
BACHELOR THESIS

Pavel Gajdušek

Visualisation of User’s Preferences in
the Music Domain

Department of Software Engineering

Supervisor of the master thesis: Mgr. Ladislav Peška, Ph.D.
Study programme: Informatika

Study branch: Obecná informatika

Prague 2020

This is not a part of the electronic version of the thesis, do not scan!

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Praha date 28.5.2020 .
Author’s signature

i

Děkuji svému vedoućımu Ladislavu Peškovi za cenné rady a vědecký nadhled při
psańı jak práce, tak kódu.

Děkuji Romanu Sobkuliakovi za neocenitelnou radu použ́ıvat TypeScript a za
nadšeńı pro věc.

Thanks to all of my friends that provided their precious data and thus helped
me to debug many edge cases.

ii

Title: Visualisation of User’s Preferences in the Music Domain

Author: Pavel Gajdušek

Department: Department of Software Engineering

Supervisor: Mgr. Ladislav Peška, Ph.D., Department of Software Engineering

Abstract: Most of the music portals offer users lists of songs that are the result
of black-box algorithms. The recommendation is often nontransparent for users,
therefore the irrelevant recommendation might have negative consequences. The
recommendation is mainly based on the computation of similarities between users
or objects. The computation relies on collaborative techniques or similarity of
the contents of the objects. The purpose of this bachelor thesis is to design and
implement suitable visualization of these relations in the form of an interactive
graph for a certain Spotify user. The visualization should help users realize that
their data have inner structures and the recommendations are based on them. The
final application should also provide a music playback using the songs contained
in the graph.

Keywords: music, graph, cluster, visualization, SpotifyAPI, ReactJS, Django

Název práce: Vizualizace uživatelových preferenćı v hudebńı doméně

Autor: Pavel Gajdušek

Katedra: Katedra softwarového inženýrstv́ı

Vedoućı bakalářské práce: Mgr. Ladislav Peška, Ph.D., Katedra softwarového
inženýrstv́ı

Abstrakt: Většina on-line hudebńıch portál̊u nab́ıźı uživatel̊um seznamy do-
poručených skladeb, které jsou výstupem “black-box” doporučovaćıch algoritmů.
Doporučeńı často bývá pro uživatele netransparentńı a př́ıpadné doporučeńı
nebo přehráváńı irelevantńıho obsahu tak má výrazněǰśı negativńı dopady. Do-
poručováńı prob́ıhá předevš́ım na základě vypočtených podobnost́ı mezi uživateli
nebo objekty založené buď na kolaborativńım principu, nebo podobnosti vlastńıho
obsahu. Tato bakalářská práce si klade za ćıl navrhnout a implementovat vhodnou
vizualizaci těchto vztah̊u ve formě interaktivńıho grafu pro konkrétńı uživatele
platformy Spotify. Vizualizace by měla uživatel̊um pomoci uvědomit si, že je-
jich data obsahuj́ı vnitřńı struktury, ze kterých vychaźı doporučováńı skladeb a
umělc̊u. Výstupńı program by měl také umožnit přehráváńı skladeb obsažených
v grafu.

Kĺıčová slova: hudba, graf, cluster, visualizace, SpotifyAPI, ReactJS, Django

iii

Contents

Introduction 3

1 Problem analysis 5

2 Graph-based algorithms 8
2.1 Graph clustering . 8

2.1.1 Louvain algorithm . 8
2.1.2 Spectral clustering . 9

2.2 Graph visualisation . 11
2.2.1 Force-directed layout . 11
2.2.2 Growing tree overlapping nodes removal 12

3 Spotify API 15
3.1 Authorization . 15
3.2 Spotify Data . 15
3.3 Spotify API limitations . 18

4 Application Design and GUI 19
4.1 Architecture overview . 19
4.2 Inicialization . 19
4.3 Graph construction . 21

4.3.1 Artists . 21
4.3.2 Edges among artists . 21
4.3.3 Clustering . 22
4.3.4 Edges among clusters . 24

4.4 Layout . 24
4.4.1 Main graph layout . 24
4.4.2 Inside cluster graph layout 26

4.5 GUI elements . 26
4.5.1 Main graph GUI . 26
4.5.2 Main graph nodes (clusters) 26
4.5.3 Inside cluster graph . 29
4.5.4 Artist side-bar . 29
4.5.5 Similar clusters bar . 31
4.5.6 Left side-bar . 31
4.5.7 Player . 32

4.6 Graph caching . 32

5 Code Overview 33
5.1 Back-end . 33

5.1.1 Technologies . 33
5.1.2 Back-end structure . 33
5.1.3 Further code extensions 36

5.2 Front-end . 37
5.2.1 Technologies . 37
5.2.2 Graph visualization . 38

1

5.2.3 Front-end structure . 40
5.2.4 Further code extensions 42

5.3 Deployment . 42
5.3.1 Custom deployment . 43

6 Case studies 45

Conclusion 50

Bibliography 52

List of Figures 54

List of Abbreviations 55

A Attachments 56
A.1 Electronic attachments . 56

2

Introduction

Motivation
Recommender systems are present everywhere on the internet and users come
in touch with them every day. One of the most important branches that use
recommendations is the music industry. This is caused by the number of artist
and songs that are easily accessible everywhere on Earth. However, the final
recommendation given to the users is the result of black-box algorithms and the
users might not understand, why the songs or artist were recommended to them.

Sometimes, this attitude works well, users are satisfied with it and listen to
the music that is given to them. The situation is quite different for more picky
users who listen to numerous genres and music styles or get annoyed quickly by
monotonous results of recommender systems. In this case, it would be desirable to
bring in some more or less abstract structure that would show the inner relations
between artists and recommended music. This structure could be visualized and
given to users that would recognize their habits in a new manner.

In this bachelor thesis, we would like to suggest and implement some visual-
isation methods that would make clearer the user’s preferences and music taste.
We will take the user’s data and build a graph structure on them. With the help
of graph visualizing and clustering algorithms, we will show the graph in the web
application and allow users to explore the data in a web browser.

To obtain the data about the artists, songs and users, we chose the Spotify
music platform, because of its easily accessible API and a large amount of data
and metadata provided to developers. However, the biggest motivation to use
Spotify is the number of monthly users (286 million users in March 2020) and the
popularity of this music service among its customers.

The goal of this thesis is to make user realize, how connected their world of
music is and make them enjoy the moment of exploring inner structures of it.

Related work
Exploring and visualizing hidden structures in the music domain is tempting for
many scientists and developers. We would like to introduce a few projects that
inspired us and explain which pieces are missing and what we would like to add.

The Music-Map1 project enables users to search for an arbitrary artist and
similar artists are shown around the chosen artists. It shows nicely the closeness
of artists. On the other hand, the functionality is very limited, because the only
available action is to click artists and see their similar artists. We would like to
personalize the data and add more features, such as a music player or draggable
nodes.

The Everynoise2 project visualizes all possible genres of Spotify and allows
users to play a chosen song of a chosen genre. It shows similar genres close to
each other. However, the data are not personalized and the orientation on the

1https://www.music-map.com/
2http://everynoise.com/

3

page is slightly confusing. All genres found on Spotify are displayed as a one long
list on the page. We will group artists with their genres into clusters and put
more attention to the data as a whole rather than showing every small detail.

The Artist Explorer3 uses the idea of related artists available on Spotify. The
application displays a tree where the root is a chosen artist. We can grow the
tree by clicking on artists and explore other artists that are similar to the clicked
ones. We like this approach on music data, nevertheless, we want to create a
general graph (not a tree) from data obtained from a logged-in user.

Generally speaking, our approach differs from most of the available web appli-
cations by the personalization, graph dynamic visualization, systematic clustering
and detailed artists data.

3https://github.com/fsahin/artist-explorer

4

1. Problem analysis
The main purpose of this application is to show the user’s music preferences. To
do so, we must set some rules and approaches towards this goal:

• The shown entities should be very intuitive and easy to understand.
• The data should be structured. In other words, if the whole page is cov-

ered with text or images without any order, it will not help the user to
understand anything.
• There should be neither too many nor too few entities on the screen. Too

many entities are disturbing and too few are boring and not really describing
the structure of the given data.
• If there are some relations between the chosen entities, they should be nicely

visualized.
• User should know what the shown data mean and why did it appear in

his/her visualisation.
• In the music domain, it is not enough to just show names or images of artists

and songs. It is necessary to allow users to play some pieces of music.

Let us analyze these requirements and suggest a solution.

Entities

First, we must choose the data that we want to work with. As we are exploring
the music domain, we decided to work with the most intuitive entities - artists
and songs. Both of those are easy to manipulate with and are relatively ”atomic”
(there are some exceptions, e.g. artists belonging to music bands or longer pieces
divided into parts). Next considerable musical structure that comes into mind is
an album. We decided to ignore this concept for the following reasons:
• It is not always strictly defined:

• some albums contain songs that were firstly published as singles,
• it is not clear what albums should mean in classical music.

• It is hard to define relations between albums.
• Users do not always know which album their favourite pieces belongs to.

Thus, we will work with artists and songs (in this thesis, we will use both
song and track). Let’s suppose, we know how to get the user’s favourite songs
and artists. Now, we must find a way how to connect them.

Principal data structure - graph

The main point of visualizing some data is to show more or less hidden relations
between entities. A graph is the most straightforward data structure that captures
the idea of relations very well. A graph consists of nodes and edges that represent
entities and relations between them.

We took into account a few possibilities of what entities in the graph should
represent in the music domain and how exactly the graph should look like:

5

• The user is the node in the middle and his/her favourite artists are nodes
around.
• Nodes are representations of songs and edges of the similarities between

them.
• Nodes are representations of artists and edges of the similarities between

them.
• Songs and artists are in one graph with edges representing the similarity or

relation of authorship and other combinations.

We chose the most intuitive choice, to have nodes as artists and edges as
some similarity between them. This similarity is composed of two factors: genres
that two artists have in common and particularly the concept of related artists
introduced by Spotify. This concept will be explained further in the Spotify API
chapter.

Graph clustering

The number of favourite artists can be quite large. For this reason, we would like
to divide them into some groups and show only a reduced part of the big amount
of data. There are some desired properties of groups, such as that there should
be only similar artists in the group (for graph’s theory sake, the groups will be
called clusters). We will describe this clustering problem further in the Graph
algorithms chapter.

Graph visualizing

After we obtained artist clusters, we would like to visualize them. There will be
two main views on the data.

1. The graph, where nodes represent the computed clusters and edges the
similarities between clusters - let us call it the main graph (see figure 1.1).

2. We want to allow the user to click the clusters and see what is inside. We
will do it by showing a graph where nodes are artists inside the cluster and
edges relations between them - from now on, let us denote it as the inside
cluster graph (see figure 1.2).

To guarantee that the user knows why the data is shown to him/her, we must
include the functionality of clicking artists in the graph. After clicking a certain
artist, some details will appear, e.g. songs by the chosen artist that the user liked.

Playing the music

When the data about artists and their songs are given to the user, he/she might
want to listen to the songs that are enlisted in the provided information. We
will allow the user to chose a certain song, listen to a part of it and also offer
him/her a link of the full song leading to the Spotify web player. The reasons
for this functionality will be given in the Spotify API chapter 3 and possible
improvements in the Conclusion chapter 6 in Further work discussion.

6

Figure 1.1: Main graph - clusters are
nodes

Figure 1.2: Inside cluster graph -
Cluster1 was chosen and its artists
are shown nodes

Data source

The last but crucial task we need to solve is where will we get the data. As
the music domain is truly large, we need some reliable source of data to obtain
everything we need. For this purpose, we would like to use some API. The world’s
most popular and in our opinion the best music service is Spotify. Fortunately,
they also provide a REST-based API that can be used for free in non-profit apps.
During the development of the app, we found out, this was a really good choice.
However, there was a big hidden bottleneck in the form of the request limit.

We will describe this API further in the Spotify API chapter.

7

2. Graph-based algorithms

2.1 Graph clustering
Data clustering is one of the unsupervised machine learning techniques. The
principal idea is that we want to divide the given data among several partitions
(the number of clusters may or may not be known). The goal is to separate data
in such a way that entities in a certain cluster are similar to each other and, at
the same time, different from data in other clusters.

Let us formally define the clustering in the graph domain. Have a graph
G = (V, E), where V is set of nodes and E set of edges with weights. Graph
clustering divides the nodes into disjoint sets V1, V2, ..., where V1 ∪ V2 ∪ ... = V .
The sets will be denoted as clusters or communities. We can measure the goodness
of clustering methods with different metrics. The metrics usually combine weights
of edges among nodes inside individual clusters and edges between nodes from
two different clusters. Within the scope of our thesis, we were considering two
variants of graph clustering: the Louvain algorithm and the spectral clustering
algorithm.

2.1.1 Louvain algorithm
For Louvain community detection, we need to introduce modularity that was
presented by M. E. J. Newman [1]. Modularity measures how well the network
is partitioned into communities. The formula of modularity is:

Q = 1
2m

∑︂
i,j

(︄
Ai,j −

kikj

2m

)︄
δ(ci, cj),

where A is adjacency matrix of the weighted graph, ki is sum of weights of
edges attached to the node i, ci is the community to which the node i belongs
to, δ(ci, cj) is 1 if ci = cj and 0 otherwise, and m is sum of weights of all edges in
the graph.

The purpose of modularity is to calculate how random the division into com-
munities is. Consider edges to be randomly distributed but the node degrees from
the original graph would be kept. Then the expected number of edges between
nodes i and j would be kikj

2m
. To see the significance of the partition, we calculate

the difference Ai,j − kikj

2m
and sum over all pairs of nodes, that ends up in the

formula of modularity given above.

The algorithm 1 developed in the university of Louvain tries to maximize the
modularity by adding and removing nodes from communities and checking the
new modularity value.

8

Algorithm 1: Louvain algorithm [2]
1 • add every node its own community
2 while improvement exists do
3 for node i do
4 • remove i from its community
5 • add i into the community C of each of its neighbors and

compute the change of modularity:

∆Q =
⎡⎣∑︁in +ki,in

2m
−
(︄∑︁

tot +ki

2m

)︄2
⎤⎦−

⎡⎣∑︁in

2m
−
(︃∑︁

tot

2m

)︃2
−
(︄

ki

2m

)︄2
⎤⎦

6 where ∑︁in is the sum of weights of the edges inside community C,
ki is the sum of weights of the edges incident to i, ∑︁tot is the
sum of weights of the edges incident to all nodes in C, ki,in is the
sum of the edges from i to all nodes in C and m is the sum of all
weights of all edges in the graph.

7 • If there is no improvement (∆Q is smaller than 0), keep i in the
original community, otherwise add i to the community, that had
the biggest ∆Q.

Although the algorithm iterates through multiple vertices multiple times, it
is fast and efficient thanks to the computation of ∆Q. The Louvain algorithm is
not deterministic, because it depends on the order of nodes.

2.1.2 Spectral clustering
Spectral clustering is a graph clustering technique using the ideas of graph cut
and Laplacian matrix.

Given a graph G = (V, E), adjacency matrix A, set S ∈ V , set S is comple-
ment of S, define cut as following:

cut(S, S) =
∑︂

i∈S,j∈S

Ai,j

In other words, the cut is the sum of edges going out of the set S to the rest
of the graph. The previous equation is considering the partition only into two
parts. Let’s generalize the equation for k clusters.

cut(S1, ..., Sk) =
k∑︂

i=1
cut(Si, Si)

For a given k, we would like to minimize the cut to obtain the best clustering.
The problem is that even if the cut would be minimal, the results might be
weak because cut prefers smaller isolated clusters. We would like to add some
condition that would handicap clusters with smaller sizes. Therefore, the Ncut
was introduced by Shi and Malik in image segmentation related paper. [3]

9

Ncut(S1, ..., Sk) =
k∑︂

i=1

cut(Si, Si)
assoc(Si)

assoc(Si) =
∑︂
v∈Si

deg(v)

Instead of computing only cuts, we add the sum of weights of edges incident
to the nodes of the certain cluster. Smaller clusters will have a smaller chance to
be included in the final clustering because a small divisor will increase the Ncut
value.

Again, we are interested in the minimal value of Ncut. However, Papadim-
itriou proved (appendix of [3]) that computing the optimal value of Ncut is NP-
complete. For finding the suboptimum, we must introduce the following terms:
• matrix D: a diagonal matrix where numbers on the diagonal are the degrees

of the nodes in G. Formally: Di,i = deg(vi).
• adjacency matrix A
• Laplacian matrix: L = D − A
• Normalized Laplacian matrix: Lsym = D−1/2LD−1/2 = I −D−1/2AD−1/2

Shi and Malik showed [3], that the second smallest eigenvector is a relaxed
solution to the normalized cut problem. In the ideal case, the solution is a vector
with two discrete values for two clusters. The relaxed solution gives a vector with
real values. As suggested in the paper, we can obtain the clustering by setting a
splitting point and dividing the vector values into two parts. The splitting point
can either be directly set to 0 or the mean of the vector values or be found as a
value where Ncut is the smallest possible.

The algorithm 2 developed by Ng, Jordan and Weiss [4] takes the idea of
normalized Laplacian even further. It allows us to use multiple eigenvectors si-
multaneously.

Algorithm 2: Spectral clustering
1 A - adjacency matrix of the given graph G
2 Lsym - normalized Laplacian
3 k - number of clusters
4 • compute first k eigenvectors of Lsym: x1, ..., xk

5 • matrix X = [x1, x2, ..., xk] (the eigenvectors are the columns of X)
6 • matrix Yij = Xij/(∑︁j X2

ij)1/2 (rows of Y are normalized rows of X)
7 • take the rows of Y as points in Rk and cluster them into k clusters

with the use of some clustering algorithm, e.g. k-means
8 • assign every node i to the cluster, to which the row Yi was assigned

Furthermore, there are some heuristics on how to choose the number of clusters
to get better results. One of the heuristics uses the properties of eigenvalues; in
particular, it checks the eigengaps between the eigenvalues (the difference between
two consecutive items in the array of sorted eigenvalues). If the eigengap between
λi and λi+1 is large, we take k = i. [4]

10

2.2 Graph visualisation
Graph visualisation is a large part of the graph theory. The goal is to display the
graph data with an emphasis on readability and underlining the inner structures
that might be hidden on first sight. This is extremely useful in exploring social
and other networks properties.

There are a lot of approaches to graph visualization. In this thesis, we set a
few rules and we tried to obey them to make the visualization ”look good”:
• The whole graph should be visible after the loading is finished and zoom

should be enabled.
• The nodes shouldn’t be overlapping (small overlaps would be tolerated).
• The inner structure (clusters) should be pointed out clearly.
• The less crossing edges we have, the better.
To achieve these goals, we must combine a few algorithms. First, we will

compute the basic layout of the given graph. We will use a force-directed layout.
Unfortunately, the calculated positions might not reflect the size of the nodes and
there might be overlaps. The node positions adjustment will be done with the
help of the growing tree algorithm.

2.2.1 Force-directed layout
The goal of force-directed layout algorithms is to provide a well-balanced, visually
satisfying layout with a few crossing edges. The algorithm tries to avoid too long
edges; it means the nodes belonging to one edge won’t be spread too far.

The basic idea of the force-directed layout is to think about the graph as of
a system where edges between nodes are replaced with springs. We model the
forces that act on the nodes and let the system get into more or less equilibrium
state in several iterations. One of the best-known force-directed layout algorithms
is the Fruchterman-Reingold algorithm. [5]

In the algorithm, we will use the following notions and principles:
• Repulsive force function and attractive force function calculate a repulsive

and an attractive forces between two nodes based on their distance, area of
the graph and the number of nodes in the graph.
• Every node v consists of two vectors - v.pos is the current position of v and

v.disp is a displacement vector by which the v.pos vector will be updated.
• During the algorithm, we run several iterations. In every iteration, the

displacement vector is calculated for every node. The displacement vector
is influenced by repulsive forces (the node tends to get far from every other
node in the graph) and attractive forces (the node tends to get close to its
neighbours).
• We also add the idea of temperature. At the beginning of the algorithm,

the system is ”hot” and nodes tend to change positions more rapidly. In
the end, the temperature cools down and position change is reduced.

11

Algorithm 3: Fruchterman-Reingold algorithm [5]
1 k =

√︂
area/|V |

2 fr(x) = k2/x /* repulsive force function */
3 fa(x) = x2/k /* attractive force function */
4 for i=1 to iterations do

5 /* calculate repulsive forces: */
6 for v ∈ V do
7 v.disp = 0 /* displacement vector */
8 for u ∈ V where u ̸= v do
9 ∆ = v.pos− u.pos

10 v.disp = v.disp + (∆/|∆|) ∗ fr(|∆|)

11 /* calculate attractive forces: */
12 for (v,u) ∈ E do
13 ∆ = v.pos− u.pos
14 v.disp = v.disp− (∆/|∆|) ∗ fa(|∆|)
15 u.disp = u.disp + (∆/|∆|) ∗ fa(|∆|)

16 /* update the nodes positions: */
17 for v ∈ V do
18 v.pos = v.pos + (v.disp/|v.disp|) ∗min(|v.disp|, t)
19 if v.pos outside of frame then
20 move v.pos inside the frame

21 t = cool(t) /* reduce temperature */

2.2.2 Growing tree overlapping nodes removal
Growing tree (also denoted as GTree) is an algorithm for node overlaps removal.
[6] After we obtained layout from a certain graph layout algorithm, we must deal
with the fact, that during our visualization, the nodes have non-trivial width and
height. It happens very often that one node covers more than half of another node
and makes the resulting graph very chaotic. GTree algorithm removes the over-
laps with the help of Delaunay triangulation and minimum spanning tree (MST)
algorithm. The name comes from the behaviour of the algorithm; it iteratively
increases the lengths of the edges and the graph ”grows”. Let us go through the
terms and ideas the GTree uses.

The Delaunay triangulation is a triangulation where the following property
holds: the circumcircle of each triangle does not contain any point in its interior.

Now, let us define the cost function c that we will use further. The cost
function takes two nodes; their centre points and also 2D shapes (widths and
heights). In other words, we are considering nodes as rectangles around their
centre points.

12

Figure 2.1: {T1,T2} is Delaunay triangulation of {A,B,C,D}, {T3,T4} is not
(points B and D lie in circumcircles of T3 and T4)

The value of the cost function for nodes i and j depends on if they are over-
lapping or not. If there are no overlaps, the c(i, j) is simply the distance between
the node rectangles, i.e. the distance of their closest points. If the nodes overlap,
we compute the cost function from the following values:
• scalar s = ||pi − pj||, where pi and pj are positions of nodes i and j
• scalar d is a distance that nodes i and j would have if they would be shifted

in the direction of vector pi − pj, such that their rectangles would touch
with one of their sides
• scalar ti,j such that d = ti,js
• cost function value: c(i, j) = d− s

These parameters are illustrated on the figure 2.2.

Figure 2.2: GTree cost function, source: [6]

The algorithm’s input is the initial positions given by some graph layout algo-
rithm. The positions are the centres of the given nodes. We do several iterations
until there are no overlaps. In every iteration, we obtain a Delaunay triangulation
of the points. To every edge of the triangulation, we assign weight calculated by
the cost function described above. Then we run an MST algorithm (for example
the Kruskal’s algorithm [7]) on the triangulation with weights. This ensures us,
that the edges of overlapping nodes are contained in the MST. As a last step of
the iteration, we recursively grow the tree. Growing tree means starting at one
of the nodes and prolonging too short edges, thus moving too close nodes further
apart and therefore removing the overlaps. At the same time when a certain edge
is enlarged, the whole sub-tree is moved further away and the original layout
shape is practically preserved.

13

Algorithm 4: GTree algorithm [6]
1 ∀i : pi - centre of node i ∈ V (from the precomputed layout)
2 c - cost function on edges as defined above
3 while Ending condition do
4 D - Delaunay triangulation of the set pi

5 E - Edges of D, with edge weights computed with c cost function
6 • T - minimum spanning tree on E (Prim’s algorithm is suggested)
7 • r - arbitrary node of T
8 • prepare new positions: p′

r = pr

9 • call recursive GrowAtNode(r, p, p′)
10 • ∀i : pi = p′

i (change the positions to the computed ones)
11 • return positions p

12 Function GrowAtNode(i, p, p′):
13 foreach j ∈ Children(i) do
14 p′

j = p′
i + tij(pj − pi)

15 GrowAtNode(j, p, p′)

The Ending condition in the while cycle on the line 3 is true when there are
overlapping nodes in the graph. In our modification, if the algorithm didn’t finish
in a certain number of steps, we will stop the iterations even if there are some
overlaps.

The GrowAtNode function has complexity O(|V |). In our modification, we used
Kruskal’s algorithm for MST, that was implemented in Python library networkx.
The complexity of Kruskal’s algorithm is O(|E|log(|V |)).

14

3. Spotify API
Spotify API is accessible for all developers for free and it provides a large amount
of music data and metadata. The data can be obtained by sending REST re-
quests to an API endpoint. In this chapter, we will describe some methods and
principles we used. All the information was taken from the official Spotify API
documentation page [8] or GitHub Issues page [9].

The first action that needs to be done is creating an application on the page
for Spotify developers. We created an application called SpotifyGraph. For every
app, there exist two keys generated by Spotify API - Client ID and Client Secret.
The second one shouldn’t be accessible to anyone but the application. Both keys
are needed during user authorization.

3.1 Authorization
As mentioned in the authorization guide [10], there exist three possible autho-
rization flows:

1. Authorization Code Flow (see fig. 3.1) is the most complex and univer-
sal way to authorize a user. It requires both client ID and secret key, that
are exchanged for access and refresh tokens in several steps.

2. Implicit Grant Flow (see fig. 3.2) is meant to be used in the front-end
JavaScript apps with no need for server-side code. Application sends Client
ID to the Spotify endpoint, and an access token is returned.

3. Client Credentials Flow (see fig. 3.3) is used, when no user’s information
such as favourite songs or account details is needed. On the other hand,
according to the documentation, the rate limit should be higher. The type
of authentication is server-to-server.

In our app, we chose to use the Authorization Code flow, because of the
following reasons:
• We need to obtain the user’s data (his/her favourite songs and followed

artists). Therefore, the Client Credentials is not a suitable solution.
• Even though we send most of the requests directly from the front-end, we

want to keep the possibility to control authorization also from the back-
end. Thus, we exclude Implicit Grant Flow. Authorization code has also
possibility to use refresh token which is not the case of Implicit Grant.
• We also thought about using both Authorization Code Flow and Client

Credentials Flow, because the higher limit could be useful for obtaining
bigger amounts of data, as we will mention below. However, for simplicity,
we used only the Authorization Code flow.

3.2 Spotify Data
Developers can access all kinds of Spotify data. From now on, we will use words
track and song as synonyms (track is used in the official API documentation). In
our application, we send the following requests to obtain the desired data. The
exact API URLs and parameters are omitted for clarity:

15

Figure 3.1: Authorization Code Flow

Figure 3.2: Implicit Grant Flow

16

Figure 3.3: Client Credentials Flow

• Get a User’s Saved Tracks - returns songs, that were liked by the user
usually by clicking on the heart symbol.
• Get User’s Followed Artists - returns artists followed by the user.
• Get Artist’s Related Artists - returns IDs of artist’s similar artists.

These artists are computed by Spotify algorithms based on the community’s
listening history [11]. This information is also shown in the official Spotify
applications on artists’ pages under the ”Fans also like” section.
• Get a Track - returns general information about the requested song. This

includes album information, featuring artists, popularity, links to song cover
image, 30 seconds preview URL, etc. There is also Get Audio Features
for a Track endpoint that returns music features like loudness, danceability
or key. We didn’t use this option in this thesis.
• Get an Artist - returns general information about the requested artist, it

means image links, popularity, number of followers and genres in particular.
• Get Several Artists and Get Several Tracks - methods that return

information about multiple artists, respectively tracks by given IDs. These
methods are extremely useful and can significantly increase the speed of
data fetching. E.g., if we wanted to get 100 songs, we would have to send
100 request on the Get a Track, but only 2 on the Get Several Tracks
endpoint.
• Get an Artist’s Top Tracks - returns a list of up to 10 tracks that have

the highest popularity according to Spotify.

17

3.3 Spotify API limitations
In our thesis, one of the key information we are obtaining from the Spotify API
endpoints is artists’ related artists. As mentioned in the list above, we can reach
a certain artist’s related artists with one HTTP request. But most of the users
have a big number of favourite artists and for each of them, we need to call one
request, thus the number of requests might be in hundreds.

There are three solutions to this problem. The first one is to cache the related
artists to our database. We didn’t proceed with this option, however, we will pro-
vide a description of this option as a potential extension in the ”Further Work”
chapter. The second solution was based on the hope that the Spotify Developers
would add an endpoint that would be similar to getting multiple tracks; some-
thing like ”Get multiple artists related artists”. Unfortunately, till now after a
few months, our request on the official Spotify GitHub issues page was not heard
and it does not seem probable that it will ever be. Therefore we had to use the
third solution and that means asking one by one. During our testing we observed
that fetching 100 artists’ related artists takes about 15 seconds.

Another unpleasant behaviour appears when Spotify API returns empty pre-
view URLs for relatively big amount of songs. This is caused by Spotify’s market
policy. It can happen that a certain song has different ID for different markets or
possibly not be available on a certain market at all. Sometimes it also happens
that non-premium users receive much less mp3 previews for copyright issues. An-
other reason is that some songs just do not have a preview URL. To deal with this
painful aspect of Spotify’s API, we decided to let user know that the song is not
available. We could have used a track relinking option (it matches the different
markets song IDs) but this would require another requests and we decided not to
proceed in this direction. First, it might slow down the loading of songs, second,
the results might not be satisfying, due to the premium account policy.

18

4. Application Design and GUI
Let us now describe how the final design of the application looks like. We will
provide screenshots of various parts of the page and high-level description of how
the algorithms were used and adapted for our situation.

4.1 Architecture overview
Our application runs on two servers: the front-end server and the back-end server.
Front-end server serves web pages with the visualization, back-end server is re-
sponsible for graph calculations, such as graph clustering and graph layout com-
putation. The back-end is working as a REST API, that receives HTTP requests
with parameters, runs implemented methods with necessary graph algorithms
and returns results that can be used in the front-end. Without back-end server
running, the application won’t be functional. We will get back to the technical
point of view and code details in the Code Overview (Chapter 5).

4.2 Inicialization
First, we will describe the standard sequence of steps that the user does, when
he/she enters the web page and uses the application (see figure 4.1). We will look
closer at individual parts of the page in the sections that follow.

1. The user visits the home page. He/she can see a short description of the
application and by clicking at the ”continue” button is redirected to the
login page.

2. The login page informs the user what will happen next and gives the user
the only possibility to proceed by clicking the ”login” button.

3. After clicking the ”login” button, the user is redirected to Spotify login
page. If the user is already logged in the browser, the Spotify login page
will be skipped. The user logs in and if he/she is using the application for
the first time then the scope will be shown and he/she must agree that our
application will get access to his/her data. If the login didn’t succeed for
an arbitrary reason, the user is informed about it by alert and is redirected
back to the login page.

4. After successful login, the main page appears. At this moment, we send
requests to Spotify Web API and get necessary information about artists,
songs and related artists. The progress is visualized in the form of a progress
bar.

5. If the Spotify data was loaded without any problems, the front-end sends
the artists data to the back-end and receives a graph of the given artists.
The graph contains information about edges, clusters and node positions.

6. Now, everything is set and the graph can be visualized and the user can ex-
plore the clusters, artists and use other functionalities that will be described
in more details further on.

19

Figure 4.1: Application flow

20

4.3 Graph construction

4.3.1 Artists
In the beginning, we must obtain data from Spotify API. With the requests, we
are able to put together the following data for every artist:
• ID - Spotify artist ID
• name - artist’s name
• genres - list of artist’s genres
• related artists - list of related artists
• image - link to the artist’s image
• liked songs - list of songs, that is liked by the current user
• is followed - a binary value indicating if an artist is followed by the current

user
• popularity - popularity of an artist given by Spotify

It would be convenient to have a certain score for every artist. We could sort
artists according to this score and show more important artists first. We want
the score to be personalized, that’s why we take into account the number of liked
songs, the fact that the artist is followed or not and popularity among other Spo-
tify users. We set such a score in the algorithm 5.

Algorithm 5: Artist score
1 Function ComputeArtistScore(artist, lsConst, popConst, follConst):
2 lsScore = artist.likedSongsByUser.length() * lsConst
3 follScore = artist.isFollowedByUser ? follConst : 0
4 popScore = artist.spotifyPopularity * popConst
5 return lsScore + popScore + follScore

We had to make a choice about the parameters. We wanted to give the
highest importance to user’s preferences but also add a little importance to artist
popularity. The Spotify popularity is the number from 1 to 100.

We set follConst = 5, lsConst = 1 and popConst = 0.1.

4.3.2 Edges among artists
After we have the list of artists, we want to create edges among them from the
information we gained from Spotify. We decided to use two properties: related
artists and genres.

Let’s say we want to compute the weight of an edge between two artists. We
will use a formula that takes into account if the first artist belongs to the related
artists of the second one and vice versa. The formula also places importance on
the number of common genres of the two chosen artists. The exact calculation is
captured in the algorithm 6.

21

Algorithm 6: Weight of an edge between two artists
1 Function ComputeEdgeWeight(a1, a2, relArtistConst, genreConst):
2 r1 = (a1 ∈ a2.relatedArtists) ? relArtistConst : 0
3 r2 = (a2 ∈ a1.relatedArtists) ? relArtistConst : 0
4 g = intersection(a1.genres, a2.genres).length() * genreConst
5 return r1 + r2 + g

We had to choose the value of two hyperparameters:
• relArtistConst says how important is Spotify information about related

artists. This value is very important to us because the concept of related
artists is based on the history of thousands of users. We set this value to 1.
• genreConst is less important, because it only compares the genres of two

artists. We set this value to 0.2.

4.3.3 Clustering
Artists and edges between them form a basic graph. However, we do not want to
directly present this graph to users. There might be too many nodes and edges
and we wouldn’t provide any additional information about the data. Therefore,
we will split artists into groups and inform users about deeper structures that are
present in their graphs. Let’s have a look at the exact algorithm we will use to
divide artists into clusters.

First, we divide the graph into connected components.
We take all artists that are alone in their components, i.e. they have no neigh-

bours. We put all these artists into a cluster named ”TOTAL MIX”. It might
happen that this cluster will contain relatively lot of artists, but let us remind
that we do not have any chance to assign these artists into any cluster because
they have no neighbours.

Thanks to the previous step, only components with more than 1 artists are
remaining. Now, we prepare three values:
• starting threshold
• minimum artists threshold
• maximum artists threshold
For every connected component, we will run the following steps that use the

prepared thresholds:
1. Check, if the component has enough artists to be worth splitting. If the

number of artists in the cluster is smaller than the starting threshold,
we will return the whole component as a cluster. Otherwise, we proceed to
the next step. This condition is important because we do not need to split
components with a few artists, e.g. component with 5 artists is too small
to be divided into clusters.

2. If the component is large enough to be split, we run a certain clustering
algorithm and obtain a number of clusters. We decided to use the spectral
clustering algorithm. This choice will be justified in the Code Overview
(Chapter 5). However, the algorithm can be simply replaced and we can

22

suppose for now that the algorithm returns a few newly created clusters. For
each newly obtained cluster, we check if its size is bigger than the maximum
artists threshold. If the size is bigger, we split the cluster again and con-
tinue until there is no cluster bigger than the maximum artists threshold.

3. In the previous step, we obtained a list of clusters. We want to check
that none of them is too small, i.e. smaller than the minimum artists
threshold. For every cluster smaller than the threshold, we put all its
artists into the closest cluster. Cluster B is the closest to S if∑︂

u∈S,v∈B

weight((u, v))

is the biggest of such sums of all neighboring clusters of S.

Note, that after the clustering is finished, it might happen that some clus-
ters’ sizes will be greater than maximum artists threshold. When we are
getting rid of too small clusters, we may add the artists into a larger cluster
and increase its size so it’s greater than the threshold. This is not a serious
problem because the priority of having a few small clusters if bigger than
of having a few clusters that are too huge.

Algorithm 7: The graph clustering algorithm
1 Function clusterize(component):
2 if component.artists.length() ≤ starting threshold then
3 return cluster(component.artists)
4 clusters queue ←− get clusters(component)
5 clusters ←− []
6 while clusters queue is not empty do
7 current cluster = clusters queue.pop()
8 if current cluster.length() ≥ maximum artists threshold then
9 new clusters ←− get clusters(current cluster)

10 clusters queue.push(new clusters)
11 else
12 clusters.push()
13 end
14 end
15 foreach cluster in clusters do
16 if cluster.artists.length() ≤ minimum artists threshold then
17 put all the artists from cluster to the closest cluster
18 end
19 end
20 return cluster

21 clusters to return = []
22 for component in G do
23 clusters to return.extend(clusterize(component))
24 end

The get clusters function in the algorithm 7 is one of the clustering algo-

23

rithms mentioned in the Algorithms chapter 2.
We have to decide, what will be the values of our three thresholds. First, we

were thinking about setting all three values fixed. This approach turned out to
be not really flexible for diverse graph sizes. For example, for smaller graphs, the
maximum artists threshold value can be around 15. But this value wouldn’t
be very suitable for graphs with 1000 favourite artists because it could create
a big amount of clusters that wouldn’t fit on the screen. Therefore, we set the
following values of thresholds:
• starting threshold = 20
• minimum artists threshold = 5
• maximum artists threshold = max(15, ⌊artists.length()/10⌋)

4.3.4 Edges among clusters
As mentioned in the Analysis (Chapter 1), Main graph’s nodes are clusters and
edges are the similarities among them. The exact weight of edge between two
clusters C1 and C2 is calculated as sum of edges that have one node in C1 and
second in C2. Particularly: weight(C1, C2) = ∑︁

u∈C1,v∈C2 weight((u, v)).

4.4 Layout
There are two types of graphs we will need to visualize: Main graph and Inside
cluster graph. For both of them, we will use slightly different methods, because
both of them have different requirements. Let us describe differences between
two layout algorithms that will be used to calculate positions of nodes in both
types of graphs.

4.4.1 Main graph layout
We described the Fruchterman-Reingold algorithm and node overlap removal al-
gorithm in the Graph-based Algorithms (Chapter 2). However, these algorithms
do not completely fit our goals. The problem is with components, that have one or
only a few clusters. Let us denote the clusters from small components as lonely
clusters. If we include lonely clusters to an input of the graph layout algorithms,
they could occupy too much space that should be given to bigger components.
In other words, bigger components need more space to be fully shown with as
least overlaps as possible and the browser size is limited. In the force-directed
algorithm, it could happen that lonely clusters would make bigger components
shrink and the structure wouldn’t be shown very well.

Moreover, small components’ graphs are easy to visualize, as there are not
many possibilities on how to arrange them. For example, the component with
two clusters will be depicted as two clusters next to each other connected with
one edge and no complex algorithm has to be run to find a nice layout.

Let us define what a small component means. We decided to label a com-
ponent with at most 3 clusters as small. This threshold was set mainly for the
simplicity of visualization and small space that these components require.

24

Finally, the complete algorithm computing the positions of the clusters in the
Main graph will go through the following steps:

1. Separate all components, that include at most 3 clusters and put them into
a list of small components.

2. Run a layout algorithm (e.g. Fruchterman-Reingold) on clusters of remain-
ing components and remove overlaps with the Growing tree algorithm.

3. Fit the calculated positions from step 2 to the width and height of the div
in the page where the graph is supposed to be.

4. Create a rectangular mesh. Size of each rectangle is a preset size of a cluster
plus a small margin. Let’s say you can fit w rectangles on the width and
h rectangles on the height. Make a binary matrix M = {0, 1}(h,w) where
Mi,j = 1 where there exist an overlap of rectangle and some cluster that is
already placed and Mi,j = 0 where there is no overlap with rectangle on the
position i, j.

5. For every small component in the list we created in step 1, we apply the
following steps:
(a) Try to find a space in the mesh for the small component.
(b) If space was found, place the component there and update the matrix

on the positions where the component was added.
(c) If no space was found in the mesh, place the component under the

graph and if necessary, enlarge the height.
In figure 4.2 we can see step 5 of the previous algorithm. Note that components

6,7 and 8 cannot be fit into the rectangle, therefore the height is enlarged while
the width remains the same.

Figure 4.2: Fitting small components into the layout

25

4.4.2 Inside cluster graph layout
In the case of an inside cluster graph, the situation is easier. First, artists inside
clusters are typically connected with edges and there are not many lonely nodes.
Second, nodes in an inside cluster graph will be much smaller and there won’t be
too much struggle to fit them all in the window. For these reasons, we decided
to run a force-directed layout algorithm (again Fruchterman-Reingold) and the
growing tree to remove overlaps. Positions calculated by these algorithms will be
taken as a final layout and no additional steps will be added.

4.5 GUI elements
Suppose that all computations were successful and we want to show the results
to the user. Let us remind the main idea of our graph visualization. There are
two types of graphs we want to visualize: Main graph contains clusters and edges
among them and Inside cluster graph shows artists and edges among them after
a certain cluster is chosen. Both graphs are depicted in figures 4.3a) and 4.3b).
In both figures, there are numbers pointing at individual parts of the page. We
will go through all of them and describe their functionality.

1. Main graph GUI
2. Main graph nodes (clusters)
3. Inside cluster graph
4. Artist bar
5. Similar clusters
6. Left side-bar
7. Player

4.5.1 Main graph GUI
The main graph’s nodes are representing the clusters. Edges represent the simi-
larities among clusters. The clusters’ positions were calculated with the algorithm
described in the Layout (Subsection 4.4.1). Example of users’ Main graphs will
be shown in the Case Studies (Chapter 6).

Users are allowed to do several actions with the graph:
• zoom the graph with mouse/touch-pad scrolling
• move clusters around
• click at the clusters - after the cluster is clicked, the main graph is hidden

and an Inside cluster graph appears.

4.5.2 Main graph nodes (clusters)
Every cluster contains information about three cluster properties: cluster descrip-
tion, cluster artists and country.

Cluster description

The cluster description is basically a list of the most common genres of artists
in the cluster that were sorted and organized according to the algorithm 8. In

26

(a)

(b)

Figure 4.3: Two types of graphs: (a) Main graph (b) Inside cluster graph

the future, the cluster description could be extended with additional information,
but for now, we will rely only on genres.

27

Algorithm 8: The cluster description calculation
1 Function ComputeGenres(artists):
2 genres ←− concatenate lists of genres of all artists in the cluster
3 for i← 0 to genres.length() do
4 genres[i] ←− removeCountryName(genres[i])
5 end
6 genres ←− sort genres by frequency of genres and remove duplicates
7 genres to return ←− []
8 dictionary of words ←− {}
9 foreach genre in genres do

10 words ←− genre.split(’ ’)
11 if every word in words is in dictionary of words or ∃ word in

words: dictionary of words[word] > 2 then
12 don’t add the genre to the final list
13 else
14 genres to return.add(genre)
15 dictionary of words.update(words)
16 end
17 end
18 return genres to return

Line 2 ensures that every genre of the artists will be taken into account. The
lines 3-5 remove the cases where a genre is in fact duplicated, once with a country
name and once without; e.g. italian pop and pop. Line 6 ensures that the most
common genre of the cluster will certainly be present in the description.

The condition on the line 11 assures us that the words won’t repeat too often;
e.g. if the genres to return already contain indie pop and pop rock the first
part of the condition will exclude indie rock and the second will exclude teen pop.

In practice, the algorithm 8 can return a lot of genres but we do not need many
of them. This is due to the fact that the space for cluster description is limited
and generally speaking, users will pay more attention to the cluster description
if it is short enough. For these reasons, we decided to show only 2 genres in
the initial view. If a user zooms the main graph, more genres will appear in the
cluster description. We set the maximal number of enlisted genres to 5. This
behaviour is shown in the figures 4.4a and 4.4b.

Cluster artists

The artists in the cluster are visualized as one or two lines of rounded images.
Artists are sorted by a score, that was computed by algorithm 5. The maximal
number of shown previews is set to 7 and if the number of artists in the cluster
is bigger than 7, it is indicated by three dots (e.g. figure 4.4a).

Country of origin

If at least 40% of the artist comes from a certain country and it is explicitly
mentioned in their genres, the flag of the country is set as a background of the

28

cluster. Generally speaking, the country is not always mentioned; especially US
singers do not inform about their country of origin in their genres. However, the
country of origin sometimes adds interesting information about the user’s music
taste.

(a) (b) (c)

Figure 4.4: (a) A cluster with more than 7 artists, mostly from Italy (b) Clus-
ter after zoom with more genres (c) A cluster with less than 7 artists, without
explicitly mentioned country of origin

4.5.3 Inside cluster graph
After a certain cluster is clicked, the inside cluster graph with other elements
appear. This time, every node represents one artist and edge between them has
weight computed by algorithm 6.

There is also an element for controlling the number of artists and edges that
are shown in the graph. This element is by default in the top left corner and can
be moved by grabbing the symbol in the right part.

Sometimes, there can be a lot of artists and edges in the cluster. This happens
when users have a big amount of favourite artists. With too many edges, the
rendering slows down. For this reason, we set a maximal number of edges that
will appear by default. Users can change the slider so every edge will appear.
However, when the Inside cluster graph appears, this threshold will prevent too
slow rendering.

4.5.4 Artist side-bar
Sometimes it happens that users do not recognize some of the artists in their
graphs. This confusion might occur when a user saved a song to his/her liked
songs a long time ago. Sometimes, several artists cooperate on a certain song and
a user knows only one of them. To make the appearance of artists in the graph
clearer, after clicking an artist, the artist side-bar appear.

On top of the panel, there is the artist’s name and information if a current user
follows this artist. Below this information, songs by the chosen artists are shown.
First, the current user’s liked songs are enlisted and after them, the top songs by
the artist follow. Let us describe how the song elements will be visualized.

Song element

The right panel offers certain tracks interpreted by the artist. There are two
kinds of songs, distinguished by colour. Songs highlighted by bright green colour

29

Figure 4.5: The inside cluster graph with indie artists. Right image shows the
usage of slider that hides less important edges and artists.

are already liked by the user. The rest of the songs have azure colour and they
were taken as top tracks of the artist. The top tracks were computed by black-
box Spotify algorithms and they are usually the best-known pieces by the author.

Every song element has the following functionalities:
• After clicking the icon with ”play” symbol, 30-second mp3 preview is played

in the bottom of the page. If the user leaves the cluster details or clicks
another artist, the preview will keep playing until it ends or until another
preview is played. The played song is highlighted with pink colour.
• After clicking the song element, the div with two options pops up:

• Button that opens the Spotify web player in a new browser tab and
allows the user to play the full song.
• Button that saves the current song to the liked songs.

All song states are shown in the figure 4.6.

Let us discuss, why we didn’t implement the possibility to play the full song in
the browser. This function would be provided by Spotify’s Web Playback SDK.
[12] As mentioned in the documentation, only premium users can play the full
song using SDK. According to the Spotify info page, almost half of the Spotify
users pay for the service. [13] This divides potential users of our application into
two big groups that need to be managed. We were thinking about two solutions
to this problem:

1. Premium users would play the whole song and non-premium would play
just the 30-second preview.

2. For all users, only the preview will be available.
We decided for the simple variant, where all users will play only previews. A

fully functional web player is out of the scope of this bachelor thesis. On the
other hand, there might be done some further progress in this direction.

30

(a) Liked song

(b) A liked song with no mp3 preview

(c) Currently playing song

(d) Not liked song

(e) Song clicked, details shown

Figure 4.6: Song state examples of Blanco White’s songs

4.5.5 Similar clusters bar
On the top of the page with Inside cluster graph, the similar clusters are shown.
The clusters are sorted by the similarity, the most related clusters first. After
clicking some of the similar clusters, the details of the chosen cluster will appear
instead of the current one.

Figure 4.7: Panel with similar clusters

4.5.6 Left side-bar
Let’s say, a user is excited by our application and wants that his/her friends use it
too. He also wants to compare graphs and let his/her friends know how his/her
graph looks like. For this purpose, we added the functionality of downloading
and uploading the graph data as a JSON file.

For this purpose, there are two buttons on top of the left side-bar. The
”Download graph to JSON” button servers for downloading the graph data as
a JSON file. The second button allows uploading a JSON file with graph data.
If the file is corrupted, an alert with error information pops up and the current
graph remains on the page. If the file was correctly loaded, the new graph from
the file is shown.

31

Under these two buttons, there is information either about the main graph or
about the chosen cluster.

4.5.7 Player
In the bottom part of the page, there is a simple HTML5 Audio player element.
It has basic functionality as play/pause and navigation in the music played. The
name of the played song and artists are shown too.

4.6 Graph caching
The graph loading is the most annoying part for users. They have to wait until
all of their favourite artists are loaded. The more artists a user has, the longer it
takes to send requests to Spotify API (related artists requests take most of the
loading time). As this process takes so much time, we want to avoid reloading
already obtained data to make the initialization less painful for users.

There are two possibilities on how to speed up the initialization procedure.
The first one would save the related artists information in a database. It will be
described further in the Future Work (Section 6).

We decided to implement the second option - caching the related artists in-
formation in a browser. We used local storage that enables us to save and load
data on the page. If users refresh the page, it is necessary to login again, but this
time, the related artist loading will be much faster and users more satisfied.

32

5. Code Overview

5.1 Back-end
The back-end server is written in Python3. In the current version, no database is
used because we are not caching users’ data. Our back-end works as a RESTful
API. It is used to get the login token and calculate the graph. The API is built
on the Python Django library.

In this section, we will provide a technical overview of the back-end server.
First, we will look at technologies that we used, the code structure and at last,
we will point out the code parts that can be extended or improved in the future.

5.1.1 Technologies
Django

Django is a high-level open-source Python Web framework [14]. File structure
might differ project by project, but generally speaking, there are some specific
files that most of the Django projects contain.

The manage.py is a python script that allows developers to run a server with
a simple command. The script sets environment variables from settings.py file
and serves the endpoints on the given location.

The urls.py file defines URL endpoints that will be accessible from outside.
For every endpoint, there must exist a method that receives a request and returns
an HTTP response. These methods are located in the views.py file.

For the database purposes, the admin.py, models.py files and migrations
folder are prepared. In our case, these files are practically empty.

NetworkX

NetworkX is a Python package with tools for graph processing, analyzing and
visualizing. It allows us to manipulate and modify the graph effortlessly. It
works well with other common libraries, e.g. numpy. We used it for most of the
algorithms described in Chapter 2.

Namely, the following functions are included in our code:
• nx.spring layout - Fruchterman-Reingold force-directed algorithm
• nx.minimum spanning tree - Kruskal’s algorithm
• graph manipulation functions such as: nx.connected components (returns

connected components of the graph), nx.subgraph or nx.isolates (enlists
nodes with no neighbors).

5.1.2 Back-end structure
The back-end folder structure is depicted on the figure 5.1. We will briefly sum-
marize what is the purpose of individual files and folders.

33

Figure 5.1: Back-end folder structure

Spotifygraph base folder

• requirements.txt - list of packages (with versions) on which our project
depends
• manage.py - Python script responsible for running the server
• Procfile - the file necessary for Heroku deployment (see in the Deployment

section 5.3). It contains only one line, that informs Heroku, where to find
the wsgi.py file and that Gunicorn WSGI will be used (see more details in
the wsgi.py file below).
• .gitignore - list of files and folders that are not included in the git repos-

itory. Includes folders as pycache etc.

Spotifygraph/spotifygraph folder

• settings.py - contains server settings, such as middleware list, CORS
origin whitelist and Heroku settings.
• urls.py - list of URL patterns. In our case, this file just says that all useful

URL endpoints are enlisted in the urls.py file in the graphapp folder.
• wsgi.py - WSGI (Web Server Gateway Interface) is a convention on how

server and application written in Python programming language should
communicate. During the application development, it is enough to run the
server on the localhost. In the production, we must use some WSGI to
serve the application. In our case, we used Gunicorn, that is convenient for
the Heroku environment.

34

Graphapp folder

• urls.py
The server serves at two enpoints: graphapp/logged in and
graphapp/calculate graph. Both enpoints have their implementation in
the views.py file.

• views.py
For logged in endpoint, the equally named method was implemented. It
is called when the user is logged into Spotify. The method receives a code
as a parameter, encodes a client ID and client secret and sends a request to
Spotify API. After that, Spotify API redirects the user back to the frontend
with access and refresh tokens.
The graph edges, clusters and positions are all wrapped in the
calculate graph method. As a parameter of the HTTP request, the list
of artists is sent. With data contained in this list, edges are calculated and
then the process method of the Graph class is called. After everything is
calculated, it is returned in a JSON format as an HTTP response.

• apps.py - gives information about apps in the current Django project. In
our Django project, there is only one app - graphapp.

Src folder

This folder carries files with methods and classes that provide the classes respon-
sible for graph calculations.

• app client.py wrapper about static method that return Spotify applica-
tion client ID and client secret. These values are read from the environment
variables.

• user connection - the UserConnection class is used for sending requests
to Spotify API. For now, only a method for obtaining the access token is
implemented.

• models.py is the file with all data classes, e.g. the classes Artist, Song,
Cluster, Position, etc.

• edges creator.py - EdgesCreator class is a wrapper around get edges
method, that creates edges from the list of artists. It implements the algo-
rithm 6.

• graph.py contains the Graph class that is used as a wrapper for all neces-
sary methods for working with graphs. It uses all the following classes to
achieve all the goals given in the beginning. The parts are designed to be
easily removed or changed so different algorithms could be used.

• clusterizer.py contains Clusterizer class used for graph clustering.
This class contains contains parameters for minimal and maximal number

35

of artists in clusters. We were considering two clustering methods:
– SpectralClustering method from the sklearn.cluster package
– community.best partition method from the python-louvain pack-

age
We had to decide, which method to use. The best parttion method does
not allow us to specify the number of clusters. Moreover, this method re-
turned small clusters more often than desired. We had more control over the
SpectralClustering method, therefore we decided for the spectral clus-
tering. We were also thinking about mixing these two methods, but this
approach was more complicated and better results were not guaranteed.

• graph visualizer.py is the file of the GraphVisualizer class, which is
responsible for graph layout computation. The visualize method is used
for computing both main graph layout and inside cluster graphs.
We were experimenting with two methods:

– nx.spring layout
– nx.drawing.nx agraph.graphviz layout

The second method gave slightly better results, especially for denser graphs.
On the other hand, it was significantly slower and Graphviz visualization
software was needed to be installed. This was also a problem during the
deployment. For these reasons, we decided to use the nx.spring layout
method.

• growing tree.py - the GrowingTree class implements a growing tree al-
gorithm described in the Graph-based algorithm chapter. For Delaunay
triangulation, the Delaunay method of scipy.spatial package is used.
Minimum spanning tree is calculated with networkx method
minimum spanning tree. There are a few algorithms available: Kruskal’s,
Prim’s and Boruvka’s. We kept the default Kruskal’s version.

• genre diversifier.py - the GenreDiversifier class is used for choosing
the genres of individual clusters that will be shown in the cluster description
(see algorithm 8).

5.1.3 Further code extensions
The code was written to be easily extensible on multiple levels. There are basically
three places, where the code could be extended.

1. endpoints - the developer could add a new endpoint. In this case, the
views.py and urls.py files in the graphapp folder should be edited.

2. graph algorithms change - if one of the graph algorithms should be
changed, it is enough to change the code belonging to the file, that deals
with a certain part of graph calculations. For example, if we wanted to
change the clustering part, we will edit the clusterizer.py file.

3. database - if we want to add database in the future, we will have to create
models in the graphapp/model.py file and add code to many other files.
The exact procedure is available on the Django tutorial pages.

36

5.2 Front-end
We will look at the front-end code overview in this section. First, we will introduce
the technologies we used. Second, we will analyze the graph visualization in web
applications. In the end, we will go through the folder structure and possible
code extensions.

5.2.1 Technologies
Web applications are usually written in HTML, JavaScript (JS) and CSS pro-
gramming languages. However, it is very convenient to use helping tools to make
the code more readable and extendable. We used the following tools to develop
our application and manage the code:

Node.js, npm

Node.js is an asynchronous event-driven JavaScript runtime [15]. We used Node.js
together with npm.

Node package manager (npm) is a JavaScript package manager [16]. Every
package we used was installed via npm install command. The packages are
downloaded into node modules folder. The size of this folder is quite large and
is never pushed to the version control repositories. Instead, all necessary infor-
mation is written into the package.json file, that keeps the current version of
all used packages.

Starting and deploying the server with npm is really simple. To start a server,
we run the following command: npm start. To deploy the server on a preset
homepage location, we run: npm run deploy.

TypeScript

TypeScript is a typed superset of JavaScript that compiles to plain JavaScript
[17]. Among other functionalities, TypeScript makes it possible to create our own
types (interfaces), removes the burden of type check of parameters and makes a
developer’s work easier.

React.js

React.js is a JavaScript library used for building UI components [18]. It uses JS
XML (JSX) format that is being translated into JavaScript.

Example of JXS code: const element = <h1>Hello World!</h1>
The compiler responsible for JSX translation is called Babel.

React applications consist of building blocks called components. It is a good
habit to have every component in its own file.

Every component can accept props (stands for properties). When these prop-
erties are changed from outside of the component, the component is notified and
re-renders itself. There are some exceptions of this behaviour, but a standard
flow is to update the component on props change.

37

A second important principle is the state of a component. The state object
keeps the inner state of the component. If changed, the component is rerendered.
The state should be changed via setState method.

The power of React lies in its work with virtual DOM. Virtual DOM is a
programming concept, where an ideal representation of UI (virtual DOM) is sep-
arated from the real DOM. These two states are synchronized by some library,
in case of React, it is ReactDOM [19].

Redux

Redux is a state container for JavaScript applications. It is extremely useful
in React application because it provides a global state called store. Instead of
passing the variables and callbacks deep down the DOM tree via props, we can
simply connect the store to the individual components. The store is changed via
dispatch actions that can be also connected to the components.

Sometimes it is necessary to have asynchronous actions. For this purpose,
we will need to use Redux Thunk middleware. This middleware lies between an
action being dispatched and the action reaching the reducers [20].

For debugging purposes, it is good to use a logger. There exist loggers
that print nicely organized and coloured logs messages to the console. We used
redux-logger.

5.2.2 Graph visualization
A graph is a very common visualization technique and a lot of JavaScript libraries
were developed for this purpose. We needed to check the methods and approaches
to graph visualization of available graph libraries to choose the best one for our
goal. We considered libraries as D3 graph, Cytoscape, vis.js, Sigma.js and
others. However, during the development, we run into a lot of problems that can
be described in the following points:

Graph board

All the libraries have its way how to deal with space where the graph is located.
This space has different names in different libraries, such as board, pan, box, etc.
This space can be modified with dragging, scrolling or zooming. It is necessary
to have a programmatic way to control this space, therefore most of the libraries
have their API implemented to do the important moves. During the develop-
ment, we found out that some functionalities are not really intuitive and difficult
to control. For example, the work with graph coordinates was uncomfortable
because the coordinates of nodes didn’t correspond with the coordinates of the
board. Sometimes, the coordinates got messy after zoom or board move.

Another requirement we demanded was the ability to set some limitations
where the nodes can be moved. For this purpose, some libraries offer some form
of border-box. Regrettably, they were not working as expected for its poor coop-
eration with HTML elements. For example, we tried to work with Cytoscape.js
library. After every drag of nodes, we had to check, if the node got out of the

38

border-box with an additional condition. We expect this functionality to be in-
cluded in the library we would use.

Node style

The most crucial requirement we had for graph visualizing was the ability to
control how the nodes will look like. There are two ways of modelling the nodes:
with SVG or HTML element. SVG might be flexible; however, for more complex
nodes and layouts, it becomes unbearable to deal with. All the work that can be
easily done with HTML Flexbox CSS styling (i.e. centring or using multiple rows
and columns) is done manually using coordinates. More complicated structures
are almost unmanageable in SVG and working with coordinates becomes very
uncomfortable.

Thus, we wanted to work with HTML elements in the Main graph visualiza-
tion. In the Inside cluster graph, we had smaller requirements for the node style.
Nevertheless, it turned out in the end that the custom HTML element was still
the best option.

In conclusion, we needed to have the possibility to use an HTML as a node
and we didn’t find this option in any library we tried.

Graph layout

Even though we couldn’t have used the graph visualization libraries at its best,
we wanted to use at least some graph layout algorithm, that would only calculate
the positions of nodes and wouldn’t show anything.

We considered the following libraries and found the following problems on
each of them:
• dagre.js [21] - Library used for directed acyclic graphs, therefore does not

fit for our purpose.
• graph dracula [22] - The layout seems nice enough, but it does not deal

well with overlapping nodes.
• react-force-graph [23] - Very nice library with well done force algorithms;

there’s even the possibility to show the layout in 3D visualization. Unfor-
tunately, the nodes can’t be custom HTML elements.
• D3 graph [24] - one of the most used data visualization libraries. D3 has also

implemented the graph visualization, e.g. force layout. Unfortunately, the
layout computation and visualization are strongly connected. The graph
layout changes dynamically, while it is being computed. We could try and
separate the positions from D3 representations, but this approach would
not be really clean.

Solution

All these problems and limits of the libraries led us into one final solution: we
didn’t use any JavaScript library directly meant for graph visualization. Instead,
we used already computed positions of nodes (in the Main graph, as well in the
Inside cluster graphs). For this purpose, we chose two React packages:

39

• react-draggable - Draggable div can be dragged around. Moreover, there
are some useful functionalities as limiting where the Draggable can be
dragged or choosing only a part of the div by which the element can be
grabbed.
• react-zoom-pan-pinch - adds a zooming functionality. On mouse scroll

(or touch-pad scroll) zooms the chosen div. Parameters as maximum zoom,
speed of zooming and others can be set. When the div is zoomed, the user
can move around with ”dragging the background”, the dragging function-
ality of nodes is preserved.

Advantages and limitations of the solution

As mentioned in the previous points, the biggest advantages of our approach are
the following points:
• freedom of creating the node and edge design
• graph board controls - we are in control of zooming, board dragging and

nodes movement
• layout - we can choose a layout that is suitable for us

There are also some limitations and disadvantages.
• The layouts of all inside clusters are computed even if they might not be

needed. In other words, only the main graph is shown automatically and
the remaining graphs are shown only if the user clicks on some cluster.
• The results must be sent from the back-end, this includes the time of the

request. For users with a big amount of favourite artists or liked songs, this
process can take a few seconds. (However, the time spent on the computa-
tion of graphs is proportionally much less than the time spent on obtaining
the data from Spotify.)

5.2.3 Front-end structure
The folder structure of the front-end directory is shown in Figure 5.2. Three dots
mean that there are other files in a folder. We will go through the important files
and folders and describe what is their purpose.

Frontend folder

There are three important files in the base folder of frontend directory:
• package.json - information about all packages with versions on which our

source code depends
• tsconfig.json - TypeScript compiler options
• .env - list of environment variables. Contains development and production

variables accessible from JavaScript with: process.env.VARIABLE NAME

Public folder

• index.html - a template with basic information like page title, logo and
GitHub pages Single Page Apps workaround (see the Deployment section
5.3)

40

Figure 5.2: Front-end folder structure

• 404.html - file that is necessary for GitHub Pages routing.

Src folder

• App.tsx - the main component that is responsible for connecting the Redux
store to the whole application and route switching the correct URLs.
• index.tsx - has only one important line, that tells the React renderer, that

it should render the App component.

Components folder

This folder involves code of the components from which the page is built.
• the files welcome-page.tsx, login-page.tsx and my-graph-page.tsx are

wrappers of the pages, already mentioned in the previous chapter.
• draggable-canvas.tsx is the component where the cluster graph is visu-

alized. It takes care of creating the cluster nodes and cluster edges.
• cluster-node.tsx and cluster-edge.tsx are components for visualizing

the Main graph nodes and edges.
• artist-node.tsx and artist-edge.tsx are components for visualizing

the Inside cluster graph nodes and edges.
• chosen-cluster.tsx is the component that is shown when certain cluster

is clicked.
• side-bar.tsx is the component of the left side-bar and

chosen-artist-bar.tsx is the right side-bar with artist’s songs that ap-
pears when a certain artist is clicked.

41

• player.tsx is the component on the bottom that allows user to control the
playback.
• styles.css and other style files contain CSS classes

Methods folder

Methods folder contains files with methods that are used by components, but
whose code is not directly depending on HTML rendering.
• graph-layout.tsx - contains functions that receive the precomputed lay-

outs obtained from back-end and return the final positions of clusters and
artists as it will be shown on the page.
• graph-parsing.tsx - is responsible for parsing the JSON objects that were

received from the back-end.
• spotify-methods.tsx - all methods that are responsible for requesting the

Spotify API.

Store folder

Store folder contains files with methods and interfaces responsible for correct
functionality of Redux store.
• types.tsx - a file with Typescript interfaces that are used in components.
• actions.tsx - contains actions that modify store.
• reducers.tsx - initializes store instance and applies the middleware, e.g.

logger and Thunk.

5.2.4 Further code extensions
There are several aspects of front-end that could be changed in the future:
• Spotify API requests - if we want to add some methods that would retrieve

data from Spotify, we should put it in the spotify-methods.tsx file and
export it.
• store - for adding new variables to the global store, we must edit the

types.tsx file and change the State interface. If we want to create a state
manipulating method, we should add it into the actions.tsx file.
• further functionality of components - components can be easily extendable.

We can add more variables from the global state and provide more infor-
mation to the user.
• methods - if we want to add methods that are not directly depending on

the DOM, we should add them to the methods folder.

5.3 Deployment
We needed to deploy the python server and front-end part. We decided to deploy
them separately, as the back-end server works only as a REST service.

42

Frontend

During the app development, we used the GitLab platform as an online tool
for version control. GitLab has a possibility to deploy HTML pages available
for all developers using GitLab. It would have been the simplest possibility
because everything would be on the same place and committing changes would
immediately launch deploy. Unfortunately, the work with GitLab pages turned
out problematic and not as fluent as needed, so we decided to use GitHub pages.

As GitLab, GitHub allowed us to deploy our application on the address
gajdusep.github.io/spotifygraph.

During the process, we had to deal with URL routing, that is not very intuitive
on GitHub pages, because the URL paths are not recognized by GitHub pages.
We used a workaround written by Rafael Pedicini that deals with this problem
and makes routing work. [25]

Python server

We had to decide which server provider to chose. As a first option, we were
thinking about Amazon’s AWS with the help of a Docker container system. This
turned out to be more complicated than needed, therefore we chose Heroku.

Heroku is a container-based cloud Platform as a Service.[26] It offers develop-
ers a simple way to deploy their apps. For a Python project, it is enough to add
a Procfile, requirements.txt file and a few lines into several files and push
the repository to the Heroku servers with the following command:

git push Heroku master
After that, the server opens endpoints on the given location.

5.3.1 Custom deployment
If you want to run the application on your machine, you need to run both servers
separately.

Front-end

To start the front-end server, you need to have npm installed1 on your computer.
Run the following commands to start the server:

npm install - install dependencies from the package.json file.
npm start - runs the frontend server. The server will be served at local-

host:3000 by default.

Back-end

For running the back-end, you need to have Python3 installed on your PC. We
used the pip package manager. Install all requirements from the requirements.txt
file. Furthermore, you have to set environment variables. On Linux systems the
best option is to edit the .bashrc file. The first two variables should be kept
secret:

1follow the tutorial on https://www.npmjs.com/get-npm

43

• SPOTIFY CLIENT ID - client ID from Spotify APP
• SPOTIFY CLIENT SECRET - client secret from the Spotify APP
• SPOTIFY GRAPH AUTHORIZE URI - redirect URI - on the local development,

change to http://localhost:3000/spotifygraph/mygraph

To run the server, navigate to the base spotifygraph folder and type:
pip3 install -r requirements.txt
python3 manage.py runserver

The server should be now running at localhost:8000.

44

6. Case studies
In this chapter, we would like to show some examples of graphs that were sent
by users. We will see if the results are satisfying and well shown and discuss the
parts that went well and the things that could be improved in the future.

Let us have several users with their behaviour on Spotify (the number of
artists is just approximate). All of the following data were sent by real users, for
their privacy, we changed their names.
• Alice - up to 50 artists - she does not use Spotify very often. She has a few

liked songs and listens mostly to the same set of genres. (See figure 6.1.)
We can see that when a user does not have many artists, the TOTAL MIX
cluster will be relatively large because there are fewer edges and less inner
structures.
• Bob, Bart - up to 150 artists - they use Spotify more often than Alice and

have more favourite genres, but still prefer to listen to the artists and songs
that they already know. (See figures 6.2, 6.3.)
In Bob’s graph, we can see that some images of artists are blank (light
blue). This happens either when no image is available for an artist or when
the browser loads some images more slowly than others.
In the top right corner of Bob’s graph, there lies a cluster with the Swedish
flag that contains only two artists. It might happen that only one of them
is from Sweden because of the 40% limit to show the flag (Subsection 4.5.2).
Therefore the information about the country is not fully precise. However,
we decided to keep it this way to show rather more information than less.
• Cecilia, Caroline - up to 400 artists - they use Spotify quite often and like

to explore new artists. They have a couple of favourite genres that they
change according to their mood. (See figures 6.4, 6.5.)
Cecilia’s and also Caroline’s graph are densely connected because their clus-
ters are relatively similar to each other. The edges between clusters in Car-
oline’s graph are thicker than in Cecilia’s graph. The thickness and number
of edges can be slightly disturbing. However, it shows clearly that Caroline’s
favourite artists are more similar to each other than Cecilia’s artists.
• David and Eve - up to 1000 artists - both are heavy Spotify users. They

like a lot of songs and they’re not afraid of anything new. However, while
David likes a lot of electronic dance songs and keeps exploring them, Eve’s
musical taste is spread more. She likes everything, from J. S. Bach to One
Direction. (See figures 6.6, 6.7.)
The clustering and also visualizing techniques turned out very well in Eve’s
graph because it visibly separated modern pop and dance music from clas-
sical music and classical performance. Generally speaking, the more diver-
sified musical taste a user has, the more visible the separation will be and
the nicer the structures will be.

On the screenshots, we can see that the visualization is really nice and clear
up to 400 artists. Above this number, it becomes quite difficult to keep the num-
ber of clusters low and point out the hidden structure in the data.

45

Figure 6.1: Alice (50 artists)

Figure 6.2: Bob (125 artists)

Figure 6.3: Bart (153 artists)

46

Figure 6.4: Cecilia (208 artists)

Figure 6.5: Caroline (301 artists)

47

Figure 6.6: David (446 artists)

Figure 6.7: Eve (937 artists)

48

Let us mention one interesting detail that we discovered while going through
the users’ graphs. When clustering classical music, clusters clearly separate com-
posers from performers. The example is shown in Figure 6.8.

(a) (b)

(c)

Figure 6.8: (a) Inside cluster graph with composers. (b) Inside cluster graph with
performers. (c) Main graph cutout.

49

Conclusion
The goal of this thesis was to find hidden structures of Spotify users’ data and
visualize them in a new way. We achieved these goals with the help of graph
clustering and graph visualization techniques.

We approached the visualization as a two-level graph visualization. The top-
level layer showed the division of artists into groups and similarities between those
groups. In the lower level, the artists and relations between them were visualized.

The application revealed users’ data and showed them their preferences on
Spotify. Users were able to interact with Spotify via our application, i.e. they
played songs and saved them to their liked songs playlist. If users liked their
graphs, they were able to download them and send them to their friends.

We demonstrated that we were able to make a functional system that can
work with external sources as Spotify API. The code is extendable and ready to
be improved in the future with numerous features.

Future work
During the development of our application, we thought about a lot of features
that were not included or programmed in our final version. We would like to
work on the following points which might significantly improve user experience.

Better related artists caching

Even though the current implementation includes related artists caching, it is still
the slowest part of our application and some users might find is very annoying.
That’s why in the future development, implementing the database with the cached
related artist might be convenient.

Improved player

Sometimes, it is inconvenient when the user starts to listen to the chosen song,
but after 30 seconds it suddenly stops playing. This behaviour is quite annoying
and it would be worthy to allow full song player to the premium users. This
would include some form of song queue; from a programming point of view, we
would have to use Web Playback SDK that allows playing the whole songs.

New artists recommendation

In the current version of our application, users can explore only their already
liked artists. They can play songs that they do not know yet, but in the future,
we could also add a possibility of exploring new artists.

New artists would be shown in the Inside cluster graph. The newly shown
artists would be the most similar to as many artists in the cluster as possible. The
similarity would be computed using the related artists information and similar
genres.

50

Further work with data browsing

There are still a lot of features remaining that would help the users orient in their
graphs. The following list contains the possibilities we had in mind:
• Search artist in the graph - after filling the search box and clicking some

of the provided search results, the cluster with the artist would open and
the artist data would be shown.
• Filter artists based on genres or popularity or other criteria we would

choose.

Personalization

In the future, we would like to allow more personalization for the users. We could
for example explicitly ask users several questions via HTML form regarding their
preferred settings::
• How should the importance of artists be computed? What are the user’s

habits - is it more common to like songs, follow artists or is the artist’s
popularity also important?
• Should the songs be also taken from other saved playlist? If so, which ones?

Publicly accessible graphs

Sometimes it may happen that some users would like to share their graphs with
their friends. For that purpose, it would be useful to have graphs accessible via
URL, e.g.: https://.../graphs/graphID.

Other design improvements

Except previously mentioned points, there are some small improvements that
could be made:
• Blank images - if there is some artist that doesn’t have image, the applica-

tion wouldn’t show it as blank image in the cluster view. Instead, the artist
wouldn’t be shown until the cluster would be clicked.
• Graph file saving - in the current version, the graph is saved as it was

obtained from the back-end. The saving procedure doesn’t take into account
the changes that a user did to the layout by grabbing and moving nodes.
In the future, we could save the graph with the layout that was edited by
a user.

51

Bibliography
[1] M. E. J. Newman. Modularity and community structure in networks. Pro-

ceedings of the National Academy of Sciences, 103(23):8577–8582, 2006. ISSN
0027-8424. doi: 10.1073/pnas.0601602103. URL https://www.pnas.org/
content/103/23/8577.

[2] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre. Fast unfolding of communities in large networks. Journal
of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, Oct
2008. ISSN 1742-5468. doi: 10.1088/1742-5468/2008/10/p10008. URL
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008.

[3] Jitendra Malik Jianbo Shi. Normalized cuts and image segmentation. Copy-
right 2000 IEEE. Reprinted from IEEE Transactions on Pattern Analysis
and Machine Intelligence, Volume 22, Issue 8, August 2000, pages 888-905.
Publisher URL: http://dx.doi.org/10.1109/34.868688, 2000.

[4] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. In Proceedings of the 14th International Con-
ference on Neural Information Processing Systems: Natural and Synthetic,
NIPS’01, page 849–856, Cambridge, MA, USA, 2001. MIT Press.

[5] Edward M. Reingold Thomas M. J. Fruchterman. Graph drawing by force-
directed placement. Department of Computer Science, University of Illinois
at Urbana-Champaign, 1304 W.Springfield Avenue, Urbana, IL 61801-2987,
U.S.A, 1991.

[6] Sergey Bereg Leishi Zhang andAlexander Holroyd Lev Nachmanson, Ar-
lind Nocaj. Node overlap removal by growing a tree. Hu Y., Nöllenburg M.
(eds) Graph Drawing and Network Visualization. GD 2016. Lecture Notes in
Computer Science, vol 9801. Springer, Cham, 2016.

[7] Joseph B. Kruskal. On the shortest spanning subtree of a graph and
the traveling salesman problem. Proceedings of the American Mathemat-
ical Society, 7(1):48–50, 1956. ISSN 00029939, 10886826. URL http:
//www.jstor.org/stable/2033241.

[8] Spotify. Spotify api documentation, . URL https://developer.spotify.
com/documentation/web-api/.

[9] Spotify. Spotify api github issues, . URL https://github.com/spotify/
web-api/issues.

[10] Spotify. Spotify authorization guide, . URL https://developer.spotify.
com/documentation/general/guides/authorization-guide/.

[11] Spotify. Spotify api documentation, . URL https://developer.
spotify.com/documentation/web-api/reference/artists/
get-related-artists/.

52

https://www.pnas.org/content/103/23/8577
https://www.pnas.org/content/103/23/8577
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://www.jstor.org/stable/2033241
http://www.jstor.org/stable/2033241
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/
https://github.com/spotify/web-api/issues
https://github.com/spotify/web-api/issues
https://developer.spotify.com/documentation/general/guides/authorization-guide/
https://developer.spotify.com/documentation/general/guides/authorization-guide/
https://developer.spotify.com/documentation/web-api/reference/artists/get-related-artists/
https://developer.spotify.com/documentation/web-api/reference/artists/get-related-artists/
https://developer.spotify.com/documentation/web-api/reference/artists/get-related-artists/

[12] Spotify. Web playback sdk, . URL https://developer.spotify.com/
documentation/web-playback-sdk/reference/.

[13] Spotify. Spotify info page, . URL https://newsroom.spotify.com/
company-info/.

[14] Django. Documentation, tutorial. URL https://docs.djangoproject.
com/en/3.0/intro/tutorial01/.

[15] Node.js. About node.js. URL https://nodejs.org/en/about/.

[16] Inc npm. npm. URL https://www.npmjs.com/.

[17] Microsoft. Typescript. URL https://www.typescriptlang.org/.

[18] w3schools. What is react? URL https://www.w3schools.com/whatis/
whatis_react.asp.

[19] Inc. Facebook. React virtual dom. URL https://reactjs.org/docs/
faq-internals.html.

[20] Alligator.io. Redux thunk. URL https://www.digitalocean.com/
community/tutorials/redux-redux-thunk.

[21] dagrejs. Dagrejs. URL https://github.com/dagrejs/dagre/wiki.

[22] Johann Philipp Strathausen. Graph dracula. URL https://www.
graphdracula.net/documentation/.

[23] Vasco Asturiano. react-force-graph. URL https://www.npmjs.com/
package/react-force-graph.

[24] D3. D3 graph. URL https://d3js.org/.

[25] Rafael Pedicini. Single page apps for github pages. URL https://github.
com/rafrex/spa-github-pages.

[26] Heroku. About heroku. URL https://www.heroku.com/about.

53

https://developer.spotify.com/documentation/web-playback-sdk/reference/
https://developer.spotify.com/documentation/web-playback-sdk/reference/
https://newsroom.spotify.com/company-info/
https://newsroom.spotify.com/company-info/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://nodejs.org/en/about/
https://www.npmjs.com/
https://www.typescriptlang.org/
https://www.w3schools.com/whatis/whatis_react.asp
https://www.w3schools.com/whatis/whatis_react.asp
https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/faq-internals.html
https://www.digitalocean.com/community/tutorials/redux-redux-thunk
https://www.digitalocean.com/community/tutorials/redux-redux-thunk
https://github.com/dagrejs/dagre/wiki
https://www.graphdracula.net/documentation/
https://www.graphdracula.net/documentation/
https://www.npmjs.com/package/react-force-graph
https://www.npmjs.com/package/react-force-graph
https://d3js.org/
https://github.com/rafrex/spa-github-pages
https://github.com/rafrex/spa-github-pages
https://www.heroku.com/about

List of Figures

1.1 Main graph - clusters are nodes 7
1.2 Inside cluster graph - Cluster1 was chosen and its artists are shown

nodes . 7

2.1 {T1,T2} is Delaunay triangulation of {A,B,C,D}, {T3,T4} is not
(points B and D lie in circumcircles of T3 and T4) 13

2.2 GTree cost function, source: [6] 13

3.1 Authorization Code Flow . 16
3.2 Implicit Grant Flow . 16
3.3 Client Credentials Flow . 17

4.1 Application flow . 20
4.2 Fitting small components into the layout 25
4.3 Two types of graphs: (a) Main graph (b) Inside cluster graph . . . 27
4.4 (a) A cluster with more than 7 artists, mostly from Italy (b) Cluster

after zoom with more genres (c) A cluster with less than 7 artists,
without explicitly mentioned country of origin 29

4.5 The inside cluster graph with indie artists. Right image shows the
usage of slider that hides less important edges and artists. 30

4.6 Song state examples of Blanco White’s songs 31
4.7 Panel with similar clusters . 31

5.1 Back-end folder structure . 34
5.2 Front-end folder structure . 41

6.1 Alice (50 artists) . 46
6.2 Bob (125 artists) . 46
6.3 Bart (153 artists) . 46
6.4 Cecilia (208 artists) . 47
6.5 Caroline (301 artists) . 47
6.6 David (446 artists) . 48
6.7 Eve (937 artists) . 48
6.8 (a) Inside cluster graph with composers. (b) Inside cluster graph

with performers. (c) Main graph cutout. 49

54

List of Abbreviations
• MST: minimum spanning tree
• API: application programming interface

55

A. Attachments

A.1 Electronic attachments
To see the application, visit the following link:
• https://gajdusep.github.io/spotifygraph/
Sometimes it happens that Heroku server slows down rapidly after a certain

period of time of not being used. Then, it might happen that the application
shows you an error message. In this case, please contact us and we will restart
the server.

The code is available in the public repository:
• https://gitlab.com/gajdusep/spotifygraph

The zip file with the code is also uploaded as the bachelor thesis attach-
ment. After unpacking the file, you will find the README.md file that will contain
further information, frontend and spotifygraph folders with the code and the
testfiles folder with files ready to be uploaded as a test files on the page.

56

https://gajdusep.github.io/spotifygraph/
https://gitlab.com/gajdusep/spotifygraph

	Introduction
	Problem analysis
	Graph-based algorithms
	Graph clustering
	Louvain algorithm
	Spectral clustering

	Graph visualisation
	Force-directed layout
	Growing tree overlapping nodes removal

	Spotify API
	Authorization
	Spotify Data
	Spotify API limitations

	Application Design and GUI
	Architecture overview
	Inicialization
	Graph construction
	Artists
	Edges among artists
	Clustering
	Edges among clusters

	Layout
	Main graph layout
	Inside cluster graph layout

	GUI elements
	Main graph GUI
	Main graph nodes (clusters)
	Inside cluster graph
	Artist side-bar
	Similar clusters bar
	Left side-bar
	Player

	Graph caching

	Code Overview
	Back-end
	Technologies
	Back-end structure
	Further code extensions

	Front-end
	Technologies
	Graph visualization
	Front-end structure
	Further code extensions

	Deployment
	Custom deployment

	Case studies
	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Attachments
	Electronic attachments

