

Charles University

Faculty of Science

Study programme: Bioinformatics

Branch of study: Bioinformatics

Květa Brázdilová

Applications of Machine Learning for Detecting and Counting Objects in Cell Biology

Využití strojového učení pro rozpoznávání a počítání objektů v buněčné biologii

Bachelor´s thesis

Supervisor:

doc. Mgr. Pavel Stopka, Ph.D.

Prague, 2020

i

Prohlášení:

Prohlašuji, že jsem závěrečnou práci zpracovala samostatně a že jsem uvedla

všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část

nebyla předložena k získání jiného nebo stejného akademického titulu.

V Praze, 4. 6. 2020

 Podpis

ii

Poděkování

Ráda bych na tomto místě poděkovala svému školiteli, doc. Mgr. Pavlu Stopkovi,

Ph.D., za jeho podporu a důvěru v moje schopnosti.

Dále patří dík mému vedoucímu projektu Mgr. Ladislavu Peškovi, Ph.D., který to se

mnou vydržel i přes velmi dlouhou práci na projektu. Jsem mu vděčná jak za jeho

odborné znalosti, tak za vstřícnost a ochotu.

V neposlední řadě také děkuji svojí rodině za vytrvalou podporu, zejména pak své

sestře za poskytnutí námětu pro tuto práci.

Acknowledgement

I would like to thank my supervisor doc. Mgr. Pavel Stopka, Ph.D. here, for his

support and trust in my abilities.

Many thanks go to my project supervisor Mgr. Ladislav Peška, Ph.D., who did not

give up on me despite the very long work on my project. I am grateful to him not

only for his professional knowledge but also for his helpfulness and patience.

Last but not least, I would like to thank my family for their unending support,

especially my sister for the idea for the topic of this thesis.

1

Abstract

Modern biological research generates large amounts of data, which require

automation for efficient analysis. Lately, machine learning solutions are being

developed for many of the problems in this field. This thesis focuses on applications

of machine learning for image analysis, such as detecting cells in microscopy images

and classifying them based on their phenotype. After a brief introduction to machine

learning concepts, eight published methods are presented, which employ machine

learning for either detecting and classifying, or counting objects in biological

images. Five open-source software tools for biological image analysis, which

employ some of the methods mentioned above, are introduced. A new project is also

described, which aims to create a convolutional neural network for counting

bacterial colonies in images of agar plates. The results of this project are discussed.

Keywords: machine learning, neural network, pattern recognition, cell biology,

segmentation

Abstrakt

Současný biologický výzkum vytváří velké množství dat, která vyžadují

automatizaci pro efektivní analýzu. V poslední době vznikají pro mnohé z těchto

problémů řešení využívající strojové učení. Tato práce se zaměřuje na aplikace

strojového učení pro analýzu obrazu, například detekci buněk v mikroskopickém

snímku a jejich klasifikaci dle fenotypu. Po krátkém úvodu do strojového učení

obecně bude představeno osm publikovaných metod využívajících strojové učení

pro detekci nebo klasifikaci objektů v biologických snímcích. Dále bude uvedeno

pět open-sourcových softwarových nástrojů pro obrazovou analýzu v biologii, které

využívají některé z metod zmíněných výš. Dále je popsán nový project, jehož cílem

je vytvořit konvoluční neuronovou síť na počítání bakteriálních kolonií na

agarových plotnách. Na závěr jsou diskutovány výsledky tohoto projektu.

Klíčová slova: strojové učení, neuronová síť, rozpoznávání objektů, buněčná

biologie, segmentace

2

Table of Contents

Table of Contents .. 2

1. Introduction ... 4

1.1. Machine Learning ... 4

1.1.1. Regression Analysis .. 5

1.1.2. k-NN ... 5

1.1.3. Tree based methods ... 6

1.1.4. Artificial neural networks .. 6

1.1.5. SVM .. 8

1.1.6. k-means clustering... 8

1.2. Applications of machine learning in biology ... 8

1.3. Challenges of Machine Learning ... 9

2. Approaches to detecting objects .. 10

2.1. U-net ... 10

2.2. Faster R-CNN ... 12

2.3. Divide and Conquer with SVM ... 13

2.4. The Weka Framework ... 14

3. Approaches to counting objects .. 15

3.1. Density counting ... 15

3.2. Regression Forest for Predicting Density Map .. 17

3.3. CNN for Predicting Density Map .. 17

3.4. Redundant Counts by Deep Learning .. 19

4. Tools ... 21

4.1. Fiji ... 21

4.2. CellProfiler .. 21

4.3. Advanced Cell Classifier ... 23

3

4.4. ilastik .. 24

4.5. Segmentation by Thresholding .. 25

5. Practical part ... 27

5.1. Objectives ... 27

5.2. Materials ... 27

5.3. Methods .. 28

5.4. Results .. 31

5.5. Implementation ... 34

5.6. Discussion ... 35

6. Conclusion .. 36

List of Abbreviations .. 37

Bibliography ... 38

4

1. Introduction

Modern technologies used in biology often generate data at a much higher rate than scientists are able

to analyze it. Much of this data is in the form of images, as imaging has become an important part of

many methods – fluorescent microscopy, single cell analysis or histological images. Large amounts of

information can be extracted from image data, but sometimes only simple answers are required, such

as whether or not an object is present, where in the image is it or how many are there. This is a matter

of a single glance for a human, but when there are hundreds or thousands of images to analyze and

label, the task becomes laborious or even nearly impossible.

Typically, simple but repetitive and time-consuming tasks are best tackled by machine learning

approaches. These may perfectly substitute the role of a human viewing all data or at least allow

qualified personnel to focus on more important parts of their research. Still, many scientists are not

aware of the possibilities or are unsure of where machine learning could be helpful. (Min et al., 2017)

Detecting and classifying objects is a common task in which humans still outperform computers, but

the technology is rapidly advancing. Counting objects in images is a different, though similar

problem, and can now also be solved using machine learning.

The objective of this thesis is to provide a brief overview of some machine learning methods used to

detect and count objects in cell biology. In the second part, a convolutional neural network approach

to counting bacterial colonies in a photograph of an agar plate will be discussed.

1.1. Machine Learning

Machine learning (ML) is a subset of artificial intelligence, but it also makes use of knowledge from

various fields, such as statistics or psychology. Machine learning algorithms use input data to solve a

problem without being explicitly programmed to give a specific result. During so-called training,

these algorithms use input data to find patterns and create a model for predicting the given outcome.

This model contains a set of parameters, which are adjusted during training, rather than being known

in advance and set by a human. Patterns found in the training data set are then generalized and used to

infer the results for any other data. The learning process can either be done just once, or the algorithm

can continually improve itself as it gathers more data. (Bishop, 2006; El Naqa & Murphy, 2015)

Machine learning approaches can be divided into two main categories, supervised and unsupervised

learning. The first requires a set of labeled examples for training, which has to be produced by a

human expert. If there is a finite set of possible outcomes, such as cell type or diseased and normal

phenotype, we speak of classification. If the result is a continuous variable, for example size or

weight, we use the term regression. Unsupervised learning uses a training set without labels, therefore

5

its output is not explicitly specified in advance. The examples can be clustered into groups based on

their similarity, or density estimation is performed, which determines the distribution of data in the

input space. A combination of these two options is also used, which is called semi-supervised

learning.

Performance of the model can be improved by using an ensemble method. This involves aggregating

the prediction of different models, of the same type or different. One way to involve multiple models

is by introducing an element of randomness. Individual sub-models are trianed on random subsets of

data, which is called bagging, with other optional improvements. The final prediction can be the

majority of the individual predictions, or a more sophisticated method involving probabilities may be

employed.

Another approach to ensemble methods is boosting, where simple models are created sequentially and

each next one aims to correct the errors of the previous one. To this end, missclassified instances may

be multiplied or assigned a higher weight. In this case, the resulting prediction is usually a weighted

average of the outputs. (Geurts et al., 2009)

Many different ML algorithms exist, only several will be discussed here.

1.1.1. Regression Analysis

In regression analysis, the aim is to find a function expressing the relationship of one or more

independent variables and the outcome variable. The most basic is linear regression, where a linear

function is fit to the data. More complex solutions include polynomial regression, or use of other non-

linear functions, such as logarithmic or exponential.

1.1.2. k-NN

k nearest neighbours, or k-NN, is another simple ML algorithm. The training involves only storing

labelled examples. Then, for prediction of a test sample, the k most similar training samples are found

and the output is determined as the most common class among the k, for classification, or their

average, for regression.

6

1.1.3. Tree based methods

A decision tree is a set of binary tests structured into a tree shape, much like a flow chart (Figure 1).

The answers to consecutive tests ultimately produce the resulting class.

During the learing phase, the tree starts out as one node. Subsequent nodes with tests are added and

the sample set is split, until a criterion is satisfied. When adding a test, one from a candidate set is

selected based on a scoring measure. This leads to adding of tests, which provide a better separation

of classes. All leaves are then labelled either by the majority class of samples present or in a more

sophisticated way involving probabilities. To prevent overfitting (see next section), either stop-

splitting criteria are applied while building the tree, or some of its parts are removed afterwards,

which is called pruning.

As with other ML algorithms, ensemble methods may be used with decision trees. A widely used

model is the Random Forest, which builds several trees on random data subsets. Additionally this

algorithm can be improved e.g. by selecting only certain features in different nodes (Breiman, 2001).

Boosting methods can also be applied to decision trees. (Geurts et al., 2009)

1.1.4. Artificial neural networks

This approach uses an artificial neural network with multiple layers to extract features from data,

which are then used for prediction. Each layer consists of neurons, which are connected to the

following layer in a certain way. A neuron gives an output based on its inputs and activation function

and sends this to the neurons in the next layer to which it is connected.

Figure 1 – Decision tree with corresponding data (Geurts et al., 2009)

7

A specific type of neural network is a convolutional neural network (CNN), which increases the

receptive field on each layer by integrating information from a wider area through a convolution filter

(illustrated in Figure 2). This makes use of the fact that signals from close locations are more likely to

be linked on a lower level. CNNs draw inspiration from the human visual cortex, different parts of

which pass on the signal to identify increasingly complex features of the image, similarly to layers in

an artificial network. Compared to fully connected neural networks, CNNs have much fewer trainable

parameters, which reduces training time and helps prevent overfitting. For image processing, the

whole image is usually used as input, which saves human researchers the laborious task of choosing

and extracting features themselves. Outside of biology, deep learning is widely used for speech, text

and image recognition.

Figure 2 - Illustration of applying a convolutional filter. (Vo, 2018)

To reduce dimensions of the data, convolutions are typically alternated with pooling layers, where the

information from multiple neurons is combined into one. A commonly used variant is max pooling,

where the maximum of neurons in a sliding window is used. One other option is average pooling. The

principle of both is illustrated in Figure 3. The most widely used activation function in CNNs is

ReLU, or rectified linear unit, which returns the positive part of its input. Training a network also

requires a loss function, which we aim to minimize during training by updating weights of neuron

inputs by backpropagation into the hidden layers. To this end, stochastic gradient descent is used,

which uses an estimation of the gradient, or slope, of the loss function to progress towards the

minimum. An optional addition is momentum, which uses not only the gradient, but also the previous

update, to update weights.

8

 Figure 3 - Max and average pooling. (What Is Max Pooling in Convolutional Neural Networks? - Quora, n.d.)

1.1.5. SVM

Support vector machines (SVM) are a machine learning algorithm used to separate classes of samples

in multidimensional space. When given a training set of examples belonging to two classes, the SVM

tries to find a hyperplane to separate the classes from each other. A hyperplane in an N – dimensional

space is an N-1 – dimensional subspace, that is a single point for one-dimensional data, a line in two-

dimensional space or a plane in 3D space and similarly this applies to higher dimensions as well.

There may be multiple separating hyperplanes, so the one with the greatest margin is chosen, in other

words the one with the highest distance to the nearest datapoints. If a perfect separation does not exist,

several examples may be allowed to be on the wrong side of the hyperplane. (Noble, 2006)

1.1.6. k-means clustering

k-means clustering may be mentioned as a basic exampe of unsupervised learning. It serves to divide

data into k clusters, where each datapoint belongs to the cluster whose mean is closest to the sample in

a d-dimensional space. Various heuristic algorithms exist to achieve this clustering.

1.2. Applications of machine learning in biology

In biological and biomedical research, there are many different tasks, which can be automated by

using a machine learning solution. These include such diverse problems as counting crops in fields

(Dijkstra et al., 2019), disease diagnostics (Fatima & Pasha, 2017), gene expression prediction (Chen

et al., 2016), predicting secondary structure from protein sequence (Wang et al., 2016), SNP

identification (Korani et al., 2019) and microscopy image analysis (Feizi et al., 2016).

Although various machine learning algorithms are applicable to these problems, recently deep

learning is experiencing significant progress and seems to find use in many different fields. Within

life sciences, it can be applied to problems of recognition of objects in biomedical imaging, decoding

brain behavior, protein classification and many of the tasks mentioned above. (Min et al., 2017)

9

Here we will only focus on a small subset of the aforementioned problems.

1.3. Challenges of Machine Learning

As much as machine learning is a powerful tool, like everything, it has its weak points. Here some

general pitfalls and also obstacles specific to biological data are mentioned. In each use case, many

other caveats have to be considered, but these are beyond the scope of this thesis.

Firstly, in all cases, the efficiency of a machine learning method can only be as good as the input data

we use. For supervised learning used in cell biology, this means tens or hundreds of thousands of

images hand-annotated by human experts. Obtaining this kind of data is extremely costly and time

consuming, maybe nearly impossible. Some authors bypass this problem by training on synthetic data,

which can yield a model performing well when applied to real data (Xie et al., 2018).

The model needs to be specific enough in order to provide accurate predictions, however, an

overcomplicated model, especially in combination with a small dataset, can result in overfitting. This

means that the parameters of the model follow the training data too closely and detect the noise

instead of general rules. When different data is presented to the model, it will make incorrect

predictions, since it is only trained for the original data and its specificities. Maybe the easiest way to

prevent overfitting is to choose a simple algorithm, but other measures are also advisable, such as

cross validation (Dietterich, 1995) or penalization of model complexity while training.

On the other hand, the model must be complex enough to express the problem, otherwise it will suffer

from bias and no amount of training will result in a good separation of the data. This balance between

learning not enough and too much is called the bias/variance tradeoff. (Geurts et al., 2009)

In addition, the dataset has to be split into at least two parts, the train set and test set. This ensures that

there will be additional data that the model has not encountered yet and is therefore suitable for testing

its performance. This is the basic form of cross validation. Another option is to split the dataset into k

parts and train the model k times. Each time a different subset will be kept aside for validation and the

remaining k–1 parts used for training. (Gupta, 2017)

10

2. Approaches to detecting objects

The first problem addressed here is detecting objects in images, in other words determining the

location and type of an object, or several, in an image. To this end, segmentation is usually used,

which means dividing the image into partitions, or, more formally, assigning each pixel in the image a

label. This label may distinguish background from foreground, or may divide pixels into more classes,

such as individual objects. Most segmentation methods do not involve any machine learning. A

widely used method with many existing modifications is thresholding. The image is first converted to

grayscale and then the background and foreground are separated based on a threshold for pixel value.

The objects in the foreground may be identified as connected components. Another possible non-ML

approach is computing a watershed, which is inspired by a watershed in the geological sense. Pixel

values represent elevation and metaphorically speaking, the image is segmented along lines running

along tops of ridges.

A simple ML segmentation method uses k-means clustering, which selects k cluster centers and

assigns each pixel to a cluster based on a distance metric, which may involve pixel values as well as

Euclidean distance. Then cluster centers are recalculated as cluster means and the process is iterated

until convergence.

Many more or less complex machine learning algorithms may be used for segmentation, examples of

which are mentioned below.

2.1. U-net

The U-net was designed for microscopy image segmentation, more precisely separating nuclei from

the background. The architecture is a so-called fully convolutional network, which combines the usual

contracting network with subsequent layers performing upsampling. In the first part of the network,

subsequent convolutions followed by ReLU (rectified linear units) are performed, then max pooling,

decreasing dimensions and doubling channels. In the expanding part of the network, upsampling is

performed together with convolution, which halves the channel numbers, then the feature map is

concatenated with the output of the corresponding layer in the contraction part of the network to

provide localization information. Two further convolutions are performed followed by ReLU. The

architecture is illustrated in Figure 4. Larger feature channel numbers help propagate context

information into deeper layers of the network, but that requires larger available memory. This is

addressed by dividing images into tiles, context for edge tiles is provided by mirroring.

The model was trained on a set of images with corresponding segmentation maps. Since these are not

readily available in large quantities, the dataset was augmented by applying deformations to the

11

existing images. Apart from shift and rotation, elastic deformations were applied by randomly

displacing points of a grid and interpolating the surrounding values. During training, stochastic

gradient descent was used with high momentum, so that the previous images would influence the one

being processed. The predicted value for each pixel was obtained by a soft-max function on the final

feature map giving a vector with a value near 1 for the index with maximal activation and near 0 for

the others.

The loss function, defined as

𝐸 = ∑𝑤(𝑥)log⁡(𝑝𝑙(𝑥)(𝑥))

𝑥∈Ω

determines the deviation of pl(x)(x) from 1, where pk(x) is the approximated maximum function at

pixel x, l(x) is the correct label of pixel x, and w, the weight map, is used to give more importance to

the narrow border between touching objects in a segmented image.

This network architecture was tested on three datasets within two segmentation competitions. The

first dataset contained 30 electron microscopy images of Drosophila neuronal structures, the second

consisted of 35 Glioblastoma-astrocytoma cell images taken by phase contrast microscopy and the

third comprised 20 images of HeLa cells recorded by differential interference contrast. In each of

these cases, the U-net outperformed the best algorithm at the time, except for one case with very

dataset-specific postprocessing. (Ronneberger et al., 2015)

Figure 4 - U-net architecture. Blue boxes represent feature maps with channel numbers written on top and dimensions on

the left. White boxes are copied feature maps and arrows coorespond to operations. (Ronneberger et al., 2015)

12

2.2. Faster R-CNN

Many progressive deep learning models with ever improving results exits, but few of them have been

applied to biological problems. Also, implementations of published methods are rarely available,

making it more difficult to replicate them. In a recent publication (Hung et al., 2019; Hung &

Carpenter, 2017), the authors chose to use Faster Region-based Convolutional Neural Network (Faster

R-CNN) (Ren et al., 2015), a state of the art method of its time, to automatically detect blood cells

infected by malaria.

The Faster R-CNN uses a so-called region

proposal network (RPN), or a small network which

proposes regions of the image that might contain

an object, with a region-based CNN for

classification. This is meant to speed up previously

used region proposal methods, which were

bottlenecks of region-based networks. The first

convolutional layers are shared among the R-CNN

and RPN, then a small network is slid across the

image and uses fully connected layers shared for

all positions of the image to produce region

proposals, as shown in Figure 5. An alternating

training procedure is used to enable sharing layers

and efficient training of the R-CNN on fixed

region proposals.

As input data, they used images of blood smears

from infected patients from three different

laboratories. Two sets were used for training and one left for testing. All cells were manually

annotated by an expert. Images containing only normal red blood cells, the type making up 97% of the

dataset, were excluded, while images with a higher proportion of rare classes were augmented to

reduce the bias towards one cell type.

Since the differences between infected classes are much more subtle than the difference between

infected and normal, a two-step classification was used. Faster R-CNN detected cells and labeled

them as regular red blood cells (RBC) or other, and those labeled as other were passed on to another

classifier of AlexNet architecture (Krizhevsky et al., 2012). When classification was performed in one

step, the accuracy attained was only 59%. When features used for classification were visualized, it

was clearly visible that the model distinguishes between RBCs and the rest, but cannot differentiate

Figure 5 - Diagram of the Faster R-CNN architecture.

(Hung & Carpenter, 2017)

13

between the other cell types. With the two-step classification described above, the accuracy reached

98% and different cell types clearly clustered together in the feature plot. The accuracy of the baseline

method, traditional segmentation, feature extraction and random forest, was only 50%.

Comparing counts of two human experts it was found that the accuracy of the proposed deep learning

model exceeds that of manual annotation, which only reached 72%. Thus automatic classification can

help in cases, where phenotypes are difficult to distinguish for a human.

2.3. Divide and Conquer with SVM

Another recent method for segmenting cells in microscopy images, fastER, uses so-called extremal

regions in combination with support vector machine scoring to achieve fast and accurate segmentation

(Hilsenbeck et al., 2017).

Extremal regions are defined as a set of neighboring pixels which is surrounded by pixels of higher

intensity value than the maximum intensity within the region. These can be obtained by including all

pixels reachable from a given seed pixel without exceeding its intensity anywhere on the path.

Extremal regions can be organized into a tree structure, where the child nodes of a region represent its

subsets. Figure 6 provides an example of a decomposition into extremal regions and its component

tree. Additionally, each region with two child nodes is split into two sub-regions, each containing one

subset region and all remaining pixels are assigned to the nearer of the two. Since extremal regions

describe parts of an image that are darker, or lighter after inverting the image, than the surrounding

area, they can be effectively used as candidate regions for detecting cells.

Figure 6 - Example of decomposition of an image into extremal regions (A) and the corresponding component tree (B).

(Hilsenbeck et al., 2017)

After detecting all extremal regions in an image, nine features are then extracted from each and an

SVM is used to produce a score, which gives the likelihood of the region corresponding to a single

14

cell. A divide and conquer approach is used to find a set of non-overlapping regions with high scores.

The recursive formula F(x) selects the candidate set with the highest average score, where candidates

are either the region x itself, its two sub-regions, if applicable, or the result of a recursive call of F on

all regions corresponding to child nodes of node x. The desired segmentation is obtained by applying

F to the whole image.

To decrease the time complexity of the segmentation algorithm, the method processes regions from

leaf nodes and uses an efficient calculation of features from such statistics, which can be simply added

to the parent region when progressing through the tree without computation or storage overhead. Seed

pixels for the regions resulting from recursive segmentation of each given component are also stored

in its node.

Samples for training the SVM were obtained automatically from manually labeled images. All

extremal regions with a 20% or greater overlap with negatively labelled areas were used as negative

samples. For each positive label, the best extremal region was selected based on sensitivity and

specificity of its overlap with the positive area.

Two real and one synthetic dataset of microscopy images were used to evaluate the method and

compare its performance to other solutions, including „ilastik“ (Sommer et al., 2011), U-net

(Ronneberger et al., 2015) and CellProfiler (Carpenter et al., 2006). fastER clearly outperformed the

others in terms of speed. Three different metrics were defined for accuracy: F-score using precision

and recall, number of cell merge errors and Jaccard index, which quantifies the overlap between cell

region and segmented region. The methods produced different results on each dataset and none of

them was conclusively better than the others. However, fastER tended to have metric results close to

the best performing method for each dataset.

This method has the advantage of time-efficient computation, which allows analysis of large datasets

in reasonable time, while preserving accuracy of state-of-the-art methods. In addition, it does not

require manual setting of parameters. Unlike many other publications mentioned in this thesis, the

source code for fastER is open-source and compiled binaries are available. Another feature that sets it

apart is the use of a relatively simple ML method in combination with a clever recursive algorithm.

2.4. The Weka Framework

The Waikato Environment for Knowledge Analysis, or WEKA (Hall et al., 2009), is a framework

implementing various machine learning algorithms. It provides a user interface for convenient use of

image preprocessing, classification, regression, clustering and attribute selection methods and

visualization of results. The framework is quite dated, but some of the tools mentioned in the Tools

section still utilize it, individual usages are described in more detail there.

15

3. Approaches to counting objects

Counting objects is quite a different problem from detecting and classifying them, even though it

seems closely related. Often the approach used is detecting them first and performing image

segmentation, since once detected, it must be easy to count objects, but this needs not be the case. The

issue is often extreme crowding of objects and their overlap in the image, typically in photos of a

crowd of people or a traffic jam. When the desired output is merely the number of objects in an

image, determining their precise locations is unnecessary. Some methods take advantage of this and

estimate the number without localization (Lempitsky & Zisserman, 2010).

The need to determine the number of objects is common for surveillance camera footage or counting

wildlife or trees in images of landscape, but this thesis focuses on applications in cell biology. These

are typically counting cells or subcellular structures, e.g. nuclei, in microscopy images, but can also

include macroscopic objects, such as bacterial colonies grown on solid media.

Many solutions use neural networks, in particular deep learning (Marsden et al., 2017; Oñoro-Rubio

& López-Sastre, 2016; Walach & Wolf, 2016). This is generally a method chosen for imaging data,

whether the goal is to classify or to count. However, other types of approaches also exist, such as

Bayesian regression (Chan & Vasconcelos, 2012) and linear regression to estimate the object density

(Lempitsky & Zisserman, 2010).

3.1. Density counting

Lempitksy and Zisserman (Lempitsky & Zisserman, 2010) were among the first to translate the

counting problem to estimation of the density function. This is a function of the pixel values and the

count of objects in the whole image or its section can be obtained by integrating the function over the

given area.

The authors used training data with dotted counts, i.e. a set of two-dimensional coordinates for each

image representing the counted objects. The ground truth function was defined as a Gaussian kernel in

place of each user-defined dot. For objects near the edge of the image, part of the probability mass is

outside of the image boundary, so the sum across the image is not exactly equal to the object count.

For each pixel, the value of F is the sum of evaluations of all Gaussian kernels at that pixel.

16

The goal is to find the linear transformation, which would approximate the density function at pixel p.

The parameter vector w needs to be learned, then the function at each pixel given vector w is as

follows:

∀𝑝 ∈ 𝐼𝑖, 𝐹(𝑝|𝑤) =⁡𝑤𝑇𝑥𝑝
𝑖

The learning process minimizes the loss function, which is a sum of the distances between ground

truth and estimated density.

𝑤 =⁡𝑎𝑟𝑔𝑚𝑖𝑛𝑤(𝑤
𝑇𝑤 + 𝜆∑𝐷 (𝐹𝑖

0(.), 𝐹𝑖(. |𝑤))

𝑁

𝑖=1

)

The distance metric was specifically defined here. Per-pixel distances do not reflect the nature of the

counting problem, using only the total count loses valuable positional information. The MESA

distance was defined to use both. It is a sum of count differences over all box subarrays of the image.

DMESA has three desirable properties. It is related to the counting problem, it is not sensitive to noise,

since positive and negative deviations cancel each other out, and it is sensitive to the layout of dots.

The MESA distance can be calculated efficiently using the following formula:

𝐷𝑀𝐸𝑆𝐴(𝐹1, 𝐹2) = max⁡(⁡𝑚𝑎𝑥𝐵∈B ∑(𝐹1(𝑝) −⁡𝐹2(𝑝))

𝑝∈𝐵

, 𝑚𝑎𝑥𝐵∈B ∑(𝐹2(𝑝) − ⁡𝐹1(𝑝)))

𝑝∈𝐵

Finding the inner maxima is a maximum subarray problem – there are efficient algorithms for finding

them.

The learning problem is solved by quadratic programming over all possible sub-arrays of an image

using a standard iterative cutting-pane procedure. Only a small subset of constraints is used in the

beginning and after each iteration j, the ones that are violated the most are added. Iterations continue

until compliance is achieved for all constraints within a factor of (1+).

The performance of the framework described in this article was then compared to several baseline

counting approaches on two datasets. The first dataset included artificial images of bacterial cells as

seen by fluorescent microscopy. Baseline methods for this dataset were counting by regression,

Figure 7 - Comparison of detection and density method. Left: input image with two highlighted areas. Centre: detection

confidence map produced by an SVM. Right: density map. (Lempitsky & Zisserman, 2010)

17

counting by detection with an SVM-based detector and special software for detecting cells in

fluorescent microscopy images. The approach described above outperformed all described methods.

Figure 7 shows an example prediction of counting by detection and the proposed method.

The second dataset contained annotated surveillance camera images of a busy street. In comparison

with counting by segmentation and counting by regression, the density learning approach proved to be

as good or even better.

The training time could be long, for some datasets and parameter values even up to hours. However,

once trained, the counter can be used in real time. (Lempitsky & Zisserman, 2010)

3.2. Regression Forest for Predicting Density Map

Inspired by the previous approach, another team choose to count objects in an image by estimating a

density map and then integrating over it (Fiaschi et al., 2012). Here also the ground truth is defined by

a Gaussian kernel around each user-defined annotation.

Instead of predicting the values directly for each pixel, this approach uses overlapping patches of the

image as input and output. Several features are computed to produce v channels. A mapping

𝐹: 𝑃𝑖𝑛 → 𝑃𝑜𝑢𝑡

is learned where Pin is the input patch with v channels and Pout is the output patch.

The method used here for predicting each patch is a regression forest. The splitting in each node is

based on thresholding a function given by the value at a certain pixel position and channel. The best

function and threshold pair is chosen so that the responses in each subset given by the split are as

close as possible to the subset average response.

For predicting outputs for unseen data, all patches in leaves reached by the test input are averaged.

These patch predictions are then averaged over a subset of patches containing a given pixel to produce

the pixel prediction.

The performance of the model was tested on a dataset of fluorescence microscopy images and another

dataset of surveillance camera images of pedestrians. In the first case, this method outperformed the

previous state-of-the-art method (Lempitsky & Zisserman, 2010), in the second case it performed only

slightly worse.

3.3. CNN for Predicting Density Map

Xie, Noble and Zisserman adopted the idea from the first mentioned approach (Lempitsky &

Zisserman, 2010) to translate the problem of counting to estimation of the density function (Xie et al.,

18

2015, 2018). They used a fully convolutional regression network (FCRN) to estimate the density

function and count cells in microscopy images. The aim was not to count by detection, rather to detect

cells as a side effect of their counting. Additionally, the authors attempted to train the model solely

using artificially generated data.

Same as the previous authors, they searched for a function between image I and its density map,

denoted as 𝐹: 𝐼(𝑥) → 𝐷(𝑥). For the ground truth, superposition of Gaussian kernels for each dot

annotation was used. The model was trained to predict a density map by minimizing the mean square

error between the prediction and the ground truth map.

Most convolutional neural networks use convolution in combination with ReLU (rectified linear

units) and max pooling, which leads to reduction of the image dimensions. Since here the desired

output is a density map of dimensions equal to those of the original image, first convolution and max

pooling is performed and then the size is increased back to original by upsampling.

Two architectures were proposed, FCRN-A and FCRN-B. FCRN-B, shown in Figure 8, uses fewer

poolings and larger convolution kernels in comparison to FCRN-A, which preserves more information

and therefore the network contains about three times as many trainable parameters. However, FCRN-

A has a larger receptive field, which proved useful when cell clumps are present in the image. Only a

small number of layers was used, as cells tend to be small in comparison to the whole image and do

not require deep networks.

Input frames were sampled from annotated images to increase the amount of training data and these

frames were then normalized and the ground truth density maps were scaled, so that the model would

fit the Gaussian peaks and not just the zero background. After pretraining on the sampled frames, the

Figure 8 - FCRN-B architecture. (Xie et al., 2015)

19

model was trained more precisely on whole images. Mean square error was used as a loss function for

stochastic gradient descent optimization.

The model was trained on synthetic data and then its performance was tested on another synthetic

dataset and four datasets of real microscopy images, images of retinal pigment epithelial cells,

embryonic stem cells, plasma cells and precursor T-Cell lymphoblastic lymphoma. For all these cell

types, counting cells is relevant for diagnosis and/or research.

For synthetic data, the density map was estimated first and then integrated to obtain the count of cells

in the image. FCRN-A performed slightly better than FCRN-B and about 9% better than the state-of-

the-art method at the time of publication. According to the authors, there are three main sources of

error: noise in the input data, incorrect predictions for cells near image borders and large clumps of

cells.

On real data, FCRN-B produced better results and fine tuning on real images even improved them for

both models. It is suggested that this might be because the cell clumps in real data are smaller than in

synthetic data. Cells can be detected by obtaining local maxima in the predicted density map. In the

retinal pigment epithelial cell test image, FCRN-B counted 699 cells where there were 705, and in the

T-Cell test image the estimated count was 1473 out of 1502, without fine-tuning, which gives errors

of 0.85% and 1,93%, respectively. (Xie et al., 2015, 2018)

3.4. Redundant Counts by Deep Learning

A recent publication (Paul Cohen et al., 2017) refers to the previously mentioned paper, but instead of

predicting a density map, the authors used redundant counting across frames from the input image to

create a count map. Each pixel is accounted for several times, which improves tolerance for errors.

The data is not downscaled here, as in the previous case, its dimensions are kept the same by adding

padding along the edges, and so a correct number of redundant counts is allowed.

The approach is to use a smaller network to process the image in a fully convolutional manner. For

image I a matrix F(I) is produced, which represents counts in individual frames of the size of the

receptive field of the network used. F(I) is compared with the target T, which is constructed the

following way. Annotated cells are summed across all pixels belonging to the receptive field

corresponding to the point [x, y] in the target image T.

𝑇[𝑥, 𝑦] = ⁡ ∑ 𝐿[𝑥′, 𝑦′]

𝑥′,𝑦′∈𝑅(𝑥,𝑦)

The Inception architecture (Szegedy et al., 2016) is adapted for this solution. Multiple convolutions

are performed with leaky ReLU activation. The size is decreased at two points in the network by

20

using large filters for down sampling. There are batch normalization layers inserted after each

convolution. L1 loss function, least absolute deviation, is used. The training time was significant, but

the authors found that reducing the number of layers or parameters does not give as good results.

Surprisingly, neither does increasing the parameter numbers, because that leads to overfitting.

The counts are redundant, meaning that each cell is counted multiple times according to the stride of

convolutions. The real count is obtained by dividing the sum of all pixels by the redundant count.

Cells can be accurately counted using this method, but not precisely localized. However, this has

proven to be a useful approach, since increasing the stride, and therefore reducing the redundancy,

lessens the accuracy of counts.

To evaluate the performance of the proposed method, the authors first tested it on the synthetic dataset

used previously (Lempitsky & Zisserman, 2010). Another dataset used for testing was created by

modifying eleven images of stained bone marrow. Each image was split into quarters and annotations

were corrected where necessary. The third dataset contained images of human adipocytes obtained by

sampling from histological slides and resampling. This dataset was expected to be the most

challenging for automated counting, since adipocytes are close together and vary in size. The model is

compared to several others, including the two previously mentioned, CellProfiler (Carpenter et al.,

2006) and the model using regression forests (Fiaschi et al., 2012).

The method in this paper combines ideas of previous publications (Lempitsky & Zisserman, 2010;

Seguí et al., 2015) also drawing inspiration regarding the use of convolutional networks (Xie et al.,

2015). It was shown to outperform all previous methods on the artificial dataset and also perform

exceptionally well on the other datasets.

21

4. Tools

Apart from experimental approaches aiming to improve performance by upgrading used algorithms,

some methods have been implemented in image analysis software, both general and specialized for

biological images. Here we provide several examples of such tools, focusing on free and open-source

software.

4.1. Fiji

Fiji (Schindelin et al., 2012) is an open-source software solution built on ImageJ (Abramoff et al.,

2004) in order to make its functionality more modern and usable for scientists. It bundles plugins

together to avoid multiple installations, performs automatic updates and provides advanced libraries

with detailed descriptions of underlying algorithms. The platform is targeted at biologists without

programming skills, who can benefit from its easy to use tools, as well as bioinformaticians and

computer scientists, who can build their own pipelines by using a scripting language or inspect the

source code and contribute a plugin.

Out of the similar available products, Fiji supports the widest choice of scripting languages, enabling

the user to build more complex pipelines than using the common macro language. Scripts can be both

edited and interactively executed in the Fiji environment.

Fiji makes use of machine learning algorithms through a Weka plugin (Arganda-Carreras et al., 2017),

which makes all the classifiers in the Weka framework (Hall et al., 2009) available. These can be used

for image segmentation, boundary detection or object detection. The default classifier used is a

random forest with 200 trees and two random features per node. The Weka GUI can be viewed from

the plugin and the plugin is compatible with the macro scripting language.

In the Trainable Weka Segmentation, image segmentation is translated into a pixel classification

problem. A user-defined set of features is extracted, including different types of edge detectors,

texture filters, noise reduction filters, membrane detectors and user-defined filters. The training can

either be performed interactively, by successively adding labels by the user until a satisfactory result

is achieved, or by providing the model with a large set of training data. The output is a probability

map of class assignments and a segmentation. (Arganda-Carreras et al., 2017)

4.2. CellProfiler

CellProfiler is an open-source software system for cell image analysis. It was one of the first products

of its type and has been much updated since the first publication (Carpenter et al., 2006). Analyzing

22

images from high-throughput cell microscopy has become a regular part of many biological

experiments and as mentioned previously, automating this task presents a great benefit not only

because of the decrease in time and labor, but also for the reason that a computer may be able to

detect subtle changes and quantify them better than a human eye. Some tools for image analysis

existed at the time, but most required some knowledge of programming or were specifically tailored

for one situation and were unsuitable for others.

CellProfiler was originally written in MATLAB, then was rewritten in Python since version 2.0. The

analysis is modular and modules are ordered onto pipelines for specific tasks. The first part of the

pipeline usually involves image processing, focusing on, but not limited to, illumination correction.

The next step involves cell identification, for which various previously published algorithms were

used, such as thresholding and watershed algorithm, but not machine learning in the first version.

When cells are identified, various features can be measured, including shape, size, texture, or DNA

content. Cell identification also serves for their counting. Apart from analyzing microscopy images,

Figure 9 - Example of using CellProfiler to identify and measure yeast colonies in an image of a plate. (Bray et al., 2015)

23

CellProfiler can be used to identify cell colonies on an agar plate (Bray et al., 2015). An example is

provided in Figure 9. Versions 1.0 and 2.0 do not yet contain any machine learning algorithms, but the

authors express their wishes to implement those and to apply work by theoretical computer vision

experts.

CellProfiler 3.0 contains significant updates compared to the previous two versions, such as 3D image

processing, cloud computing or deep learning support. For the latter, the module ClassifyPixels-Unet,

which can classify each pixel in an image into one of three classes: background, nucleus interior, or

nuclear boundary, is used. Independently, other authors have created a module for nucleus

segmentation. Another module, MeasureImageFocus, can be used for determining focus in an image.

Each makes use of a pretrained model which the user can directly use, but the first also allows users to

train the model on their own data. ClassifyPixels-Unet makes use of the U-net architecture described

above (2.1) (Ronneberger et al., 2015).

4.3. Advanced Cell Classifier

The Advanced Cell Classifier (ACC) (Horvath et al., 2011) is a graphical software system for

applying machine learning algorithms. While in the CellProfiler there are just a few machine learning

tools among many others, the ACC is specifically focused on ML and implements the Weka

framework (Witten & Frank, 2005).

The authors conducted an experiment to test different methods of phenotype classification, namely, to

compare a manual method, a naïve Bayesian method and an artificial neural network (ANN). They

used two datasets of 500 cell images from an RNAi screen and predefined a set of cell phenotypes for

each. Images were first processed by CellProfiler (Carpenter et al., 2006) to obtain segmentation of

cells. That was done by first thresholding the fluorescence signal to find nuclei and then creating a

fixed-size ring around each nucleus for the predicted cytoplasm location. 26 various features were

then extracted from these images, such as fluorescence intensity in the nucleus or cytoplasm, and their

importance was calculated by the Info Gain method of the Weka framework. The two most important

features are then plotted for each dataset and human experts used straight lines to separate the classes.

 The artificial neural network used was the MultilayerPerceptron tool of the Weka framework. The

authors state that default parameters were used, but it is not clear what is the exact architecture of the

network. From the description of the framework (Witten & Frank, 2005) it seems that by default,

there is an input layer with one node per attribute, one fully connected hidden layer and an output

layer.

24

All three methods were trained on the two main features and used to classify cells to the predefined

phenotypes. The accuracies and ROC analyses were compared, which showed that both machine

learning methods are better than manual division and ANN clearly outperforms the Bayes method

with an accuracy of 88.4%.

Next the authors explored the impact of the increase of features and found that using all 26 features

instead of the most important two achieved an accuracy of 91.2%.

Unfortunately, the article focuses on showing the superiority of neural networks to basic methods

which use few features and does not elaborate much on the architecture used and details of training.

In the next version of the software (Piccinini et al., 2017), the underlying Weka framework remains.

New features highlighted by the authors include phenotype discovery tools, which present the user

with cells that share the least similarity with the rest. When novel phenotypes are discovered this way,

there are often not enough examples available for efficient training (He & Garcia, 2009). This

problem can be overcome by using the available similar cell search tool, which helps to identify

additional examples.

4.4. ilastik

“ilastik” (Berg et al., 2019; Sommer et al., 2011) is another freely available software framework for

biological 2D and 3D imaging analysis, which makes use of interactive machine learning. It provides

functionality for image segmentation, classification into user-defined classes, counting and tracking.

External functionality, namely Fiji (Schindelin et al., 2012), can be used in the framework through a

plugin. A plugin is also available for applying “ilastik” functionality e.g. in CellProfiler (Carpenter et

al., 2006).

Unlike deep learning solutions which use images directly as input for the training, the authors of

“ilastik” chose to use a random forest classifier as described in a previous publication (Breiman,

2001), which uses specific features for determining the splitting test in each node. It gives good

results even when provided with a smaller number of training examples, such as several clicks or

brush strokes by the user. This solves the problem of tedious data labelling. Feature extraction

considers the spherical pixel neighborhood and can use pre-defied features or additional ones

specified by the user. After classification, the contribution of individual features is calculated to

identify the most important ones. An arbitrary number of classes can be defined by the user, such as

background, cytoplasm or nuclei, and examples of each are selected by the user as interactive training

labels. If the user is not satisfied with the image classification, they can add more labels to correct the

prediction. These are used to further train the classifier and provide a more accurate result. Once a

25

satisfactory classification is achieved, the model can be applied to large amounts of data in batch

mode.

The classifier is by default a random forest with 100 trees. However, other classifiers from the Python

library scikit-learn can be used. Each pixel of the image is assigned one of the defined classes but in

order to detect individual objects, connected component analysis has to be performed on the predicted

map. In case the objects overlap significantly, a watershed algorithm or similar can be applied through

the Fiji (Schindelin et al., 2012) plugin.

The authors stress the need of homogenous data and validation of the classifiers. Apart from keeping

the imaging procedure the same, users can validate the predictions thanks to “ilastik”’s tool to

interactively explore large datasets. After providing labels, the user can view the prediction on a

different part of data to add labels if necessary. It is usually more helpful to correct wrong predictions

than to add new labels. If the predictions keep changing even with a large number of labels, adding

new ones will probably not help and a different solution needs to be used. While CNNs need large

amounts of training data and the more is usually the better, this is not the case for random forests. The

classifier also provides uncertainty measures and it is beneficial to add labels to areas where this value

is high.

“ilastik” provides functionality for counting objects by estimating a density map and integrating over

it. The method is described in the previous section (3.2). (Fiaschi et al., 2012)

It is also noted that since “ilastik” is a generic tool, its accuracy and speed may not reach the levels of

specialized solutions for a given task.

4.5. Segmentation by Thresholding

OpenCFU is one of the first freely available open-source software solutions for counting bacterial

colonies on an agar plate to be published (Geissmann, 2013). The basic method is simple

segmentation by thresholding; however, the author uses sophisticated iterative refining for improving

performance. Therefore, this is not a machine learning method. It is included here because it provides

a comparable solution to the previously mentioned approaches and is implemented as a software

package.

A grayscale image is produced first, then thresholding is applied to it beginning with a threshold of

zero and increasing until no components of the foreground are found. For each value, the components

are tested by various filters for their morphological properties and the score of accepted regions is

increased. The filters test for “roundness” of the object by different means. The resulting score map

reflects how often a certain region was a part of a circular object. Then another threshold is applied to

these scores to obtain the final components. These are again tested by morphological filters and

26

overlapping objects are segmented by a watershed algorithm. Optionally, other postprocessing is

applied.

This application was shown to outperform two other open-source tools available at the time, NICE

(Clarke et al., 2010) and the Count_colony macro of ImageJ (Cai et al., 2011), both in speed and

accuracy. It was also shown that OpenCFU was less prone to detect common artifacts as false

positives.

AutoCellSeg (Khan et al., 2018) is a newer tool operating on the same principle as OpenCFU. First,

the size and intensity of two example cells or colony forming units (CFU) indicated by the user are

measured. These are used to calculate boundaries for detected objects, so the user does not need to

specify explicit values.

The normalized input image is segmented by adaptive thresholding to produce a binary mask of

objects. These are then tested for compliance with the predefined boundaries and optionally

segmented by a watershed algorithm, which uses feedback-based parameter tuning for choice of seed

points.

The method was tested exhaustively against other available software, including OpenCFU

(Geissmann, 2013) and CellProfiler (Carpenter et al., 2006). AutoCellSeg was shown to produce

better results on various data, including images of agar plates with bacterial colonies, images with

inverted colors and fluorescence microscopy images. In addition, the tool allows batch processing of

large datasets and manual correction of incorrectly segmented objects, which were features missing

from many previously available software options.

27

5. Practical part

5.1. Objectives

The task of counting bacterial colonies grown on agar plates is common as a quantification method

for colonization dynamics experiments, vaccination and infection challenge experiments,

opsonophagocytic uptake and killing assays and other methods. In brief, opsonophagocytic assays are

used to evaluate the uptake or killing capacity of effector cells on particles, such as bacteria. In such a

case, the remaining number of bacteria, i.e. the viability count, can be assessed by plating the medium

and after incubation, the CFU, or colony forming units, count is obtained. For the other two types of

experiments, the procedure is similar – bacteria are also plated and colonies counted after incubation.

The most common way of doing that is manual counting by researchers. This is not only very time-

consuming and limits the number of samples that one laboratory worker is able to analyze in a day,

but also somewhat subjective due to different possible interpretations of touching or merged colonies.

(Dwyer & Gadjeva, 2014; Platt & Fineran, 2015)

Different automation methods exist for this task, both open-source and commercial. Some of the

specialized tools, OpenCFU (Geissmann, 2013) and AutoCellSeg (Khan et al., 2018), were described

earlier in the text. Also, other mentioned tools include functionality for CFU counting, such as

CellProfiler.

The aim of project ColonyCount was to create a tool for automatic counting of Bordetella pertusiis

colonies on agar plates. The application should take an image of such a plate as input and produce the

number of colonies on it.

5.2. Materials

The data used for this experiment was a set of 90 photographs of plates of Bordet-Gengou agar

supplemented with 15 % sheep’s blood, with colonies of B. pertusiis, kindly provided by Mgr.

Ludmila Brázdilová from the Laboratory of Molecular Biology of Bacterial Pathogens of the Czech

Academy of Sciences. The basic appearance of these is a red plate with round, white spots, as seen in

 Figure 10. The agar is slightly lighter in rings around colonies due to hemolysis. The photos

were taken with a conventional mobile phone camera. Image quality varied between samples, images

often contained faults such as glare and reflections, some were somewhat blurred. The photos with

very bad quality were excluded from the dataset. Also, some of the photographed plates were flawed

by tears or bubbles in the agar. These, too, were excluded if the damage prevented clear visibility of

colonies.

28

Each photograph was cropped to a square containing only the plate and rescaled to 980x980 pixels.

Coordinates of colonies in each image were found manually and stored in separate files.

To simplify the counting task and to increase the number of samples, 500 98x98 pixel squares were

sampled from each image, giving 45,000 frames. The labels for each square were determined as the

number of colony centers belonging to given square. The average number of colonies per square was

3.006. Pixel values were scaled to values between 0 and 1. The models were trained on these

segments and then predictions for each segment were summed across whole images. 40,500 image

squares were used for training and the remaining 4500 for validation. 18 additional photos were

labeled and sampled and predictions on these were used for statistical analysis.

 Figure 10 - Photograph of agar plate with bacterial colonies.

5.3. Methods

As is common for image processing tasks, we used a convolutional neural network. Two basic

architectures were considered, a classic three-layer contracting network with max pooling in two

variants and a network with three layers of decreasing size obtained by averaging.

In the first case, each of three layers consisted of a convolution with a 5x5 kernel sliding across the

whole image by strides of one and max pooling with a 2x2 filter and strides of two. The third layer is

without pooling. The values at each of the layers after convolution was performed were summed and

stored. An optional fully connected (FC) layer was added after the last convolution, whose output

would replace the third sum. The output of the network was obtained by adding the last, the last two,

29

or all three of the intermediate sums. The size of the input frame and the convolutions were chosen so

that the filter on the last layer would cover an area of 20x20 pixels, which is approximately the size of

the largest colonies. This option will be further referred to as architecture A and its diagram can be

seen in Figure 11.

Figure 11 - Diagram of architecture A. Variant with 10, 20 and 30 filters and without fully connected layer. Question marks

indicate optional inclusion of layer sums in final output.

The second architecture, called B, is similar to A. The only difference is that the output of only three

filters is used for the output sum and the output of the rest is passed on to the next layer. On the last

layer, outputs of all filters are used for summing. Figure 12 illustrates architecture B.

Figure 12 - Diagram of architecture B. Variant with 10, 20 and 30 filters and without fully connected layer. Question marks

indicate optional inclusion of layer sums in final output.

The last variant, which will be referred to as architecture C in the following text, used convolution

with max pooling only on the first layer. The output from this was contracted two times by average

pooling with 2x2 filters and strides of two to get two additional layers of smaller sizes. With this

pooling the image was reduced to half its size, which enabled us to use the same filters to detect

objects of different sizes. The same convolution layer is applied to all three thus obtained layers, so

that its weights are common for the layers and trained together. Next, the three outputs are flattened

and concatenated and either summed directly, or the output results from an additional fully connected

layer. This variant is shown in Figure 13.

30

Figure 13 - Diagram of architecture C. Max is used to denote max pooling, Avg represents average pooling. Variant without

fully connected layer and with filter numbers set to 16 and 30.

Two specific activation functions were defined for this project. The function listed in Table 1 as

Sigmoid extended, was defined as the sigmoid function multiplied by 1.2 and shifted downwards by

0.1:

𝑆𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑(𝑥) = (𝑆(𝑥) ∙ 1.2) − 0.1

where S(x) denotes the sigmoid function of x, i.e.

𝑆(𝑥) = ⁡
𝑒𝑥

𝑒𝑥 + 1

The resulting function retains the shape of the sigmoid but extends from -0.1 to 1.1. Unlike the

sigmoid function, its output can be zero. In standard Sigmoid transformations, the output is always

positive, even if small, which can create bias, since an image segment may contain zero colonies. The

second function, Sigmoid shifted is obtained similarly by multiplying the sigmoid function by 1.1,

shifting it downwards by 0.1 and applying ReLU to the result:

𝑆𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑥) = 𝑅𝑒𝐿𝑈((𝑆(𝑥) ⁡ ∙ 1.1) − 0.1)

This function retains the domain of the sigmoid function, [0, 1], but since the shape was extended by

multiplication, the negative part of the function is cut off by the rectifier.

These functions were used in layers which were to be summed, i.e. on the last layers of architectures

A and B, the outputs of the three separate filters in B and the shared convolution in C. Where the

feature map was to be passed on to further layers, ReLU was used as an activation function, or in

some cases the sigmoid function.

31

In all three cases, the model is trained using an Adam optimizer (Kingma & Ba, 2014) with mean

square error as loss function. Epoch number was set to 200, since convergence was observed in fewer

epochs. Batch size was 16.

Different parameters were tested for the networks. The changed parameters were the following:

learning rate, activation functions, numbers of filters on each layer, and indicators of which layer

outputs to include in the final sum. Architecture variants and inclusion of the fully connected layer

were also alternated.

After training models on labeled crops of images, the models were used to predict counts for whole

photos by summing predictions for individual sections. For convenience of use, a graphical user

interface (GUI) was created for uploading a photo and producing its predicted count. There is also an

option to count colonies in the image manually and save the resulting coordinates.

5.4. Results

Tens of models were trained, 18 of which were chosen for the final evaluation. Table 1 and Table 2

list the values considered for each parameter after preliminary testing, which eliminated some other

possible values. Many favorable configurations may have been overlooked, but it was impossible to

train all 504 models or even try other parameter values. Table 3 lists all 18 models with their

respective parameters.

Table 1 - Values of parameters for architectures A and B

Learning

Rate

Activation

function on

first two layers

Activation

function on last

layer

Numbers

of filters

Layers

included in the

sum

Fully

connected

layer

0.0001 ReLU Sigmoid 6, 10, 16 All Yes

0.001 Sigmoid Sigmoid extended 10, 20, 30 Last two No

 Sigmoid shifted 16, 30, 40 Last layer

Table 2 - Values of parameters for architecture C

Learning

rate

Activation function

on first two layers

Activation function on

last layer and separate

filters

Numbers of

filters

Fully

connected

layer

0.0001 ReLU Sigmoid 6, 10 Yes

0.001 Sigmoid Sigmoid extended 10, 20 No

 Sigmoid shifted 16, 30

32

Architecture C, which applies one convolution to three feature maps decreasing in size, had generally

better results than A and B, with a classical sequence of convolutions and poolings. The set of 18 best

models contained 7 instances of A, with an averaged mean absolute error of 0.899 on testing image

segments, 2 instances of B with mean absolute error averaged to 0.887, and 9 instances of C, with an

averaged error of 0.762. The 5 best models all belong to architecture C. We compared the absolute

error of couples of models with equal parameters differing in architecture on the holdout image set.

The resulting p-value was 2.589 x 10-108 in the Student’s T-test for architectures A and C, the p-value

from the same test for architectures B and C is 4.482 x 10-154.

It seems that the best combination was of architecture C with no fully connected layer but with a

larger number of filters. All three activation functions for summed layers were represented among the

three best models, although the activation function in the previous layers was always ReLU.

In architectures A and B, the best models summed only one or two layers. Using all three appears less

favorable. In other trained models, coupling lower filter numbers with summing all three produced

better results than with higher filter numbers (results not listed in Table 3). However, higher filter

numbers are more prevalent in the final set.

Adding a fully connected layer mostly seemed to worsen the performance of models with otherwise

identical parameters. Still, some of these made it into the top 18. Remarkably, the fully connected

layer in architecture A had a much more disastrous effect – A models with the FC layer were among

the worst tested. Several learned to predict the same number for each image segment. When the

absolute error of couples of models with identical parameters, differing only in the presence of a FC

layer, were compared, the resulting p-vale from Student’s t-test was 2.394 x 10-10, suggesting that it is

significantly better not to include FC layers.

Interestingly, the sigmoid function as activation on the earlier layers was only advantageous in

combination with a higher learning rate. Sigmoid functions have lower gradients than ReLU, which

can lead to the vanishing gradient problem (Hanin, 2018), where the weight update is too small, which

in turn slows down or completely stops training. Increasing the learning rate can overcome that, which

is probably why we see better results with the sigmoid function in combination with a learning rate of

0.001. The higher learning rate with the usual activation function combination did not work well, and

neither did the sigmoid function with a learning rate of 0.0001. Even lower learning rates were

dismissed early in the experiment, since they proved to be of little use.

As for the activation function on layers to be summed, the majority of models use the sigmoid

function, possibly because a higher total amount of models using it was trained. Both of the two

functions defined above gave good results. Sigmoid extended worked well with all architectures,

sigmoid shifted only gave good results with C.

33

Table 3 - Overview of evaluated models. Asterisks mark models which had significantly higher mean absolute errors in the Student’s T-test than the best-performing model, 945057. * means p-

value between 0.01 and 0.0001, ** means p-value below 0.0001.

Model Learning

rate

Layer

function

Output

function

Filters Summed

layers

Fully

connected

layer

Architecture RMSE Mean

absolute

error

945057 0.0001 relu sigmoid 16, 30 - No FC C 1,178124 0,59619

354309** 0.0001 relu sigmoid_ext 16, 30 - No FC C 1,134531 0,601839

77893* 0.0001 relu sigmoid_shifted 16, 30 - No FC C 1,169377 0,602616

65156** 0.0001 relu sigmoid 6, 10 - No FC C 1,353897 0,669362

234858 0.0001 relu sigmoid 16, 30 - FC C 1,50794 0,76514

992869* 0.0001 relu sigmoid_ext 10, 20, 30 Last two No FC B 1,431983 0,816647

830583** 0.0001 relu sigmoid_shifted 16, 30 - FC C 1,711016 0,830504

200092 0.0001 relu sigmoid_ext 10, 20, 30 Last one No FC A 1,389823 0,831983

409922** 0.0001 relu sigmoid_ext 16, 30 - FC C 1,692885 0,84004

61565* 0.0001 relu sigmoid_ext 10, 20, 30 Last one No FC A 1,473339 0,8632

19047** 0.0001 relu sigmoid_ext 16, 30, 40 Last one No FC A 1,320175 0,864943

358466 0.001 sigmoid sigmoid 16, 30, 40 Last one No FC A 1,555817 0,899607

593664** 0.001 sigmoid sigmoid 10, 20, 30 Last one No FC A 1,574182 0,930533

74054** 0.001 sigmoid sigmoid 6, 10, 16 Last one No FC A 1,640571 0,933155

514133* 0.0001 relu sigmoid 16, 30, 40 Last two No FC B 1,667167 0,956943

82104* 0.0001 relu sigmoid_ext 6, 10 - FC C 1,901413 0,963381

52218 0.0001 relu sigmoid 16, 30, 40 Last one No FC A 1,698978 0,972828

497158** 0.0001 relu sigmoid 6, 10 - FC C 1,883005 0,99295

34

5.5. Implementation

The project ColonyCount consists of two main stages: creating and training a model; and using a trained

model to predict the count in an image. The source code can then be divided into four main parts: data

acquisition and preprocessing, the model training script, the model loading and prediction script and a

graphical user interface. Figure 14 shows the basic workflow.

The program was written in Python with use of the TensorFlow (TensorFlow) framework and its tf.keras

submodule, which implements the Keras API

(Chollet et al., 2015). Many common open-

source libraries were used, such as Matplotlib,

Pandas, Numpy or Tkinter.

Training samples were labeled using a script

which opens and displays an image, and records

coordinates of the user’s clicks, which are then

saved to a file. Another module randomly

samples squares of different sizes from these

images and assigns each crop a label

corresponding to the number of coordinates,

which fall inside the given square. The crops

were all saved in a separate directory, labels

were listed in a csv file containing crop file

names with their counts.

Two functions were written for creating a

model: one for architectures A and B and one

for C, both using the Keras functional API. The input layer of the model was set to accept an image

section represented as a Numpy array, that is of shape (98, 98, 3). The output was a single number

obtained by applying the reduce_sum function to the chosen layers. For models of all architectures, the

same function was used to load training data, fit the model and log progress and training and testing

results. This function also saved the trained model as .json and .h5 files.

The saved models can then be loaded by the Predictor class, which contains methods for obtaining the

predicted count of a whole image and testing on an image, which also compares the predicted count with

the true count, where a coordinate file is available. This class is then used in the GUI.

The graphical user interface is created using the Tkinter module and consists of one root window and

optional top-level windows. The first window contains the name of the currently loaded model and

Figure 14 - Flowchart of image processing and model creation.

35

buttons for loading a model and loading an image. The former creates a new instance of the Predictor

class using the chosen model, the latter opens a new window containing a canvas with the chosen image,

its predicted count and, if available, the true count. A button can be used to bind click events to the

canvas, which enable the user to define new colony coordinates by clicking the image. A save button

becomes available, which writes the coordinates to a file and unbinds events from the canvas. This serves

as a correction of an unsatisfactory prediction and also allows the use of the saved coordinates for further

training. The application is terminated by closing the root window.

The source code for the application can be found at https://github.com/kvetab/Colonies.

5.6. Discussion

In order to be usable by the Laboratory of Molecular Biology of Bacterial Pathogens, the tool would have

to have an error rate below 10%. We only achieved around 100%, which is much higher than acceptable.

It is possible that the desired accuracy is beyond the limits of the chosen architecture, but further

improvements of our method could still be explored.

Much could be tried on the input data. As with most machine learning tasks, more training data would

probably improve the results, but that would mean more hand-labelled images, which are time consuming

to obtain, so considering other possibilities seems preferable. One option would be to set the ground truth

in a way similar to Lempitsky and Zisserman (Lempitsky & Zisserman, 2010) by letting the value around

the centre of the colony to decrease smoothly instead of only counting one single point. That way, if only

part of the colony was visible in an image crop, it would still influence the count.

Various pre-processing procedures could be applied to the images apart from the scaling that was used.

Many segmentation algorithms work on grayscale images, which we chose not to do, since colour is an

important distinguishing feature of colonies from the background, not mentioning that the task at hand is

not segmentation. Other authors apply extensive feature extraction, we chose to work with the raw images

as input for simplicity.

An idea for future consideration is to integrate predictions of the pretrained models over whole images

and continue training on those. The difficulty here lies in the need for more labelled data, since they

cannot be artificially multiplied by sampling. In order to partly solve this issue, the next round of training

could only work with larger parts of images than those used here, instead of whole photos.

Another yet unexplored possibility is to approach this as a classification instead of regression and predict

whether there is a colony, or its centre, at a given position. However, there we could run into those exact

problems which caused the authors of previously mentioned papers (Fiaschi et al., 2012; Lempitsky &

Zisserman, 2010) to give up localization of objects in images and focus on the counting itself, for

example by predicting density maps.

https://github.com/kvetab/Colonies

36

6. Conclusion

The presented overview demonstrates that the theoretical possibilities of employing machine learning in

biological imaging processing are myriad, and many more than those mentioned here may be found in the

literature. Often the results of a novel method are published, but much less frequently do they find their

way to the end user in the form of a software package or plugin. However important the advances of

theoretical science are, it seems of little use if at least some of it does not end up being regularly used in

research institutions and laboratories. Although it has to be noted that some interesting architectures, such

as the U-net, have been implemented and are available as open source software; other tools often

implement more basic algorithms. Biological research would benefit from more state-of-the art

algorithms being implemented for practical use. In addition, the list of image processing tools here is also

far from complete and commercial software was completely excluded from it.

There is a clear distinction between publications which focus on the performance of their model,

comparing its accuracy and time and space efficiency with state-of-the art methods, and papers describing

a product, where more attention is given to the appearance and usage of the application. The former

contain a detailed description of the chosen model and its specificities but lack a usable implementation.

The latter, on the other hand, are often meant for readers without a background in computer science and it

can be difficult to find any details about the architecture, except for the source code.

We have seen that the field of machine learning, even its subset focusing on biology, is progressing

rapidly. Even though many laborious tasks are still performed manually, we may see much more

automation in the near future. Already ML methods are achieving results comparable to humans in some

cases. For example, Cohen et al. (Paul Cohen et al., 2017) observed a mean absolute error of only 2.3 on

one of the tested datasets. Some samples may still need to be analyzed by human experts, but the overall

time spent assessing imaging data can be greatly reduced.

On the other hand, we have shown that designing and implementing a ML solution for a specific problem

is not trivial. In order to be usable for the intended purpose, its average error would have to be around

10%, so approximately ten times better than what we achieved. In the future, we may work on further

improving the performance of ColonyCount. Since a machine learning solution can only be as good as the

input data it works with, improving the quality of training data might be a place to begin.

37

List of Abbreviations

ACC Advanced Cell Classifier

CFU Colony Forming Unit

CNN Convolutional Neural Network

FC Fully Connected (layer)

FCRN Fully Convolutional Regression Network

GUI Graphical User Interface

k-NN k-Nearest Neighbors

ML Machine Learning

MNIST Modified National Institute of Standards and Technology database

R-CNN Region-based Convolutional Neural Network

ReLU Rectified Linear Unit

RPN Region Proposal Network

SNP Single Nucleotide Polymorphism

SVM Support Vector Machine

38

Bibliography

Secondary sources are marked with an asterisk.

Abramoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ [Article].

Biophotonics International; Laurin Publishing. http://localhost/handle/1874/204900

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., & Sebastian

Seung, H. (2017). Trainable Weka Segmentation: A machine learning tool for microscopy pixel

classification. Bioinformatics, 33(15), 2424–2426. https://doi.org/10.1093/bioinformatics/btx180

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, J., Beier,

T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmueller, F., Wolny, A., Zhang, C.,

Koethe, U., Hamprecht, F. A., & Kreshuk, A. (2019). ilastik: Interactive machine learning for

(bio)image analysis. Nature Methods, 16(12), 1226–1232. https://doi.org/10.1038/s41592-019-

0582-9

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bray, M., Vokes, M. S., & Carpenter, A. E. (2015). Using CellProfiler for Automatic Identification and

Measurement of Biological Objects in Images. Current Protocols in Molecular Biology, 109(1).

https://doi.org/10.1002/0471142727.mb1417s109

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324

Cai, Z., Chattopadhyay, N., Liu, W. J., Chan, C., Pignol, J.-P., & Reilly, R. M. (2011). Optimized digital

counting colonies of clonogenic assays using ImageJ software and customized macros:

Comparison with manual counting. International Journal of Radiation Biology, 87(11), 1135–

1146. https://doi.org/10.3109/09553002.2011.622033

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin, D. A.,

Chang, J. H., Lindquist, R. A., Moffat, J., Golland, P., & Sabatini, D. M. (2006). CellProfiler:

Image analysis software for identifying and quantifying cell phenotypes. Genome Biology, 7(10),

R100. https://doi.org/10.1186/gb-2006-7-10-r100

Chan, A. B., & Vasconcelos, N. (2012). Counting People With Low-Level Features and Bayesian

Regression. IEEE Transactions on Image Processing, 21(4), 2160–2177.

https://doi.org/10.1109/TIP.2011.2172800

Chen, Y., Li, Y., Narayan, R., Subramanian, A., & Xie, X. (2016). Gene expression inference with deep

learning. Bioinformatics, 32(12), 1832–1839. https://doi.org/10.1093/bioinformatics/btw074

Chollet, F., & others. (2015). Keras. https://keras.io

Clarke, M. L., Burton, R. L., Hill, A. N., Litorja, M., Nahm, M. H., & Hwang, J. (2010). Low-cost, high-

throughput, automated counting of bacterial colonies. Cytometry. Part A : The Journal of the

39

International Society for Analytical Cytology, 77(8), 790–797. PubMed.

https://doi.org/10.1002/cyto.a.20864

Dietterich, T. (1995). Overfitting and Undercomputing in Machine Learning. ACM Computing Surveys,

27(3), 326–327.

Dijkstra, K., van de Loosdrecht, J., Schomaker, L. R. B., & Wiering, M. A. (2019). CentroidNet: A Deep

Neural Network for Joint Object Localization and Counting. In U. Brefeld, E. Curry, E. Daly, B.

MacNamee, A. Marascu, F. Pinelli, M. Berlingerio, & N. Hurley (Eds.), Machine Learning and

Knowledge Discovery in Databases (Vol. 11053, pp. 585–601). Springer International

Publishing. https://doi.org/10.1007/978-3-030-10997-4_36

Dwyer, M., & Gadjeva, M. (2014). Opsonophagocytic Assay. In M. Gadjeva (Ed.), The Complement

System: Methods and Protocols (pp. 373–379). Humana Press. https://doi.org/10.1007/978-1-

62703-724-2_32

El Naqa, I., & Murphy, M. J. (2015). What Is Machine Learning? In I. El Naqa, R. Li, & M. J. Murphy

(Eds.), Machine Learning in Radiation Oncology: Theory and Applications (pp. 3–11). Springer

International Publishing. https://doi.org/10.1007/978-3-319-18305-3_1

Fatima, M., & Pasha, M. (2017). Survey of Machine Learning Algorithms for Disease Diagnostic.

Journal of Intelligent Learning Systems and Applications, 09(01), 1–16.

https://doi.org/10.4236/jilsa.2017.91001

Feizi, A., Zhang, Y., Greenbaum, A., Guziak, A., Luong, M., Lok Chan, R. Y., Berg, B., Ozkan, H., Luo,

W., Wu, M., Wu, Y., & Ozcan, A. (2016). Rapid, portable and cost-effective yeast cell viability

and concentration analysis using lensfree on-chip microscopy and machine learning. Lab on a

Chip, 16(22), 4350–4358. https://doi.org/10.1039/C6LC00976J

Fiaschi, L., Koethe, U., Nair, R., & Hamprecht, F. A. (2012). Learning to count with regression forest and

structured labels. Proceedings of the 21st International Conference on Pattern Recognition

(ICPR2012), 2685–2688.

Geissmann, Q. (2013). OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and

Other Circular Objects. PLOS ONE, 8(2), e54072. https://doi.org/10.1371/journal.pone.0054072

Geurts, P., Irrthum, A., & Wehenkel, L. (2009). Supervised learning with decision tree-based methods in

computational and systems biology. Molecular BioSystems, 5(12), 1593–1605.

https://doi.org/10.1039/B907946G

Gupta, P. (2017, June 5). Cross-Validation in Machine Learning. Medium.

https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data

mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

https://doi.org/10.1145/1656274.1656278

Hanin, B. (2018). Which Neural Net Architectures Give Rise to Exploding and Vanishing Gradients? In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.),

40

Advances in Neural Information Processing Systems 31 (pp. 582–591). Curran Associates, Inc.

http://papers.nips.cc/paper/7339-which-neural-net-architectures-give-rise-to-exploding-and-

vanishing-gradients.pdf

He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and

Data Engineering, 21(9), 1263–1284. https://doi.org/10.1109/TKDE.2008.239

Hilsenbeck, O., Schwarzfischer, M., Loeffler, D., Dimopoulos, S., Hastreiter, S., Marr, C., Theis, F. J., &

Schroeder, T. (2017). fastER: A user-friendly tool for ultrafast and robust cell segmentation in

large-scale microscopy. Bioinformatics, 33(13), 2020–2028.

https://doi.org/10.1093/bioinformatics/btx107

Horvath, P., Wild, T., Kutay, U., & Csucs, G. (2011). Machine Learning Improves the Precision and

Robustness of High-Content Screens: Using Nonlinear Multiparametric Methods to Analyze

Screening Results. Journal of Biomolecular Screening, 16(9), 1059–1067.

https://doi.org/10.1177/1087057111414878

Hung, J., & Carpenter, A. (2017). Applying Faster R-CNN for Object Detection on Malaria Images. 56–

61.

http://openaccess.thecvf.com/content_cvpr_2017_workshops/w8/html/Hung_Applying_Faster_R

-CNN_CVPR_2017_paper.html

Hung, J., Ravel, D., Lopes, S. C. P., Rangel, G., Nery, O. A., Malleret, B., Nosten, F., Lacerda, M. V. G.,

Ferreira, M. U., Rénia, L., Duraisingh, M. T., Costa, F. T. M., Marti, M., & Carpenter, A. E.

(2019). Applying Faster R-CNN for Object Detection on Malaria Images. ArXiv:1804.09548

[Cs]. http://arxiv.org/abs/1804.09548

Khan, A. ul M., Torelli, A., Wolf, I., & Gretz, N. (2018). AutoCellSeg: Robust automatic colony forming

unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing

techniques. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-24916-9

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv Preprint

ArXiv:1412.6980.

Korani, W., Clevenger, J. P., Chu, Y., & Ozias-Akins, P. (2019). Machine Learning as an Effective

Method for Identifying True Single Nucleotide Polymorphisms in Polyploid Plants. The Plant

Genome, 12(1). https://doi.org/10.3835/plantgenome2018.05.0023

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional

Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances

in Neural Information Processing Systems 25 (pp. 1097–1105). Curran Associates, Inc.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-

networks.pdf

Lempitsky, V., & Zisserman, A. (2010). Learning To Count Objects in Images. Advances in Neural

Information Processing Systems, 1324–1332.

41

Marsden, M., McGuinness, K., Little, S., Keogh, C. E., & O’Connor, N. E. (2017). People, Penguins and

Petri Dishes: Adapting Object Counting Models To New Visual Domains And Object Types

Without Forgetting. ArXiv:1711.05586 [Cs]. http://arxiv.org/abs/1711.05586

Min, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Briefings in Bioinformatics, 18(5),

851–869. https://doi.org/10.1093/bib/bbw068

Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567.

https://doi.org/10.1038/nbt1206-1565

Oñoro-Rubio, D., & López-Sastre, R. J. (2016). Towards Perspective-Free Object Counting with Deep

Learning. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer Vision – ECCV 2016

(pp. 615–629). Springer International Publishing. https://doi.org/10.1007/978-3-319-46478-7_38

Paul Cohen, J., Boucher, G., Glastonbury, C. A., Lo, H. Z., & Bengio, Y. (2017). Count-ception:

Counting by Fully Convolutional Redundant Counting. 18–26.

http://openaccess.thecvf.com/content_ICCV_2017_workshops/w1/html/Cohen_Count-

ception_Counting_by_ICCV_2017_paper.html

Piccinini, F., Balassa, T., Szkalisity, A., Molnar, C., Paavolainen, L., Kujala, K., Buzas, K., Sarazova, M.,

Pietiainen, V., Kutay, U., Smith, K., & Horvath, P. (2017). Advanced Cell Classifier: User-

Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content

Imaging Data. Cell Systems, 4(6), 651-655.e5. https://doi.org/10.1016/j.cels.2017.05.012

Platt, N., & Fineran, P. (2015). Chapter 14—Measuring the phagocytic activity of cells. In F. Platt & N.

Platt (Eds.), Methods in Cell Biology (Vol. 126, pp. 287–304). Academic Press.

https://doi.org/10.1016/bs.mcb.2014.10.025

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett

(Eds.), Advances in Neural Information Processing Systems 28 (pp. 91–99). Curran Associates,

Inc. http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-

proposal-networks.pdf

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image

Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image

Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer

International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,

Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K.,

Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image

analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019

Seguí, S., Pujol, O., & Vitrià, J. (2015). Learning to count with deep object features. ArXiv:1505.08082

[Cs]. http://arxiv.org/abs/1505.08082

42

Sommer, C., Straehle, C., Köthe, U., & Hamprecht, F. A. (2011). Ilastik: Interactive learning and

segmentation toolkit. 2011 IEEE International Symposium on Biomedical Imaging: From Nano

to Macro, 230–233. https://doi.org/10.1109/ISBI.2011.5872394

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception

Architecture for Computer Vision. 2818–2826. https://www.cv-

foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_

2016_paper.html

TensorFlow. (n.d.). TensorFlow. Retrieved May 18, 2020, from https://www.tensorflow.org/

Walach, E., & Wolf, L. (2016). Learning to Count with CNN Boosting. In B. Leibe, J. Matas, N. Sebe, &

M. Welling (Eds.), Computer Vision – ECCV 2016 (Vol. 9906, pp. 660–676). Springer

International Publishing. https://doi.org/10.1007/978-3-319-46475-6_41

Wang, S., Peng, J., Ma, J., & Xu, J. (2016). Protein Secondary Structure Prediction Using Deep

Convolutional Neural Fields. Scientific Reports, 6(1), 1–11. https://doi.org/10.1038/srep18962

What is max pooling in convolutional neural networks? - Quora. (n.d.). Retrieved April 30, 2020, from

https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks

Witten, I. H., & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques.

Morgan Kaufmann: San Francisco.

http://web.a.ebscohost.com.ezproxy.is.cuni.cz/ehost/ebookviewer/ebook/bmxlYmtfXzM1MTM0

M19fQU41?sid=cd212563-f1bb-4bac-b324-2f8dcea47a97@sdc-v-

sessmgr02&vid=0&format=EB&rid=1

Xie, W., Noble, J. A., & Zisserman, A. (2015). Microscopy Cell Counting with Fully Convolutional

Regression Networks. In 1st Deep Learning Workshop, Medical Image Computing and

Computer-Assisted Intervention (MICCAI), 8.

Xie, W., Noble, J. A., & Zisserman, A. (2018). Microscopy cell counting and detection with fully

convolutional regression networks. Computer Methods in Biomechanics and Biomedical

Engineering: Imaging & Visualization, 6(3), 283–292.

https://doi.org/10.1080/21681163.2016.1149104

