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1. Introduction

The Ramsey theory is devoted to study the minimum size of a system that guar-
antees the existence of a highly organized subsystem. We will start with a folklore
example to illustrate the topic.

Problem 1.1. There are siz people at a party. Some pairs of these people can be
friends, which is a symmetric relation. Prove that we can always find a group of
three people such that either

1. all of them are friends, or
2. no two of them are friends.

Proof. Let us suppose the statement does not hold and denote by A any of the
six people present. We know for sure that A either is friends with at least three
other people, or A is not friends with at least three other people. Let us assume
the former holds, as the latter can be achieved symmetrically by reversing the
relation of friendship. We denote these three people by B, C, D.

If there is any other friendship relation among B, C, D, the two people involved
together with A form a group of three people such that all of them are friends.
If there is no friendship relation among B,C, D, then B,C, D form a group of
three people such that no two of them are friends. Thus, we have reached a
contradiction and the statement holds. O]

However, if we decrease the number of people at the party to five, the state-
ment no longer holds. This is demonstrated in Figure[I.1], where red edges indicate
friendship. Apparently, there does not exist any group of three friends, just as
there does not exist any group of three non-friends. Therefore we just found out
that six is the least number of people needed at a party for the statement to hold.

E

C

Figure 1.1: An example of a party of five people where neither a group of three
friends nor a group of three non-friends exists. The red color represents the
friendship relation.

What happens if we look for larger groups of friends/non-friends? Or for even
less regular structures? In order to answer these questions, we will get a bit more
formal about the problem we are facing.



1.1 Ramsey numbers

In this section, we will state some basic definitions and introduce the Ramsey
numbers of graphs.

Definition 1.2. An (undirected) graph G is a pair (V, E) consisting of a set of
vertices V and a set of edges E, where each edge is an unordered pair of different
vertices. We denote the size of the graph G by |G| := |V|.

An empty graph is a graph without any edges. A complete graph Ky is a
graph on N &€ N vertices such that it contains all possible edges.

Definition 1.3. A graph G' = (V', E’) is a subgraph of a graph G = (V, E) if
V'CVand E' C E. If G’ contains all the edges among V' present in G, we call
G’ an induced subgraph.

Definition 1.4. A coloring of a graph G = (V, E) is a mapping f : E — C that
maps edges into a given set of colors C.

In this thesis, we will focus mostly on two-colorings, which are colorings with
C = {red,blue}. We shall use the terms red edges and blue edges. If a vertex v
is joined to another vertex u with an edge, we can call u a red/blue neighbor of
v depending on the color assigned to this edge. We will also use the terms red
subgraph and blue subgraph to express the subgraphs of a colored graph such that
all of its edges have this one color. From now on, by a coloring on N vertices we
mean a two-coloring of K.

Definition 1.5. Given graphs G, H, the Ramsey number r(G, H) is the small-
est N € N such that any two-coloring of Ky contains either G as a red subgraph
or H as a blue subgraph.

The more specific setting when G = H is called the diagonal case and the
number 7(G, Q) is often abbreviated with just r(G). The case G # H is called
the off-diagonal case. In this text, we will stick to these conventions.

Taking a look at the motivational party problem, we proved that r(K3) = 6
and the proof consisted of two parts. First, we showed that any coloring on six
vertices contains K3 either as a red or as a blue subgraph. Second, we demon-
strated in Figure[l.T|that there exists an avoiding coloring on five vertices without
K3 as a monochromatic subgraph.

Ramsey [1] first introduced these numbers and also proved that they are al-
ways finite. This result is called the Ramsey theorem. This was independently
rediscovered by Erdés and Szekeres [2] who also proved the following bounds for
all m,n € N:

m-+n—2

n—1

(Ko, Kp) < ( ) and 2?2 <r(K,) < 2% (1.1)

The lower bound was shown by Erdds [3] using a probabilistic proof.

Surprisingly, despite many efforts, these exponential estimates for Ramsey
numbers of complete graphs were only very slightly improved. However, if we
impose some additional constraints on the graphs, there are often better estimates
of the corresponding Ramsey numbers.



Definition 1.6. In a graph G = (V, E), the degree of a vertex v € V is the
number of other vertices in' V' connected to v by an edge. The maximum degree
of a graph is the maxzimum degree over its vertices.

A notable result concerning Ramsey theory is that the Ramsey number of a
graph with a bounded maximum degree grows at most linearly in the number of
its vertices [4].

Theorem 1.7 ([4]). For each d € N, there ezists some ¢ > 0 such that if a graph
G on n vertices has maximum degree at most d, then

r(G) < cn.

1.2 Ordered Ramsey numbers

Various researchers [5, [6] recently started studying Ramsey numbers of graphs
with linearly ordered vertex sets. In this thesis, we continue this line of research.
First, we give the necessary definitions and preliminaries and state some basic
facts about Ramsey numbers of ordered graphs.

Definition 1.8. An ordered graph G< on N wvertices is a graph whose vertex
set is [N] :={1,..., N} and it is ordered by the standard ordering < of integers.

Definition 1.9. An ordered graph H< on [n] is an ordered subgraph of another
ordered graph G< on [N] if there exists a mapping ¢ : [n] — [N] such that
o(i) < @(j) for 1 <i < j<n and also {o(i),p(j)} is an edge of G= whenever
{i,7} is an edge of H<; see Figure[1.3

1 2 3

Figure 1.2: Out of these three ordered graphs, the second one is an ordered
subgraph of the first one, whereas the third ordered graph is not.

Many definitions that are stated for unordered graphs, such as vertex degrees,
colorings and so on, have their natural analogues for ordered graphs. Note that,
for every n € N, there is a unique complete ordered graph K,~. We are now ready
do define an analogous version of the Ramsey theorem for ordered graphs.
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Definition 1.10. Given ordered graphs G<, H<, the ordered Ramsey num-
ber r_(G<,H<) is defined as the smallest N such that any two-coloring of Kx
contains either G< as a red ordered subgraph or H< as a blue ordered subgraph.

Similarly to the unordered Ramsey numbers, we use r-(G<) to denote the
number r-(G<,G<) in the diagonal case. We note that for any two ordered
graph G< and H<, the number r_(G<, H<) is finite, just as for the unordered
Ramsey numbers; see Proposition [1.14]

To illustrate the usefulness of studying this topic, we will highlight a connec-
tion to the famous Erdos—Szekeres theorem on monotone subsequences.

Definition 1.11. A monotone path Py is an ordered graph on n € N vertices
such that any two consecutive vertices are connected by an edge and there are no
other edges.

Lemma 1.12. Forallr,s € N, any coloring on (r—1)(s—1)+1 vertices contains

either a red PS or a blue PS as an ordered subgraph.

We will show a proof of this result along the lines of the proof of the Erdos—Sze-
keres theorem on monotone subsequences [7].

Proof. For N = (r — 1)(s — 1) + 1, we consider a two-coloring of the ordered
graph K. Suppose this coloring contains no monotone path P as an ordered
subgraph, otherwise the statement would hold. We label each vertex with the
length of the longest monotone red path ending in this vertex and notice that no
pair of vertices with the same label can share a red edge, as otherwise we could
prolong the path ending in the former vertex to the latter one. Therefore any set
of vertices with the same label forms a blue clique.

Since we can only use labels from the set {1,...,r — 1}, by the pigeonhole
(r—=1)(s—1)+1
r—1
vertices form an ordered blue clique K& and thus also a blue monotone path P

exists as an ordered subgraph. O

principle there are at least [ W = s vertices with the same label. These

This lemma is a stronger version of the aforementioned famous theorem.

Theorem 1.13 (Erdés—Szekeres theorem [2]). Assume we have a sequence of
(r —1)(s — 1) + 1 distinct real numbers for some r,s € N. Then there ezists
either an increasing subsequence of v numbers, or a decreasing subsequence of s
numbers.

Proof. For N = (r —1)(s—1)+1, let us assume we have a sequence $i,..., Sy of
distinct real numbers. We create a two-coloring of the ordered graph Ky, where
{i,j} with i < j is red if 5; < s; and blue otherwise.

We can see that a monochromatic path of length n € N now corresponds to a

monotonically increasing/decreasing subsequence of sy, ..., sy, depending on its
color. By Lemma [1.12] we see that the coloring contains either a red P~ or a
blue PS as an ordered subraph, we are therefore done. O

Remark. The reason why the Erdds—Szekeres theorem is a weaker version of
Lemma [1.12] is that in Lemma [1.12] we consider all possible colorings, whereas
in the Erdos—Szekeres theorem we consider only colorings determined by a total
order on real numbers.



How do the ordered Ramsey numbers behave in comparison to their unordered
counterparts? One observation in [5] relates these two directly. For an ordered
graph G<, we use G to denote its unordered counterpart.

Proposition 1.14. For any two ordered graphs G5, G5 and their unordered coun-
terparts G1, Ga, we have

T(G1,G2) < 7"<( 1<aG2<) < T(K\Gﬂ?K\GzI)‘

Proof. The first inequality follows from the fact if a coloring of Ky for N € N
contains an ordered graph G< as a monochromatic ordered subgraph, then we
can just remove the orderings and the coloring of the unordered Ky would still
contain GG as its monochromatic subgraph.

For the second inequality, we note that r- (K<, KS) = r(K,, K;) for any
r,s € N. As the ordered graphs G7, G5 are contained as ordered subgraphs in
K\éﬂ’ K‘<GQ|, respectively, we also have that r-(Gy,Gy) < r<<K\é1|’ K‘<GQ|). This
together with the previous equality completes the proof. O

Remark. In this Bachelor thesis, we study ordered Ramsey numbers for only two
colors. However, some already known results presented here also hold or are orig-
inally stated for an arbitrary number of colors. Lemma and Proposition [1.14
are examples of this.

Proposition [1.14] gives us an intuition that in general, ordered Ramsey num-
bers are not smaller than the corresponding unordered Ramsey numbers. In other
words, the added ordering makes it somewhat easier for an ordered coloring to
avoid these given ordered graphs.

Another intuition we might have (as noted by previous papers on the topic [5]
0]) is that for dense graphs, there is not a huge gap comparing their ordered and
unordered Ramsey numbers, since the ordered Ramsey numbers grow at most
exponentially in the number of vertices by and by Proposition . One
can also show an exponential lower bound on r(G) for every graph G on n vertices
with cn? edges for any constant ¢ > 0. On the other hand, sparse ordered graphs
behave very differently from their unordered counterparts.

Definition 1.15. A matching M is a graph such that each vertex has its degree
at most one.

The unordered Ramsey number of matchings is clearly linear in the number
of its vertices. This result also follows from Theorem as the maximum degree
of a matching is one.

However, it was proved independently in [5] [6] that there exist ordered match-
ings on n € N vertices such that their diagonal ordered Ramsey numbers grow
superpolynomially, which is in sharp contrast with Theorem [1.7]

Theorem 1.16 ([5]). There are arbitrarily large ordered matchings M< on n
vertices that satisfy

< logn
7"<(M ) Z N, 5loglogn |

Definition 1.17. For a given ordered graph G<, we denote its interval chro-
matic number as the smallest number of contiguous subintervals partitioning
its vertex set such that no two vertices from the same subinterval share an edge;

see Figure 1.5,



A A A B B B

Figure 1.3: Out of these two ordered paths on 6 vertices, the first monotone path
has the interval chromatic number 6, whereas the second one (so called alternating
path) has the interval chromatic number 2, as depicted by the best possible color
assignments.

Theorem [1.16|implies that bounding the maximum degree of an ordered graph
G< is not sufficient to obtain a polynomial upper bound on r.(G<). However,
Conlon, Fox, Lee and Sudakov [6] and Balko, Cibulka, Kral and Kynél [5] proved
that if we bound the interval chromatic number as well, we do obtain a polynomial
bound on r-(G<).

Theorem 1.18 ([6], slightly weaker version). There exists a constant ¢ such that
for any ordered graph G< on n wvertices with maximum degree d and interval

chromatic number x,
7’<(G<) S ncdlogx.

The length of an edge {i,j} of an ordered graph G< is the number |i — j|.
Balko, Cibulka, Kral and Kyné¢l [5] showed that ordered graphs with constant
edge lengths have ordered Ramsey numbers at most polynomial in the number
of vertices as well.

1.3 Ordered graphs visualization

In order to talk about ordered graphs and their colorings, we will work with
two different types of visualizations. In Figure there is a visualization of a
coloring on 9 vertices that avoids a red Py~ and a blue K. We already know from
Lemma and its proof that 9 is the maximum number of vertices to satisfy
these conditions.

In all figures, for an ordered graph G<, we order the vertices along a horizontal
line from left to right according to the vertex ordering of G<. For a coloring of
K with colors red and blue, we draw the blue edges below the line containing
the vertices and the red edges above the line. See Figure left.

We also visualize colorings of K~ using coloring matrices, where the rows and
columns are indexed by the vertex set of K= and the entry (i, j) with i < j is red
if the corresponding edge {i,j} of K is red and blue otherwise. See Figure
right.



Figure 1.4: Ordered graph coloring visualization example. Graph visualization
on the left, coloring matrix of the same coloring on the right. This figure was
outputted by our utility described in more detail in Chapter [4]



2. Ordered matchings

In this chapter we focus on those ordered Ramsey numbers that involve ordered
matchings. We mostly consider the off-diagonal case “matching vs. clique”, but
we also mention some known results about the diagonal case. Note that in this
chapter we borrow the classical asymptotic notation.

2.1 Known results

Let us have an ordered matching M < on n € N vertices. In their paper, Conlon,
Fox, Lee and Sudakov [6] drew attention to the off-diagonal ordered Ramsey
number - (M<, K3). They proved that there exist ordered matchings M < such

4
that ro(M<,K5) = Q ((logn) 3>. On the other hand, there is no better upper

bound on r- (M=, K5) than

n2
O K5) < e KE) = (1) = O ().

where the last equality is a well-known result from [§]. The first inequality
only uses the fact that M< is an ordered subgraph of K and does not uti-
lize any special properties of ordered matchings. We note that the upper bound
(K, K3) =0 (%) is tight [9].

Conlon, Fox, Lee and Sudakov [6] believed that the upper bound on the
number r- (M=, K3) is subquadratic in |M<| and asked the following question.

Problem 2.1 ([6]). Does there exist an € > 0 such that any ordered matching
M= on n € N vertices satisfies r-(M<, K5) = O (n**)?

There has been some progress on this problem. Rohatgi [10] resolved two
special cases of this problem. He proved that if the edges of an ordered matching
M= do not cross, then the Ramsey number r_ (M <, K5) is almost linear. Two
edges {i,7} and {k,l} of an ordered graph G=< are crossing if i < k < j <.

Theorem 2.2 ([I0]). For any e > 0, there is a constant ¢ such that any ordered
matching M< on n € N vertices without any crossing edges satisfies

ro(M<,K5) < cn'te

Rohatgi [10] also proved that the bound from Problem [2.1] holds with high
probability for random ordered matchings with interval chromatic number 2.

Theorem 2.3 ([10]). There is a constant ¢ such that for all n € N, if a random
ordered matching M< on 2n vertices with interval chromatic number 2 is picked
uniformly at random, then

re(M<,K5) < ents
with high probability.

Rohatgi [10] also considered the following special family of ordered matchings.

9



Figure 2.1: The nested matching N M.

Definition 2.4. A nested matching NM is the ordered matching on 2n ver-
tices for n € N with the edges {i,2n — i+ 1} for 1 <i < n; see Figure[2.1]

Rohatgi [I0] proved the following bounds for nested matchings.
Proposition 2.5 ([10]). For any n € N, we have
dn —1<r (NM;, K5) < 6n.

He believed that the upper bound is far from optimal and also posed the
following conjecture.

Conjecture 2.6 ([10]). For any n € N, we have

r<(NM:, Ky) =4n — 1.

2.2 Nested matchings and triangles

In this section, we improve the upper bound from Proposition and disprove
Conjecture by stating some counterexamples found by a computer-assisted
proof based on SAT solvers. For more details about the use of SAT solvers for
finding avoiding colorings computationally, we refer the reader to Chapter [4

We start by improving the upper bound from Proposition 2.5 We first state
a helpful lemma about the structure of edges in an ordered graph that avoids
NM for some n € N.

Lemma 2.7. For n € N, if an ordered graph G< on N wertices with N > 2n
does not contain NM> as an ordered subgraph, then the number of edges in G
is at most (n — 1)(2N — 2n + 1). This upper bound is tight.

Proof. Let G< be an ordered graph on the vertex set {1,..., N} such that G<
does not contain NM<= as an ordered subgraph. Let A be an N x N {0,1}-
matrix such that the (i, j) entry of A is 1 if and only if {7, j} is an edge of G*<.
For k € {3,...,2N — 1}, we define the kth anti-diagonal of A to be the set of
(i,7) entries such that i + j = k and i < j; see Figure . Note that there are
exactly 2V — 3 anti-diagonals and each one of them contains at most n—1 entries
with 1 as otherwise these 1-entries form the nested matching N M~ we are trying
to avoid.

It follows from these observations that there can be at most (n — 1)(2N — 3)
edges in G<. To obtain a stronger estimate, we take into account the fact that, for

10
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Figure 2.2: An example of an anti-diagonal in the matrix A for N = 9.

each k < 2n — 1, the kth anti-diagonal contains only at most |*5!| l-entries. A
similar estimate holds for the kth anti-diagonals with & > 2N —2n+3. Altogether,
for N > 2n, by summing the estimates for all anti-diagonals, we have an upper
bound of

2n—2 2N —2n+3 2N—-1
szlJJr S - Y {QN 2kz+1J
k=3 k=2n—1 k=2N—-2n+4
n—2 n—2
=2 k+ (2N —4n+5)(n—1)+2> k
k=1 k=1

=Mn—-2)n—1)+ 2N —-4n+5)(n—1)+(n—2)(n —1)
=(n—1)2N —2n+1)

on the number of edges of G*<.

This upper bound is tight, which can be seen by considering the ordered graph
G< on N vertices with all edges of length at most 2n — 2. Summing over the
lengths k of the edges of G<, we see that G< has

Mf(zv k) =(n—1)2N —2n+1)
k=1

edges. By construction, G< does not contain NM as an ordered subgraph. [

A general construction to achieve this maximum number of edges is to lead
disjoint paths in the coloring matrix as illustrated in Figure 2.3] For such a
construction, all the estimates in the previous proof are tight, therefore we also
achieve the maximum number of edges.

It is easy to see that such a construction with n — 1 disjoint matrix paths does
not contain NM,s as an ordered subgraph. If it did, every edge of this copy of
NM;: would have to belong to one of the disjoint matrix paths. Note that no

11



S

1 2 3 4 5 6 7 8 9

AN NN

© 00 = O Ut = W N =

Figure 2.3: Construction of disjoint matrix paths in A for N = 9 and n = 3
where red represents 1-entries. We can see that each anti-diagonal achieves the
maximum possible number of 1-entries.

two different edges of a nested matching can belong to the same red matrix path,
since a copy of N M corresponds to two entries (i, j) and (k,1) of the matrix A
such that i < k <l < j, whereas any two entries (7,j) and (k,1) of a red matrix
path satisfy ¢« < k and j < [. However, by the pigeonhole principle, there would
be at least one such matrix path with at least two edges of NM =, a contradiction.

By the depiction in Figure we naturally moved towards colorings and
gained some insight about the structure of colorings avoiding a red NMs. Note
that even if some of the entries of the n — 1 disjoint red matrix paths of the

coloring matrix are colored blue, we do not create a red copy of NMy.

Remark. In Figure[2.3]and other examples where we use the disjoint matrix paths
construction, we can also notice the behavior of the blue 0-entries. If all the blue
cells “moved” in the north-east direction, a blue triangle would be formed in the
upper right corner of the matrix. Therefore they form an interesting “tetris-like”
structure.

We are now ready to improve the upper bound from Proposition [2.5]

Proposition 2.8. For everyn € N,
ro(NM7,E5) < (3+V5)n < 5.3n.

Proof. Let us assume we have an avoiding coloring on N vertices. In order to
avoid a blue K3, there cannot be any vertex with at least 2n blue neighbors, as
this would imply the existence of a red K, and thus also NM <.

Assuming that every vertex has less than 2n blue neighbors, there can be at
most 2nN/2 = nN blue edges. Therefore the avoiding coloring needs to have
at least w —nN red edges. However, by Lemma ﬁ, there can be at most
(n—1)(2N —2n+1) red edges, as otherwise the existence of N M= is guaranteed.

12



Therefore we have

which can be rewritten as
N?+3N(1—2n)+ (4n* —6n+2) < 0.

By solving the last quadratic inequality for N € N we arrive at a condition

1
N§§(V2On2—12n+1+6n—3).

For n > %, we have % (\/20n2 —12n+1+6n — 3) < (3 + \/5> n, which con-
cludes the proof. O

We thus see that the upper bound from Proposition [2.5] is indeed not tight.
We believe that the bound from Proposition 2.8 can be improved as well, for
example by using a better upper bound on the number of blue edges. Next we
show that the lower bound from Proposition [2.5]is also not tight for some values
of n. This disproves Conjecture [2.6| by Rothagi [10].

Theorem 2.9. We have
r<«(NM7,K3)>15 and ro(NM:,K5) > 19.

That is, the equality r-(NM>, K5) = 4n — 1 from Conjecture is not true for
n=4,5.

Proof. It is enough to show that there exist colorings on 15 and 19 vertices, which
avoid a blue triangle and red N M and N M:, respectively. We present computer
generated counterexamples for each case in Figures and 2.5l We prove the
latter case by hand.

We call a coloring on N vertices symmetric if, for all 7,57 € N with 1 < i <
j < N, the edges {i,j} and {N —j+1, N —i+ 1} have the same color. Let x be
the symmetric coloring on 19 vertices with the coloring matrix from Figure [2.5

The coloring matrix of x consists of 4 disjoint red matrix paths. It follows
from the remark after Lemma that the ordered graph formed by red edges
does not contain NM: as an ordered subgraph.

It suffices to show that the coloring x contains no blue triangle K5 . Let us
denote by S = {1,...,10} and suppose there exists a blue copy of K3 as an
ordered subgraph in x. It follows from the symmetry of x that there is a blue
ordered subgraph K5 formed by vertices v; < vg < vz such that vy, vy € S.

Vertices 1,2,4 do not have any blue neighbors in .S. The only blue neighbors
of 31in S are 8,9, 10 and the only blue neighbors of 3 outside of S are 18,19. But
there is no blue edge among 8,9, 10, 18, 19, hence 3 also cannot be a part of any
blue triangle. Thus vy, ve € {5,6,...,10}.

Blue neighbors of 8 are 3,5,11,12 and these vertices form a red clique. Blue
neighbors of 9 are 3,5,6,12,13 and also form a red clique. Blue neighbors of 10
are two symmetric sets of vertices 3,6,7 and 13,14,17. These six vertices also
form a red clique.

The only option left is vy, vy € {5,6, 7}, which is impossible, as there are no
blue edges between these vertices. We have reached a contradiction and thus the
coloring x contains no blue triangle K5 as an ordered subgraph. O

13
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Figure 2.4: A coloring on 15 vertices avoiding red N M and blue K.

T T T T T T T T T T T T T T T
12345678 910111213141516171819

Figure 2.5: A symmetric coloring on 19 vertices avoiding red N Mz and blue K3 .
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We have done an exhaustive computer search (more details in Chapter |4 and
proved that r-(NM7, K5) = 16. The interesting part is that for N = 15, there
were only 326 avoiding colorings with the exact same core structure except for up
to 6 red edges additionally switched to blue while not introducing a blue triangle
K3 . Using the same computer search we also proved that ro(NM:, K5) = 20.
In this case, however, the structure was a bit more “relieved” as for N = 19 we
were able to find many and even symmetric colorings while for r-(NMy, K5)
there were no symmetric colorings on 15 vertices. The main difficulty of the
problem therefore seems to be “leading the disjoint matrix paths in a smart way”
in order to avoid the blue triangle K5 as an ordered subgraph.

2.3 Nested matchings and larger cliques

In the previous section we worked mostly with the ordered Ramsey numbers
of the form r-(NM,, K5). Here, we consider larger cliques and we estimate
the ordered Ramsey numbers ro(NM, K7) for arbitrary m,n € N. First, we
consider the case m = 2 and we prove the exact formula for ro(NMs, K7). To
do so, we need the following auxiliary lemma.

Definition 2.10. A proper coloring of a graph G = (V, E) is a function which
assigns a color to each vertex from V such no two adjacent vertices have the
same color. A graph G is k-colorable if there exists a proper coloring of G with
k colors.

Although this definition is stated for unordered graphs, it naturally extends
to ordered graphs as well.

Lemma 2.11. Every ordered graph G= that does not contain N My as an ordered
subgraph is 3-colorable.

Proof. We show that G< is 3-colorable with an algorithm. We denote the ver-
tices of this ordered graph by 1,...,N in their respective order and we let
C ={A, B,C} be the set of three colors. We define a function RM N(S), which,
for a given set S of consecutive vertices from G, returns their rightmost neigh-
bor, if there is one. We also define a function NV(S), which, for a given set
of consecutive vertices S from G<, returns the immediate successor of S in the
vertex ordering <, if there is such a vertex.

We can assume all vertices of G< have degree at least 3 as any vertex with
at most 2 neighbors can be easily colored by taking the color not used by its
neighbors, not influencing the rest of the graph.

Let I, J be two consecutive contiguous intervals of vertices of G< such that [
precedes J. We call such I,J separating, if any vertex to the left of I and any
vertex to the right of J do not share an edge. Therefore, if we assume that all
the vertices of G< to the left of I are properly colored, then, for coloring vertices
to the right of J, it is enough to take into account only vertices from I U J.

Now, let us color the ordered graph G< from left to right by the following
algorithm. First we color the vertex 1 by color A, the vertex v = RMN({1})
by B and all vertices from the set S = {2,...,v — 1} by C. From our previous
assumption about the degrees of G< we know that v exists and v — 1 > 3, thus
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Figure 2.6: A step in the algorithm for 3-coloring an ordered graph without N M.

S is non-empty. Furthermore, no two vertices from S are adjacent in G<, as any
edge between these vertices would form a copy of NMs together with the edge
{1,v}. Thus we have two nonempty contiguous intervals I := {2,...,v — 1} and
J :={v}, which are properly colored and also separating by the choice of v.

From now on, we can continue inductively; see Figure Assume we have
two separating intervals I and J such that all vertices of I are colored by C; € C,
all vertices of J are colored by Cy € C, Cy # (', and the induced ordered subgraph
of G< on vertices 1,...,max(J) is properly colored.

Let us denote by C5 the last color not used within 7, J. We distinguish a few
cases based on v := RMN(I), in all of which we either finish the coloring, or
update the values of I, J in order to continue with the algorithm.

1. If v € J, then the vertex v := NV(J) can be colored by C3, as the intervals
I, J are separating. We then set I := J and J := {u}, as these intervals are
again monochromatic with different colors and separating by the choice of
v.

2. If v is to the right of .J, then we can color v by Cj, as I, J are separating.
We again set u := NV(J) and denote a new interval of vertices by S :=
{u,...,v—=1}ifu>wvor S:={}, ifu=w.

We color all vertices in S by Cs, the same color as used in the current J.
This preserves the proper coloring property, because none of the vertices in
J U S can be adjacent, as this would contradict the non-existence of N My
as an ordered subgraph in G<, as there already exists an edge from I to v.

Now, we set I := JU S and J := {v}. Again, these new sets I, .J are
monochromatic with different colors and separating by the choice of v. This
is the case illustrated in Figure 2.6

3. Assume v is in [ or it does not exist. We know that u := NV(J) exists, as
otherwise we are done. Since I, J are separating, there are no edges going
from u to the left of J. Thus we can color w by C5 and set [ := J, J := {u},
which are again separating.

The algorithm is finite as in each step we color at least one vertex, thus
this algorithm colors any G< without NMs as an ordered subgraph by three
colors. O

Proposition 2.12. For every n € N, we have r-(NMy, K) = 3n — 2.

n
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Proof. The lower bound follows from a simple coloring that consists of n — 1
consecutive red triangles connected by blue edges; see Figure |3.1}

It remains to show the upper bound. Let x be a coloring on 3n — 2 vertices.
Assume that it does not contain a red copy of NM;. By Lemma [2.11] the graph
formed by the red edges in x is 3-colorable. Therefore we can partition its vertex
set into 3 disjoint sets such that no two vertices from the same set are connected
by a red edge.

Using the pigeonhole principle, at least one of these sets contains at least

3n-2| — p vertices. Therefore, these n vertices form a blue clique K= and we

3
are finished. O]

We note there exists a notion of k-queue graphs. These graphs are proven to
be equivalent to the graphs without N M, for a given k € N [11]. Specifically,
1-queue graphs are also known to correspond to so called arched-leveled-planar
graphs [11].

Next, we generalize Proposition [2.5]and Proposition 2.8 to larger cliques using
well-known Turén’s theorem combined with Lemma 2.7

Theorem 2.13 (Turdn’s theorem [12]). For some n, N € N, let G be any graph
with N wvertices such that it does not contain K,.1 as a subgraph. Then the
number of edges in G is at most
(-5
1——)—.
n/ 2

Theorem 2.14. For every m,n € N, we have
re(NMg, Kiy) = ©(mn).

Proof. Let us assume we have a coloring y on N vertices, which avoids red N M
and blue K3, as ordered subgraphs. We proceed along the lines of our proof for
Proposition 2.8, By Lemma [2.7] that there can be at most

(m—1)(2N —2m + 1)
red edges in y. At the same time, Theorem [2.13| implies that there can be at

most
1\ N?
-2y
n/ 2
blue edges in y. Thus it needs to hold that

N(N —1)
—

v

(m—l)(2N-2m+1)+<1_7ll>]\272

which can be rewritten as
N? — Nn(4m — 3) + n(4m* — 6m + 2) < 0.

By solving the quadratic inequality we get

1
N < 5 (4mn —3n+ \/(4m —3)?n? — 16m?n + 24mn — 8n> :

thus N = O(mn). The lower bound N = Q(mn) can be obtained from a coloring
on (2m — 1)(n — 1) vertices formed by n — 1 red cliques of size 2m — 1 such that
every two vertices from different cliques form a blue edge. This coloring certainly
contains no red N My, and no blue K5 as ordered subgraphs. ]
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We note that the coloring we used to show lower bounds for Proposition [2.12
and Theorem is a well-known construction, which is described in more detail
in the following chapter.
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3. Ramsey goodness

In this chapter we will introduce the notion of Ramsey goodness, which has been
extensively studied for unordered graphs. We extend Ramsey goodness to ordered
graphs and we prove some new results.

3.1 Unordered case

There exists an easy construction for the lower bound on r(G, K,,) if the graph
(G is connected.

Proposition 3.1. For any connected graph G on m vertices, we have
r(G,K,)>(m-1)(n—1)+ 1.

Proof. We will prove that there exists an avoiding coloring on N = (m—1)(n—1)
vertices for any such graph G. The coloring consists of n — 1 red cliques of m — 1
vertices. Vertices in different cliques are connected by blue edges. See Figure |3.1
for an example. There cannot be any red G, because |G| > m — 1 implies that
two of its vertices would belong to different cliques, which is impossible, as there
are no red edges between these cliques and the graph G is connected. There also
cannot be a blue K, as, by the pigeonhole principle, at least two of its vertices
belong to the same red clique, hence the edge between them is not blue. O]

Figure 3.1: A coloring on 9 vertices avoiding any connected G on 4 vertices as a
red subgraph and K, as a blue subgraph. Note that the vertex ordering is not
necessary for this construction to work.

There is now an interesting question awaiting. For which graphs is this type of
coloring the best possible? Since these graphs have been studied for the unordered
case, they have a name.

Definition 3.2. Forn € N, a graph G isn-good if r(G, K,,) = (|G|—1)(n—1)+1.
We call a graph (Ramsey) good if it is n-good for all n € N.

Remark. Although we do not need it in this thesis, there is a more general con-
struction which does not necessarily involve a clique as the second graph. Inter-
ested reader may consult the corresponding section in [I3].

We mention a famous result of Chvétal [I4] which predates this definition of
Ramsey goodness.
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Definition 3.3. A tree is a graph that is both acyclic and connected.
Theorem 3.4 ([14]). Every unordered tree is good.

In an effort to determine what properties contribute to Ramsey goodness,
Burr and Erdés [15, 6] conjectured that, for given n € N, every sufficiently
large graph with a fixed maximum degree is n-good. This has been disproved by
Brandt [17].

However, fixing another parameter of the graph is enough to prove goodness
for sufficiently large graphs, as Burr and Erdés [15] showed that sufficiently large
graphs with bounded bandwidth are n-good.

Definition 3.5. A bandwidth of a graph G is the smallest number | € N such
that G can be ordered so that every edge has length at most [.

Theorem 3.6 ([15]). Let n,l € N be fized. Then all sufficiently large connected
graphs with bandwidth at most [ are n-good.

Another interesting result uses the notion of some forbidden substructures in
the graph.

Definition 3.7. A graph H is a minor of another graph G if H can be obtained
from a subgraph of G by contracting edges.

Conlon, Fox, Lee and Sudakov [I8] showed that graphs without a fixed minor
are n-good.

Theorem 3.8 ([18]). For everyn € N,n > 3 and fized graph H, every sufficiently
large connected graph that does not contain H as a minor is n-good.

Since the family of planar graphs consists precisely of those graphs that do
not contain K5 and K33 as a minor, Theorem implies the following.

Corollary 3.9 ([18]). For any n € N, every sufficiently large connected planar
graph is n-good.

Conlon, Lee, Fox and Sudakov [I§] also investigated Ramsey goodness of
hypercube graphs.

Definition 3.10. The hypercube Q) is the graph on the vertex set {0, 1}* where
two vertices are connected by an edge if and only if they differ in exactly one
coordinate.

Building upon their work, the following theorem was recently proved by Fiz
Pontiveros, Griffiths, Morris, Saxton and Skokan [19] 20].

Theorem 3.11 ([20]). For a fized n € N and every sufficiently large k € N, the
hypercube graph Qy is n-good.
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3.2 Ordered case

From what we know, Ramsey goodness has not been studied for ordered Ramsey
numbers at all. We therefore naturally extend the definitions from the previ-
ous section to ordered graphs and we prove some basic properties, followed by
more interesting results in an attempt to characterize all good connected ordered
graphs.

Remark. Note that Proposition holds trivially for ordered graphs as the proof
does not need the ordering restriction, which is apparent from Figure |3.1] For
ordered graphs there can exist other constructions with more red edges which
also produce the same bound; see Figure [3.2]

Figure 3.2: Example of an ordered coloring on 9 vertices avoiding any ordered
G< with at least one edge of length at least 3 as a red ordered subgraph and K
as a blue ordered subgraph.

To illustrate, the proof of Lemma yields a stronger result - (P, K5) =
(r —1)(n — 1) + 1 for any ,n € N and the monotone path P=, therefore any
monotone path is good. However, in contrast with Theorem [3.4] not all ordered
trees are good. Not even all ordered paths are good, which is shown by a coun-
terexample from Figure (3.3

For disconnected ordered graphs, the situation is somehow wilder as the con-
structions from Figure [3.1| no longer provides the lower bound. In fact, some
sparse disconnected ordered graphs G< can be “better” than good, as it holds
that r- (G<, K7) < (|G<| = 1)(n — 1) + 1 for some n € N, for example the empty
ordered graph. These “better” graphs can be possibly joined with another graph
in order to make them good, thus characterization for these ordered graphs can
be messy.

In the previous chapter we proved that NM; and NMS are not 3-good in
Proposition 2.9 therefore they are not good. Somewhat surprisingly, we then
proved in Proposition that N M is good.

3.3 Our results

Focusing on connected graphs from now on, we move into a more general set-
ting and prove some basic properties, some of them resembling their unordered
counterparts.

Theorem 3.12. An ordered graph G=< is not good if it has at least as many edges
as vertices.
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Figure 3.3: An example of a coloring on 7 vertices that contains no red G< and
no blue K3, thus showing that not all ordered paths are good.

Proof. 1t is easy to see that such G< contains at least one cycle C'< as an ordered
subgraph. In [21] it is proven that for [, € N with [ > 4, any unordered cycle C;
on [ vertices and for n going to infinity, we have

r(C), K,) =Q (n%/log n) )

In other words, the Ramsey number r(C, K,,) grows superlinearly with n. Since
r<(GS,K5) > ro(C<,K5) > r(C, K,), the number r-(G<, K7) is superlinear
in n and thus the graph G< cannot be good. O

Note that this proof holds for unordered graphs as well. Thus by Theorem
the class of good connected unordered graphs consists exactly of trees. If we also
require the ordered graph G< to be connected, Theorem implies that any
good connected ordered graph has to be an ordered tree.

Proposition 3.13. If a connected ordered graph G< is (n + 1)-good, then it is
n-good.

Proof. Suppose for contradiction that an ordered graph G=< is (n + 1)-good, but
not n-good. Then there exists a coloring on N = (|G<| — 1)(n — 1) 4+ 1 vertices
avoiding red G< and blue K as ordered subgraphs. This coloring can be easily
extended by adding a red clique of |G<|—1 new vertices to the right of the original
coloring. Edges between the new vertices and the original ordered graph shall be
colored blue. This way we ensure that the resulting coloring on n(|G<| — 1) + 1
vertices contains no red G< and no blue K5, ;. Therefore the graph G is not
(n + 1)-good, a contradiction. O

Note that the contrary does not hold and an n-good ordered graph is not
necessarily (n + 1)-good; see Figure [3.4]
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Figure 3.4: Visualization of a coloring on 10 vertices disproving that the ordered
graph G< on 4 vertices with three edges {1, 3}, {2,3} and {2,4} is 4-good. How-
ever, G< is 3-good, as was proven by exhaustive computer search.

Definition 3.14. An ordered star graph Slj s an ordered graph onr+1—1
vertices such that the lth vertex in the vertex ordering is adjacent to all other
vertices and there are no other edges; see Figure[3.5.

1 2 3 4 Y 6 7 8 9

Figure 3.5: The ordered star graph Syg.

Lemma 3.15. Let G< be a connected ordered graph such that r-(G<,K5) = N
and let x be a coloring on M > N wvertices. Then either a blue K exists in x
or we can choose M — N + 1 vertices such that each one of them is the rightmost
vertex of some red copy of G< contained in x as an ordered subgraph.

Proof. By the definition of M, any coloring on M vertices contains either a red
copy of G< or a blue copy of K as an ordered subgraph. In the latter case we
are finished. In the former case, we can find a red copy of G< in x and delete its
rightmost vertex from the coloring, obtaining a new coloring on M — 1 vertices.
We can iterate this approach as we are sure to find another red copy of G< as
long as the number of vertices is at least N. Thus we removed at least M — N +1
vertices and these are the distinct vertices stated by the lemma.

Definition 3.16. For any two ordered graphs G< and H<, we define F< =
G< + H=< as an ordered graph on |G<|+ |H<| — 1 vertices constructed by joining
the two graphs by setting the leftmost vertex of H< as the rightmost vertex of G=<.
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The operation “+” is illustrated in Figure[3.6] Obviously, it is associative and
it preserves the connectivity of the two ordered graphs.

AN\

1 2 3 1 2 3 4

1 2 3 4 5 6

Figure 3.6: An example of joining two ordered graphs.

Theorem 3.17. If a connected ordered graph G=< is n-good, then, for allr,l € N,
the ordered graphs G< + Sy, G<+ 55, Si3 +G< and S, + G< are also n-good.

Proof. We will prove only the first two cases, since the latter two are symmetric.
Let us assume we have a connected n-good ordered graph G< with k+ 1 vertices.
Let us denote I~ = G<+ ST, , and Fys = G=+ S, | for some m € N,m > k.
Note that |F[~| = |F5~| = m.

Let us consider a coloring x on N = (m — 1)(n — 1) 4+ 1 vertices. We shall
prove that y contains either red copies of both F~ and Fi~, or a blue copy of K
as an ordered subgraph. Note that from our assumptions we have r-(G<, K) =
k(n —1) 41 for every n € N and we can use Lemma to choose a set W of

(m—-1)(n—-1)+1-[kn—-1)+1]+1=Mn—-1)(m—-k—-1)+1

vertices such that each one of them is the rightmost vertex of at least one red
copy of G< in y.

1) Suppose the coloring x contains no red copy of F;~. We then set Wy = W
and define W; for i = 1,...,n as the set of all right blue neighbors of the leftmost
vertex w; from W;_;. See Figure for an illustration of the process. We know
that each w; has at most (m—k—2) red neighbors to the right, otherwise we would
obtain a copy of F;~ in x and we would be done. Therefore, in each transition
from W;_; to W;, at most (m — k — 1) vertices are removed. Since W, consisted
of (n—1)(m —k —1)+ 1 vertices, the set W,,_; has at least one vertex which can
be chosen as w,,, because

m—1)(m—-k—-1)+1—-(n—-1)(m—-k—-1)=1.

We know that vertices wy, ..., w, have no red edges among them, therefore they
form a blue K.

2) Suppose the coloring x contains no red copy of F5~. We continue similarly,
we set Wy = W and define W, for ¢ = 1,...,n as the set of all left blue neighbors of
the rightmost vertex w; from W,;_;. We know that each w; has at most (m—k—2)
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Figure 3.7: Visualization of our proof of Theorem [3.17 By the construction,
vertices wy, . .., w, form a blue clique K.

red neighbors to the left, otherwise we would obtain a copy of F5* in x and we
would be done. Following the same calculation, WW,,_; has at least one vertex
which can be chosen as w,, and thus vertices wy, ..., w, form a blue K and we
are finished. O]

Theorem immediately implies that every ordered star graph is good.
Corollary 3.18. All ordered star graphs are good.

Theorem gives more than the previous corollary though. It gives rise
to an interesting set of ordered graphs created by repeating the operation of
appending left or right stars. We will define these ordered graphs.

Definition 3.19. We call an ordered graph G= a monotone caterpillar graph
if there exist ly, ..., ly,r1,...,7, €N for somen € N such thatl; =1 orr; =1
for each1 <1i<n and

G = Sl1,r1 + o+ Sln,rn

holds. In other words, if G< can be obtained by performing joins on one-sided
ordered star graphs; see Figure 3.8

It follows from Theorem that every monotone caterpillar graph is good.
Corollary 3.20. All monotone caterpillar graphs are good.
We conjecture that there are no other good connected ordered graphs.

Conjecture 3.21. A connected ordered graph G< is good if and only if it is a
monotone caterpillar graph.
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Figure 3.8: An example of a monotone caterpillar graph S 3 + S31 + S12 4+ S14.

For ordered graphs up to 6 vertices, Conjecture |3.21] is verified by the ex-
haustive computer search performed by our SAT solver based utility, which is
described in Chapter [4]

In an attempt to get a better hold of our conjecture, we will prove an al-
ternative characterization for monotone caterpillar graphs using some forbidden
ordered subgraphs.

Proposition 3.22. A connected ordered graph G< is a monotone caterpillar
graph if and only if it does not contain any of the four ordered graphs from Fig-

ure 3.9 as ordered subgraphs.

A

"N
Figure 3.9: Any ordered graph that does not contain any of these four ordered
graphs as ordered subgraphs is a monotone caterpillar graph.

Proof. One implication is trivial, because by the definition of a monotone cater-
pillar graph, it cannot contain any of the ordered graphs from Figure |3.9/ as an
ordered subgraph.

It remains to prove that if an ordered graph G< does not contain any of these
ordered graphs as an ordered subgraph, then it is a monotone caterpillar graph.
We will prove this by induction. For graphs with less than 4 vertices it is trivial
and for graphs with 4 vertices it can be easily checked by hand. Assume it is
true for all connected ordered graphs with at most n vertices and let us have
a connected ordered graph G< with vertices 1,...,n 4 1 such that it avoids all
ordered graphs from Figure [3.9) as ordered subgraphs.

Since G< is connected, the last vertex n+1 certainly has at least one neighbor,
we can thus denote by v its leftmost neighbor. The ordered subgraph H< induced
by the vertices 1,...,v of G< is a monotone caterpillar graph by induction. If
v =n, we are done, as G< = H<+ 51 5. If v <n, welet I = {v+1,...,n}. Note
that [ is non-empty.
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There can be no edges between vertices in I as this would imply the existence
of A as an ordered subgraph. There also cannot be any edges from I to the left
of v as this would imply B as an ordered subgraph. As the graph is connected,
all vertices from I thus have to be adjacent either to v or n+ 1, but not both, as
this would imply the existence of D as an ordered subgraph of G<. If v; € I was
adjacent to v and some other vy, € I to n+ 1, it would imply either the existence
of B (for v; > vy), or the existence of C' (for v; < vy). Thus, vertices from [ are
adjacent either all to n + 1, or all to v. Therefore G< is a monotone caterpillar
graph, as either G< = H< 4 51,12 in the former case, or G< = H~ + S, _, 421
in the latter case. O

Remark. If we assume G< to be an ordered tree, we can leave out D in Figure 3.9
and the characterization still holds.

We can extend this characterization of monotone caterpillar graphs with these
“forbidden” ordered subgraphs. The following corollary follows immediately from
Proposition (3.22]

Corollary 3.23. An ordered tree G< is a monotone caterpillar graph if and only
if it does not contain any ordered graph from Figure[3.10 as an ordered subgraph.

A

By

Bs

AN
AN

33D

Figure 3.10: Forbidden subgraphs of size 4 for a monotone caterpillar graph. Also
all ordered trees on four vertices that are not monotone caterpillar graphs.
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The difference between Corollary and Proposition |3.22]is that all the new
ordered graphs in Figure [3.10] are obtained by extending the two disconnected
ordered graphs A, B from Figure [3.9into connected ordered graphs.

Also, none of the ordered graphs from Figure [3.10] is good. Goodness of A;
and its reflection A] is disproved by the coloring in Figure The ordered graph
By is shown not to be 4-good in Figure [3.4] although it is 3-good. By exhaustive
search we found out that none of the other ordered graphs is 3-good.

Encouraged by our characterization of monotone caterpillar graphs from Co-
rollary and supported by our computed results for graphs with up to 6
vertices, we ask this question.

Problem 3.24. Does it hold that a connected ordered graph is n-good if and only
if each of its connected ordered subgraphs is n-good?

A positive answer to Problem would together with Corollary verify
Conjecture [3.21] and also give the complete characterization of all Ramsey good
connected ordered graphs. However, this seems unlikely considering the known
results about Ramsey goodness, as a graph usually becomes n-good for some
n € N only when the graph is sufficiently large with respect to n.
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4. Computing ordered Ramsey
numbers

In this chapter, we showcase how to computationally deal with searching for
avoiding colorings and thus calculating ordered Ramsey numbers for given ordered
graphs.

Problem 4.1. We are given ordered graphs Gy and G5 and a number N € N.
Does there exist a coloring on N wvertices that contains neither a red Gy nor
a blue G5 as an ordered subgraph?

We will solve this problem constructively by an algorithm so that we can find
the avoiding coloring if we prove there is one.

4.1 Reduction to SAT

We will reduce Problem to a problem of finding a satisfiable assignment of a
formula in the conjunctive normal form, the so-called SAT problem. The reason
it helps is that although SAT problems are generally NP-hard, there already exist
many heavily optimized SAT solvers, which can often handle the problem quickly
for sufficiently small numbers |GT|, |G5 |, N.

Let us have a coloring of an ordered graph Ky with vertices V' = {1,...,N}
and let r := |G| and b := |G5|. For each edge {i,j} of Ky we create a boolean
variable z; ; set to true if the edge {7, j} is red and false if it is blue. We will
devise a SAT formula ¢, whose satisfiability is equivalent to the non-existence of
a red GT as an ordered subgraph in our coloring of Ky.

For the case r > N, any coloring of Ky certainly does not contain G} as an
ordered subgraph, we can therefore set ¢, = true. Let us assume r < N and let
PS, be the set of all subsets of V' of size r. If we fix any subset S = {vy,...,v,} €
PS,., the satisfiability of the following SAT clause

Cs = \/ T, v,

{i.7}€B(GT)

is equivalent to the non-existence of G as a red ordered subgraph on these k
vertices as the edge locations are uniquely determined.
Now we can easily express ¢, as a conjunction of these clauses:

Or = /\ CS: /\ \/ Loy, ;-

SePS; v1,...,vrE[N] {i,j}€E(GY)
V1< <VUp

Note that the resulting expression is in the conjunctive normal form.
We can analogically obtain a SAT formula S, whose satisfiability is equivalent
to the non-existence of a blue G5 as a blue ordered subgraph of our colored Ky:

Yo = /\ \/ Lvgv;-

v1,..,E[N] {i,j}€E(G5)
V1 <--<Vp
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By performing the conjunction of these formulas we get our desired formula
© = . Ay, whose satisfiability is equivalent to the non-existence of both red G
and blue G5 as ordered subgraphs of K. Note that the resulting SAT formula
¢ is in the conjunctive normal form.

If ¢ is not satisfied for any choice of the variables z; ;, then every coloring of
K5 contains either a red copy of G} or a blue copy of G5 as an ordered subgraph.
On the other hand, if we do find values z; ; which satisfy ¢, we can treat them
as a coloring that can be visualized.

4.2 Our SAT-based utility

We combined the SAT reduction with a graphical interface in order to create a
working utility, which greatly helped with obtaining many previous results; see
Figure We include a brief description as we believe this tool, which is based
on the SAT solver Minisat [22], can be used by other researchers.

§ Ordered Ramsey numbers utility - =] X
SATsolver: [minisat |  Avoiding graph size: 12 4 ¥ Enforce symmetry Special conditions:

Terminate computation | Copy graph as text | Save current figures
Help! Find all solutions in a separate thread ‘ Create new SAT formula — iy
Current red graph: ‘
Graph size:
5 3
Graph type:
[Leftstar
New graph
Edge +-er
Current blue graph
Graph size:
P
Graph type:
[Complete ~
New graph
Edge +-er

123 456 7 8 9101112

Figure 4.1: Our utility used to compute ordered Ramsey numbers and to search
for avoiding colorings. One can set the desired size of an avoiding coloring and
customize red and blue graphs this coloring is supposed to avoid.

The utility provides an option to build and customize a “red” ordered graph
Gy and a “blue” ordered graph G5 . Then we set N, the size of a coloring avoiding
G as ared subgraph and G5 as a blue subgraph. We can also force some edges of
the coloring to be red or blue, or we can force the whole coloring to be symmetric,
both of which is implemented by a simple extension of the SAT formula.

After setting all these parameters, we can set the SAT formula and either
exhaustively search for all possible colorings while saving them to a folder, or
interactively click through the solutions in the GUI while always searching for the
next one. The outputs are graph colorings and coloring matrices if a satisfying
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coloring exists, or a statement that the SAT formula is not satisfiable and thus
no coloring of the chosen size exists.

This utility can reasonably well handle colorings with up to 17 vertices, how-
ever, this depends on the computational power and on the ordered graphs Gy

and G5. To be precise, the SAT formula ¢ has <‘G]\Q|) clauses with |Gy| literals

each and (I %O clauses with |Gy | literals each, thus it can quickly get very large.
It can get even larger when we search for multiple colorings, as after finding a
satisfying assignment for ¢, we simply append a new clause forbidding this solu-
tion, so that we find other solutions when we feed the modified SAT formula to
the SAT solver. This new appended clause has (1;, ) literals.

The code of our utility is available on GitHub; see [23]. It should be noted that
the utility will not work without a supported SAT solver installed and included
in the system path.

4.3 Applications

Here we sum up how we used the utility to obtain some supporting results men-
tioned in the same order as stated in this thesis. Note that we have also used
a slight modification of our utility where we ran experiments on some specific
families of ordered graphs like ordered star graphs, ordered trees, ordered paths
etc.

In Chapter [2] we used the utility to give us an idea about the structure of
colorings avoiding N M= as an ordered subgraph, which was then introduced in
Proposition 2.8l We also used it to obtain counterexamples for Conjecture [2.6
stated in the proof of Theorem The proof of Proposition 2.12 stating that
N M. is good has also been preceded by showing that N M5 is n-good for n up
to 8.

In Chapter 3] we used the utility to exhaustively search for n-good graphs
for small values of n and small graphs with size up to 8. This gave us the idea
about monotone caterpillar graphs and encouraged us to state Conjecture [3.21
and Problem [3.24] at the end of the chapter.

The utility has more applications apart from the topics discussed in this thesis.
We show one such example.

Definition 4.2. An alternating path Alt; is the ordered path onn € N vertices
with edges {i,j} such that i+ j € {n+1,n+ 2}; see Figure[{.9

1 2 3 4 5 6 7

Figure 4.2: The alternating path Alts.
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Balko, Cibulka, Kral and Kyn¢l [5] proved that the diagonal ordered Ramsey
number 7. (Alty) is linear in n. They also asked whether alternating paths have
the smallest ordered Ramsey number r_ (G5 ) over all ordered paths G for a
given n € N. Exhaustive search over all ordered paths on at most 7 vertices offers
a positive answer to this question for n < 7.
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5. Conclusion

We left a couple of open problems. In Chapter 2] we investigated nested matchings
and improved or generalized some already known bounds. Using definitions from
Chapter [3| we proved that NM; is good, whereas N M, and N M are not even
3-good. For larger nested matchings, it seems likely that they are also not 3-
good, though we lack a general construction. For NM; we have computationally
proved that it is n-good for n up to 5.

Problem 5.1. Is the ordered graph N M5 good?

These results seem to be related to proper colorings of ordered graphs that
do not contain nested matchings as ordered subgraphs. For example, similarly as
in the proof of Proposition 2.12] the ordered graph NM; would be good if every
ordered graph avoiding N My as an ordered subgraph was 5-colorable.

In Chapter |3| we investigated Ramsey goodness of ordered graphs. While
we proved Ramsey goodness for a wide class of graphs, we still lack complete
characterization of all ordered Ramsey good graphs.

Problem 5.2. Are there any other connected good ordered graphs except for
monotone caterpillar graphs?

We also restate the briefly discussed question of Balko, Cibulka, Kral and
Kynel [5], which we were able to prove computationally for n < 7.

Problem 5.3. Does r-(Alts) < r-(G<) hold for any ordered path G< onn € N
vertices?
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