draw 

the conclusion that a plant is an F1 hybrid, one has to rule out the possibility that it is a higher 

or even backcrossed hybrid. Continuous patterns of absolute genome size are nevertheless 
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usually accompanied by enormous morphological variation, and a continuous pattern of data 

distribution in both absolute genome size and morphology is usually indicative 

of introgressive hybridization (e.g. Šmarda and Bureš 2006; Suda et al. 2007; Hanušová et al. 

2014). In addition, our correlation analysis and RDA revealed that hybrids with an absolute 

genome size similar to that of one of their parental taxa are also morphologically close 

to that parent, which indicates that they are almost certainly backcrossed. A high probability 

of backcrossing at the tetraploid level is further supported by the substantial fertility 

of P. ×eminens (based on embryology; Macková et al. 2017). By contrast, heteroploid 

hybridization (i.e., 4x × 2x) produces comparatively straightforward results due 

to the existence of an effective triploid block, which constrains backcrossing; this has been 

proved in the case of triploid P. ×mohacsyana (Macková et al. 2017). 

 

Crop-to-wild studies and their limitations 

 

Human-induced hybridization (or even introgression) affects wild plant species in different 

ways, and there are several cases that are analogous to that of Prunus fruticosa. While 

hybridization of cultivated Saccharum L. or Brassica L. with wild counterparts does not pose 

any risk to their wild relatives, hybridization of cultivated Oryza L. and Gossypium L. has 

been implicated in the near extinction of certain wild species of rice and cottonseed (Ellstrand 

et al. 1999).  

Studies dealing with crop-to-wild gene flow rely on the ability to unequivocally 

distinguish between wild and cultivated plant forms. In most cases, however, this 

discrimination is not possible based solely on morphological grounds (e.g. Malus Mill., Coart 

et al. 2006; Vitis L., de Andrés et al. 2012). Plant sex might serve as another suitable and 

conspicuous differential trait (e.g. dioecious wild vs mostly hermaphroditic cultivated forms 

of Vitis; de Andrés et al. 2012). Their discrimination is made markedly easier if a wild species 

and its cultivated counterpart differ in growth form (e.g. shrub vs tree form in Prunus; 

Delplancke et al. 2012; Macková et al. 2017). The combined approach (absolute genome 

size/ploidy level and morphology) allowed us to distinguish between wild and cultivated 

Prunus plants. Whereas most studies of crop-to-wild introgression deal with rather small 

datasets (e.g. 237 samples in Vitis; de Andrés et al. 2012), our study is based on more 

than 700 individuals distributed in the Central European region.  

Moreover, crop-to-wild gene flow studies are frequently complicated by the existence 

of naturalized individuals (crop progeny), which can be almost indistinguishable from their 

wild counterparts or introgressants (e.g. Malus sylvestris vs M. domestica, Coart et al. 2006; 

Vitis vinifera ssp. sylvestris (C. C. Gmel.) Hegi vs V. vinifera ssp. vinifera L., de Andrés et al. 

2012). In cherries, however, it is quite easy to distinguish the progeny of alien Prunus cerasus 

from indigenous P. fruticosa and their hybrids or from introgressants based on their growth 

form (i.e., their tree vs shrub habitus). Heteroploid hybridization of P. fruticosa with P. avium 

is analogous to that in the genus Malus because P. avium in Europe consists of genuine wild 

individuals and naturalized individuals, which are almost indistinguishable (Webb 1968; 

Coart et al. 2003; Gross et al. 2012).  

 

Conservation implications 

 

From a species conservation perspective, homoploid hybridization and repeated backcrossing 

with allochthonous P. cerasus accompanied by heteroploid hybridization with autochthonous 

P. avium represent a substantial risk of wild populations of P. fruticosa. Plants produced 

by both types of hybridization may considerably hinder the conservation of wild populations 

of genuine P. fruticosa by competing for resources and suitable niches (analogously 
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as in Cerastium L. or Dianthus L.; Vít et al. 2014; Vítová et al. 2015) and by decreasing 

the number of potential mating partners (i.e., demographic swamping; Todesco et al. 2016). 

The potential for the displacement of P. fruticosa is further enhanced by the fact that the two 

hybrids tend to outgrow it. In contrast to sterile triploid hybrids (Macková et al. 2017), fertile 

tetraploid hybrids can directly endanger genuine P. fruticosa by introgression (i.e., genetic 

swamping; Todesco et al. 2016). Still, however, some isolated triploid hybrid populations 

could represent old, partly fertile, spontaneous hybrids with autochthonous P. avium (Lepší et 

al. 2011). Introgression involving triploid hybrids has also been documented in other genera 

(e.g. Betula L. in Iceland; Thórsson et al. 2007), so the potential risk that triploid F1 hybrid 

could participate in further backcrossing cannot be ruled out.  

The main practical implication of our results is the necessity to limit the cultivation 

of both sour and sweet cherries in the vicinity of wild populations of genuine P. fruticosa 

(within a perimeter of at least 1.5 km, as recommended by Boratyński et al. (2003). To this 

end, it is first necessary to select populations to be protected with high priority (i.e., those 

which are the most genetically variable – see below). 

 

Genome size analysis as a suitable tool for detecting introgression 

 

The continuous absolute genome size values at the homoploid level, together with the wide 

morphological variation, suggest repeated backcrossing between parents and hybrids  

(e.g. Šmarda and Bureš 2006; Suda et al. 2007; Hanušová et al. 2014). Nevertheless, 

the obtained pattern, including the impossibility to unequivocally identify F1 hybrids, 

constitutes only indirect evidence of introgression. However, all other potential explanations 

(i.e., aneuploidy, differential accumulation of transposable elements, chromosome 

recombinations, B chromosomes; Petrov 2001; Bennetzen et al. 2005; Šmarda and Bureš 

2010; Michael 2014) are highly unlikely. Our data do not allow us to evaluate population 

dynamics (changes of hybridization frequency in time) and, particularly, the importance 

of clonal growth (genetic variation of populations).  

The use of molecular markers such as SSRs or RAD-Seq might provide direct 

evidence for ongoing introgression and help identify the conservational most valuable  

(i.e., variable) populations of P. fruticosa (Barać et al. 2017; Beghe et al. 2017; McVay et al. 

2017). However, the complex cytological structure of our data set covering three ploidy levels 

seriously complicates data analyses. Uncertainty concerning allele dosage in polyploids, 

an unclear mode of inheritance (Dufresne et al. 2014) and likely asymmetry in strength 

of gene flow across ploidies (Kolář et al. 2017), precludes the use of standard tools 

for the detection of hybridisation, such as NewHybrids (Anderson and Thompson 2002). 

 

 

Conclusions 

 
In the wild, genuine Prunus fruticosa frequently hybridizes both at the homoploid level 

(with cultivated P. cerasus) and at the heteroploid level (with P. avium). Our direct 

identification and quantification of interspecific hybridization/introgression under natural 

conditions has confirmed the serious risk of ongoing demographic and genetic swamping, 

as 39.5% of the populations we studied are of hybrid origin. Moreover, homoploid 

introgressive hybridization poses a substantial conservation threat because P. cerasus is alien 

to the European flora. Maintenance of a diverse and heterogeneous P. fruticosa gene pool is 

essential for Prunus breeding programmes as well as for the species’ protection. A future 

conservation genetic investigation should focus on the identification of the most valuable  

(i.e., the most genetically variable) populations of genuine P. fruticosa. 
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Supporting information 

 
Supplementary Table 1: Study sites and numbers of samples used in particular analyses 

of Prunus fruticosa and its hybrid populations in Central Europe. A: Total number of samples 

used in particular analyses. B: Number of samples per population. Prunus avium and 

P. cerasus scattered in the landscape were also included.  

Table notes: PF = Prunus fruticosa, PM = P. ×mohacsyana, PE = P. ×eminens. 

PC = P. cerasus, PA = P. avium. CZ = Czech Republic, SK = Slovakia, PL = Poland,  

RO = Romania. 

 

A 

  Total PF PE PM PC PA 

FCM 761 447 99 99 43 73 

Distance-based 
morphometrics 

1422 834 184 190 81 133 

Elliptic Fourier 
analysis 

1407 832 186 186 75 128 

 
B 

 

Taxon Population FCM 

Distance-
based 

morphome-
trics 

Elliptic 
Fourier 
analysis 

State Location GPS Altitude 

PF P24 9 18 18 CZ Lovoš 
N50°31′35.4′′, 
E14°01′02.3′′ 

495 

PA P25-PA 1 2 0 CZ Dlouhá loučka 
N49°42′31.2′′, 
E16°38′39.4′′ 

472 

PF P26 8 10 10 CZ Dlouhá loučka 
N49°42′27.6′′, 
E16°38′39.3′′ 

446 

PF P27 7 14 14 CZ Cakov 
N49°37′25.6′′, 
E17°01′44.8′′ 

299 

PA P28-PA 2 2 2 CZ Cakov 
N49°37′26.0′′, 
E17°01′47.3′′ 

288 

PF P30 6 12 12 CZ Slatinky – Malý Kosíř 
N49°33′17.8′′, 
E17°05′29.3′′ 

311 

PF P31 10 20 20 CZ Hněvotín – Na Skále 
N49°33′21.4′′, 
E17°10′40.9′′ 

245 

PF P33 8 16 16 CZ Sedlec – Liščí hill 
N48°47′35.9′′, 
E16°41′37.3′′ 

254 

PC P33-PC 5 10 10 CZ Sedlec – Liščí hill 
N48°47′35.9′′, 
E16°41′37.3′′ 

254 

PF P34 4 6 6 CZ Sedlec – Liščí hill 
N48°47′41.8′′, 
E16°41′43.5′′ 

252 

PF P36 10 20 20 CZ Sedlec 
N48°47′39.8′′, 
E16°42′13.7′′ 

238 

PE P37 2 4 4 CZ Praha – Sedlec 
N50°08′18.8′′, 
E14°23′26.7′′ 

221 

PE P38 6 12 12 CZ Drysice 
N49°20′20.8′′, 
E17°02′59.0′′ 

357 

PA P38-PA 1 2 2 CZ Drysice 
N49°20′20.8′′, 
E17°02′59.0′′ 

357 
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Taxon Population FCM 

Distance-
based 

morphome-
trics 

Elliptic 
Fourier 
analysis 

State Location GPS Altitude 

PE P39 4 8 8 CZ 
Prostějov – 
Domamyslice – 
Dolní vinohrádky 

N49°27′07.0′′, 
E17°03′21.4′′ 

305 

PA P39-PA 3 6 4 CZ 
Prostějov – 
Domamyslice – 
Dolní vinohrádky 

N49°27′07.0′′, 
E17°03′21.4′′ 

305 

PF P40 9 18 18 CZ Brno – Hády 
N49°13′09.5′′, 
E16°40′30.7′′ 

387 

PA P40-PA 1 2 2 CZ Brno – Hády 
N49°13′09.5′′, 
E16°40′30.7′′ 

387 

PF P41 9 18 16 CZ Karlštejn – Krupná 
N49°55′46.6′′, 
E14°09′03.4′′ 

268 

PF P42 10 20 20 CZ 
Karlštejn – Budňany 
rock 

N49°56′05.0′′, 
E14°10′54.0′′ 

263 

PF P43 10 16 15 CZ 
Karlštejn – at the 
camp 

N49°56′03.0′′, 
E14°10′10.3′′ 

230 

PF P45 8 16 16 CZ 
Srbsko – above the 
sportground 

N49°56′29.3′′, 
E14°07′58.9′′ 

253 

PF P46 9 11 11 CZ Beroun – Hostim 
N49°57′35.8′′, 
E14°08′04.0′′ 

239 

PF P47 10 20 20 CZ Vrbčany 
N50°03′33.8′′, 
E15°00′05.8′′ 

218 

PF P49 9 18 18 CZ 
Zeměchy u Kralup n. 
V. – Zeměchy – 
loess gulch 

N50°13′38.6′′, 
E14°16′02.4′′ 

212 

PC P50-PC 5 10 8 RO Fanatale Clujului  
N46°49′38.8′′, 
E23°37′46.4′′ 

514 

PC P51 -PC 5 10 10 RO Badeni 
N46°13′07.7′′, 
E25°20′32.7′′ 

380 

PF P52 9 18 18 RO 
Cheile Turzii (Turga 
Gorge) 

N46°34′10.6′′, 
E23°40′37.4′′ 

749 

PF P53 Pol  12 24 24 PL Stawska Góra  
N51°12′22.2′′, 
E23°24′08.6′′ 

210 

PM P53 Rum 9 16 16 RO 
Cheile Turzii (Turga 
Gorge) 

N46°33′58.6′′, 
E23°40′41.7′′ 

739 

PA P54 Pol-PA 5 10 10 PL Żułów  
N50°54′40.4′′, 
E23°22′46.8′′ 

273 

PA P54 Rum-PA 1 2 2 RO Posaga de Sus  
N46°28′17.7′′, 
E23°22′38.8′′ 

639 

PC P55-PC 4 6 6 PL 
Majdan 
Skierbieszowsky  

N50°53′03.2′′, 
E23°22′57.7′′ 

241 

PA, PC P56-PA,PC 1, 2 2, 4 2, 4 PL Iłowiec – Horodyska 
N50°49′24.6′′, 
E23°24′09.0′′ 

194 

PF P57  11 22 22 PL Rogów – Świdniki 
N50°47′36.5′′, 
E23°31′28.4′′ 

210 

PF P58  12 23 24 PL Kąty  
N50°40′21.9′′, 
E23°07′33.9′′ 

250 

PA P59-PA 1 2 2 PL Kąty  
N50°40′21.9′′, 
E23°07′33.9′′ 

250 

PE P60/a 9 18 18 PL 
Sandomierz – Góry 
Pieprzowe 

N50°41′02.9′′, 
E21°46′48.1′′ 

154 
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Taxon Population FCM 

Distance-
based 

morphome-
trics 

Elliptic 
Fourier 
analysis 

State Location GPS Altitude 

PE P60/b 9 18 18 PL 

Sandomierz – Góry 
Pieprzowe – partly 
separated 
subpopulation 

N50°41′02.9′′, 
E21°46′48.7′′ 

159 

PF, PE P60/c 2, 5 4, 9 4, 9 PL 

Sandomierz – Góry 
Pieprzowe – partly 
separated 
subpopulation 

N50°41′02.9′′, 
E21°46′50.8′′ 

160 

PA P62-PA 1 2 2 PL 
Sandomierz – Góry 
Pieprzowe 

N50°41′02.9′′, 
E21°46′48.7′′ 

159 

PA P64-PA 4 8 8 PL 
Sandomierz – Góry 
Pieprzowe 

N50°41′02.9′′, 
E21°46′51.7′′ 

160 

PA P66-PA 2 4 4 PL 
Sandomierz – Góry 
Pieprzowe 

N50°41′02.4′′, 
E21°46′55.4′′ 

156 

PM P67 8 15 15 PL 
Sandomierz – Góry 
Pieprzowe 

N50°41′02.7′′, 
E21°47′09.3′′ 

147 

PA P68-PA 1 2 2 PL 
Sandomierz – Góry 
Pieprzowe 

N50°41′03.0′′, 
E21°47′12.4′′ 

149 

PF P69/a  11 22 22 PL Opalonki  
N50°21′00.9′′, 
E20°10′29.2′′ 

320 

PE P69/b 7 14 14 PL 
Opalonki – partly 
separated 
subpopulation 

N50°21′00.9′′, 
E20°10′29.2′′ 

320 

PA P70-PA 3 4 4 PL Opalonki  
N50°21′00.9′′, 
E20°10′29.2′′ 

320 

PM P71 4 8 6 PL Ojcow  
N50°13′43.3′′, 
E19°49′35.10′′ 

241 

PF P73 9 18 18 SK Devínska Kobyla  
N48°10′50.0′′, 
E16°59′08.1′′ 

216 

PF P74 10 16 16 SK Hronský Beňadik  
N48°20′24.4′′, 
E18°33′24.9′′ 

413 

PF P75 8 12 12 CZ Pouzdřany steppe 
N48° 56′49.4′′, 
E16°38′35,6′′  

295 

PF P76 14 28 28 CZ Milá 
N50°26′01.5′′, 
E13°45′26.6′′ 

443 

PA, PC P76-PA,PC 1, 2 0, 4 2, 2 CZ Milá 
N50°26′01.5′′, 
E13°45′26.6′′ 

443 

PC P77-PC 1 2 0 CZ Radouň 
N50°28′53.0′′, 
E14°23′47.0′′ 

203 

PF P78/a 13 26 26 CZ Křešov 
N50°29′57.6′′, 
E14°24′55.8′′ 

252 

PM P78/b 2 4 4 CZ 
Křešov – partly 
separated 
subpopulation 

N50°29′56.6′′, 
E14°24′54.3′′ 

249 

PA P80-PA 1 2 2 CZ Křešov 
N50°29′52.5′′, 
E14°24′28.9′′ 

255 

PA P81-PA 3 6 6 CZ Vědlice 
N50°31′33.0′′, 
E14°20′25.0′′ 

182 

PA, PC P82-PA,PC 2, 4 4, 8 4, 8 CZ Kamýk 
N50°33′47.5′′, 
E14°07′09.1′′ 

367 



114 

 

Taxon Population FCM 

Distance-
based 

morphome-
trics 

Elliptic 
Fourier 
analysis 

State Location GPS Altitude 

PF P83 11 22 19 CZ Bořeň 
N50°31′55.4′′, 
E13°45′32.4′′ 

244 

PA P84-PA 2 4 4 CZ 
České Zlatníky – 
bellow Zlatník hill 

N50°30′46.4′′, 
E13°42′26.3′′ 

246 

PF P85 7 14 14 CZ Chotiměř 
N50°33′17.8′′, 
E13°59′43.1′′ 

329 

PA P86-PA 2 4 4 CZ Chotiměř 
N50°33′16.8′′, 
E13°59′42.3′′ 

324 

PM P88 3 6 6 CZ 
Ústí nad Labem – 
Hostovice – Soudný 
hill 

N50°38′55.6′′, 
E14°02′02.0′′ 

304 

PE P89 9 16 16 CZ Ústí nad Labem 
N50°38′39.2′′, 
E14°02′20.3′′ 

295 

PM P90 10 17 17 CZ Ústí nad Labem 
N50°38′29.8′′, 
E14°02′21.6′′ 

288 

PM P91 10 20 20 CZ 
Ústí nad Labem – 
Nad Vaňovem 

N50°37′50.5′′, 
E14°02′23.2′′ 

296 

PE P92 6 12 12 CZ Podlešín – Vrkoč 
N50°37′33.4′′, 
E14°02′22.5′′ 

430 

PE P93 6 9 9 CZ Chvalov 
N50°36′03.5′′, 
E14°03′18.3′′ 

340 

PA P94-PA 1 2 2 CZ Chvalov 
N50°36′03.5′′, 
E14°03′18.3′′ 

340 

PF P95 6 10 10 CZ 
Dubice – Výslunní, 
Doerell's viewpoint 

N50°35′10.5′′, 
E14°01′31.0′′ 

271 

PA P96-PA 1 2 2 CZ 
Dubice – Výslunní, 
Doerell's viewpoint 

N50°35′10.5′′, 
E14°01′31.0′′ 

271 

PA P97-PA 1 2 0 CZ Dubice – Výslunní 
N50°35′16.7′′, 
E14°01′14.5′′ 

241 

PF P98 6 12 12 CZ Církvice 
N50°34′58.4′′, 
E14°02′15.7′′ 

240 

PM P99 11 22 20 CZ Kamýk 
N50°33′52.2′′, 
E14°07′02.0′′ 

449 

PF P100 8 13 13 CZ Číhalín 
N49°15′34.3′′, 
E15°48′19.9′′ 

504 

PF P101 4 4 4 CZ Dolní Heřmanice 
N49°18′44.2′′, 
E16°02′53.7′′ 

514 

PF P102 6 12 12 CZ Trnava 
N49°15′33.8′′, 
E15°55′45.0′′ 

468 

PF P104 5 8 8 CZ Pocoucov 
N49°14′31.5′′, 
E15°54′39.1′′ 

472 

PF P105 5 10 10 CZ Ptáčov 
N49°13′57.3′′, 
E15°55′22.7′′ 

457 

PF P106 9 18 18 CZ Ptáčov 
N49°13′46.3′′, 
E15°55′10.5′′ 

448 

PE, PM P107 1, 3 2, 6 2, 6 CZ Ptáčov 
N49°13′41.7′′, 
E15°55′02.7′′ 

446 

PF P108 6 10 12 CZ Ptáčov 
N49°13′41.5′′, 
E15°54′51.0′′ 

450 

PA P109-PA 2 2 2 CZ 
Vémyslice – Na 
Kocourkách 

N48°59′49.9′′, 
E16°14′53.1′′ 

304 
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Taxon Population FCM 

Distance-
based 

morphome-
trics 

Elliptic 
Fourier 
analysis 

State Location GPS Altitude 

PF P110 13 23 23 CZ 
Vémyslice – Na 
Kocourkách 

N48°59′49.9′′, 
E16°14′53.1′′ 

304 

PF P111 3 0 0 CZ Pocoucov 
N49°14′19.3′′, 
E15°54′33.9′′ 

464 

PF P112 11 22 22 CZ 
Hnanice (NP Podyjí) 
– Horecký hill 

N48°47′37.2′′, 
E15°58′25.5′′ 

281 

PA P113-PA 1 2 2 CZ Hnanice (NP Podyjí) 
N48°48′12.1′′, 
E15°58′57.2′′ 

284 

PF P114 12 24 24 CZ Hnanice (NP Podyjí) 
N48°48′06.9′′, 
E15°58′59.9′′ 

288 

PA P115-PA 6 12 12 CZ Hnanice (NP Podyjí) 
N48°48′06.2′′, 
E15°58′59.0′′ 

291 

PE P116 9 16 18 CZ Tasovice 
N48°49′50.7′′, 
E16°08′21.9′′ 

227 

PA P117-PA 2 4 4 CZ Tasovice 
N48°49′50.7′′, 
E16°08′21.9′′ 

227 

PF P118 10 20 20 CZ 
Nový Přerov – Lange 
Wart 

N48°47′56.8′′, 
E16°31′06.2′′ 

243 

PA P119-PA 2 4 4 CZ 
Nový Přerov – Lange 
Wart 

N48°47′56.8′′, 
E16°31′06.2′′ 

243 

PF P120 11 18 20 SK 
Nové Mesto nad 
Váhom – Mnešice – 
Kobela 

N48°46′42.3′′, 
E17°50′11.3′′ 

251 

PA P121-PA 2 4 4 SK 
Nové Mesto nad 
Váhom – Mnešice – 
Kobela 

N48°46′42.3′′, 
E17°50′11.3′′ 

251 

PF P122 6 12 12 SK Horní Vestenice  
N48°42′59.9′′, 
E18°25′42.3′′ 

312 

PF P123/a 8 16 15 SK 
Salka – Sovie 
vinohrady 

N47°53′14.1′′, 
E18°43′05.8′′ 

200 

PM P123/b 5 10 10 SK 

Salka – Sovie 
vinohrady – partly 
separated 
subpopulation 

N47°53′14.8′′, 
E18°43′06.1′′ 

200 

PA P125-PA 2 4 4 SK 
Salka – Sovie 
vinohrady 

N47°53′16.7′′, 
E18°43′08.9′′ 

180 

PA P127-PA 1 0 0 SK 
Salka – Sovie 
vinohrady 

N47°53′14.4′′, 
E18°43′07.9′′ 

171 

PC P128-PC 3 5 5 SK 
Salka – Sovie 
vinohrady 

N47°53′13.7′′, 
E18°43′08.8′′ 

183 

PM P129 9 18 18 SK 
Štúrovo – vrch Dank 
(Vršok II) 

N47°49′06.5′′, 
E18°38′36.9′′ 

228 

PA P130-PA 1 2 2 SK 
Štúrovo – vrch Dank 
(Vršok II) 

N47°49′03.6′′, 
E18°38′34.3′′ 

201 

PF P131 10 20 20 SK 
Štúrovo – vrch Dank 
(Vršok II) 

N47°49′12.8′′, 
E18°39′25.5′′ 

219 

PF, PM P132 8, 2 16, 4 16, 4 SK 
Nitra – Zobor – 
Pyramida 

N48°20′32.6′′, 
E18°06′18.9′′ 

561 

PE P133 10 20 20 SK 
Nitra – Zobor – St. 
Urban church 

N48°19′50.8′′, 
E18°05′49.6′′ 

273 

PA P134-PA 1 2 2 SK 
Nitra – Zobor – St. 
Urban church 

N48°19′50.8′′, 
E18°05′49.6′′ 

273 
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Taxon Population FCM 

Distance-
based 

morphome-
trics 

Elliptic 
Fourier 
analysis 

State Location GPS Altitude 

PA P135-PA 1 2 2 SK 
Nitra – Zobor – St. 
Urban church 

N48°19′54.7′′, 
E18°05′49.3′′ 

236 

PF P136/a 10 20 20 SK 
Nová Dedina – 
Šándorky 

N48°17′58.4′′, 
E18°38′13.5′′ 

278 

PE P136/b 7 8 8 SK 

Nová Dedina – 
Šándorky – partly 
separated 
subpopulation 

N48°17′58.4′′, 
E18°38′13.5′′ 

278 

PA P138-PA 4 4 4 SK 
Nová Dedina – 
Šándorky 

N48°17′58.4′′, 
E18°38′13.5′′ 

278 

PF P139 11 22 22 SK 
Dlhá ves – Domické 
škrapy 

N48°28′45.4′′, 
E20°27′58.9′′ 

315 

PA P140-PA 2 4 4 SK Nitra – Zobor  
N48°20′23.9′′, 
E18°06′06.2′′ 

418 

PF P141 3 6 6 SK Slanec – castle hill 
N48°38′12.6′′, 
E21°28′14.7′′ 

407 

PF P142 9 12 12 SK 
Košice – 
Podhradová  

N48°45′20.7′′, 
E21°14′08.3′′ 

348 

PA P143-PA 3 6 6 SK 
Košice – 
Podhradová  

N48°45′20.7′′, 
E21°14′08.3′′ 

348 

PC P144-PC 5 10 10 CZ 
Přerov nad Labem – 
Přerovská hůra 

N50°09′39.2′′, 
E14°50′47.2′′ 

223 

PE P145 1 2 2 CZ 
Přerov nad Labem – 
Přerovská hůra 

N50°09′38.7′′, 
E14°50′43.9′′ 

221 

PE P146/a 2 4 4 CZ 
Přerov nad Labem – 
Přerovská hůra 

N50°09′42.7′′, 
E14°50′17.8′′ 

220 

PE P146/b 6 12 12 CZ 

Přerov nad Labem – 
Přerovská hůra – 
partly separated 
subpopulation 

N50°09′43.3′′, 
E14°50′16.5′′ 

227 

PC P149-PC 3 6 4 CZ 
Český Krumlov – 
Nádražní Předměstí 

N48°49′22.3′′, 
E14°19′16.1′′ 

490 

PM P150 5 10 10 CZ 
Český Krumlov – 
Nádražní Předměstí 

N48°49′25.7′′, 
E14°19′19.9′′ 

550 

PA P151-PA 2 3 4 CZ 
Český Krumlov – 
Nádražní Předměstí 

N48°49′20.9′′, 
E14°19′23.4′′ 

490 

PM P152 2 4 4 CZ 
Český Krumlov – 
Nádražní Předměstí 

N48°49′19.5′′, 
E14°19′23.7′′ 

520 

PF, PM P153/a 2, 3 4, 6 4, 6 CZ Český Krumlov 
N48°49′08.8′′, 
E14°18′33.5′′ 

551 

PM P153/b 3 4 4 CZ 
Český Krumlov – 
partly separated 
subpopulation 

N48°49′08.2′′, 
E14°18′38.5′′ 

526 

PM P153/c 4 8 8 CZ 
Český Krumlov – 
partly separated 
subpopulation 

N48°49′07.9′′, 
E14°18′35.3′′ 

520 

PM P154 3 6 6 CZ 
Český Krumlov – 
Nové Dobrkovice 

N48°49′03.1′′, 
E14°18′05.4′′ 

540 

PC P155-PC 4 8 8 CZ 
Český Krumlov – 
Nové Dobrkovice 

N48°49′01.4′′, 
E14°18′23.0′′ 

520 
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Taxon Population FCM 

Distance-
based 

morphome-
trics 

Elliptic 
Fourier 
analysis 

State Location GPS Altitude 

PM P158 3 6 6 CZ 
Český Krumlov – 
Nové Dobrkovice 

N48°49′04.6′′, 
E14°17′46.5′′ 

510 

 

 

Supplementary Table 2: Detailed absolute genome size results for the five Prunus taxa 

under study.  

Table notes: 2C = nuclear DNA content of somatic cells (pg), SD = standard deviation,  

CV = coefficient of variation of the sample, N = number of individuals. 

 

Taxa 
Average 

2C 
Range of 

2C 
Median SD 

Average 
CV 

N 

P. avium 0.73 0.68–0.81 0.73 0.03 3.83 73 

P. ×mohacsyana 1.01 0.93–1.06 1.00 0.02 3.57 99 

P. fruticosa 1.30 1.21–1.40 1.29 0.04 3.15 447 

P. ×eminens 1.36 1.30–1.43 1.35 0.03 2.86 99 

P. cerasus 1.42 1.36–1.48 1.42 0.03 3.29 42 
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Supplementary Table 3: Basic descriptive statistics for vegetative morphological characters 

of the five Prunus taxa under study. 

 

Taxa/characters 
Plant 

height 

Laminar 
length 
(mm) 

Laminar 
width 
(mm) 

Distance 
from the 
widest 
part of 

the 
lamina 

from the 
laminar 
tip (mm) 

Ratio of 
length 

and 
width of 

the 
lamina  

Shape of 
laminar 

tip 

Density 
of hairs 
on the 
adaxial 

surface of 
lamina 

Density 
of hairs 
on the 
abaxial 

surface of 
lamina 

Prunus fruticosa 

Min 1.00 10.77 5.52 4.28 1.30 1.00 1.00 1.00 

25% quantile 1.00 18.53 9.27 7.53 1.80 1.00 1.00 1.00 

Mean 1.19 22.60 11.27 9.14 2.03 1.66 1.15 1.00 

75% quantile 1.00 25.69 12.52 10.23 2.22 2.00 1.00 1.00 

Max 3.00 50.66 27.20 22.09 3.35 3.00 2.75 1.00 

Prunus ×eminens 

Min 1.00 19.04 10.61 7.99 1.29 1.00 1.00 1.00 

25% quantile 1.00 28.24 15.40 12.04 1.68 2.00 1.00 1.25 

Mean 2.21 34.46 18.59 14.95 1.88 2.36 1.24 1.92 

75% quantile 3.00 39.32 20.62 17.31 2.10 3.00 1.25 2.00 

Max 3.00 62.90 41.84 31.77 2.55 4.00 3.00 4.00 

Prunus 
×mohacsyana 

Min 1.00 19.08 9.64 7.81 1.00 1.00 1.00 1.00 

25% quantile 1.00 30.81 15.86 13.43 1.74 2.00 1.00 1.75 

Mean 2.35 35.77 18.49 15.88 1.97 2.56 1.32 2.06 

75% quantile 3.00 40.94 20.75 18.13 2.14 3.00 1.75 2.00 

Max 3.00 57.00 30.27 24.02 2.91 4.00 2.00 4.00 

Prunus cerasus 

Min 3.00 36.82 20.86 15.56 1.45 3.00 1.00 2.00 

25% quantile 3.50 51.08 28.53 23.60 1.67 3.00 1.00 3.00 

Mean 3.75 58.97 31.68 27.11 1.87 3.44 1.12 3.38 

75% quantile 4.00 65.63 35.26 29.37 2.06 4.00 1.00 4.00 

Max 4.00 88.32 46.29 42.21 2.48 4.00 2.50 4.00 

Prunus avium 

Min 3.00 31.83 21.06 19.88 1.48 3.00 1.00 2.00 

25% quantile 4.00 63.89 35.26 31.94 1.74 4.00 2.00 4.00 

Mean 3.83 78.97 40.92 37.70 1.94 3.98 2.10 3.95 

75% quantile 4.00 93.27 47.07 41.70 2.11 4.00 2.00 4.00 

Max 4.00 127.11 58.41 70.13 2.72 4.00 4.00 4.00 
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Supplementary Figure 1: Ordination diagram of PCA using eight vegetative morphological 

characters of 1,422 leaves of Prunus taxa under study showing directions of changes 

in morphological characters displayed in relation to the first two component axes (see Table 1 

for character abbreviations). 

 
 

 

Supplementary Figure 2: Ordination diagram of principal component analysis based on nine 

generative morphological characters of 84 flowers of Prunus fruticosa and its hybrids. 

 

 



120 

 

Supplementary Figure 3: Redundancy analysis of three Prunus taxa under study, showing 

the morphological variation of eight vegetative characters measured on 1,099 leaves 

of tetraploid Prunus taxa along a gradient of absolute genome size. A: Individuals.  

B: Loadings of individual morphological characters (see Table 1 for character abbreviations). 

The canonical (constrained) axis (axis 1) corresponds to the effect of absolute genome size 

and the first unconstrained axis (axis 2) shows the remaining major trend in morphological 

variation not explained by absolute genome size. 
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7.3 Case study III 
 

Macková, L., Nosková, J., Ďurišová, Ľ., & Urfus, T.: Insights 

into the cytotype and reproductive puzzle of Cotoneaster integerrimus 

in the Western Carpathians. – Plant Systematics and Evolution (preliminary 

accepted) 
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Abstract 

 
The Western Carpathians are traditionally recognized as one of the hotspots of temperate 

European biodiversity. The polyploid and apomictic group of Cotoneaster integerrimus s.l. is 

supposed to be particularly variable there, and this is also mirrored by taxonomy. We 

therefore examined the ploidal and reproductive pattern of C. integerrimus s.l. and its close 

relative Cotoneaster tomentosus in the Western Carpathians and compared it to that 

in the Bohemian Massif. 

Using flow cytometry, we detected tetraploid (468 individuals, 100 populations) and 

pentaploid (35 individuals, 11 populations) cytotypes, and eight additional mixed populations. 

The pentaploid cytotype was found exclusively in C. tomentosus, which only occurs 

in the Western Carpathians. A further flow cytometric seed screen (1114 seeds) revealed 

facultative apomixis (10.1% of sexual progeny) of tetraploid C. integerrimus s.l. whereas 

the pentaploid C. tomentosus was almost obligatorily apomictic. In addition, 3.8% of sexual 

progeny was formed with the contribution of an unreduced female gamete. Moreover, 

apomixis in tetraploids was further structured into distinct subtypes: pseudogamy (77.2%), 

autonomous apomixis (3.7%) and haploid parthenogenesis (0.3%). The reproductive pattern 

among the study taxa and between the two model regions was significantly uniform. 

Furthermore, our comparative dataset from the Western Alps also included sexual diploids. 

For this reason, greater ploidal and reproductive variation may be expected in that region. 

 The Western Carpathians therefore do not represent a centre of cytotype and 

reproductive variation of C. integerrimus s.l. and facultative apomixis is a universal 

reproductive strategy in both the Western Carpathians and the Bohemian Massif. 

 

Keywords: Cotoneaster integerrimus s.l., flow cytometric seed screen, polyploidy, 

reproductive mode, Western Carpathians 

 

 

Introduction 

 
Despite being a subject of research for more than a century, apomixis (agamospermy 

in the strict sense – clonal reproduction through seeds) is still surrounded by a significant 

number of unresolved questions (Whitton et al. 2008). Apomixis is a rather rare phenomenon 

among the angiosperms, being present in less than 1% of species (Mogie 1992; Whitton et al. 

2008) and ca 75% of apomictic species belong to three families: Asteraceae, Poaceae and 

Rosaceae (Hojsgaard et al. 2014). On the other hand, the prevalence of apomictic groups 

might be underestimated because the number of newly identified apomictic taxa keeps 
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increasing every year (e.g. Kissling et al. 2006; Lepší et al. 2009; Hajrudinović et al. 2015a; 

Vašut and Majeský 2015). 

Regarding the distribution of apomictic plants, several patterns have been described. 

First of all, apomictic taxa tend to have larger distribution ranges than their diploid and sexual 

relatives (geographic parthenogenesis; Hörandl et al. 2008). Moreover, the incidence 

of apomixis seems to increase with latitude and elevation (Schinkel et al. 2016). Contradictory 

results, however, have been reported from the Alps where apomixis does not prevail in alpine 

(subnival) plants (Hörandl et al. 2011). 

Within Central Europe, the Carpathians are a particularly significant hotspot of plant 

diversity (Ronikier 2011; Kliment et al. 2016; Mráz et al. 2016). That they also constitute 

a hotspot of apomictic taxa is suggested by studies on particular genera (e.g. Sorbus, Uhrinová 

et al. 2017; Hieracium, Štorchová et al. 2002; Chrtek et al. 2007) and by their great number 

of apomictic endemics (Kliment et al. 2016). 

One possible example of a species-rich group in the Carpathians is the genus 

Cotoneaster (based on hitherto described microspecies; Hrabětová-Uhrová 1962; Baranec 

1992). European taxa of Cotoneaster (Rosaceae) are deciduous spineless shrubs bearing small 

pomes (or polypyrenous drupes; Rohrer et al. 1991) and are usually linked to dry rocky 

habitats (Browicz 1968). European mountain ranges, particularly the Alps and the Western 

Carpathians, are considered the diversity centres of the genus (Browicz 1968; Baranec 1992; 

Kutzelnigg 1994; Fryer and Hylmö 2009; Kurtto et al. 2013). Several ploidy levels and cases 

of hybridization have been reported from the Western Carpathians (Baranec 1992; Kutzelnigg 

1994; Kurtto et al. 2013). Apomixis is the supposed reproductive mode of polyploid 

Cotoneaster taxa whereas diploids are expected to be sexual (Sax 1954; Hjelmquist 1962). 

Nevertheless, apomictic reproduction in Cotoneaster has scarcely been confirmed 

experimentally (i.e. the single direct piece of embryological evidence has been presented 

by Hjelmquist (1962). Uncertain results of a flow cytometric seed screen (FCSS) have 

been published in a conference abstract (Mahmutović-Dizdarević et al. 2015) and 

the occurrence of apomixis was indirectly deduced from the pattern of morphological 

variation, high ploidy level diversity and a partially clonal phylogenetic pattern (Sax 1954; 

Kroon 1975; Bartish et al. 2001). Probably because of their great number of small 

chromosomes and high content of secondary metabolites, chromosomes have been counted 

only rarely. The majority of published chromosome counts originated from nurseries and 

arboreta or lack proper localization. After critical revision we identified only ten relevant 

counts (see Online Resource 1). 

In this study we focused on Cotoneaster integerrimus s.l., a complex taxon consisting 

of numerous microspecies in Central Europe and the closely related species C. tomentosus 

(syn. C. nebrodensis; Bartish et al. 2001) in the Western Carpathians. There are several 

distinct species concepts for C. integerrimus s.l. taxa in Central Europe – several different 

microspecies concepts (Hrabětová-Uhrová 1961, 1962; Baranec 1992; Fryer and Hylmö 

2009) vs broad concepts in comprehensive floras (Dickoré and Kasperek 2010; Sennikov 

2010; Kurtto et al. 2013). The number of different species concepts is naturally reflected 

by different numbers of taxa described in various senses (Kurtto et al. 2013). Because several 

of the taxonomic concepts used for Europe contradict each other (Dickoré and Kasperek 

2010) and some authors tend to give up on discriminating microspecies of the group, 

a broader concept was recently proposed by Dickoré and Kasperek (2010), in which majority 

of microspecies are treated within C. integerrimus s.l., with the sole exception 

of C. tomentosus in Central Europe. Whereas C. tomentosus is a well differentiated and 

probably uniform taxon (Kutzelnigg 1994), C. integerrimus s.l. has repeatedly been 

considered variable and suspected of being composed of hybridizing microspecies (Browicz 

1968; Baranec 1992; Kutzelnigg 1994). Moreover, hybridization of C. tomentosus and 
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C. integerrimus s.l. has been reported (Browicz 1968; Kutzelnigg 1994). One of the most 

important sources of their variation is probably polyploidy (cytotypes reported from Europe: 

2x, 3x, 4x, 5x, 6x; x=17; e.g. Favarger in Löve 1969, 1975, Česchmedjiev in Löve 1983; 

Baranec 1992; Měsíček and Javůrková-Jarolímová 1992; Murín and Májovský 1992; see also 

Table 1 and Online Resource 1). 

Reported within Cotoneaster integerrimus s.l. in the Western Carpathians were 

the following microspecies: Cotoneaster laxiflorus (syn. C. melanocarpus, C. niger), 

Cotoneaster alaunicus, Cotoneaster matrensis and C. integerrimus s.str. (Baranec 1992; 

Bölöni 2012); for ploidy and distribution details, see Table 1 and Online Resource 1. 

Nevertheless, microspecies are accepted only locally, their names are sometimes considered 

synonyms or pertaining to hybrids of basic species, and different authors state the need 

for further study (e.g. Browicz 1968; Kovanda 1992; Kutzelnigg 1994; Kurtto et al. 2013). 

The only somewhat more widely accepted microspecies is C. laxiflorus (Browicz 1968; 

Kovanda 1992; Kutzelnigg 1994; Kurtto et al. 2013). But still, Dickoré and Kasperek (2010) 

considered adventive records of C. laxiflorus in Central Europe doubtful and placed its 

supposed distribution range far towards the east. 
 

Table 1: Published chromosome counts and distribution of European Cotoneaster taxa studied:  

C. integerrimus s.l. and C. tomentosus. Microspecies are named if they are specified by the source; remaining 

records are labelled as C. integerrimus s.l. 

 

Taxon 
W. 

Carpathians, 
B. Massif 

References 
Other 

parts of 
Europe 

References 
Distribution  

(Meusel et al. 
1965) 

C. integerrimus 
s.l. 

3x, 4x 

Baranec 1992, 
Kovanda 1992, 
Měsíček and 
Javůrková- 
-Jarolímová 
1992 

2x, 3x, 4x, 
6x 

Gladkova 1968, 
Favarger in Löve 
1969, Favarger in 
Löve 1975, 
Česchmedjiev in Löve 
1983, Kovanda 1992, 
Fryer and Hylmö 
1994, Kutzelnigg 
1994, Lauber and 
Wagner 1996, Kurtto 
et al. 2013 

Central, 
Southern and 
Southeastern 
Europe, 
scattered in 
Scandinavia, 
the Pyrenees 
and the Alps  

C. tomentosus  4x 
Baranec 1992, 
Murín and 
Májovský 1992 

3x, 4x, 5x 

Favarger in Löve 
1969, Kutzelnigg 
1994, Lauber and 
Wagner 1996, 
Goranova 2007, 
Kurtto et al. 2013 

Central and 
Southeast 
Europe, the 
Alps, isolated 
areas in the 
Pyrenees and 
the 
Apennines  
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Taxon 
W. 

Carpathians, 
B. Massif 

References 
Other 

parts of 
Europe 

References 
Distribution  

(Meusel et al. 
1965) 

C. laxiflorus  4x 
Baranec 1992, 
Kovanda 1992 

4x 
Kutzelnigg 1994, 
Kurtto et al. 2013 

Central 
Europe to 
Central Asia 
(according to 
Dickoré and 
Kasperek 
2010 only 
Eastern 
Europe to 
Asia) 

C. alaunicus  3x, 4x Baranec 1992 4x 
Krügel 1990, Kurtto 
et al. 2013 

S Russia, NW 
Caucasus 
(according to 
Baranec 1992 
additionaly 
Slovakia, 
Western 
Carpathians) 

C. matrensis  NO   NO   

Slovakia, 
Western 
Carpathians 
(Baranec 
1992) 

 

 

Microspecies of C. integerrimus s.l. are delimited based on minute, overlapping and 

difficult-to-assess characteristics including the colour of the pome, the number of seeds 

(pyrenes) in the pome or the number of fruits in infructescence (Baranec and Eliáš 2004). One 

characteristic especially frequently adopted in floras is the colour of fruit (e.g. Browicz 1968; 

Baranec 1992; Kovanda 1992; Kutzelnigg 1994). 

Our study was targeted at Central Europe, where the Western Carpathians are 

supposed to be a hotspot of Cotoneaster diversity (5 taxa; Baranec 1992) compared 

to the putatively less diverse Bohemian Massif (Kovanda 1992). We have arbitrarily chosen 

the Bohemian Massif as a well investigated comparative region with only two taxa described. 

We employed DNA ploidy level analysis and reproductive mode testing (flow 

cytometric seed screen) to elucidate the complex pattern of Cotoneaster taxa in the area 

of interest. To meet this goal, we addressed the following questions: (1) Do spatial ploidal and 

genome size patterns in Central Europe agree with any of the recent taxonomic concepts? (2) 

Is the pattern of reproductive modes within and among the Cotoneaster taxa under study 

congruent with any of taxonomic concept? and Do reproductive modes in the Western 

Carpathians differ from those in the Bohemian Massif? 
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Materials and methods 

 
Sampling 

 

Our study is based on 503 individuals of Cotoneaster from 119 populations collected between 

2012 and 2018 in Czechia, Slovakia and adjacent countries (Fig. 1, Online Resource 2). 

Besides Cotoneaster tomentosus (35 individuals, 11 populations), which is a sister species 

to C. integerrimus s.l. (Bartish et al. 2001), we included populations treated as microspecies 

of C. integerrimus s.l. in the Western Carpathians and neighbouring regions, namely 

C. laxiflorus (114 individuals, 13 populations), C. alaunicus (39 individuals, 8 populations), 

C. matrensis (31 individuals, 7 populations) and C. integerrimus s.str. (284 individuals, 

70 populations). Moreover, ten populations were mixed (see Online Resource 2). Localities 

were searched based on the Pladias database of the Czech flora and vegetation (Wild et al. 

2019), the occurrence of rock habitats and information from local botanists. In addition, we 

preferentially focused on sites reported to host microspecies: C. laxiflorus, C. alaunicus and 

C. matrensis (Hrabětová-Uhrová 1961, 1962; Baranec 1992; Baranec and Eliáš 2004; 

Ďurišová et al. 2015). Although Dickoré and Kasperek (2010) proposed the broader concept 

accepting only C. integerrimus s.l. for Central Europe, we decided to distinguish also 

the above-mentioned microspecies (C. laxiflorus, C. alaunicus, C. matrensis, C. integerrimus 

s.str.; Baranec 1992) to test their cytological and reproductive features. 

 
Fig. 1: Sample locations of tetraploid Cotoneaster integerrimus s.l. (red) and pentaploid C. tomentosus (green) 

in Czechia, Slovakia and adjacent countries. 

 

We treated the sampling area as two major regions: the Bohemian Massif and 

the Western Carpathians together with adjacent Pannonia (precisely defined units based 

on biogeography, physical geography and geology (Kaplan 2012; see Online Resource 2). 

Due to the low abundance of Cotoneaster tomentosus, we extended its dataset by populations 

from the Alps (France, Austria; 6 populations, 7 individuals, 23 seeds), the Dinaric Alps 
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(Croatia; 1 population, 2 individuals, 14 seeds) and Macedonia (1 population, 3 individuals, 

no seeds). In addition, we also sampled six populations (20 individuals) of C. integerrimus s.l. 

in the French Alps for comparison. 

Cotoneaster tomentosus was determined based on its laminar shape and whitish 

tomentum of fruits (Browicz 1968). By contrast, microspecies of C. integerrimus s.l. were 

determined based on literature information (C. laxiflorus, C. alaunicus, C. matrensis; 

Hrabětová-Uhrová 1961, 1962; Baranec 1992; Kovanda 1992; Baranec and Eliáš 2004; 

Ďurišová et al. 2015) and knowledge of local botanists. The microspecific classification 

of C. integerrimus s.l. is therefore mainly tentative and will require further testing. Each 

population sample (usually 1–10 individuals, depending on population size) was represented 

by a branchlet with leaves. From fertile individuals, pomes were also taken. In total, 

1114 seeds from 339 individuals (C. integerrimus s.str. – 504 seeds from 165 individuals, 

C. laxiflorus – 326 seeds from 90 individuals, C. alaunicus – 165 seeds from 38 individuals, 

C. matrensis – 44 seeds from 23 individuals, C. tomentosus – 75 seeds from 23 individuals) 

were collected (see Online Resource 2). Because of frequent vegetative reproduction by root 

shoots (e.g. Ďurišová et al. 2015) individuals were sampled as far from each other as possible 

to avoid the collection of ramets of the same individual. Individuals growing together in one 

place were considered a discrete population (obviously spatially separated individuals were 

regarded as a subpopulation marked by the letter a, b or c; see Online Resource 2). 

Representative voucher specimens will be deposited in the Herbarium of the Charles 

University (PRC). 

 

Estimation of somatic DNA ploidy level 

 

Flow cytometry (FCM) with DAPI (4',6-diamidino-2-phenylindole) as the fluorescent stain 

was employed to estimate the DNA ploidy level of 503 Cotoneaster individuals. The standard 

protocol for the isolation and staining nuclei followed (Doležel et al. 2007). Carex acutiformis 

(2C = 800 Mpb; Veselý et al. 2012) was used as the internal standard. An approximately 

0.5 cm long part of a fresh leaf petiole together with an appropriate amount of the internal 

standard was chopped in 0.5 ml of ice-cold Otto I buffer (0.1 M citric acid monohydrate, 

0.5% Tween 20; Doležel et al. 2007) in a Petri dish. The suspension was filtered through a 42-

-μm nylon mesh filter and the samples were incubated at least for 10 min at room 

temperature. Then a staining solution consisting of 1 ml of Otto II buffer  

(0.4 M Na2HPO4 · 12 H2O; Doležel et al. 2007), β-mercaptoethanol (2 μl/ml; Fluka, Buchs, 

Germany) and DAPI (final concentration 4 μg/ml; Sigma, Steinheim, Germany) was added 

to the samples. Finally, after 5 min of incubation at room temperature, the stained samples 

were run through a CyFlow ML instrument (Partec GmbH, Münster, Germany) equipped 

with a 365-nm LED UV light source, and the fluorescence intensity of 3000 particles was 

recorded. Means and coefficients of variation (CV) were obtained from the resulting 

fluorescent histograms in FloMax version 2.4d software (Partec GmbH, Germany). 

The sample:standard fluorescence ratio was calculated. Ploidy levels were determined based 

on this index and calibration by chromosome counts (a standard karyological methodology 

with lacto-propionic orcein staining described in Lepší et al. (2008). Relative equivalent 

of Cx values (AT bases amount per monoploid genome – further in the text referred 

to as relative Cx values, i.e. peak index/ploidy level) were visualized as boxplots in PAST 

2.17c (Hammer et al. 2001). One-way ANOVA followed by Tukey’s HSD test in PAST 2.17c 

(Hammer et al. 2001) was used to test the significance of relative Cx values differences 

between Cotoneaster integerrimus s.l. and C. tomentosus. Relative Cx values were log- 

-transformed before the ANOVA. 
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Members of the Rosaceae family (including Cotoneaster) contain significant amounts 

of secondary metabolites that increase the coefficients of variation of flow cytometric peaks 

(Loureiro et al. 2006), but tissue from the leaf petiole (not the leaf lamina) provided peaks 

of adequate quality (lower CV values). 

 

Flow cytometric seed screen (FCSS) 

 

All Cotoneaster seeds (pyrenes) were first manually extracted from pomes, counted and cut 

in half. Subsequently, the numbers of sterile (i.e. aborted or empty) and well developed seeds 

were recorded. Only these well-developed seeds were used for the detection of reproductive 

modes based on a flow cytometric seed screen (Matzk et al. 2000). Each sample consisted 

of one seed with the internal standard. The procedure of sample preparation generally copied 

the procedure of leaf petiole analysis described above. Nevertheless, a slight modification 

consisting of using a larger amount of the Otto I buffer (0.7 ml) and prolonging the incubation 

time to 15 min. was adopted. 

The ploidy levels of the embryo and the endosperm were calculated from the peaks 

of fluorescence histograms following the original methodology of Matzk et al. (2000) and 

Dobeš et al. (2013). The contributions of female (F) and male (M) gametes to seed formation 

were subsequently inferred from the ploidy levels of the embryo (Emb) and the endosperm 

(End). For sexual seeds: F = End − Emb, M = Emb − F; for apomictic (pseudogamous) seeds: 

F = Emb, M = End − 2 × Emb. The last mentioned equation was modified if more than two 

polar nuclei were involved in endosperm formation in pseudogamous seeds:  

M = End − N × Emb, where N = number of polar nuclei. 

The resulting frequencies of reproductive pathways are presented as a scatter plot and 

a bar chart in Microsoft Excel 2010. The proportional incidence of reproductive patterns 

(primarily the proportion of sexuality) is shown in pie chart form to visualize differences 

between particular microspecies and geographic regions. Differences in the proportion 

of sexuality between particular taxa and geographic regions were also tested statistically using 

generalized mixed-effect linear models (GLMM) with binomial distribution carried out in R 

3.4.3 (R Core team 2017). 

 

 

Results 

 
DNA ploidy level 

 

Using flow cytometry, we identified tetraploids (468 individuals, 100 populations) and 

pentaploids (35 individuals, 11 populations), and eight mixed populations composed of plants 

of both ploidy levels in the study area in Czechia, Slovakia and adjacent countries (Fig. 1, 

Online Resource 2). In addition to our model regions, we also recorded diploids in four 

comparative populations (15 individuals) in the Alps (see representative histogram in Online 

Resource 3). 

Although the Rosaceae family has repeatedly been reported to interfere 

with fluorescent staining because of high levels of secondary metabolites (Jedrzejczyk and 

Sliwinska 2010; Macková et al. 2017, 2018), the coefficients of variation achieved in our 

study did not exceed 3% (the average CVs of tetraploid and pentaploid individuals were 

2.32% and 1.92%, respectively; see also the representative histogram of a simultaneous FCM 

analysis in Online Resource 3). The DNA ploidy levels (i.e. 2 individuals of tetraploid 

C. integerrimus s.str., 2 individuals of tetraploid C. laxiflorus, 1 individual of pentaploid 

C. tomentosus) estimated by flow cytometry were calibrated by chromosome counts. 
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 The entire dataset of Cotoneaster integerrimus s.l. (incl. all involved microspecies) 

was revealed to be tetraploid (468 individuals) and included plants occurring in both study 

regions (the Bohemian Massif and the Western Carpathians) whereas the pentaploid cytotype 

was exclusively restricted to C. tomentosus (23 individuals) occurring in the Western 

Carpathians (supplemented by 12 accessions from the extended area – the Alps, the Dinaric 

Alps and Macedonia). 

Although ANOVA did not produce a statistically significant result (F1, 394 = 262.2, 

p > 0.001), Cotoneaster tomentosus tended to differ from C. integerrimus s.l. in relative 

Cx values. The difference between median values reached 3.4% (C. integerrimus s.l. 

0.56±0.007 and C. tomentosus 0.58±0.006; Fig. 2). Based on relative Cx values, none 

of the C. integerrimus s.l. accessions formed any distinguishable group or spatial pattern 

in the whole study area (and even within C. tomentosus). 

 
 
Fig. 2: Difference (3.4%) in relative equivalent Cx values (amount of AT bases per monoploid genome) 

between tetraploid Cotoneaster integerrimus s.l. and pentaploid C. tomentosus. 

 

Reproductive modes 

 

Altogether 5440 seeds were prepared from Cotoneaster pomes, but 66% (3595 seeds) of them 

were empty or aborted. The remaining 34% of seeds (1845 seeds) were used for our flow 

cytometric seed screen (FCSS). Still, however, in 40% of them (731 seeds) only the embryo 

was detected. The ploidy level of both the embryo and the endosperm was estimated 

for a total of 1114 seeds of Cotoneaster integerrimus s.l. and C. tomentosus (average CV 

2.67%; see representative FCSS histograms in Online Resource 4). Moreover, in 20 seeds 

from 12 populations of all taxa under study (except C. matrensis), multiple embryo and 

endosperm were detected in single seeds (i.e. altogether, 1134 reproductive mode 

determinations were made for 1114 seeds). 

As a side result of our FCSS analysis, we found tetraploid C. integerrimus s.l. and 

pentaploid C. tomentosus to differ in the number of seeds per pome. The modus values 
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for tetraploid C. integerrimus s.l. and pentaploid C. tomentosus were 3 and 4 seeds per pome, 

respectively. The numbers of seeds in the pome did not differ between tetraploid taxa 

belonging to C. integerrimus s.l. 

Various types of apomixis were captured in 90.5% of seeds (the remaining seeds were 

sexual). Seven major reproductive pathways were detected: sexual reproduction (involving 

a reduced or unreduced female gamete), haploid parthenogenesis (involving a reduced or 

unreduced male gamete), autonomous apomixis and pseudogamy (involving a reduced or 

unreduced male gamete; Fig. 3, Table 2, 3, Online Resource 4). Pseudogamy was the most 

frequent reproductive mode (78.0% of all Cotoneaster seeds, the frequency of unreduced and 

reduced male gamete being almost equal). A surprisingly high rate of putative unreduced 

gamete participation (for another possible interpretation see also the Discussion) could be 

deduced from the obtained FCSS endosperm ploidy pattern (unreduced male gametes 

participated in 39.8% of pseudogamous endosperms). As regards sexuality, we revealed only 

3.6% of BIII plants (an unreduced gamete participated in embryo formation – 2n+n; for more 

details see the Discussion). Moreover, 8.5% (i.e. 96 seeds) of all Cotoneaster analyses were 

characterized by endosperm/embryo ratios that cannot be exactly linked to any reproductive 

pathway (4:9, 11, 13, 15, 17; 5:9, 16). Nevertheless, these ratios are probably products 

of an irregular pseudogamous process (for details see Online Resource 5). 

 

 
Fig. 3: Association between the endosperm/embryo ploidy ratio to ploidy of the embryo in 1114 Cotoneaster 

seeds (pyrenes) showing variation in reproductive modes in tetraploid C. integerrimus s.l. and pentaploid 

C. tomentosus (based on FCSS). 
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Table 2: Variation in breeding systems of tetraploid Cotoneaster integerrimus s.l. based on ploidy of embryo 

and endosperm ratios detected by FCSS. Only major reproductive modes are included. 
 

 
 

The FCSS pattern of the progeny of tetraploid C. integerrimus s.l. differed 

substantially from that of pentaploid C. tomentosus (significantly mirrored also 

by a generalized mixed-effect linear model: N = 1133, χ2 = 6.13, p = 0.013). Whereas 

C. tomentosus reproduced almost exclusively apomictically, progeny of tetraploid 

C. integerrimus s.l. always retained a certain degree of sexuality (Fig. 4). Out of 75 analysed 

seeds of pentaploid C. tomentosus, only a single seed indisputably resulted from sexual 

reproduction. Most C. tomentosus seeds (89.5%) were formed by pseudogamy  

– predominantly with the participation of a putative unreduced male gamete  

(emb:end = 5:15; Fig. 3, 4, Table 3). In three cases (3.9%), autonomous apomixis was 

detected. 
 

Table 3: Variation in breeding systems of pentaploid Cotoneaster tomentosus based on ploidy of embryo and 

endosperm ratios detected by FCSS. Only major reproductive modes are included. 

 

 

 

Type of reproduction 

Ploidy 

of 

embryo 

Ploidy of 

endosperm

Female 

gamete 

Male 

gamete 
Embryo formation Endosperm formation

Sexual - reduced 4 6 reduced 2C reduced 2C fertilized 2+2=4C fertilized (2+2)+2=6C 

Sexual - unreduced 6 10
unreduced 

4C 
reduced 2C fertilized 4+2=6C fertilized (4+4)+2=10C 

Haploid parthenogenesis 2 6 reduced 2C reduced 2C parthenogenetic 2C fertilized (2+2)+2=6C 

Haploid parthenogenesis 2 8 reduced 2C
unreduced 

4C 
parthenogenetic 2C fertilized (2+2)+4=8C 

Autonomous apomixis 4 8
unreduced 

4C 
0 parthenogenetic 4C autonomous (4+4)=8C

Pseudogamy - reduced 4 10
unreduced 

4C 
reduced 2C parthenogenetic 4C fertilized (4+4)+2=10C 

Pseudogamy - unreduced 4 12
unreduced 

4C 

unreduced 

4C 
parthenogenetic 4C fertilized (4+4)+4=12C 

Type of reproduction 

Ploidy 

of 

embryo 

Ploidy of 

endosperm

Female 

gamete 

Male 

gamete 
Embryo formation Endosperm formation

Sexual - unreduced 8 13
unreduced 

5C 
reduced 3C fertilized 5+3=8C fertilized (5+5)+3=13C 

Autonomous apomixis 5 10
unreduced 

5C 
0 parthenogenetic 5C autonomous (5+5)=10C

Pseudogamy - reduced 5 12
unreduced 

5C 
reduced 2C parthenogenetic 5C fertilized (5+5)+2=12C 

Pseudogamy - reduced 5 12.5
unreduced 

5C 

reduced 

2.5C 
parthenogenetic 5C fertilized (5+5)+2.5=12.5C 

Pseudogamy - reduced 5 13
unreduced 

5C 
reduced 3C parthenogenetic 5C fertilized (5+5)+3=13C 

Pseudogamy - unreduced 5 14
unreduced 

5C 

unreduced 

4C 
parthenogenetic 5C fertilized (5+5)+4=14C 

Pseudogamy - unreduced 5 15
unreduced 

5C 

unreduced 

5C 
parthenogenetic 5C fertilized (5+5)+5=15C 
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Fig. 4: Proportions of sexual vs apomictic seed formation (based on FCSS) in pentaploid 

Cotoneaster tomentosus (75 seeds) vs tetraploid C. integerrimus s.l. (1039 seeds) and tetraploid Cotoneaster 

microspecies (C. laxiflorus – 326 seeds, C. alaunicus – 165 seeds, C. matrensis – 44 seeds) vs  

C. integerrimus s.str. (504 seeds). 

 

By contrast, tetraploid C. integerrimus s.l. turned out to be partly sexual (10.1% 

of seeds; Fig. 3, 4, Table 2). Besides a typical sexual FCSS profile, we also detected 

BIII individuals (participation of an unreduced gamete) in 40 seeds (3.8%). The majority 

of seeds was formed via pseudogamy – emb:end = 4:10 (39.2%) and emb:end = 4:12 (38.0%; 

corresponding to the contribution of a reduced and an unreduced male gamete, respectively). 

Autonomous apomixis (emb:end = 4:8) was detected in a minority of cases (3.7% of all 

seeds). Moreover, also haploid parthenogenesis was proven in three cases (0.3%) 

which involved both reduced and unreduced male gametes – emb:end = 2:6 and  

emb:end = 2:8; respectively. The entire tetraploid group of C. integerrimus s.l. microspecies 

(C. integerrimus s.str., C. laxiflorus, C. alaunicus and C. matrensis) exhibited no significant 

difference in the proportion of sexuality (i.e. from 4.6% to 13.8%; see Online Resource 6 or 

Fig. 4). A generalized mixed-effect linear model did not reveal any significant difference 

in the rate of sexuality between C. integerrimus s.str. and the group of other microspecies  

(N = 1057, χ2 = 0.45, p = 0.502) or between the groups of microspecies tested (N = 1057,  

χ2 = 2.81, p = 0.094). Moreover, even within the geographically grouped dataset  

(i.e. separating plants from the Bohemian Massif and the Western Carpathians) we found no 

obvious difference or trend (see Online Resource 7; N = 1096, χ2 < 0.001, p = 0.926). 

The reproductive modes of seeds from several populations from the Alps were more 

complex because of the occurrence three ploidy levels (2x and 4x C. integerrimus s.l. and  

5x C. tomentosus). Whereas all diploids (28 seeds/3 pop.) were proved to be exclusively 
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sexual (emb:end = 2:3), tetraploid seeds again indicated facultative apomixis (5 seeds/1 pop.) 

and pentaploid C. tomentosus (23 seeds/3 pop.) were also proven to be dominantly apomictic. 

 

 

Discussion 

 
Two ploidy levels of Cotoneaster taxa were revealed in Central Europe. 

Cotoneaster integerrimus s.l. was found to be exclusively tetraploid in both study regions, 

the Western Carpathians and the Bohemian Massif whereas the pentaploid species 

Cotoneaster tomentosus was restricted to the Western Carpathians. In addition, the two taxa 

differed by 3.4% in relative Cx value and in the number of seeds per pome. Reproductive 

mode analysis detected, on the one hand, various apomictic types supplemented 

by a significant degree of sexuality (10.1% of sexual seeds) in C. integerrimus s.l. and, 

on the other, almost entirely apomictic reproduction in C. tomentosus. Besides the anticipated 

complete predominance of regular pseudogamy, we also identified haploid parthenogenesis 

and autonomous apomixis. In addition, we found 3.8% of hexaploid BIII embryos among 

the progeny of C. integerrimus s.l., indicating a potential of further polyploidization 

via unreduced gametes. The distribution of the detected types of reproduction was 

significantly homogenous across the whole of Central Europe, and we have not found any 

differences between the Bohemian Massif and the Western Carpathians (as well as among 

C. integerrimus s.l. microspecies). 

 

Discrepancies between reported and detected ploidy levels 

 

Various ploidy levels (3x, 4x, 5x) have been reported for Cotoneaster in Central Europe 

(Baranec 1992; Měsíček and Javůrková-Jarolímová 1992; Murín and Májovský 1992). 

However, we have confirmed (using flow cytometry calibrated by chromosome counts) only 

two of them: tetraploid (for C. integerrimus s.l.) and pentaploid (for C. tomentosus). 

This allows us to avoid complications arising from classical karyology of Cotoneaster 

species, including the high basic chromosome number, common occurrence of polyploidy, 

and presence of small and crowded somatic cells (Zeilinga 1964). Moreover, flow cytometry 

allowed us to analyse a large number of samples and also critically evaluate published 

karyological data (reported by Rothleutner et al. 2016). Some ploidy reports (e.g. triploid 

counts by Sax (1954) have already been repeatedly doubted; Zeilinga 1964; Kroon 1975). 

Hitherto published ploidal data on C. integerrimus s.l. in the Western Carpathians (Baranec 

1992) indicate 4x C. laxiflorus, 3x C. integerrimus and both 3x and 4x C. alaunicus. Western 

Carpathian C. tomentosus has been found to be tetraploid (Baranec 1992; Murín and 

Májovský 1992). Our findings, however, differ tremendously (exclusively 4x 

C. integerrimus s.l. and 5x C. tomentosus). Whereas triploid counts from the Western Alps 

(Lauber and Wagner 1996) are congruent with our ploidy results (a potential hybrid 

between a diploid and a tetraploid cytotype within our Alpine dataset), reports of triploids 

from the Western Carpathians (Baranec 1992) might be doubtful and our extensive sampling 

has not confirmed any indication of either triploids or diploids. At the same time, 

the tetraploid count for C. tomentosus from the Western Carpathians (Murín and Májovský 

1992) might be interpreted as a case of misidentification (probably confusion 

with C. integerrimus s.l.). Thus, based on published data and our comparative dataset, 

the Western Alps (rather than the Western Carpathians) remain a putative cytotype diversity 

hotspot (e.g. 2x, 3x, 4x, 5x; Favarger 1969; Löve 1969; Lauber and Wagner 1996; see also 

Online Resource 1). 
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Comparison of reproductive modes 

 

That apomictic reproduction takes place in C. integerrimus s.l. and C. tomentosus has 

repeatedly been speculated on (Sax 1954; Kroon 1975; Bartish et al. 2001). However, only 

Hjelmquist (1962) and Li et al. (2017) published direct embryological and molecular evidence 

(for different Cotoneaster species). Detecting apomixis using other morphological (Sax 1954; 

Kroon 1975) and molecular (RAPD data by Bartish et al. 2001) means has already been 

deemed doubtful (Campbell et al. 1991; Dickoré and Kasperek 2010) because of the obscure 

horticultural origin and uncertain RAPD pattern of the plant material concerned. Moreover, 

our results (total prevalence of pseudogamy) and findings for the entire subtribe Malinae 

(Campbell et al. 1991; Dickinson et al. 2007) contradict evidence of apomixis 

from emasculation and style removal tests (Sax 1954). 

The results of our reproductive mode analyses indicate an unexpectedly high 

proportion of endosperm formed with the participation of putative unreduced male gametes 

(one-half of pseudogamous C. integerrimus s.l. progeny and almost three-quarters 

of C. tomentosus pseudogamous progeny). We, however, have not found any evidence for 

the production of unreduced male gametes in sexual progeny. On the contrary, BIII individuals 

clearly demonstrate the formation of unreduced female gametes (37.4% of sexual progeny). 

The putative involvement of unreduced male gametes in pseudogamous endosperm 

formation has been interpreted as the participation of two reduced sperm cells (i.e. dispermy) 

in Crataegus (Scott 2007; Talent and Dickinson 2007), Sorbus (Hajrudinović et al. 2015a, b), 

Potentilla (Dobeš et al. 2013) and Rubus (Šarhanová et al. 2012) so our result indicating 

pseudogamy may be interpreted in the same way (at least in part). The substantial proportion 

of sexual BIII progeny is not mirrored by our results on the ploidal structure in the field  

(no record of a hexaploid individual). We are aware, however, that our seeds screen data 

represent only potential progeny and that hexaploid BIII individuals might be getting excluded 

at the level of germination or competition. A significantly high proportion of the progeny 

(8.7% of C. integerrimus s.l. and 5.3% C. tomentosus) exhibited dubious embryo:endosperm 

ratios (4:9, 11, 13, 15, 17 and 5:9, 16). These probably come down to pseudogamy, odd 

endosperm ploidies and a partially continuous pattern of our FCSS results, so they may be 

simply explained by meiotic irregularities (Dobeš et al. 2013; Kolarčik et al. 2018) or 

fertilization by other Malinae genera (potential for intergeneric hybridization 

common in the subtribe; Robertson et al. 1991). Moreover, we detected autonomous 

apomixis, which may be interpreted as G2 phases of the embryo. Nevertheless, we did not 

detect any other putative G2 peaks of embryo tissue within the entire FCSS dataset 

(analogously to Šarhanová et al. 2012). Last but not least, we detected three seeds 

of C. integerrimus s.l. formed by haploid parthenogenesis, so our findings expand the small 

group of taxa in which this rare and obscure reproductive pathway has been identified  

– Malus (Kron and Husband 2009), Pilosella (Krahulcová and Krahulec 2000; Krahulec et al. 

2011), Potentilla (Dobeš et al. 2013), Sorbus (Jankun and Kovanda 1986), Rubus (Šarhanová 

et al. 2012), the Botriochloa-Dichanthium complex (De Wet 1968), Panicum (Savidan and 

Pernès 1982), Agropyron (Hair 1956) and Ranunculus (Nogler 1984). 

Among our results on reproductive modes there were 20 single-seed analyses 

in which two different endosperm peaks were detected. Such a pattern is probably reflecting 

the occurrence of twin embryos (overlapping peaks). It follows that we probably detected 

both sexually and apomictically developed embryos as well as two different apomictically 

developed twin embryos (e.g. 4:6 + 4:10, 12 and 4:8 + 4:10, 12). Surprisingly analogous 

results on reproductive behaviour have been obtained for the genus Rubus (including very 

similar frequencies; Šarhanová et al. 2012) 
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Our data on ploidy and reproductive modes correspond to the pattern observed 

in Rubus subg. Rubus published by Šarhanová et al. (2012). Both Cotoneaster and Rubus 

include sexual diploids, facultative apomictic tetraploids and obligatorily apomictic cytotypes 

with odd numbers of chromosomes. Šarhanová et al. (2012) also revealed a comparable ratio 

of BIII individuals (Cotoneaster 3.6% and Rubus 2.9%) and haploid parthenogenesis 

(Cotoneaster 0.3% and Rubus 2%). Although both systems are predominantly pseudogamous, 

a minor proportion of autonomous endosperm development has been reported 

(Cotoneaster 3.7% and Rubus 1.8%). In contrast to the genus Rubus, in which a regular 

pseudogamous ratio (4:10) is prevalent and higher and odd ploidies of endosperm are 

in a minority (from 9x up to 20x), apomictic Cotoneaster integerrimus s.l. seeds consist 

of more or less equal proportions of 4:10 and 4:12 endosperm ploidies as well as 

of a significant proportion (8.7%) of odd endosperm ploidies. 

A comparable pattern with a predominant 4:12 ratio was also observed 

in Sorbus bosniaca (Hajrudinović et al. 2015a, b). Extensive parallels can be drawn between 

our FCSS results and those for the genus Potentilla s.l. (Dobeš et al. 2013), even though 

the sampling coverage of our data is hardly comparable. Nevertheless, reported reproductive 

pathways mostly match our results. In contrast to our results, however, Dobeš et al. (2013) 

detected also endosperm formed with the participation of a single polar nucleus 

while at the same time they found no evidence of autonomous apomixis. 

 

Taxonomic implications 

 

Our results do not provide a solid base for any taxonomic conclusions (in line with our 

original intentions), but they are relevant to future taxonomic revisions. The pattern of ploidy 

levels, relative genome size and reproductive behaviour that we have observed 

in Cotoneaster integerrimus s.l. shows no correlation with previously described microspecies 

of Cotoneaster integerrimus s.l. On the contrary, our data undoubtedly support the distinct 

status of C. tomentosus based on differences in ploidy, reproductive pathways and 

morphology (in concordance with e.g. Kutzelnigg 1994). We admit that additional differences 

within C. integerrimus s.l. might be found by means of molecular analyses. However, our data 

on reproduction confirm a significant proportion of sexuality (10.1%). Facultative apomixis is 

generally considered a serious obstacle to the taxonomical treatment of microspecies 

(Majeský et al. 2017). We therefore find the current concept of microspecies in the Western 

Carpathian region worthy of further discussion (Hrabětová-Uhrová 1961, 1962; Baranec 

1992; Baranec and Eliáš 2004), as we have not found any evidence of a different cytological 

pattern or any reproductive isolation for C. alaunicus, C. matrensis and even C. laxiflorus. 

The taxonomic status of C. alaunicus remains obscure because its type material is 

from Western Russia (Orjol District; Fryer and Hylmö 2009) and therefore its Carpathian 

populations would form an enormous disjunction. Moreover, the type material of C. laxiflorus 

and C. melanocarpus is based on cultivated plants of unclear origin (Fryer and Hylmö 2009). 

The status of C. matrensis, even within the frame of the taxonomic concept splitting species 

into microspecies, is considered unclear (Baranec 1992; Bartha 2009; Fryer and Hylmö 2009). 

Moreover, the ultimate discrimination character between Western Carpathian microspecies, 

the colour of pomes (Baranec 1992; Baranec and Eliáš 2004), is highly variable, even 

within the fruit set of a single individual (it changes during maturation from dark orange 

to bluish tones; Macková et al. unpublished data; Kovanda 1992). 

In agreement with our findings, Dickoré and Kasperek (2010) do not support 

the splitting of Western Carpathian taxa, commenting that ‘the record for Central Europe 

seems doubtful’. To sum up, the Western Carpathian region is definitely a hotspot 

of European diversity of vascular plants (Kliment et al. 2016), but this does not apply 
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to Cotoneaster integerrimus s.l. Based on the literature and our comparative dataset, 

the actual centre of C. integerrimus s.l. diversity is probably located in the mountain ranges 

of Southwestern Europe (the southwestern Alps and the Pyrenees; Fryer and Hylmö 2009; 

Kurtto et al. 2013). 

 

 

Conclusions 

 
Flow cytometry of wild representatives of the genus Cotoneaster in our two model 

Central European regions (the Bohemian Massif and the Western Carpathians) has revealed 

the presence of two cytotypes: tetraploid C. integerrimus s.l. (incl. all subordinate 

microspecies) and pentaploid C. tomentosus (both without exceptions).  

Whereas C. integerrimus s.l. occurs throughout the study area, C. tomentosus is restricted 

to the Western Carpathians. The two taxa also differ in relative Cx values (3.4% lower 

in C. integerrimus s.l.). 

Analysis of reproductive modes using the flow cytometric seed screen approach 

indicates almost obligatory apomictic reproduction in C. tomentosus (only one sexual seed 

detected) contrasting the facultative apomictic pattern of C. integerrimus s.l. (10.1% of sexual 

seeds). Moreover, apomixis in C. integerrimus s.l. takes place via several pathways of embryo 

and endosperm formation – pseudogamy, autonomous apomixis and haploid parthenogenesis. 

Pseudogamous apomixis (with the participation of both reduced and unreduced male gametes) 

appears to be the most frequent reproductive mode. In addition, unreduced female gametes 

contribute to the formation of more than one third of the sexual progeny of C. integerrimus 

s.l. (i.e. BIII individuals). Nevertheless, within tetraploid C. integerrimus s.l., we have not 

found any significant difference in reproductive mode between microspecies or between 

geographic regions, because the proportion of residual sexuality was significantly equal 

in each of the groups tested. To sum up, our results support the rather broad taxonomical 

concept of Dickoré and Kasperek (2010), over all narrow ones (Baranec 1992; Fryer and 

Hylmö 2009). 

Thus, the Western Carpathians do not seem to be the hotspot of cytotype variation or 

diversity in reproductive modes of C. integerrimus s.l. On the contrary, we detected 

significantly greater variation (incl. diploids) within our small comparative dataset 

from the Western Alps, a region on which future investigations should be focused. 
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Supplementary material 

 
Online Resource 1 – Published chromosome counts of Cotoneaster integerrimus s.l. and 

Cotoneaster tomentosus in Europe. 

 

Taxonomically relevant and properly located: 

Taxon 

Chromo-
some 
count 
(2n) 

Ploidy State Location Reference 

C. integerrimus 34 2x France 
Hautes Alps: Ceillac 1660 m 
a.s.l. 

Favarger in 
Löve 1969 

C. alaunicus 68 4x Russia 
Voronezh region: nature 
preserve Galitschja Gora 

Krügel 1990 

C. cambricus  
(C. integerrimus s.l.) 

68 4x 
Great 
Britain 

North Wales: Great Ormes 
Head, Llandudno, 
Caernarfonshire 

Fryer and 
Hylmö 1994 

C. integerrimus 68 4x 
Czech 
Republic 

Prague: S part of the forest 
Kunratický les, SW. slope 
above the brook, 290 m a.s.l. 

Měsíček and 
Javůrková-
Jarolímová 
1992 

C. integerrimus 68 4x Bulgaria 
Rila Mountains: near Rila 
Monastery 

Česchmedjiev 
in Löve 1983 

C. integerrimus 68 4x Russia 
Caucasus (Eastern Elbrus): 
Šchelda gorge 

Gladkova 
1968 

C. integerrimus 102±2 6x Sweden Ölmevalla 
Favarger in 
Löve 1975 

C. tomentosus 68 4x Slovakia 
Sulov rocks: Sulov castle 
ruins 

Murín and 
Májovský 
1992 

C. tomentosus 68 4x Bulgaria 
Rhodopi Mountains 
(Central): Trigrad gorge 

Goranova 
2007 

C. tomentosus c. 85 5x France 
Hautes Alps: Ceillac 1700 m 
a.s.l. 

Favarger in 
Löve 1969 

 

Uncertain location or taxonomy: 

Taxon 

Chromo-
some 
count 
(2n) 

Ploidy State Location Reference 

C. integerrimus 34 2x Switzerland Neufchâtel Kroon 1975 

C. integerrimus 34 2x France 
western Alps, Reculet 
(southern Jura) 

Favarger 1969 

C. integerrimus 34 2x France Dyon Kroon 1975 

C. integerrimus 51 3x Ukraine Crimea 
Gladkova 
1967 
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Taxon 

Chromo-
some 
count 
(2n) 

Ploidy State Location Reference 

C. integerrimus 51 3x Ukraine Crimea 
Gladkova 
1968 

C. integerrimus 62 ? Germany Kunitz (Jena) Krügel 1992 

C. integerrimus 68 4x Austria Vienna Kroon 1975 

C. integerrimus 68 4x Sweden Lund Kroon 1975 

C. integerrimus 68 4x Switzerland central Jura Favarger 1969 

C. integerrimus 68 4x France 
Alps: Drôme, Isère, Savoy, 
Hautes-Alpes 

Flinck et al. 
1998 

C. integerrimus 68 4x 

Scandinavia, 
south- 
-central 
Europe 

NO Hensen 1966 

C. juranus  
(C. integerrimus s.l.) 

68 4x France 
Vosges, Jura, Massif-Central, 
Pyrenees and Alps 

Flinck et al. 
1998 

C. melanocarpus  
(C. laxiflorus) 

68 4x Ukraine Odessa Kroon 1975 

C. melanocarpus  
(C. laxiflorus) 

68 4x Russia Rostov Kroon 1975 

C. melanocarpus  
(C. laxiflorus) 

68 4x Romania Bucharest Kroon 1975 

C. soczavianus/ 
C. tomentosus 

68 4x Russia 
Northern Caucasus: Malaja 
Laba 

Gladkova 
1968 

C. tomentosus 68 4x France 

Massif Central, Jura, 
Pyrenees, Alps: Haute-
Savoie, Savoie, Isère, Drôme, 
Hautes-Alps, Alps de Haute- 
-Provence, Alps Maritimes 
and Vaucluse 

Flinck et al. 
1998 

C. tomentosus 68 4x 
southern 
Europe 

NO Hensen 1966 

C. tomentosus 85 5x 
Austria, 
Slovenia 

Karawanken 1600 m Krügel 1992 
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Horticultural origin: 

Taxon 

Chromo-
some 
count 
(2n) 

Ploidy State Location Reference 

C. integerrimus 51 3x USA Arnold Arboretum Sax 1954 

C. alaunicus 62+B 4x Russia Kirovsk – botanic garden Krügel 1992 

C. integerrimus 68 4x Armenia Jerevan – botanical garden 
Gladkova 
1968 

C. integerrimus 68 4x Russia 
Saint Petersburg – Park 
botanical institute 

Gladkova 
1968 

C. integerrimus 68 4x 
United 
Kingdom 

Royal Botanical Garden Kew Moffett 1931 

C. melanocarpus 
var. laxiflorus 

51 3x USA Arnold Arboretum Sax 1954 

C. melanocarpus  
(C. laxiflorus) 

68 4x USA Arnold Arboretum Sax 1954 

C. melanocarpus  
(C. laxiflorus) 

68 4x Russia 
Saint Petersburg – Park 
botanical institute 

Gladkova 
1968 

C. melanocarpus 
(C. laxiflorus) 

68 4x USA New York, Geneva Dickson 1992 

C. tomentosus 51 3x USA Arnold Arboretum Sax 1954 

C. tomentosus 68 4x Russia 
Saint Petersburg – Park 
botanical institute 

Gladkova 
1968 

C. tomentosus 68 4x Netherlands 
Wageningen – arboretum, 
Boskoop – experimental 
station 

Zeilinga 1964 

C. tomentosus 85 5x Austria 
Klagenfurt – botanical 
garden 

Krügel 1992 
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Online Resource 2 – Study sites and sampling details used for the estimation of ploidy level (FCM) and analysis of reproductive modes (FCSS). 

Mixed populations are labelled by asterisks. 
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CI1a,b C. integerrimus s.str. 4 24 86 
Prokopské údolí – 
Albrechtův vrch (Albrecht 
hill) 

Czech Republic Bohemian Massif 50.044222, 14.346222 256 

CI3 C. integerrimus s.str. 4 7 31 
Prokopské údolí – 
Butovické hradiště 
(Butovice hill-fort) 

Czech Republic Bohemian Massif 50.040333, 14.354917 252 

CI6a,b,c C. integerrimus s.str. 4 3 0 
Praha – Radotínské skály 
(Radotín rocks) 

Czech Republic Bohemian Massif 49.990194, 14.357444 255 

CI10 C. integerrimus s.str. 4 2 0 Praha – Jabloňka Czech Republic Bohemian Massif 50.116056, 14.439111 196 

CI12 C. integerrimus s.str. 4 2 0 
Praha – Bohnické údolí 
(Bohnice valley) 

Czech Republic Bohemian Massif 50.137056, 14.40225 268 

CI13 C. integerrimus s.str. 4 1 0 Praha – Baba Czech Republic Bohemian Massif 50.117817, 14.390753 217 

CI14 C. integerrimus s.str. 4 1 0 Praha – Nad Mlýnem Czech Republic Bohemian Massif 50.112446, 14.368443 247 

CI16 C. integerrimus s.str. 4 1 0 Praha – Jenerálka Czech Republic Bohemian Massif 50.103776, 14.348924 259 

CI17 C. integerrimus s.str. 4 1 0 Praha – Dívčí skok Czech Republic Bohemian Massif 50.099829, 14.319419 294 

CI18 C. integerrimus s.str. 4 7 13 
Divoká Šárka – Kozákova 
skála (Kozák rock) 

Czech Republic Bohemian Massif 50.095173, 14.321414 330 

CI20 C. integerrimus s.str. 4 1 0 
Praha – Roztocký háj 
(Roztoky grove) 

Czech Republic Bohemian Massif 50.149942, 14.390485 244 

CI23 C. integerrimus s.str. 4 3 0 Muráňská planina Slovakia Western Carpathians 48.760248, 19.971524 1184 

CI26 C. integerrimus s.str. 4 1 0 
Oparno – zřícenina hradu 
(castle ruins) 

Czech Republic Bohemian Massif 50.542278, 14.009861 271 
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CI28 C. integerrimus s.str. 4 1 0 Lovoš Czech Republic Bohemian Massif 50.528250, 14.018861 545 

CI29 C. integerrimus s.str. 4 1 0 Košťálov Czech Republic Bohemian Massif 50.489806, 13.984917 461 

CI30 C. integerrimus s.str. 4 3 0 Holý vrch (Holý hill) Czech Republic Bohemian Massif 50.502556, 13.978306 460 

CI36 C. integerrimus s.str. 4 8 14 Havraníky Czech Republic Bohemian Massif 48.8170000, 16.0013056 332 

CI37 C. integerrimus s.str. 4 1 0 Ostrý Czech Republic Bohemian Massif 50.531748, 13.951981 518 

CM1 C. laxiflorus 4 3 0 Borač – Prudká: Sokolí skála Czech Republic Bohemian Massif 49.420583, 16.366056 364 

CM2 C. laxiflorus 4 2 0 Chudčice – Břenčák Czech Republic Bohemian Massif  49.274233, 16.457833 268 

CI42 C. integerrimus s.str. 4 1 0 Kaulsdorf Germany Bohemian Massif 50.617337, 11.394243 240 

CI44a,b,c C. integerrimus s.str. 4 5 0 Roztoky – Na Babě Czech Republic Bohemian Massif 50.031394,13.868653 277 

CI47 C. integerrimus s.str. 4 1 0 Máslovická stráň 1 Czech Republic Bohemian Massif 50.206667, 14.388333 250 

CI49 C. integerrimus s.str. 4 1 0 
Praha – Černá rokle (Black 
gulch) 

Czech Republic Bohemian Massif 49.990184, 14.338088 286 

CI50a,b,c C. integerrimus s.str. 4 7 11 Malý Bezděz Czech Republic Bohemian Massif 50.5391003, 14.7129103 510 

CI51a,b,c C. integerrimus s.str. 4 10 5 Hostěnice – Údolí říčky Czech Republic Bohemian Massif 49.241083, 16.738306 411 

CI54 C. integerrimus s.str. 4 1 4 Mašovice – Mašovický lom Czech Republic Bohemian Massif 48.858694, 15.984917 357 

CI55 C. integerrimus s.str. 4 4 6 Koňský spád Czech Republic Bohemian Massif 49.377889, 16.728972 492 

CI56a,b C. integerrimus s.str. 4 2 4 Boreč Czech Republic Bohemian Massif 50.515083, 13.987361 395 

CI60 C. integerrimus s.str. 4 1 3 Vrbička Czech Republic Bohemian Massif 50.183194, 13.289194 518 

CI61 C. integerrimus s.str. 4 1 3 Nová ves Czech Republic Bohemian Massif 50.201361, 13.289222 512 

CI62 C. integerrimus s.str. 4 1 0 Soběchleby Czech Republic Bohemian Massif 50.222417, 13.51815 305 

CI63 C. integerrimus s.str. 4 2 0 Radechovské skály Czech Republic Bohemian Massif 50.278056, 13.264 426 

CI64 C. integerrimus s.str. 4 5 5 Choceň – Peliny Czech Republic Bohemian Massif 50.0034167, 16.2316667 326 

CI65 C. integerrimus s.str. 4 3 0 
Hracholusky – Čertova 
skála (Devil rock) 

Czech Republic Bohemian Massif 49.997861, 13.791111 342 
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CI66 C. integerrimus s.str. 4 1 0 Zbečno Czech Republic Bohemian Massif 50.043278, 13.927028 395 

CA74a,b C. alaunicus 4 2 1 
Haligovské skály (Haligov 
rocks) 

Slovakia Western Carpathians 49.381944, 20.462111 700 

CA76 C. alaunicus 4 6 53 
Haligovské skály (Haligov 
rocks) – viewpoint 

Slovakia Western Carpathians 49.3827503, 20.4556942 770 

CM77 C. laxiflorus 4 1 0 Trzy Korony (Three Crowns) Poland Western Carpathians 49.412472, 20.405917 580 

CM78 C. laxiflorus 4 6 27 
Trzy Korony (Three Crowns) 
– peak 

Poland Western Carpathians 49.4140278, 20.4143333 971 

CM79 C. laxiflorus 4 6 0 
Náměšť n. Oslavou – 
viewpoint 

Czech Republic Bohemian Massif 49.166389, 16.165444 424 

CM80 C. laxiflorus 4 9 0 
Náměšť n. Oslavou – Údolí 
Oslavy a Chvojnice 

Czech Republic Bohemian Massif 49.1727222, 16.1633056 320 

CI82 C. integerrimus s.str. 4 1 0 Řivnáč Czech Republic Bohemian Massif 50.165222, 14.361806 290 

CI83 C. integerrimus s.str. 4 1 0 Děvín – Pálava Czech Republic Bohemian Massif 48.874, 16.659269 405 

CI84 C. integerrimus s.str. 4 1 0 Kletečná Czech Republic Bohemian Massif 50.566761, 13.971611 648 

CI85 C. integerrimus s.str. 4 2 0 Černolice – Hřebeny Czech Republic Bohemian Massif 49.906431, 14.314556 343 

CMat88a,b C. matrensis 4 2 0 Rakytov Slovakia Western Carpathians 48.96425, 19.182278 1400 

CMat90 C. matrensis 4 1 0 Minčol Slovakia Western Carpathians 48.950472, 19.158583 1340 

CI91 C. integerrimus s.str. 4 1 6 Blatnica – Pekárová Slovakia Western Carpathians 48.9477500, 18.9475278 592 

CT92* C. tomentosus 5 1 0 Blatnica – Pekárová Slovakia Western Carpathians 48.9504444, 18.9536667 626 

CI92* C. integerrimus s.str. 4 1 11 Blatnica – Pekárová Slovakia Western Carpathians 48.9504444, 18.9536667 626 

CT94 C. tomentosus 5 1 0 
Blatnica – towards 
Pekárová 

Slovakia Western Carpathians 48.9521944, 18.9569444 680 
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CA95 C. alaunicus 4 1 1 Biela skala Slovakia Western Carpathians 49.293972, 19.49525 674 

CT96a,b C. tomentosus 5 2 14 Paklenica Croatia Dinara Mountains 44.3638800, 15.4605100 1091 

CI100 C. integerrimus s.str. 4 2 12 
Vojenský újezd Hradiště 
(Military area of Hradiště) 

Czech Republic Bohemian Massif 50.327336, 13.114111 771 

CI101 C. integerrimus s.str. 4 5 12 
Vojenský újezd Hradiště 
(Military area of Hradiště) – 
Humnický vrch 

Czech Republic Bohemian Massif 50.3438778, 13.1471778 696 

CI102 C. integerrimus s.str. 4 2 6 Pokutice – Úhošť Czech Republic Bohemian Massif 50.365103, 13.241672 519 

CM103 C. laxiflorus 4 10 17 Hontianske Nemce Slovakia 
Western Carpathians 
– Pannonia 

48.304139, 18.974722 235 

CA104 C. alaunicus 4 6 31 Valaská – Horné lazy Slovakia Western Carpathians 48.813361, 19.598139 570 

CI105 C. integerrimus s.str. 4 5 25 Stratená Slovakia Western Carpathians 48.875389, 20.325417 835 

CM106* C. laxiflorus 4 5 27 Svit Slovakia Western Carpathians 49.0528356, 20.2112636 735 

CT106* C. tomentosus 5 5 15 Svit Slovakia Western Carpathians 49.0528356, 20.2112636 735 

CM108* C. laxiflorus 4 8 49 
Liptovský Ján – cintorín 
(cemetary) 

Slovakia Western Carpathians 49.043028, 19.679028 660 

CT108* C. tomentosus 5 1 7 
Liptovský Ján – cintorín 
(cemetary) 

Slovakia Western Carpathians 49.043028, 19.679028 660 

CM110* C. laxiflorus 4 5 28 Ružomberok Slovakia Western Carpathians 49.0631944, 19.3085278 500 

CT110* C. tomentosus 5 2 1 Ružomberok Slovakia Western Carpathians 49.0631944, 19.3085278 500 

CI112* C. integerrimus s.str. 4 10 60 
Studničná – Sedem 
kostolov 

Slovakia Western Carpathians 49.134528, 19.265194 770 

CT112* C. tomentosus 5 1 6 
Studničná – Sedem 
kostolov 

Slovakia Western Carpathians 49.134528, 19.265194 770 



149 

 

P
o

p
u

la
ti

o
n

 

Taxon 

P
lo

id
y 

In
d

iv
id

u
al

s 
(N

) 

Se
e

d
s 

(N
) 

Location State Region GPS 

A
lt

it
u

d
e

 (
m

 a
.s

.l
.)

 

CM113 C. laxiflorus 4 5 22 
Lietava – Lietavský hrad 
(Lietava Castle) 

Slovakia Western Carpathians 49.1606389, 18.6845556 590 

CMat114 C. matrensis 4 5 14 Nitra – Zobor Slovakia Western Carpathians 48.348861, 18.095481 400 

CM115 C. laxiflorus 4 13 59 Kvetnica Slovakia Western Carpathians 49.007806, 20.285528 720 

CA117 C. alaunicus 4 2 12 Liptovský Ján – Javorovica 1 Slovakia Western Carpathians 49.0265, 19.655483 1047 

CA118* C. alaunicus 4 4 16 Liptovský Ján – Javorovica 2 Slovakia Western Carpathians 49.0274500, 19.6618167 968 

CT118* C. tomentosus 5 2 0 Liptovský Ján – Javorovica 2 Slovakia Western Carpathians 49.0274500, 19.6618167 968 

CI119 C. integerrimus s.str. 4 4 1 Máslovice 2 Czech Republic Bohemian Massif 50.207611, 14.370917 220 

CI120 C. integerrimus s.str. 4 3 0 Dolánky – Hlaváčková stráň Czech Republic Bohemian Massif 50.21303, 14.357418 229 

CI121 C. integerrimus s.str. 4 2 13 Vlkolínec Slovakia Western Carpathians 49.041694, 19.27675 805 

CI124 C. integerrimus s.str. 4 5 26 Kraviarske Slovakia Western Carpathians  49.211039, 19.016619 1330 

CM125* C. laxiflorus 4 4 1 Oravský Podzámok Slovakia Western Carpathians 49.263122, 19.359567 520 

CT125* C. tomentosus 5 3 7 Oravský Podzámok Slovakia Western Carpathians 49.263122, 19.359567 520 

CT126 C. tomentosus 5 5 2 Súľov Slovakia Western Carpathians 49.168528, 18.578808 460 

CA127 C. alaunicus 4 6 15 Lednica Slovakia Western Carpathians 49.109703, 18.209361 485 

CI128* C. integerrimus s.str. 4 4 14 Vršatské Podhradie Slovakia Western Carpathians 49.065967, 18.151081 730 

CA128* C. alaunicus 4 4 13 Vršatské Podhradie Slovakia Western Carpathians 49.065967, 18.151081 730 

CM129 C. laxiflorus 4 6 7 Čifáre Slovakia 
Western Carpathians 
– Pannonia 

48.240247, 18.429231 185 

CMat130 C. matrensis 4 3 4 Kamenica nad Hronom Slovakia 
Western Carpathians 
– Pannonia 

47.826111, 18.748244 192 

CMat131 C. matrensis 4 5 1 Hajnáčka Slovakia 
Western Carpathians 
– Pannonia 

48.218036, 19.955542 356 

CI132* C. integerrimus s.str. 4 2 4 Slanec Slovakia Western Carpathians 48.636942, 21.471017 460 
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CA132* C. alaunicus 4 6 13 Slanec Slovakia Western Carpathians 48.636942, 21.471017 460 

CT133* C. tomentosus 5 1 0 Plešivec – Ostrý vŕšok Slovakia 
Western Carpathians 
– Pannonia 

48.615206, 20.400197 695 

CMat133* C. matrensis 4 5 0 Plešivec – Ostrý vŕšok Slovakia 
Western Carpathians 
– Pannonia 

48.615206, 20.400197 695 

CMat134 C. matrensis 4 5 15 
Topoľčiansky hrad 
(Topoľčany Castle) 

Slovakia Western Carpathians 48.658208, 18.050211 470 

CMat135 C. matrensis 4 5 10 Jelenec – Dúň Slovakia Western Carpathians 48.411042, 18.222178 490 

CT136 C. tomentosus 5 1 0 Lučivná Slovakia Western Carpathians 49.209106, 19.165361 500 

CM137 C. laxiflorus 4 18 43 
Moravský Krumlov – saint 
Florián 

Czech Republic Bohemian Massif 49.047884, 16.319888 311 

CI138 C. integerrimus s.str. 4 4 18 
Havraníky – vineyards 
Šobes 

Czech Republic Bohemian Massif 48.818236, 15.97435 324 

CI139 C. integerrimus s.str. 4 2 4 Praha – Na Beránku Czech Republic Bohemian Massif 49.997696, 14.432302 285 

CA140 C. alaunicus 4 1 5 Zádielská tiesňava Slovakia 
Western Carpathians 
– Pannonia 

48.626879, 20.833634 535 

CA141 C. alaunicus 4 1 5 
Zádielská tiesňava – 
educational trail 

Slovakia 
Western Carpathians 
– Pannonia 

48.621624, 20.838893 601 

CM142 C. laxiflorus 4 8 41 Vdovčíkovo křeslo Slovakia Western Carpathians 48.77479, 20.338623 875 

CM143a,b C. laxiflorus 4 5 5 Brdárka – Malý Radzim 1 Slovakia Western Carpathians 48.776006, 20.325863 971 

CI145 C. integerrimus s.str. 4 1 0 
Hrhovský amfiteatr – 
Kresadlo 

Slovakia 
Western Carpathians 
– Pannonia 

48.618514, 20.764585 771 

CI146 C. integerrimus s.str. 4 6 9 Hrhovský amfiteatr Slovakia 
Western Carpathians 
– Pannonia 

48.618337, 20.780072 689 
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CI147 C. integerrimus s.str. 4 1 5 Zádiel – Hradisko Slovakia 
Western Carpathians 
– Pannonia 

48.6079722, 20.8095556 273 

CI148 C. integerrimus s.str. 4 1 5 Smolenice – Hlboča Slovakia Western Carpathians 48.511417, 17.420475 300 

CI149 C. integerrimus s.str. 4 1 3 Kláštor pod Znievom Slovakia Western Carpathians 48.968592, 18.773086 940 

CT154 C. tomentosus 5 2 12 Launsdorf Austria Alps 46.77631, 14.46047 628 

CT155 C. tomentosus 5 1 0 Bad Mitterndorf Austria Alps 47.52575, 13.930278 883 

CI159 C. integerrimus s.str. 4 6 0 Opočno – castle park Czech Republic Bohemian Massif 50.2644722, 16.1114722 279 

CI160 C. integerrimus s.str. 4 1 0 Nové Město nad Metují Czech Republic Bohemian Massif 50.3500556, 16.1481667 297 

CI161 C. integerrimus s.str. 4 11 31 Stárkov Czech Republic Bohemian Massif 50.5380556, 16.1513611 470 

CI162 C. integerrimus s.str. 4 1 0 Blíževedly – Ronov Czech Republic Bohemian Massif 50.6200975, 14.4136522 516 

CI163 C. integerrimus s.str. 4 11 11 
Provodín – Provodínské 
kameny (Provodín stones) 

Czech Republic Bohemian Massif 50.6302772, 14.6086167 406 

CI165 C. integerrimus s.str. 4 5 0 Praha – Homolka Czech Republic Bohemian Massif 50.0146767, 14.3736817 270 

CI166 C. integerrimus s.str. 4 8 0 Lestkov Czech Republic Bohemian Massif 50.3671322, 13.1843611 529 

CI167 C. integerrimus s.str. 4 29 0 
Rašovické skály (Rašovice 
rocks) 

Czech Republic Bohemian Massif 50.3628997, 13.2078294 524 

CI168 C. integerrimus s.str. 4 4 2 Mohelno – Fiolka Czech Republic Bohemian Massif 49.0976750, 16.2013567 276 

CI169 C. integerrimus s.str. 4 9 0 Lhánice – Velká skála Czech Republic Bohemian Massif 49.1022911, 16.2408678 340 

CI170 C. integerrimus s.str. 4 11 0 Templštejn Czech Republic Bohemian Massif 49.0901047, 16.2481306 358 

CT171 C. tomentosus 5 1 0 Berndorf Austria Alps 47.9418389, 16.1150528 322 

CT174 C. tomentosus 5 3 0 Orlovo Brdo – Pepelishte Macedoina Macedonia 41.53937, 22.14046 160 

CI175 C. integerrimus s.str. 4 2 19 
Wach Dürnstein – 
Höhereck 

Austria Bohemian Massif 48.3925200, 15.5322219 247 

CT178 C. tomentosus 5 1 5 Schottwien Austria Alps 47.6593056, 15.8742778 573 
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CI179 C. integerrimus s.str. 4 1 2 Bílina – Bořeň Czech Republic Bohemian Massif 50.5276575,13.7638942 530 

CI180 C. integerrimus s.str. 4 2 10 
Hradčanské stěny 
(Hradčany Walls) 

Czech Republic Bohemian Massif 50.61536,14.70044 324 

CI181 C. integerrimus s.str. 4 1 5 
Hradčanské stěny 
(Hradčany Walls) 

Czech Republic Bohemian Massif 50.61552,14.69806 336 

CI182 C. integerrimus s.str. 4 1 5 
Hradčanské stěny 
(Hradčany Walls) 

Czech Republic Bohemian Massif 50.61733,14.68945 320 

CT189 C. tomentosus 5 1 6 
Grenoble – Fort du Saint- 
-Eynard 

France Alps 45.2366392,5.7701097 1232 

CT192 C. tomentosus 5 1 0 
Grenoble – Aiguille de 
Quaix 

France Alps 45.2665661, 5.7202411 1065 
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Online Resource 3 – Histogram of a simultaneous flow cytometric analysis of Cotoneaster 

leaves showing three detected ploidy levels (2x – diploid C. integerrimus s.l., 4x – tetraploid 

C. integerrimus s.l. and 5x – pentaploid C. tomentosus; internal standard – Carex acutiformis; 

2C = 800 Mpb). 
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Online Resource 4 – Representative histograms of flow cytometric analyses of Cotoneaster seeds showing six prevailing reproductive modes 

defined by the ratio between the ploidy of the embryo and that of the endosperm. 
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Online Resource 5 – All detected ratios between the ploidy of the embryo and that of the endosperm (including their abundance) showing 

pathways of seed formation in Cotoneaster taxa under study (based on FCSS). 

Type of reproduction  
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Female 
gamete  

Male  
gamete  

Embryo formation Endosperm formation 

Se
e

d
s 

(N
) 

taxon 

Sexual – reduced 4 6 reduced 2C reduced 2C  fertilized 2+2=4C  fertilized (2+2)+2=6C  67 C. integerrimus agg. 

Sexual – unreduced 6 9 unreduced 4C  unresolved fertilized 4+2=6C  unresolved 2 C. integerrimus agg. 

Sexual – unreduced 6 10 unreduced 4C  reduced 2C  fertilized 4+2=6C  fertilized (4+4)+2=10C  38 C. integerrimus agg. 

Sexual – unreduced 8 13 unreduced 5C  reduced 3C  fertilized 5+3=8C  fertilized (5+5)+3=13C  1 C. tomentosus 

Haploid parthenogenesis 2 6 reduced 2C reduced 2C  parthenogenetic 2C fertilized (2+2)+2=6C  1 C. integerrimus agg. 

Haploid parthenogenesis 2 8 reduced 2C unreduced 4C  parthenogenetic 2C fertilized (2+2)+4=8C  2 C. integerrimus agg. 

Autonomous apomixis 4 8 unreduced 4C  0 parthenogenetic 4C autonomous (4+4)=8C 39 C. integerrimus agg. 

Autonomous apomixis 5 10 unreduced 5C  0 parthenogenetic 5C autonomous (5+5)=10C 3 C. tomentosus 

Pseudogamy – reduced 4 10 unreduced 4C  reduced 2C  parthenogenetic 4C fertilized (4+4)+2=10C  415 C. integerrimus agg. 

Pseudogamy – reduced 5 12 unreduced 5C  reduced 2C  parthenogenetic 5C fertilized (5+5)+2=12C  3 C. tomentosus 

Pseudogamy – reduced 5 12.5 unreduced 5C  reduced 2.5C  parthenogenetic 5C fertilized (5+5)+2.5=12.5C  6 C. tomentosus 

Pseudogamy – reduced 5 13 unreduced 5C  reduced 3C  parthenogenetic 5C fertilized (5+5)+3=13C  10 C. tomentosus 

Pseudogamy – unreduced 4 12 unreduced 4C  unreduced 4C  parthenogenetic 4C fertilized (4+4)+4=12C  383 C. integerrimus agg. 

Pseudogamy – unreduced 4 14 unreduced 4C  reduced 2C  parthenogenetic 4C fertilized (4+4+4)+2=14C  12 C. integerrimus agg. 

Pseudogamy – unreduced 4 16 unreduced 4C  unreduced 4C  parthenogenetic 4C fertilized (4+4+4)+4=16C  7 C. integerrimus agg. 

Pseudogamy – unreduced 5 14 unreduced 5C  unreduced 4C  parthenogenetic 5C fertilized (5+5)+4=14C  9 C. tomentosus 

Pseudogamy – unreduced 5 15 unreduced 5C  unreduced 5C  parthenogenetic 5C fertilized (5+5)+5=15C  40 C. tomentosus 

Unresolved origin – possibly 
pseudogamy 

4 9 unreduced 4C  unresolved parthenogenetic 4C unresolved 12 C. integerrimus agg. 
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Unresolved origin – possibly 
pseudogamy 

4 11 unreduced 4C  unresolved parthenogenetic 4C unresolved 31 C. integerrimus agg. 

Unresolved origin – possibly 
pseudogamy 

4 13 unreduced 4C  unresolved parthenogenetic 4C unresolved 46 C. integerrimus agg. 

Unresolved origin – possibly 
pseudogamy 

4 15 unreduced 4C  unresolved parthenogenetic 4C unresolved 2 C. integerrimus agg. 

Unresolved origin – possibly 
pseudogamy 

4 17 unreduced 4C  unresolved parthenogenetic 4C unresolved 1 C. integerrimus agg. 

Unresolved origin – possibly 
pseudogamy 

5 9 unresolved unresolved unresolved unresolved 1 C. tomentosus 

Unresolved origin – possibly 
pseudogamy 

5 16 unreduced 5C  unresolved unresolved unresolved 3 C. tomentosus 
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Online Resource 6 – Proportions of sexual vs apomictic seed formation (based on FCSS) 

in tetraploid Cotoneaster integerrimus s.l. – C. integerrimus s.str. (504 seeds), C. laxiflorus 

(326 seeds), C. alaunicus (165 seeds) and C. matrensis (44 seeds). 

 

 

Online Resource 7 – Proportions of sexual vs apomictic seed formation (based on FCSS) 

in tetraploid Cotoneaster integerrimus s.l. in the Bohemian Massif (366 seeds) vs  

the Western Carpathians (711 seeds). 
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8 Conclusions 
 

Polyploidization is a significant speciation force in the Rosaceae family, manifested 

in the cytotype variation of both model genera under study. Moreover, both model systems 

exhibited a potential for further polyploidization (triploid individuals and unreduced gametes). 

Individual Prunus species (incl. hybrids) are distinguished by different ploidy levels (diploid, 

triploid, or tetraploid) and by different absolute genome size (at the tetraploid level). Different 

ploidy levels also clearly determine Cotoneaster species (diploid and tetraploid 

C. integerrimus s.l., and pentaploid C. tomentosus) and their reproductive strategies (see 

below). 

 Hybridization plays a substantial role in the evolution and diversification 

of the Rosaceae. Besides its significance for speciation, a reverse effect of eroding species 

was exhibited by model genera studied. Hybridization markedly contributed to the speciation 

of both model groups, especially when combined with polyploidization (allopolyploid origin 

of Prunus tetraploid species and potential allopolyploidy in Cotoneaster species).  

On the other hand, our data revealed an adverse effect of hybridization manifested 

by disruption of the gene pool of wild Prunus fruticosa caused by crop-to-wild gene flow 

from cultivated cherries. 

 Reproductive strategies markedly shape the evolution of the Rosaceae. Heteroploid 

crossing of sexual Prunus species produces sterile triploid plants, which significantly 

contribute to the isolation of particular ploidy levels within heteroploid complexes, whereas 

homoploid hybridization results in fertile hybrids. However, reproduction determines 

especially the evolution of partially agamic complex of the genus Cotoneaster. Reproductive 

modes include both apomixis and residual sexuality. Apomixis involves various pathways 

of embryo and endosperm formation with prevailing pseudogamy. The ratio of the two 

reproductive strategies was found to be equal in all Cotoneaster integerrimus s.l. taxa under 

study (in contrast to C. tomentosus, which is almost obligatorily apomictic). 

 Results of the study of microevolutionary processes are indisputably applicable 

in agriculture (breeding programmes) and efficient conservation. Firstly, understanding 

microevolutionary processes facilitates effective species conservation. Cotoneaster 

tomentosus was found to occur only in the Western Carpathians in low abundance. 

By contrast, the putative diversity of C. integerrimus s.l. in the Western Carpathians was not 

confirmed based on the methods used. Revealing facultative apomixis has led to suggestions 

that reported microspecies may be of uncertain taxonomical value. Therefore, nature 

conservation management plans should mirror these findings. Secondly, direct nature 

conservation of Prunus fruticosa can be more effective based on this study. The methods used 

facilitate the clear identification of main threats (hybridization with sour cherry) and 

also highlight genuine wild populations. These populations, which are free of hybridization 

with cultivated cherries, should be targeted by nature conservation. Last but not least, solely 

economical implications are worthy of attention. Wild relatives of valuable crops represent 

an important source of genetic diversity for breeding programmes and their genetic erosion 

will lead to significant economic losses. 
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