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1 Introduction
A rolling turbine, also called a precession turbine or SETUR (SEdláček’s TURbine)
is a low-head water turbine invented by Czech engineer Miloš Sedláček in 1998 and
is utilized to generate electricity on small rivers and streams. Main advantages of
this design are (see [1], [4], [15]):

• Simplicity of construction and low maintenance costs.

• Reasonable efficiencies in range of 43-48% even for hydraulic heads bellow
1.6 m and flow rates below 3 l/s.

• The turbine is environment friendly and can be used in ecologically protected
areas.

The turbine consist of an axially symmetric rotor inside a conical duct (the stator)
to which it is connected by a shaft that is allowed to swivel freely around it’s
anchor point. When the rolling turbine runs, the rotor performs both rotary
and precession movement — the latter is then used as a source of mechanical
power which can be easily converted to electricity. Interestingly, the rotor has
completely smooth shape1 and does not have any blades, propellers or buckets.
The hydraulic principle that powers this turbine is still unknown and is a subject
of an ongoing scientific research, which currently lags behind experiments and
applications. Simply put, it is known that SETUR is a functional design, but
little is known about why. Naturally, this is a major obstacle in attempts to
perfect this turbine.
This thesis attempts to resolve this problem. Although the dynamics of rolling
turbines seems to be complex and non-linear, we suggest that basic understanding
can be achieved relatively easily and using mostly linear theory. In developing our
hypothesis, we aimed to explain numerous peculiar properties of SETUR obtained
in the experiments. These are2:

1. Initially, the rotor and the stator are in a concentric configuration. When
the water flows, the rotor will stick to the wall by itself. (Note that the rotor
can be suspended from above and the rotor is heavier than water so this
motion can occur against the force of gravity.)

2. If the rolling turbine has an axially symmetric design, then the direction of
the precession is essentially random, meaning that it likely depends only on
small imperfections and initial perturbations.

1Commonly used shapes are spheres, cones, hemispheres and disks.
2This list is based on our correspondence with Miloš Sedláček and on [1].
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3. The water can be ducted tangentially, such that a vortex is generated at
the inflow. Even in this case, the turbine can precede both in the
direction of the vortex or against it. However, obtained power is some-
what smaller in the second case. The direction of precession can be swapped
manually on the run — a brief mechanical impulse is sufficient.

4. When the rotor’s swivel is obstructed in one direction, the rotor begins to
vibrate erratically instead.

5. Thin gap between the rotor and the stator is a vital part of the design. Also,
the rotor must have a convergent geometry, such that it’s cross sectional area
decreases in the direction of flow.

6. When the precession is performed manually, the turbine can operate as a
water pump.

(a) top view
(b) side view

Figure 1: Schematic representation of a hemispherical rolling turbine.

Section 2 contains only standard theory and can be skipped freely. The section 3 is
an analysis of the quiescent concentric configuration. This section is a recalculation
of the paper [3]. The most important section is 4. There, we will introduce the idea
of drag inversion and we will try to explain it in a special setting, where the turbine
is already rolling steadily. We will see, that it is consistent with the property 3
above. Generalizing this to non-orbital motion and simplifying, we obtain an ODE
system for the rotor and we will show that it is in accordance with properties 1,2
and 4. Finally, in 5, we will put these ideas into test using numerical methods.
This will also allow us to take into account the geometry without simplifications,
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which shows consistency with property 5. What is still unclear to the author is the
relation between the motion of the rotor and the gradient of pressure needed for
turbine performance. This is also related to property 6. Regarding this question,
more research will be needed.
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2 Fluid mechanics: preliminaries
The purpose of this chapter is to recall some central concepts of fluid mechanics
(Navier-Stokes, Euler’s equations, etc.) and to make the reader familiar with our
notation. Only brief motivations are provided - for more detailed discussion see
[2].

2.1 Cauchy momentum equations
Let U denote a volume occupied by a fluid. In general (and this is indeed the
case for a turbine) the domain U may vary with time, i.e. U = U(t) for t in
some interval I (the time span of interest). We shall assume that U is an open
and connected domain for all times t and is changing with time in a continuous
manner, meaning that for every t0 in I and every x0 in U(t0) we can find δ > 0
and an open ball B around x0 such that B ⊂ U(t) for all t ∈ (t0 − δ, t0 + δ). The
total space-time domain will be denoted by

U = {(x, t) ∈ U(t), t ∈ I} (1)

To derive the equations, the first thing we consider is the conservation of mass:
Let x0 ∈ U(t0) and find B as above. We postulate that the change of mass inside
the volume B must equate the amount of flux trough its boundary (meaning that
no mass is being "lost"). This can be expressed integral-wise as

d
dt

∫︂
B
ρ dx = −

∫︂
∂B
ρu · n dS, (2)

where ρ ∈ C1(U) is density of the fluid, u ∈ C2(U ,R3) is the Eulerian velocity field
and n is the outward normal. On the left, we can swap the order of integration
and time-derivation. The right hand side can be turned into a volume integral
using the Green’s formula. This yields

∫︂
B

[︄
∂ ρ

∂ t
+ div (ρu)

]︄
dx = 0. (3)

Now, this must hold for arbitrary choice of x0 and arbitrarily small B. Since the
integrand is continuous, this is only possible if

∂ ρ

∂ t
+ div (ρu) = 0 (4)

point-wise for any (x, t) ∈ U . This result is known as the continuity equation. Some
fluids, like water, are extremely difficult to compress and then we may suppose that
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the density ρ is constant throughout space and time. This allows us to simplify
and write

div u = 0. (5)

Secondly, we consider the Newton’s second law. In this setting, it tells us that the
change of momentum inside B is equal to the flux of momentum through bound-
ary plus the total amount of volume forces f ∈ C(U ,R3) (such as gravitation)
and the surface forces (such as pressure) given by stress tensor T ∈ C1(U ,R3×3).
Mathematically, this gives the following

d
dt

∫︂
B
ρu dx = −

∫︂
∂B
ρ (u ⊗ u) n dS +

∫︂
B
ρf dx +

∫︂
∂B

Tn dS. (6)

Again, by using Green’s theorem and deriving after the integration sign we can
turn this equation into one volume integral over B:

∫︂
B

{︄
∂ (ρu)
∂ t

+ div [ρ (u ⊗ u)] − ρf − divT
}︄

dx = 0. (7)

As before, this can be satisfied for every B only when

∂ (ρu)
∂ t

+ div [ρ (u ⊗ u)] = ρf + divT. (8)

Using the continuity equation (4), we have

∂ (ρu)
∂ t

+ div [ρ (u ⊗ u)] = ∂ ρ

∂ t
u + ρ

∂ u

∂ t
+ div (ρ div u) u + ρ ((∇ · u) u)

= ρ

[︄
∂ u

∂ t
+ (∇ · u) u

]︄ (9)

By plugging this into (8) we obtain the Cauchy momentum equations:

∂ u

∂ t
+ (∇ · u) u = f + 1

ρ
divT. (10)

2.2 Navier-Stokes equations
The description of a fluid is not complete until one specifies the stress tensor T.
For an incompressible Newtonian fluid, it is given by formula:

T = −pI + 2ρνD, (11)
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where p ∈ C1(U) is pressure and the second term represents viscous forces: con-
stant ν is the kinematic viscosity coefficient and

D = 1
2
(︂
∇u + ∇uT

)︂
. (12)

Using incompressibility (div u = 0) we calculate

êi ·divT = ∂ Tij

∂ xj

= ∂

∂ xj

(︄
−pδij + ρν

∂ ui

∂ xj

+ ρν
∂ uj

∂ xi

)︄
= −p ∂ p

∂ xi

+ρν ∂ 2ui

∂ xjxj

, (13)

which gives
divT = −∇p+ ρν∆u. (14)

Plugging this into (10) gives us the incompressible Navier-Stokes equations:

∂ u

∂ t
+ (∇ · u) u = f − 1

ρ
∇p+ ν∆u. (15)

Together with the condition of incompressibility, they form a system of four
partial differential equations with four unknowns: the three components of velocity
field u and the pressure field p. The volume force f , density ρ and kinematic
viscosity ν must be prescribed.

2.3 Some thermodynamic aspects
In addition to the continuity and momentum equation, it is also possible to derive3

the evolutionary equation for the specific entropy s, which reads:

ρ

(︄
∂ s

∂ t
+ (∇ · u) s

)︄
+ div jη = ξη

τ
,

where τ is temperature, jη is the entropy flux and

ξ = T : D = 2ρνD : D

is the dissipation4. We will not need this equation it’s full scope. We would only
like the mention the principle of minimal entropy production, which asserts that
close to equilibrium, systems evolve towards a state where entropy production is
small. In case of Navier Stokes equations, due to the presence of a convective term,

3see [2] or [9]
4This expresses the amount of mechanical energy in fluid that is transformed into heat. Pos-

itivity of this term makes the Navier-Stokes equations compatible with the second law of ther-
modynamics.
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this principle does not strictly hold — it is merely a general observation that when
a system evolves from one state to another, the dissipation in the fluid typically
increases initially, only to fall down in the end. It can be therefore interesting to
plot ξ in a numerical computation as it helps to infer whether the fluid is going to
reach an equilibrium any time soon. For more on this matter, see [9].

2.4 Forces acting on an immersed rigid body
Once a solution to a problem is obtained (be it analytical or numerical), a common
question is what are the fluid forces on some body of interest (e.g. the rotor). For
an incompressible Navier-Stokes (15), the surface density of force which acts on
an immersed rigid body R is given by:

G = −Tn (16)
where n is the outer normal vector to its surface ∂R. Using the formula (14), the
vector G may be decomposed into a pressure component Gp = pn, which is always
orthogonal to the surface, and a viscous part Gv = −2ρνDn, which (slightly less
trivially) always points tangentially to the surface. In order to see this, consider
arbitrary x0 ∈ ∂R and a local parametrization 5 x = φ(σ, τ) of ∂R. Then, we
may define the following tangent vectors:

tσ = ∂φ

∂σ
, tτ = ∂φ

∂τ
. (17)

Without loss of generality, we may assume that tσ, tτ are orthonormal 6 at x0. The
motion of a rigid body can be described entirely by the velocity u0 of its centre of
mass xT and the angular velocity Ω. This yields a no-slip boundary condition for
the fluid

u = u0 + Ω × (x − xT ) , x ∈ ∂R. (18)
Letting x = φ(σ, τ) and differentiating with respect to σ at x0 gives

∇u tσ = Ω × tσ. (19)
Taking the dot product with tσ on both sides then yields

tσ · D tσ = 0. (20)
The same holds for tτ . Finally, we use the invariance of trace with respect to
change of basis to get

0 = div u = TrD = (n · D n) + (tσ · D tσ) + (tτ · D tτ ) = − 1
2ρνn · Gv. (21)

Thus Gv must lie in the tangent space of ∂R at every point x0 ∈ ∂R.
5Which we assume here to be C1(V ) for some open subset V of R2.
6For if not, one can define φ̂ = φ ◦ a where a is an affine mapping, such that it holds for φ̂.
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2.5 Euler’s equations and potential flow
It often happens in (15) that the viscosity term ν∆u is very small. In such a case
it makes sense to simplify by setting ν = 0, which leads to the Euler’s equations:

∂ u

∂ t
+ (∇ · u) u = f − 1

ρ
∇p. (22)

A problem occurs because we are effectively omitting the term with highest (i.e.
second) spatial partial derivative. This corresponds to the fact that for low ν,
near solid surfaces, there is typically a region where u steeply rises from zero
and where the viscous term dominates in spite of small ν (the so called boundary
layer). This issue can be circumvented somewhat by assuming that the boundary
layer is so thin that it can be neglected and the fluid is allowed to slip on a surface.

In the case where the volume force is conservative, i.e. there exists a potential
ψ such that f = −∇ψ, the famous Kelvin’s theorem applies. It tells us that for
any time-dependant curve γ = γ(s, t) ∈ U(t) of the class C1([0, 1] × I,R3) which
satisfies

∂ γ

∂ t
(s, t) = u(γ(s, t), t) (23)

(i.e. γ is a material curve - for all t it is composed of the same "fluid particles") it
holds that the amount of circulation through γ is constant

d
dt

∫︂
γ(·,t)

u · dγ(s) = 0. (24)

Hence, if we imagine that the fluid is initially in a state with no circulation (such
as being at rest), then by (24) we observe that the circulation will remain always
zero 7. Under these assumptions, there exists 8 a potential φ, such that

u = ∇φ. (25)

We then say that u is a potential flow and as such it automatically satisfies rot u =
0. Using the identity

(∇ · u) u = ∇
(︄
u2

2

)︄
+ (rot u) × u, (26)

and f = −∇ψ we can rewrite equation (22) as

∂

∂ t
(∇φ) + ∇

(︄
u2

2

)︄
= −∇ψ − 1

ρ
∇p (27)

7Of course, when ν is not exactly zero then circulation may build up slowly over time.
8Follows from the fundamental field theorem [2]; notice that this implication doesn’t require

U(t) to be simply connected.
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∇
(︄
∂ φ

∂ t
+ u2

2 + ψ + p

ρ

)︄
= 0. (28)

Using that U(t) is connected, this is possible only when

∂ φ

∂ t
+ u2

2 + ψ + p

ρ
= b. (29)

where b = b(t) is a function independent of the space variable x. This is the famous
Bernoulli’s equation. What remains then, is to solve for φ using the condition of
incompressibility div u = 0 which leads to the Laplace equation:

∆φ = 0. (30)
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3 Laminar Breakdown in a Divergent Channel
The work of J. Falta and F. Maršík [3] focuses on studying the initial configuration
of the rotor which exists briefly before the turbine begins to operate. Following
their interesting paper, we analyse here the problem of incompressible viscous flow
in a channel between a cylinder and a coaxial truncated cone. The geometry can
be described in cylindrical coordinates as follows:

U =
{︄

(r, θ, z) : Rrot + γz < r < Rstat; z ∈ (−L, 0)
}︄
,

where Rstat denotes the diameter of the outer cylinder (the stator), Rrot is the
maximal radius of the inner cone (the rotor) and

arctan γ

is its half-apex angle. Now, we imagine that a stream of water flows through U
such that it enters at z = 0 and exits at z = −L. Considering the symmetry of
the problem, it makes sense to assume for the velocity field and pressure:

u =

⎛⎜⎜⎜⎜⎜⎝
ur(r, z)

0

uz(r, z)

⎞⎟⎟⎟⎟⎟⎠ , p = p(r, z). (31)

According to Maršík [1], however, such a symmetry is inherently unstable and
imperfections — no matter how small — give rise to strong asymmetric volume
forces. The instability of the initial configuration is suspected to be a manifesta-
tion of this phenomenon.

To make things easier, we find an approximate formula for velocity field using
the assumption (31) and observe the situation where the inflow is large. We begin
be writing the stationary Navier-Stokes equations (15) in cylindrical coordinates:

(∇ · u)ur + u2
θ

r
= −1

ρ

∂ p

∂ r
+ ν

{︄
∆ur − 2

r2
∂ uθ

∂ θ
− ur

r2

}︄

(∇ · u)uθ + uruθ

r
= − 1

ρr

∂ p

∂ θ
+ ν

{︄
∆uθ + 2

r2
∂ ur

∂ θ
− uθ

r2

}︄

(∇ · u)uz = −1
ρ

∂ p

∂ z
+ ν∆uz

(32)

together with the equation of continuity:
∂ ur

∂ r
+ 1
r

∂ uθ

∂ θ
+ ∂ uz

∂ z
+ ur

r
= 0. (33)
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With (31), the second equation in (32) is solved trivially and our problem is then
effectively reduced to a system of three equations with three unknowns: ur, uz, p.
The next step is to reformulate the system using dimensionless variables. This
allows us to compare orders of magnitude among terms appearing in the equations.
To this end, we introduce the characteristic velocity Uchar and the characteristic
length Lchar as

Uchar = max
(r,z)

|uz|, Lchar = Rstat,

which allow us to define the dimensionless coordinates and velocity by

û = u

Uchar
, r̂ = r

Lchar
, ẑ = z

Lchar
.

Now, multiplying (32) by Lchar/U
2
char and (33) by Lchar/Uchar and employing the

symmetry (31) yields the following dimensionless system 9:
(︂
û · ∇̂

)︂
ûr = −∂ p̂

∂ r̂
+ 1

Re

{︄
∆̂ûr − ûr

r̂2

}︄
(︂
û · ∇̂

)︂
ûz = −∂ p̂

∂ ẑ
+ 1

Re∆̂ûz

(34)

and
∂ ûr

∂ r̂
+ ∂ ûz

∂ ẑ
+ ûr

r̂
= 0. (35)

Here, the dimensionless pressure p̂ is defined as

p̂ = p

ρU2
char

and
Re = LcharUchar

ν
is the corresponding Reynolds number. The next trick is to make a transformation
of coordinates 10

ξ = 1 − 1 − r̂

b
,

ζ = ẑ,

where
b(ẑ) = 1

2

(︃
1 − γẑ − Rrot

Rstat

)︃
9Hat above an operator signifies differentiation with respect to dimensionless coordinates r̂,

ẑ.
10Here it is useful to rename the ẑ variable so that ∂/∂ζ denotes the partial derivative where

ξ and not r̂ is being fixed.
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is — up to a normalization factor — the size of gap between the stator and the rotor
at height ẑ. Thus, ξ is an affine transformation of r̂ such that the surface of the
inner cone corresponds to ξ = −1 and the surface of the outer cylinder corresponds
to ξ = 1. The partial derivatives are then related through the transposed Jacobi
matrix as follows: ⎛⎜⎝ ∂

∂ r̂

∂
∂ ẑ

⎞⎟⎠ =

⎛⎜⎝ 1
b

0

− γ
2b

(1 − ξ) 1

⎞⎟⎠
⎛⎜⎝ ∂

∂ ξ

∂
∂ ζ

⎞⎟⎠ .
Before we substitute this into (34) and (35), let us make the following assumptions
on the orders of magnitude:

b0 := b(0) ≪ 1,
γ, b, ûr,∇ξ,ζ ûr,∇2

ξ,ζ ûr = O(b0),
ûz,∇ξ,ζ ûz,∇2

ξ,ζ ûz = O(1),
1

Re = O(b2
0)

That is, we assume the gap between the cylinder and the rotor to be very thin and
the inner cone to be relatively narrow. Correspondingly, the flow velocity field will
be dominated by the ûz component, ûr being small. This is also assumed for all
the first and second derivatives with respect to ξ, ζ. Lastly, the viscous forces in
the fluid are assumed to be weak. With this, we get the following approximation
of the Laplace operator for φ = ûr, ûz:

∆̂φ = 1
b2

(︄
∂ 2φ

∂ ξ2 +O(b0)
)︄

an the first equation in (34) then yields

∂ p̂

∂ ξ
= b

∂ p̂

∂ r̂
= −b

(︂
û · ∇̂

)︂
ûr + b

Re

(︄
∆̂ûr − ûr

r̂2

)︄
= O(b0), (36)

from the second equation it follows that
(︂
û · ∇̂

)︂
ûz = + γ

2b(1 − ξ)∂ p̂
∂ ξ

− ∂ p̂

∂ ζ
+ 1

Re∆̂ûz

= −∂ p̂

∂ ζ
+ 1
b2Re

∂ 2uz

∂ ξ2 +O(b0)
(37)

and the continuity equation (35) becomes

1
b

∂ ûr

∂ ξ
− γ

2b(1 − ξ)∂ ûz

∂ ξ
+ ∂ ûz

∂ ζ
+ ûr

r̂
= 0,
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which gives (after some manipulations)

∂

∂ ξ

[︃
ûr − γ

2 (1 − ξ)ûz

]︃
+ ∂

∂ ζ
(bûz) = O(b0). (38)

An approximate equation is then deduced from (36), (37), (38) by neglecting all
terms of order O(b0).

∂ p̂

∂ ξ
= 0,

(︂
û · ∇̂

)︂
ûz = −∂ p̂

∂ ζ
+ 1
b2Re

∂ 2uz

∂ ξ2

(39)

and
∂

∂ ξ

[︃
ûr − γ

2 (1 − ξ)ûz

]︃
+ ∂

∂ ζ
(bûz) = 0. (40)

This system can be solved easily by the ansatz

bûz = −b0q,

ûr = γ

2 (1 − ξ)ûz,
(41)

where q = q(ξ) is (yet unknown) function of ξ. This satisfies (40) trivially and
greatly simplifies the convective term(︂

û · ∇̂
)︂
ûz = ∂ ûz

∂ ẑ
ûr + ∂ ûz

∂ r̂
ûz

= 1
b

∂ ûz

∂ ξ
ûr − γ

2b(1 − ξ)∂ ûz

∂ ξ
ûz + ∂ ûz

∂ ζ
ûz

= ∂ ûz

∂ ζ
ûz

.

By plugging it into (39) we obtain

q′′ + 1
2γb0 Re q2 = −b3Re

b0

∂ p̂

∂ ζ
.

Differentiating both sides with respect to ξ and defining

Re∗ = γb0Re

yields an ordinary differential equation of the third order 11 for q:

q′′′ + Re∗qq′ = 0. (42)
11which is, not surprisingly, similar to the situation in Jeffery-Hamell flow
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We are naturally interested in a solution which complies with the following condi-
tions:

q(ξ) ∈ (0, 1] , ξ ∈ [−1, 1] ,
q(ξ) = 0, ξ = ±1,

∃ξ0 ∈ (−1, 1) : q(ξ0) = 1.
(43)

This fixes downward direction of the flow, ensures no slip at the edges and sets the
maximal value to q = 1 (corresponding to the choice of Uchar). Then necessarily
q′(ξ0) = 0 and from (42) it is easy to see that q is even around ξ0. So it must be
that ξ0 = 0. Let us integrate the equation back, to get

q′′ + 1
2Re∗q2 = C, (44)

for some integration constant C. Multiplying both sides by q′, we can integrate
once more to find

1
2(q′)2 = −C(1 − q) + 1

6Re∗(1 − q3), (45)

where the second integration constant had to be fixed such that q′ = 0 for the
maximal value q = 1. Redefining the first integration constant as

C∗ = 1 − 6C
Re∗

and doing some algebra, the equation (45) can be written in a nicer form

(q′)2 = Re∗

3 (1 − q)(C∗ + q + q2).

It surely must be that C∗ ≥ 0, for else we would have (q′)2 < 0 at ξ = ±1. By
separating the variables, we get

I(C∗) :=
∫︂ 1

0

dq√︂
(1 − q)(C∗ + q + q2)

=
∫︂ 0

−1

√︄
Re∗

3 dξ =
√︄

Re∗

3 . (46)

Note that the integral converges for any value of C∗ ≥ 0 and is a strictly decreasing
function of C∗. Thus, for any value of Re∗ at most one solution satisfying (43)
exists: it is the solution of (44) with the initial condition

q(−1) = 0 q′(−1) =
√︄

Re∗C∗

3 ,
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where C∗ is uniquely fixed by (46). Not for every value of Re∗ > 0 is there a
solution, however, since the integral I(C∗) can only attain values from

lim
C∗→∞

I(C∗) = 0

to its maximal value

I(0) =
∫︂ 1

0

dq√︂
q(1 − q2)

=

⃓⃓⃓⃓
⃓⃓⃓ s = q2

ds = 2
√
s dq

⃓⃓⃓⃓
⃓⃓⃓ = 1

2

∫︂ 1

0
s−3/4(1 − s)−1/2 ds

= 1
2B

(︃1
4 ,

1
2

)︃
=

√
π Γ(1

4)
2Γ(3

4) .

This, in light of (46), leads to a certain critical Reynolds number

Re∗
crit = 3

4π
(︄

Γ(1
4)

Γ(3
4)

)︄2

≈ 20.62.

Above this value, solutions satisfying (43) may no longer exist. One can only lift
the assumption of q ≥ 0 to get non-unique velocity profiles with back-flows. The
paper [3] then proceeds with stability analysis, but it relies on some assumptions
that we were not able to understand. Also it seems to us, that stability analysis
alone — while certainly insightful — is more of a negative result: it indicates that
something should occur but does not exactly explain what should happen and why.
Motivated by belief that simple explanation of the hydraulic principle should be
possible, we shall present our own and different approach in the following sections.
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(a) Re∗ = 20

(b) Re∗ = 26 (c) Re∗ = 26

Figure 2: Numerically computed q for different values of Re∗. For high Re∗, the
solutions are non-unique.
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4 Analysis of the Hydraulic Principle
In this section, we will describe our understanding of SETUR by means of ana-
lytical methods. The underlying idea is that the pressure field, which propels the
turbine, exists as a reaction to the rotor’s motion. When the flow through turbine
is zero, any motion of the turbine will be opposed by friction in accordance with the
second law of thermodynamics. The situation may become different in the pres-
ence of flow, where, due to the energy of the flow, the drag force will switch the
sign — the water will react to orbital motion by accelerating it — this is what we
call drag inversion. We will try to unveil this strange behaviour by analysing tem-
poral variations in fluid velocity. To avoid a time-dependant problem with variable
geometry, we shall switch to what we call co-precessing frame of reference, where
we will assume that the problem is stationary. Our approach is following: We pre-
scribe boundary conditions assuming that the rotor is rolling steadily. Then, we
will try to obtain some information about pressure field. Finally, switching back to
the inertial frame, power on the rotor can be computed. If this power is positive,
it means that it can be extracted from the system, as otherwise, the rotor would
accelerate. This approach will hopefully address two problems at once: firstly the
question of instability and secondly, where does the power output of rolling turbine
come from. Similar method can be used for numerical analysis, which we will do
later in section (5).

4.1 Co-precessing frame of reference
Let us assume that the rotor is a truncated cone and that the stator is a cylinder
with radius Rstat. In practise, the rotor would be suspended from above or bellow
by a shaft and rotate around an inclined preceding axis. To simplify matters,
however, we will assume that the axis is at all times parallel with the rotor as
if the shaft was held on gears that move along with the rotor’s rolling motion.
We shall orient our axes so that ẑ is the stator’s symmetry axis and so that the
contact with rotor occurs at z = 0. Let Rrot(z) denote the rotor’s radius. We set
the direction of ẑ so that Rrot(z) is an increasing affine function of z. (Thus z = 0
is the "top" and our domain of interest is the diverging gap between the cone and
the cylinder for z < 0). Let C be the point where rotor’s symmetry axis intersects
z = 0 (the centre of the topmost circular cross-section) and assume that the rate
of turbine precession is Ω and is clockwise when viewed from above, i.e.:

uC = dC

dt = −Ωẑ × C. (47)

The rotor will then rotate around it’s own symmetry axis counter-clockwise with
angular velocity Ωrot. Any point x, which lies on the surface of the rotor, has
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velocity

u = dx

dt = uC + d
dt (x − C) = −Ωẑ × C + Ωrotẑ × (x − C) . (48)

The value of Ωrot can be determined by assuming a no-slip contact between the
stator and the rotor. Without loss of generality, we can assume that at time t = 0,
we have C = (−d, 0, 0)T , where d = Rstat − Rrot(0). Plugging this into (48), we
get:

u|t=0 =

⎛⎜⎜⎜⎜⎜⎝
−Ωroty

Ωd+ Ωrot(x+ d)

0

⎞⎟⎟⎟⎟⎟⎠ (49)

This velocity u has to be zero at x = (−Rstat, 0, 0)T , which means that

Ωrot = Ωd
Rrot(0) (50)

and

u|t=0 = Ωrot

⎛⎜⎜⎜⎜⎜⎝
−y

Rstat + x

0

⎞⎟⎟⎟⎟⎟⎠ . (51)

Now, it is interesting to determine the component velocity in the direction of the
surface normal. Let

x+ d = Rrot(z) cos θ′, y = Rrot sin θ′. (52)

(θ′ is the angular coordinate as measured from C). This allows to rewrite (51) as

u|t=0 = ΩrotRrot(0)

⎛⎜⎜⎜⎜⎜⎝
−β sin θ′

1 + β cos θ′

0

⎞⎟⎟⎟⎟⎟⎠ , (53)

where β(z) = Rrot(z)/Rrot(0). Let us denote γ = R′
rot = const. Then, the rotor’s

surface normal at (x, y, z)T is

n = 1√
1 + γ2

⎛⎜⎜⎜⎜⎜⎝
cos θ′

sin θ′

−γ

⎞⎟⎟⎟⎟⎟⎠ (54)
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Figure 3: angular velocities in the inertial (left) and the co-precessing frame (right)

and the normal component vn of velocity u at t = 0 can be computed as

vn = u|t=0 · n = ΩrotRrot(0)√
1 + γ2 sin θ′. (55)

This reveals a somewhat counter-intuitive fact, that for fixed Ωrot, the amount
of normal velocity of a rolling turbine does not depend on the size of gap 2d 12.
This is important, because the pressure force can generate power only through the
normal component of velocity and for SETUR, d is typically very small.

In general, problems in fluid mechanics with variable geometry are difficult. It
is the therefore a good idea to switch into a co-precessing frame connected to an
observer that rotates clockwise with angular velocity Ω. The coordinate transfor-
mation between these two frames (those in the co-precessing frame are denoted
with upper script) is given by:

x̃ = x cos(Ωt) − y sin(Ωt),
ỹ = x sin(Ωt) + y cos(Ωt),
z̃ = z.

(56)

All velocities in the co-precessing frame ũ are related to the corresponding veloc-
ities u in the inertial frame by

ũ = u + Ωẑ × x̃. (57)

We now have ũC = 0 and for any point x̃ on the rotor’s surface:

ũ = −Ωẑ × C + Ωrotẑ × (x̃ − C) + Ωẑ × x̃ = Ω′ẑ × (x̃ − C), (58)
12This can be seen also this way: the centre of mass of the rotor moves forward with velocity

ŷΩrotRrot and only this linear velocity has non-trivial component in the direction of the surface
normal
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where
Ω′ = Ω + Ωrot = Ω Rstat

Rrot(0) . (59)

The joy of a fixed domain comes at a price of fictitious forces appearing in the
dynamics (namely centrifugal and Coriolis 13). Any particle of mass m is now
subject to an extra force

F = Fcent + FCor, (60)
where 14

FCor = 2mΩ ẑ × ũ (61)
and

Fcent = −mΩ2ẑ × (ẑ × x̃) = m∇
(︃1

2Ω2r2
)︃

(62)

(here r =
√
x2 + y2 is denoting the distance from the z-axis). This means that the

Navier-Stokes equations (15) will have the following form:

∂ ũ

∂ t
+ (∇ · ũ) ũ = f − 1

ρ
∇p+ ν∆ũ + ∇

(︃1
2Ω2r2

)︃
+ 2Ωẑ × ũ. (63)

Let us assume that f = −∇ψ, where ψ is the gravitational potential. It is now
good time to introduce the effective pressure 15:

P = p

ρ
+ ψ − 1

2Ω2r2. (64)

This allows us to simplify our equation considerably:

∂ ũ

∂ t
+ (∇ · ũ) ũ = −∇P + ν∆ũ + 2Ωẑ × ũ. (65)

Note that from a mathematician’s point of view, P is just an unknown enforcing the
incompressibility div ũ = 0. This eventually makes centrifugal and gravitational
force somewhat irrelevant in the equations.

4.2 Dimensional analysis
In a theoretical analysis it can be sometimes convenient to neglect the viscous
force density ν∆u. According to measurements, the kinematic viscosity of water
at 20◦C is [2]

ν ≈ 1.0035 · 10−6m2/s. (66)
13We do not consider the Euler force as we assume that the turbine operates steadily and thus

Ω is constant.
14the sign is positive because the precession is clockwise
15Although it is not really pressure in the sense that the units are m2/s2 = J/kg.
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However, to say that 10−6 is a small number is not by itself a sufficient argument for
neglecting the effects viscosity — it could happen, for example, that the expression
(66) only appears small because meter is an impractically large dimension for the
problem in question. To justify "smallness" properly, one has to compare the
magnitude of viscous force against other terms which appear in the equation.
To this end, we define the characteristic length Lchar as square root of the cross
sectional area at the point of contact between the rotor and the stator, i.e.

Lchar =
√
A =

√︂
π(Rstat(0)2 −Rrot(0)2). (67)

Next, we define the characteristic speed Uchar as the average inflow speed, i.e.

Uchar = Q

ρA
,

where Q is the total flux. It is then natural to fix the characteristic time as

Tchar = Lchar

Uchar
(68)

and the characteristic pressure as

Pchar = ρU2
char. (69)

With these scales given, we can now introduce dimensionless equivalents of velocity,
pressure and time

û = ũ

Uchar
, t̂ = t

Tchar
, P̂ = P

Pchar
(70)

as well as differential operators

∇̂ = Lchar ∇, ∆̂ = L2
char ∆. (71)

Now, we just multiply (65) by Lchar/U
2
char = Tchar/Uchar to obtain:

∂ û

∂ t̂
+
(︂
∇̂ · û

)︂
û = −∇̂P̂ + ν

LcharUchar
∆̂û + 2ΩLchar

Uchar
ẑ × û. (72)

The fractions
Re = LcharUchar

ν
, Ro = Uchar

2ΩLchar
(73)

are the well known Reynolds number and the Rossby number respectively. Using
these, we can rewrite the equation (72) as

∂ û

∂ t̂
+
(︂
∇̂ · û

)︂
û = −∇̂P̂ + 1

Re ∆̂û + 1
Ro ẑ × û. (74)
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High Reynolds number indicates flows, where viscous forces are weak. The lower
the Rossby number, the stronger are the effects of Coriolis force. Note that nega-
tive values of Ro are permitted as switching the direction of precession also changes
the sign of Coriolis force. On the other hand, the Reynolds number Re is always
positive.

Based on dimensional analysis alone, it is possible to deduce that the formula
for power on the turbine must be of the form

Ẇ = ρcL4
charΩ2Uchar = cAQΩ2 (75)

where the dimensionless "constant" c is actually an unknown function

c = c(Re,Ro).

The value c can be either negative (in this case, power has to be provided into the
system and the fluid creates a stopping force) or positive (in which case, the fluid
creates a positive feedback on the motion and power must be extracted from the
system or else the rotor would begin to accelerate). Once the geometry and the
boundary conditions are specified 16, this becomes a purely mathematical problem.
Problem. Are there values of Re > 0 and Ro ∈ R such that the equation (74)
permits a stationary solution with c > 0?
The very fact the SETUR works indicates a positive answer, unless our mathe-
matical description is incorrect. Constant c is to be calculated by comparing (75)
with

Ẇ = −
∫︂

Γrot
u · Tn dS, (76)

where Γrot is the surface of rotor and n is the outward normal of the fluid domain
Ω (i.e. inward with respect to the rotor). Note that this formula works only in the
inertial frame of reference.

Another information that we can obtain is the so called similarity of flows: any
two turbines with the same geometry but different sizes will exhibit the same be-
haviour as long as Re and Ro remain unchanged. For any λ > 0 the following
transformation

Lchar ↦→ λLchar, Uchar ↦→ λ−1Uchar, Ω ↦→ λ−2Ω

does not17 change Re or Ro. Therefore, it must be that the power generated by
the fluid after the transformation must be

ρc(λLchar)4(λ−2Ω)2(λ−1Uchar) = λ−1Ẇ (77)
16This will be done in the section about numerical simulation.
17with the kinematic viscosity and density being the same
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On first glance, this appears to be nonsensical, as we would get that a ten times
smaller turbine could generate ten times greater power. Since the flux Q is Uchar
divided by inflow area, it would also be ten times smaller. Does it mean that we
should build our rolling turbines as small as possible? The mistake in this type of
reasoning is that one must also take into account the amount of pressure needed to
transport the fluid through the turbine. By definition, the efficiency of the turbine
is

η = Ẇ

gQH
, (78)

where H is the hydraulic head. Since η is a dimensionless parameter, there also
must be a dependence

η = η(Re,Ro).

Naturally, geometrically similar turbines will operate at the same efficiency. Thus,
the ten times smaller turbine would require hundred times greater hydraulic head
to operate with the given flux and precession angular velocity.

In article [1], experimental data for two different SETURs are provided: in one
case, the rotor is a truncated cone and in the other case, it is a sphere. For each
of those, the table below lists the relevant data as well as the calculated Reynolds
and Rossby numbers. (The angular velocity is related to the rolling frequency by
Ω = 2πf . In both cases, the values ρ = 1000 kg/m3 and ν = 1.0035 · 10−6m2/s
were used.)

Rstat Rrot f Q Re Ro c

truncated cone 0.135 m 0.125 m 3.7 Hz 3.2 kg/s 35283 0.093 0.446

sphere 0.071 m 0.061 m 6.3 Hz 4.2 kg/s 64994 0.151 0.326

What we see is that the Reynolds number for this problem is quite large (in the
order of tens of thousand) and so the flow will be dominated by convection rather
than by viscosity. On the other hand, the Coriolis force is comparable to convection
and thus, based on this analysis alone, it cannot be neglected.

4.3 Flow in a thin annular channel
We will now attempt to explain analytically the principle behind functionality
of the rolling turbine. Unfortunately, the full scale three dimensional problem is
extremely complicated — it must either include Coriolis force, when treated in
a co-precessing frame, or be a non-steady problem with variable geometry, when
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treated in an inertial frame. Trying to solve such a problem analytically would be
merely a waste of time. Thus, without resorting to heavy numerical methods, we
can provide an analysis only under several layers of approximation. We believe
that a simplified analytical explanation might shed more light on the principles
behind the turbine than results of a complex numerical simulation.

As demonstrated in (4), the force which acts on the rotor can be decomposed
into it’s normal pressure component Gp = pn and the tangential component
Gν = −2ρνDn associated with the viscosity. Since the rotor performs both rotary
as well as linear motion, both of these forces may potentially generate power. We
propose that the main driving force is the pressure field. This is for two reasons:
Firstly the rotor can operate in the presence of vortex going against the direction
of the rolling motion, where the power due to viscous force must be negative and
secondly, in all performed numerical simulations (which will be described later),
direct viscous effects were very small. The total power of pressure field on the
conical rotor B at t = 0 can be evaluated from the inertial frame as

Ẇ =
∫︂

∂B
−pn · u =

∫︂
∂B

−pun = −
√︂

1 + γ2
∫︂ 0

−h

∫︂ π

−π
punRrot(z) dθ′ dz, (79)

where h is the height of the rotor. Using (55), this yields:

Ẇ = −Rrot(0)Ωrot

∫︂ 0

−h
Rrot(z)

(︃∫︂ π

−π
p sin θ′ dθ′

)︃
dz.

= −Ω2d
∫︂ 0

−h
Rrot(z)

(︃ 1
Ω

∫︂ π

−π
p sin θ′ dθ′

)︃
dz.

(80)

In order to get a positive feedback of the flow on precession (regardless of the sign
of Ω), we would need to have

1
Ω

∫︂ π

−π
p sin θ′ dθ′ < 0 (81)

that is, the power is associated with the negative sine moment of pressure near
z = 0. We derive this inequality for a brutally simplified problem in the geometry
between two coaxial cylinders

U = {(r, θ, z), Rstat < r < Rrot} (82)

but with θ-dependant inlet velocity such as to match the θ-distribution of flux
of the original moon-shaped cross-section (see figure (3)). The idea is that the
variation in the inflow velocity will interact with a fictitious solid body vortex,
that exists due to the frame being non-inertial. This interaction leads to the
formation of a pressure field such that the inequality (81) holds (where, in our
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Figure 4: Reduction into a two-dimensional problem

simplified concentric problem θ = θ′). The Navier-Stokes equations in the co-
precessing frame with respect to cylindrical coordinates18 are (see (65) and the
appendix):

uṙ − u2
θ

r
= −∂ P

∂ r
+ ν

{︄
∆ur − 2

r2
∂ uθ

∂ θ
− ur

r2

}︄
− 2Ωuθ,

uθ̇ + uruθ

r
= −1

r

∂ P

∂ θ
+ ν

{︄
∆uθ + 2

r2
∂ ur

∂ θ
− uθ

r2

}︄
+ 2Ωur,

uż = −∂ P

∂ z
+ ν∆uz

(83)

and
∂ ur

∂ r
+ 1
r

∂ uθ

∂ θ
+ ∂ uz

∂ z
+ ur

r
= 0. (84)

where (assuming that the flow is steady):

φ̇ = ∂ φ

∂ r
ur + 1

r

∂ φ

∂ θ
uθ + ∂ φ

∂ z
uz, (85)

for any continuously differentiable function φ. Now we further simplify the equa-
tions by neglecting the viscosity, assuming ur ≈ 0, and investigate the equations
for θ and z in the proximity of the rotor at r = Rrot. This leads to a set of two

18we decided to no longer denote velocity in the co-precessing frame with tilde because it would
be highly annoying to type and read. In this subsection, all computations are made in this frame.
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equations19:
1
Rrot

∂ uθ

∂ θ
uθ + ∂ uθ

∂ z
uz = − 1

Rrot

∂ P

∂ θ
,

1
Rrot

∂ uz

∂ θ
uθ + ∂ uz

∂ z
uz = −∂ P

∂ z

(86)

in the two-dimensional domain [θ, z] ∈ (−π, π) × (−∞, 0). We complement this
by the following boundary conditions:

uz|z=0 = uin = −u0 − u′, (inflow)⎛⎜⎝uθ

uz

⎞⎟⎠
⃓⃓⃓⃓
⃓⃓⃓
θ=π

=

⎛⎜⎝uθ

uz

⎞⎟⎠
⃓⃓⃓⃓
⃓⃓⃓
θ=−π

, (periodicity)

lim
z→−∞

⎛⎜⎝uθ

uz

⎞⎟⎠ =

⎛⎜⎝ΩRrot

−u0

⎞⎟⎠ . (flow at infinity)

Here,
u0 = Q

ρA
(87)

denotes the average inflow in z direction and u′(θ) is the deviation from this
average, which we will assume to be an even function of θ. The condition at
infinity is to exclude non-physical solutions that diverge as z → −∞. Now, we
search for a solution in the form of a potential flow⎛⎜⎝uθ

uz

⎞⎟⎠ =

⎛⎜⎝ΩRrot

−u0

⎞⎟⎠+ ∇φ = ∇
(︂
ΩR2

rotθ − u0z + φ
)︂

(88)

where φ(θ, z) is an unknown velocity potential and we denote

∇φ =

⎛⎜⎝ 1
Rrot

∂ φ
∂ θ

∂ φ
∂ z

⎞⎟⎠ . (89)

Just like in the case of classical Bernoulli equation (29), the irrotationality 20 allows
us to rewrite (86) as

∇
(︄
u2

2 + P

)︄
= 0 (90)

19Note that the Coriolis force vanishes from the system, since it’s only component affecting uz

or uθ is the one which is proportional to ur
20with respect to θ, z
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or
u2

2 + P = const. (91)

Now, the condition of incompressibility (84) leads to a Laplace equation

1
R2

rot

∂ 2φ

∂ θ2 + ∂ 2φ

∂ z2 = 0. (92)

This can be solved easily using the Fourier’s method. Firstly, let us decompose u′

into a cosine series 21:
u′(θ) = u0

∞∑︂
k=1

ak cos kθ. (93)

The crucial idea is that we expect the inflow to be largest in magnitude at θ =
0 and monotonically diminish at the edges θ = ±π (As corresponding to the
original geometry. This is actually the only place where viscosity is indirectly
taken into account — at z = 0 where the gap between stator and rotor is smallest.)
Mathematically, this means that it is reasonable to expect

a1 = 1
πu0

∫︂ π

−π
u′(θ) cos θ dθ > 0.

Next, we search for φ in the form

φ(θ, z) =
∞∑︂

k=1
bk(z) cos kθ. (94)

Substituting this into (92) and comparing individual nodes gives as an ordinary
differential equation for coefficients bk:

− k2

R2
rot
bk + d2 bk

d z2 = 0, d bk

d z (0) = −u0ak, lim
z→−∞

d bk

d z = 0. (95)

This leads to a solution

bk(z) = −u0Rrotak

k
exp

(︄
kz

Rrot

)︄
. (96)

Putting this into (94), we obtain

φ = −u0Rrot

∞∑︂
k=1

ak

k
exp

(︄
kz

Rrot

)︄
cos kθ (97)

21Sine nodes do not appear here, because on the basis of the symmetry of the inflow, we assume
that u′ is even in θ.
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and ⎛⎜⎝uθ

uz

⎞⎟⎠ =

⎛⎜⎝ΩRrot

−u0

⎞⎟⎠+ u0

∞∑︂
k=1

ak

⎛⎜⎝ sin kθ

− cos kθ

⎞⎟⎠ exp
(︄
kz

Rrot

)︄
. (98)

Hence, we calculate:

u2

2 = 1
2

[︄
ΩRrot + u0

∞∑︂
k=1

ak sin kθ exp
(︄
kz

Rrot

)︄]︄2

+ 1
2

[︄
u0 + u0

∞∑︂
k=1

ak cos kθ exp
(︄
kz

Rrot

)︄]︄2 (99)

and ∫︂ π

−π

u2

2 sin θ dθ =
∫︂ π

−π
ΩRrotu0a1 sin2 θ exp

(︃
z

Rrot

)︃
dθ

= πΩRrotu0a1 exp
(︃

z

Rrot

)︃
.

(100)

Let us assume that the gravitational potential ψ does not depend on θ (such as
when the gravitational force points in the −ẑ direction). Then finally, we obtain

− 1
Ω

∫︂ π

−π
p sin θ dθ = − ρ

Ω

∫︂ π

−π

(︃
P − ψ + 1

2Ω2R2
rot

)︃
sin θ dθ

= ρ

Ω

∫︂ π

−π

u2

2 sin θ dθ

= πρRrota1u0 exp
(︃

z

Rrot

)︃
> 0

. (101)

One natural choice is to set

uin = − Q

ρA
(1 + cos θ) . (102)

Then a1 = 1 and the solution becomes (see figure (5))⎛⎜⎝uθ

uz

⎞⎟⎠ =

⎛⎜⎝ΩRrot + u0 e
z/Rrot sin θ

−u0 − u0 e
z/Rrot cos θ

⎞⎟⎠ . (103)

The presented analysis has, of course, many limitations. To begin with, omit-
ting the viscosity is extremely problematic near the surface of the rotor, even with
Re ≫ 1 — this is because in the boundary layer, the second derivatives in ∆u may
become very large. (Although, as will be shown later, our numerical computations
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suggest that viscous power is still smaller by several orders of magnitude since the
differences in tangential velocities are not so large.) Secondly, the assumption of
the irrotationality of flow in (86), under which Bernoulli’s equation is applied, is
rather ill-supported. (We will show later that the assumption of irrotationality is
not essential.)

Nonetheless, using the assumption above, our analysis indicates how SETUR might
work:

1. Since the rotor’s position deviates from the central symmetry axis, the flux
goes primarily where the cross section is greatest (this is, where viscosity
must be taken into account).

2. Shape of the rotor is such that the cross section in the wider and the thinner
part tend to equalize. By incompressibility, this would make the flow slower
in the initially thinner region.

3. However, water tends to equalize this difference. From the co-precessing
frame, this generates a secondary flow, which then interacts with the ficti-
tious vortex, generating a pressure field. (From the inertial frame, periodic
temporal changes in flux would cause non-zero divergence. Since the wa-
ter is practically incompressible, a secondary flow must appear and this is
accompanied with generation of a pressure field.)

4. This pressure field acts as a positive feedback on the rotor and can be used
to generate power.

Naive substitution of this solution into 80 would yield a power formula

Ẇ = cAQΩ2, (104)

where
c = πd

A2

∫︂ 0

−h
R2

rot(z) exp
(︄

z

Rrot(z)

)︄
(105)

is an actual constant. Such equation would not, however, take into account friction.
Therefore, we suggest a corrected formula in the form

c = a− b

|Ro|
, (106)

where a, b are constant dimensionless parameters. This is motivated by the fact
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that letting Q → 0 reduces the equation

Ẇ =
(︄
a− b

|Ro|

)︄
AQΩ2

=
(︄
a− 2bρA3/2|Ω|

Q

)︄
AQΩ2

(107)

into
Ẇ = −2bρA5/2|Ω|3 (108)

which corresponds to the Newton’s drag formula 22 23. This is also in a reasonable
agreement with the experiments, see figure (6).
As a remark, the hydraulic principle described above can be also easily understood
without resorting to Bernoulli’s equation and to the assumption of irrotationality.
An alternative approach is to prescribe both: θ-dependant velocity uz and a con-
stant axial velocity uθ at the inflow. If there was no pressure affecting the fluid
particles, these particles would simply follow their convection lines - i.e. lines of
constant velocity extended from z = 0 (This corresponds to a solution of the invis-
cid Burgers’ equation). One would then obtain lines that converge on one side and
diverge on the other. If we now imagine that water is slightly compressible (which
it actually is), we see that this should cause variations in density and consequently
also in the pressure.

As another remark, the described principle was derived assuming off-centred posi-
tion of the rotor, being a reaction to the orbital movement. We suggest, however,
that this mechanism is somewhat more general and is applicable to many different
types of motion of the rotor within the fluid. Whenever the rotor moves, it creates
variations in the flow field (which is due to viscosity and due to the converging
geometry of the rotor — hemisphere or cone) and leads to the drag inversion.
This is in analogy with our analysis, when it is understood from the inertial frame
of reference (then, there is no "fictitious" vortex but periodically time-dependant
inflow instead). However, these effects seem to be significant only when the gap d
is very small. (As observed by ing. Sedláček, the rolling turbine simply does not
work when the gap is too large.) In frame of our analysis, this can be explained as
a necessity of having a cross-section where viscous forces are the dominating force
in the equations.

22By Newton’s formula, drag force should be proportional to Ω2. The power of friction is then
proportional to Ω3.

23It should be noted that even without the addition of drag, the runaway positive feedback
(|Ω| → ∞) does not violate the conservation of mechanical energy. This is because in the analysis,
we assume sufficiently large hydraulic head H, which is increased together with Ω. This effect
seems to be related to the application of rolling turbine as a hydraulic pump. The dependence
of H on Ω is still not completely understood by the author
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Figure 5: In these Matlab figures are plotted the streamlines and the pressure
distribution for u0 = 1 m/s and for ΩRrot = 0, 1, 3 m/s (from top to down). The
pressure is measured in kPa. It can be seen that as Ω increases, the pressure
becomes notably asymmetric with respect to θ. The pressure is greater at θ < 0,
which corresponds to the rear side of the rotor.

4.4 Vortex interaction
The formula (107) was derived under the assumption that the angular momentum
at the inflow was zero — there was only a fictitious vortex of angular speed Ω due
to analysis being done in a co-precessing frame (in the inertial frame there would
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Figure 6: Comparison of the formula 107 with experimental data. Only the de-
pendence on Ω for fixed Q was tested. Free parameters a, b were fitted using the
method of least squares. The data were obtained from [4]

be no vortex, but the inflow condition would be periodically time-dependant). In
practise, however, the stream can be ducted tangentially (from a side) such that
water begins to whirl before entering the turbine. Arguably the most intriguing
property of SETUR is that the rotor can roll both in or against the direction of this
vortex. As mentioned earlier, the obtainable power is greater when the precession
goes in the same direction as the vortex (i.e. for real vortex being opposite to
the fictitious vortex). Let us show that this is in accordance with our analysis.
Suppose that in 86 we instead prescribed

uθ = Rrot(Ω − ϑ)

as a condition at −∞, where ϑ is the magnitude of the (real) vortex and which
is assumed to be constant. Then, by following the same arguments, the obtained
power would be of the form

Ẇ =
(︄
a− 2bρA3/2

Q
|Ω − ϑ|

)︄
AQ(Ω − ϑ)Ω. (109)

This can alternatively written as

Ẇ = B Ω̂(Ω̂ − ϑ̂)
(︂
1 − |Ω̂ − ϑ̂|

)︂
, (110)

where
Ω̂ = 2bρ

√
A

aQ
Ω , ϑ̂ = 2bρ

√
A

aQ
ϑ , B = a3Q3

4b2ρ2A2 .
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Figure 7: Convection lines that would converge in the rear region θ < 0 and
diverge in the front region θ > 0. Strong pressure forces in the fluid prevent this
compression, which results in a θ-dependant pressure field.

Then, it is an easy exercise to calculate that for every fixed ϑ̂ ∈ (0, 1), the maximum
power is attained for Ω̂ ∈ (ϑ̂, 1 + ϑ̂) and satisfies (for ϑ̂ close to 0)

Ẇmax(ϑ̂) = B

27
(︂
4 + 6ϑ̂

)︂
+O

(︂
ϑ̂

2)︂
.

Hence, adding a vortex that goes in the direction of Ω increases the maximum
attainable power.
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Figure 8: The graph of the function Ẇ/B with respect to Ω̂ for fixed θ̂ = 0.1.
Note that the right bulge is higher. Thus the maximum attainable power is higher
when the rolling goes in the direction of the vortex.

4.5 The emergence of rolling motion
As discussed in (4.3), operation of the rolling turbine can be explained via non-
linear interaction between the transversal flux and the flow induced due the move-
ment of the rotor itself. As a consequence of Bernoulli’s principle, this produces
a forward pulling force, resulting in a drag inversion and hence instability. For
high orbital velocities, this force is eventually counter-acted by friction, which has
higher asymptotic rate in rotor’s velocity (quadratic or greater). So far, we have
only analysed this as a stationary effect: the rotor was prescribed to precede with
the given angular velocity Ω and the power output from the rotor was measured.
We deem this approach not completely satisfactory as it does not answer this
important question:

Problem. Is the steady configuration stable? How does it emerge from the initial
concentric configuration?

It would be very ambitious to analyse this problem in it’s fullest scale, i.e. using
non-stationary Navier-Stokes equations coupled with the rotor’s solid body motion
in a moving geometry24. We will not undertake this direction here. Instead, we
shall try to approximate dynamical behaviour using a set of ordinary differential

24Although, we think it should be possible to do numerically, using a combination of the
co-precessing frame and an ALE method to account for the radial motion of the rotor.
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equations with collision discontinuities.25 The aim of this effort is to show that
inverted drag, when generalized to non-orbital motions, serves not only as an
explanation of initial instability, but also explains the transition from the initial
to the rolling configuration. To this end, let

x =

⎛⎜⎝x
y

⎞⎟⎠ , v =

⎛⎜⎝vx

vy

⎞⎟⎠
be the coordinates of the rotor’s axis in the z = 0 plane and its velocity respectively.
Let us assume that when the rotor is not touching stator, the velocity is subject
to a differential equation:

dv

dt = F (v)v, (111)

where F : [0,+∞) → R is a locally Lipschitz continuous function satisfying F (0) =
0. Further suppose that there exists some limit velocity V > 0 such that

F (v) > 0, v ∈ (0, V ), (drag is invertion)
F (v) < 0, v ∈ (V,+∞). friction dominates

This means that any static configuration is unstable. An arbitrarily small pertur-
bation of v will cause the rotor to accelerate along a straight line with v approach-
ing V asymptotically.26 Transforming (111) into polar coordinates rθ, we obtain:

dvr

dt = F (v)vr + v2
θ

r
,

dvθ

dt = F (v)vθ − vrvθ

r
.

(112)

At r = d := Rstat −Rrot is when the rotor collides with the stator. We will assume
an inelastic collision, such that

vr ↦→ −αvr, (113)

where α ∈ (0, 1) is the coefficient of restitution. It remains to determine what
happens with vθ during a collision. Let G be the tangential component of the
impulse of force by which the stator acts on the rotor at the point of contact. This
impulse will cause a discontinuous change in vθ:

25This will be somewhat similar to the well known problem of billiards, see [14]. The major
difference will be that in our case non-elastic collisions will be considered,

26Both F and V have additional dependence on the transversal flux Q which is assumed to
be constant. Still, this is only a crude approximation and plethora of additional dependencies
might be considered. Namely those on: the actual position x, the acceleration a or even the full
history of motion.
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Figure 9: The contact force G enforces no-slip when r = d.

vθ ↦→ vθ + G

mrot
(114)

where mrot is the mass of the rotor. At the same time, the impulse has a non-trivial
moment, which results in a change of angular speed Ωrot:

Ωrot ↦→ Ωrot + RrotG

Irot
(115)

where Irot is the rotor’s moment of inertia around its symmetry axis. The value of
G can be determined by assuming no-slip contact after the collision. That gives

vθ + f

mrot
+Rrot

(︃
Ωrot + RrotG

Irot

)︃
= 0

G = −vθ + ΩrotRrot
1

mrot
+ R2

rot
I

Let us introduce a dimensionless parameter β = mrotR
2
rot/Irot. Plugging this into

(114), (115), we obtain:

vθ ↦→ vθ − vθ + ΩrotRrot

1 + β
,

Ωrot ↦→ Ωrot − β

Rrot

vθ + ΩrotRrot

1 + β
.

(116)

To close this system, we must add a differential equation for Ωrot. For that, we
shall assume

dΩrot

dt = −κΩrot (117)

where κ > 0 is a coefficient which accounts for the skin friction on the rotor.
Wrapping this up, we have a first-order system of five unknowns: r, θ, vr, vθ, Ω
and five differential equations: (112), (117) and ṙ = vr, θ̇ = vθ/r with jumps at
r = d described by (113), (116). Standard theory of ordinary differential systems
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can be used to prove the existence and uniqueness of globally defined solutions
for any initial data satisfying r < d.27 Our wish is to show that for almost every
initial configuration the solution will be attracted towards orbital motion, that is

r → d and vr → 0 for t → +∞.

From equation (112), we easily get that

dv2

dt = 2F (v)v2,

d(rvθ)
dt = F (v)(rvθ)

(118)

It is then a matter of a (rather long) discussion to show that the sets:

U+ = {0 < +ΩrotRrot ≤ −vθ ≤ v ≤ V }
U− = {0 < −ΩrotRrot ≤ +vθ ≤ v ≤ V }

are positively invariant and that for almost every initial configuration, the solution
enters one of those sets in finite amount of time. (One has to first show that v > V
causes an exponential decay of energy through collisions. Once v < V , after one
subsequent collision, the solution enters one of the sets U+ or U− which it may
never leave.) We can, therefore, with no loss of generality, assume only initial
configurations in the set U+. Next, we define dimensionless variables:

ξ = −ΩrotRrotd

rvθ

, ζ = v2d2

r2v2
θ

− 1.

We see that ξ ∈ (0, 1] and ζ ∈ (0,∞). Using (118), we compute

dζ
dt = d2

r2v2
θ

dv2

dt − 2v2d2

r3v3
θ

d(rvθ)
dt = 0,

hence ζ is an integral of motion. The discontinuous jump in ζ during a collision is
27This analysis is better done using Cartesian coordinates. A slight problem might occur with

solutions crossing the origin where polar coordinates are undefined. We may without loss of
generality exclude these solutions from our discussion.
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∆ζ = ∆
(︄
v2

r

v2
θ

)︄

=
(︄

(vr + ∆vr)2

(vθ + ∆vθ)2 − v2
r

v2
θ

)︄

= v2
r

v2
θ

⎡⎢⎣
⎛⎝1 + ∆vr

vr

1 + ∆vθ

vθ

⎞⎠2

− 1

⎤⎥⎦
= −ζ

⎡⎢⎣1 −

⎛⎝ α

1 − 1−ξ
1+β

⎞⎠2
⎤⎥⎦ .

(119)

Now, let us denote tk the times of individual collisions28 and define:

ξk = ξ(t−k+1), ζk = ζ(t+k ).

Then, using (119), we obtain the following difference relation:

ζk+1 = α2
(︄

1 + β

ξk + β

)︄2

ζk (120)

We can deduce that for
α <

β

1 + β
, (121)

the sequence ζk will converge to zero as fast as a geometric sequence. Looking at
the definition of ζ, this is only possible when r → d and vr → 0. In case of a solid
hemispherical rotor, we have β = 5/2 and (121) leads to

α <
5
7 .

In case of a thin hemispherical shell (β = 3/2), this would yield a slightly worse
condition

α <
3
5 .

We also see that if ξk are close to one, the converge may occur even when (121) is
not satisfied. Note that ξ = 1 after each collision and ξ has a decay described by
the equation

dξ
dt = − [κ+ F (v)] ξ. (122)

28Since v may never completely vanish, there will be infinitely many such collisions.
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The converge will then occur (regardless of "bad" β) provided that the rotor will
move with sufficient rapidity. For suppose that we had some estimate of the type

lim inf
t→+∞

v ≥ v > 0

valid for large t. Then (122) provides an estimate

lim inf ξk ≥ exp
(︄

−2d
v

[︃
κ+ max

v≥v
F (v)

]︃)︄
=: ξ

and we get the following improvement of (121):

α <
ξ + β

1 + β
. (123)

This can be also observed in numerical experiments. There, we prescribed

F (v) = γ(V − v) (124)

where γ > 0 was fixed. It was observed that starting from the concentric config-
uration (under some small perturbation), the rotor will first begin to bounce off
the stator (moving mostly in radial direction) and then transition into an orbital
rolling motion. Setting very high κ and α close to one prevented this transition.
It is also possible to add a spring-like centripetal force, more precisely, to replace
the r-equation in 112 by

dvr

dt = F (v)vr + v2
θ

r
− kr, (125)

where k > 0 is constant. Even with this centripetal force, the system would still
converge to orbital motion. This transition is also associated with the decrease of
energy loss per collision, which is in accordance with the principle of minimization
of entropy production [9], see figure bellow. To conclude, centrifugal fluid force
is not necessary to explain the transition from initial configuration — an inverted
drag force is sufficient. The orbital motion is then (for wide range of parameters)
the only stable solution and is self-emergent.
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Figure 10: Values computed numerically. On the left, we see the evolution of ζ
and ξ. On the right, we see the graph of dissipated energy at n-th collision. This
analysis was only qualitative and dimensionless.
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5 Simulation

5.1 Weak formulation
To use the method of finite elements, we must work with the weak formulation of
incompressible Navier-Stokes equations. We remind that the classical formulation
reads

∂ u

∂ t
+ (∇ · u) u = f + 1

ρ
divT, (t, x) ∈ (0, T ) × U, (126)

div u = 0
T = −pI + 2ρνD

Where domain U ⊂ RN , N = 2, 3. These equations must be complemented by
boundary conditions (BC). We will only consider the following three types of BC:

• Dirichlet for velocity: u|ΓD
= uD,

• Natural outflow: T|Γout
n = 0,

• Periodic: u(x, t) = u(x + L, t), p(x, t) = p(x + L, t) for x ∈ Γperiodic

where n is the outer surface normal of U and L is a fixed vector mapping one part
of a periodic boundary to another29. The weak formulation then follows using the
standard procedure of multiplying (126) by a test function v (that vanishes on
ΓD) and by integrating in space, which yields:

∫︂
U

{︄
∂ u

∂ t
· v + (∇ · u) u · v + 1

ρ
T : ∇v − f · v

}︄
dx = 0. (127)

(Using integration by parts. The boundary term vanishes for any combination of
the three types of BC above.) Similarly, the continuity equation is replaced by∫︂

U
q div u dx = 0 (128)

To solve the weak formulation of Navier-Stokes equations is to find u : (0, T ) →
u0 + V and p : (0, T ) → P , such that (127), (128) hold for every v ∈ V and every
q ∈ P at almost every t ∈ (0, T ). Here, V is a velocity test function space and P
is the pressure test function space. Natural choice of these spaces is:

V =
{︂
ϕ ∈ W 1,2(U)N , ϕ|ΓD

= 0, ϕ satisfies periodic BCs
}︂
,

P = L2(U).
29This is applicable in case of a rectangular domain.
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For more details, see [7]. In numerical computations, we need to make a discretiza-
tion of both space and time. Regarding the former, we choose a fixed time step τ
and replace the time derivative by a difference (implicit Euler)

∂ u

∂ t
↦→ un − un−1

τ
, (129)

where un stands for u(nτ), n = 0, 1, 2, . . . , N , T = nτ . Regarding the latter, we
find finite dimensional spaces Vh,Ph:

Vh ≈ V , Ph ≈ P

and solve iteratively for un ∈ u0 + Vh, p ∈ Ph satisfying
∫︂

U

{︄(︄
un − un−1

τ

)︄
· v + (∇ · un) un · v + 1

ρ
Tn : ∇v − fn · v

}︄
dx = 0. (130)

∫︂
U
q div un = 0 (131)

for every v ∈ Vh, every q ∈ Ph and n = 1, 2, . . . N (where, of course, u0 is given
by the initial condition, fn stands for f at time nτ and Tn = T(un, pn)). We then
solved equations (130), (131) via the FEniCS software. For the construction of
Vh,Ph we used the standard Taylor-Hood elements and the finite element mesh
generator Gmsh.

5.2 Simulation 1: Simplified model
In the subsection (4.3) we discussed a two-dimensional simplification of the prob-
lem, where the complex geometry was replaced by a thin shell between two con-
centric cylinders. There, we assumed an inflow which varied with θ, such that
the cosine moment of |vz| was positive. The problem has been solved analyti-
cally using the assumption of irrotationality with respect to θ, z under which the
Bernoulli’s law can be applied. This assumption, however, is difficult to justify30.
It can be therefore interesting to study this problem also numerically for a fluid
with non-zero vorticity. To this end, let the domain be a rectangle

U = (−πR, πR) × (−l, 0).

The boundary of this domain consists of four sides: Γup, Γleft, Γright, Γdown. We
consider the following boundary conditions:

30Note that the shape of the inflow was assumed to be the result of viscous forces and this is
already beyond the applicability of Bernoulli’s law
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• u = uin at Γup,

• periodic BC at Γleft, Γright,

• natural outflow BC at Γdown,

where

uin =

⎛⎜⎝ v1

−v2(1 + cos θ)

⎞⎟⎠ .
Here, v2 represent the average inflow and v1 is the speed of precession. For this
simulation we have chosen values:

v1 = 0.5 dm/s, v2 = 1 dm/s, ν = 10−4 dm2/s. (132)

What we obtain in these experiments that an asymmetric pressure field emerges,
as predicted in the analytical section. The simulation can be also done for different
values of v1, v2 as well as for other profiles, e.g a parabolic profile

uin =

⎛⎜⎝ v1

−v2
2 (1 −

(︂
θ
π

)︂2
)

⎞⎟⎠ .
Of course, being only a two dimensional model, applicability of this simulation
is very limited, but, in our opinion, it nicely captures the underlying idea and
motivates more complex three dimensional models.

Figure 11: Results of the numerical simulation: the streamlines and the pressure
distribution at z = 0. Within this simplified model, power on the rotor is propor-
tional to the negative sine moment of this function. First two images correspond
to the cosine inlet, the last two are for the parabolic inlet.
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5.3 Simulation 2: Three-dimensional model
In order to make a 3d simulation of the turbine, we follow the same strategy used
in the section 4: We prescribe a constant speed of precession and then switch
into the co-precessing frame, where the geometry appears static. This allows for
computations with a fixed mesh, which greatly simplifies the problem. For rotor,
we have chosen a truncated conical shape with greatest radius Rrot = 1.25 dm and
a conical stator of greatest radius Rrot = 1.35 dm, the Reynolds number was 35283
(this exactly corresponds to parameters in the table (4.2)). Although the geome-
try is relatively simple, it has a certain bad property and that is the presence of
a contact point between the rotor and stator, which is very problematic in terms
of mesh generation. Therefore, we decided to crop the geometry by a transversal
plane in order to exclude this point. Consequently, the inflow area is an annular
region between two circles that are only almost in touch. Of course, the mesh
needed to be refined near this narrowed region. Concerning the boundary condi-

Figure 12: The mesh generated in Gmsh (top view). It is an unstructured mesh
made of 172000 tetrahedrons.

tions, we prescribed no-slip at the walls of rotor and stator, Dirichlet inflow at the
top and a natural outflow at the bottom. The z-component of velocity at inflow
was chosen to be constant31. Note that in this simulation, we do not prescribe

31We admit that this is problematic from two reasons: Firstly, the exact shape of the ve-
locity profile at the inflow is in fact unknown and secondly, it makes the boundary conditions
discontinuous, which reduces stability.
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vz(r, θ), such that ∫︂ π

−π
vz(r, θ) cos θ dθ < 0.

Here, the corresponding condition reads∫︂ π

−π

∫︂ Rstat

0
vz(r, θ) cos θ dr dθ < 0

where vz is extended by zero outside the fluid domain. In other words, the average
velocity is not necessarily greater in the wider part, but the total flux is. This
is satisfied by constant inflow. The output of the simulation was to measure the
power on the rotor using formula (76).

The experiment confirmed the existence of drag inversion and also validity of the
square law

Ẇ ∼ Ω2

for large values of Ro. In spite of high Reynolds number, the flow appeared to
be mostly laminar. However, the simulation became quickly unstable for higher
values of Ω. This instability was accompanied with the emergence of backflow near
the rear of the rotor. Perhaps, this suggests another mechanism, where orbital
motion generates circulation around the rotor in a way similar to a lifting wing
— assuming Bernoulli’s principle, this circulation should interact with the main
flow to generate pressure field and should also contribute to drag inversion. More
research and better simulations will be needed to disprove or verify this claim.

Figure 13: The image depicts the pressure field for very small frequency of rotor
precession f = Ω/2π = 0.2Hz in a cross section below the point of contact. Regions
in red are where the pressure is greatest. The pressure field pushes the rotor
upwards (in the positive y direction) in accordance with the direction of orbital
movement. Even for this small frequency, the pattern can be clearly recognized.
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The following table lists results of four simulations with different values of Ω.
In all these simulations, the power stabilized itself after some transition period and
this value was used. (The initial state for the simulation was such that the fluid is
at rest with respect to the inertial frame). Because of the problems with stability
mentioned above, the simulation was done only for suboptimal values of Ω and
correspondingly, the power was very low. Nonetheless, the power was positive,
indicating that the positive feedback was stronger than friction losses. The table
also lists dimensionless parameter c, from the equation

c = Ẇ

AQΩ2 .

Unfortunately, for an unknown reason, this constant appears to be about ten times
smaller than the one from experimental data (which was approximately 0.446, see
the table (4.2)). This discrepancy might have been cased by the low rotation rate
in our simulations and we shall address it in the future.

f [Hz] Ω [rad/s] Ro Ẇ [W] c

0.02 0.126 17.247 2.2e-5 5.33e-2

0.2 1.257 1.725 2.3e-3 5.56e-2

0.5 3.142 0.690 1.4e-2 5.43e-2

1.0 6.283 0.345 4.3e-2 4.16e-2
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Figure 14: This graph depicts the results of four simulations with different values
of Ω. The power follows the square dependence, as predicted by equation (75)
with c being roughly constant.
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6 Conclusion
To summarize, we developed a simplified analytical model to explain the hydraulic
principle behind a rolling turbine (SETUR). This model suggests that a driving
fluid force exists as a reaction to the motion of the rotor. This is, in our opinion,
atypical in nature, where forces commonly depend on configurational variables, like
a position inside an electric field or deflection angle of a pendulum. When force
depends on velocity of an object, it usually has dissipative character (friction)
or is orthogonal to the direction of the motion and does not perform any work
(e.g. the magnetic component of a Lorentz force or the Coriolis force). It seems
however, that due to the non-linear behaviour of fluids, it is possible to make a
situation where a fluid force depends on the velocity of the rotor and accelerates
it. Thermodynamically, this is possible only due to the fact that the system is
not closed — there must be a flow which supplies the system with mechanical
energy. From a higher perspective, this is how rolling turbines work. Based on our
analysis, we also suggested a formula for power in terms of the precession speed Ω
and flux Q in the form

Ẇ =
(︄
a− b

|Ro|

)︄
AQΩ2

which is in a good agreement with the experimental data and also with the nu-
merics (at least for small Ω). The dependence of power on Ω is in our opinion
important, because in future, it could help with choosing appropriate generator
for given turbine such that the magnitude of Ω will be optimal. To make such
formula practical, we would need to complement it by a formula for hydraulic
head32

H = H(Ω, Q)

and to make some list of geometrical parameters a, b — this could be done in the
future33. Additional suggestions for further research are:

1. To capture motion of the rotor (especially the transition to the rolling mo-
tion) using a high-speed camera.34

2. To create a full scale 3d numerical simulation in a deforming geometry using
a combination of the co-precessing frame and ALE method.

3. To analyse the possibility of circulation around the rotor (back-flow in the
rear of the rotor).

32Unfortunately, our strategy was not suitable for deriving this formula.
33We should mention that some different formulas for power are also present in [1].
34As was also suggested in [8]
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7 Appendix: Navier Stokes in Cylindrical Coor-
dinates

We remind that in Cartesian, the incompressible Navier-Stokes equations read as
follows:

∂u
∂t

+ (u · ∇) u = −1
ρ

∇p+ ν∆u + f ,

div u = 0
and that in cylindrical coordinates any point x, which does not lie on the z-axis,
is parametrized by variables r, θ, z in a way, which is given by formula

x =

⎛⎜⎜⎜⎜⎜⎝
r cos θ

r sin θ

z

⎞⎟⎟⎟⎟⎟⎠ , r > 0, θ ∈ R, z ∈ R.

In this framework, it is convenient to define the canonical basis ei as

(e1, e2, e3) =
(︂
r̂, θ̂, ẑ

)︂
=
(︄
∂ x
∂ r

,
1
r

∂ x
∂ θ

,
∂ x
∂ z

)︄
=

⎛⎜⎜⎜⎜⎜⎝
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞⎟⎟⎟⎟⎟⎠
and differential operators ∂i as

∂1 = ∂

∂ r
, ∂2 = 1

r

∂

∂ θ
, ∂3 = ∂

∂ z
.

Note that ei is an orthonormal basis and ∂i are exactly the directional derivatives
ei · ∇. Now, our task is to rewrite (15) in terms of ∂i and components ui, fi, given
by

u = uiei, f = fiei.

In general, the difficulty of curvilinear coordinates arises from the fact that ei

may vary when x changes. As a consequence, the differential operators ∂i do not
commute and ∂jei may be non-zero. To account for the latter, we define the so
called Christoffel symbols Γk

ij as the components of vectors ∂jei. That means

∂jei = Γk
ijek.

With this notation, and using orthogonality, the gradient of a vector field u be-
comes

∇u = [∂ju] ⊗ ej = [∂j (uiei)] ⊗ ej = (∂jui) ei ⊗ ej + Γk
ijuiek ⊗ ej = ui|j ei ⊗ ej,

50



where we have introduced the covariant derivative

ui|j = ∂jui + Γi
kjuk.

From here (using orthogonality again), we can quickly see that

div u = Tr ∇u = ui|i

and
(u · ∇) u = ∇u(u) = ui|j uj ei.

Finally, the most complicated part is the term ν∆u which contains second deriva-
tives. For a scalar field φ, we have

∆φ = div (∇φ) = ∂j (∂iφ ei) · ej = ∂ijφ ei · ej + ∂iφΓk
ijek · ej

= ∂iiφ+ Γj
ij ∂iφ

and for a vector field u:

∆u = div(∇u) = ∂k

[︂
ui|j ei ⊗ ej

]︂
ek

= ∂k

(︂
ui|j

)︂
(ei ⊗ ej)ek + ui|j Γl

ik (el ⊗ ej)ek + ui|j Γl
jk (ei ⊗ el)ek

=
{︂
∂j

(︂
ui|j

)︂
+ Γi

kj uk|j + Γk
jk ui|j

}︂
ei.

Putting everything into (15) and comparing the components, we get a curvilinear
version of Navier-Stokes equations:

∂ui

∂t
+ ui|j uj = −1

ρ
∂ip+ ν

{︂
∂j

(︂
ui|j

)︂
+ Γi

kj uk|j + Γk
jk ui|j

}︂
+ fi, (133)

ui|i = 0.
So far, we didn’t use any particular property of cylindrical coordinates except for
local orthogonality. Thus the formula (133) remains valid even for eg. spherical
coordinates. Returning to cylindrical, we calculate

∂r̂

∂θ̂
= 1
r

∂r̂

∂θ
= θ̂

r
,

∂θ̂

∂θ̂
= 1
r

∂θ̂

∂θ
= − r̂

r
.

This corresponds to fact that the vectors r̂ and θ̂ revolve around the z-axis as θ
changes. Hence we have

Γθ
rθ = 1

r
, Γr

θθ = −1
r
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and it is easy to see that all the remaining components of Γj
ik are identically

zero. Thus the only covariant derivatives, which are not equal to their directional
counterparts, are

ur|θ = 1
r

∂ur

∂θ
− uθ

r
, uθ|θ = 1

r

∂uθ

∂θ
+ ur

r
.

Plugging these into (133) and simplifying, we obtain the Navier-Stokes equations
in cylindrical coordinates

∂ ur

∂ t
+ (∂jur)uj − u2

θ

r
= −1

ρ

∂ p

∂ r
+ ν

{︄
∂jjur − 2

r2
∂ uθ

∂ θ
− ur

r2 + 1
r

∂ ur

∂ r

}︄
+ fr,

∂ uθ

∂ t
+ (∂juθ)uj + uruθ

r
= − 1

ρr

∂ p

∂ θ
+ ν

{︄
∂jjuθ + 2

r2
∂ ur

∂ θ
− uθ

r2 + 1
r

∂ uθ

∂ r

}︄
+ fθ,

∂ uz

∂ t
+ (∂juz)uj = −1

ρ

∂ p

∂ z
+ ν

{︄
∂jjuz + 1

r

∂ uz

∂ r

}︄
+ fz.

Using scalar material time derivative and Laplace operator:

φ̇ = ∂ φ

∂ t
+ (∂jφ)uj, ∆φ = ∂jjφ+ 1

r

∂ φ

∂ r

they can be rewritten into a more succinct form

uṙ − u2
θ

r
= −1

ρ

∂ p

∂ r
+ ν

{︄
∆ur − 2

r2
∂ uθ

∂ θ
− ur

r2

}︄
+ fr,

uθ̇ + uruθ

r
= − 1

ρr

∂ p

∂ θ
+ ν

{︄
∆uθ + 2

r2
∂ ur

∂ θ
− uθ

r2

}︄
+ fθ,

uż = −1
ρ

∂ p

∂ z
+ ν∆uz + fz

and the continuity equation is simply

∂juj + ur

r
= 0.
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