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Introduction

0.1 Motivation
“Contact geometry is all geometry.”

– V. I. Arnold

Contact geometry can be seen as an odd dimensional sibling of symplectic
geometry. Pursuing the first ideas of contact geometry leads us to Christian
Huygens [Gei05], who studied optics in 17th century. But first explicit use of
contact geometry dates to early 20th century, when Sophus Lie's work on differ-
ential equations[Lie12] was written.

Legendrian knots are natural objects on contact 3-manifolds. Their impor-
tance appears in Eliashberg's work on tight versus overtwisted dichotomy of con-
tact 3-manifolds [Eli89]. Also, Ding and Geiges [DG04] described that every
closed connected 3-manifold can be obtained by surgery along a Legendrian link
on S3 with a standard contact structure.

To understand Legendrian knots, we can study their classification on given
contact manifold up to Legendrian isotopy. This leads to classical invariants of
Legendrian knots. Those are: the underlying topological knot type, rotation
number, and Thurston-Bennequin invariant. Many knot types are completely
determined by classical invariants. Given an example, this is the case of unknot,
as showed Eliashberg and Fraser [EF09], or torus knots, as proven by Etnyre and
Honda [EH01].

Unfortunately, Chekanov [Che02] described two Legendrian knots of topolog-
ical type m(52) that have the same classical invariants and are not Legendrian
isotopic. This was done by studying Chekanov-Eliashberg differential graded al-
gebra (DGA) for Legendrian knots. Chekanov-Eliashberg DGA was found by
Eliashberg, Givental, and Hofer in their work on symplectic field theory [EGH00]
and independently combinatorially defined by Chekanov for Legendrian knots
in R3 with a standard contact structure [Che02]. The homology of Chekanov-
Eliashberg DGA is called Legendrian contact homology (LCH) and it is a modern
invariant of Legendrian knots. However, LCH is often difficult to compute.

Luckily, Chekanov also introduced the notion of augmentations as a way
how to linearize Chekanov-Eliashberg DGA and obtain some computable invari-
ants. Which is, for example, linearized LCH. Augmentations form two important
Fukaya-type A∞ categories. The first one, Aug+, was described by the work of
Ng, Rutherford, Shende, Sivek, Zaslow [NRS+15] and the second one, Aug−, was
originally defined by Bourgeois and Chantraine [BC+14].

It is possible to generalize the notion of augmentations to representations of
Chekanov-Eliashberg DGA, where augmentations can be seen as a 1-dimensional
case of representations. Representations can be used for the linearization of
Chekanov-Eliashberg DGA. Also, Chantraine, Dimitroglou Rizell, Ghiggini, and
Golovko [CRGG16] constructed A∞ categories Rep+ and Rep− that are ana-
logues of Aug+ and Aug−. From this perspective, studying representations of
Chekanov-Eliashberg DGA is an important task allowing us to understand pow-
erful Fukaya-type invariants of Legendrian submanifolds.
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Sivek [Siv13] gave an example of a Legendrian knot which admit higher di-
mensional representations, but does not admit any augmentations. Hence, the
study of higher-dimensional representations is meaningful. Note that the repre-
sentations discussed by Sivek were ungraded. The goal of this thesis is to describe
2-dimensional irreducible representations (and hence the representations coming
only from higher dimensions) of certain knot that are graded.

0.2 Outline
The thesis is organized as follows.

In the first chapter, we introduce contact 3-manifolds and study the behav-
ior of the contact structure. Namely, we will be interested in the global/local
character of contact 1-forms in relation to the contact structure. Also, we ex-
plain using Frobenius theorem the notion of “maximal non-integrability” of the
contact structure. We finish the chapter with Darboux's theorem.

In the second chapter, we are concerned with projections of Legendrian knots
on standard (R3, ξstd). We start with a front projection and then continue with
Lagrangian projection. Moreover, we outline a resolution as a way to switch the
knot diagrams between these projections.

In the third chapter, we define classical invariants of Legendrian knots. Also,
we introduce an operation on Legendrian knots called stabilization. Here, we
study the stabilization for better understanding of classical invariants.

In the fourth chapter, we conclude to the main terms of the thesis that are
Chekanov-Eliashberg DGA and its homology (LCH). After we properly define
Chekanov-Eliashberg DGA with Z2 coefficients, we study invariance of stable
tame isomorphism class of Chekanov-Eliashberg DGA. And hence we obtain the
invariance of LCH up to Legendrian isotopy. Then we lift Chekanov-Eliashberg
DGA to Z[t, t−1]. We finish this chapter with a note on LCH of stabilized Leg-
endrian knots.

In the fifth chapter, we inspect representations of Chekanov-Eliashberg DGA
as a tool for obtaining some useful invariants of Legendrian knots. We also
briefly study exact Lagrangian cobordisms and derive some further properties of
representations.

In the sixth chapter, we conclude to the computation of irreducible graded
2-dimensional representations of Chekanov-Eliashberg algebra for a Legendrian
knot of type m(52).
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1. Contact manifold
In this chapter, we will follow [Han08].

From now on, let M be a 3-dimensional manifold.

Definition 1. A plane field ξ on M is a smooth choice of the 2-dimensional
subspace ξp ⊂ TpM for every point p ∈ M. It means that for each p ∈ M there
exists neighborhood Up ⊆ M and set S = {X1, X2} of two pointwise linearly
independent vector fields on Up such that S is a spanning set of ξq for each q ∈ Up.

Next, a smooth choice of the 1-dimensional subspace TpM at each point p ∈ M
is called a line field.

Definition 2. A 1-form α on M is called a contact form if

α ∧ dα ̸= 0, (1.1)

i.e. for every point p ∈ M and every basis {X1, X2, X3} of TpM holds

αp ∧ dαp(X1, X2, X3) ̸= 0.

A plane field ξ on M is called a contact structure if for every point p ∈ M
there exists a neighborhood Up ⊆ M and contact form α defined on Up such that
ξ = ker α ⊂ TUp.

The pair (M, ξ) is called a contact manifold.

Remark. At first, we note that any plane field ξ on M can be locally written
as a kernel of some 1-form. We choose an arbitrary Riemannian metric g and
construct a normal bundle ξ⊥ with respect to this metric. Then for any p ∈ M
exists by the definition of vector bundle a neighborhood Up ⊆ M such that ξ⊥

is on Up diffeomorphic to Up × R1, i.e., ξ⊥ is trivial on Up. So, we can take a
nonzero section v on Up. Then we construct 1-form αUp on Up as αUp := ivg.
Clearly, ξUp = ker αUp .

Now, we will see that the coorientability of ξ is sufficient and necessary con-
dition to define ξ globally as a kernel of some 1-form. Coorientabilty means that
quotient bundle TM/ξ ∼= ξ⊥ is orientable. By the definition, orientability of real
vector bundle guarantees covering by trivializations such that transition functions
are vector space orientation-preserving. But ξ⊥ is a line bundle, so it has to be
a trivial bundle. Hence, if ξ is coorientable, then we can take a global nonzero
section v of ξ⊥. Thus analogously defined 1-form will be also global. Conversely,
let ξ = ker α on M , where α is a contact form. Then it is possible to find a
nonvanishing global section of the line bundle ξ⊥ using α. Hence ξ⊥ is orientable
and ξ is coorientable.
From now on, we will be interested only in studying coorientable contact struc-
tures.
Remark. Observe that there are many contact forms for given (M, ξ). More
precisely, if α is a contact form and f is a non-vanishing function on M , then also
α′ = fα is a contact form. It quickly follows from the computation: α′ ∧ dα′ =
fα ∧ d(fα) = fα ∧ (df ∧ α + fdα) = f 2α ∧ dα, where in the last equality we used
the anticommutativity of the exterior product.
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Remark. If α is a defining contact form on the contact manifold (M, ξ), then
α ∧ dα is a non-vanishing top-form on M , so M must be orientable.

Let’s concentrate on a condition (1.1) in the definition of the contact form.
From this condition follows that contact structure is “maximally non-integrable”.
Now, we are going to explain the meaning of this statement.

Definition 3. Let ξ be a plane field on M . An integral submanifold N for ξ
is a submanifold of M such that for every point p ∈ N holds TpN ⊂ ξ. Observe
that dim N ≤ rank ξ.

A plane field ξ is called integrable if M can be covered by coordinate charts{
Ua, ϕa ≡ (x1

a, x2
a, x3

a)
}

a∈A
such that ξ = span

{
∂

∂x1
a
, ∂

∂x2
a

}
on Ua for each a ∈ A.

Remark. We see that plane field ξ is integrable if and only if for every point
p ∈ M there exists an integral submanifold N ⊂ M for ξ.

Theorem 1 (Frobenius theorem). A plane field ξ on the manifold M is integrable
if and only if for all X, Y ∈ Γ(ξ) holds [X, Y ] ∈ Γ(ξ).

For the proof of Frobenius theorem, we refer the reader to [War10].

Lemma 2. Let ξ is a plane field on M defined as a kernel of the 1-form α. Then
the following are equivalent:

(i.) α is a contact form,

(ii.) dα|ξ ̸= 0,

(iii.) [X, Y ]p ̸∈ ξ, at every p ∈ M , for all pointwise linearly independent X, Y ∈
Γ(ξ).

Proof. We choose an arbitrary point p ∈ M .
(i.) ⇒ (ii.) : Let dαp|Dp

= 0. By the definition, there exists a basis v1, v2 of ξp

such that dαp(v1, v2) = 0. Next, we complete v1, v2 with a non-zero vector v0 of
ξ⊥

p to the basis v0, v1, v2 of TpM . Clearly, αp ∧ dαp(v0, v1, v2) = 0.
(ii.) ⇒ (i.) : Let dαp|ξp

̸= 0. Then there exist nonzero vectors v1, v2 ∈ ξp such
that dαp(v1, v2) ̸= 0. Take a nonzero vector v0 of ξ⊥

p , then evaluating (v0, v1, v2)
on αp ∧ dαp gives α ∧ dα ̸= 0.
(ii.) ⇔ (iii.) : Let α is a 1-form on M . Now, we prove, using the Cartan's magic
formula and properties of the Lie derivative on tensors, the following identity:

dα(X, Y ) = iXdα(Y ) = (LXα)(Y ) − (diXα)(Y )
= LX(α(Y )) − α(LXY ) − (diXα)(Y )
= Xα(Y ) − α(LXY ) − (diXα)(Y )
= Xα(Y ) − α([X, Y ]) − d(α(X))(Y )
= Xα(Y ) − Y α(X) − α([X, Y ]).

Since this identity holds also for the vector fields X, Y ∈ Γ(ξ = ker α), we obtain:

dα(X, Y ) = Xα(Y ) − Y α(X) − α([X, Y ]) = −α([X, Y ]).

Thus dα(X, Y ) vanishes if and only if [X, Y ] ∈ Γ(ξ).
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Remark. By Lemma 2 and Frobenius theorem, we see that the contact structure
is out of being integrable as far as possible. Hence, we say that the contact
structure is “maximally non-integrable”.

Definition 4. Let (M, ξ) be a contact manifold with the contact form α. R is
called a Reeb vector field associated with α if it is a vector field on (M, ξ) that
is defined by the following system of equations:

(i.) α(R) = 1,

(ii.) iR(dα) = 0.

Remark. From the following consideration, we find out that on the contact mani-
fold (M, ξ) exists one and only one Reeb vector field associated with the contact
form α.

We know from Lemma 2 that at each point p ∈ M is dαp|ξp
̸= 0. So, dαp

has 1-dimensional kernel. From (i.) in the definition of the Reeb vector field,
we obtain the existence of the unique line field on M . Then we get from (ii.) a
unique section of this line field.
Example. Consider R3 with Cartesian coordinates (x, y, z) and 1-form

αstd = dz − ydx.

Observe that αstd is a contact form, since αstd ∧ dαstd = (dz − ydx) ∧ (dx ∧ dy) =
dx ∧ dy ∧ dz ̸= 0. Then contact structure ker αstd is called a standard contact
structure and denoted by ξstd (see Figure 1.1). Note that ξstd is spanned by
{ ∂

∂y
, y ∂

∂z
+ ∂

∂x
}. And also, ∂

∂z
is a Reeb vector field associated with αstd.

x

z
y

Figure 1.1: Standard contact structure ξstd.

Definition 5. Two contact manifolds (M0, ξ0) and (M1, ξ1) are called contac-
tomorphic if there exists diffeomorphism f : M0 → M1 such that f∗(ξ0) = ξ1.

Let ξ0 = ker α0 and ξ1 = ker α1. Then we can equivalently say that (M0, ξ0)
and (M1, ξ1) are called contactomorphic if there exists nonvanishing smooth func-
tion g on M0 and diffeomorphism f : M0 → M1 such that f ∗(α1) = gα0.

We finish this section with Darboux's theorem, which says that all contact
manifolds are locally contactomorphic. In other words, there are no local in-
variants in contact geometry. This property distinguishes contact geometry from
Riemannian geometry, where, for example, curvature is a local invariant.
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Theorem 3 (Darboux [Hon]). Let (M, ξ) be a contact manifold, where ξ = ker α.
Then for any point p ∈ M exists a neighborhood Up and diffeomorphism φ : Up →
V ⊂ R3 such that φ(p) = 0 and φ∗(αstd) = α.

Proof. There is a coordinate chart (ϕ, (x, y, z)) such that ϕ(p) = 0 and induced
contact structure ξ1 := ϕ∗(ξ) satisfies ξ1(0) = ker dz0. Hence, we can take a
contact form

α = dz + fdx + gdy

on some small neighborhood of 0.
Contact structure ξ1, restricted to xz-plane, is given by the span of vector

field X = ∂
∂x

− f(x, 0, z) ∂
∂z

. By Fundamental theorem of ODEs, there exists a
flow φ of the vector field X starting at (0, 0, z) with time coordinate x. Since
z-axis and X are transverse, φ is a diffeomorphism on some neighborhood of 0 in
xz-plane by Inverse function theorem. Hence, we can take new coordinates (x, z)
such that X = ∂

∂x
. Since X ∈ ker α, we obtain that f(x, 0, z) = 0.

Next, ξ1 restricted to x = const is given by the span of vector field X̃ =
∂

∂y
− g ∂

∂z
. Note that X̃ is well defined on some neighborhood of 0 in R3 and

is transverse to xz-plane. By Fundamental theorem of ODE's, we can similarly
construct a flow φ̃ of the vector field X̃, which starts from xz-plane and has
time coordinate y. Also, by Inverse function theorem, we obtain new coordinates
(x, y, z) such that X̃ = ∂

∂y
. Since X̃ ∈ ker α, we can write near 0:

α = dz + f(x, y, z)dx,

where f(0, 0, 0) = 0.
Moreover, we see from contact condition that α ∧ dα = −∂f

∂y
dx ∧ dy ∧ dz ̸= 0,

so ∂f
∂y

̸= 0. Then the map (x, y, z) ↦→ (x, −f(x, y, z), z) is invertible in some
neighborhood of 0.

Thus we can make a change of coordinates around p such that ξ is a standard
contact structure around 0 in these coordinates and we are done.
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2. Legendrian knots
We assume that reader is familiar with some basic concepts of knot theory, like
smooth knots, equivalence of knots and knot diagrams. For further details, we
refer the reader to [Rol04]. In this chapter, we will follow [Etn05] and [Han08].

Definition 6. A Legendrian knot K on the contact manifold (M, ξ) is an
embedding of S1 into (M, ξ) such that TxK ⊂ ξx for any x ∈ K.

Definition 7. Let K0 and K1 be Legendrian knots on the contact manifold (M, ξ).
We say that K0 and K1 are Legendrian isotopic if there exists a map f :
S1 × [0, 1] → M such that:

(i.) f(S1 × {t}) is a Legendrian knot for any t ∈ [0, 1],

(ii.) f(S1 × {t}) = Kt for t ∈ {0, 1}.

Remark. We will distinguish Legendrian knots up to Legendrian isotopy.
From now on, we will be studying Legendrian knots on (R3, ξstd).
Remark. By Darboux's Theorem 3, we will be also studying Legendrian knots
locally on arbitrary contact 3-manifold.
Remark. Let us suggest a regular parametrization of Legendrian knot K, which
is given by a map

φ : S1 → R3 : θ ↦→ (x(θ), y(θ), z(θ)). (2.1)

Since φ′(θ) = (x′(θ), y′(θ), z′(θ)) ∈ ξφ(θ), we obtain the following identity:

z′(θ) − y(θ)x′(θ) = 0, (2.2)

by evaluating (dz − ydx)φ(θ) on vector φ′(θ).
There are two natural projections of Legendrian knots in (R3, ξstd). We will

discuss them in the following two sections.

2.1 Front projection
Definition 8. A front projection is a canonical map πF : (R3, ξstd) → R2

x,z :
(x, y, z) ↦→ (x, z).

Definition 9. Let K be a Legendrian knot with a front projection parametrized
by φF : S1 → R2 : θ ↦→ (x(θ), z(θ)). And let θ0 ∈ S1, then φF (θ0) is called a cusp
point if x′(θ0) = 0.

Definition 10. Let f, f̃ be maps from the manifold N1 to the manifold N2. We
say that f is C0-approximated by f̃ if for any ε > 0 locally (in coordinates)
we have ||f(x) − f̃(x)|| < ε. Moreover, f is Ck-approximated by f̃ if the
approximation condition holds for any derivative up to order k.
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Theorem 4. Let K be a Legendrian knot. Then front projection πF (K) has no
vertical tangents.
K can be C0-approximated by a Legendrian knot K̃ Legendrian isotopic to K such
that πF (K̃) is paramatrized by immersion except of finite number of semi-cubical
cusp points and all self-intersections of this parametrization are transversal.
Moreover, given a parametrization φ̃F (θ) = (x(θ), z(θ)) of πF (K̃), we can recover
any y-coordinate of K̃ in the following way:

y(θ0) =

⎧⎨⎩
z′(θ0)
x′(θ0) if φ̃F (θ0) is not a cusp point,
limθ→θ0

z′(θ)
x′(θ) if φ̃F (θ0) is a cusp point.

(2.3)

Proof. Let K be parametrized by φ as in (2.1). Then φF (θ) = (x(θ), z(θ)) will
denote its front projection. From equation (2.2), we see that if x′(θ) vanishes,
then also z′(θ) vanishes. Thus it is not possible to obtain θ0 such that a tangent
space of φF (θ0) is spanned by ∂

∂z
. Hence, there are no vertical tangents in front

projection.
Because any immersion of S1 into R2 must have vertical tangents, we see

from the above that φF can not be an immersion. Since it is possible that K
has x′(θ) = 0 on open intervals, we C0-approximate K by a Legendrian isotopic
Legendrian knot K̂ with a finite number of cusp points and there x(θ)′′ ̸= 0. This
can be done by “sharpening” the cusp points, see Figure 2.1. Let φ̂ be a regular
parametrization of K̂, then clearly φ̂F is an immersion everywhere except cusp
points.

x

z

x

y

x

z

x

y

Figure 2.1: At each row, there are front and Lagrangian projections of Legendrian
arcs. At the first row, we see Legendrian arc with x′(θ) = 0 on open interval and,
in the second row, there is a C0-approximating Legendrian arc with x′(θ) = 0 in
the single cusp point.

From equation (2.2), we observe that x′(θ) vanishes maximally up to order
of z′(θ). Thus y-coordinate can be recovered as in relation (2.3). However,
obtained y-coordinates are not necessary smooth functions, since, from relation
(2.3), we only have guaranteed continuity of recovered y-coordinates. To obtain
a smoothness, we need to apply the following procedure.

9



Let φ̂F (θ0) be a cusp point. Then x′(θ0) = z′(θ0) = 0. Because φ̂ is an
embedding, thus an immersion, we get that y′(θ0) ̸= 0. So we can reparametrize
φ̂ by a parameter s such that our cusp point is attended for s = 0 and locally
around this point

y(s) = s + a,

for some constant a. Note that locally around this cusp point is x(s) a Morse
function, where 0 is the only critical point. Then by Morse lemma [Mil63], x can
be locally written as

x(s) = s2g(s) + x(0),
where g(s) is a smooth function such that g(0) ̸= 0. Now, we make the following
C0-approximation of g(s) around 0 by h(s). Put

h(s) =

⎧⎨⎩g(0), |s| < ε, where ε is sufficiently small,
g(s), otherwise.

Then x′(s) = 2sg(0) for |s| < ε. Using the equation (2.2) on the small
neighborhood of 0 we obtain z′(s) and by integrating also z(s). Hence, around
the cusp point at s = 0, we get the semi-cubic parametrization φ̃ of Legedrian
knot K̃:

φ̃(s) =
(
g(0)s2 + b, s + a, −g(0)(2s3/3 + as2) + c

)
,

where a, b, c are some real numbers and g(0) ̸= 0. Clearly, K̂ is C2-approximated
by a Legendrian isotopic knot K̃.

If we have some non-transverse intersection in the front projection, then we can
apply Elementary transversality theorem [GG74] on the x-coordinate. Leaving y-
coordinate unchanged, we can recover z-coordinate by integrating from equation
(2.2). This leads to C0-approximation by a Legendrian isotopic knot with only
transverse self-intersections in the front projection.
Corollary 5. Any knot diagram that is satisfies the following properties:

(i.) there are no vertical tangents,

(ii.) the only non-smooth points are semi-cubic cusp points,

(iii.) at each crossing is the slope of the overcrossing smaller than the slope of
undercrossing (here we suggest a standard orientation of R3 with y-axis
having a direction “into the page”),

represents an unique Legendrian knot K. Such a diagram is called front dia-
gram of Legendrian knot K.
Examples:

Figure 2.2: Front diagrams of Legendrian knots: unknot (left), m(52) (right).
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Lemma 6 (Reidemeister moves in front projection [Swi92]). Let K1 and K2 be
Legendrian knots and D1, D2 be front diagrams of K1 and K2, respectively. Then
K1 and K2 are Legendrian isotopic if and only if we can pass from D1 to D2 by
a regular homotopy and a finite sequence of moves of the following type:

I

II

III

Figure 2.3: Reidemeister moves I, II, III (it is also necessary to consider these
moves rotated by 180◦ around all three coordinate axes).

Lemma 7. Any topological knot in (R3, ξstd) can be C0-approximated by a Legen-
drian knot. In particular, for any topological knot type, there exists a Legendrian
knot of this type.

Proof. For a given topological knot T in (R3, ξstd), we take its knot diagram DT .
We would like to approximate DT by some knot diagram satisfying conditions of
Corollary 5. Then we can lift this new knot diagram to the desired Legendrian
knot. Let us do the following observation.

We can C0-approximate any arc A that can be immersed into Rxz by a Leg-
endrian curve isotopic to this arc relative to the endpoints. This can be done by
adding small locally non-intersecting zigzags (see Figure 2.4) to C0-approximate
the curve πF (A) in particular way. The slope of the zigzag-curve will be such
that the lifted Legendrian curve also C0-approximates y-coordinate of A.

Figure 2.4: Diagrams in xz-plane of arc (black) and its C0-approximation (green
zigzags), respectively.

Applying this idea on a knot diagram DT , we finish the proof.

Remark. By Darboux's Theorem 3, Lemma 7 can be stated for an arbitraly
contact 3-manifold. For details see [Han08].
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Remark. In practice, we use the following moves to obtain Legendrian knot of a
given topological knot type:

Figure 2.5: local changes of topological knot to obtain a Legendrian knot.

As we will see later, making a zigzag in the knot diagram has some unwanted
consequences for the Legendrian isotopy class of the resulted Legendrian knot.
And hence, it is better to avoid zigzags if possible.

2.2 Lagrangian projection
Definition 11. A Lagrangian projection is a canonical map πL : (R3, ξstd) →
R2

x,y : (x, y, z) ↦→ (x, y).

Theorem 8. Let φ(θ) = (x(θ), y(θ), z(θ)) be a regular parametrization of Legen-
drian knot K, then its Lagrangian projection φL is an immersion. Moreover, we
can recover K from φL by:

z(θ) = z(0) +
∫ θ

0
y(θ)x′(θ)dθ. (2.4)

Any immersion g : S1 → R2 : θ ↦→ (x(θ), y(θ)) can be lifted uniquely, up to
translation in z-direction, to the Legendrian knot if:

(i.)
∫ 2π

0 y(θ)x′(θ)dθ = 0,

(ii.)
∫ θ1

θ0
y(θ)x′(θ)dθ ̸= 0 for all θ0 ̸= θ1 with g(θ0) = g(θ1).

Proof. First, if we assume that φF is not an immersion, then x′(θ) = y′(θ) = 0
for some θ ∈ [0, 2π]. And from identity (2.2) we obtain that z′(θ) = 0, but φ is
an immersion. Contradiction.

Next, since z(θ) = z(0) +
∫ θ

0 z′(θ)dθ, by identity (2.2) relation (2.4) holds .
We would like to lift g to Legendrian knot using relation (2.4). In order to

do that we need to have correctly defined function z : [0, 2π] → R. Hence, we
require that z(0) = z(2π), which is equivalent to (i.) in statement of the theorem.

Since Legendrian knots are embeddings, we need to lift each double point to
two points with different z-coordinate. And this condition is equivalent to (ii.)
in the statement of the theorem.

12



Remark. By Stokes theorem, we see that the condition (i.) from the previous
theorem is equivalent to the zero oriented area of the immersed closed curve
given by g.

In general, diagrammatical description of Lagrangian projection is much more
difficult than description of the front diagram. However, there are some advan-
tages of Lagrangian projection as we will see later.

Lemma 9 (Reidemeister moves in Lagrangian projection [Kal05]). Let K1 and
K2 be Legendrian knots and D1, D2 knot diagrams representing in Lagrangian
projection K1 and K2, respectively. Then K1 and K2 are Legendrian isotopic
only if we can pass from D1 to D2 by a finite sequence of moves of the following
type:

II

III

Figure 2.6: Reidemeister moves II, III (it is also necessary to consider these moves
rotated by 180◦ around all three coordinate axes).

From the front diagram of given Legendrian knot, it is possible to obtain
a Lagrangian projection, which represents the same knot. This leads to the
following definition.

Definition 12. Let D be a front diagram of arbitrary Legendrian knot. Then
knot diagram obtained from D by regular homotopy and replacing all cusps as in
the Figure 2.7 is called the resolution of D.

Figure 2.7: Local changes of the front diagram D to the resolution.

Lemma 10 ([Ng03]). Let D1 be a front diagram of Legendrian knot K1. By the
resolution D2 of D1, it is possible to produce a Lagrangian projection of knot K2
that is Legendrian isotopic to K1.

Proof. We would like to change D1 by a regular homotopy to the front diagram
D′

1 such that we obtain a corresponding diagram D2 in Lagrangian projection
after applying moves as in Figure 2.7 to D′

1. For illustration see Figure 2.8 on
the next page.
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z

z

y

x

x

x

Figure 2.8: Example of resolution for the unknot. On the top, we see the front
diagram D1. In the middle, we see the distorted diagram D′

1, containing only line
segments and exceptional segments (viewed as corners of D′

1). On the bottom,
we see the resolving diagram D2 in xy-plane.

Let D1 have k left cusps and any of them has different z-coordinate from
others. We would like to obtain D′

1 such that D′
1 consists only line segments that

are glued together by small smooth “exceptional segments”. Each line segment
has some slope of {0, 1, . . . , 2k − 1} and for each x-coordinate corresponding line
segments have different slopes.

Construction of D′
1 will be following. We will start with left cusps. Each left

cusp will be simply two line segments with slopes j, j + 1 for some j that are
smoothly joined by an exceptional segment. If we need to have a crossing of two
segments, we will interchange their slopes by smoothly adding two exceptional
segments and glue each segment with the slope of the opposite segment. Thus we
obtain a crossing. Construction of the right cusp is similar as in the case of the
crossing. Only before the crossing of two segments, we will glue them smoothly
by the exceptional segment. Such a construction always exists.

By relation (2.3), we recover y-coordinate and obtain a Lagrangian projection
corresponding to D′

1. Line segments will be transformed to line segments parallel
to x-axis and after transformation, no pair of line segments will intersect. Also,
each interchange of slope will produce a crossing in xy-plane. Thus, each right
cusp will produce a loop and there is an identification of each crossing in xz-plane
with some of the remaining crossings in xy-plane. So Lagrangian projection
corresponding to D′

1 is clearly a diagram D2 obtained by moves as in Figure
2.7.
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3. Classical invariants
In this chapter, we will follow [Etn05].
From now on, all Legendrian knots will be oriented.
Remark. Since Legendrian isotopy is also a topological isotopy of the underlying
topological knot, the most obvious classical invariant of Legendrian knots is the
underlying topological knot type.
Now, we conclude to the definition of the remaining two classical invariants:

Definition 13. Let K be a Legendrian knot.
We denote rotation number of K by r(K) , which is defined as

r(K) = 1
2(#D − #U),

where #U is a number of upward cusps and #D is a number of downward cusps,
when we follow the orientation of K in πF (K).

We denote Thurston-Bennequin invariant of K by tb(K), which is de-
fined in terms of front projection as

tb(K) = #P − #N − #right cusps,

where #P and #N are numbers of positive and negative crossings in πF (K),
respectively (see Figure 3.1).

Figure 3.1: positive crossing (left) and negative crossing (right).

Remark. It is straightforward to verify that tb and r are not changing after Reide-
meister moves in front projection, hence they are invariants of Legendrian knots
by Lemma 6.
Remark. Using the same construction as in Lemma 10 we can also compute tb
and r in Lagrangian projection of Legendrian knot K.

Then the rotation number can be viewed as a winding number of tangent
vectors to πL(K), so

r(K) = winding(πL(K)).

Next, Thurston-Bennequin invariant can be computed as

tb(K) = #P − #N,

where #P and #N are numbers of positive and negative crossings in πL(K),
respectively.
Remark. Note that Thurston-Bennequin invariant does not depend on the orien-
tation of given Legendrian knot.
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Definition 14. Let K be a Legendrian knot. Stabilization is an operation on
K, which changes an arbitrary strand in πF (K) by one of the following zigzags
(see Figure 3.2). If we added downward cusps, then the stabilization of K is
called positive and denoted by S+(K). Otherwise stabilization is of K is called
negative and denoted by S−(K). Legendrian knot S±(K) is called stabilized.

S+

S−

Figure 3.2: stabilization in front projection.

Remark. Stabilization is a well-defined operation, i.e. it does not depend on which
strand of the given Legendrian knot is chosen for a stabilization. To prove this,
it is necessary to check that we can move with a zigzag along cusps and crossing
without changing a Legendrian isotopy knot type of the given Legendrian knot
(see [FT97]).
Remark. Observe that stabilization does not change the topological knot type.
Stabilization changes the remaining two classical invariants of Legendrian knot
K in the following way:

r(S±(K)) = r(K) ± 1 and tb(S±(K)) = tb(K) − 1.

Thus we can obtain a Legendrian knot of an arbitrary negative tb for given topo-
logical type. Conversely, there is an upper bound on tb for a given topological
class of Legendrian knots. But, first, we introduce the notion of Kauffman poly-
nomial for Legendrian knots.

Take a front diagram of Legendrian knot K and make all cusps smooth. For
resulting diagram D of the smooth knot, we state polynomial LD(a, z) as a poly-
nomial that satisfies four skein relations

L
( )

+ L
( )

= zL
( )

+ z−1L
( )

L
( )

= aL
( )

, L
( )

= a−1L
( )

, L
( )

= 1

and is an invariant under Reidemeister moves II and III.

Definition 15. Kauffman polynomial FK of Legendrian knot K is defined as

FK(a, z) = a#N−#P LD(a, z).

Remark. Kauffman polynomial always exists and is an invariant of topological
knot [Kau90].

Theorem 11 ([Rud90]). Let K be a Legendrian knot. Then K satisfies Kauff-
man bound, i. e.

tb(K) ≤ min-degaFK(a, z) − 1.

Theorem 12 ([FT97]). Two Legendrian knots with the same topological type
become Legendrian isotopic after a finite number of stabilizations.
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Remark. Finally, note that using the construction as in Lemma 10 we can alter-
natively define a stabilization in terms of Lagrangian projection as in Figure 3.3.

S+

S−

Figure 3.3: stabilization in Lagrangian projection.
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4. Legendrian contact homology

4.1 Differential graded algebra
In this short section, we would like to recall some definitions from general algebra.
S will denote an unital commutative ring in these definitions.

Definition 16. An S-algebra A is an S-module with an associative bilinear
map:

m : A ⊗S A → A.

For simplicity, we will rather write x · y instead of m(x ⊗S y) for all x, y ∈ A.

Definition 17. Let A be a S-algebra and G a cyclic group. We say that A is
(G-)graded if A as an S-module can be decomposed as a direct sum of S-modules:

A =
⨁
i∈G

Ai

such that for any x ∈ An and y ∈ Am it holds that x · y ∈ An+m.
Moreover, if x ∈ An, we say that x is a homogeneous element of grading n

and write |x| = n.
An S-linear map between graded S-algebras is called graded morphism of

degree n if it maps homogeneous elements of degree m to homogeneous elements
of degree n + m. If n = 0, we call this map simply a graded morphism.

Definition 18. (A, ∂) is called a differential graded S-algebra (DGA) if it
is a graded S-algebra A with an S-linear map ∂ : A → A satisfying:

(i.) ∂ ◦ ∂ = 0,

(ii.) ∂(An) ⊂ An−1 (i.e. ∂ has grading −1),

(iii.) Leibniz formula: ∂(x · y) = ∂(x) · y + (−1)|x|x · ∂(y) for any homogeneous
elements x, y ∈ A.

Such a map ∂ is called differential.
Moreover, (A, ∂) is called semi-free if the underlying graded S-algebra A is

free. Let {a1, . . . , an} be a set of generators of (A, ∂). To emphasize them, we
sometimes use the notation (A(a1, . . . , an), ∂).

Let (A, ∂) and (A′, ∂′) be two DGAs and φ : A → A′ a graded morphism.
Then φ is called a chain map between (A, ∂) and (A′, ∂′) if φ ◦ ∂ = ∂′ ◦ φ.

dg will denote a category, whose objects are DGAs and morphisms are chain
maps between them.

From now on, all DGAs are assumed to be semi-free.
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4.2 Chekanov-Eliashberg DGA
In this section, we follow [ENS+02] and [Che02].

Definition 19. Let K be a Legendrian knot. An integral curve for the Reeb vector
field ( ∂

∂z
) with endpoints on K is called a Reeb chord.

From now on, unless otherwise specified, all the singularities of Legendrian knots
in Lagrangian projection will be a finite number of double points, where we also
have orthogonal crossings.
Remark. Note that the last convention is always satisfiable, since any Legendrian
knot can be C0-approximated by a Legendrian isotopic Legendrian knot satisfying
this convention.
Remark. Observe that Reeb chords for given Legendrian knot K correspond to
double points of πL(K). We denote the set of double points of πL(K) by Q(K).

Now, we can conclude to the combinatorial definition of Chekanov-Eliashberg
DGA with Z2 coefficients.

Let K be a Legendrian knot. Then the definition of Chekanov-Eliashberg
DGA (AK , ∂K) of K will be divided into three parts: algebra, grading and
differential.

The algebra: AK will be a free unital commutative Z2-algebra generated by
Q(K).

The grading: AK will be graded over Z2r(K) as follows. To any generator a
of AK , we associate a path γa along πL(K) starting from ovecrossing in a (denote
it a+) and going to undercrossing in a (denote it a−). Then r(γa) will be a
(fractional) winding number of a tangent vectors to the curve γa. The grading of
a is defined by

|a| = 2r(γa) − 1/2 mod 2r(K).
Note that r(γa) is an odd multiple of 1/4. Finally, expand the grading on AK by
|ab| = |a| + |b|. Thus |1| = |1 · 1| = |1| + |1| = 0.

The differential: We would like to define the differential by some appropriate
count of immersed polygons, but first it is necessary to state the following term.

Neighborhood of any double point in πL(K) is divided by crossings into four
quadrants. To each of the quadrants, we would like to associate a Reeb sign
defined as in Figure 4.1.

+ +
−

−

Figure 4.1: Reeb sign.

Let Pk+1 denote a (curved) convex (k + 1)-sided polygon in R2 with ver-
tices v0, . . . , vk appearing in counterclockwise order around the polygon. Each of
b0, . . . , bk take a value in Q(K). Then we define the set

Mb0,...,bk
= {u : (Pk+1, ∂Pk+1) → (R2

xy, πL(K))}/ ∼,

where ∼ is reparametrization of the domain and u is an orientation-preserving
immersion sending vi to bi for i ∈ {0, . . . , k}.
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Moreover, for u ∈ Mb0,...,bk
, we call vertex vi of Pk+1 positive (with respect

to u) if the neighborhood of vi is mapped to the quadrant of bi with + Reeb sign
(i.e. positive quadrant). Otherwise, the vertex vi is called negative.

Then by Mb0
b1,...,bk

we will denote the subset of Mb0,...,bk
containing immersions,

where b0 is the only positive vertex. And Mb0
b1,...,bk

is called the set of admissible
immersions.

Now, we can conclude to the definition of differential ∂K : AK → AK . Let a
be a generator of AK . The we put

∂K(a) =
∑
k≥0

b1,...,bk generators of AK

(#2Ma
b1,...,bk

)b1 . . . bk, (4.1)

where #2Ma
b1,...,bk

means modulo 2 count of elements of Ma
b1,...,bk

. Finally, we
extend ∂K on AK by Z2-linearity and Leibniz formula.

Note that ∂K(1) = ∂K(1 · 1) = ∂K(1) · 1 + (−1)|1|1 · ∂K(1) = 2 · ∂K(1), hence
∂K(1) = 0. Of course, here the sign in Leibniz formula is redundant, however in
definitions of Chekanov-Eliashberg algebras with more sophisticated coefficients
the sign plays a substancial role.

When it is clear from the context, sometimes we will write simply DGA instead
of Chekanov-Eliashberg DGA.

Next, we are going to show in the following three lemmata that the differential
∂K is well defined.

Lemma 13. For any Legendrian knot K, there is only finite number of admissible
immersed polygons.

Lemma 14. ∂K has degree −1.

Lemma 15. ∂2
K = 0.

Remark. It is possible to define Chekanov-Eliashberg DGA also in terms of front
projection. It will lead to DGA generated not only by the set of double points, but
also by the set of right cusps. There will be also other differences and analogues
of Lemmata 13, 14, 15 will be a little bit more complicated. For details, see
[Ng03].
Remark. We would like to derive an important relation between Reeb signs of
vertices of the immersed polygons. By H we will denote a height function on
double points in πL(K), i.e. let b be a double point in πL(K), then H(b) will be
equal to the difference between z-coordinate of preimages of b+ and b− in K. Let
each of b0, . . . , bk take a value in Q(K) and u ∈ Mb0,...,bk

is an immersion with
the domain Pk+1.

Then we lift u(∂Pk+1) to ũ(∂Pk+1) on K in a way that πL(ũ(∂Pk+1)) =
u(∂Pk+1). Note that ũ(∂Pk+1) together with Reeb chords, corresponding to
b0, . . . , bk, make a piecewise smooth loop. Thus

∑
v∈Q+

H(u(v)) −
∑

v∈Q−

H(u(v)) +
∫

∂Pk+1
ũ∗(dz) = 0,
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where Q+ and Q− are sets of positive and negative vertices of Pk+1, respectively.
By the relation dz = ydx and Stokes theorem, we obtain∑

v∈Q+

H(u(v)) −
∑

v∈Q−

H(u(v)) =
∫

Pk+1
u∗(dx ∧ dy) > 0. (4.2)

Now, we make a few useful observations about this inequality. Since H takes
values only in R+, there is only finite number of sets Mb0,...,bk

. Also, note that at
least one of vertices of Pk+1 is positive. If we suggest an admissible immersion, it
is not possible to have positive and negative vertex mapped to the same double
point.

Proof of Lemma 13. Due to the previous remark, it remains to show that for
given double points a, b1, . . . , bk in πL(K), the set Ma

b1,...,bk
is finite.

Let {C1, . . . , Cm} be a set of components of R2 \ πL(K) and {S1, . . . , Sm}
denotes the set of areas of corresponding components. Now, we suppose that
Ma

b1,...,bk
is nonempty and we take u ∈ Ma

b1,...,bk
. Then∫

Pk+1
u∗(dx ∧ dy) =

m∑
i=1

niSi,

where ni are non-negative integers that are equal to the cardinality of u−1(p)
for any p ∈ Ci. From relation (4.2), we see that there is only finite number of
possibilities, how to choose ni. Since any immersion in Ma

b1,...,bk
is uniquely given

by its cardinalities ni on components of R2 \πL(K), the set Ma
b1,...,bk

is also finite.

Proof of Lemma 14. Let u ∈ Ma
b1,...,bk

and Pk+1 be a corresponding polygon with
vertices v0, . . . , vk. Note that u(∂Pk+1) can be seen as an union of paths (arcs)
u(v0, v1), . . . , u(vk−1, vk), u(vk, v0) in πL(K). We denote them by η0, . . . , ηn. From
the diagram

a− a+ b+
1 b−

1 b+
2 · · · b−

k a−,
−γa η0 γb1 η1 ηn

we observe that the union u(∂Pk+1) ∪ −γa ∪ γb1 ∪ · · · ∪ γbk
corresponds to the

unique oriented loop Γu in K. Since K ∼= S1, Γu coincides with an unique element
of H1(K,Z2r(K)) = Z2r(K). And we denote this element by n(u).

Now, we would like to count the rotation number of the loop Γu in two ways.
Recall that the Γu corresponds to the union u(∂Pk+1) ∪ −γa ∪ γb1 ∪ · · · ∪ γbk

.
Hence, it is equal to n(u)r(K). But, we can also count the rotation number of
Γu by parts, i.e. as the sum of contributions of smooth pieces of the union. Then
smooth pieces of u(∂Pk+1) contributes by 1 − (k + 1)/4, since we substract 1/4
for each corner of immersed polygon. And next, by the definition, r(γa) is equal
to (2|a| + 1)/4 and r(γbi

) is equal to (2|bi| + 1)/4 for i ∈ {1, . . . , k}.
Thus

n(u)r(K) = 1 − k + 1
4 − 2|a| + 1

4 +
k∑

i=1

2|bi| + 1
4 .

Which can be rewritten as

|a| =
k∑

i=1
|bi| − 2n(u)r(K) − 1.
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Next, we obtain that

|a| =
k∑

i=1
|bi| − 1, (4.3)

because we count grading over Z2r(K). Note that for the same reason relation
(4.3) is independent on the choice of paths γi. Hence, the grading is well defined.
Finally, formula 4.1 and Leibniz formula finishes the proof.

Proof of Lemma 15. Strategy of the proof will be following: by Leibniz formula,
it is enough to check ∂2

K = 0 only for generators of AK . In more detail, we will
show that each word of ∂2

K corresponds to some immersed polygon with one non-
convex vertex (we call him an obtuse polygon). But, such an obtuse polygon can
be constructed in two ways by gluing a pair of admissible immersed polygons.
Thus, if any word appears in ∂2

K , then it appears even number of times and they
cancel, since we count modulo 2.

1. Construction of the obtuse polygon
Let a be a generator of AK and W be an arbitrary word in ∂2

K(a). Then
W can be written in the form

b1 . . . bi−1c1 . . . ck′bi+1 . . . bk,

for i, k, k′ ∈ N and i < k and where W is corresponding to some elements
u ∈ Ma

b1,...,bk
and u′ ∈ Mbi

c1,...,ck′ . We use also the following notation; Pk+1
will be an associated polygon to u with vertices {v0, . . . , vk} and P ′

k′+1 will
be an associated polygon to u′ with vertices {w0, . . . , wk′}.
Now, we would like to glue polygons P ′

k′+1 and Pk+1 to an obtuse polygon
P such that u′ and u will be glued to the orientation-preserving immersion
U : (P , ∂P) → (R2

xy, πL(K)) and immersed polygon U(P) will have letters
from the word aW appearing along its boundary. We put

P := P ′
k′+1 ∪g Pk+1,

where g is a (smooth) embedding such that u ◦ g = u′ on Dom g, g(w0) = vi

and Dom g ⊆ ∂P ′
k′+1 and Im g ⊆ ∂Pk+1 are connected and largest possible.

If S ′ is a neighborhood of w0 in P ′
k′+1 and S is a neighborhood of vi in Pk+1,

we can WLOG assume that w0 and vi are glued as in the Figure 4.2. There
are several cases of gluing.

viw0

S ′ S

Figure 4.2: Gluing of neighborhoods of vertices w0 and vi.

If k′ > 0, then see Figure 4.3.

(a) vi+1 ̸∈ Im g and wk′−1 ∈ Dom g,
(b) vi+1 ∈ Im g and wk′−1 ̸∈ Dom g,
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(c) vi+1 ∈ Im g and wk′−1 ∈ Dom g; in this case, P will have only nega-
tive vertices, but this contradicts relation (4.2). Thus this case is not
possible.

viw0

Pk+1P ′
k′+1

viw0

Pk+1
P ′

k′+1

viw0

Pk+1P ′
k′+1

(a) (b) (c)
Figure 4.3: Gluing polygons P ′

k′+1 and Pk+1 to obtain non-convex polygon P , and
where the dashed lines denote unspecified part of boundaries of glued polygons.

Note that it is not possible to have simultaneously vi+1 ̸∈ Im g and wk′−1 ̸∈
Dom g, because then Im g or Dom g will be not largest possible.
If k′ = 0, then see Figure 4.4.

(d) vi+1 ∈ Im g and Dom g ̸= P ′
1; this case is displayed by the same figure

as (a),
(e) vi+1 ∈ Im g and Dom g = P ′

1; observe that in this case g(vi+1) ∼ w0 ∼
g(vi), where ∼ is equivalence relation induced by g.

Otherwise, if vi+1 ̸∈ Im g and Dom g = P ′
1, then there exists x ∈ ∂Pk+1

such that x ∼ vi but x ̸= vi. Moreover, we need to glue some pieces of the
boundary of P to obtain the required obtuse polygon. We put

P := P ∪h P ,

where h is a (smooth) embedding such that U ◦ h = U on Dom h, h(vi) = x
and Dom h ⊆ ∂P and Im h ⊆ ∂P are connected and largest possible. So,
now, we need to distinguish the following cases:

(f) vi+1 ̸∈ Im h and vi−1 ∈ Dom h,
(g) vi+1 ∈ Im h and vi−1 ̸∈ Dom h,
(h) vi+1 ∈ Im h and vi−1 ∈ Dom h; in this case P will have only negative

vertices, but this contradicts relation (4.2). Hence, this case is not
possible.

w0
vi

Pk+1

P ′
1 w0

vi

Pk+1
P ′

1
w0
vi

Pk+1
P ′

1
w0
vi

Pk+1
P ′

1

(e) (f) (g) (h)
Figure 4.4: Gluing polygons P ′

1 and Pk+1 to obtain non-convex polygon P , and
where the dashed lines denote unspecified parts of boundaries of glued polygons.
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Observe that such a construction of P and U always exists and is unique
up to reparametrization of U . Let v denote the vertex of P with an obtuse
angle. Note that P has either one positive vertex or the neighborhood of v
is mapped by U to two quadrants with + Reeb sign and one with − Reeb
sign.

2. Cutting P
At v, there are two segments pointing into P . We would like to extend each
of these segments by tracking curve γ until this curve does not self-intersect
or reach the boundary of P and moreover γ will satisfy U(γ) ⊆ πL(K).
Note that endpoint of tracking γ will correspond to some double point of
πL(K).
There are four possibilities (A)–(D) of γ, see Figure 4.5. Also, γ in each
case divides the polygon P into two polygons P and P ′ and also divide U
into two admissible immersions u and u′ that can be glued as in the step
1. to (P , U) and correspond to the word W . Here it is necessary to say
that each of u and u′ is admissible. This follows from the construction and
relation (4.2).

v v v v

(A) (B) (C) (D)
Figure 4.5: Cutting non-convex polygon P by γ into two polygons P, P ′, where
γ is denoted by green line.

Observe that in a case (D) we obtain two pairs of different admissible im-
mersions (i.e. each pair corresponds to another word in ∂2

K(a)). This is
true since v appears as a vertex glued from vertices vi+1 and vi and each
of them contributes by one admissible immersed polygon. Other cases also
produce pairs of two different admissible immersions. And we are done.

4.3 Modern invariants
Note that it is possible “to change” Chekanov-Eliashberg DGA by Reidemeister
moves in Lagrangian projection. For example, Reidemeister move II increases
(decreases) the number of generators of underlying algebra by two. Thus, the
DGA itself is not an invariant under Legendrian isotopy. But, if we look closer, we
find out that Reidemeister moves preserve certain equivalence class of Chekanov-
Elisashberg DGAs. This leads to the notion of modern invariants of Legendrian
knots (i.e. non-classical invariants). In this section, we follow [ENS+02] and
[Che02].
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Definition 20. A chain isomorphism of DGAs

φ : (A(a1, . . . , an), ∂) → (A′(a′
1, . . . , a′

n), ∂′)

is called elementary if there is some j ∈ {1, . . . , n} such that

φ(ai) =

⎧⎨⎩a′
i, i ̸= j,

a′
i + u, i = j, for some u ∈ A′(a′

1, . . . , a′
j, a′

j+1, . . . , a′
n).

The composition of some number of elementary isomorphisms is called tame
isomorphism.

Definition 21. Let (Ek(e1, e2), ∂Ek
) be a differential Z-graded algebra that is

given by |e1| = k, |e2| = k − 1 and ∂Ek
(e1) = e2, ∂Ek

(e2) = 0.
Then the degree k stabilization of a DGA A(a1, . . . , an), ∂) graded by G is

a DGA
(Sk(A), ∂Sk

) := (A, ∂)
∐

(Ek(e1, e2), ∂Ek
)

graded by G ⊗ Z ∼= G, where ∂Sk
is given by ∂Sk

(ai) = ∂(ai), ∂Sk
(ej) = ∂EK

(ej)
and the degrees of generators are images of the initial degrees under the natural
homomorphisms G,Z → G ⊗ Z.

Two DGAs (A, ∂) and (A′, ∂′) are called stable tame isomorphic if there
exist sequences of stabilizations Si1 , . . . , Sin and Sj1 , . . . , Sjm and a tame isomor-
phism

φ : (Sin(. . . (Si1(A), ∂Si1
) . . . ∂Sjn

) → (Sjm(. . . (Si1(A′), ∂Sj1
) . . . ∂Sjm

).

Lemma 16. Stable tame isomorphic DGAs have same homology groups.

Proof. It is sufficient to prove the lemma for (A, ∂) and (S(A), ∂S). Consider the
natural projection τ and inclusion i

A S(A) Ai τ .

We would like to show that τ and i are homotopy equivalent, since then they will
induce desired isomorphism of homology groups.

Observe that τ ◦ i = IdA. On the other hand, we would like to show that i ◦ τ
and IdA are chain homotopic, i.e. there is a graded linear map P : S(A) → S(A)
of degree 1 such that

i ◦ τ + IdS(A) = ∂S ◦ P + P ◦ ∂S. (4.4)

Let x, b ∈ S(A) and a ∈ A.

• If x = a, then put P (x) := 0. Relation (4.4) is satisfied, since

(τ ◦ i + IdS(A))(a) = 0
= (∂S ◦ P + P ◦ ∂S)(a).
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• If x = ae2b, then put P (x) := ae1b. Relation (4.4) is satisfied, since

(τ ◦ i + IdS(A))(ae2b) = ae2b

= (∂Sa)e1b + ae2b + ae1(∂Sb)
+ P

(
(∂Sa)e2b + ae2(∂Sb)

)
= ∂S(ae1b) + P

(
(∂Sa)e2b + a(∂Se2)b + ae2(∂Sb)

)
= (∂S ◦ P + P ◦ ∂S)(ae2b).

• If x = ae1b, then put P (x) := 0. Relation (4.4) is satisfied, since

(τ ◦ i + IdS(A))(ae1b) = ae1b

= P
(
(∂Sa)e1b + ae2b + ae1(∂Sb)

)
= P

(
(∂Sa)e1b + a(∂Se1)b + ae1(∂Sb)

)
= (∂S ◦ P + P ◦ ∂S)(ae1b).

Thus, τ and i are homotopy equivalent and we are done.

Theorem 17. Stable tame isomorphism class of (AK , ∂K) is an invariant of
Legendrian knot K.

Proof. Let K be a Legendrian knot with DGA (AK , ∂K). We would like to prove
that if we change K by one of the following the Reidemeister moves for Lagrangian
projection (see Figure 4.6) to the Legendrian knot K ′, then we obtain stable tame
isomorphic DGA (AK′ , ∂K′). We look on the Reidemeister move as a smooth path
{Kt}t∈[−ϵ/2,ϵ/2] in the space of Legendrian knots, where K = K−ϵ/2, K ′ = Kϵ/2 and
the only non-generic Legendrian knot appears at t = 0.

II

IIIa IIIb

Figure 4.6: Reidemeister moves in Lagrangian projection that will be considered.
For each move, the part of diagram that represents K will be on the left and the
part of diagram that represents K ′ will be on the right.

1. Move IIIa.
First, note that graded algebras AK and AK′ are isomorphic. Hence, we
can label their generators as a, b, c, a1, . . . , an, where a, b, c will label double
points as in the Figure 4.7. It remains to show that ∂K = ∂K′ .

b

c
a

a

b
c

Figure 4.7: On the left (resp. right) double points a, b, c of πL(K) (resp. πL(K ′)).
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By Leibniz formula, it will be enough to construct a bijection B between
admissible immersed polygons for K and K ′. B will map admissible im-
mersed triangle T with vertices a, b, c to admissible immersed triangle T ′

with vertices a, b, c. If we apply relation (4.2) on T , then we obtain that

H(b) + H(c) < H(a). (4.5)

Besides T and T ′, it is not possible to have admissible immersed polygon
with side [a, b], [a, c] or [b, c]. Indeed, if [a, b] or [a, c] is such a side, then a
will be an image of the negative vertex and b or c, respectively, will be an
image of the positive vertex, which is in contradiction with relation (4.5).
Also, [b, c] can not be such a side, since admissible immersed polygon can
not have two positive vertices by relation (4.2).
Thus, B will be bijection between admissible immersed polygons with the
same covered quadrants and double points as vertices. Moreover, except
cases T and T ′, this mapping will be continuous deformation in t, see Figure
4.8.

b

c
a

a

b
c b

c
a

a

b
cB B

Figure 4.8: Examples of mapping admissible immersed polygons by B.

2. Move IIIb.
Similarly as in the previous case, graded algebras AK and AK′ are isomor-
phic. Also, a, b, c, a1, . . . , an will denote their generators, where a, b, c will
label double points as in the Figure 4.9. We would like to show that tame
isomorphism φ : (AK , ∂K) → (AK′ , ∂K′), defined on generators by

φ(w) =

⎧⎨⎩w + bc, w = a,

w, else,

is well defined. In another words, we would like to verify that φ◦∂K = ∂K′◦φ.

b

a
c

c

b
a

Figure 4.9: On the left (resp. right) double points a, b, c of πL(K) (resp. πL(K ′))

At first, we make the following discussion about admissible immersed poly-
gons with side [a, b], [a, c] or [b, c].
Immersed triangles T and T ′ with vertices a, b, c are not admissible. Thus,
admissible immersed polygons with side [a, b] or [a, c] can not have a as an
image of the positive vertex.
Next, we inspect admissible immersed polygons with the side [b, c]. Denote
them P[b,c] and P ′

[b,c]. We will show that ai will be a positive vertex of
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immersed P[b,c] (or P ′
[b,c]). By relation (4.2), b and c can not be images of

positive vertex, since they are images of the negative vertex. Now, assume
that a is an image of positive vertex. By relation (4.2), if we compare the
signed sum of heights, then we see that the area of immersed P[b,c] (or P ′

[b,c])
is less than the area of immersed triangle T (or T ′). Also, as ϵ goes to zero,
areas of triangles vanish. But, areas of immersed P[b,c] (or P ′

[b,c]) can not
vanish. Hence, we get a contradiction.
Also, admissible immersed polygon with side [a, c] or [a, b], where a is an
image of the positive vertex, can not contain vertex b or c, respectively.
This follows directly from the signed count of heights in this polygon and
in T (or T ′).
It is enough to check that φ is a chain morphism only for a and g ∈ Q(K)
such that ∂K(g) contains a letter a. Indeed, by the discussion, we see that
for all other generators the differential remains the same. Also, note that
by relation (4.2) we have g ̸= a.
We would like to group admissible immersed polygons of ∂K(g) and ∂K′(g)
into three groups:

(i) immersed polygons of ∂K′(g) that locally look as in Figure 4.10(a)
and the corresponding immersed polygons of ∂K(g) that locally look
as in Figure 4.10(b) and Figure 4.10(c). By the “corresponding” we
mean that (b) and (c) contribute to ∂K(g) with the same letters as (a)
contribute to ∂K′(g), only (c) contributes with bc instead of a. Also,
by the discussion is this grouping correct, i.e. it is unique defined and
all immersed polygons of (a), (b), (c) will be contained in some triple.

b

a
c

c

b
a b

a
c

(a) (b) (c)
Figure 4.10

(ii) immersed polygons of ∂K(g) that locally look as in Figure 4.11(a) and
the corresponding immersed polygons of ∂K′(g) that locally looks as in
Figure 4.11(b) and Figure 4.11(c). By the “corresponding”, we mean
the same as above, only switch K and K ′. Also, by the discussion this
grouping is correct.

b

a
c

c

b
a

c

b
a

(a) (b) (c)
Figure 4.11

(iii) remaining immersed polygons of ∂K(g) and ∂K′(g). Clearly, there is a
bijection between them, which pairs those with exactly same covered
quadrants and double points as vertices.
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For j = i, ii, iii, we denote by ∂j
K(g) or ∂j

K′(g) contributions of elements
of these three groups to ∂K(g) or ∂K′(g), respectively. Clearly, ∂i

K(g) =
φ ◦ ∂i

K′(g), φ ◦ ∂ii
K(g) = ∂ii

K′(g), ∂iii
K(g) = ∂iii

K′(g). And since φ2 = IdAK
and

φ(g) = g, φ is a chain morphism in this case.
Now, we would like to compare ∂Ka to ∂K′a. Note that for small ϵ, we
can assume that H(a) > H(b) and H(a) > H(c). Hence, by relation (4.2),
neither of ∂K(a), ∂K(b), ∂K(c) contain a letter a. Thus, φ ◦ ∂K ◦ φ−1(a) =
φ ◦ ∂K(a + bc) = ∂K(a + bc). It remains to verify that

∂K(a) + ∂K′(a) = b(∂K(c)) + (∂K(b))c. (4.6)

To prove relation (4.6), we will construct the following groups. We start
with groups containing immersed polygons of ∂K(c):

(i) immersed polygons of ∂K(c) that locally look as in Figure 4.12(a) and
the corresponding immersed polygons of ∂K(a) that locally looks as in
Figure 4.12(b). By the “corresponding”, we mean that (b) contribute
to ∂K(a) with the same letters that (a) contribute to ∂K(c), only (b)
contribute moreover with b at the begining. Also, by the discussion
the correspondence is bijective.

b

a
c

b

a
c

(a) (b)
Figure 4.12

(ii) immersed polygons of ∂K(c) that locally look as in Figure 4.13(a) and
the corresponding immersed polygons of ∂K′(a) that locally looks as in
Figure 4.13(b). By the “corresponding”, we mean the same as above.
Also, by the discussion the correspondence is bijective.

b

a
c

c

b
a

(a) (b)
Figure 4.13

Now, we will make analogue groups for ∂K(b):

(iii) immersed polygons of ∂K(b) that locally look as in Figure 4.14(a) and
the corresponding immersed polygons of ∂K(a) that locally looks as in
Figure 4.14(b). By the “corresponding”, we mean that (b) contributes
to ∂K(a) with the same letters that (a) contribute to ∂K(b), only (b)
contribute moreover with c at the end. Also, by the discussion the
correspondence is bijection.
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b

a
c

b

a
c

(a) (b)
Figure 4.14

(iv) immersed polygons of ∂K(b) that locally look as in Figure 4.15(a) and
the corresponding immersed polygons of ∂K′(a) that locally looks as in
Figure 4.15(b). By the “corresponding”, we mean the same as above.
Also, by the discussion the correspondence is bijection.

b

a
c

c

b
a

(a) (b)
Figure 4.15

Still, there is just one group of admissible immersed polygons to inspect:

(v) remaining immersed polygons of ∂Ka and ∂K′a, clearly there is a bijec-
tion between them pairing those with exactly same covered quadrants
and doublepoints as vertices.

If we look back at relation (4.6), we see that terms contributed by the
elements of the group (v) cancel each other (since we count mod 2). Now,
we inspect remaining terms in relation (4.6). But, each term on the left
side of relation (4.6) is also on the right side and vice versa. This is true,
since correspondences in the groups (i)–(iv) are bijections. Hence, we find
out that relation (4.6) holds.

3. Move II.
Let a, b, a1, . . . , an, b1, . . . , bm be generators of graded algebra AK , where a, b
are double points of K as in the Figure 4.16. Let X be a two-sided ideal in
AK generated by a, b. Since algebras AK/X and AK′ are isomorphic, we can
label corresponding generators of AK′ by a1, . . . , an, b1, . . . , bm. Moreover,
by relation (4.2), we can assume that:

H(an) ≥ · · · ≥ H(a1) ≥ H(a) > H(b) ≥ H(b1) ≥ · · · ≥ H(bm).

a b

Figure 4.16: Double points a, b of πL(K).

Next, we compare the area of the admissible immersed 2-gon with vertices
a, b to areas of other admissible immersed polygons with vertex a covered
by a positive quadrant. If we use the similar argument as in the discussion
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of the move IIIb., then we see that ∂K(a) contains only admissible immersed
2-gon as an immersed polygon with vertex b. Hence, we can write, ∂K(a) =
b + v, where v contains only terms in bi.
Let (S|a|(AK′), ∂S) be a degree |a| stabilization of (AK′ , ∂K′). Next, φ0
will be a graded isomorphism φ0 : AK → S|a|(AK′) which is on generators
defined as

φ0(w) =

⎧⎪⎪⎨⎪⎪⎩
e1, w = a,

e2 + v, w = b,

w, else.

Also, Ai will denote graded algebra AK(a, b, a1, . . . , ai, b1, . . . , bm) and τ and
i will be natural projection and inclusion, respectively:

AK′ S|a|(AK′) AK′
i τ .

Now, we would like to prove following two claims.
Claim 1. φ0|A0

is a chain map.
The claim is true for bi, since, by relation (4.2), we see that ∂K(bi) contains
only terms of bj for j > i. For a, b, we may check that:

φ0 ◦ ∂K(a) = φ0(b + v) = e2 = ∂S(e1) = ∂S ◦ φ0(a)

and

φ0 ◦ ∂K(b) = φ0 ◦ ∂K(v) = ∂S(v) = ∂S(v + e2) = ∂S ◦ φ0(b),

where we used that ∂2
K = 0 and ∂K(a) = b + v. Hence, the claim holds.

Claim 2. τ ◦ ∂S ◦ φ0 = τ ◦ φ0 ◦ ∂K .
Using Claim 1, it remains to verify the relation for generators ai. We will
denote by W1 the sum of terms that occur in both ∂K(ai) and ∂S(ai). W2
will denote the sum of terms of ∂K(ai) that involve b. Then we can write:

∂K(ai) = W1 + W2 + W3 and ∂S(ai) = W1 + W4.

Since terms in W1 contain neither a nor b, we get φ0(W1) = W1. Terms in
W3 need to contain a, but φ0(a) = e1, thus τ ◦ φ0(W3) = 0. Terms in W4
correspond to admissible immersed polygons that locally look as in Figure
4.17(b). There is a bijective correspondence between these admissible im-
mersed polygons and pairs of admissible immersed polygons in πL(K): one
with vertex a covered with a positive quadrant and second with b covered
with a negative quadrant. These quadrants look locally as in Figure 4.17(a).
Hence W4 is the same as W2, only every appearance of b is replaced by v,
i.e. W4 = τ ◦ φ0(W2). Now, we can conclude to the computation:

τ ◦ ∂S ◦ φ0(ai) = τ ◦ ∂S(ai)
= τ(W1 + W4)
= τ(φ0(W1) + W4)
= τ ◦ φ0(W1 + W2)
= τ ◦ φ0(W1 + W2 + W3)
= τ ◦ φ0 ◦ ∂S(ai).
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Thus, the claim holds.

a b

(a) (b)
Figure 4.17

Now, we would like to construct desired tame isomorphism φn : (AK , ∂K) →
(S|a|(AK′), ∂S). This will be done by induction starting from φ0 and which
for each i ≤ n will give an isomorphism φi : AK → S|a|(AK′) such that
φi|Ai

is a chain map.
Let P : S|a|(AK′) → S|a|(AK′) be an analogue chain homotopy between i◦τ
and IdS|a|(AK′ ) (for simplicity, we will write Id) as in the proof of Lemma
16. Recall that this map satisfies:

i ◦ τ + Id = ∂S ◦ P + P ◦ ∂S.

Next, we define graded automorphism gi : S|a|(AK′) → S|a|(AK′) as

gi(w) =

⎧⎨⎩w + P
(
∂S(w) + φi−1 ◦ ∂K(w)

)
, w = ai,

w, otherwise.

And finally, put φi = gi ◦ φi−1.
Since step with φ0 is already done, we can conclude to the induction step.
By induction hypothesis, we can assume that φi−1|Ai−1

is a chain map. Then
φi|Ai−1

is also a chain map. It remains to show that φi ◦∂K(ai) = ∂S ◦φi(ai).
Since τ ◦ P = 0, for all i it holds that τ ◦ gi = τ and consequently τ ◦ φi =
τ ◦ φ0. Also, observe that ∂K(ai) ∈ Ai−1. Using Claim 2 we compute that:

φi−1 ◦ ∂K(ai) = i ◦ τ ◦ φi−1 ◦ ∂K(ai) + ∂S ◦ P ◦ φi−1 ◦ ∂K(ai)
+ P ◦ ∂S ◦ φi−1 ◦ ∂K(ai)

= i ◦ τ ◦ φ0 ◦ ∂K(ai) + ∂S ◦ P ◦ φi−1 ◦ ∂K(ai)
+ P ◦ φi−1 ◦ ∂2

K(ai)
= i ◦ τ ◦ ∂S ◦ φ0(ai) + ∂S ◦ P ◦ φi−1 ◦ ∂K(ai)
= (Id + ∂S ◦ P + P ◦ ∂S) ◦ ∂S(ai) + ∂S ◦ P ◦ φi−1 ◦ ∂K(ai)
= ∂S(ai + P ◦ ∂S(ai) + P ◦ φi−1 ◦ ∂K(ai))
= ∂S ◦ gi(ai).

Since φi−1 ◦ ∂K(ai) ∈ Ai−1, we conclude that

φi ◦ ∂K(ai) = gi ◦ φi−1 ◦ ∂K(ai) = φi−1 ◦ ∂K(ai) = ∂S ◦ gi(ai) = ∂S ◦ φi(ai).

Hence, DGAs (AK , ∂K) and (AK′ , ∂K′) are stable tame isomorphic and we
are done.
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From Theorem 17 and Lemma 16, we immediately obtain the following im-
portant corollary.

Corollary 18. Homology H∗(AK , ∂K) is an invariant of a Legendrian knot K.

Definition 22. Let K be a Legendrian knot. Homology of (AK , ∂K) is called
Legendrian contact homology of K and denoted by LCH∗(K).

4.4 Chekanov-Eliashberg DGA over Z[t, t−1]
Observe that invariants coming from Chekanov-Eliashberg DGA over Z2 are a
bit limited. For example, established DGA does not detect the orientation of
Legendrian knots, and hence induced LCH does not detect the orientation too.
Thus, we would like to introduce the following Chekanov-Eliashberg DGA over
Z[t, t−1], which will produce more powerful invariants of Legendrian knots. We
will follow [EN18].

First, we will fix a base point ∗ in given Legendrian knot K, which is in πL(K)
different from double points. Similarly as before, we would like to define DGA
(AK , ∂K) in terms of algebra, grading, and differential.

The algebra: AK will be a free unital noncommutative Z-algebra generated
by Q(K) and letters t, t−1 satisfying relations t · t−1 = t−1 · t = 1.

The grading: AK will be graded over Z as follows. For t and t−1, we put
|t| = 2r(K) and |t−1| = −2r(K). To any double point a we associate a path γa

along πL(K) starting from a+, going to a− and missing a base point ∗. Then, we
put

|a| = 2r(γa) − 1/2
and expand the grading onto whole AK .

The differential: first, we need to introduce a definition of orientation
sign, which will be associated to each quadrant of crossing in πL(K) as in Figure
4.18.

Figure 4.18: Orientation sign for green coloured quadrants is equal to −1 and for
remaining quadrants is equal to 1.

Let each of a, b1, . . . , bk take a value in Q(K). Similarly as in the proof of
Lemma 14, we associate for u ∈ Ma

b1,...,bk
a set of paths η0, . . . , ηk such that their

union is u(∂Pk+1). Moreover, we now require that ηi follows the orientation of
K. Then, t(ηi) will denote tni(u), where ni(u) is sign count of passing ηi through
the basepoint ∗.

We put
w(u) = t(η0)b0t(η1)b1 . . . t(ηk)bk

and define
δ(u) = δ(a)

k∏
i=1

δ(bi)

as a product of orientations signs of quadrant that covers vertices of u(∂Pk+1).
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Then, the definition of differential ∂K : AK → AK will be the following. For
a generator a of AK , we put

∂K(a) =
∑
k≥0

b1,...,bk∈Q(K)

∑
u∈Ma

b1,...,bk

δ(u)w(u)

and ∂K(t) = ∂K(t−1) = 0. Finally, extend ∂K on AK by Leibniz formula.
Analogues of Lemmata 13–16 and Theorem 17 can be proven for this version

of DGA, see [EN18].

From now on, we will use this new version of DGA.

4.5 A note on Chekanov-Eliashberg DGA
Even though Chekanov-Eliashberg DGA produces, as we will see further, powerful
invariants of Legendrian knots, there is a large class of Legendrian knots that are
not Legendrian isotopic, but have stable tame isomorphic DGAs.

Lemma 19 ([Che02]). Stabilized Legendrian knots have stable tame isomorphic
DGAs. In particular, their Legendrian contact homology vanishes.

Proof. Let K be a Legendrian knot. By the definition of stabilization in La-
grangian projection, we add a double point a with a small loop to K. Using
relation (4.2) we see that the area of the lifted loop is equal to H(a). Hence, we
can add a double point a such that its height is smaller than any other heights
of the double points in πL(S(K)). The only possible contributions of admissi-
ble immersed polygons to ∂S(K)(a) will be admissible immersed monogones. If
there were two contribution by monogones to ∂S(K)(a), then the knot would be
an unstabilized unknot (see Figure 2.2), which leads to the contradiction. And
so, ∂S(K)(a) = tn for some integer n.

Now, we inspect DGA (AS(K), ∂S(K)). Let w be its cycle. Since

∂S(K)(at−nw) = ∂S(K)(a)t−nw + a∂S(K)(t−nw) = w,

w is also a boundary. Thus, (AS(K), ∂S(K)) is stable tame isomorphic to the
trivial algebra, i.e. DGA with only generator a such that ∂(a) = 1. In particular,
LCH∗(S(K)) = 0.
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5. Representations of
Chekanov-Eliashberg DGA

5.1 Augmentations
Since Chekanov-Eliashberg DGA is non-commutative and often not of finite rank,
even in a fixed degree, it is often difficult to compute LCH. In this section, we
would like to introduce augmentations of DGA and linearized LCH, which will
produce some useful invariants of Legendrian knots. We will follow [EN18] and
[Ghi]. Also, F will denote a finite field.

Definition 23. An ungraded augmentation ϵ of DGA (AK , ∂K) into F is an
algebra homomorphism

ϵ : AK → F,

such that ϵ(1) = 1 and ϵ ◦ ∂K = 0.
Moreover, if ϵ(a) = 0 for |a| ≠ 0, then ϵ is called a (graded) augmentation.

Remark. We immediately obtain from the definition above that ϵ(t) is invertible,
hence a nonzero element of F.
Remark. Note that (graded or ungraded) augmentations do not exist for all Leg-
endrian knots, because the existence implies LCH∗ ̸= 0. Hence, by Lemma 19,
we see that it is not possible to construct them for stabilized Legendrian knots.

To have some sufficient condition for the existence of augmentations, we in-
troduce the following theorem.

Theorem 20 ([Rut06]). Let K be a Legendrian knot. Then Kauffman bound of
K is an equality if and only if DGA (AK , ∂K) admits an ungraded augmentation
into Z2.

Remark. Note that it is possible to extend augmentation ϵ over stabilization of
DGA. This can be done simply by sending both e1, e2 to ϵ(e1) = ϵ(e2) = 0.
Hence, the existence of (graded or ungraded) augmentation is an invariant of
Legendrian knot.

However, more important property of augmentations is that they can be used
for linearization of DGA. And thus they consequently produce linearized LCH,
which will have nicer properties to handle than LCH.

Now, we would like to linearize DGA and hence obtain linearized LCH. Let us
assume that ϵ is an augmentation of (AK , ∂K) into F. Next, define DGA (Aϵ

K , ∂),
where

Aϵ
K = AK ⊗ F

⟨t = ϵ(t)⟩ .

It is a free F-algebra generated by Q(K). Since t is invertible, ϵ(t) ̸= 0, and hence
|t| = 0. Thus, grading on Aϵ

K can be simply inherited from grading of AK . And
also, ∂ is obtained from the action of ∂K on AK such that for any a ∈ Aϵ

K , each
occurrence of t±1 in ∂K(a) is replaced by ϵ(t±1) ∈ F×.
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We introduce word length filtration

Aϵ
K = (Aϵ

K)0 ⊃ (Aϵ
K)1 ⊃ · · · ⊃ (Aϵ

K)n ⊃ . . . ,

where (Aϵ
K)n is a subalgebra of Aϵ

K , which is generated as a vector space by words
in Q(K) of length at least n. We would like to have differential on Aϵ

K that
preserves word length filtration. Observe that ∂ preserves word length filtration
on Aϵ

K if and only if ∂(a) does not contain a constant term for any a ∈ Q(K).
But this is never satisfied.

Let φϵ be an elementary automorphism on Aϵ
K , which is given by

φϵ(a) = a + ϵ(a)

for a ∈ Q(K). Then we define a new differential ∂ ϵ
K on Aϵ

K as

∂ ϵ
K = φϵ ◦ ∂ ◦ (φϵ)−1

Clearly, ∂ ϵ
K ◦ ∂ ϵ

K = 0 and ∂ ϵ
K has degree −1.

Lemma 21. ∂ ϵ
K preserves word length filtration on Aϵ

K.
Proof. Let a ∈ Q(K) and ∂(a) = c + ∑

b1 . . . bk for some c ∈ F. Note that
(φϵ)−1(a) = a − ϵ(a), so

∂ ϵ
K = φϵ ◦ ∂(a − ϵ(a))

= φϵ(c +
∑

b1 . . . bk)
= φϵ(c) +

∑
φϵ(b1) . . . φϵ(bk)

= c +
∑

(b1 + ϵ(b1)) . . . (bk + ϵ(bk))
= c +

∑
ϵ(b1) . . . ϵ(bk) + terms in (Aϵ

K)1.

But c + ∑
ϵ(b1) . . . ϵ(bk) = ϵ ◦ ∂(a) = 0, hence ∂ ϵ

K

(
(Aϵ

K)1
)

⊆ (Aϵ
K)1. Trivially,

∂ ϵ
K

(
(Aϵ

K)0
)

⊆ (Aϵ
K)0 and since ∂ ϵ

K satisfies Leibniz formula, the proof for (Aϵ
K)n>1

follows.

Next, (∂ ϵ
K)1 will denote differential induced from ∂ ϵ

K as a map

(∂ ϵ
K)1 :

(
(Aϵ

K)1

(Aϵ
K)2

)
→
(

(Aϵ
K)1

(Aϵ
K)2

)
.

Since (∂ ϵ
K)1 ◦ (∂ ϵ

K)1 = 0 and (∂ ϵ
K)1 has degree −1, we can put the following

definition.
Definition 24. For given augmentation ϵ of (AK , ∂K) into F, we define lin-
earized Legendrian contact homology as

LCHϵ
∗(K) = H∗

(
(Aϵ

K)1

(Aϵ
K)2 , (∂ ϵ

K)1

)
.

Remark. It is also possible to define equivalently LCHϵ
∗(K) as H∗(A, (∂ ϵ

K)1),
where A is F-vector space generated by Q(K) and differential (∂ ϵ

K)1 is defined as
follows. Let a ∈ Q(K), then

(∂ ϵ
K)1(a) =

∑
k≥1

b1,...,bk∈Q(K)

∑
u∈Ma

b1,...,bk

k∑
j=1

δ(u)ϵ(t)
∑k

i=0 ni(u)ϵ(b1) . . . ϵ(bj−1)ϵ(bj+1) . . . ϵ(bk)bj.
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Now, we are going to state the following famous theorem. This theorem was
originally stated by Chekanov [Che02] for augmentations from DGA with Z2
coefficients into Z2. But, the result can be naturally extended for (graded or
ungraded) augmentations from DGA over Z[t, t−1] into F.

Theorem 22. The set{
Isomorphism classes of LCHϵ

∗(K)
⏐⏐⏐⏐⏐ ϵ is a (graded or ungraded)

augmentation of (AK , ∂K) into F

}

is an invariant of Legendrian knot K.
Alternatively, the set of Poincaré polynomials

P ϵ(t) =
∞∑

i=−∞
dim(LCH ϵ

i (K))ti

over all augmentations ϵ of (AK , ∂K) into F is an invariant of K.

Remark. As a consequence of the previous theorem, Chekanov [Che02] gave an
example of two Legendrian knots K1, K2 (see Figure 5.1).

They are both of the topological knot type m(52). Also, rotation numbers are
both equal to 0. And Thurston-Bennequin invariant is for both knots equal to 1.
Hence, they have same classical invariants.

Also, the cardinality of the set of Poincaré polynomials is in both cases equal
to 1. However, the polynomials are different. In the case of K1, we obtain a
polynomial 2+x. But, in the case of K2, we get a polynomial x−2 +x+x2. Thus,
K1 and K2 are not Legendrian isotopic.

Figure 5.1: Chekanov's knot K1 (left) and K2 (right).

5.2 Representations
In this section, we generalize the notion of augmentations into n-dimensional rep-
resentations, where augmentations can be seen as 1-dimensional representations.

Definition 25. An ungraded n-dimensional representation ϵ of (AK , ∂K)
into F is an algebra homomorphism

ϵ : AK → Mat(n,F),

such that ϵ(1) = 1 and ϵ ◦ ∂K = 0.
Moreover, if ϵ(a) = 0 for |a| ≠ 0, then ϵ is called a (graded) n-dimensional
representation.
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Remark. Analogously, the existence of representation implies nonvanishing LCH.
And hence, it is not possible to construct (graded or ungraded) representations
of stabilized knots.
Remark. Also, nonvanishing LCH is not a sufficient condition for the existence of
representation. Sivek gave an example of m(10132) knot (see Figure 5.2) that has
nonvanishing LCH, but do not admit any representation into Z2. Note that the
result can be generalized for representations into F, see [DRG15].

Figure 5.2: Front diagram of Legendrian knot m(10132).

We continue with an important remark.
Remark. Sivek [Siv13] described that (p, −q)-torus knots with p ≥ 3 odd and
q > p (see 5.3) admit ungraded 2-dimensional representations into Z2, but do not
admit ungraded 1-dimensional representations into Z2. From this perspective,
studying higher dimensional representations is meaningful.

Figure 5.3: Front diagram of (3, −4)-torus knot.

Remark. The definition of Chekanov-Eliashberg DGA can be extended for Leg-
endrian links with a base point for each component. Also, for Legendrian links,
we can extend a definition of (graded or ungraded) n-dimensional representation.
For details, we refer the reader to [Ng03].
Remark. Now, we introduce an interesting connection between augmentations and
higher dimensional representations. But first, we make the following construction.

Let K be a Legendrian knot and n is a positive integer. In front projection,
we construct a Legendrian link K ′ consisting n-copies of K, where each of them is
different from all others by a small shift in z direction. Then take a small segment
of K ′ that is oriented from left to right and does not contain any singularities.
And replace such a segment with a positive full twist, see Figure 5.4. Finally,
denote the resulting link by K(n). This construction is a well-defined operation
on Legendrian knots, see [NT04].
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Figure 5.4: Positive full twist of 5 parallel straight lines.

Theorem 23 ([NR13]). Let K be a Legendrian knot. Then DGA (AK , ∂K) admits
ungraded n-dimensional representation into Z2 if and only if DGA (AK(n) , ∂K(n))
admits ungraded augmentation into Z2.
Remark. Linearized LCH can be stated also for n-dimensional representations,
where n > 1. For details, we refer the reader to [CRGG16].
Definition 26. Two representations ϵ1, ϵ2 : AK → Mat(n,F) are called equiva-
lent, if there is a vector space isomorphism f : Fn → Fn such that f ◦ ϵ1 = ϵ2 ◦ f
for each a ∈ AK.
Definition 27. Representation ϵ : AK → Mat(n,F) is called irreducible if
trivial subspaces are the only subspaces V ⊆ Fn such that ϵ(a)V ⊆ V for each
a ∈ AK.

5.3 Exact Lagrangian cobordisms
Here, we give a brief introduction to exact Lagrangian cobordisms and show an
interesting consequence to representations of Chekanov-Eliashberg DGA.
Definition 28. Let L1, L2 be Legendrian links. We say that surface Σ in

(
Rt ×

R3
x,y,z, d(etαstd)

)
is an exact Lagrangian cobordism from L1 to L2 (see Figure

5.5) and write L1 ≺Σ L2 if there exists T > 0 such that the following holds:

(i.) Σ ∩
(
(T, ∞) × R3

)
= (T, ∞) × L2,

(ii.) Σ ∩
(
(−∞, −T ) × R3

)
= (−∞, −T ) × L1,

(iii.) there exists a smooth function f : Σ → R such that etαstd|T Σ = df and f is
a constant when t ≤ −T and t ≥ T .

Also, (T, ∞) × L2 ⊂ Σ and (−∞, −T ) × L1 ⊂ Σ are called positive and
negative end of Σ, respectively.

If Σ is diffeomorphic to a cylinder, then we call such an exact Lagrangian
cobordism a concordance.

L2
t

N

−N

L1

Figure 5.5: Exact Lagrangian cobordism Σ.
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Definition 29. Let L1, L2, L3 be Legendrian links such that L1 ≺Σ1,2 L2 and
L2 ≺Σ2,3 L3. Concatenation of Σ1,2 and Σ2,3 is an exact Lagrangian cobordism
from L1 to L3 obtained by gluing the positive end of Σ1,2 with the negative end of
Σ2,3. We denote such an exact Lagrangian cobordism by Σ1,2 ⊙ Σ2,3.

Remark. It is possible to establish the category Cob of exact Lagrangian cobor-
disms. Objects will be Lagrangian links and morphisms will be exact Lagrangian
cobordisms between them. Then, the composition of morphisms in Cob will be
concatenation and identity morphism for Legendrian link L is given as an exact
Lagrangian cobordism R × L.

As is shown in the following theorem, there is a contravariant functor Φ from
Cob to dg.

Theorem 24 ([EHK16], [Kar19]). If L1 ≺Σ L2, then there is an induced chain
map

ΦΣ : (AL2 , ∂L2) → (AL1 , ∂L1)
such that

(i.) if L1 ≺Σ1,2 L2 and L2 ≺Σ2,3 L3, then ΦΣ1,2⊙Σ2,3 = ΦΣ1,2 ◦ ΦΣ2,3,

(ii.) if L1 ≺Σ L2 and L2 ≺Σ̂ L1 and Σ is isotopic through exact Lagrangian
cobordisms with Σ̂, then ΦΣ and ΦΣ̂ are chain homotopic,

(iii.) ΦR×L = IdAL
.

Theorem 25 ([EHK16]). Let L1, L2 be Legendrian links. There is an exact La-
grangian cobordism Σ from L1 to L2 if L1 is obtained from L2 by one of the
following:

(i.) Legendrian isotopy; Σ is in this case a concordance,

(ii.) deleting an unstabilized unknot component of L2 that is contractible in the
complement of the remainder of L2,

(iii.) a saddle move in front projection as in Figure 5.6.

Figure 5.6: Saddle move in front projection between L2 (left) and L1 (right).

Definition 30. Exact Lagrangian cobordisms from the previous theorem are called
elementary and exact Lagrangian cobordism obtained by their concatenation is
called decomposable.

Theorem 26 ([CRGG15]). If there is a concordance L1 ≺Σ L2, then the chain
map ΦΣ induces an inclusion{

n-dim representation
of (AL1 , ∂L1)

}
isomorphism ↪→

{
n-dim representation

of (AL2 , ∂L2)

}
isomorphism .
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Corollary 27. The number of equivalence classes of n-dimensional representa-
tions is an invariant of Legendrian knot.

Proof. Let K1 be a Legendrian knot Legendrian isotopic to K2. For i = 1, 2, Ii

will denote the set of equivalence classes of n-dimensional representations from
(AKi

, ∂Ki
) into F. Since F is finite, Ii are also finite.

By Theorem 25, it follows that K1 is concordant to K2. And hence, Theorem
26 induces the inclusion from I1 to I2. However, K2 is also Legendrian isotopic to
K1. Thus, we analogously obtain an inclusion from I2 to I1. Then, the corollary
follows.
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6. Computations
Recall that Sivek's higher dimensional representations for torus knots were all
ungraded [Siv13]. In this chapter, we would like to describe an example of higher
dimensional representations that are graded. More precisely, we will study ir-
reducible higher dimensional representations, since these are representations not
coming from augmentations.

And hence, we are going to find, how many different 2-dimensional irreducible
2-graded representations over Z2 we can get for Legendrian knot K, see Figure
6.1. Observe that K is really a Legendrian knot, since πL(K) can be obtained by
Lemma 10 from πF (m(52)), which is defined on Figure 2.2.

c2

+

c3+

e4

+

b

+

a
+

c1 +

e3+

e1
+

e2
+

∗

Figure 6.1: Legendrian knot K in Lagrangian projection.

Chekanov-Eliashberg DGA algebra with a basepoint (AK , ∂K) is generated
by 9 double points a, b, c1, c2, c3, e1, e2, e3, e4. Now, we compute the grading of
generators. Since the rotation number r(K) is equal to 0, the grading is given by

|a| = |b| = |c1| = |c2| = |c3| = |t| = |t−1| = 0 and |e1| = |e2| = |e3| = |e4| = 1.

Next, we compute the differential ∂K on generators. Clearly,

∂Ka = ∂Kb = ∂Kc1 = ∂Kc2 = ∂Kc3 = 0.

There are 3 disks contributing to the count of ∂Ke1 (Figure 6.2), thus

∂Ke1 = t + c3 + c3ba.

Figure 6.2: 3 disks contributing to ∂Ke1.
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For ∂Ke2, there are 5 disks (Figure 6.3), thus

∂Ke2 = 1 − abc1 − c1 − a − ac2c3.

Figure 6.3: 5 disks contributing to ∂Ke2. In the second row left, there is an
admissible immersed disk, where the dark part describes immersion 2 to 1. On
the right, we visualize the same disk with two overlapping parts that correspond
to the dark blue area on the left.

For ∂Ke3, there are 2 disks (Figure 6.4), thus

∂Ke3 = 1 + c1c2.

Figure 6.4: 2 disks contributing to ∂Ke3.

And finally, for ∂Ke4, there are also 2 disks (Figure 6.5), thus

∂Ke4 = 1 + c3c2.

Figure 6.5: 2 disks contributing to ∂Ke4.

Now, we are going to state the following proposition, which is the analog to
the Proposition 3.15. in [LR18].

Proposition 28. There is a bijection

Repgrad(K,Z2
2) ↔ {(A, B) ∈ Mat(2,Z2) × Mat(2,Z2)|M1(AB) = {∅}},

where Repgrad(K,Z2
2) denotes the set of graded 2-dimensional representations of

(AK , ∂K) into Z2. Also, M1(AB) denotes the set of 1-eigenvectors of the matrix
AB.
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Proof. We would like to show that the map f ∈ Repgrad(K,Z2
2) ↦→ (A, B) =

(f(a), f(b)) is our required bijection.
Take f ∈ Repgrad(K,Z2

2). From the fact that f ◦ ∂K(e1) = 0, it follows that
f(c3)(I2 + f(b)f(a)) = f(t). Since t is invertible, f(t) must be an invertible
element of Mat(2,Z2). Hence, I2 + f(b)f(a) is invertible and BA has not 1
as an eigenvalue. Because AB and BA have same eigenvalues, M1(AB) = {0}
as required. (The last statement follows from the fact that if λ ∈ Z2 and v ∈
Mλ(BA) is a nonzero vector, then A(v) ∈ Mλ(AB). And analogously for opposite
direction.)

On the other hand, there is an inverse map mapping a pair (A, B), such that
M1(AB) = {0}, to the element f ∈ Repgrad(K,Z2

2), which is given by

f(a) = A, f(b) = B, f(c1) = (I2 + AB)−1,

f(c2) = I2 + AB, f(c3) = (I2 + AB)−1, f(t) = (I2 + AB)−1(I2 + BA)

and f(ei) = 0 for i ∈ {1, . . . , 4}, because we need graded representation. Also,
since (I2+BA) is invertible, f(t−1) can be correctly defined as (f(t))−1. Next, f is
as an (unital) algebra homomorphism, thus the corresponding element to (A, B)
is uniquely defined on the whole AK . By the linearity and Leibniz formula, we
see that f ◦ ∂K = 0, so we are done.

To find irreducible representations, we will often use the following lemma.

Lemma 29. Let f be an element of Repgrad(K,Z2
2) and (A, B) corresponding

matrices as in the previous lemma. Then, f is irreducible if and only if A and B
have no common eigenvector.

Proof. Let v be a nonzero element of Z2
2 such that f(a)v = λav and f(b)v = λbv

for some λa, λb ∈ Z2. We would like to show that f(x)v ∈ span{v} for any
x ∈ AK . Since f is algebra homomorphism, it is sufficient to check this condition
only for generators of AK :

f(ei)v = 0 for i ∈ {1, . . . , 4},

f(c1)v = (1 + λaλb)−1v = v,

f(c2)v = (1 + λaλb)v = v,

f(c3)v = (1 + λaλb)−1v = v,

f(t)v = (1 + λaλb)−1(1 + λbλa)v = v,

f(t−1)v = (f(t)−1)v = v,

where we used the fact that M1(AB) = {0}, and the knowledge from linear
algebra that inverse matrix have same eigenvectors with inverse eigenvalues.

On the other hand, if f is reducible, then by the definition there exists a
nontrivial subspace V of Z2

2 such that f(x)V ⊆ V for any x ∈ AK . Since V is
1-dimensional, V = span{v} for some v ∈ V and v is an eigenvector of A and B.
And hence f is reducible.

Now, we conclude to the computation of the irreducible representations. With
Proposition 28 in mind, we are going to find pairs (A, B) that will correspond to
irreducible representations.
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We will denote the entries of A, B and AB by (aij)i,j=1,2, (bij)i,j=1,2 and (xij)i,j=1,2,
respectively.

Observe that in Z2
2 there are 3 nontrivial subspaces. They are given by the

span of (0, 1)T , (1, 0)T and (1, 1)T .
Since AB can not have 1 as an eigenvalue, there are only two possibilities for

a characteristic polynomial PAB(λ):

PAB(λ) =

⎧⎨⎩λ2 case 1,

λ2 + λ + 1 case 2.

Case 1: From the characteristic polynomial, we see that x11x22 + x12x21 = 0
and x11 + x22 = 0. Thus, there are only 4 possibilities for the matrix AB:(

0 0
0 0

)
,

(
1 1
1 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
.

a) AB =
(

0 0
0 0

)
:

Note that AB has 2-dimensional kernel. If at least one of A and B has also
2-dimensional kernel, then by Lemma 29 the second matrix has no eigenvector.
And there are only 2 matrices with this property in Mat(2,Z2). So, we obtain
the following four irreducible representations:[(

0 0
0 0

)
,

(
0 1
1 1

)]
,[(

0 0
0 0

)
,

(
1 1
1 0

)]
,[(

0 1
1 1

)
,

(
0 0
0 0

)]
,[(

1 1
1 0

)
,

(
0 0
0 0

)]
.

Otherwise, assume that both A and B have 1-dimensional kernel. Let va be a
0-eigenvector of A, i.e. span of va is equal to ker(A). Then, the matrix B maps
va to some vector vb. Since AB is a zero matrix, vb ∈ ker(A). Because ker(A) is
1-dimensional, vb is equal to 0 or va. Hence, va is an eigenvector of B. But, it is
a contradiction to Lemma 29.

b) AB =
(

1 1
1 1

)
:

We have that
(

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a11a22

)
=
(

1 1
1 1

)
, which is a matrix

with the only eigenvector (1, 1)T . Hence, by Lemma 29, a pair (A, B) will repre-
sent an irreducible representation if and only if (1, 1)T is not an eigenvector of A
or B.

Since (1, 1)T is 0-eigenvector of AB, there are several possibilities of nonzero
vectors vB such that B(1, 1)T = vB and AvB = 0. If B(1, 1)T = 0, there are also
few possibilities of vectors vA such that A(1, 1)T = vA. And for each vB (respective
vA), we will find matrices A, B that correspond to irreducible representations:
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•

⎧⎨⎩B(1, 1)T = (1, 0)T (∗),
A(1, 0)T = (0, 0)T (∗∗).

(In this case, vB = (1, 0)T .) We obtain from (∗∗) that a11 = a21 = 0.

Thus,
(

a12b21 a12b22
a22b21 a11a22

)
=
(

1 1
1 1

)
. And from (∗) : b11 + b12 = 0, we get the

following two irreducible representations:[(
0 1
0 1

)
,

(
0 1
1 1

)]
,

[(
0 1
0 1

)
,

(
1 0
1 1

)]
.

•

⎧⎨⎩B(1, 1)T = (0, 1)T (∗),
A(0, 1)T = (0, 0)T (∗∗).

We obtain from (∗∗) that a12 = a22 = 0. Thus,
(

a11b11 a11b12
a21b11 a21b12

)
=
(

1 1
1 1

)
.

And from (∗) : b21 + b22 = 0, we get the following two irreducible represen-
tations: [(

1 0
1 0

)
,

(
1 1
1 0

)]
,

[(
1 0
1 0

)
,

(
1 1
0 1

)]
.

•

⎧⎨⎩B(1, 1)T = (1, 1)T ,

A(1, 1)T = (0, 0)T .

This case will not add any irreducible representation by Lemma 29.

•

⎧⎨⎩B(1, 1)T = (0, 0)T (∗),
A(1, 1)T = (0, 1)T (∗∗).

(In this case, vB = (0, 0)T and vA = (0, 1)T .)From (∗∗), since x11 = 1, we
get that a11 = a12 = 1. By (∗) and x12 = x21 = 1, we obtain the following
two irreducible representations:[(

1 1
1 0

)
,

(
1 1
0 0

)]
,

[(
1 1
0 1

)
,

(
0 0
1 1

)]
.

•

⎧⎨⎩B(1, 1)T = (0, 0)T (∗),
A(1, 1)T = (1, 0)T (∗∗).

From (∗∗), since x22 = 1, we get that a21 = a22 = 1. By (∗) and x12 =
x21 = 1, we obtain the following two irreducible representations:[(

1 0
1 1

)
,

(
1 1
0 0

)]
,

46



[(
0 1
1 1

)
,

(
0 0
1 1

)]
.

•

⎧⎨⎩B(1, 1)T = (0, 0)T ,

A(1, 1)T = (1, 1)T or (0, 0)T .

Neither of both cases will contribute with an irreducible representation by
Lemma 29.

c) AB =
(

0 1
0 0

)
:

We have that
(

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a11a22

)
=
(

0 1
0 0

)
, which is the matrix

with the only eigenvector (1, 0)T . So, we will be looking for a pair (A, B) such
that (1, 0)T is not an eigenvector of A or B.

Similarly, as in b), there are the following cases:

•

⎧⎨⎩B(1, 0)T = (1, 0)T ,

A(1, 0)T = (0, 0)T .

This case will not add any irreducible representation by Lemma 29.

•

⎧⎨⎩B(1, 0)T = (0, 1)T (∗),
A(0, 1)T = (0, 0)T (∗∗).

From (∗) and (∗∗), we obtain that a12 = a22 = b11 = 0 and b21 = 1. Next,
since 1 = x12 = a11b12 +0, we get a11 = b12 = 1. Finally, from x22 we obtain
the following two irreducible representations:[(

1 0
0 0

)
,

(
0 1
1 1

)]
,

[(
1 0
0 0

)
,

(
0 1
1 0

)]
.

•

⎧⎨⎩B(1, 0)T = (1, 1)T (∗),
A(1, 1)T = (0, 0)T (∗∗).

We obtain from (∗) that b11 = b21 = 1. Next, it follows from x12 and (∗∗)
that a11 = a12 = 1. x12 gives us two possibilities for a pair (b12, b22) = (0, 1)
or (1, 0). Then, from x22 and (∗∗) we conclude the following two irreducible
representations: [(

1 1
0 0

)
,

(
1 1
1 0

)]
,

[(
1 1
0 0

)
,

(
1 0
1 1

)]
.

•

⎧⎨⎩B(1, 0)T = (0, 0)T ,

A(1, 0)T = (1, 0)T or (0, 0)T .

Both cases will not contribute by any irreducible representations by Lemma
29.
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•

⎧⎨⎩B(1, 0)T = (0, 0)T (∗),
A(1, 0)T = (0, 1)T (∗∗).

Immediately, we obtain from (∗) and (∗∗) that a11 = b11 = b21 = 0 and
a21 = 1. Next, from x12 we get that a12 = b22 = 1. Finally, from x22 we
conclude the following two irreducible representations:[(

0 1
1 1

)
,

(
0 1
0 1

)]
,

[(
0 1
1 0

)
,

(
0 0
0 1

)]
.

•

⎧⎨⎩B(1, 0)T = (0, 0)T (∗),
A(1, 0)T = (1, 1)T (∗∗).

Immediately, we obtain from (∗) and (∗∗) that b11 = b21 = 0 and a11 =
a21 = 1. If a12 = 0, then we obtain the following irreducible representation:[(

1 0
1 1

)
,

(
0 1
0 1

)]
.

Otherwise, if a12 = 1, then we conclude from x12 and x22 that b12 = 0 and
get the following irreducible representation:[(

1 1
1 0

)
,

(
0 0
0 1

)]
.

d) AB =
(

0 0
1 0

)
:

Lemma 30. For any irreducible representation (A, B) such that AB =
(

0 0
1 0

)
,

there is an irreducible representation (BT , AT ) such that BT AT =
(

0 1
0 0

)
. More-

over, this correspondence is bijection between irreducible representations with
product AB equal to

(
0 0
1 0

)
and

(
0 1
0 0

)
.

Proof. Fist, we make the following observation. Let V be a finite-dimensional
vector space. Also, f will denote a linear map f : V → V and f ∗ will be a dual
map f ∗ : V ∗ → V ∗. Note that if v is λ-eigenvector of f , then also f ∗(v∗) = λv∗.

It is well known that for any matrix a dual map can be seen as a transpose
matrix. Hence, it follows that if two matrices have a common eigenvector, then
also their transpose matrices have a common eigenvector. By Lemma 29 and the
fact that 2-times transpose matrix is the same matrix, we obtain our required
bijective correspondence.

By the previous lemma and the case c), we immediately obtain all irreducible
representations for d): [(

0 0
1 1

)
,

(
0 1
1 1

)]
,

[(
0 0
0 1

)
,

(
0 1
1 0

)]
,
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[(
0 0
1 1

)
,

(
1 1
0 1

)]
,[(

0 0
0 1

)
,

(
1 1
1 0

)]
,[(

0 1
1 1

)
,

(
1 0
0 0

)]
,[(

0 1
1 0

)
,

(
1 0
0 0

)]
,[(

1 1
1 0

)
,

(
1 0
1 0

)]
,[(

1 1
0 1

)
,

(
1 0
1 0

)]
.

Case 2: Characteristic polynomial has in this case no root. Hence, AB has
no eigenvector and representation, which is given by (A, B), is automatically
irreducible. There are two possibilities for the product AB:(

0 1
1 1

)
,

(
1 1
1 0

)
.

e) AB =
(

0 1
1 1

)
:

We have the the following system of equations
(

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a11a22

)
=(

0 1
1 1

)
. Now, if we look at x22, we would like to distinguish several cases:

• (a21, b12, a11, a22) = (0, 0, 1, 1): it follows from x12 and x21 that a12 = b21 =
1. Then, from x11, we get a11 = b11 = 1. So, the concluded irreducible
representation: [(

1 1
0 1

)
,

(
1 0
1 1

)]
.

• (a21, b12, a11, a22) = (1, 0, 1, 1): we obtain from x12 that a12 = 1. Then, from
x11 and x21, we conclude to the following irreducible representation:[(

0 1
1 1

)
,

(
1 0
0 1

)]
.

• (a21, b12, a11, a22) = (0, 1, 1, 1): we obtain from x21 that b21 = 1. Then, from
x11 and x12, we conclude to the following irreducible representation:[(

1 0
0 1

)
,

(
0 1
1 1

)]
.

• (a21, b12, a11, a22) = (1, 1, 0, 0): it follows from x12 and x21 that a11 = b11 =
1. Then, from x11, we get a12 = b21 = 1. So, the concluded irreducible
representation: [(

1 1
1 0

)
,

(
1 1
1 0

)]
.
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• (a21, b12, a11, a22) = (1, 1, 1, 0): we obtain from x12 that a11 = 1. Then, from
x11 and x21, we conclude to the following irreducible representation:[(

1 0
1 1

)
,

(
0 1
1 0

)]
.

• (a21, b12, a11, a22) = (1, 1, 0, 1): we obtain from x21 that b11 = 1. Then, from
x11 and x12, we conclude the following irreducible representation:[(

0 1
1 0

)
,

(
1 1
0 1

)]
.

f) AB =
(

1 1
1 0

)
:

Lemma 31. For any irreducible representation (A, B) such that AB =
(

0 1
1 1

)
,

there is a irreducible representation (
(

0 1
1 0

)
A, B

(
0 1
1 0

)
) such that

(
0 1
1 0

)
AB

(
0 1
1 0

)
=(

1 1
1 0

)
. Moreover, this correspondence is a bijection between irreducible represen-

tations with product AB equal to
(

0 1
1 1

)
and

(
1 1
1 0

)
.

Proof. It immediately follows from the fact that(
0 1
1 0

)(
0 1
1 1

)(
0 1
1 0

)−1

=
(

1 1
1 0

)

and
(

0 1
1 0

)(
0 1
1 0

)
= I2, so the correspondence is a bijection.

By the previous lemma and the case e), we immediately obtain all irreducible
representations for f): [(

0 1
1 1

)
,

(
0 1
1 1

)]
,

[(
1 1
0 1

)
,

(
0 1
1 0

)]
,

[(
0 1
1 0

)
,

(
1 0
1 1

)]
,

[(
1 0
1 1

)
,

(
1 1
0 1

)]
,

[(
1 1
1 0

)
,

(
1 0
0 1

)]
,

[(
1 0
0 1

)
,

(
1 1
1 0

)]
.

Now, to distinguish irreducible representations, we are going to sort them into
equivalence classes.
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Note that there are only 5 nontrivial vector space isomorphisms on Z2
2:

α =
(

0 1
1 0

)
, β =

(
1 0
1 1

)
, γ =

(
1 1
0 1

)
, δ =

(
1 1
1 0

)
, ϵ =

(
0 1
1 1

)
.

Since β ◦ γ = δ and γ ◦ β = ϵ, we will use only α, β, γ to find equivalence classes.
Observe, how these isomorphisms will change by conjugating some arbitrary ele-
ment of Mat(2,Z2):

α

(
a b
c d

)
α−1 =

(
d c
b a

)
,

β

(
a b
c d

)
β−1 =

(
a + c a + b + c + d

c c + d

)
,

γ

(
a b
c d

)
γ−1 =

(
a + b b

a + b + c + d b + d

)
.

With this in mind, I found (by hand) 10 equivalence classes of irreducible
representations:

1.

⎧⎨⎩
[(

0 0
0 0

)
,

(
0 1
1 1

)]
,

[(
0 0
0 0

)
,

(
1 1
1 0

)]⎫⎬⎭
2.

⎧⎨⎩
[(

0 1
1 1

)
,

(
0 0
0 0

)]
,

[(
1 1
1 0

)
,

(
0 0
0 0

)]⎫⎬⎭
3.

⎧⎨⎩
[(

0 1
1 1

)
,

(
0 1
1 1

)]
,

[(
1 1
1 0

)
,

(
1 1
1 0

)]⎫⎬⎭
4.

⎧⎨⎩
[(

1 1
1 0

)
,

(
1 0
0 1

)]
,

[(
0 1
1 1

)
,

(
1 0
0 1

)]⎫⎬⎭
5.

⎧⎨⎩
[(

1 0
0 1

)
,

(
1 1
1 0

)]
,

[(
1 0
0 1

)
,

(
0 1
1 1

)]⎫⎬⎭
6.

⎧⎨⎩
[(

1 1
0 1

)
,

(
0 1
1 0

)]
,

[(
0 1
1 0

)
,

(
1 0
1 1

)]
,

[(
1 0
1 1

)
,

(
1 1
0 1

)]
,

[(
1 1
0 1

)
,

(
1 0
1 1

)]
,

[(
1 0
1 1

)
,

(
0 1
1 0

)]
,

[(
0 1
1 0

)
,

(
1 1
0 1

)]⎫⎬⎭
7.

⎧⎨⎩
[(

1 0
1 1

)
,

(
1 1
0 0

)]
,

[(
1 1
0 1

)
,

(
0 0
1 1

)]
,

[(
0 1
1 0

)
,

(
0 0
0 1

)]
,

[(
1 0
1 1

)
,

(
0 1
0 1

)]
,

[(
0 1
1 0

)
,

(
1 0
0 0

)]
,

[(
1 1
0 1

)
,

(
1 0
1 0

)]⎫⎬⎭
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8.

⎧⎨⎩
[(

0 1
1 1

)
,

(
0 0
1 1

)]
,

[(
1 1
1 0

)
,

(
1 1
0 0

)]
,

[(
0 1
1 1

)
,

(
0 1
0 1

)]
,

[(
1 1
1 0

)
,

(
0 0
0 1

)]
,

[(
0 1
1 1

)
,

(
1 0
0 0

)]
,

[(
1 1
1 0

)
,

(
1 0
1 0

)]⎫⎬⎭
9.

⎧⎨⎩
[(

0 1
0 1

)
,

(
0 1
1 1

)]
,

[(
1 0
1 0

)
,

(
1 1
1 0

)]
,

[(
1 0
0 0

)
,

(
0 1
1 1

)]
,

[(
1 1
0 0

)
,

(
1 1
1 0

)]
,

[(
0 0
1 1

)
,

(
0 1
1 1

)]
,

[(
0 0
0 1

)
,

(
1 1
1 0

)]⎫⎬⎭
10.

⎧⎨⎩
[(

0 1
0 1

)
,

(
1 0
1 1

)]
,

[(
1 0
1 0

)
,

(
1 1
0 1

)]
,

[(
1 0
0 0

)
,

(
0 1
1 0

)]
,

[(
1 1
0 0

)
,

(
1 0
1 1

)]
,

[(
0 0
0 1

)
,

(
0 1
1 0

)]
,

[(
0 0
1 1

)
,

(
1 1
0 1

)]⎫⎬⎭
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List of Abbreviations
S unital commutative ring
F,F× finite field, set of nonzero elements of F
G cyclic group
TM tangent bundle of M
Γ(ξ) space of sections of the plane field ξ
αstd standard contact form
ξstd standard contact structure
iX contraction by a vector field X (interior product)
αstd standard contact form
LX Lie derivative with respect to the vector field X
R Reeb vector field
K Legendrian knot
L Legendrian link
T topological knot
D knot diagram
πF , πL front and Lagrangian projections, respectively
|| · || Euclidean norm
r(K) rotation number of K
tb(K) Thurston-Bennequin invariant of K
#P, #N number of positive and negative crossings, respectively
S±(K) positive and negative stabilization of K, respectively
FK(a, z) Kauffman polynomial of K
Q(K) set of double-points in πL(K)
Pk+1 (k + 1)-sided convex polygon
Mb0,...,bk

set of immersed polygons with vertices b0, . . . , bk

Ma
b1,...,bk

set of admissible immersed polygons with vertices a, b1, . . . , bk

DGA (Chekanov-Eliashberg) differential graded algebra
(AK , ∂K) Chekanov-Eliashberg DGA of K
|a| degree of a ∈ AK

LCH Legendrian contact homology
H height function on double-points in πL(K)
γ, η paths along πL(K)
e1, e2 “new” generators of the stabilized DGA
δ(u) product of orientation signs of vertices in admissible immersed

polygon u
ni(u) sign count of passing ηi through the basepoint ∗
ϵ augmentation or more generally representation of DGA (only in

the proof of Theorem 17 “ϵ” denotes small positive real number)
LCHϵ linerize LCH by the augmentation ϵ
Σ exact Lagrangian cobordism
L1 ≺Σ L2 cobordance Σ from L1 to L2
Σ1 ⊙ Σ2 concatenation of Σ1 and Σ2
Cob, dg categories of exact Lagrangian cobordisms and DGAs, resp.
Φ contravariant functor from Cob to dg
Repgrad(K,Z2

2) set of graded 2-dimensional representations of (AK , ∂K) into Z2
M1(A) set of 1-eigenvectors of the matrix A
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