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Abstract: While recent neural sequence-to-sequence models have greatly im-
proved the quality of speech synthesis, there has not been a system capable of
fast training, fast inference and high-quality audio synthesis at the same time. In
this thesis, we present a neural speech synthesis system capable of high-quality
faster-than-real-time spectrogram synthesis, with low requirements on computa-
tional resources and fast training time. Our system consists of a teacher and a
student network. The teacher model is used to extract alignment between the
text to synthesize and the corresponding spectrogram. The student uses the
alignments from the teacher model to synthesize mel-scale spectrograms from a
phonemic representation of the input text efficiently. Both systems utilize simple
convolutional layers. We train both systems on the english LJSpeech dataset.
The quality of samples synthesized by our model was rated significantly higher
than baseline models. Our model can be efficiently trained on a single GPU and
can run in real time even on a CPU.
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List of Abbreviations
The next list describes several symbols that are used within the body of the
document.

X A sequence of random column vectors {X⃗ i}n
i=1. Can be seen as a random

matrix X ∈ Rk×n

x A sequence of column vectors {x⃗i}n
i=1. Can be seen as a matrix x ∈ Rk×n

x[i, j] The j-th element of the i-th vector. x[i, j] = x⃗i[j]

x⃗ A column vector of real numbers x⃗ = (x1, . . . xk)T

x⃗[i] An i-th element of a column vector, i.e. a scalar x = x⃗[i] ∈ R

x⃗i An i-th column vector from x, x⃗i ∈ Rk

x A scalar

DTW Dynamic time warping

GPU Graphics processing unit

iSTFT inverse Short-time fourier transform

MLE Maximum likelihood estimation

SGD Stochastic gradient descent

STFT Short-time fourier transform

TTS Text-to-speech or Speech synthesis
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1. Introduction

1.1 Background
Voice assistants such as Alexa, Google assistant or Siri are becoming more popular
every year and have become a tool that many people use on a daily basis. Text-to-
speech synthesis (TTS) is an integral part of such systems. It provides a natural
interface between the user and the machine. There is a growing number of uses
in other areas of human lives too. TTS can be used to automatically generate
spoken messages for the public transport announcers. Blind people can utilise
TTS for screen reading including reading of emails or other personal messages and
for internet browsing. Synthetic speech also enables vocally handicapped people
to verbally communicate with others. A famous example of such use would be
the Stephen Hawking’s speech synthesis. High quality synthesis systems could
be also used for automatic e-book reading. Recently, the research areas of voice
cloning, voice editing and speech enhancement have been gaining traction. For
example, it is possible to overdub parts of already recorded speech while keeping
the characteristics and prosody of the speaker. This allows easier editing of
already recorded podcasts, audio books but also voiced movie scenes. Sampling
and generation of speech for random voices is also possible (Jia et al., 2018).
This would for example allow creating new voice lines for PC games without the
necessity to record all the character scripts, which could be useful especially in
open world games with thousands of lines of dialogues.

Speech synthesis can be used as a helper module in other systems. For ex-
ample, Aeneas1 uses TTS to extract alignment between an audio recording and
the corresponding transcript. The Resulting alignments can be used for auto-
matic subtitle synchronisation as well as for creation of new audio datasets for
automatic speech recognition systems.

Deployment of speech synthesis systems in real world applications brings many
challenges. Speech quality is one of the main factors determining the overall
usefulness of the system. The synthesized voice should be intelligible, noiseless
and should sound human-like. The pronunciation and prosody of the voice also
play a big role in perceived voice quality. The ability to change the pitch or the
color of the voice can also be useful.

Since the system may be deployed on relatively low-resource devices such as
smartphones, it may be necessary to consider CPU/GPU requirements of the
TTS system. Well-sounding, but computationally heavy systems may be of lim-
ited use. Synthesis speed can also play an important role in certain scenarios.
For example, dialogue systems typically require real-time speech synthesis since
delayed machine responses degrade the naturalness of the dialogue.

Recent TTS systems (Shen et al., 2018; Oord et al., 2016)(see Section 3) are
often based on neural approaches and require training of a neural network model
on a dataset of audio recordings and corresponding transcripts. The training can
take anywhere between tens of hours to tens of days depending on the model and
on the available hardware. Deploying such system requires the developer to either
use a pretrained model, or train a custom model. The former option is typically

1https://github.com/readbeyond/aeneas
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not available for other languages than English as publicly available pretrained
models are mostly trained on English datasets. The latter option may require
access to significantly large computational resources that are not accessible to
everyone.

1.2 Goal of this thesis
The goal of this thesis is to provide a single-speaker speech synthesis system
capable of fast training times and speedy inference, while keeping high quality of
synthesized speech and requiring low computational resources. Speech Synthesis
systems based on neural networks have reached a high quality of synthesized
audio. Thus, we also employ neural networks in our TTS system. The speed of
training of a neural model is influenced by two factors–size of the model (number
of parameters) and parallelizability of the computations inside the model. The
number of parameters of the model has an effect on the capacity of the model.
Too few parameters can cause lower quality of the synthesized speech, while too
many parameters prolong training and slow down inference. Being able to perform
as many operations inside the model as possible in parallel enables efficient use
of hardware designed for parallel computing such as graphics processing units
(GPUs). We utilize Convolutional neural networks and attention mechanisms and
cast the synthesis problem as a probabilistic modelling framework. Our system
consists of two parts. The first part is responsible for extracting character-level
alignments between audio and text and is used only during training. The second
part uses the extracted alignments for speech synthesis and is used during training
and inference.

1.3 Thesis structure
The rest of this thesis is organised as follows. First, we describe theory and
techniques relevant to our system in Section 2. Secondly, we review the literature
connected to our work and make a comprehensive comparison of state-of-the-art
techniques applied to speech synthesis in Section 3. Thirdly, we provide an in-
depth description of our methodology including the model architecture, training
procedure, and other tricks that helped to improve the model performance in
Section 4. Finally, we evaluate our results and suggest further research directions
in Section 5. The thesis ends with a short summary and concluding remarks
in Section 7. We also provide our source code and synthesized audio samples
in our repository. All source code used for experiments in this thesis as well as
synthesised audio samples are included in the archive file attached to this thesis.
We also publish our source code2 and audio samples on github.

2https://github.com/janvainer/speedyspeech
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2. Theoretical background
In this chapter, we first define a test-to-speech system. Then, we describe the
basic characteristics of human voice in Section 2.2. Next, we discuss signal pro-
cessing techniques used in this thesis in Section 2.3. Finally, basic concepts from
probabilistic modelling are introduced and necessary concepts from deep learning
and neural networks are reviewed in Sections 2.4 and 2.5.

2.1 Text-to-speech synthesis
Text-to-speech synthesis is a process of converting written language into audio
waves. A speech synthesis system usually consists of several subsystems with
different responsibilities:

1. Typically, it is necessary to parse the input text into smaller units such as
sentences.

2. Words containing numeric and other symbols are rewritten with alphabetic
characters. Abbreviations are expanded into full expressions.

3. Next, a linguistic analysis of the text is conducted in order to extract useful
features such as phonematic representations of the words, phoneme dura-
tions, or intonation (see Sections 2.2, 3.1).

4. The linguistic features can be used to generate spectral representation of
audio such as a spectrogram (see Section 2.3) that is further decoded into
raw waveforms or to generate the waveforms directly.

Steps 1–3 are considered as preprocessing steps; In this thesis, we concentrate on
the spectrogram generation (Step 4). There are various aproaches to generation
of waveforms from phonemic representations. We describe some of the more
traditional methods in Section 3.1. Modern probabilistic approaches are described
in Section 2.5.

2.2 Human voice
We include a very brief summary of voice production in humans; please refer to
(Taylor, 2009, p. 147–170) for more details.

Human voice is a sound produced by human vocal organs. The sounds are
mostly created by a flow of air from the lungs flowing through the vocal organs.
Different vocal organs are responsible for different kinds of sounds. For example,
vocal folds are responsible for the melody of the voice. The air passing through
the vocal folds creates vibrations that result in a periodic sound similar to musical
tone. The frequency of the sound is called the fundamental frequency (F0) also
termed as pitch. Together with F0, the periodic signal resonates at multiples of
the fundamental frequency called harmonic frequencies. The harmonic frequen-
cies give a characteristic color to the voice of the speaker. Similarly, different
musical instruments such as the piano or the guitar can play the same note, but
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the sound of both instruments at the given note has a different color (also called
timbre). The range of frequencies that can be generated with vocal folds differs
from speaker to speaker and is determined by the length of the vocal folds.

Speech sounds can be divided into vowels and consonants. When vocal folds
vibrate, they generate a voiced sound. Vowels are voiced and are mostly responsi-
ble for speech prosody. If the vocal folds are released, the voiced sound disappears
and non-periodic noise is produced. For example, try saying and whispering “ah”
with your fingers placed on your neck. In the first case, you should feel vibrations
while in the second case, the vocal folds should not vibrate. The noise can be
modulated by lips, tongue and teeth to create unvoiced consonants such as “s”
or “f”. A combination of voiced and noisy sounds is also possible. For example,
when “z” is pronounced, the vocal folds vibrate, but the sound is further modu-
lated by teeth. You can try to transfer from saying “s” to saying “z”. The vocal
folds will start to vibrate at some point.

The vocal organs could be divided into a sound source and sound filters. For
example, the vocal folds are a source of the sound, while articulators such as
oral and nasal cavities inside the vocal tract can be seen as filters or modulators
of the sound. The articulators typically do not affect the pitch of the incoming
sound, but boost some of the harmonic frequencies while suppressing the other.
For example, the source of the sound of all vowels are the vocal folds, but the
oral cavity is responsible for what vowel is spoken. It is possible to keep the same
pitch and vary the spoken vowels at the same time by changing the position of the
jaw, lips and tongue. Similarly, varying consonants can be produced by varying
the positioning of the tongue and teeth and by adding either a voiced sound or
noise. Importantly, consonants and vowels are determined by the configuration
of the vocal tract.

There is a correspondence between the configuration of the vocal tract and
presence and absence of various harmonic frequencies in the sound. As already
indicated, some frequencies in the source signal are suppressed and some are
amplified. The amplified harmonics are said to resonate and are called formants.
A spectrum of the vowels “a” and “e” is visualised in Figure 2.1. The spectrum of
a sound has a local and a global structure. The global structure can be captured
with a spectral envelope. The spectral envelope contains peaks and valleys, where
the peaks correspond to high concentration of acoustic energy around the given
frequency. The peak frequency regions are the formants. Usually, the first two
or three formants are sufficient to identify a vowel. Formant analysis is useful in
formant speech synthesis. Please see Section 3.1 for more information.

Often, there is not a one-to-one correspondence between the orthographic
representation1 of the spoken language and the sounds of the language. For ex-
ample, the word “experience” is rather pronounced like “ikspirients”. This can
be problematic, because in TTS synthesis, we would like to be able to uniquely
map written characters to corresponding speech sounds. Fortunately, phonetics
provides a specialized symbolic representation of the speech sounds. Any distin-
guishable sound which is a part of speech is called a phone. Any speech utterance
consists of a sequence of phones. Multiple phones may correspond to the same
meaning. For example, two people can speak English with different accents and
pronounce words in a slightly different way, but both can still understand each

1How the spoken language is written.
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Figure 2.1: The spectra and approximate spectral envelopes for vowels “a” on
the top and “e” on the bottom. The peaks correspond to resonating harmonics,
while the valleys correspond to suppressed harmonics.

other. Sounds with distinguishable meaning are called phonemes and can be seen
as basic units of sound. Phonemes are usually represented by phonetic symbols
described by the International Phonetic Alphabet (IPA). For example, the phone-
matic representation of a word explanation would be [­Ekspl@"neIS@n]. Phonematic
word representation can be found in most language dictionaries.

Since phonemes correspond to distinguishable speech sounds, it can be con-
venient to first convert text for speech synthesis to phonemes, because there will
probably be better sound-to-character correspondence. This conversion is called
grapheme-to-phoneme conversion. First, numbers, dates and times written in
numerc form are spelled out. For example, "the 4th of May" would be converted
to "the fourth of May". Then, the graphemes are converted to phonemes either
based on pronunciation dictionaries or predefined rules. Pronunciation can de-
pend on context and further analysis may be necessary. This process is language-
dependent. Phonemes can then be directly used as input to a TTS system.

2.3 Signal processing
Models in speech synthesis make heavy use of various preprocessing of the audio
signal. This section provides a basic overview of short-time Fourier transform
and further audio transformations that are utilized in our model. The definition
of a short-time Fourier transform is as follows (Kehtarnavaz, 2008).

Definition 1. Let x(t) be a signal at time t and let f be a frequency. Let w be
a window function. The continuous short-time Fourier transform of frequency f

8



at time τ is expressed as follows:

STFT (τ, f) =
∫︂ ∞

−∞
x(t)w(t− τ)e−iftdt (2.1)

The discrete short-time Fourier transform of frequency f at time step m is
expressed as follows:

DSTFT (m, f) =
∞∑︂

n=−∞
x[n]w[n−m]e−ifndt (2.2)

We further refer to the DSTFT as to STFT. The window function can be for
example a Gaussian or Hann window function (Harris, 1978). In practice, the
window function is truncated to be zero outside a specified interval around zero
and the sum in the STFT calculation runs over a finite number of elements. In
the discrete case, STFT can be seen as a table of complex numbers representing
the phase and magnitude of each given frequency at a given time step of the
signal. Short-time Fourier transform can be inverted back to the original signal
domain with the so-called inverse STFT or simply iSTFT (Allen and Rabiner,
1977).

Definition 2. A spectrogram of a signal is a squared magnitude of STFT.

spectrogram(m, f) = |DSTFT (m, f)|2 ∈ R (2.3)
where |.| denotes absolute value. In case of complex numbers, |.| can be viewed as
the size of the complex number.

A spectrogram can be seen as a table where each row represents a discrete
time step and each column represents a frequency bin. Among other things,
spectrograms can be useful for displaying harmonic frequencies of a signal. Spec-
trograms can also be used to visualize human intuition behind a melody. In
speech synthesis, spectrograms reduce the time dimension of the signal, which
simplifies modelling of long-distance dependencies typical for spoken language
such as intonation. A log-magnitude spectrogram is visualized in Figure 2.2.

Stevens et al. (1937) have shown that humans do not perceive frequency pitch
on a linear scale. If we take frequencies f0, f1 = 2f0 and f2 = 2f1, the perceived
distance between f0 and f1 will be the same as between f1 and f2. If we choose for
example f0 = 220 Hz, then f1− f0 = 220 Hz and f2− f1 = 440 Hz. The absolute
frequency distances must increase exponentially with frequency for humans to
perceive the frequency changes as equal. This phenomenon can be used to further
reduce the dimensionality of raw audio. The perceptual scale is called the mel
scale. A spectrogram in Hertz scale can be transformed into mel scale with the
following formula (Taylor, 2009, Chap 12, p. 360):

mel(f) = 2595 log10(1 + f

700) (2.4)

In practice, a mel-filter matrix is constructed from the above formula and
the linear-scale spectrogram is multiplied by that matrix. We can extract a
spectrogram and apply frequency filters with high detail in low frequencies and
low detail in high frequencies. This process reduces high frequency precision,
but shrinks the number of frequency bins. If the shrinking is not too drastic,
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Figure 2.2: Log-magnitude spectogram with 512 frequency bins of a sentence
"Printing, in the only sense with which we are at present concerned, differs from
most if not from all the arts and crafts represented in the Exhibition".

the reconstructed voice quality is still acceptable. This form of dimensionality
reduction is useful because it allows us to train and use smaller models for speech
synthesis. A log-magnitude mel spectrogram is visualized in Figure 2.3.

Exact spectrogram reconstruction from a mel spectrogram is impossible be-
cause the mel transformation discards information. However, a pseudoinverse of
the mel transformation can be calculated to get approximate spectrograms. For
example, we can find an approximate solution to the non-negative least squares
(NNLS) problem (Chen and Plemmons, 2009) in order to reconstruct the linear-
scale spectrograms. In other words, we want to solve argminx||ax − y||2 given
x ≥ 0, where x is the spectrogram reconstruction we are looking for, a is the mel
transformation matrix and y is the mel-spectrogram.

To invert a spectrogram back to the original signal, the phase of the STFT-
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Figure 2.3: Log-magnitude mel spectogram with 80 mel frequency bins of a sen-
tence "Printing, in the only sense with which we are at present concerned, differs
from most if not from all the arts and crafts represented in the Exhibition".
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Algorithm 1: Griffin-Lim
Data: Linear scale magnitude spectrogram, number of iterations n
Result: Estimated signal
phase← RandomPhase;
signal← iSTFT(spectrogram, phase) ;
for i← 1 to n do

real, phase← STFT(signal) ;
signal← iSTFT(spectrogram, phase) ;

end
return signal;

processed signal must be estimated in order to use iSTFT. Various phase esti-
mation algorithms have been proposed, for example (Griffin and Lim, 1984) or
(Le Roux et al., 2010). We use a slightly modified version of the Griffin-Lim
algorithm depicted in Algorithm 1. The phase corresponds to the imaginary part
of STFT. The spectrogram and a phase are inverted by iSTFT to form a signal.
Then, the signal is processed by STFT. The imaginary part of the output is used
to form a new estimate of the phase.

2.4 Probabilistic modelling
Conditional audio synthesis can be formulated in a probabilistic setting. Specifi-
cally, the dependence of the audio wave sequence on spoken text can be formulated
as a conditional probability distribution

P (Y|X) = P (Y⃗ 1, . . . , Y⃗ n|X⃗1, . . . X⃗k) (2.5)

where X is a sequence of discrete symbols, such as text characters or phonemes
and Y is a sequence of spectrogram or raw waveform frames.

2.4.1 Maximum likelihood estimation
Given a dataset of independent, identically distributed sequence pairs (y, x) ∈ D,
such distributions can be estimated from data with maximum likelihood estima-
tion (Bishop, 2006, p. 27), which means solving the following problem:

Definition 3. Let P (Y|X) be the true distribution and P̂ (Y|X, θ⃗) be from a
family of distributions Pθ⃗. The maximum log-likelihood estimate of P is

arg max
θ⃗

∑︂
(y,x)∈D

log(P̂ (y|x, θ⃗)) (2.6)

The independence of the samples allows us to express the joint distribution
over the entire dataset as a product of distributions over each sample. The
logarithm is a monotonically increasing transformation. Therefore, it does not
change the resulting θ⃗ and allows us to optimize a sum instead of a product. In
conclusion, a MLE estimate is an estimate such that the probability of observing
the data under the estimated distribution is maximized.
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2.4.2 Stochastic gradient descent
Typically, Pθ⃗ is selected so that P̂ (y|x, θ⃗) is differentiable w.r.t. θ⃗. Then, the op-
timal parameters θ⃗

∗
can be iteratively estimated with Monte-Carlo optimization

techniques such as stochastic gradient descent (SGD) or some of its variants such
as Adam (Goodfellow et al., 2016; Kingma and Ba, 2015).

Definition 4. One iteration of SGD performs the following update

θ⃗t+1 = θ⃗t + ρt
1
|D|

|D|∑︂
i=1
∇θ⃗ log(P̂ (y|x, θ⃗)), (2.7)

where ρt is a learning rate at step t satisfying the Robense-Monro convergence
conditions (Robbins and Monro, 1951).

It is common that negative log-likelihood is minimized instead. In practice,
the gradient update is not calculated across the entire dataset. The datasets
used in Deep learning applications are often too large to efficiently calculate the
gradient with respect to the entire dataset. Instead, batch updates are used. A
batch is a random subset of the dataset and a batch update is a gradient update
calculated with respect to the batch. It would be possible to run the SGD with
respect to a single item from the dataset. However, the convergence in such case
typically becomes less stable. The gradient calculation in neural networks (see
Section 2.5) is calculated by meansbackpropagation (Rumelhart et al., 1986).

2.4.3 Chain rule factorization
If we define Yj<i = (Y⃗ 1, . . . , Y⃗ i−1) for i > 1, the chain rule can be used to
factorize the distribution in Equation 2.5 into the following form:

P (Y⃗ 1, . . . , Y⃗ n|X⃗1, . . . X⃗k) =
n∏︂

i=1
P (Y⃗ i|Y⃗ j<i, X). (2.8)

The factorized distribution is often easier to model. It allows parameter sharing
– the model can use the same parameters to express each time step of the target
series conditioned on already expressed time steps. The choice of distribution
family P can have a large impact on the resulting estimate. If P contains the
true distribution, the MLE estimate has the following suitable properties:

1. The estimate is consistent, i.e., it converges in probability to the true value
of the estimated parameter as the data set size increases.

2. The estimate is efficient, i.e., its variance is lowest possible among unbiased
estimators.

2.4.4 Loss functions
To model complex distributions, one needs highly expressive distribution families
to get close to the true distribution. Let us assume that the sequence lengths of
X and Y are equal. By restricting the the distribution family to a certain group
of distributions, it is often possible to express the minimization of the negative
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log-likelihood as a minimization of a corresponding loss function. It is common to
take some family of parametric distributions such as the Gaussian family and use
functions µθ⃗1

: X → Rk×n and σθ⃗2
: X → R+k×n to characterize the distribution

mean and variance (or other parameters of the given distribution). Then the
target variable is modeled as follows.

Y|x ∼ N (µθ⃗1
(x), σθ⃗2

(x)) (2.9)

If we set σθ⃗2
(x) = 1, plugging the Normal distribution into negative log-

likelihood results in minimizing the L2 loss (Bishop, 2006, p. 27). In other
words, we can directly minimize the mean squared error (MSE):

Definition 5. The mean squared error for all pairs x, y ∈ Rk×n in the dataset
D is defined as:

1
|D|

∑︂
x,y∈D

||µθ1⃗
(x)− y||22

kn
, (2.10)

where ||z||2 =
√︂∑︁k

i=1
∑︁n

j=1 z[i, j]2.

Similarly, if we model Y|x with the Laplacian distribution, we can directly
minimize the negative log-likelihood by minimizing the L1 loss, which results in
minimizing the mean absolute error (MAE):

Definition 6. The mean absolute error for all pairs x, y ∈ Rk×n in the dataset
D is defined as:

1
D|

∑︂
x,y∈D

||µθ1⃗
(x)− y||1

kn
, (2.11)

where ||z||1 = ∑︁k
i=1

∑︁n
j=1 |z[i, j]| is a sum of absolute values of the matrix z.

The distribution parameters µ are often parameterized with differentiable
models such as the neural networks.

2.5 Neural networks
Neural networks are seen as differentiable universal function approximators
(Hornik et al., 1989). A typical neural network combines affine transformations of
the input with non-linear activation functions, such as ReLU, hyperbolic tangens
or sigmoid. For example, the ReLU activation is defined as f(x) = max(0, x).
Modern architectures can also include normalization (Ioffe and Szegedy, 2015),
pooling layers (Scherer et al., 2010), residual connections (He et al., 2016), at-
tention mechanisms (Bahdanau et al., 2015) and so on. In the following, we
will briefly describe common types of currently used neural network architecture
components, including:

• convolutional layers that make use of local dependencies in the data,

• recurrent layers that maintain a hidden state which allows them to model
longer-distance dependencies in some data sequence,

• attention mechanism that allow the network to access any part of the mod-
eled sequence,
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• residual skip connections that enable training of very deep neural networks,

• batch normalization that allows more stable training and faster training
convergence.

Parts of these architectures will then be used in our models described in Chapter 4.
For a comprehensive overview of neural architectures, we refer the reader to
Goodfellow et al. (2016).

2.5.1 Convolutional and recurrent networks
Both recurrent and convolutional neural networks can be used to model Equa-
tion 2.8. Convolutional networks consist of several convolutional layers. The lay-
ers are sequentially ordered and each layer processes the outputs of the previous
layer. We work with temporal input sequences that are usually multidimensional;
each point in the sequence has several dimensions, sometimes called channels. A
convolutional layer uses the same set of parameters to transform different parts
of the input sequence. Each layer has its own parameter set. The trainable pa-
rameters consist of a set of matrix filters that are also called kernels. Since we
work with temporal data, the convolution layers in our models use 1D (temporal)
convolutions. The 1D convolution kernel set is usually represented as a fixed-
sized three-dimensional array of size (n, m, k), where n is the number of output
channels, m is the number of input channels and k is the kernel size. We can
also interpret the kernel set as a list of n matrices of size (m× k). The convolu-
tional transformation is similar to a sliding window filter. The part of the input
sequence under the sliding window is element-wise multiplied by each matrix in
the convolutional kernel. For each matrix multiplication, the resulting scalars are
summed and the summands are concatenated to form an output vector with n
items. The result is typically transformed by some non-linear function such as
ReLU. The convolutional operation is depicted in Figure 2.4.

The convolutional filters slide across the input sequence with some predefined
step size (also called stride). The length of the output sequence depends on
the step size, kernel size and dilation. The dilation factor determines the size
of the gaps between columns of the filters. A dilation of 1 corresponds to no
gaps between the filter columns (see Figure 2.5). Increased dilation, step size
and kernel size decrease the length of the output sequence. To keep the output
sequence length the same as the input sequence length, the input sequence can be
zero-padded at the beginning and at the end. A dilated convolution with padding
is displayed in Figure 2.5.

Due to the sliding window approach, convolutional networks use a restricted
receptive field to model the sequence. Receptive field is a segment of input se-
quence that corresponds to one item in the output sequence. For example, in
Figure 2.4, the receptive field contains 3 input tokens. Thus, the size of the
receptive field is 3. A restricted receptive field means that Yj<i contains only
a limited number of recent timesteps and not necessarily the whole sequence
{Y⃗ 1, . . . Y⃗ i−1}. This may limit the ability of the model to capture long-term
dependencies. Increasing the kernel size and the dilation factor can be used to
extend the receptive field. Larger receptive field allows the network to extract
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output sequence length = 9

Figure 2.4: One-dimensional non-causal convolution with four input channels,
three output channels and three kernels. The green filters transform the input
sequence (bottom) to output sequence (top). The length of the output sequence
is decreased due to kernel size larger than 1.

features across longer distances and can capture long-term dependencies such as
voice intonation.

To model the Equation 2.8 with convolutional networks, it is necessary to
carefully design the receptive field of the network in order to prevent the network
from looking at the future timesteps. This can be achieved by padding the begin-
ning of the input sequence with a sequence of zeros, where the length of the zero
sequence equals the size of the receptive field - 1. Convolutions with a receptive
field shifted in this way are called causal. A causal convolution is displayed in
Figure 2.6.

Recurrent neural networks capture the past time steps Yj<i in a finite com-
pressed representation called the hidden state. The distribution becomes:

P (Y⃗ 1, . . . , Y⃗ n|X⃗1, . . . X⃗k) =
n∏︂

i=1
P (Y⃗ i|Y⃗ i−1, H⃗ i−1, X) (2.12)

The hidden state vector H⃗ i is internally updated at every time step and serves
as a memory of the network.

During training, the target sequence y is known for each data point. We can
use the sequence y as the input to the model and use the same sequence on the
output, but with each token shifted one position to the right. For convolutional
networks this means that for each member of the product in Equation 2.8 we
know both inputs and outputs and each member can be evaluated independently
and in parallel.
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Figure 2.5: Dilated temporal non-causal convolutions with dilations 1 (bottom
layer) and 3 (top layer), kernel size 3 and stride 1. Dashed circles represent zero
padding necessary to keep the same output size in each layer. For visualisations
of dilated temporal causal convolutions, see (Oord et al., 2016).

During sampling from the model conditional on some X, the sequence Y
is unknown and has to be iteratively generated. We start by sampling y⃗1 from
P (Y⃗ 1|x). Then we sample y⃗2 from P (Y⃗ 2|y⃗1, x) and so on. Models that iteratively
generate the output are called autoregressive.

Figure 2.6 shows a computational graph for a convolutional neural network
with a receptive field of size k − 1, i.e., each output token is generated based on
the previous k − 1 tokens.

A computational graph for a recurrent neural network can be seen in Fig-
ure 2.7. The hidden state h⃗ is updated at each time step. The sequence of
hidden states is not known beforehand and has to be sequentially calculated even
during training, which hinders parallelization across time.

The way the model conditions on X is one of the most important distinctions
between various architectures. For the task of speech synthesis, we assume that
each token in X corresponds to a consecutive sequence of frames in Y. The
number of frames corresponding to a token is called the token duration.
Example. Let D = {di}k

i=1, di ∈ N be a sequence of durations corresponding to
tokens in X such that ∑︁k

i=1 di = |Y|. We can create a new sequence of tokens:

X′ = {X⃗1, . . . , X⃗1⏞ ⏟⏟ ⏞
d1 times

, X⃗2, . . . , X⃗2⏞ ⏟⏟ ⏞
d2 times

, . . .} (2.13)

I.e., X⃗1 is copied d1 times and so on, so that |X′| = |Y|.
If the token durations are available, we can simply associate the elements of

X′ with corresponding frames of Y. This is visualised in Figure 2.8 for a recurrent
network. This can be done analogously for a CNN.

This approach is taken for example in the WaveNet TTS model (Oord et al.,
2016), where other linguistic features are used in addition to input orthographical
characters (see Chapter 3 for details). WaveNet uses dilated 1-D convolutions as
its building block and uses a computational graph similar to Figure 2.6.

Token durations can be extracted with publicly available force-aligners such
as the Montreal Forced Aligner (McAuliffe et al., 2017). Such aligners either use
a pretrained speech recognition system or a combination of a pretrained speech
synthesis system and a dynamic time warping algorithm (Salvador and Chan,
2004).
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Figure 2.6: A computational graph for a temporal convolutional network with
causal convolutions. The function f maps a window of input elements to an
output element. For example, the function f can be composed of a convolution
operation, normalization and non-linear activation such as ReLU. We omit the
dependence on X for simplicity.

2.5.2 Attention
Attention (Bahdanau et al., 2015) can be used to automatically align the text
tokens with audio frames. The concept can be understood in the context of
recurrent neural networks but can be easily generalized for other architectures as
well.

Let us consider that we want to generate frame y⃗i from h⃗i−1, y⃗i−1 and x. To
incorporate the information from the whole sequence x, we would like to select a
certain frame x⃗ (dubbed context vector) that would provide relevant information
about y⃗i. For example, x⃗ could be the token/character pronounced in frame y⃗i.
To do so, we can define a score function score(h⃗i−1, x⃗j) ∈ R and calculate the
score of each x⃗j ∈ x for given hi−1. Ideally, we would select the x⃗ with the highest
score as the context vector. Unfortunately, the operation is not differentiable and
gradient is not able to flow through, which hinders the use of SGD. Instead, we
can define a sequence of distributions a = {a⃗1, . . . a⃗|X|} over the elements of x with
respect to the calculated scores. A softmax function can be used to normalize
the scores into a probability distribution.

a[i, j] = exp (score(h⃗i−1, x⃗j))∑︁
j exp (score(h⃗i−1, x⃗j))

(2.14)

Each column of the matrix a is a distribution over columns of x. We can extract
the context vector from x as a weighted average of x.

c⃗i = a⃗i · x =
∑︂

j

a[i, j] · x⃗j (2.15)
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Figure 2.7: A computational graph for a recurrent network. The variable hi

represents the hidden state carried between timesteps. The function f maps
the hidden state from the previous timestep h⃗i−1 and the input y⃗i−1 at current
timestep to output y⃗i. We omit the dependence on X for simplicity.
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Figure 2.8: A computational graph for a conditioned recurrent network.

This operation is already differentiable and we can use the resulting vector as a
context vector for generation of yi. There are various score functions. In this
thesis, we use the scaled dot-product attention (Vaswani et al., 2017):

Definition 7. The scaled dot-product attention score is calculated as:

score(h⃗i−1, x⃗) = h⃗i−1 · x⃗√
d

(2.16)

where d is the size of vector x.

The elements in the numerator are vectors, the denominator is a scalar and
its value equals the number of dimensions of the vectors. The scaled dot-product
attention has several advantages. It is easy to calculate, easy to parallelize and
can be generalized for non-autoregressive models.

The attention mechanism can be seen as a dictionary with keys and values.
We can imagine h⃗ to be a query. We also have a set of keys x; the keys in x have
values associated to them in theory, but in practice, x itself is used as values, i.e.,
keys = values. We compare the query with the available keys and extract the
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Figure 2.9: An attention distribution for each timestep. The horizontal axis rep-
resents the query sequence. The vertical axis represents the key/value sequence.
Each column forms the attention distribution over keys for the given query. Dark
color is close to zero, light color is close to 1. We can extract the alignment of
keys and queries by taking the argmax of each column.

values whose keys were most compatible with the query. If multiple queries are
available, we can technically compute attention for each of the queries in parallel.

In a special case where keys = queries = values, the attention becomes so
called self-attention, because for each element in the sequence, we are looking
for compatible elements in the same sequence. This principle is used in the
Transformer model (Vaswani et al., 2017) and in this thesis.

Scaled dot-product attention can be described as a matrix product:

Definition 8. Let q = [q⃗1, . . . , q⃗m], k = [k⃗1, . . . , k⃗n], v = [v⃗1, . . . , v⃗n] be matrices
of queries, keys and values. The context matrix c is calculated as follows:

c = v · softmax
(︄

kT q√
d

)︄
(2.17)

where d is the size of vectors in k. The result of the softmax operation is a
matrix of size n × m. The softmax is applied on each column of the matrix
kT q. Therefore, each column is normalized and can be treated as a probability
distribution.

An example attention distribution is visualised in Figure 2.9. We can extract
the alignment between keys and queries by taking the argmax of each column.
This gives us a key index for each query, which can be considered an alignment of
keys to queries. If the key indices stay the same or increase, but never decrease
with the query index (the alignment is non-decreasing), we can extract the dura-
tion for each key by counting the number of occurrences of each key index in the
alignment.

2.5.3 Positional encoding
The attention layers are not able to distinguish relative locations of the input.
For example, it is hard for an attention layer to “look” 2 positions to the left
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Figure 2.10: The positional encoding matrix. The horizontal axis represents time.
The vertical axis represents dimensionality of the encoding.

from a given input vector because there is no location information encoded in
the input vectors and the attention operation is non-local. The positional encod-
ings Vaswani et al. (2017) were designed to solve this issue by adding a unique
positional timestamp to each input vector.

Definition 9. The positional encoding is a sequence of vectors defined as follows.

pe(pos,2i) = sin
(︃ pos

c2i/channels

)︃
(2.18)

pe(pos,2i+1) = cos
(︃ pos

c2i/channels

)︃
(2.19)

The first subscript is a position of the vector in a sequence and the second ar-
gument is the item position inside the vector. The whole sequence can be seen
as a matrix. The second subscript in pe corresponds to the dimensionality of the
encoding. We use as many dimensions as there are channels in our models so that
the encoding can be added to the layer inputs. The constant c is set to 10,000.

The positional encoding matrix is visualised in Figure 2.10. Vaswani et al.
(2017) hypothesized that accessing relative positions in the sequence could be
easy to learn, because pepos+k,2i can be expressed as a linear function of pepos,2i.
The positional encoding could also be learned by the network, but the learned
encoding would have a fixed size and could not be used for sequences longer than
the sequences seen during training. In fact, Vaswani et al. (2017) decided to use
the variant in Definition 9 for that purpose.

2.5.4 Residual networks
Stochastic gradient descent requires gradient computation for all trainable param-
eters in the model. In the case of neural networks, the gradient is calculated by
means of backpropagation (Rumelhart et al., 1986). As the depth of the network
increases, the backpropagation algorithm becomes less effective at propagating
the gradient through the network, which results in slower training. To allow
training of deeper neural networks, the so-called residual connections between
consecutive layers are used. The resulting networks are called Residual networks.
We use a variant of a residual network in the spectorgram synthesis part of our
model (see Section 4.4). Residual neural networks were first introduced by He
et al. (2016) and are technically a simplified version of highway networks (Srivas-
tava et al., 2015). Instead of directly transforming the input

xn = F(xn−1) (2.20)
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a residual block calculates a residual

xn = F(xn−1) + xn−1 (2.21)

The index n of the matrix xn denotes that xn is the hidden representation of the
n-th layer of the residual network. The mapping F can be composed of various
combinations of layers such as convolutional layers, normalizations and activation
functions. The residual connection allows the gradient to flow to deeper layers of
the residual network during training, which allows training of very deep networks.
Residual blocks can be stacked on top of each other.

2.5.5 Batch normalization
Neural networks learn an output distribution based on an input distribution.
Similarly, the network layers learn some output distribution given the input from
the previous layer. While the distribution of the network inputs usually does not
change, the outputs of the network layers change during the learning process. This
means that a layer inside the network has to learn some output distribution based
on non-stationary input, due to the changes in the previous layer. This effect is
called an internal covariance shift. This is problematic because learning an output
distribution based on non-stationary input can be comparatively harder than
learning the output distribution when the input distribution is constant. Various
techniques have been developed to decrease the effect of input non-stationarity.
One of the most popular approaches is batch normalization (Ioffe and Szegedy,
2015).

This technique normalizes the layer inputs to have zero mean and unit vari-
ance. The goal of batch normalization is to keep the mean and variance of
the input distribution constant to enable faster and more stable learning. How-
ever, input normalization can decrease expressiveness of the network. To restore
the network expressiveness, the normalized inputs are transformed by an affine
transformation. The parameters of the affine transformation are learned during
training. Please see Ioffe and Szegedy (2015) for details.

We work with mel spectrograms (see Section 2.3), i.e., 3D arrays of the fol-
lowing dimensions: training batch, time, mel-frequency bins. Similarly, the in-
termediate layer outputs in our networks have three dimensions: batch, time,
channels (i.e., results of convolutions on the preceding layer). Therefore, we use
a 1D batch normalization for sequences (temporal batch normalization) applied
to tensors with the batch, time and channels dimensions. In this case, the nor-
malization is applied over the (batch, time) dimensions for each channel. In our
case, this amounts to normalizing each frequency bin across time and batch.
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3. Literature review
There is a long history of attempts to synthesize human voice. Early attempts
usually tried to mechanically simulate the human vocal tract. One such device
was invented by Wolfgang von Kempelen in 18th century (Dudley and Tarnoczy,
1950). A more recent example is a so called Vocoder invented by Homer Dudley
at Bell labs in 1938 (Dudley, 1938). Vocoder originally served as a voice encoder-
decoder and allowed transmission of encrypted human voice via radio commu-
nication. Later it was demonstrated that with a human-operated keyboard, the
encoder part of Vocoder–so called Voder–was capable of speech synthesis. In
the last five decades, speech synthesis made a significant progress, especially in
naturalness and intelligibility of the outputs – two main characteristics of a TTS
system’s quality. The methods used to reach high quality synthesis can be divided
into non-neural and neural approaches. We mainly focus on neural approaches
and describe the most common techniques in Section 3.2. We also describe non-
neural approaches in Section 3.1 mainly for historical context.

3.1 Non-neural approaches
In this section, we discuss concatenative synthesis, formant-based synthesis and
synthesis based on hidden Markov models.

Concatenative synthesis (Sagisaka, 1988) is a synthesis method that works
with snippets of recorded speech. A human speaker is recorded saying various
sentences. The recorded sentences are divided into predefined speech units and
saved. In this way, a database of sounds and corresponding phonemes is created.
During synthesis, the text to be synthesized is transformed into phonemes. Next,
corresponding sounds in the sound database are retrieved and concatenated to
form the synthesized audio (Schwarz, 2005). This method can require relatively
large sound database depending on the granularity of the speech units. The
longer the speech utterances are, the more utterances are required to cover a
reasonable set of spoken sentences. On the other hand, the shorter the speech
utterances are, the more concatenation points are created in the synthesized
speech which may lead to lower quality. Usually diphones (transitions between
two consecutive phones) or longer segments involving multiple consecutive phones
are used. Single phonemes are rarely used as the phoneme transitions are more
noticeable in the final audio. It is beneficial to also measure the fundamental
frequency and loudness of each utterance to be able to select combinations of
samples that better match on the audio borders. The festival project1 contains
engines for concatenative synthesis.

Formant synthesis, or rule-based synthesis (Klatt, 1980), does not use a
database of human audio samples, but instead generates the waveform by adding
sine waves of different frequencies and amplitudes and a non-periodic noise to-
gether and passing the resulting signal through series of filters that model the

1http://www.cstr.ed.ac.uk/projects/festival/
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vocal tract (Klatt, 1980, 1987). It is necessary to extract formants and other
features for each phoneme from human speakers to form a phoneme-formant ta-
ble. Usually, the first three formants are extracted, but more formants can be
also used. The extracted formants are used to set the parameters of the filters.
For each synthesized phoneme, the filters are adjusted so that the formants of
the filtered signal correspond to the extracted formants of the given phoneme.
Unlike in concatenative synthesis, a formant synthesizer can in theory synthe-
size any sound. This allows the system to synthesize arbitrary words. However,
the voice may sound unnatural due to simplifications in the synthesis process.
On the other hand, such synthesizer usually has low computational requirements
and can be deployed on embedded devices. An example formant synthesis sys-
tem is espeak-ng2. Espeak is an open source speech synthesis project and can be
deployed on all major platforms.

Hidden Markov Models: Another popular method for speech synthesis is
based on hidden Markov models (HMM) (Bishop, 2006) called statictical para-
metric speech synthesis (Zen et al., 2009). Hidden Markov models are graphical
models designed to model sequential data. In context of speech synthesis, the hid-
den states of an HMM can represent phonemes corresponding to the synthesized
sentence, pitch accent and lexical stress. The observed variables are usually the
fundamental frequency and spectral parameters such as mel frequency cepstral
coefficients (MFCC)–a discrete cosine transform of mel-scale log spectrogram (see
Section 2.3). Even though we know the phonemes corresponding to the audio,
the alignment of the phonemes and the spectral parameters is unknown. We can
define possible phoneme-to-phoneme transitions, but we need to infer the corre-
sponding transition probabilities from data. Since the hidden state visited by the
HMM at time t corresponds to a phoneme, it can be interpreted as if the model
was reading the given phoneme at time t. The same phoneme can be read con-
secutively several times depending on how long it takes to pronounce the given
phoneme. The phoneme durations can be extracted based on how many timesteps
the model looked at the given phoneme. In more advanced systems the phoneme
duration is explicitly modeled with Gaussian distributions (Zen et al., 2004). The
spectral parameters, fundamental frequency and other features are vocoded by
e.g. a MLSA filter into synthesized audio (Imai, 1983). This synthesis method
allows better control over the speaking style and speaker emotions and has been
the state of the art in speech synthesis before the use of deep neural networks.
Please see Tokuda et al. (2013) for a comprehensive review of the technique. An
example system is Flite3.

3.2 Neural approaches
Models utilizing deep neural networks started to emerge around the year 2016
starting with WaveNet (Oord et al., 2016). Given sufficient amount of data and
computational resources, some of the neural models are able to synthesize high
quality audio, overcoming some of the problems of the earlier approaches. The

2https://github.com/espeak-ng/espeak-ng
3http://flite-hts-engine.sp.nitech.ac.jp/index.php
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neural models take advantage of various network architectures and work with
different kinds of data, each of which have their advantages and disadvantages
with respect to different use cases.

This section serves as a detailed review of the most influential neural synthesis
architectures, focusing on approaches related to our own work. We can divide
the models by synthesis scope, alignment mechanism and inference and training
mechanism.

3.2.1 Synthesis scope
Synthesis can be done on various scopes. Different models usually implement
different parts of the speech synthesis pipeline described in Section 2.1. We
divide the models into three groups:

• End-to-end (text-to-waveform)

• text-to-spectrogram

• spectrogram-to-waveform

Models from the second group can be combined with models from the third group
to form an end-to-end system. The models from the first group are standalone
end-to-end systems that transform phonemes or ortographic characters(text) di-
rectly along with external features such as phoneme durations to raw waveforms.
An example of an end-to-end system is WaveNet (Oord et al., 2016). The models
from the second group predict spectrograms from phonemes or ortographic char-
acters. For example, the Tacotron 2 model (Shen et al., 2018) accepts text as
input and outputs mel-scale spectrograms. The third group contains vocoder-like
models such as WaveGlow (Prenger et al., 2019). Vocoders usually accept spec-
tral features such as mel-scale spectrograms on the input and output speech as
a raw waveform. A categorization of prominent recent neural TTS models based
on synthesis scope is shown in Table 3.1.

Note that the same model can have multiple uses, e.g., WaveNet modified with
upsampling layers can also be used as a vocoder and is used as such in conjunction
with Tacotron 2. There are also TTS models not covered by this scheme, such
as systems of Sheng and Pavlovskiy (2019) or Neekhara et al. (2019) taylored to
improve quality of already generated spectrograms. Finally, there are also models
aimed at unsupervised audio synthesis (no conditional input provided), such as
WaveGan (Donahue et al., 2019).

3.2.2 Alignment mechanism
Transforming a sequence of characters into a sequence of either spectrogram or
waveform frames requires a mapping from a shorter to a longer sequence. To
generate the output frame sequence, it is beneficial to know how many frames on
the output correspond to each character on the input.

Attention-based approaches: One option of achieving this knowledge is to
use some form of the attention mechanism (Bahdanau et al., 2015) (see Sec-
tion 2.4) to learn the alignments from character-spectrogram pairs. This approach
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End-to-end

WaveNet (Oord et al., 2016)
Parallel WaveNet (Van Den Oord et al., 2018)
WaveRNN (Kalchbrenner et al., 2018)
ClariNet (Ping et al., 2019)
GAN-TTS (Bińkowski et al., 2019)
Char2Wav (Sotelo et al., 2017)

text -to-spectrogram

Tacotron 2 (Shen et al., 2018)
Deep Voice 3 (Ping et al., 2018)
FastSpeech (Ren et al., 2019)
Efficiently trainable TTS (Tachibana et al., 2018)

spectrogram-to-waveform
MelGAN (Kumar et al., 2019)
WaveGlow (Prenger et al., 2019)
WaveNet (Oord et al., 2016) *
WaveRNN (Kalchbrenner et al., 2018) *

Table 3.1: A list of selected neural TTS models divided into categories based on
their synthesis scope. The systems marked with “*” were originally designed as
end-to-end but with slight modifications can be used to synthesize audio from
spectrograms.

is used for example by Shen et al. (2018), Ping et al. (2018) and Tachibana et al.
(2018). It has the advantage that the data does not need to contain explicitly
annotated alignments. Speech synthesis in essence simulates reading aloud. One
does not need to re-read characters they have already seen. This intuition tells
us that the learned alignments should be monotonic. Unfortunately, naive uses
of the attention mechanism often lead to word repetitions and word skipping.
Therefore, the attention-based systems usually use some sort of modified atten-
tion that ensures monotonicity of the alignment, either already at train time or
only during inference. Tacotron 2 Shen et al. (2018) benefits from the so-called
location-based attention. This form of attention does not allow the model to
attend to already processed characters and enforces monotonic alignment. How-
ever, it requires the model to be sequential at both train and inference time,
which usually slows down the operation of the model.

Deep Voice 3 Ping et al. (2018) uses positional encoding (see Sections 2.5.3
and 4.3.2) from (Vaswani et al., 2017) as a preconditioner for the attention dur-
ing training. This allows faster convergence of the model and does not require
sequential pass during training time. During inference, heuristic location-based
attention is used.

Tachibana et al. (2018) use guided attention for training. This involves adding
an extra loss function that penalizes attention alignments too far from the diago-
nal and consequently also non-monotonic alignments. Similarly to Deep Voice 3,
this model does not require a sequential pass during training. However, same as
Tacotron 2 and Deep Voice 3, this model generates output sequentially during
inference.

FastSpeech (Ren et al., 2019) is able to generate output in parallel during
both training and inference. First, a teacher network is trained, which is parallel
during training but sequential during inference. Then, alignments produced by
the teacher network are extracted and saved. Finally, the second feed-forward
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model is trained. The second model learns to encode the input characters. Based
on the encoding, the duration for each character is predicted. Then each encoding
is copied to the decoder input multiple times according to the duration prediction.
Thus, the decoder input has the same length as the required output sequence and
can be processed in parallel.

Approaches based on linguistic features: Most of the end-to-end models
do not use an attention mechanism for alignment and rely on linguistic features
instead. Linguistic features primarily include phoneme durations extracted from
a HMM-based force-aligner or a pretrained ASR system, and a prediction of
the fundamental frequency F0, which helps with intonation. Basically, those
models require ground-truth alignments to be part of the training data. Knowing
the character durations allows the models to simply upsample the input to the
required length and then transform the input sequence to the output sequence
of the same length. Models using linguistic features are for example WaveNet
(Oord et al., 2016) and GAN-TTS (Bińkowski et al., 2019).

Vocoders/spectrogram enhancers: Models that serve as vocoders or spec-
trogram enhancers do not require knowledge of character durations. When trans-
forming spectrograms to waveforms, it is possible to calculate the required au-
dio waveform length based on window size and hop length of the STFT used.
Spectrogram enhancement usually does not change the time dimension of the
spectrogram; it only adjusts the frequency bins.

3.2.3 Training and inference: Performance issues
We have already touched upon training and inference strategies of some mod-
els with regard to the attention mechanism. The training strategy determines
computational requirements and training time of the model, which determines
whether it is possible to train the model in restricted conditions. The inference
strategy determines the usability of the model as a part of a real-time speech
synthesis system or a system designed to answer a high volume of requests in a
short time. The former is required in real-time dialogue systems, the latter may
be required for large-scale batch synthesis.

Sequential models usually model the conditional distribution of the next time-
step with recurrent neural networks (see Section 2.5.1), where the history of
generated frames is implicitly represented in the hidden state of the network. Such
models are typically sequential at both training and inference time and produce
one spectrogram/audio frame per timestep, which results in longer training time
due to limited parallelizability of the computations. The model size also often
requires multiple GPUs to reach sufficient batch size (Shen et al., 2018). During
inference, the models are again sequential and the speed of inference depends on
the form of the predicted audio. Tacotron 2 (Shen et al., 2018) predicts mel-scale
spectrograms, which typically contain around 1,000 time frames per sentence.
With some hardware optimizations, it is possible to reach near-real-time inference
speed (Zhang and Karch, 2019). On the other hand, WaveRNN (Kalchbrenner
et al., 2018) generates raw audio, which requires generating 22,050 frames per
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second in case of the usual 22,050 Hz audio sampling rate. Thus, it can take a
prohibitively long time to generate one sentence of audio with WaveRNN.

Models such as Deep Voice 3 (Ping et al., 2018) and EfficientTTS (Tachibana
et al., 2018) drop the use of a hidden state and model the conditional distribution
with dilated temporal 1D convolutions (see Section 2.5.1) instead. Such models
are still sequential at inference. However, since the hidden state from previous
time step is not needed and the entire input and output are known during training,
these models can generate all output frames in parallel.

Models formulated as autoregressive flows also allow better parallelization at
training time, but require the input and output sequences to have the same length
(Kobyzev et al., 2019). WaveNet (Oord et al., 2016) and the teacher part of Clar-
iNet (Ping et al., 2019) fall in this category. During training, the entire input
sequence is known and the model can use a sequence of transformations to trans-
form the input into required output. This process does not necessarily require
recurrent networks. Indeed, most models in this class use temporal convolutions
that are easily parallelizable on modern hardware. Nevertheless, both mentioned
models generate raw audio and relatively large number of model parameters is
required to get reasonable results, which in turn requires multiple GPUs to train
the model in reasonable time.

At inference, autoregressive flows require sequential generation, which is usu-
ally slower than with recurrent networks that are optimized for performance in
sequential setting. To overcome slow inference times, Parallel WaveNet (Van
Den Oord et al., 2018) and ClariNet (Ping et al., 2019) first train an autore-
gressive flow teacher network and then train an inverse autoregressive student
network. The inverse autoregressive flow is easily parallelizable for output gen-
eration, but is slow during likelihood evaluation, which is required for training.
The teacher network is able to evaluate the likelihood of a sequence quickly, but
is slow during output sampling. The teacher can be used to calculate approx-
imate likelihood of the student’s output samples, which can be used for faster
training of the student. This process is called teacher distillation. The student
network is typically able to synthesize speech in real time. The autoregressive
flow framework can be used to train real-time high-quality speech synthesis sys-
tems. Unfortunately, it is only applicable if our input and out has the same time
dimensionality, which is usually not the case for phoneme-to-audio conversion.
Thus, autoregressive flows are mostly used in raw audio domain in combination
with previously extracted linguistic features. The former again means that the
models require quite a considerable number of parameters to provide acceptable
results, which may substantially increase training time on limited hardware.

Models producing raw audio based on linguistic features do not require teacher
distillation. One such model is GAN-TTS (Bińkowski et al., 2019). This model
samples a sequence of random numbers from some simple (typically Gaussian)
distribution and upsamples the sequence into raw audio. The transformation is
conditioned on the linguistic features. A set of adversarial and style losses is
used to get a reasonably sounding speech. Again, modelling raw audio directly
requires relatively large number of parameters for reasonable performance.

Finally, a few composite models are parallel at training and inference and do
not require linguistic features. As already mentioned, FastSpeech (Ren et al.,
2019) uses the Transformer architecture from (Vaswani et al., 2017) at training
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Figure 3.1: The full architecture of Tacotron 2. Source: Shen et al. (2018)

time to transform phonemes into mel-spectrogram frames using the attention
mechanism for phoneme-spectrogram alignment. Then, the alignments are ex-
tracted and a new model learns to predict how many frames of a spectrogram
correspond to a given phoneme. This can be seen as a form of teacher distilla-
tion, but unlike in flow-based models, the teacher is not used to evaluate output
likelihood of the student, but to provide learned alignments.

3.3 Models related to our work
In this subsection, we describe architectures tightly related to our work in more
detail: Tacotron 2, Deep Voice 3 and FastSpeech. We build on the described
models and use some of the models for comparison in the evaluation of our system
(see Section 6).

Tacotron 2 (Shen et al., 2018) is a sequence-to-sequence model with atten-
tion capable of producing high quality mel-scale and linear-scale spectrograms.
Together with a WaveNet vocoder, the model is able to synthesize audio from
text without requiring linguistic features. The architecture looks as follows (see
Figure 3.1): The input characters are first normalized and encoded with stacks of
convolutional layers. Then a a bidirectional LSTM is applied to further encode
temporal dependencies among the input text. An autoregressive decoder network
made of LSTM cells uses previously generated spectrogram frames concatenated
with an attention vector from the encoder to generate a spetrogram for the next
timestep. We use speech samples generated by Tacotron 2 as comparison sam-
ples in our speech quality evaluation (see Chapter 5). Please refer to (Shen et al.,
2018) for further architecture details.
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Deep Voice 3 Ping et al. (2018) is similar to Tacotron 2 in that it also uses
an encoder for the input sequence and an autoregressive decoder with attention
for spectrogram frame generation. However, the Deep Voice 3 model uses tempo-
ral convolutions interleaved with scaled-dot attention layers instead of recurrent
neural networks in both the encoder and the decoder. The absence of the hidden
state in the recurrent network cells allows to decode all spectrogram frames in
parallel during training, which speeds up training time. Our own achitecture (see
Chapter 4) is similar to Deep Voice 3 in that we also use temporal convolutions in
the first part of our system. But unlike Deep Voice 3, we only use one attention
layer to create alignment between the encoder and decoder and do not use atten-
tion layers between the convolutional layers in the rest of the network. We also
use attention masking and attention preconditioning similar to Deep Voice 3. We
use samples generated by Deep Voice 3 for comparison in our quality evaluation
in Chapter 5.

Tachibana et al. (2018) present an architecture similar to Deep Voice 3.
Unlike (Ping et al., 2018), this model uses only a single attention layer to align
phonemes and spectrograms and does not include synthesis for multiple voices.
Remaining layers are composed of temporally dilated convolutions. We use the
Guided attention loss from Tachibana et al. (2018) to speed up convergence of
the alignments in our model. For more information, see the original paper.

FastSpeech (Ren et al., 2019) (Figure 3.2) is a speech synthesis approach based
on two models: The teacher network and the student network. Both networks
are based on the Transformer architecture (Vaswani et al., 2017) (see also Sec-
tion 2.5.2). The teacher learns the alignment between spectrogram frames and
input characters. The alignments are extracted and used for training of the stu-
dent model to predict input character durations. The student model consists
of an encoder and a decoder, where both modules use stacks of attention lay-
ers. The student network encodes the inputs, predicts how many frames in the
spectrogram correspond to each input token, copies the encoding of each token
that many times and decodes the result into a spectrogram. We use a similar
approach in our work (see Chapter 4), but instead of utilizing the Transformer
architecture, we use temporal convolutional layers for our teacher network similar
to Ping et al. (2018) or (Tachibana et al., 2018). Our student network does not
use attention at all and instead uses a simple residual network blocks.
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Figure 3.2: The components of the FastSpeech architecture. The full
model (left) consists of an encoder, a length regulator and a decoder.
The encoder and the decoder consist of stacks of FFT blocks (second
from the left). The encoder produces contextualized phoneme embed-
dings. The length regulator (second from the right) expands the embed-
dings based on predicted phoneme durations. The decoder synthesizes a spec-
trogram from the expanded embeddings. The durations are predicted by
a duration prediction module (right). Source: Ren et al. (2019)
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4. Our TTS architecture
We first introduce our overall approach (see Section 4.1) and make a short com-
parison to corresponding literature listed in Chapter 3. Then, an in-depth de-
scription of all parts of our system is provided. We mainly focus on explaining
the principles of our implementation. Architecture overview is provided in Sec-
tion 4.2. The teacher and student models are described in sections 4.3 and 4.4
respectively. Implementation details such as the number of layers, kernel size and
so on can be viewed in Appendix A.

4.1 Design principles
Our goal is to design a model capable of synthesyzing high quality speech, train-
able in reasonable time on a single GPU and speedy during inference. We decided
to operate on mel-scale spectrograms, which should simplify modelling of more
distant relationships in the audio and improve speech qualities such as intonation
compared to modelling raw waveforms. Moreover, the model has fewer parame-
ters than if it operated in the raw audio domain.

To achieve high synthesis speed during inference and fast training, our model
should be able to leverage parallelization at both training and inference time.
However, most models satisfying this requirement operate in the raw audio do-
main with one notable exception–FastSpeech (Ren et al., 2019). FastSpeech is
based on the Transformer architecture from (Vaswani et al., 2017) and consists of
multiple multi-head attention layers. Unfortunately, Transformers can be quite
difficult to train and require careful hyperparameter selection (Popel and Bo-
jar, 2018). Therefore, we decided to use an approach similar to FastSpeech, but
instead of the transformer attention blocks, we leverage dilated convolutional
layers.

4.2 Architecture overview
Our system consists of two networks. The first network is a teacher network with
an architecture based on (Ping et al., 2018) and (Tachibana et al., 2018) (see
Section 3.2). The purpose of the teacher network is to learn a reliable tempo-
ral alignment between phonemes and spectrogram frames. We assume that the
input text is already converted to phonemes. We leverage dilated temporal con-
volutional blocks with gated activations similar to WaveNet (Oord et al., 2016)
along with a single attention layer that captures alignment between phonemes
and spetrogram frames. The model is trained to predict spectrogram frames
given frames at previous timesteps. The prediction is conditioned on the corre-
sponding phonemes. The mathematical operations in each layer of the network
are parallelizable and each frame can be predicted in parallel during training by
conditioning on the ground truth spectrogram frames instead of the generated
ones. After the model is trained, we use the alignment of each utterance in the
dataset and extract phoneme durations. The durations are then used in the
second model.

31



The second network in our system is a student network. The purpose of this
network is to quickly generate a high quality spectrogram from a given sentence.
The model first encodes the input phonemes. Then, a duration predictor similar
to FastSpeech (Ren et al., 2019) predicts the duration for each phoneme based on
the phoneme encodings. Next, each phoneme encoding is copied as many times as
there were predicted frames. Finally, the encodings are decoded into spectrogram
frames. The duration predictor is trained to fit the durations extracted with
the teacher network. The model is not sequential and operations in each layer
are parallelizable during both training and inference. Unlike FastSpeech, our
network does not use any attention layers and utilises dilated convolutions, batch
normalization and residual connections instead, which reduces training time (see
Section 4.4).

For vocoding, we use a pretrained MelGAN vocoder (Kumar et al., 2019),
which allows faster than real-time inference.

4.3 Duration extraction – Teacher network
To extract durations from the data, we build and train a model based on Deep
Voice 3 (Ping et al., 2018) and (Tachibana et al., 2018).

4.3.1 Network structure
This model has four main parts – phoneme encoder, spectrogram encoder, atten-
tion and decoder. The full architecture is depicted in Figure 4.2.

Phoneme encoder: The phoneme encoder encodes a one-hot representation
of phonemes into keys and values used in the attention layer (see Section 2.5.2).
First of all, the phonemes are multiplied by an embedding matrix. Next, a fully
connected layer and ReLU activation are applied. Then, several gated residual
blocks with progressively more dilated temporal non-causal convolutions are used.
An example gated residual block is displayed in Figure 4.1. The skip connection in
the residual block accumulates transformations caused by the convolutional tanh
and sigmoid gates. The skip connection from the final layer of residual blocks
is used as the keys in the attention layer. The values for the attention layer are
formed by summing the outputs of the phoneme embedding matrix with the keys,
similar to (Ping et al., 2018).

The residual block is derived from the building block in WaveNet (Oord et al.,
2016), but we do not use causal convolutions for the phoneme encoder to allow
parallelization over time. Unlike (Tachibana et al., 2018), we do not use highway
blocks (Srivastava et al., 2015) because the residual block is simpler and it is
slightly more straightforward to implement a faster inference algorithm (more on
that later in Section 4.3) for the gated residual block than for a full highway block
without significant performance drop.

Spectrogram encoder: The spectrogram encoder is used to extract attention
queries from spectrograms. First, a fully connected layer and ReLU are applied
to each frame of the input spectrogram. Then, several gated residual blocks with
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Figure 4.1: A gated residual block. The convolutions are progressively dilated
to increase the receptive field. The blocks’ skip connection sums outputs from
all layers to form the network output. The “dot” symbol represents element-wise
multiplication and the “plus” symbol represents element-wise addition. The “FC”
block stands for a fully connected layer.

progressively more dilated gated temporal causal convolutions are used. Because
the whole system is supposed to predict a spectrogram frame conditioned on
frames in the previous timesteps, future spectrograms must be ignored during
training and causal convolutions are used. Both phonemes and spectrograms are
properly zero-padded to ensure that there are as many keys and queries as there
are phonemes and spectrogram frames.

Attention: The keys and queries are preconditioned by adding the positional
encoding matrix (see Sections 4.3.2 2.5.2) to bias the attention towards mono-
tonicity. Next, an identical linear layer is applied to keys and queries. Then keys,
queries and values are inserted into a scaled dot-attention module that outputs
the attention scores. The attention scores are weighted averages of the value vec-
tors according to how much the values match a given query. This way, the model
can learn to select characters relevant for prediction of the next spectrogram
frame. Because the goal of this model is to extract correct alignments among
phonemes and spetrogram frames, the model should ideally attend to input text
characters representing phonemes that are pronounced in the predicted spectro-
gram frame. The queries are added to the result in order to create a direct link
between the spectrogram encoder and the decoder in the network computational
graph. Similar to residual networks (see Section 2.5.4) the link allows better
flow of the gradient during backpropagation through the attention layer from the
decoder to the spectrogram encoder.

Decoder: Finally, the decoder decodes the resulting vectors into predicted spec-
trograms. The architecture of the decoder follows the same scheme like the spec-
trogram encoder except for the final block that consists of several convolutional
layers with ReLU activation. The final block transforms the outputs into the
correct spectrogram dimension by decreasing the number of the convolutional
output channels. The schematic representation of the whole model can be seen
in Figure 4.2.
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Figure 4.2: The network used for duration extraction from data. The positional
encoding is element-wise added to the queries and a fully connected layer is ap-
plied on each column. The fully connected layers for keys and queries share
weights. The gates inside the residual blocks are not visualized for better read-
ability and dilated convolutions are displayed instead.

4.3.2 Attention preconditioning
The positional encodings (see Definition 9) have the following convenient prop-
erty: First, we define positional vectors at k-th position as

pk = (pe(k,1), pe(k,2), . . . , pe(k,N))

. We assume that N , the number of channels, is even. By taking the inner
product of positional encoding vectors at different positions, we get the following
result.

pk · pl =
∑︂

i∈(1,N),
i odd

cos
(︄

k

c2i/N

)︄
cos

(︄
l

c2i/N

)︄
(4.1)

+
∑︂

j∈(1,N),
j even

sin
(︄

k

c2j/N

)︄
sin

(︄
l

c2j/N

)︄
(4.2)
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If k = l, we get pk · pl = N/2 by the equality cos2(x) + sin2(x) = 1. It is not
possible to get a higher value for any combination of k and l. A finite combination
of periodic functions is again periodic. This means that if we define a function
f(|k− l|) = pk ·pl, then f would be periodic with respect to the distance between
positions. By combining many sine and cosine functions with different periods,
it is possible to create a function with a very long period. Figure 4.3 contains
comparison of period length for channel size 4, 8 and 80.

Figure 4.3: The value of pk · pl as k and l become more distant. The horizontal
axis represents the distance |k − l|. The vertical axis represents the value of the
dot product. The more channels are added to the positional encoding, the longer
the period is.

As a consequence, if we use enough channels and we calculate the dot product
of positional encoding vectors at various pairs of positions, we get the highest
values for the same positions if the two input positions are identical. We can
stack the encoding vectors into a matrix and calculate a matrix product with
itself to extract pk · pl for all required k and l. The resulting encodings using 4,
8 and 80 channels are depicted in Figure 4.4. We can see that with a sufficient
number of channels, we only get high dot product values around the diagonal.

Normalization of columns with softmax returns a multinomial distribution
centered around the diagonal. We use the resulting matrix as an initial attention
distribution between the keys and queries of the audio and text encoder in the
attention module discussed in Section 4.3.1. It enforces approximately diagonal
attention early on during training and if the learning rate is carefully selected,
the duration extraction model converges faster. The detailed implementation is
done as follows: Phonemes and spectrograms usually have different time dimen-
sionality. There are typically more spectrogram frames than there are characters.
Thus, there are more queries derived from spectrogram frames than keys derived
from characters. To get an attention discribution centered around the diagonal,
it is necessary to scale the positional encoding for queries. We extract the average
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Figure 4.4: Dot product of positional encoding vectors for combinations of posi-
tions between 0 to 1000. A point (m, n) in each of the sub-figures represents the
value of the dot product of pm and pn. Positional encoding in the sub-figures
has 4, 8 and 80 channels. As the number of channels increases, the periodicity
also increases and for 80 channels, values outside the diagonal are relatively small
compared to the diagonal.

ratio of character and spectrogram lengths in the dataset. There are on average
approximately 7 spectrogram frames per character in the data used for our ex-
periments (see Section 5.1). We simply scale the first subscript in the positional
encoding for keys by 7 and add the corresponding encodings to keys and queries.
Next, we feed each key and query through a fully connected layer. Both keys and
queries share the same parameters of the fully connected layer to ensure that the
diagonal distribution is not broken by incorrect weight initialization. For further
illustrations and details see Ping et al. (2018).

4.3.3 Training
During training, target spectrograms are shifted one position to the left on the
input and the model is forced to predict the next spectrogram frame based on
input characters and previous frames. Because the network does not keep any
hidden states, we can compute the predictions for each time step independently
and in parallel.

We minimize the mean absolute error (see Definition 6) between the target and
predicted spectrograms. Moreover, we also use guided attention loss described in
(Tachibana et al., 2018) to aid monotonic alignments. The total loss is the sum
of both losses. The guided attention loss is defined below:

Definition 10. Guided attention loss for the attention matrix a ∈ RN×T is cal-
culated as:

GuidedAtt(a) = 1
NT

N∑︂
n=1

T∑︂
t=1

a[n, t]w[n, t], (4.3)

where w[n, t] = 1 − exp− (n/N−t/T )2

2g2 is the penalty matrix, N is the number of
phonemes and T is the number of spectrogram frames.

The variable g can be used to control the loss contribution of matrix elements
a[n, t] as we move further away from the diagonal. The lower the value, the higher
the penalty is around the diagonal and the tighter is the low-loss area around the
diagonal. The penalty matrix w is visualized in Figure 4.5.
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Figure 4.5: The penalty matrix w for parameter values g = 0.1 (left) and g =
0.3 (right). Dark colors signalize low penalty, while bright colors signalize high
penalty. The penalty is almost zero near the diagonal.

Adam optimizer (Kingma and Ba, 2015) with default parameters and Noam
learning schedule introduced in (Vaswani et al., 2017) is used for gradient descent
learning. The learning rate schedule is such that the learning rate increases
linearly for the first w “warmup” epochs. Then it starts to behave like an inverse
square root decay. The variant of the learning rate used in this thesis is calculated
as follows:

Definition 11. The Noam learning rate with w warmup epochs at epoch i is
lri = base_lr · c(i) where c is a scaling factor calculated as follows.

c =

⎧⎨⎩
1−s
w
· i + s if i ≤ w√︂

w
i

if i > w
(4.4)

The constant s is the initial scaling factor.

The Noam learning rate starts at a value of base_lr · s and increases linearly
until w = i, where the scaling factor c equals 1. Then, the learning rate decreases
as an inverse square root. The learning rate attains its highest value in epoch w
and the largest value is base_lr. This schedule is beneficial for training of the
attention layer – the training is more stable and converges faster.

4.3.4 Duration Extraction
Inference needs to be done sequentially in the teacher network – the predicted
spectrogram is generated frame by frame. We generate as many frames as there
were frames in the corresponding ground-truth spectrogram. Predicted frames are
reinserted into the spectrogram encoder input to allow the generation of further
frames. To extract the phoneme durations, we first extract phoneme-spectrogram
alignments with the following procedure: We run the sequential inference and
with each generated spectrogram frame, we get an attention distribution over the
input phonemes. For a given frame, we select the phoneme position with the
maximum attention value. After generating the full spectrogram, we end up with
a non-unique list of phonemes. If a phoneme is repeated in the list, it means that
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the model has attended the phoneme in several consecutive timesteps. Assume
that the alignment is such that the neighboring phonemes in the phoneme list
are always at most one position in the sentence from each other and the model
never attends to positions it has already attended except for the last one. Then,
we could extract phoneme durations simply by computing number of occurences
of each phoneme position in the phoneme list.

Attention masking: Unfortunately, the raw attention output is not com-
pletely clean – the model sometimes looks back or skips several phonemes. For
this reason, we locally mask the attention scope at each timestep. For timestep
t, we take the argmax of the attention distribution at timestep t−1 and mask all
positions except the argmax position and several following positions with −∞.

Then, we feed the masked scores to the attention softmax following (Ping
et al., 2018). The softmax normalizes −∞ to zero and assigns non-negative values
to the positions that were not masked. This way, the model is forced to select the
next phoneme close to the previous phoneme. If we only allow the model to select
either the previous position, or one position ahead, the model only has to decide
whether to keep reading the same phoneme or whether to start reading the next
phoneme in the sentence. If we force the model to read the first phoneme in the
sentence in the first timestep, the model can not skip any phoneme and we are
able to extract the duration for each phoneme in the sentence by counting how
many times its index appeared in the attended positions. However, it may happen
that the model never arrives at the last phoneme. We solve this issue heuristically.
If the gets stuck on a non-final phoneme, we check how many phonemes are left
before the end of the sentence. If there are n phonemes at the end that were not
attended, we simply set the last n extracted phoneme indices to the indices of
the unread phonemes.

Using ground-truth spectrograms: We use one more trick to improve the
alignment quality. Unfortunately, during sequential inference, the model tends to
accumulate small errors in the spectrogram frames, which introduces undesirable
duration errors. This is an instance of the label bias problem (Wiseman and
Rush, 2016). Thus, instead of reinserting the generated spectrogram frames on
the input, we use the ground-truth spectrogram frames instead. This technique
is called teacher forcing (Pascanu et al., 2013). This technique prevents the
model from error accumulation and the model is able to generate high-quality
alignments even for long sentences. Please see Section 5.2 for more information
about error accumulation, which includes a number of further steps we take to
improve alignment quality.

Since we are using the ground truth spectrograms on the input during infer-
ence, we could theoretically run the network in train mode in parallel and gain a
speed boost. However, we would not be able to apply the local attention masking
because the argmax position of the attention at the previous timestep would not
be known, since all the attention distributions are computed in parallel.

Speeding up inference: The sequential inference is quite slow. For a dataset
with 20 hours of audio, it could take hours to extract the durations. To speed
up the inference, we use an approach developed by Paine et al. (2016). During
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Figure 4.6: Results of intermediate computations are stored in layer-level
queues. The items are progressively released at each timestep. Thanks to the
cached values, it is not necessary to recalculate the operations in the subtree of
the given node. Source: Paine et al. (2016).

inference, models relying on causal dilated convolutions repeat calculations that
were already calculated in previous timesteps. To avoid unnecessary calculations,
the results of the operations can be cached in queues and progressively released
at each timestep. The length of a queue in a given layer depends on the dilation
factor of the given layer. The process is visualised in Figure 4.6. The nodes in the
computational graph represent mathematical operations. To compute the value
of a node, it is necessary to compute the values of some of the nodes in the layer
below it. The same holds for the nodes in the lower layer and so on. By using the
precomputed value stored in a queue, the network avoids recalculating the nodes
in the lower layers, which can save a lot of time, especially for deep networks.
Please see (Paine et al., 2016) for more details and visualizations.

4.4 Spectrogram synthesis – Student network
Once durations for training data are extracted, we can train the speech synthesis
model. The model does not directly model raw waveforms, but is able to generate
mel-scale spectrograms that can be later transformed to raw waveform with a
vocoder or iSTFT.

Our model is inspired by the FastSpeech architecture (Ren et al., 2019), but
instead of attention blocks we use residual blocks of dilated convolutions. In-
stead of layer normalization, we employ temporal batch normalization. Unlike
FastSpeech, we detach gradient flow from the rest of the network and observe
increased performance of spectrogram prediction and reduced overfitting of the
duration predictor. We also experiment with different positional encodings on
the decoder input.
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Figure 4.7: Our spectrogram synthesis model. The encoder takes one-hot encoded
phonemes on input and outputs contextualized phoneme embeddings. The dura-
tion predictor accepts the embeddings and predicts the duration of each phoneme.
Each phoneme embedding is copied according to the predicted durations. The
decoder accepts the expanded phoneme embeddings summed with the positional
encoding matrix and synthesizes a mel-scale spectrogram on output.

4.4.1 Network structure
Our spectrogram synthesis model is depicted in Figure 4.7. Similarly to the dura-
tion extraction network, the input phonemes are one-hot encoded and multiplied
by an embedding matrix and a fully connected layer with a ReLU activation are
applied (see Section 4.3). Then we stack several residual blocks of non-causal
convolutions with progressively increasing dilation factors. Each residual block
consists of a convolutional layer, an activation and a temporal batch normaliza-
tion layer. A residual connection is applied for better gradient flow. Finally we
add the initial phoneme embeddings to the result to form our final phoneme en-
codings. The encodings are fed to a duration prediction module. The purpose of
this module is to predict how many spectrogram frames correspond to the given
phoneme.

We predict the durations in logarithmic domain. Unlike Ren et al. (2019), we
detach the gradient flowing from duration predictor to the rest of the network.
Thus, the encoder part of the network can be fully utilized for spectrogram predic-
tion. Without detaching the gradient, the duration predictor overfits the training
durations even with strong dropout regularization (Srivastava et al., 2014). Af-
ter detaching, we observe improved generalization in the duration predictor and
lower spectrogram prediction loss (see our experiments in Section 5). Since the
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detached duration predictor can no longer influence the encoder output, it is nec-
essary to increase the duration predictor capacity for good performance. We again
utilise residual blocks of dilated convolutions. Our duration prediction module
consists of 3 residual blocks and one convolutional layer that transforms the chan-
nel dimension to 1. The final number is the (logarithmic) prediction; applying
the exponential function and rounding then yields the number of frames.

Once each phoneme duration is predicted, each phoneme encoding is copied
as many times as there are predicted frames for the given phoneme. All the copies
are concatenated and form the input for the decoder. Similarly to FastSpeech,
we also add positional encodings (Vaswani et al., 2017, see Section 2.5.3) on the
decoder input, but instead of generating the encoding for full sequence length,
we reset the encoding for each phoneme.

The decoder consists of residual blocks of dilated non-causal convolutions. A
fully connected layer is applied at the end to convert the output dimensionality
to that of the mel spectrograms.

4.4.2 Positional encoding for student model
We also use positional encoding (see Section 2.5.3) in the spectrogram prediction
model. The motivation for this is the following: Because the encoder outputs
in the spectrogram prediction model are expanded based on durations, there are
homogeneous segments of vector copies. For large enough segments, the first
convolutional layer produces identical vectors in the middle of the segment and
produces some interpolation of neighboring segments on the segment borders.
With more convolutional layers, the segment contents are mixed. To mix contents
of neighboring segments faster, it could be beneficial to apply some determinis-
tic interpolation between neighboring segments prior to feeding the vectors to
decoder. Likewise, it could be beneficial to apply some positionally unique trans-
formation of each vector to allow the network to distinguish where the originally
homogeneous segments start and end.

The standard positional encoding breaks the homogeneous segments and also
encodes information about the global position to the encoder outputs. However,
we hypothesize that it is more beneficial for the network to distinguish the frame
location in context of a single phoneme instead in the global sentence context.
Similarly to FastSpeech Ren et al. (2019), we use the positional encoding from
(Vaswani et al., 2017) but we reset the encoding for each homogeneous segment.
In other words, we create a new positional encoding for each phoneme. After
expanding the encoder outputs, positional encoding frames are added element-
wise to the outputs. The mapping is visualised in Figure 4.8. Please see Section 5
for comparison of our approach and the approach in FastSpeech (Ren et al., 2019).

4.4.3 Training
During training, we use a combination of losses. We use a sum of mean absolute
error (see Definition 6) and structural similarity index (SSIM) for logarithmic mel
spectrogram value prediction (regression) and Huber loss for logarithmic duration
prediction.

The SSIM loss compares structural similarity of spectrogram patches based
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Figure 4.8: Positional encoding frames are mapped to each expanded charac-
ter/phoneme separately. The grey tiles represent positional encoding frames.
The colored tiles represent expanded encoder outputs for the word “and”.

on luminance, contrast and structure (Wang et al., 2004). The formula for com-
putation is as follows.

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2)

(4.5)

The symbols µx, σx, σxy represent pixel value average, variance and covariance
of a given image (i.e. the spectrogram in our case). c1 and c2 are stabilizing
constants computed based dynamic range of the pixel values.

Definition 12. Huber loss for a data pair x ∈ Rn×k, and y ∈ Rn×k can be defined
as:

Huber(x, y) = 1
nk

n∑︂
i=1

k∑︂
j=1

z(x[i, j], y[i, j]), (4.6)

where:

z(x, y) =

⎧⎨⎩0.5(x− y)2 |x− y| ≤ 1
|x− y| − 0.5 else.

(4.7)

Huber loss (Hastie et al., 2009, p.349) behaves like mean square error (MSE)
inside the (−1, 1) interval and behaves like mean absolute error outside the (−1, 1)
interval. The MAE error can be more robust to outliers, since its gradient is linear
with respect to error size. However, this holds even for small error values, where
the gradient may be too large to further decrease the error. On the other hand,
MSE scales gradient quadratically with error size, which may improve convergence
for small error rates. However, MSE is not robust to outliers. Huber loss combines
MSE and MAE to get the best of both losses.

We again use Adam optimizer (Kingma and Ba, 2015) for training. Instead
of Noam learning rate used in FastSpeech, we use the ReduceOnPlateau learning
rate. Since we do not use any attention layers in the speech synthesis model,
the warmup at the beginning of training is not necessary. We set the learning
rate relatively high at the beginning and decrease the learning rate by a fixed
proportion if the validation loss does not improve for a fixed number of epochs.
During training, ground truth durations are used for expansion of the phoneme
encodings. The durations predicted by the duration prediction module are used
only during inference.
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4.5 Vocoding
To generate raw audio, the generated spectrograms must be transformed into
waveforms. We experiment with two approaches – the Griffin-Lim algorithm
already discussed in Section 2.3 and a pretrained MelGAN model (Kumar et al.,
2019). Unfortunately, the spectrogram transformation with Griffin-Lim is not
fast enough for real-time processing. Most of the time is spent on approximating
the linear magnitude spectrogram from mel-scale spectrogram by non-negative
least squares.

Unlike Griffin-Lim, which is a rule-based algorithm, MelGAN is a neural-
network-based, trained model. MelGAN is a non-autoregressive, fully convolu-
tional model. As the name suggests, MelGAN is trained in an adversarial setting
(see Goodfellow et al. (2014) for more information). The input spectrograms
have a 256 times reduced temporal resolution compared to the raw waveform.
The model uses sequences of deconvolutions followed by residual blocks with di-
lated temporal non-causal convolutions. The spectrogram frames get upsampled
with the transposed convolutions. The model uses weight normalization (Sali-
mans and Kingma, 2016) in all generator layers. Three discriminators are used
as a source of loss in the adversarial training setup. The generated waveform is
downsampled by different factors with strided average pooling and each discrim-
inator operates on the corresponding scale. According to the authors, this allows
the discriminators to learn discriminative features of different frequencies.

The model generates high quality audio and is faster and more lightweight
than the standard WaveGlow model (Prenger et al., 2019).
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5. Experiments
In this section, we describe our experimental setup. The dataset and data pre-
processing is described in Section 5.1. The duration extraction and spectrogram
synthesis models are discussed in Sections 5.2 and 5.3 respectively. We focus
especially on problems we encountered during training and implementation of
our models and provide solutions and comments to some of them.

5.1 Data set and data pre-processing
We trained all our models on the publicly available LJ Speech data set (Ito,
2017). The data set consists of 13,100 recordings and corresponding transcripts
of a single professional female speaker reading from several texts in English.
Numbers, ordinals, and monetary units in the transcription are expanded into
full words. Theb bit depth of the audio files is 16-bits, the sample rate is 22,050
Hz.

We phonemize each transcript with the g2p python package1, and use phone-
mic transcription as the input to both our teacher and student network (see
Section 2.1). The g2p package searches the CMU pronunciation dictionary2 for
the word pronunciation. If the word is out of vocabulary, the pronunciation is
estimated with a neural network. We transform amplitude spectrograms to mel-
scale and a log transformation is applied on the amplitudes. A log-magnitude mel
spectrogram is displayed in Figure 2.3. The final spectrograms used as prediction
target for our models can be described as follows:

final(STFT ) =
(︃

log ◦ mel ◦
√︂

(Re2 + Im2)
)︃

(STFT ) (5.1)

We reserve the last 100 utterances for evaluation, the rest is used for training.

5.2 Duration extraction
We used the procedure described in Section 4.3 to train the duration extraction
model. In our preliminary experiments, we encountered multiple problems and
attempted to address them, which we now describe in detail.

5.2.1 Training stability
The main problem we encountered is the stability of training. The attention
layer is relatively hard to train and is sensitive to small changes on the input. If
the learning rate is too high, the model diverges. We also experienced numerical
instability errors due to gradient explosions.

Gradient clipping solves the large gradient errors, but is not enough to stabilize
learning. Simple learning rate schedules such as inverse square root decay (Wu
et al., 2019) work, but require a low initial value to compensate for the large weight

1https://github.com/Kyubyong/g2p
2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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changes required by the attention layer. Further decreasing the learning rate
results in small gradient steps later during training and causes longer convergence
times. The inverse square root decay with warmup (Noam scheduler) used in
(Vaswani et al., 2017) worked better for us. We experimented with warming up
for 10, 20, 30 and 40 epochs and saw fastest convergence with warming up for 30
epochs.

5.2.2 Alignment learning
The attention layer is supposed to learn alignments between phonemes and spec-
trogram frames. The alignment should be more or less monotonic. We exper-
imented with the guided attention loss introduced by Tachibana et al. (2018)
to encourage the network to use monotonic alignments early on. Without the
guided attention loss, it took around 100 epochs for the network to start dis-
playing monotonic alignments. With the loss, the model started using alignment
near the diagonal in around 50 epochs. However, the attention preconditioning
with positional encoding (Ping et al., 2018, see Section 4) helped the most. If
combined with the Noam scheduler, the alignment is monotonic from the very
beginning of the training and stays monotonic. Nevertheless, if the learning is
too large at the beginning, the monotonicity breaks. Even with the attention
preconditioning, the model sometimes skips the rest of the sentence at a certain
step and attends to the final character such as full stop, or question mark. In
an attempt to prevent this behaviour, we use both, the guided attention and
attention preconditioning and achieve relatively stable and reliable alignments.

Masking the attention scores in padded regions also helped attention training.
Since inputs of uneven length in the same training batch are padded, the attention
layer has an option to attend to the padded region, which is undesirable because
it allows the model to make easily avoidable mistakes. To prevent such mistakes,
we masked the attention scores corresponding to the padding characters with −∞
before feeding the values to softmax.

Because the learned alignments are used to extract phoneme durations, it is
desirable that we have sparse alignments, where most of the weight at a given
timestep is put on a single phoneme. To encourage sparsity, we tried injecting
Gaussian noise to the attention inputs during training, which should make the
attention more robust to small input changes and thus improve sparsity. However,
we did not observe any significant sparsity improvements.

We also tried to improve the attention robustness by applying dropout to
the network weights, but even a very low probability of dropout caused worse
alignments and higher guided attention loss, which is illustrated in Figure 5.1.

We also explored some normalization options in the hope that it would further
stabilize the attention mechanism. Unfortunately, 1D batch normalization can
not be directly used. It could be used during parallel training, because all time
steps are known. But it could not be calculated during sequential inference,
because it is necessary to average accross timesteps that have not been generated
yet. A straightforward option would be to use layer normalization like Vaswani
et al. (2017). Unfortunately, layer normalization improved neither stability nor
gradient flow. We even observed a performance drop and a training slowdown.
Finally, we decided to avoid normalization altogether, similarly to Tachibana
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Figure 5.1: Guided attention loss before and after applying dropout with proba-
bility 0.1. The dropout did not improve alignment robustness and caused worse
performance.

et al. (2018) and Ping et al. (2018).

5.2.3 Error propagation in sequential inference
Another problem that we encountered was the error propagation during sequential
inference (see Section 4.3). During training, the model sees only the ground
truth spectrograms on the input and tends to overfit. During sequential frame
generation, the generated frames are used as the input to the model in the next
step. Small errors produced by the model accumulate over time and are able to
completely disrupt the attention alignments, which results in the model producing
either complete silence too early, or random stuttering.

While not helpful for attention sparsity, injecting random noise to the atten-
tion inputs does help with attention robustness to accumulating error to a certain
extent. However, further regularization was needed to stabilize the sequential in-
ference.

Surprisingly, scaling the spectrograms to the (0, 1) interval helped a lot. A
modified model with linear output activation did not converge at all, and scaling
the spectrograms to (−1, 1) interval did not help as much, even though it would
allow us to use hyperbolic tangent activation function with more viable gradient
values around zero and approximately zero centered inputs. We presume this
could be caused by the absolute size of the propagated errors. The network error
in the zero-one scaling is mostly smaller in absolute terms, than in the other two
cases, which could be beneficial for the alignment stability.

To further improve robustness to error propagation, we employ various data
augmentations on the input spectrograms. First, we add a small amount of Gaus-
sian noise to each spectrogram pixel. Next, we attempt to simulate the model
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outputs by feeding the input spectrogram through the network without gradient
update in parallel mode (not sequentially). The resulting spectrogram is slightly
degraded compared to the ground-truth spectrogram. We take this first-order de-
graded spectrogram and repeat the process. The more times the spectrogram is
degraded in this way, the more it should resemble the sequentially generated spec-
trogram. We could simply generate the degraded spectrogram sequentially, but
using the parallel mode several times is still faster than sequential generation.
Moreover, in the first 100 epochs the model is virtually unable to sequentially
generate more than just a few frames correctly. On the contrary, the parallel
approach provides spectrograms that are consistent across time. We observe that
this method improves the robustness of sequential generation drastically and the
model is able to generate long sentences relatively well with just minor mistakes.

Finally, we further degrade the input spectrograms by randomly replacing
several frames with random frames. This is done to encourage the model to use
temporally more distant frames. Otherwise, the model tends to overfit to the
newest frame on the input and ignores older information, which makes the model
less stable.

5.2.4 Inference speed
The sequential inference is quite slow by default. It requires as many forward
passes through the network as there are frames to generate. This can be quite
problematic for duration extraction, because the model needs to generate align-
ments for all dataset items. In LJ Speech, there are 13,100 sentences. If we run
inference with batch size 64 and each batch takes around one minute to finish,
it would take around 3.5 hours to extract all the durations. To speed up the
inference, we implemented the dynamic-programming-based inference algorithm
introduced by Paine et al. (2016) (see Section 4.3). We apply the algorithm
to both the spectrogram encoder and decoder since both of them use temporal
causal convolutions. We are able to generate 1,000 frames in a matter of seconds,
compared to the naive implementation that can take over a minute.

5.2.5 Location masking in duration extraction
As already mentioned in Section 4.3, we extract the phoneme durations by run-
ning sequential inference with ground-truth spectrograms on the input to avoid
error propagation. For this reason, it is not necessary to include stop indicator
characters on the input such as in (Shen et al., 2018) because we know how long
the spectrograms are supposed to be. The alignments generated in this way are
quite reliable and monotonic, but are not very sparse and it can happen that the
model attends to phonemes it has already seen, which is undesirable. For this
reason, we use a location-based masking similar to (Ping et al., 2018).

We experimented with two mask types – argmedian and argmax masks. The
argmedian mask finds the index (position) of the median of the attention dis-
tribution in the previous time step and masks all positions in the current time
step except for a small window around the last argmedian position. Similarly,
the argmax mask finds the position of the maximum of the attention distribution
in the previous time step and masks all positions except a small window around
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Figure 5.2: Alignment generated by the duration extraction model. The y axis
captures phonemes, while the x axis captures spectrogram frames. The window
size was set to 2. The generated sentence is “The quick brown fox jumped over a
lazy dog.”

the argmax index. The window can either be centered around the given position
or be located before or after the index in a temporal sense. For our use case, it
was necessary to locate the window after the index, but include the index as well.
Thus, once the model decides to stop attending to a phoneme, it is not possible
to return to the same phoneme again. Because all positions outside the window
are masked, argmax or argmedian positions are always inside the window. For
correct alignment at the first time step, it was necessary to manually set the
window to the first one or two phonemes.

The attention distribution inside the window typically had a large weight
put on the phoneme attended in the previous time step and some weight on the
next one or two phonemes. The weight for the rest of the phonemes usually
decreased exponentially with the distance from the phoneme attended in the
previous time step. Based on this distribution, The argmax usually selected
the previous phoneme or the phoneme right after, while the argmedian took the
entire distribution into account and would often select some of the phonemes
with lower weight, which resulted in phoneme skipping. We decided to use the
argmax masking with a window size of 2. This approach effectively prevented
phoneme skipping. An alignment by the duration extraction model is visualized
in Figure 5.2.

5.2.6 Model validation
Finally, we would like to discuss model evaluation during training. To have some
measure of how the model performs during sequential inference, it is necessary
to compare the ground-truth spectrograms from the development set with the
generated spectrograms. However, the spectrograms may have different lengths.
We tried to measure the performance by running the sequential inference with
ground-truth spectrograms on the input. However, this approach did not provide
enough information about the quality of the model alignments. The model was
able to generate high quality spectrograms regardless of the alignment because
the information in the input frame was enough to predict the next time step
and there was no error propagation (teacher forcing is in use, see Section 4.3).
In fact, we observed that unless the teacher model is able to generate relatively
high quality sentences even without the use of ground-truth spectrograms on the
input, the student model’s performance suffers because the extracted durations
are wrong.
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Figure 5.3: A log scale mel spectrogram of the sentence “The quick brown fox
jumped over the lazy dog.” generated by our spectrogram generation model.

Thus, we generated 3 batches fully sequentially every 10 epochs for model
validation. Comparison with the ground-truth spectrograms was done using the
fast dynamic time warping algorithm (DTW) (Salvador and Chan, 2004). As a
metric, we used the L1 loss that was also used as a loss function during training.
The results were quite noisy but it was possible to see a decreasing trend in the
DTW loss. We also found it helpful to generate audio from a few generated spec-
trograms and manually check if all the input words were correctly pronounced.

5.3 Spectrogram synthesis
We now move to the model for spectrogram generation (or student network; see
Section 4.4 for architecture details). A log-scale mel spectrogram generated by our
model is depicted in Figure 5.3. Same as in Section 5.2, we now describe problems
encountered in preliminary experiments and our way of addressing them.

5.3.1 Input phoneme durations accuracy
First of all, we would like to say that this model does not work very well without
somewhat accurate phoneme durations. We tried to extract the durations from
the duration extraction model that was not fully trained, and we were not able
to fit the student model properly. Thus, it is crucial to have a reliable extraction
model. Once accurate durations are obtained, it is possible to train the model.

5.3.2 Batch normalization and dropout
In initial experiments, we observed relatively slow learning. We ascribed this to
small gradient sizes in the initial layers of the network. To overcome the vanishing
gradient problem, we tried to employ different normalization techniques. Batch
normalization (Ioffe and Szegedy, 2015) applies per-channel normalization across
all time steps and across all items in a batch. Unlike in the duration extraction
model, it is feasible to use 1D batch normalization for spectrogram synthesis,
because all the time steps of the inputs are known. We experimented with layer
normalization (Ba et al., 2016) too, but the performance was much better with
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batch normalization. The batch normalization decreased the necessary training
time.

We also tried applying channel normalization without considering the batch
dimension, but this type of normalization provided slightly worse results and did
not provide significant stability gains during inference.

We experimented with dropout applied after batch normalization and ReLU
in all layers to encourage generalization. However, this approach reduced the
model capacity which was already fully used (more on that later), and also made
the network very unstable during inference – the duration predictor would predict
shorter durations for most of the phonemes which in turn negatively influenced
the synthesized spectrograms. We suspect that dropout causes inconsistency in
the variance of the intermediate network states. However, more experiments
would be needed to confirm this hypothesis. More on the disharmony of batch
normalization and dropout can be found in (Li et al., 2018).

5.3.3 Learning phoneme durations versus spectrograms
We also encountered problems due to the need to jointly optimize quality of
generated spectrograms and phoneme durations. The durations are always non-
negative and can attain relatively large integer values – There can easily be 20–30
spectrogram frames corresponding to one phoneme. We experimented with L1
and Huber loss for durations. Both losses attain larger values than the L1 loss ap-
plied to generated spectrograms due to the different scales of both quantities. We
observed that the duration predictor submodule has the largest influence on the
gradient in the encoder. The gradient from the duration predictor is much larger
than the gradient from the spectrogram decoder and has larger impact on the en-
coder weights. This degrades the quality of the generated spectrograms because
the network uses most of the encoder capacity for the prediction of phoneme du-
rations. The duration predictor has more capacity than needed and easily overfits
to the training durations, which results in low quality duration predictions on the
test data and makes the model largely unstable during inference. To compensate
for this issue, we detach the gradient flowing from the duration predictor. In other
words, the gradient from the duration predictor is not used to update the encoder
weights. This way, the model capacity can be used to predict the spectrograms
and the duration predictor needs to adapt to the encoder output. This change
made it necessary to slightly increase the capacity of the duration predictor, so
we added 3 residual blocks to the predictor to compensate for the capacity loss.
The resulting spectrogram quality is better, the duration predictor generalizes
better and both training and inference are stable. The effect of detaching the
gradient is displayed in Figure 5.4. It is also possible to fit the duration predictor
with a different optimizer and learning rate scheduler without any effect on the
rest of the network. The predictor could be even trained separately after the rest
of the network is trained.

5.3.4 Using logarithmic phoneme durations
The extracted durations are not perfect. In addition, there seem to be some
annotation errors in the LJ Speech dataset. As a consequence, a small number
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Figure 5.4: Huber loss of predicted phoneme durations. The durations from the
model that was trained with detached gradients of the duration predictor and
was trained to predict logarithmic-scale durations attains the lowest loss. Before
calculating the loss, the exponential of the logarithmic durations was taken so
that the losses of different configurations could be compared. The configuration
of the duration prediction module was the same in all configurations.

of the phoneme durations are very large compared to the rest. To eliminate the
effect of such outliers, we used the Huber loss discussed in Chapter 4. We also
set the duration predictor to predict logarithmically scaled durations instead of
linear durations, following (Ren et al., 2019). We saw better duration predic-
tion quality mainly due to the logarithmic scaling, as can be seen in Figure 5.4.
The logarithmic durations seem to follow a symmetric mean-centered distribu-
tion more closely, which plays well with the L1 loss function – L1 loss expects the
data to come from the Laplace distribution which is mean-centered and symmet-
ric around the mean (see Definition 6). It could be interesting to apply further
transformations on the durations for the distribution to more closely resemble the
Laplace distribution. We expected the Huber loss to give slightly more accurate
duration predictions compared to L1 loss because the loss decreases quadrati-
cally around zero, which allows more precise gradient update. However, we saw
no significant improvement.

5.3.5 Learning rates
Detaching the gradient and the use of batch normalization allowed us to use
large learning rates early in the training. Otherwise, we experienced exploding
gradient problems and a smaller learning rate had to be used. The learning
rates produced by reduce-on-plateau and Noam schedulers (see Section 4.3) are
displayed in Figure 5.5. The corresponding loss values are visualized in Figure 5.6.
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Figure 5.5: Reduce-on-plateau and Noam learning rates (see Figure 5.6 for model
training performance).

Figure 5.6: L1 spectrogram loss for Noam and reduce-on-plateau schedulers (see
Figure 5.5). The model trained with Noam scheduler required around 250 epochs
to converge to the final loss value reached in under 100 epochs by the model
trained with the reduce-on-plateau scheduler.

52



5.3.6 Normalizing spectrograms
After we normalized the spectrograms to have zero mean and unit variance, we
observed higher-quality spectrograms. This standardization requires computing
the train set statistics.

5.3.7 SSIM
The L1 loss for spectrograms can be combined with SSIM loss mentioned in Sec-
tion 4.4. The model works without SSIM (with L1 loss only) but with SSIM, the
learned spectrograms appear less blurry. However, the difference in perceived au-
dio quality is mostly unintelligible due to noise introduced by imperfect vocoding.
More experiments with a high quality vocoder are needed to asses the impact of
SSIM, but we expect the differences to be rather cosmetic.

5.3.8 Padding and masking
We mask all losses in length-padded regions so that the model does not need to
learn additional mapping from padded inputs to zeros on the output. During
inference, we observed that the model had pronunciation problems at the end
of the longest sentence in each batch. The model sometimes cut the end of the
last word or tried to pronounce the word unnecessarily quickly. We suspect that
the model is used to the input zero padding seen during training in all examples
except the longest one in the batch and uses the zeros around the border to
pronounce the last word in the sentence correctly. We solve this by padding the
batch with more zeros so that even the longest sentence is padded. This largely
solved the pronunciation issue.

5.3.9 Homogeneus spectrogram segments
The phoneme encodings generated by the encoder are expanded (copied multiple
times) before being fed into the encoder to compensate for the length mismatch
of the input phonemes and the output spectrogram frames (see Section 4.4). The
problem is that the expansion creates segments of identical vectors, one segment
per phoneme. Applying a convolution on a sequence consisting of homogeneous
segments can then result in another sequence of largely homogeneous segments.
We observed that using a deeper architecture with dilated convolutions of suf-
ficient dilation factor largely eliminated this issue, and the decoder was able to
generate unique frames for each timestep.

5.3.10 Positional encodings
We experimented with adding positional encoding on decoder input, similarly to
Ren et al. (2019). We compared three configurations:

1. Standard positional encoding (global position with respect to the whole
audio segment)(Ren et al., 2019; Vaswani et al., 2017)

2. Local position – Reset the positional encoding for each phoneme (our new
approach, see 4.4.2)
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3. No positional encoding

The configurations with both forms of positional encoding were able to reach
slightly lower L1 and SSIM losses. The standard positional encoding attained the
lowest loss but overall, the differences among all the configurations were small
and there were no audible differences in the synthesized waveform. We conclude
that positional encoding is not an essential part of our architecture and could be
omitted. The resulting L1 losses for all configurations are displayed in Table 5.1.

Standard pos. encoding Our pos. encoding No pos. encoding
0.2829 0.2854 0.2940

Table 5.1: Comparison of final training L1 loss for different configurations of
positional encodings.

5.4 Persisting problems and challenges
We now discuss some persisting problems in our models. We offer some directions
on how to solve them in Section 6.4.

• There are audible small artifacts in the spectrograms around the sentence
borders at the beginning and at the end. The zero padding does not help
remove the artifacts completely, and perhaps a different approach should
be taken.

• The model seems to use its capacity to the fullest, because it is not possible
to further decrease the loss even with very small learning rate. Increasing
the model capacity in some principled way without significantly increasing
the number of parameters could further improve the audio quality without
sacrificing the training speed.

• The duration predictor tends to predict shorter durations for spaces between
words and the model speaks in a slightly higher tempo than the original.
This could be caused by imperfect durations extracted with the duration
extractor, but more experiments are needed to properly investigate this
issue.
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6. Evaluation
Our goal was to provide a high-quality speech sythesis system capable of fast
training time and speedy inference while requiring low computational resources.
To assess the extent to which we were able to succeed, we evaluate our model
in terms of voice quality (Section 6.1), inference speed (Section 6.2) and time
required for training (Section 6.3).

6.1 Voice quality
Comparison and evaluation of the quality of the outputs of generative models
is notoriously difficult (Taylor, 2009, p. 534). For several generative models, it
is possible to compare likelihood of the generated samples. Another option is
to calculate and compare similarity metrics such as SSIM for the generated and
ground-truth data. However, the metrics are not necessarily correlated with hu-
man evaluation. For example, Normalizing flows are capable of achieving higher
likelihood scores of generated images than GANs, but GANs usually produce
outputs that are preffered by humans (Grover et al., 2018). Speech synthesis sys-
tems are typically evaluated in terms of Mean opinion score (MOS). The mean
opinion score is usually obtained by conducting a survey. The survey participants
are required to listen to audios sampled for various systems and rate each system
on a scale from 1 to five, where five is the best. Mean and confidence intervals are
calculated for each system. Then, the scores of each system considered in the sur-
vey are compared. We decided to use a similar quality evaluation method called
MUSHRA (ITU, 2015; Schoeffler et al., 2015). The MUSHRA score is measured
on a finer scale from 0 to 100, which allows more precise comparison. Recordings
in MUSHRA survey usually include reference audio, a hidden reference audio,
anchor audios and the synthesized audios of interest. The anchors are artificially
degraded recordings, whose purpose is to avoid too low score of the recordings of
interest due to small imperfections. The hidden reference recording helps to de-
tect participants that do not pay attention to the survey. If the hidden reference
receives significantly different score from the revealed reference, the entries of the
given participants can be discarded (Latorre et al., 2019).

To measure and compare quality of the synthesized audio, we conducted an
online survey with the following setting. We used the last 100 held-out sentences
from the LJ Speech dataset (Ito, 2017, see Section 5.1) as test data and synthe-
sized the held-out sentences with our model as well as with two baseline models:
Tacotron 2 (Shen et al., 2018, see Section 3.3) and Deep Voice 3 (Ping et al.,
2018, see Section 3.3). The corresponding ground-truth recordings were used as
a reference.

6.1.1 Survey interface
At the beginning of the survey, the participants were presented with short in-
formation about the survey and were asked to jointly evaluate perceived speech
fluency and voice quality. Each participant was presented with 10 randomly se-
lected sentence recordings, one sentence per page. On each page, there were 5
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Figure 6.1: The user interface of our survey, based on webMUSHRA (Schoeffler
et al., 2018). The survey participant can click the play buttons to play the
corresponding samples and slide the sliders to adjust the sample evaluations.

audio recordings of the same sentence to be rated and compared amongst each
other (see the listing of systems below). We used a setting similar to MUSHRA
and based the survey interface on the webMUSHRA1 (Schoeffler et al., 2018)
project. The recordings were evaluated on a fine-grained scale between 0 and 100
to allow the participants to properly rate recordings with very small differences.
The scale was visually divided into 5 categories: “Excellent”, “Fair”, “Good”,
“Poor” and “Bad”. Participants used sliders to express their preferences. The
interface can be seen in Figure 6.1

The displayed order of the recordings was randomised and the model names
were hidden from the participant. Unlike MUSHRA, we did not use any anchor
recordings since are only interested in a relative comparison of the models. The
reference human recording was playable separately, but was also included among
the systems as an annotation sanity check. We discarded any participants who
rated the reference audio under 90 in 8 or more recordings out of 10.

6.1.2 Compared setups
We selected the following TTS system setups for comparison:

• Tacotron 2 + MelGAN

• Deep Voice 3 + MelGAN

• Deep Voice 3 + lws

• Ours + Griffin-Lim

• Ours + MelGAN

• Reference
1https://github.com/audiolabs/webMUSHRA
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We used the Nvidia implementation2 of Tacotron 2. For Deep Voice 3, the imple-
mentation from Ryuichi Yamamoto3 was utilised. For the MelGAN vocoder, we
used the implementation and model checkpoint from Seungwon Park.4 For our
own model, we used the same signal processing as in the NVIDIA implementa-
tion of Tacotron 2 and MelGAN, in order to be able to use the same vocoder for
both models and get more comparable results. Unfortunately, the Deep Voice 3
implementation uses a different signal processing pipeline and a different library
for STFT calculation (see Section 2.3) and we were not able to get good results
when combining Deep Voice 3 with MelGAN. The Deep Voice 3 implementation
uses lws (Le Roux et al., 2010) for vocoding by default. To make our results
easier to compare, we also present our model with non-neural vocoding using the
Griffin-Lim algorithm (Griffin and Lim, 1984). All models were trained on LJ
Speech.

6.1.3 Results
The results of our survey are displayed in Table 6.1. We recruited participants by
advertising the interface on Facebook and through the school department mailing
list. We used bootstrap resampling (Efron, 1979) to obtain the mean and 95%
confidence intervals5.

Model (vocoding) MOS 95 % CI
Tacotron2 (MelGAN) 62.82 (−2.01, +2.20)
Deep Voice (lws) 43.61 (−2.25, +2.20)
Reference 97.85 (−0.76, +0.66)
Ours (Griffin-Lim) 47.03 (−2.00, +2.16)
Ours (MelGAN) 75.24 (−1.91, +1.73)

Table 6.1: Resulting MOS scores from our survey of 40 participants with 95%
confidence intervals calculated with bootstrap resampling.

Our model attained the average score of 75 when using MelGAN as a vocoder
and scored higher than Tacotron 2 with the same vocoder. (Neekhara et al.,
2019) obtained significantly better results when using lws than with Griffin-Lim.
Nevertheless, our model was able to achieve higher score with Griffin-Lim than
Deep Voice 3 with lws. This shows that our model is clearly preferred to both
baselines when used with a similar vocoder.

We performed a small-scale manual analysis of the outputs to find the most
likely causes of the higher score for our model. Our model makes virtually no
pronunciation mistakes, has consistent speech tempo, does not stutter and has a
good voice quality overall. We observed better intonation consistency and word
pronunciation in our model compared to the baseline models. We account this to
the fact that the baseline models are both sequential. While the sequential models
can use the information from already generated frames, they cannot utilize any
information from the spectrogram frames that have not been generated yet. This

2https://github.com/NVIDIA/tacotron2
3https://github.com/r9y9/deepvoice3_pytorch
4https://github.com/seungwonpark/melgan
5The resampling was done 1000 times
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can make the spectrograms more locally accurate, but the global consistency may
be lower. In contrast, our model does not condition spectrogram frames on other
generated frames, because the frames are all generated in parallel, but is able to
aggregate global information across the entire sentence.

6.2 Inference speed
We evaluate the inference speed on a gaming laptop witha 4-core Intel Core i5-
6300HQ 2.30 GHz CPU and a 4GB GeForce GTX 960M GPU. Our model, the
MelGAN checkpoint and phonemes to synthesize were loaded to the main system
or GPU RAM. Then, the wall-clock time from start of the inference to the end
of the inference was measured. We used the python build-in time module for
our measurements. The inference speed was measured for different batch sizes of
fixed length. We created the batches by repeating the same sentence. We used a
quote by Antoine de Saint-Exupéry: “If you want to build a ship, don’t drum up
people to collect wood and don’t assign them tasks and work, but rather teach them
to long for the endless immensity of the sea.” There are 34 words composed of
171 characters including punctuation. The sentence can be represented with 143
phonemes to form the input to our network. The generated spectrograms consist
of 832 frames and the final audio has 9.72 seconds. We measured the inference
10 times for each configuration and averaged the results. The average inference
times are shown in Table 6.2 and Table 6.3.

Batch size Spectrogram Audio Total
1 0.032 0.165 0.197
2 0.035 0.325 0.359
4 0.050 0.647 0.697
8 0.097 1.291 1.388
16 0.203 4.065 4.268

Table 6.2: Average inference time for batches of different size on a
4GB GeForce GTX 960M GPU. The times to produce the spectrogram and the
waveform (audio), as well as the total processing time, are reported in seconds.
Each produced audio sample in the batch is 9.72 seconds long.

Batch size Spectrogram Audio Total
1 0.105 1.702 1.808
2 0.137 3.211 3.348
4 0.263 6.788 7.051
8 0.591 14.061 14.652
16 1.219 27.685 28.904

Table 6.3: Average inference time for batches of different size on Intel(R)
Core(TM) i5-6300HQ CPU @ 2.30GHz. The time is reported in seconds. Each
produced audio sample in the batch is 9.72 seconds long.

We are able to synthesize 9.72 seconds of audio in 197 milliseconds on a GPU,
which is 49 times faster than real time. On a CPU, we are able to synthesize
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Model Total parameters
Spectrogram generation 4 306 001
MelGAN 4 524 321

Table 6.4: A count of trainable parameters for spectrogram and audio synthesis
models.

approximately 5 times faster than real time as the inference takes around 1.8
seconds. Synthesizing batches, we are able to synthesize 16 × 9.72 = 155.52
seconds of audio in 4.268 seconds on a GPU, which is over 36 times faster than
real time. Our model for spectrogram generation scales well even on a CPU.
We did not use any advanced optimizations such as weight pruning or weight
quantization. The main speed bottleneck is the MelGAN vocoder (Park, 2020)
for audio generation, especially on the CPU where the inference for a batch of size
16 takes over 27 seconds. The comparison of the number of trainable parameters
in both models is displayed in Table 6.4. Both models use around 4 million
parameters. However, the vocoder generates output in the raw audio domain,
which means it has to generate 22,050 samples for one second of audio. Thus,
the last convolutional layer in the vocoder has to do relatively many operations
compared to the spectrogram generation model. This is acceptable on a GPU
where the operations can be parallelized, but is rather expensive on a CPU.

As indicated by Ren et al. (2019), the FastSpeech model should be able to
synthesize one spectrogram with 800 frames in around 0.027 seconds on a single
NVIDIA V100 GPU, which should be equally fast or slightly faster than our im-
plementation. Unfortunately, Ren et al. (2019) do not provide measured times
for different batch sizes or an official implementation that would allow speed com-
parison on the same machine. Therefore our results are not directly comparable.
The Deep Voice 3 implementation does not support the CUDA kernels, as de-
scribed by Ping et al. (2018). Therefore, the inference speed measured on our
machine is not directly comparable either. The inference times for the NVIDIA
Tacotron 2 implementation are displayed in Table 6.5. On a CPU, Tacotron 2
was able to generate one sample in 5 seconds on average. Based on the available
evidence, our model is comparable to FastSpeech, faster than Tacotron 2 and
probably faster than Deep Voice 3 in its current state.

Batch size Spectrogram Audio Total
1 1.552 0.196 1.748
2 1.612 0.388 2.000
4 1.669 0.769 2.438
8 1.877 1.562 3.439
16 2.140 6.796 8.936

Table 6.5: Average inference time for batches of different size on a
4GB GeForce GTX 960M GPU for Tacotron 2. The times to produce the spectro-
gram and the waveform (audio), as well as the total processing time, are reported
in seconds. Tacotron 2 produced spectrograms of approximately 980 frames for
the reference sentence, which is over 100 frames more than our model. This also
explains why the MelGan inference is slower for Tacotron 2.
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6.3 Training time
Both the duration extraction model (see Section 4.3) and the spectrogram syn-
thesis model (see Section 4.4) were trained on a single GeForce GTX 1080 GPU
with 8GB RAM. We were able to use a batch of 64 sentences in both cases.
The training time on the LJ Speech dataset (Ito, 2017, see Section 5.1) also in-
cludes logging of training statistics with Tensorboard. Three audio samples were
synthesized every 10 epochs with non-negative least squares linear spectrogram
reconstruction and Griffin-Lim (see Section 2.3; MelGAN could not fit on the
same GPU anymore). The duration extraction model is smaller in terms of pa-
rameters, and finishes one epoch faster than the spectrogram prediction model.
However, more than twice as many epochs are required to train the model to con-
vergence because a carefully tuned and comparatively small learning rate must
be used to achieve stable learning and convergence to reasonable results (see Sec-
tion 5.2). The spectrogram prediction model is relatively large and one epoch
takes longer to finish. On the other hand, the model architecture is simple and
does not contain any hard-to-train layers, such as an attention layer. It is possible
to use a large learning rate without any stability issues and the model converges
in under 100 epochs (see Section 5.3). The training times along with the total
number of parameters in each model are depicted in Table 6.6.

Duration extraction Spectrogram prediction
Train time (hours) 19 13
Epochs till convergence 250 100
Time per epoch (minutes) 4.56 7.8
Steps 50 750 20 300
Time per step (seconds) 1.34 2.31
Total params. 708 920 4 306 001

Table 6.6: The wall-clock training duration for the duration extraction model and
the spectrogram synthesis model. Total number of parameters in both models
as well as the number of epochs and gradient steps are shown. Both models
together can be trained on the LJ Speech dataset in 32 hours. The training time
was measured on one GeForce GTX 1080 GPU with 8GB RAM.

For comparison, the FastSpeech (Ren et al., 2019) student network alone
trains in 80K steps on 4 V100 GPUs.6 The batch size is also 64, but must
be split among the 4 GPUs (batch size 16 per GPU). The FastSpeech student
network has 30.1M parameters, which is approximately 7 times more than our
proposed student network. The teacher network in FastSpeech is based on a
Transformer network (Li et al., 2018; Vaswani et al., 2017) and contains over
30M parameters. According to Li et al. (2018), the teacher model can be trained
in around 3 days on LJ Speech (Ito, 2017, see Section 5.1). The Tacotron 2 model
(Shen et al., 2018) can be trained in 4.5 days on LJ Speech according to (Li et al.,
2018). According to Ping et al. (2018), the Deep Voice 3 model can be trained
in 500K steps on a single GPU with batch size 4, where each step takes around

6Ren et al. (2019) do not report on the wall clock time taken for training, but given the lower
number of parameters in our network and the lower number of steps needed for convergence,
we can assume that our model’s training needs much less time.
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0.06 seconds. This would imply a training time of 8.3 hours. The results in Deep
Voice 3 were measured on an internal dataset containing approximately 20 hours
of audio, which is comparable to LJ Speech.

In conclusion, our models can be trained orders of magnitude faster than
FastSpeech and Tacotron 2. Deep Voice 3 is trained faster than our systems, but
provides lower speech quallity according to our survey (see Section 6.1).

6.4 Directions for future work
While our model is able to produce high-quality speech much faster than real time
on commodity hardware, there are a few areas that could be explored more and
could potentially lead to further improvements. Based on that, we now provide
some directions for future work.

Normalization and padding: We observed cutoffs of the last word in a syn-
thesized sentence if the input phonemes were not padded with several frames
filled with zeros at the end of the sentence. During batch synthesis, the cutoff al-
ways happened only for the longest sentence in the batch. We padded the longest
sentence in the batch with several zeros, which resolved this issue. However, a
more careful treatment of the phonemes around the edges could be used to elim-
inate the network dependence on the padding. A promising approach could be
the partial-convolution-based padding introduced by Liu et al. (2018), where the
convolution results are re-weighted based on the padding area and convolution
window overlap.

The zero padding used during training also influences batch normalization.
Padded regions decrease the variance estimate and bias the mean estimate to-
wards the pad value. This fact increases the output dependence on the padding
used, which may be problematic for synthesis of a single sentence. The batch
normalization statistics during inference could be very different from training
statistics because there are no padded utterances on the input.

Using masking for the calculation of the statistics could decrease the model
dependence on the padded regions. Another option would be to use inputs of sim-
ilar length in each training batch (bucket sampling) and minimize the necessary
padding length. Finally, a different padding scheme could be used. Reflection
padding reuses the values along the input edges as padding values, which may
help to keep the batch normalization statistics unbiased.

Normalization for duration extraction: It would be interesting to introduce
some form of normalization to the duration extraction model (see Section 4.3).
This could speed up training and partially alleviate the error propagation prob-
lem (see Section 5.2). Normalization of channels across time cannot be directly
applied and layer normalization (Ba et al., 2016) did not improve the results
in our experiments (see Section 5.2). Recent work on self-normalizing networks
offers novel activation functions such as SeLU (Klambauer et al., 2017). Apply-
ing similar activation functions would probably be nontrivial and would require
careful tuning of the model. However, the model would probably benefit from at
least some sort of normalization.
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Alternative alignment models: Correct phoneme durations are crucial for
training of the spectrogram synthesis model. It does not matter how the durations
are obtained as long as they are correct. Therefore, It would be interesting to
experiment with alternative models that learn the alignment between phonemes
and spectrograms. For example, the AlignTTS model (Zeng et al., 2020) could be
adapted for our setup. Similarly, one could experiment with durations extracted
from pretrained ASR systems.

We used location-based attention masking as a heuristic to extract monotonic
alignment from the attention matrix (see Section 4.3). It would be interesting to
adapt Viterbi decoding (Bishop, 2006, p. 629) for extraction of the most likely
alignment from the attention matrix. Masking would not be necessary and the
alignment would always end on the last phoneme.

Network shape adjustments: Because we were not able to improve the like-
lihood score of the student network even with very low learning rate (see Sec-
tion 5.3), we assume that the model already uses all its capacity (expressivenes).
The duration predictor seems to be relatively reliable even though it has no influ-
ence on the encoder weights (see Section 5.3). We hypothesize that the number
of layers in the encoder could be decreased in favor of more layers in the decoder.
The decoder would have more transformations available and could generate higher
quality spectrograms, while the duration predictor performance would not signif-
icantly decrease.

Multi-speaker extensions: We trained our models on a single-speaker
dataset. Applications in multi-speaker domains would require extensions of the
model to the multi-speaker case. We are curious if the model is able to capture
the voices of multiple speakers. Training the model on a different language or on
a dataset with a male speaker could also give interesting insights and directions
for further improvement.

Better integration with the vocoder: Another quality improvement could
come from training the MelGAN vocoder (Park, 2020, see Section 3.2) directly
on spectograms synthesized by our model. Recently, the SqueezeWave vocoder
(Zhai et al., 2020) was released along with its source code. SqueezeWave is based
on WaveGlow (Prenger et al., 2019) but uses various optimizations to improve
inference speed. It would be interesting to see a short study that would compare
MelGAN and SqueezeWave in terms of training time, inference speed and quality.
Some optimizations presented by Zhai et al. (2020) such as depthwise convolutions
(Gao et al., 2018) and reshaping of the input in order to avoid the need for dilated
convolutions could also be applied to our spectrogram generation model.

Model compression: There are further optimizations such as mixed precision
training (Micikevicius et al., 2017) and weight pruning (Molchanov et al., 2016)
that could reduce the model size and allow it to run on low-resource devices.

Linear-scale spectrograms: Neural vocoders are able to synthesize high qual-
ity audio from mel spectrograms (see Section 3.2). Unfortunately, it is not al-
ways possible to use a neural vocoder trained on one speaker for vocoding of
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another speaker. Vocoder training for each dataset could be avoided if we used
lws (Le Roux et al., 2010) or Griffin-Lim (Griffin and Lim, 1984) for the spectro-
gram inversion (see Section 2.3). However, to achieve high-quality output audio,
Griffin Lim and lws require linear spectrograms on the input. Therefore, it is
necessary to reconstruct the linear scale spectrograms from the mel-scale spec-
trograms. Using non-negative least squares to do this is slow, inaccurate, and has
a large impact on the final audio quality. It could thus be interesting to gener-
ate linear scale spectrograms from the mel spectrograms with a super-resolution
GAN and apply a phase estimation technique on the final spectrogram similarly
to (Neekhara et al., 2019). If the linear spectrograms were high-quality, the re-
sulting audio quality could be sufficient and there would be no need for a neural
vocoder.

STFT implementations mismatch: Finally, we would like to address an
issue that is not only relevant to our work, but also to the speech synthesis
research in general. There are many available implementations of STFT and
accompanying tools:

• librosa7

• torch.stft8

• nnAudio9

• torchaudio10

• lws11

Furthermore, there are project-specific implementations such as the Pytorch im-
plementation used in Nvidia Tacotron 212. Different speech synthesis projects of-
ten utilize different implementations of STFT. Unfortunately, some of the STFT
implementations are incompatible even if the STFT parameters are identical.
This makes comparison and combining of different models very hard. For exam-
ple, we tried to combine spectrograms generated with the STFT implementation
from Nvidia Tacotron 2 with Griffin-Lim implementation from librosa, which
yielded lower-quality audio than using spectrograms generated with the librosa.
A comprehensive survey comparing different STFT frameworks and providing
compatibility information would be really useful, especially for researchers in the
field of speech synthesis. Such a survey could speed up the research process and
might make future spectrogram synthesis models and vocoders mutually widely
compatible without retraining.

7https://github.com/librosa/librosa
8https://pytorch.org/docs/stable/torch.html#torch.stft
9https://github.com/KinWaiCheuk/nnAudio

10https://pytorch.org/audio/
11https://github.com/Jonathan-LeRoux/lws
12https://github.com/NVIDIA/tacotron2/blob/master/stft.py
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7. Conclusion
We presented a convolutional model for spectrogram synthesis from phonemes
that supports both speedy training and inference, while maintaining significantly
better output voice quality than strong baselines (see Section 6). We believe all
our goals set in Section 1.2 were accomplised.

We trained our model on a standard dataset and conducted comprehensive
experiments with different model configurations in Section 5. The entire system
can be trained in 32 hours on one GeForce GTX 1080 GPU with 8GB RAM.
A quality evaluation and comparison to other recent speech synthesis systems
was done (Section 6.1). Further, we measured the model speed during inference
on both GPU and CPU (Section 6.2). We also compared our model to baseline
models in terms of required training time in Section 6.3. The results suggest that
our system achieves state-of-the-art in terms of the trade-off between synthesized
voice quality and training and inference time. The system is able to generate
significantly better audio samples than similar synthesis models while being faster
to train and run. We also provided insight into challenges of training speech
synthesis models and suggested further improvements and directions for future
research.

64



Bibliography
Jont B. Allen and Lawrence R. Rabiner. A Unified Approach to Short-Time

Fourier Analysis and Synthesis. Proceedings of the IEEE, 65(11):1558–1564,
1977.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
In Proceedings of the Neural Information Processing Systems Deep Learning
Symposium, Barcelona, Spain, December 2016.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015 - Conference Track Pro-
ceedings. International Conference on Learning Representations, ICLR, 9 2015.

Mikołaj Bińkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen,
Norman Casagrande, Luis C. Cobo, and Karen Simonyan. High Fidelity Speech
Synthesis with Adversarial Networks. arXiv preprint arXiv:1909.11646, 9 2019.

Christopher M. Bishop. Pattern Recoginiton and Machine Learning. Springer-
Verlag New York, 2006.

Donghui Chen and Robert J. Plemmons. Nonnegativity constraints in numerical
analysis. In Symposium on the Birth of Numerical Analysis, World Scientific.
Press, 2009.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthe-
sis. In ICLR. International Conference on Learning Representations, ICLR, 2
2019.

H W Dudley. System for the artificial production of vocal or other sounds. Tech-
nical report, 4 1938.

Homer Dudley and T. H. Tarnoczy. The Speaking Machine of Wolfgang von
Kempelen. Journal of the Acoustical Society of America, 22(2):151–166, 3
1950.

Bradley Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals
of Statistics, 7(1):1–26, January 1979.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. ChannelNets: Compact and
efficient convolutional neural networks via channel-wise convolutions. In Ad-
vances in Neural Information Processing Systems, volume 2018-Decem, pages
5197–5205. Neural information processing systems foundation, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in Neural Information Processing Systems, volume 3,
pages 2672–2680. Neural information processing systems foundation, 6 2014.

65



Daniel W. Griffin and Jae S. Lim. Signal Estimation from Modified Short-Time
Fourier Transform. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 32(2):236–243, April 1984.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Bridging implicit
and prescribed learning in generative models. In AAAI, 2018.

Fredric J. Harris. On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform. In Proceedings of the IEEE, volume 66, pages 51–83, 1978.

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical
learning: data mining, inference and prediction. Springer, 2nd edition, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, volume 2016-Decem, pages 770–
778. IEEE Computer Society, 12 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1 1989.

Satoshi Imai. Cepstral Analysis Synthesis on the Mel Frequency Scale. In
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing - Proceedings, volume 1, pages 93–96. IEEE, 1983.

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep net-
work training by reducing internal covariate shift. In Proceedings of the 32nd
International Conference on Machine Learning (ICML), pages 448–456, Lille,
France, July 2015.

Keith Ito. The LJ Speech Dataset, 2017. URL https://keithito.com/
LJ-Speech-Dataset/.

ITU. Method for the subjective assessment of intermediate quality level of audio
systems. Recommendation BS.1534, International Telecommunication Union,
Geneva, 2015.

Ye Jia, Yu Zhang, Ron J. Weiss, Quan Wang, Jonathan Shen, Fei Ren, Zhifeng
Chen, Patrick Nguyen, Ruoming Pang, Ignacio Lopez Moreno, and Yonghui
Wu. Transfer learning from speaker verification to multispeaker text-to-speech
synthesis. In Advances in Neural Information Processing Systems, volume 2018-
Decem, pages 4480–4490, 2018.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman
Casagrande, Edward Lockhart, Florian Stimberg, Aaron van den Oord, Sander
Dieleman, and Koray Kavukcuoglu. Efficient Neural Audio Synthesis. pages
2410–2419, July 2018.

Nasser Kehtarnavaz. Digital signal processing system design. Elsevier Inc., 2008.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
In Proceedings of the 3rd International Conference on Learning Representations
(ICLR), San Diego, CA, USA, May 2015.

66

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/


Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-Normalizing Neural Networks. In Advances in Neural Information Pro-
cessing Systems, volume 2017-Decem, pages 972–981. Neural information pro-
cessing systems foundation, 6 2017.

Dennis H Klatt. Software for a cascade/parallel formant synthesizer. The Journal
of the Acoustical Society of America, 67(3):971–995, 3 1980.

Dennis H Klatt. Review of text-to-speech conversion for English. The Journal of
the Acoustical Society of America, 82(3):737–793, 9 1987.

Ivan Kobyzev, Simon Prince, and Marcus A. Brubaker. Normalizing Flows: An
Introduction and Review of Current Methods. 8 2019.

Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen
Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron
Courville. MelGAN: Generative Adversarial Networks for Conditional Wave-
form Synthesis. In Advances in Neural Information Processing Systems 32
(NeurIPS), pages 14910–14921, Vancouver, BC, Canada, December 2019.

Javier Latorre, Jakub Lachowicz, Jaime Lorenzo-Trueba, Thomas Merritt,
Thomas Drugman, Srikanth Ronanki, and Klimkov Viacheslav. Effect of data
reduction on sequence-to-sequence neural tts. pages 7075–7079, 2019.

Jonathan Le Roux, Hirokazu Kameoka, Nobutaka Ono, and Shigeki Sagayama.
Fast signal reconstruction from magnitude STFT spectrogram based on spec-
trogram consistency. In Proceeedings of the 13th International Conference on
Digital Audio Effects (DAFx), Graz, Austria, September 2010.

Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. Understanding the Dishar-
mony between Dropout and Batch Normalization by Variance Shift. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2677–2685, 1 2018.

Guilin Liu, Kevin J. Shih, Ting-Chun Wang, Fitsum A. Reda, Karan Sapra,
Zhiding Yu, Andrew Tao, and Bryan Catanzaro. Partial Convolution based
Padding. arXiv preprint arXiv:1811.11718, 11 2018.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Mor-
gan Sonderegger. Montreal Forced Aligner: Trainable Text-Speech Alignment
Using Kaldi. In Interspeech 2017, volume 2017-Augus, pages 498–502. ISCA,
8 2017.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen,
David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. Mixed Precision Training. In 6th International Con-
ference on Learning Representations, ICLR 2018 - Conference Track Proceed-
ings. International Conference on Learning Representations, ICLR, 10 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Prun-
ing Convolutional Neural Networks for Resource Efficient Inference. In 5th

67



International Conference on Learning Representations, ICLR 2017 - Confer-
ence Track Proceedings. International Conference on Learning Representations,
ICLR, 11 2016.

Paarth Neekhara, Chris Donahue, Miller Puckette, Shlomo Dubnov, and Julian
McAuley. Expediting TTS synthesis with adversarial vocoding. In INTER-
SPEECH, volume 2019-Septe, pages 186–190, 2019.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. arXiv preprint
arXiv:1609.03499, September 2016.

Tom Le Paine, Pooya Khorrami, Shiyu Chang, Yang Zhang, Prajit Ramachan-
dran, Mark A. Hasegawa-Johnson, and Thomas S. Huang. Fast Wavenet Gen-
eration Algorithm. arXiv preprint arXiv:1611.09482, 11 2016.

Seungwon Park. MelGan vocoder, 2020. URL https://github.com/
seungwonpark/melgan.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine learning,
pages 1310–1318, 2013.

Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan Arık, Ajay Kannan, Sharan
Narang, Jonathan Raiman, and John Miller. Deep Voice 3: Scaling text-to-
speech with convolutional sequence learning. In Proceedings of the 6th In-
ternational Conference on Learning Representations (ICLR), Vancouver, BC,
Canada, May 2018.

Wei Ping, Kainan Peng, and Jitong Chen. Clarinet: Parallel wave generation in
end-to-end text-to-speech. In Proceedings of the Seventh International Confer-
ence on Learning Representations (ICLR), New Orleans, LA, USA, May 2019.

Martin Popel and Ondřej Bojar. Training Tips for the Transformer Model. The
Prague Bulletin of Mathematical Linguistics, 110(1):43–70, 3 2018.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A Flow-based
Generative Network for Speech Synthesis. In ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings, volume
2019-May, pages 3617–3621. Institute of Electrical and Electronics Engineers
Inc., 5 2019.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan
Liu. FastSpeech: Fast, Robust and Controllable Text to Speech. In Advances in
Neural Information Processing Systems 32 (NeurIPS), pages 3171–3180, Van-
couver, BC, Canada, December 2019.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The
Annals of Mathematical Statistics, 22(3):400–407, 1951.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

68

https://github.com/seungwonpark/melgan
https://github.com/seungwonpark/melgan


Y Sagisaka. Speech synthesis by rule using an optimal selection of non-uniform
synthesis units. In ICASSP-88., International Conference on Acoustics, Speech,
and Signal Processing. IEEE, 1988.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparame-
terization to accelerate training of deep neural networks. pages 901–909, 2016.

Stan Salvador and Philip Chan. FastDTW: Toward Accurate Dynamic Time
Warping in Linear Time and Space. Intelligent Data Analysis, 01 2004.

Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling oper-
ations in convolutional architectures for object recognition. In ICANN, pages
92–101. Springer, Berlin, Heidelberg, 2010.

Michael Schoeffler, Fabian-Robert Stöter, Bernd Edler, and Jürgen Herre. To-
wards the next generation of web-based experiments: A case study assessing
basic audio quality following the ITU-R recommendation BS. 1534 (MUSHRA).
In 1st Web Audio Conference, pages 1–6, 2015.

Michael Schoeffler, Sarah Bartoschek, Fabian-Robert Stöter, Marlene Roess, Su-
sanne Westphal, Bernd Edler, and Jürgen Herre. webMUSHRA — A Compre-
hensive Framework for Web-based Listening Tests. Journal of Open Research
Software, 6(1):8, February 2018.

Diemo Schwarz. Current research in concatenative sound synthesis. 2005.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly,
Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan,
Rif A. Saurous, Yannis Agiomvrgiannakis, and Yonghui Wu. Natural TTS
Synthesis by Conditioning Wavenet on MEL Spectrogram Predictions. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4779–4783, Calgary, AB, Canada, April 2018.

Leyuan Sheng and Evgeniy N. Pavlovskiy. Reducing over-smoothness in speech
synthesis using Generative Adversarial Networks. In SIBIRCON 2019 - In-
ternational Multi-Conference on Engineering, Computer and Information Sci-
ences, Proceedings, pages 972–974, 10 2019.

Jose Sotelo, Soroush Mehri, Kundan Kumar, João Felipe Santos, Kyle Kastner,
Aaron Courville, and Yoshua Bengio. Char2Wav: End-to-End Speech Synthe-
sis. In ICLR, 2 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(56):1929–1958, June
2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway Net-
works. arXiv preprint arXiv:1505.00387, 5 2015.

S. S. Stevens, J. Volkmann, and E. B. Newman. A Scale for the Measurement
of the Psychological Magnitude Pitch. Journal of the Acoustical Society of
America, 8(3):185–190, 1937.

69



Hideyuki Tachibana, Katsuya Uenoyama, and Shunsuke Aihara. Efficiently
Trainable Text-to-Speech System Based on Deep Convolutional Networks with
Guided Attention. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings (ICASSP), pages 4784–
4788, Calgary, AB, Canada, April 2018.

Paul Taylor. Text-to-speech synthesis, volume 9780521899. Cambridge University
Press, 1 2009.

Keiichi Tokuda, Yoshihiko Nankaku, Tomoki Toda, Heiga Zen, Junichi Yamag-
ishi, and Keiichiro Oura. Speech synthesis based on hidden Markov models. In
Proceedings of the IEEE, volume 101, pages 1234–1252. Institute of Electrical
and Electronics Engineers Inc., 2013.

Aaron Van Den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals,
Koray Kavukcuoglu, George Van Den Driessche, Edward Lockhart, Luis C.
Cobo, Florian Stimberg, Norman Casagrande, Dominik Grewe, Seb Noury,
Sander Dieleman, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alex Graves, He-
len King, Tom Walters, Dan Belov, and Demis Hassabis. Parallel WaveNet:
Fast high-fidelity speech synthesis. In Proceedings of the 35th International
Conference on Machine Learning (ICML), pages 6270–6278, Stockholm, Swe-
den, July 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems 30 (NeurIPS),
pages 5999–6009, Long Beach, CA, USA, December 2017.

Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P. Simoncelli.
Image quality assessment: From error visibility to structural similarity. IEEE
Transactions on Image Processing, 13(4):600–612, April 2004.

Sam Wiseman and Alexander M Rush. Sequence-to-Sequence Learning as Beam-
Search Optimization. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1296–1306, Austin, Texas, 11
2016. Association for Computational Linguistics.

Yanzhao Wu, Ling Liu, Juhyun Bae, Ka-Ho Chow, Arun Iyengar, Calton Pu,
Wenqi Wei, Lei Yu, and Qi Zhang. Demystifying Learning Rate Policies for
High Accuracy Training of Deep Neural Networks. In Proceedings - 2019 IEEE
International Conference on Big Data, Big Data 2019, pages 1971–1980. Insti-
tute of Electrical and Electronics Engineers Inc., 8 2019.

Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi, and Tadashi
Kitamura. Hidden semi-Markov model based speech synthesis. In Eighth In-
ternational Conference on Spoken Language Processing, 2004.

Heiga Zen, Keiichi Tokuda, and Alan W. Black. Statistical parametric speech
synthesis. In 2007 IEEE International Conference on Acoustics, Speech and
Signal Processing - ICASSP ’07, volume 51, pages 1039–1064, 11 2009.

70



Zhen Zeng, Jianzong Wang, Ning Cheng, Tian Xia, and Jing Xiao. AlignTTS: Ef-
ficient Feed-Forward Text-to-Speech System without Explicit Alignment. arXiv
preprint arXiv:2003.01950, 3 2020.

Bohan Zhai, Tianren Gao, Flora Xue, Daniel Rothchild, Bichen Wu, Joseph E.
Gonzalez, and Kurt Keutzer. SqueezeWave: Extremely Lightweight Vocoders
for On-device Speech Synthesis. arXiv preprint arXiv:2001.05685, 1 2020.

Maggie Zhang and Grzegorz Karch. Generate Natural Sound-
ing Speech from Text in Real-Time | NVIDIA Devel-
oper Blog, 9 2019. URL https://devblogs.nvidia.com/
generate-natural-sounding-speech-from-text-in-real-time/.

71

https://devblogs.nvidia.com/generate-natural-sounding-speech-from-text-in-real-time/
https://devblogs.nvidia.com/generate-natural-sounding-speech-from-text-in-real-time/


A. Appendix

STFT parameters

STFT
sample rate 22050
n_mels 80
n_fft 1024
hop size 256
window size 1024
mel_fmin 0.0
mel_fmax 8000.0
clip value 1e-5

Table A.1: The list of parameters used for discrete short-time Fourier transform
(see Section 2.3). The sample rate refers to the audio sample rate; one second
of audio contains 22050 samples. The parameters n_fft and n_mels refer to the
number of frequency and mel frequency bins used. The window size is the width
of the STFT window and hop size is the overlap size of neighboring windows.
Parameters mel_fmin and mel_fmax refer to minimum and maximum frequencies
considered for the mel spectrograms. The clip value is the minimum value allowed
in a spectrogram. Lower values get clamped to this value.
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Parameters of the duration extraction model

Parameter Text encoder Audio encoder Decoder
Layers 10 10 14
Dilation factors 2 * [1, 3, 9, 27] 2 * [1, 3, 9, 27] 2 * [1, 3, 9, 27]

+ [1,1] + [1,1] + [1,1]
Kernel size 3 3 3
Final activation - - Sigmoid
Convolution channels 40 40 40
Hidden channels 80 80 80

Training
Optimizer Adam
Learning rate 0.002
Scheduler Noam, warmup 30 epochs
Gradient clipping 1
Batch size 64
Guided att. weight 0.3
Pos. encoding slope 6.42
Attention noise std 0.1
Replace random frame proba. 0.1
Spectrogram noise std 0.01
Self feed repeats 2

Table A.2: The list of parameters of the duration extraction architecture and
paramaters for training (see Sections 4.3 and 5.2)
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Parameters of the speech synthesis model

Parameter Encoder Decoder Duration
predictor

Residual blocks 13 17 3
Length of residual block 2 2 1
Dilation factors 4 * [1,2,4] + [1] 4 * [1,2,4,8] + [1] [4,3,1,1]
Kernel size 4 4 4
Batch norm. affine affine affine
Activation ReLU ReLU ReLU
Final activation - - Linear
Convolution channels 128 128 128

Training
Optimizer Adam
Learning rate 0.002
Scheduler ReduceOnPlateau, patience=3
Gradient clipping 1
Batch size 64

Table A.3: The list of parameters of the final spectrogram generator architecture
and paramaters for training (see Sections 4.4 and 5.3)

.
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