
BACHELOR THESIS

Daniel Crha

Board game with artificial intelligence

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: Mgr. Martin Pilát, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2020



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



Most of all I want to thank my supervisor for his help and advice, he was always
there for me whenever I needed his opinion. I also thank all of my family and
friends for being there for me along the way, my journey has been long and I
could not have done it without them.

ii



Title: Board game with artificial intelligence

Author: Daniel Crha

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Martin Pilát, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: Multiplayer board games with imperfect information present a difficult
challenge for many common game-playing algorithms. Studying their behavior
in such games can be difficult, because existing implementations of such games
have poor support for artificial intelligence. This thesis aims to implement an
imperfect information multiplayer board game in a way that provides a frame-
work for developing and testing different types of artificial intelligence for board
games with the aforementioned qualities. Furthermore, this thesis explores the
implementation of several algorithms for the game. This aims to showcase the
artificial intelligence framework, as well as to analyze the performance of existing
algorithms when applied to a board game with elements such as hidden informa-
tion and multiple players.

Keywords: board game, artificial intelligence

iii



Contents

Introduction 3
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Related Work 4
1.1 Game Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 OpenAI Gym . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 boardgame.io . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 MaxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . 7

2 Game Design 11
2.1 High Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Game Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Colonist Pick . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Proper Turns . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Colonists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Branching Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 AI Framework 17
3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Adding new AIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Used Algorithms 21
4.1 Random Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 MaxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Information Set Monte Carlo Tree Search . . . . . . . . . . . . . . 26

5 Experiment Description 28
5.1 Game Balance Experiments . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Algorithm Comparison Experiments . . . . . . . . . . . . . . . . . 31
5.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Conclusion 36

Bibliography 37

List of Figures 39

1



List of Tables 40

List of Abbreviations 41

A Attachments 42
A.1 User Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.1.3 Game Configuration . . . . . . . . . . . . . . . . . . . . . 42
A.1.4 Gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.2 Developer Documentation . . . . . . . . . . . . . . . . . . . . . . 51
A.2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2.2 Project Structure . . . . . . . . . . . . . . . . . . . . . . . 51
A.2.3 Game Engine . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2.4 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.2.5 AI framework . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2



Introduction

Foreword
In game theory, perfect information two-player games are often studied, and
numerous algorithms have been designed with the purpose of playing them. This
includes games like Chess and Go, which have had large breakthroughs in recent
years [1]. However, real world situations do not always have perfect information,
or only two parties involved. We could for example imagine multiple countries,
which have only approximate information about the armies of their opponents.
In this scenario, it could be useful to have tools to simulate potential enemy troop
movements or placements.

Even though algorithms which are able to model imperfect information and
multiple players are often useful, they are not studied nearly as often. Designing
such an algorithm is not easy, and there are many pitfalls which make conventional
game theory algorithms much less effective at solving imperfect information and
multi-player problems. This thesis therefore aims to analyze the problems of im-
plementing such algorithms, and to implement some of them in pursuit of that
goal.

Naturally, some frameworks do already exist for the implementation of such
games. However, at the time of writing, some of them only have AI (Artificial
Intelligence) support as an experimental and sparsely documented feature [2], and
others only focus on specific fields of AI [3]. This work aims to provide a kind of
plug-and-play” experience, where AI developers have minimal barriers between
cloning a git repository and having a working AI.

Goals
The main goal of this thesis is to create a multi-player board game with imperfect
information states. The game’s name is Colonizers. The game will primarily
be designed with AI in mind, and it will provide a reasonable interface for the
implementation of AI players.

Another goal is the implementation of several AI players for said game. This
will allow us to not only explore potential problems with implementing AIs for
games of this kind. We will also verify that the API (Application Programming
Interface) provided by the game is sufficient for implementation of such AI players,
and that the API is reasonably easy to use.

We then wish to compare the implemented AI algorithms in mutual play, and
identify the algorithms which perform the best. This will establish a benchmark
for future AI algorithms which can be developed for Colonizers.

3



1. Related Work
Before we discuss the design of Colonizers and its implementation, let us first
make an overview of existing related work. This chapter will demonstrate why
existing frameworks would not be a good fit for Colonizers. We are interested
mainly in two areas here:

• Implementation of similar games, and frameworks facilitating that

• Algorithms adapted for multi-player games and algorithms adapted for im-
perfect information games

1.1 Game Frameworks

1.1.1 OpenAI Gym
OpenAI Gym is ”a toolkit for developing and comparing reinforcement learning
algorithms” [3]. It is a popular tool in the reinforcement learning field, because
it is modular, and easy to work with. It features a standardized API for all
of its environments (games or problems). This means that agents built for one
environment can be easily transitioned to other environments, without having
to structurally rebuild it. Another benefit is the fact that it is easy to create
new environments, and these newly created environments can be used by anyone,
since the API is standardized.

Figure 1.1 is an example (as presented in the OpenAI Gym documentation
[3]) of a Python program which solves one of the simpler environments available
out-of-the-box in OpenAI Gym.

import gym
env = gym.make(’CartPole-v0’)
for i_episode in range(20):

observation = env.reset()
for t in range(100):

env.render()
print(observation)
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:

print("Episode finished after {} timesteps".format(t+1))
break

env.close()

Figure 1.1: OpenAI Gym — AI implementation.

The environment being solved (CartPole-v0 ) is a task where the AI must
balance a pole by moving the cart below it left and right. The agent only performs
random moves, but the example clearly illustrates how the agent interacts with
the environment.

4



OpenAI Gym is not particularly suitable for the study of multi-player games
with imperfect information for a few reasons:

• It only supports reinforcement learning agents. The API is designed with
this in mind, and only provides appropriate tools to machine learning ap-
proaches. Other kinds of artificial intelligence are not very well supported.

• It does not provide any tools for determinization 1 of imperfect information
states. This would force AIs to track their own information sets, and to
then produce determinizations of game states on their own.

In spite of that, there is something we can take away from OpenAI Gym when
designing Colonizers. Notably, the API is very elegant, and creating an AI which
simply plays random moves is a matter of very few lines of code. We will try to
achieve this with Colonizers.

1.1.2 boardgame.io
boardgame.io [2] is a game engine for creating turn-based games. It features
many helpful features for creating board games, such as support for multiplayer,
randomness, imperfect information, and a few other useful features.

Using boardgame.io for the implementation of Colonizers would make many
things much simpler, notably the implementation of game logic would be trivial.
However, it is also not suitable for the purposes of this thesis, because the AI
support is poor. The engine does feature a degree of AI support, but the API
is limited to using pre-existing AIs which ship with the game. The AIs which
ship with the game are an MCTS (Monte Carlo Tree Search) AI and a random
AI. The API for AI players only provides a method for us to list the legal moves
in a given game state — it does not however provide ways to implement a fully
custom AI.

1By the determinization of a game state, we understand the conversion of a game state with
hidden information into a game state with perfect information. Determinization takes into
account the information set of the given player. For example, we can imagine a poker player
who has been dealt a hand which includes the Queen of Hearts. When this player is thinking
about what other players may have, the Queen of Hearts is out of the question, since the player
has it, and there is only one in the deck. Therefore, a rational determinization of a poker game
state would be to take all cards which started in the deck, remove the ones the player is holding,
and then randomly assign other cards to the other players.

5



1.2 Algorithms
Here we will discuss several existing algorithms which are applicable to Colonizers.
This includes algorithms which will need to be adapted in order to be useful in
our situation, and algorithms which will work mostly out-of-the-box.

1.2.1 MaxN
Most work in the field of game-playing algorithms has traditionally been done in
games which involve two players, perfect information, finite games which do not
feature random processes. These games are also often constant-sum, therefore
they cannot feature cooperative strategies. One of the most well-known algo-
rithms from this field is the Minimax algorithm [4]. The pseudocode in Figure 1.2
demonstrates the Minimax algorithm.

def minimax(node, depth, isMaximizing):
if depth == 0 or node is terminal:

return node.heuristicValue
if isMaximizing:

value = -inf
for child in node.children:

value = max(value, minimax(child, depth - 1, False))
return value

else:
value = +inf
for child in node.children:

value = min(value, minimax(child, depth - 1, True))
return value

Figure 1.2: Minimax algorithm [4].

The core principle of Minimax is the fact that in a two-player zero-sum game,
one player’s gain is the other player’s loss. Therefore from the point of view of the
opponent, minimizing the player’s score also means maximizing their own. When
evaluating the game tree, both players can use the same metric to make decisions
— one player is maximizing it, and the other is minimizing it. The nodes of the
tree alternate every level — in the root state, the current player is maximizing
the value of nodes, and in the children of the root state, the other player is
minimizing the value of nodes. In other words, if the root state is associated
with player A, player A will attempt to choose a node with a maximal value at
every even level of the tree (assuming the root node is level 0). Player B will
then attempt to choose the least valuable child in nodes at odd levels in the tree.
Minimax explores the tree of game states up to a depth d, whereby rather than
deepening the tree, it uses a positional evaluation function to evaluate the leaf
nodes. As found by Hoki and Kaneko [5], the quality of the positional evaluation
function is very critical to the performance of Minimax.

If we want to apply a Minimax-like method to Colonizers, we must move
away somewhat from the original Minimax algorithm. In multi-player games,

6



the game is often not a zero-sum game. Minimax can still be applied in this
situation, though we have to make a relatively strong assumption that the goal
of other players is to minimize the player’s score. We often cannot afford to make
this assumption, since this would mean that opponents have no regard for their
own points. Since Minimax is not powerful enough for our use case, we will look
to the MaxN algorithm [6].

The MaxN algorithm is not an extension of Minimax strictly speaking, but
it does apply the driving principles of Minimax to games with more than two
players. To introduce multiple players and a non-constant sum game to Minimax,
MaxN changes the way the game is viewed. Rather than the other players trying
to minimize the player’s gain, each player is trying to maximize their own gain
independently. Each game state has an associated payoff vector, where the i-th
position of the vector contains the payoff for player i in this state. Just like in
Minimax, levels in the tree correspond to players making decisions on their turns.
In the context of MaxN, this means the i-th player maximizing the i-th position
of the reward vector among the current node’s children.

The procedure MaxN is defined recursively (as presented by Luckhardt and
Irani [6]) in Figure 1.3.

(1) For a terminal node,
maxn(node) = payoff vector for node

(2) Given node is a move for player i, and
(v1j , ..., vnj) is maxn(jth child of node), then
maxn(node) = (v∗

1, ..., v∗
n),

which is the vector where v∗
i = max

j
vij.

Figure 1.3: MaxN algorithm [6].

It is important to mention that MaxN still uses a positional evaluation func-
tion, much like Minimax. However, it is not enough to only evaluate leaf nodes
once. Since each node must have a value for every player, we must run the evalu-
ation function once from the perspective of each player in the game. Notice that
even though each player is only maximizing their own value and disregarding that
of others, this does not necessarily extend to the positional evaluation function
itself. The evaluation function could reasonably take into account the standing
of other players and boost the evaluation if other players are doing poorly.

We can see an example of MaxN evaluating a state tree in a three-player game
in Figure 1.4. Observe how at each level, the player on turn chooses the action
which gives them the highest reward.

The MaxN algorithm itself does not solve the problem of imperfect informa-
tion. Therefore we will describe the extension of MaxN to imperfect information
games in Section 4.3.

1.2.2 Monte Carlo Tree Search
Monte Carlo Tree Search [7] is a class of algorithms for searching trees. In com-
parison with the Minimax class of algorithms, it does not feature a positional

7



A(1,1,1)

B(0,4,4)

C(2,2,5)

(3,3,3) (2,2,5)

C(0,4,4)

(2,5,2) (0,4,4)

B(1,1,1)

C(4,0,4)

(5,2,2) (4,0,4)

C(1,1,1)

(4,4,0) (1,1,1)

Figure 1.4: MaxN tree example [6].

evaluation function. Instead it uses simulation to evaluate positions. When we
talk about MCTS in the context of game playing algorithms, MCTS consists of
two parts: a moderately shallow tree, and deep simulated games. The algorithm
grows its tree structure by adding one node at a time, and then performing a
game simulation from the position associated with the node. The reward gained
from the result of the game playout is then backpropagated up the tree. Af-
ter iterating, MCTS can then choose the best move in the root node by simply
choosing the node with the best accumulated reward.

We can divide a MCTS-class algorithm into four main stages:

• Selection: Descend the state tree until a node is reached such that at least
one of the actions that leads from it has not yet been explored. We will
speak more about the consideration which goes into descending the tree
later in this section.

• Expansion: Choose an action that has not yet been explored and add its
corresponding node into the tree.

• Simulation: Run a simulation of the game from the newly added state.

• Backpropagation: Propagate the reward from the result of the simulation
back through the way we descended the tree.

A concept important to MCTS-class algorithms is the multi-armed bandit
problem. We can best understand the problem by reasoning about the following
example. Suppose that we have a slot machine with two arms, and both arms
have properties which are not known to us. We start by pulling the left arm, and
get a payout of 1. In this situation, it would seem reasonable to try the right
arm at least once, in case its payouts were much higher than those of the left
arm. Let us then assume that we pull the right arm and get a payout of 0.5.
Should we keep pulling the left arm or the right arm? The answer to this is not
easy, and there are multiple types of algorithms designed to solve the problem of
exploration versus exploitation, including stochastic and adaptive methods [8].

We can observe that the problem of choosing whether to perform playouts
in a node where we won many times previously, or whether to try new nodes is
a kind of multi-armed problem. We can therefore apply algorithms designed to
solve multi-armed problems in choosing which nodes to explore and which nodes
to exploit in MCTS-class algorithms.

8



While MCTS is applicable to games with perfect information, it needs to
be adapted for games with imperfect information. A popular approach is de-
terminization, which converts states with imperfect information to states with
perfect information by sampling information sets (an information set is a set of
states which are possible with respect to the information available to the player)
[9].

While determinization is a viable strategy, it is not without its pitfalls. Russel
and Norvig [10] speculate that since all information is revealed after determiniza-
tion, the resulting AI will never make information-gathering plays.

Another potential issue is the fact that determinization does not take into
account the fact that opponents have a degree of uncertainty about the player’s
own hidden information. Whitehouse, Powley and Cowling [11] point out that
”Determinization does not randomise the player’s own cards, and information set
trees are built solely from the point of view of the root player. In a sense this is a
worst case assumption, but it does mean that these algorithms can never exploit
the opponents’ lack of information”.

Other potential problems include two mentioned by Frank and Basin [12].
The first is strategy fusion. This occurs whenever an algorithm attempts to
combine strategies from particular worlds to produce an optimal strategy for
all worlds. Quoting Frank and Basin [12]: ”The flaw in this approach occurs
because of the property of incomplete information games that the exact state of
the world at any given point of play may not be known to a player. This imposes
a constraint on a player’s strategy that he must behave the same way in all possible
worlds at such points; a constraint typically broken when combining strategies
designed for individual worlds”. The second issue they identified is non-locality,
whereby certain determinizations may be essentially irrelevant, since players have
the ability to avoid them with gameplay decisions.

Some variants of MCTS try to use determinization in clever ways to avoid
its drawbacks. We will be looking at ISMCTS (Information Set Monte Carlo
Tree Search) [9], in particular we are interested in the SO-ISMCTS variant. In
order to overcome the obstacles associated with determinization, SO-ISMCTS
tree nodes correspond to information sets rather than game states. Specifically,
they correspond to information sets from the root player’s point of view. This
means that if we choose a determinization for a SO-ISMCTS tree node, it is
likely that many of that node’s edges will not be valid moves in the context of
the determinized state. Therefore, SO-ISMCTS limits the tree into the subtree
of valid moves with respect to a given determinization when descending the tree.

Cowling, Powley and Whitehouse [9] also present two other versions of ISM-
CTS, namely SO-ISMCTS + POM and MO-ISMCTS. We discuss their merits in
Section 4.4.

Figure 1.5 shows high-level pseudocode for the SO-ISMCTS algorithm, as
presented by Cowling, Powley and Whitehouse [9].

9



def SO-ISMCTS([s0]∼1, n):
create a single-node tree with root v0 corresponding to the

root information set [s0]∼1 (from player 1’s viewpoint)
for n iterations do:

choose a determinization d at random from [s0]∼1, and
use only nodes/actions compatible with d this iteration

# Selection
repeat

descend the tree (restricted to nodes/actions compatible
with d) using the chosen bandit algorithm

until a node v is reached such that some action from v leads
to a player 1 information set which is not
currently in the tree or until v is terminal

# Expansion
if v is nonterminal:

choose at random an action a from node v that is
compatible with d and does not exist in the tree
add a child node to v corresponding to the player
1 information set reached using action a and set
it as the new current node v

# Simulation
run a simulation from v to the end of the game using
determinization d

# Backpropagation
for each node u visited during this iteration do

update u’s visit count and total simulation reward
for each sibling w of u that was available for
selection when u was selected, including u itself do

update w’s availability count

return an action from the root node v0 such that the
number of visits to the corresponding child node is maximal

Figure 1.5: SO-ISMCTS algorithm [9].

10



2. Game Design
This chapter’s purpose is to discuss the considerations which went into designing
the game’s rules, and to describe said rules in detail.

The game is set on Mars with futuristic themes. In the game universe, Mars
is only just starting to be settled by humans, and there was a precious mineral
found under the surface - Omnium. This triggered a rush of colonists, who are
eager to make some profit. In the game, they compete for resources, and they all
want to build the largest colony, because the person with the largest colony can
extract the most Omnium and get rich.

2.1 High Level Design
Colonizers has a few design decisions which are inherently set in stone by the
premise of this thesis:

• The game must have more than two players

• The game must feature hidden information

• The game must support AI

AI support is only tangentially related to the design of the game rules, there-
fore we will not discuss it at length in this chapter. We will focus on the other
two requirements.

Colonizers is a four-player game. Four was chosen as a sweet spot for complex-
ity, since with five players, the game would start to get prohibitively expensive
to compute. It could be argued that three would accomplish the same goal, but
four makes more sense with respect to having enough design space. Four players
is also a very common player count for board games.

Hidden information is somewhat more tricky to get right. It can be imple-
mented in many ways, but even the simplest inclusions make the game much
more tricky to process with AI. There are two elements of hidden information in
Colonizers:

• Players’ hands and the Deck

• Players’ colonists

These elements will be explained in more detail in the following section. It is
worth noting however that it is possible to make information-gathering plays,
even though only in very limited ways and in rare circumstances. Information-
gathering plays are not a large design focus of Colonizers.

The game also features interaction between players — both malicious and
cooperative. This naturally means that it is possible for multiple players to
cooperate in order to gain an advantage, or to conspire against another player in
order to damage that player’s chances of winning. Many traditional AI algorithms
are not capable of cooperation or conspiracy, which provides room for specialized
AIs to shine.

11



Colonizers is technically not finite, since there exists a strategy which, if
employed by all players, will lead to the game never ending. The game also has
potentially infinite states. In practice this is incredibly unlikely, since the strategy
involves players intentionally passing up plays which would move them closer to
the victory condition.

2.2 Game Rules
The game is played in rounds, which consist of turns. Turns then consist of
phases. The four players start the game in a given order, and they always take
turns in this order for the entire game.

Each player has a colony where they can build modules. Each module has a
point value, and the goal of the game is to build the most valuable colony. When
any player builds eight modules in their colony, the game will end at the end of
that round, after the remaining players have taken their turns. When the game
ends, the values of all modules in each player’s colony are added up, and the
resulting value is that player’s final score. Players can also get a bonus to their
score if they reached eight modules in their colony before the game ended — the
first player to build eight modules gets four bonus points, and other players to
build eight modules get two bonus points each. 1 The final ranking of the players
when the game ends is determined by points — players with more points rank
higher. If multiple players are tied in points, the player whose position according
to the player order is earlier ranks higher. More information about modules and
ways to interact with them follow in subsequent subsections.

There is also a rare game end condition, which is triggered by players at-
tempting to draw from an empty deck 2. This immediately ends the game with
a draw, giving all players zero points and a rank of zero.

2.2.1 Colonist Pick
At the start of each round, players take turns picking colonists. A colonist
is a character with special powers, and the player controls a given colonist for one
turn. A player’s colonist is hidden from the other players. There are six colonists
in the game (see Section 2.2.3 for a list of available colonists). At the start of the
colonist picks, a random colonist is secretly removed for play for the rest of the
round. Then, players take turns picking from the remaining colonists one by one.
This means that after the last player picks, there is one colonist left over. This
colonist is then removed from play for the rest of the round.

1As an example, assume that all four players have seven modules in their colony. When
player 1 takes their turn, they do not build a module, ending the turn with seven modules.
Player 2 then builds a module on their turn, taking them to eight modules in their colony. This
triggers the game end condition, but the game is not over until all players have taken their turn
this round. Since player 2 was the first to reach eight modules, they get four bonus points.
Player 3 then also builds a module, taking them to eight. Since player 3 was not the first to
build eight modules, they get two bonus points. Player 4 then does not build a module, ending
the game with seven modules and zero bonus points. When player 4 finishes their turn, the
game ends.

2The deck is discussed in more detail in Section 2.2.4

12



The colonist pick phase creates a situation where players have asymmetrical
information. For example, the first player knows which colonist was removed at
the start, but has no information about the other players apart from knowing
the four colonist he is passing on. In contrast, the last player has relatively
little information about the players before them, but they know which colonist is
removed from play after being left over.

2.2.2 Proper Turns
After each player has chosen a colonist, the players take their actual turns, in
order of first to last. Each player acts in all phases of their turn before passing
the turn to the next player.

Each turn consists of the following phases:

• Draw Phase. The player has two options in this phase. They may acquire
two Omnium, which is the game’s currency. The player’s Omnium count
persists between rounds. Omnium is used to build modules in the player’s
colony. The player may also opt to draw 2 modules from the deck. The
player must then keep one of the modules, and place the other at the bottom
of the deck. The drawing action is not available if the player’s hand is full
(five modules). If the player controls a colonist with a passive ability, this
ability is automatically performed at the start of the draw phase. The
player’s colonist is also revealed to other players during this phase.

• Power Phase. The player may choose to use their colonist’s active ability
if the colonist has one.

• Build Phase. The player may choose to build one module from their hand.
To build a module, the player must spend the Omnium amount required by
the module’s build cost. Building the module adds it to the player’s colony
and removes it from their hand.

13



2.2.3 Colonists
The following colonists and their respective abilities are available in Colonizers:

• Visionary

– Passive Ability: Draw a card if the player’s hand is not full (maximum
hand capacity is five).

– Active Ability: None

• Ecologist

– Passive Ability: Gain 1 Omnium for each green module in his colony.
– Active Ability: None

• Miner

– Passive Ability: Gain 1 Omnium for each blue module in his colony.
– Active Ability: None

• General

– Passive Ability: Gain 1 Omnium for each red module in his colony.
– Active Ability: None

• Opportunist

– Passive Ability: None
– Active Ability: Steal up to 2 Omnium from a chosen colonist. If no

player controls the chosen colonist, this ability has no effect.

• Spy

– Passive Ability: None
– Active Ability: Swap hands with a chosen colonist. If no player con-

trols the chosen colonist, this ability has no effect.

14



2.2.4 Modules
At the start of the game, all modules start in a deck in a random order. The order
of modules in the deck is hidden. Whenever a module is drawn by a player, it is
taken from the top of the deck. Whenever a module is discarded, it is placed at
the bottom of the deck. The only exception to this is the situation where a player
is discarding a card after drawing two in the draw phase. If the player’s colonist
is the Visionary, it is possible for the player to overdraw (draw more modules
than the hand capacity would allow). In this situation, overdrawn modules are
removed from play entirely for the rest of the game.

There are 52 modules in the game. Modules have no special effects on the
game board, the only interaction the player has with them is building them.
The modules built in the player’s colony also influence the passive ability of
the following colonists: Ecologist, Miner, General. The colored modules are
intentionally less efficient than modules without a color. This is because they
enable synergies with certain colonists. As a consequence, the game has a dynamic
where in the early game, it is often beneficial to build colored modules for synergy
in order to establish a good Omnium economy for future turns. As the game draws
closer to the end, it is often best to start disregarding synergy and simply build the
most efficient buildings points-wise. Table 2.1 is a table of all modules available
in the game. Note that the module names are a cosmetic feature which would be
welcome in a physical copy of the game, but due to screen space constraints on a
computer screen, module names were omitted from the game’s user interface.

Name Build Cost Value Color Quantity

Oxygen Generator 4 4 Green 4
Water Reservoir 5 6 Green 4
Hydroponics Facility 6 8 Green 4
Eco-Dome 8 11 Green 1
Marketplace 2 2 Blue 4
Warehouse 3 3 Blue 4
Quarry 5 6 Blue 4
Omnium Purification Plant 8 10 Blue 1
Garrison 1 1 Red 4
Barracks 2 2 Red 4
Military Academy 3 3 Red 4
Planetary Defense System 6 7 Red 1
Housing Unit 1 1 None 4
Spaceport 4 5 None 4
Research Lab 6 8 None 4
Mass Relay 12 16 None 1

Table 2.1: Available modules.

2.3 Branching Factor
The branching factor of a game is an important statistic which has heavy influence
on the performance of many game-playing algorithms [13]. Therefore it is useful

15



to analyze the branching factor present in Colonizers.
Firstly, we can analyze the branching factor present during the colonist pick

phase. There are six colonists in the game, and one of them is always randomly
removed. Then, players take turns picking from the remaining five colonists. This
means that the first player may choose from five colonists, and the last player
may choose from only two. We can view the distribution of colonists during the
pick phase as a permutation of colonists, therefore there are 6! = 720 different
outcomes for the colonist pick phase. An interesting case are permutations where
the first and last colonist (the colonists removed from play) are swapped. Even
though both end up out of play for the round, their presence during the pick
phase has an observable effect on the players’ information sets. Therefore we
must consider these permutations as distinct.

During the draw phase, a player may either gain Omnium, or draw two cards
and discard one of them. This means that the draw phase for a single player has
3 different outcomes.

In the power phase, branching factor is only relevant for colonists with ac-
tive abilities, namely Spy and Opportunist. Players controlling either of these
colonists may choose to either not use their power, or to target one of the five
remaining colonists. This gives us 6 possible choices. For other colonists, the
branching factor is 1. Since two out of the six colonists have an active ability, we
can say that the average branching factor for the power phase is 16

6 ≈ 2.67.
Lastly, we will consider the build phase. A player may always choose to build

nothing. Since the hand size is limited to five, a player may choose to perform
up to six different actions during the build phase.

Altogether, this gives us an approximate branching factor of 3 ∗ 16
6 ∗ 6 = 48

per player turn taken. Since each player takes a turn during a round, we have a
branching factor of 484 = 5308416 per round. If we also consider the colonist pick
phase, we have an approximate branching factor of 5308416 ∗ 720 = 3822059520
for a complete round — nearly four billion outcomes. For reference, game length
usually ranges between from about 15 to 40 rounds. 3.

3We did not conduct exact measurements for game length, these values are simply approxi-
mate observations.

16



3. AI Framework
This chapter contains a high-level overview of the AI Framework in Colonizers.
More concrete descriptions are available in Attachment A.1 and Attachment A.2.

3.1 Design
Firstly, the choice of technologies used for creating Colonizers warrants some
explanation. The architecture of the application consists of three layers:

• Game Engine. The game’s backend is implemented in C# and targets .NET
Core 3.1. The game logic itself is separated into a library, and this library
is then hosted behind a web API with ASP.NET Core.

• UI Layer. The UI for the application is a single-page application (SPA)
made with Angular.

• AI Scripts. The AI scripts are implemented in Python 3.7. The project
contains a base class AIBase for other AIs. This base class provides the AIs
with the necessary API for communicating with the game engine.

The application is then hosted in Electron in order to run as a desktop applica-
tion. This is facilitated by the C# library Electron.NET, which allows the hosting
of ASP.NET Core applications inside Electron. There are multiple reasons why
we chose Electron instead of a more traditional GUI like WPF or WinForms, and
instead of rendering graphics for the game ourselves:

• Electron is cross-platform. The attentive reader has probably noticed that
all three of the aforementioned components are made with cross-platform
technologies, and this is very much by design. In principle, nothing prevents
Colonizers from being cross-platform, which is advantageous considering
many AI researchers have Linux as their primary platform. In practice
however, Colonizers only supports Windows due to the way that commu-
nication between the game engine and AI scripts is implemented. This
communication channel could be easily replaced with a cross-platform so-
lution, in fact the classes which are responsible for communication could
easily be swapped out. The only reason why this has not been done is sim-
ply prioritization — the application has other features which had a higher
priority.

• Electron provides easy ways of bundling and installing applications. It has
a convenient installer which makes installing the application easy for end
users.

• Electron is a stable and tested technology, which is used by many widely-
used applications.

• A turn-based board game lends itself well to being drawn in a web page and
being controlled by a SPA. If Colonizers were an action game or a real-time
strategy game, this solution would no longer be viable.

17



C# was chosen for the implementation of the game engine because it is a lan-
guage well-suited for writing backends. There are many solid libraries, and the
language is fast thanks to a well-optimized JIT (Just In Time) compiler. It would
have been somewhat easier to implement the game’s backend in Python, since
the communication between the game engine and the AI scripts would have been
trivial. However, C# was chosen mostly because it is a statically-typed language,
which offers protections against many types of bugs and errors by catching them
at compile-time. When writing game logic, many errors are prevented simply
by clever usage of types, as opposed to them coming out during runtime with
Python.

The choice of Python for AI scripts was an easy one, considering most machine
learning is done with Python today. It is also a rather easy language to learn and
understand.

Angular was chosen as the SPA framework because it is a popular and robust
solution. Its state management system capabilities lend themselves well to imple-
menting a UI with many pieces which depend on one another in complex ways.
One downside of Angular is that since it is a web application framework, its real-
time performance is less than ideal. This negative is essentially void when applied
to Colonizers however, since our game is a turn-based board game. Therefore our
focus when choosing a framework was mainly on having a robust solution which
is easy to develop and maintain. There are multiple such frameworks, notably
React and Vue, which would have also been viable choices. However, Angular is
simply the SPA framework the author is the most familiar with.

Another design consideration is the design of the API used to communicate
between the game engine and AI scripts. The chosen API is subclassing —
a new AI must simply subclass a provided base class (AIBase), and implement an
abstract method. The AI script is then started in a separate process by the game
engine, and the implemented method is called when the game engine requires
the AI to make a move. The AI then chooses a move, and returns an identifier
corresponding to the chosen move. This API is simple and easy to understand,
as well as easy to implement.

3.2 Interface
The API for communication consists of the AI subclassing the AIBase class, and
implementing the messageCallback(self, gameState) abstract method. This
method is invoked by the game engine when it requires a move to be chosen by
the AI. The gameState parameter contains a dictionary representing the current
game state, as well as a list of available actions in this state.

The AI base class also contains various utilities for AI scripts to use. The
most important of these utilities is the simulate(self, boardState, move)
method. This method will simulate the given move via the game engine, and
return the new game state. This allows AIs to simulate playouts without having to
implement them internally. Another useful method is determinize(self), which
returns a determinized version of the current game state. This determinization is
performed by the game engine. The AI also does not need to track information
sets, since the game engine does this internally. This means that for example if the
AI is playing second and choosing a colonist, the game engine will automatically

18



track the information the AI has about the previous player’s colonist (one of two
possible colonists). Other utility methods included simplify working with the
game state dictionary by providing methods for commonly performed operations.

Figure 3.1 shows the implementation of an AI for Colonizers. This AI simply
chooses random moves.

from AICore import *

import sys
from random import seed, randint

class RandomAI(AIBase):
def init (self):

super(). init ()

def messageCallback(self, gameState):
# important to return string, not number
return str(self.pickRandomAction(gameState))

def pickRandomAction(self, gameState):
actionCount = len(gameState["Actions"])
return randint(0, actionCount - 1)

if name == " main ":
if len(sys.argv) != 2:

# AI Script must have 1 argument - name of named pipe
raise Exception(’Invalid arguments’)

seed(42) # Seed AI for reproducibility
ai = RandomAI()
ai.run(sys.argv[1])

Figure 3.1: Random AI implementation.

As seen in Figure 3.1, creating a new AI is very simple. About half of the
shown code is boilerplate code, and the actual AI class is very simple.

Note that the game engine invokes the AI script via command line, which
means that the AI must contain the main boilerplate code.

3.3 Adding new AIs
There are two supported kinds of AI scripts: a stand-alone Python file, and
a folder with potentially multiple Python files and a complicated subdirectory
structure. The second option exists to facilitate more complicated AIs, where
implementing the whole AI in a single Python file would not be reasonable.

The game looks for AI files in an internal directory inside its installation
folder. While it is possible to add and remove scripts this way, the GUI provides
a way to do this easily. In order for an AI script to be recognized by the game, it
must not only be located in the internal directory, but it must also follow certain
conventions.

19



For stand-alone Python files, the only convention is that the file must fol-
low the naming convention of <Name>Intelligence.py. An example of this is
RandomIntelligence.py.

For folder-based AIs, the folder itself must follow the naming convention of
<Name>Intelligence, for example NestedIntelligence. This folder must also
directly contain a file named main.py, which will be used as the AI’s entrypoint.
All added AI files must also contain a main function, since they are invoked
as the entrypoint. See Figure 3.1 for an example of how to add a new AI.

The AI needs to reference the AICore.py file in some way, since it contains
the AI base class. This file is contained in the aforementioned internal directory,
which means that stand-alone AI scripts placed in this directory can import the
file without issues. The problem comes with folder-based AIs, since Python unfor-
tunately does not provide a convenient way to import files which are higher in the
file hierarchy. Therefore when copying AI folders with the GUI, the AICore.py
file will automatically be copied into the new AI’s directory. This means that
folder-based AIs for Colonizers cannot contain a AICore.py file in the top level
of their folder, since the file would be overwritten during copying. Alternatively,
the folder can be manually copied into the game files. In that situation however,
the AICore.py file must be copied manually as well.

20



4. Used Algorithms
Colonizers has four different kinds of AI implemented out-of-the-box. This chap-
ter describes their implementations, and discusses the design decisions taken when
creating them.

4.1 Random Decisions
The random decision algorithm is rather primitive — when it is presented with
a choice of actions, it simply picks a random one. It is meant to be the bottom
baseline for other algorithms, as well as being a proof-of-concept. Figure 4.1
shows the AI class which implements this logic.

class RandomAI(AIBase):
def init (self):

super(). init ()

def messageCallback(self, gameState):
# important to return string, not number
return str(self.pickRandomAction(gameState))

def pickRandomAction(self, gameState):
actionCount = len(gameState["Actions"])
return randint(0, actionCount - 1)

Figure 4.1: Random choice algorithm.

An interesting property of this AI is the fact that if four of them play against
each other, it is possible for the game to never end, since the random decision
making does not have to converge towards an end state. This situation is ex-
tremely unlikely however.

4.2 Heuristics
The heuristic AI is intended to be the real baseline for other implemented AI
algorithms. It consists of a number of rules which determine the action to perform
in a given game state. If no rules are applicable to a given state, the AI simply
falls back to random choice. First, let us reason about why certain heuristic rules
were chosen and what they mean.

Colonist Pick Phase

Colonists with active abilities have an inherent risk associated with them, since
they might either hit an unintended target with their ability, or they might miss
altogether. This is why their payoffs are higher that other colonists — it repre-
sents a payoff for the risk taken. The approach we took with the colonist pick

21



heuristics is one that makes consistently good decisions — going for synergy-
based strategies and getting guaranteed value. For example, picking the General
when the player has four red modules in their colony is not only a safe play, but
it also provides even more value than the risk-based colonists, were they to hit
their intended target.

An argument could be made for picking risk-based colonists more often when
the player is in positions 3 or 4, since the earlier players reveal their colonist on
their turn, essentially removing the risk portion of the colonist. However, in many
situations players do not hold a large amount of cards or Omnium for a long time.
Since players are incentivized to be able to build eight modules before the game
ends by bonus points, players often build modules as soon as it is possible. This
strategy also reduces the risk of being targeted by other players. In summary,
we considered such rules to be of little use, considering the situations where they
apply are so rare.

Draw Phase

The draw phase is not an especially deep part of the game, since both actions
have reasonable value at most times. We simply added a few rules which prevent
the AI from either drawing too many cards, or having too much Omnium. These
resources are worth relatively little when the player is unable to spend them.

Discard Phase

Since the bonus for building eight modules is non-trivial, we added a few rules
across the game phases to ensure that if the game is about to end, the AI will do
its best to reach eight buildings as fast as possible. This will usually have the AI
keeping cheap cards, and disregarding color synergy in favor of point efficiency.

If such a situation is not near however, we implemented a rule for creating
color synergies. Colored synergies are an important part of the game, since they
can provide players with a steady income of Omnium. Therefore the heuristic AI
tries to go for color synergies with its modules before the late game.

Power Phase

Only two colonists in the game have interactions in the power phase, but it
is a very important part of gameplay nonetheless. These two colonists can be
extremely powerful and they can cause massive swings in tempo 1.

Both decision making rules for these colonists are similar in nature — they
attempt to find the target with the highest expected return for the power usage.
This is done by counting the potential reward (resources of player we are trying
to target) and subtracting from that the measure of uncertainty. The less infor-
mation we have about the target’s colonist, the more risk is involved in the play,
and the expected return is lower. If the best expected return is small enough,
the AI passes its turn. This is because of the risk of hitting an unintended target
and actually making its own situation worse than if it had simply passed.

1Tempo is an unofficial term in card games referring to the flow of the game. If a single
player takes the lead early and stays in the lead consistently, we would call that a play with
a lot of tempo.

22



Build Phase

The rules for the build phase are in essence similar to those in the discard phase.
This is not a coincidence, in fact the discard phase and the build phase are
probably the most tightly coupled phases in the game. Since there is a risk of
having modules stolen from the hand by a Spy if the player lets the modules sit
in his hand, many players will try to keep as few resources possible. They will
instead try to spend them as fast as possible, since modules in the colony are
theirs permanently. Things we discussed in the discard phase apply here as well.

Figure 4.2 shows high-level pseudocode for the implemented heuristic AI.

23



if game phase is "ColonistPick":
if player has at least 3 modules of the same color in their colony:

pick color synergy colonist if available
if player has 0-1 modules in hand:

pick Visionary if available
pick randomly

else if game phase is "Draw":
if player has 0 Omnium or at least 4 modules in hand:

acquire Omnium
if player has 0 modules in hand:

draw modules
pick randomly

else if game phase is "Discard":
if any player has 7 or 8 modules in their colony:

keep the highest value module the player can afford
if the player has 5+ modules in their colony:

keep the module with the highest difference of value − cost
that the player can afford

keep the module with the most color synergy with the player’s
colony if possible

pick randomly
else if game phase is "Power":

if player’s colonist is Opportunist:
choose the most valuable player to steal from,
where value is calculated as
Omnium − number of possible colonists for that player + 1
randomly choose a colonist this player could have,
then steal from this colonist

if player’s colonist is Spy:
find player with more cards than the current player
and with sufficient information about their colonist
if this player exists:

swap hands with them
else:

do nothing
pick randomly

else if game phase is "Build":
if any player has 7 or 8 modules in their colony:

build the module with the highest possible value
if the current player has 5+ modules:

build the module with the highest difference of value − cost
build the module with the most color synergies if possible

build randomly

Figure 4.2: Heuristic algorithm pseudocode.

24



4.3 MaxN
The principles of the MaxN algorithm have been discussed in Section 1.2.1. How-
ever, the algorithm as presented in Section 1.2.1 would not be applicable to a
game with hidden information. Therefore this section will focus mainly on de-
scribing the adaptations made in order for it to function in an environment with
imperfect information.

As adaptation to imperfect information, we used determinization to transform
imperfect information states into perfect information states. Figure 4.3 shows a
code excerpt with the determinization usage. The adapted algorithm samples
DETERMINIZE COUNT determinizations, and runs the regular MaxN algorithm for
that determinization. This means that during each determinization, our modified
MaxN algorithm behaves exactly as the existing MaxN algorithm would. It tra-
verses a perfect-information game tree and uses a positional evaluation function
to decide the optimal moves. Just like the regular MaxN, for each determiniza-
tion, we get a final suggested move from the algorithm. The moves suggested by
these runs are saved, and after all sampled determinizations are processed, the
move chosen by the adapted algorithm is the move which was chosen as the best
move the most often by the regular MaxN runs.

def pickAction(self, actualGameState):
# Small optimization when we don’t have a choice
if len(actualGameState["Actions"]) == 1:

return 0

# Counter for number of times the given action was the best
actionValues = [0 for x in range(len(actualGameState["Actions"]))]
for i in range(self.DETERMINIZE COUNT):

gameState = self.determinize()
rootNode = MaxnNode(gameState, 0)
payoffs = self.maxnPayoffs(rootNode, self.SEARCH DEPTH)

bestIndex = max(range(len(payoffs)), key=lambda i: payoffs[i])
actionValues[bestIndex] += 1

return max(range(len(actionValues)), key=lambda i: actionValues[i])

Figure 4.3: Determinization used for MaxN.

Values for the mentioned constants were selected as DETERMINIZE COUNT =
10 and SEARCH DEPTH = 7. These were empirically selected to allow for decent
response time when a move is requested.

We also have not mentioned the used positional evaluation function that we
used in the implementation of MaxnIntelligence. The chosen evaluation func-
tion is rather simple — it tries to maximize the amount of points that the player
has. It assigns the highest value to building modules, and to having the bonus
for completing all eight buildings in the player’s colony. This bonus, along with
victory values of modules in the player’s colony, count 1:1 towards the heuristic
evaluation. Somewhat less value is given to having modules in the hand, and

25



having Omnium, with their exact value being such that the value gained by hav-
ing a module built is always greater than having it in the hand, and having the
Omnium to build it. Figure 4.4 shows the code for evaluation of a single player.

def evaluatePlayer(player):
value = 0

for module in player["Colony"]:
value += module["VictoryValue"]

value += 0.6 * len(player["Hand"])
value += 0.3 * player["Omnium"]
if len(player["Colony"]) == 8:

value += 4

return value

Figure 4.4: Positional evaluation function used for MaxN.

Our adapted version of MaxN still has some potential issues however. Let us
consider the issue of non-locality — the problem whereby certain game states are
explored in spite of the fact that they will most likely be avoided by players. An
example of this could be the following: our MaxN algorithm is picking a colonist,
and after it picks, the Miner is among the colonists passed on to other players.
Let us also assume that the other players have no blue modules built among
them. In this situation, we might explore determinizations where a player has
picked Miner as their colonist — even if this would be the suboptimal play, since
other colonists have more useful abilities in this scenario.

We can also consider a situation where the best play would be denying an
opponent an opportunity, rather than gaining value ourselves. An example of this
in Colonizers could be the following situation: our MaxN algorithm is picking a
colonist, and it sees that all players except one have full hands, but one player’s
hand is empty. For the player with an empty hand, picking Spy as their colonist
would be a very high value play, since it could mean up to a 10 card swing in their
favor. A possible strategy to consider would be for MaxN to pick Spy itself, to
prevent the other player from making this high value play. However, our version
of MaxN cannot explore the game tree with enough depth to be able to make
these kinds of plays.

4.4 Information Set Monte Carlo Tree Search
The chosen variant of ISMCTS is SO-ISMCTS. This variant’s pseudocode has al-
ready been shown in Figure 1.5 Since the actual implementation is mostly faithful
to the pseudocode presented in the original ISMCTS paper [9], we will not be
repeating the pseudocode in this section. Many of the algorithm’s strengths and
weaknesses have also been discussed in Section 1.2.2, therefore this section will
mostly highlight some implementation details.

First of all, the choice of SO-ISMCTS warrants some explanation. Cowl-
ing, Powley and Whitehouse also presented two other variants of ISMCTS: SO-

26



ISMCTS + POM and MO-ISMCTS [9]. SO-ISMCTS + POM (Single Observer
Monte Carlo Tree Search + Partially Observable Moves) aims to solve the issue
of strategy fusion 2. A partially observable move is a move which is observable
by the player, but there is some hidden information associated with the move.
SO-ISMCTS can be vulnerable to this, since it treats all opponents’ moves as
fully observable. SO-ISMCTS + POM alleviates this issue by making actions
which are indistinguishable from the point of view of the player share a single
edge in the tree. It does this at the cost of significantly weakening the opponent
model, since it makes the assumption that the opponent chooses randomly be-
tween moves indistinguishable to the player. MO-ISMCTS (Multiple Observer
Information Set Monte Carlo Tree Search) addresses this issue by maintaining a
separate tree for each player, representing information sets from the point of view
of that player.

The reason SO-ISMCTS was chosen over the two other variants is because in
Colonizers, strategy fusion is not as big of a problem as it might seem. This is
because partially observable actions like drawing cards or swapping hands often
lead to the same strategy being played regardless. The only potential problematic
area is the colonist pick phase, because using active colonist abilities then creates
an instance of strategy fusion. SO-ISMCTS was ultimately chosen since it has
the benefit of being simpler, and the choice is a conscious tradeoff with respect
to the identified instance of strategy fusion.

SO-ISMCTS uses a multi-armed bandit algorithm to balance exploration and
exploitation when traversing the information set tree. In our implementation, we
have chosen UCB1 as the multi-armed algorithm. Kuleshov and Precup [14] note
that ”UCB1 achieves the optimal regret 3 up to a multiplicative constant, and is
said to solve the multi-armed bandit problem”. UCB1 calculates the score of a
node as

Xj + c

⌜⃓⃓⎷ ln n

nj

where Xj is the average reward of the playouts which passed through the node j,
n is the count of visits of the parent of j, and nj is the number of times the node
j was selected during the algorithm. c denotes the exploration constant, and for
our implementation, we chose a value of 0.7, which was found to be a reasonable
value by Cowling, Powley and Whitehouse [9].

Our implementation of SO-ISMCTS also uses the heuristic algorithm de-
scribed in Section 4.2 to perform game playouts during the simulation stage of
the algorithm. This helps achieve more accurate playouts, and therefore more
accurate rewards than when using random playouts.

The number of iterations we use for ISMCTS is 200. This is an empirically
selected value which allows moves to be computed within a reasonable amount of
time (tens of seconds at most), while having enough room to properly expand the
tree. We also considered imposing a hard time limit on the AI’s decision time,
and simply running iterations of ISMCTS until the time expired. We chose not
to do this for the sake of the AI behaving consistently on different machines.

2Strategy fusion is discussed at more length in Section 1.2.2.
3Regret in this context means not choosing the optimal decision in retrospect.

27



5. Experiment Description
There are two qualities which we want to analyze with respect to the game and
the implemented AI algorithms:

• Identify potential asymmetries in game balance

• Compare methodologies used by the AI algorithms

To this end, we conducted five experiments, split according to their purpose.
The following sections elaborate on the experiments and their results.

5.1 Game Balance Experiments
As mentioned in Chapter 2, the game features a degree of asymmetry. The or-
der in which players take their turns inherently changes the viability of certain
strategies, because players in different positions have different information sec-
tions available to them. For example, the player in the first position has perfect
information about which colonist was removed from play during the colonist pick
phase, while the second and third players do not have such certainty.

Most importantly however, a player’s colonist is revealed at the start of their
turn. This means that if the player in the fourth position is a Spy or an Op-
portunist, they will know all the other players’ colonists when their turn comes
around. This means that this player will be able to target any player with their
targeted ability without the fear of missing or hitting an unintended target.

With these things in mind, we can hypothesize that players in the earlier
positions have an easier time achieving synergy-based strategies, since they get
priority when picking colonists. On the other hand, we can also hypothesize
that players in later positions will benefit from play based around using targeted
colonist abilities.

In Chess, it is widely agreed that the white player has an advantage [15].
Similarly, we aim to discover whether player ordering confers a measurable ad-
vantage to any player in Colonizers. We will conduct this experiment with the
null hypothesis — we assume that there is no significant advantage for any player
ordering.

28



5.1.1 Description
We conducted two experiments in this section. In both of them, four iden-
tical AIs played 1000 games against each other. In the first experiment, the
AI in question was RandomIntelligence, and in the second experiment it was
HeuristicIntelligence.

All random events were seeded, and the results of the games were captured
in JSON (JavaScript Object Notation) files. The results were then parsed and
analyzed. The JSON result files can be found in the attached source code, refer
to Attachment A.2.6 for more information on their location and semantics.

The random seeds used by application components during the experiment
were as follows. Note that the chosen seeds do not have any special meaning,
and they were selected at random by the author. There is no particular reason
for the algorithms to have different seeds.

• RandomIntelligence: seed 42

• HeuristicIntelligence: seed 97

• GameConstants: seed was changed every game to prevent the same game
from being played 1000 times. The seeds were generated by a C# random
number generator seeded with 42.

The algorithms’ positions were shuffled at the beginning of each game with the
Fisher-Yates Shuffle [16], using the game engine’s random number generator. In
this experiment this is not necessary since we have four instances of the same
algorithm. This experiment was performed using the same method as other
experiments where the shuffling is necessary, therefore the shuffling is present
here. We mention this since in order to exactly reproduce the experiment, the
shuffle must be performed with the game engine’s random number generator.

5.1.2 Findings
Experiment 1

First off, let us focus on the experiment runs with RandomIntelligence. Results
of the 1000 runs can be seen in table 5.1 Note that by ”Losses” we mean fourth-
place finishes, not failing to finish first.

Position 1 2 3 4

Wins 310 213 251 226
Losses 197 261 279 263
Average rank 2.3 2.572 2.553 2.575

Table 5.1: Results of RandomIntelligence play.

The most notable result we have is the fact that AIs in the first position seem
to be winning the most often. AIs in the first position also lose (place fourth)
less, and they have a better average ranking overall.

We can try to verify the significance of these results mathematically. We will
employ the χ2 test to check whether the number of wins for position 1 follows

29



the binomial distribution B(1, 0.25). The null hypothesis in this case is that the
win rate follows the aforementioned binomial distribution. With 1000 trials, we
would expect 250 of them to succeed and 750 of them to fail. We can compute
χ2 as follows

χ2 = (310 − 250)2

250 + (690 − 750)2

750 ≈ 19.2

This gives us the distribution χ2(1) with 1 degree of freedom. Our χ2 test statistic
is 19.2, which gives us a p-value of 0.00001. If we consider a significance level of
0.05, we can reject the null hypothesis.

This may indicate a potential balance issue in the rules of the game, with the
first position being more powerful than the other ones, which appear to be similar
in power. However, measurement on randomly choosing AIs does not necessarily
indicate imbalance, since random agents do not play optimal strategies. Therefore
we cannot conclude anything about game balance just yet, but this statistical
difference is worth keeping in mind.

Experiment 2

The other experiment in this section is very similar to the first one, except
we have four instances of HeuristicIntelligence instead of four instances of
RandomIntelligence playing against each other. Results of the 1000 runs can
be seen in table 5.2. Note that by ”Losses” we mean fourth-place finishes, not
failing to finish first.

Position 1 2 3 4

Wins 230 202 282 286
Losses 415 298 152 135
Average rank 2.8 2.67 2.302 2.228

Table 5.2: Results of HeuristicIntelligence play.

If we compare these results to those in table 5.1, we can see almost exactly
the opposite results. With random AIs playing, we saw that the AI in the first
position had a statistically significant advantage. With heuristically driven AIs, it
is obvious on first glance that earlier positions are less powerful and later positions
are more powerful. We can verify this statistically by performing the χ2 test on
the number of wins and losses for positions 1 and 4, similarly to Experiment 1.

We can start with wins for position 1

χ2 = (230 − 250)2

250 + (770 − 750)2

750 ≈ 2.14

This gives us a p-value of 0.14350. If we consider a significance level of 0.05, we
cannot reject the null hypothesis that the number of wins for the first position
follows the distribution B(1, 0.25).

If we move on to wins for position 4, we proceed as follows

χ2 = (230 − 250)2

250 + (770 − 750)2

750 ≈ 6.912

30



This gives us a p-value of 0.00856, therefore we can reject the null hypothesis if
we consider a statistical significance of 0.05.

We can also analyze the loss statistics, starting with position 1

χ2 = (415 − 250)2

250 + (585 − 750)2

750 ≈ 145.2

This gives us a p-value of nearly 0, therefore we can reject the null hypothesis
when considering a statistical significance of 0.05.

For losses at position 4, we have

χ2 = (135 − 250)2

250 + (865 − 750)2

750 ≈ 70.54

This also gives us a p-value of nearly 0, therefore we can again reject the null
hypothesis when considering a statistical significance of 0.05.

While the differences between wins per position are notable, the most interest-
ing are the loss statistics. It would appear that the earlier ranks (particularly the
first one) are susceptible to being targeted by players in other ranks. Since every
player’s colonist is revealed at the start of their turn, this makes the first position
an easy target for all other players. The game does have counter-balances for this
situation — notably the fact that the first player to build their colony to full gets
four extra victory points. However, it would seem that the heuristic AI does not
have the necessary tools to deal with being targeted down by others. This could
possibly be due to an implementation bias inherent in the chosen heuristics, but
it could also signal a game balance issue.

5.2 Algorithm Comparison Experiments
We have implemented four algorithms in this thesis — RandomIntelligence,
HeuristicIntelligence, MaxnIntelligence and ISMCTSIntelligence. In or-
der to determine the qualities of said algorithms, we will analyze their differences,
along with their advantages and disadvantages. We will also look at how the al-
gorithms perform in play against each other, with the hopes of determining which
algorithm is the most suitable for a game like Colonizers.

To start with, we would not expect RandomIntelligence to perform well in
any kind of mutual play. It is present simply as a benchmark for the performance
of other AIs.

The more important benchmark is HeuristicIntelligence, since it repre-
sents rules which were created by observing humans play the game 1. Therefore
we consider this AI to be a minimum benchmark for other AIs to be competent.

MaxnIntelligence is based on the MaxN algorithm [6], which is itself based
on Minimax [4]. This AI was adapted for imperfect information games, and it
spends a non-trivial amount of computing power on simply exploring possible
determinizations of the current game state. If we take that into consideration,
along with the fact that the branching factor for Colonizers is non-trivial 2 , we

1The rules were designed by the author after the author played the game several times with
his friends, who had not played a similar game before

2This is explored in depth in Section 2.3.

31



would expect MaxnIntelligence to perform relatively poorly. The depth of the
search trees used could not be reasonably increased beyond 7, due to performance
concerns. We expect that any kind of long-term strategy could not be achieved
by it since it lacks the necessary exploration depth. The Minimax family of
algorithms does however offer very solid insight into the few turns it examines,
therefore we hypothesize that this AI will be primarily good at tactics-based
play. The performance of MaxnIntelligence against HeuristicIntelligence
is uncertain, therefore we will follow the null hypothesis and assume that their
performances are statistically similar. We also hypothesize that since this AI has
a strong foundation for tactical prowess, it should win more often when in later
positions (namely third and fourth).

The final AI tested is ISMCTSIntelligence. This AI is well-adapted to imper-
fect information and multiple player environments. Therefore we would expect it
to outperform the three aforementioned AIs in most situations. We expect it to
play well in most circumstances, regardless of player permutation.

5.2.1 Description
We conducted three experiments in this section. In the first experiment, one of
each implemented intelligence played 50 games against each other. This exper-
iment is meant to assess the general playing ability of the AIs. In the second
experiment, we let two instances of HeuristicIntelligence and two instances
of MaxnIntelligence play against each other for 50 games. Lastly in the third
experiment, we performed the same thing as in the second experiment, but we re-
placed MaxnIntelligence instances with ISMCTSIntelligence instances. These
two experiments are meant to benchmark the adapted algorithms against the
heuristic solution.

All random events were seeded, and the results of the games were captured
in JSON files. The results were then parsed and analyzed. The JSON result files
can be found in the attached source code, refer to Attachment A.2.6 for more
information on their location and semantics.

The random seeds used by application components during the experiment
were as follows. Note that the chosen seeds do not have any special meaning,
and they were selected at random by the author. There is no particular reason
for the algorithms to have different seeds.

• RandomIntelligence: seed 42

• HeuristicIntelligence: seed 97

• MaxnIntelligence: seed 99

• ISMCTSIntelligence: seed 15

• GameConstants: seed was changed every game to prevent the same game
from being played 1000 times. The seeds were generated by a C# random
number generator seeded with 42.

The algorithms’ positions were shuffled at the beginning of each game with
the Fisher-Yates Shuffle [16], using the game engine’s random number generator.
We mention this since in order to exactly reproduce the experiment, the shuffle
must be performed with the game engine’s random number generator.

32



5.2.2 Findings
Experiment 3

In Experiment 3, we had one of each type of AI play against each other in 50
games. Results of the 50 runs can be seen in table 5.3 Note that by ”Losses” we
mean fourth-place finishes, not failing to finish first.

AI Random Heuristic MaxN ISMCTS

Wins 0 5 8 37
Losses 40 1 9 0
Average rank 3.8 2.38 2.54 1.28

Table 5.3: Results with one of each AI.

We can immediately see that there is no point in statistically checking whether
all AIs are equally good, since the results are so extreme. ISMCTS is the clear
winner, having won the majority of games and not having lost a single one. An
interesting data point is of the 13 instances where ISMCTS didn’t win, it places
second 12 times and third 1 time. The more interesting part is the comparison of
the heuristic AI with MaxN. It would appear that the heuristic AI is much less
likely to lose than MaxN. This makes sense, considering that the heuristic AI is
a collection of rules designed to always move the AI towards gaining score, even
if it is not optimal.

We can take a look at position-based data in order to gain insight into which
AIs are strong in which positions. Table 5.4 shows positions where the AIs scored
their wins.

AI Random Heuristic MaxN ISMCTS

Position 1 0 2 5 11
Position 2 0 1 2 6
Position 3 0 2 1 9
Position 4 0 0 0 11

Table 5.4: Positions of wins in Experiment 3.

We can try to check whether AIs are similarly likely to win in any position.
We will not perform the statistical test on the results for the heuristic or MaxN
AIs, since the sample size for wins is too small. We can, however, perform the χ2

test for ISMCTS wins by position. As the null hypothesis, we will assume that
the AIs are equally likely to win in any position. We can check the hypothesis
that the win distribution for ISMCTS between positions follows the distribution
B(1, 0.25). ISMCTS won 37 times in total, giving us an expected 9.25 wins per
position.

χ2 = (6 − 9.25)2

9.25 + (31 − 27.75)2

27.75 ≈ 1.52

This gives us a p-value of 0.21762, therefore we cannot reject the null hypothesis
if we consider a statistical significance of 0.05. This means that we cannot reject
the hypothesis that ISMCTS is equally likely to win in any position.

33



Experiment 4

In Experiment 4, we had two instances of HeuristicIntelligence and two
instances of MaxnIntelligence play against each other in 50 games. Results of
the 50 runs can be seen in table 5.5 Note that by ”Losses” we mean fourth-place
finishes, not failing to finish first.

AI Heuristic MaxN

Wins 35 15
Losses 10 40
Average rank 2.13 2.87

Table 5.5: Results with heuristic AI versus MaxN.

We can use the χ2 test to check whether there is a statistical difference between
these AIs’ likelihoods to win. We will assume that the heuristic AI’s wins follow
a binomial distribution B(1, 0.5). Then

χ2 = (35 − 25)2

25 + (15 − 25)2

25 = 8

This gives us a p-value of 0.00468. We are considering a statistical significance
of 0.05, therefore we can reject the null hypothesis. As a consequence, we have
established that in this scenario, the heuristic AI performs significantly better
than MaxN.

Since we earlier hypothesized that MaxN would be more likely to win in later
positions, we can also look at positional results as shown in Table 5.6

AI Heuristic MaxN

Position 1 13 13
Position 2 15 2
Position 3 4 0
Position 4 2 0

Table 5.6: Positions of wins in Experiment 4.

The results here are interesting in multiple ways. The first is the fact that
our earlier hypothesis that MaxN would be strong at playing later positions was
completely wrong, with MaxN not achieving a single win in positions 3 or 4.

The other way these results are interesting is the fact that in position 1,
both AIs had the same likelihood of winning, even though MaxN is obviously
statistically inferior to its heuristic counterpart. We do see a similar trend to the
results of Experiment 3, where most wins seem to happen at earlier positions.
This could potentially indicate the existence of overpowered strategies available
only to players in early positions.

In summary, results for Experiment 4 were rather surprising, considering we
rejected both of our prior hypotheses based on the experiment results.

34



Experiment 5

In Experiment 5, we had two instances of HeuristicIntelligence and two
instances of ISMCTSIntelligence play against each other in 50 games. Results
of the 50 runs can be seen in table 5.7 Note that by ”Losses” we mean fourth-place
finishes, not failing to finish first.

AI Heuristic ISMCTS

Wins 5 45
Losses 48 2
Average rank 3.26 1.74

Table 5.7: Results with heuristic AI versus ISMCTS.

We can immediately see that there is not much point in examining these
results statistically, since it is obvious that ISMCTS is significantly better. We
will therefore analyze the positional results as shown in Table 5.8 in more detail,
since they paint a less obvious picture.

AI Heuristic ISMCTS

Position 1 2 9
Position 2 2 13
Position 3 0 14
Position 4 1 9

Table 5.8: Positions of wins in Experiment 5.

We will perform a χ2 test to check whether the positional wins for ISMCTS
follow a binomial distribution B(1, 0.25), focusing on wins in position 3

χ2 = (14 − 11.25)2

11.25 + (31 − 33.75)2

33.75 ≈ 0.896

This gives us a p-value of 0.3439. If we consider a statistical significance of
0.05, we cannot reject the null hypothesis. This means that we cannot reject the
hypothesis that ISMCTS is equally likely to win in any position.

The results of Experiment 5 are consistent with the hypotheses we had prior
to performing the experiment. We confirmed that the performance of ISMCTS
is much better than that of the heuristic algorithm.

35



Conclusion
We have implemented a multi-player board game with imperfect information
elements. The game also features an AI framework, which makes it easy to add
new AI algorithms. This provides an environment where both new and existing
algorithms can be compared.

By implementing several AI algorithms using the aforementioned framework,
we have verified that the designed API for AI algorithms is easy to use and
contains all the needed functionality.

In the experimental part of this thesis, we identified potential design flaws in
the game rules. Namely we speculate that players in earlier positions have an
advantage, much like the player going first has an advantage in Chess. We also
confirmed the hypothesis that the ISMCTS algorithm is well-suited for solving
games like Colonizers.

Future work includes writing new AI algorithms for the game, and further
analysis of how balanced the game is.

36



Bibliography
[1] David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre,

George Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of
go with deep neural networks and tree search. Nature, 529:484–489, 01 2016.

[2] boardgame.io [online]. https://boardgame.io. Accessed: 2020-05-31.

[3] Openai gym [online]. https://gym.openai.com. Accessed: 2020-05-31.

[4] I. Millington and J. Funge. Artificial Intelligence for Games. Second Edition.
Morgan Kaufmann, 2009.

[5] K. Hoki and T. Kaneko. Large-scale optimization for evaluation functions
with minimax search. Journal of Artificial Intelligence Research, 49:527–568,
2014.

[6] C. A. Luckhardt and K. B. Irani. An algorithmic solution of n-person games.
In AAAI, 1986.

[7] G. Chaslot. Monte-Carlo Tree Search. PhD thesis, Maastricht University,
2010.

[8] A. Slivkins. Introduction to multi-armed bandits. Foundations and Trends
in Machine Learning, 12(1-2), 2019.

[9] P. I. Cowling, E. J. Powley, and D. Whitehouse. Information set monte carlo
tree search. IEEE TRANSACTIONS ON COMPUTATIONAL INTELLI-
GENCE AND AI IN GAMES, 4(2), 2012.

[10] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2009.

[11] D. Whitehouse, E. Powley, and P. Cowling. Determinization and information
set monte carlo tree search for the card game dou di zhu. In 2011 IEEE
Conference on Computational Intelligence and Games, CIG 2011, pages 87–
94, 10 2011.

[12] I. Frank and D. Basin. Search in games with incomplete information: A case
study using bridge card play. Artificial Intelligence, 100(1-2):87–123, 1998.

[13] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics.
Springer, second edition, 2004.

[14] V. Kuleshov and D. Precup. Algorithms for the multi-armed bandit problem.
Journal of Machine Learning Research, 1(48), 2000.

[15] W. F. Streeter. Is the first move an advantage? Chess Review, page 16, 05
1946.

37

https://boardgame.io
https://gym.openai.com


[16] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
third edition, 1998.

[17] Electron.net [online]. https://github.com/ElectronNET/Electron.NET.
Accessed: 2020-06-04.

38

https://github.com/ElectronNET/Electron.NET


List of Figures

1.1 OpenAI Gym — AI implementation. . . . . . . . . . . . . . . . . 4
1.2 Minimax algorithm [4]. . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 MaxN algorithm [6]. . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 MaxN tree example [6]. . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 SO-ISMCTS algorithm [9]. . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Random AI implementation. . . . . . . . . . . . . . . . . . . . . . 19

4.1 Random choice algorithm. . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Heuristic algorithm pseudocode. . . . . . . . . . . . . . . . . . . . 24
4.3 Determinization used for MaxN. . . . . . . . . . . . . . . . . . . . 25
4.4 Positional evaluation function used for MaxN. . . . . . . . . . . . 26

A.1 Player selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Checkbox for hiding information. . . . . . . . . . . . . . . . . . . 44
A.3 Buttons for adding new AI scripts. . . . . . . . . . . . . . . . . . 44
A.4 Configuration of Python executable. . . . . . . . . . . . . . . . . . 44
A.5 Overview of main game screen. . . . . . . . . . . . . . . . . . . . 45
A.6 Game control buttons. . . . . . . . . . . . . . . . . . . . . . . . . 45
A.7 Player overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.8 The colony overview. . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.9 A player’s hand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.10 Colonist selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.11 Draw phase selection. . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.12 Choice of module to discard. . . . . . . . . . . . . . . . . . . . . . 48
A.13 Selection of colonist active ability target. . . . . . . . . . . . . . . 49
A.14 Hammer icon used to build modules from the hand. . . . . . . . . 49
A.15 Game over screen with final scores. . . . . . . . . . . . . . . . . . 49
A.16 Button for toggling dialog presence. . . . . . . . . . . . . . . . . . 50
A.17 Colonizers sequence diagram. . . . . . . . . . . . . . . . . . . . . 52
A.18 GameState class from the game engine library. . . . . . . . . . . . 54
A.19 BoardState model class (simplified). . . . . . . . . . . . . . . . . . 55
A.20 Processing of a single game turn. . . . . . . . . . . . . . . . . . . 56
A.21 Electron API call guarded by check for Electron presence. . . . . 57
A.22 An Angular component. . . . . . . . . . . . . . . . . . . . . . . . 58
A.23 Usage of Angular component in another component’s template. . 59
A.24 Common usage scenario of the run(self, pipeName) method. . . 60
A.25 Workaround for issues with embeddable Python installations. . . 61
A.26 Experiment result JSON file structure (simplified). . . . . . . . . 62

39



List of Tables

2.1 Available modules. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Results of RandomIntelligence play. . . . . . . . . . . . . . . . . 29
5.2 Results of HeuristicIntelligence play. . . . . . . . . . . . . . . 30
5.3 Results with one of each AI. . . . . . . . . . . . . . . . . . . . . . 33
5.4 Positions of wins in Experiment 3. . . . . . . . . . . . . . . . . . . 33
5.5 Results with heuristic AI versus MaxN. . . . . . . . . . . . . . . . 34
5.6 Positions of wins in Experiment 4. . . . . . . . . . . . . . . . . . . 34
5.7 Results with heuristic AI versus ISMCTS. . . . . . . . . . . . . . 35
5.8 Positions of wins in Experiment 5. . . . . . . . . . . . . . . . . . . 35

A.1 Simplified AI comparison. . . . . . . . . . . . . . . . . . . . . . . 43

40



List of Abbreviations
AI Artificial Intelligence
API Application Programming Interface
DI Dependency Injection
GUI Graphical User Interface
ISMCTS Information Set Monte Carlo Tree Search
JIT Just In Time (Compiler)
JSON JavaScript Object Notation
MCTS Monte Carlo Tree Search
POM Partially Observable Moves
REST Representational State Transfer
SPA Single Page Application
SO-ISMCTS Single Observer Monte Carlo Tree Search
MO-ISMCTS Multiple Observer Monte Carlo Tree Search
UCB1 Upper Confidence Bounds 1 (Algorithm)
UI User Interface

41



A. Attachments

A.1 User Documentation
This attachment serves as a guided tour of the game and its features. It is written
in such a way that it can be understood even by persons without a technical
background. These persons may wish to simply play the game without necessarily
developing AI for it, and this attachment is meant to give them the necessary
knowledge.

A.1.1 Requirements
To run Colonizers, the Windows 10 operating system is required. Also required
is the following software:

• .NET Core 3.1 Runtime

• ASP.NET Core 3.1 Runtime

• Python 3.7 (NOTE: there is an issue if you are using the embeddable version
of Python, please refer to Attachment A.2.5 for more information)

The game’s UI is designed for a minimum screen resolution of 1920x1080 at 100%
zoom level. It is not recommended to play the game on lower resolution screens,
since graphical errors may occur. If the user does not have access to a screen
of this resolution, they may use the top application menu to zoom out the view.
Zooming out the view far enough will get rid of any visual issues.

A.1.2 Installation
Colonizers is distributed via installer. This installer will automatically install
the game on a per-user basis. The default installation folder for the game is
<username>/AppData/Local/Programs/Colonizers. When the installer is fin-
ished, it will launch the game.

The installer is an executable named Colonizers Setup x.y.z.exe, where
x, y and z are placeholders for application versions.

When the installation is finished, the application may be launched from the
installation directory. The installer also adds Colonizers into the Start menu,
and creates a desktop shortcut for the game.

A.1.3 Game Configuration
After launching Colonizers, the user will be presented with a configuration screen.
On this screen, it is possible to configure the game and AI.

The first notable portion of this screen is the player selection, as shown in
Figure A.1.

This section contains four dropdowns, each corresponding to a player. Each
dropdown lists all the available AIs which are present in the user’s game instal-
lation. By default, these dropdowns will have the following values:

42



Figure A.1: Player selection.

• Human Player

• HeuristicIntelligence

• ISMCTSIntelligence

• MaxnIntelligence

• RandomIntelligence

Human Player means that on this player’s turn, the UI will become interactible
and the user must choose action to perform. The other player options are AIs
which are bundled with the game. Table A.1 shows a comparison of the afore-
mentioned AIs, based on the result of this thesis’ experiments. Based on this
table, the user can choose the AI opponents which suit their needs.

AI Strength Evaluation speed

RandomIntelligence Weak Fast
HeuristicIntelligence Moderate Fast
MaxnIntelligence Moderate Moderate
ISMCTSIntelligence Strong Slow

Table A.1: Simplified AI comparison.

There is an option to not enable information hiding. Normally, certain infor-
mation would be hidden on the screen, since that information is hidden in the
game. However, for purposes of testing AI, the option shown by Figure A.2 can
be left unchecked. This will reveal all hidden information in the UI. Note that
this option does not affect the AI in any way, this option is purely a cosmetic
one.

The next section of configuration is are the buttons for adding new AI into
the game, as shown in Figure A.3.

These buttons open file select dialogs, allowing the user to add new AIs.
When adding an AI script, the script must follow the naming convention of

43



Figure A.2: Checkbox for hiding information.

Figure A.3: Buttons for adding new AI scripts.

<Name>Intelligence.py, for example CleverIntelligence.py 1. If the se-
lected file does not follow this convention, it will not be recognized by the game.
When adding an AI folder, the folder must follow the naming convention of
<Name>Intelligence, and this folder must contain a main.py script. If the
folder does not follow these conventions, it will not be recognized by the game.
This is explained in more depth in Section 3.3.

Lastly, this screen allows the configuration of the Python executable used to
execute AI scripts, as seen in Figure A.4. The shown button will open a file select
dialog, where the user can select their installed Python executable.

Figure A.4: Configuration of Python executable.

After the user is done configuring the game, they may start a game by clicking
the START GAME button. Note that this button is disabled if the user has not
specified a Python executable to use.

A.1.4 Gameplay
If the reader has not yet read Section 2.2 before reading this section, it may be
wise to do so now, in order for them to be familiar with the game’s rules.

Board Overview

After launching the game, the user will be greeted with a view similar to the one
depicted in Figure A.5.

This is the main game screen, and it is where all gameplay will be happening.
First off, we can focus on the buttons to the right of the screen, as shown in
Figure A.6.

These buttons control the flow of the game. The game does not start until
the user presses the Start Game button. When the user does press it, the game

1If an AI is added this way which shares a name with and existing AI, the existing AI will
be replaced by the new one. This also applies to AIs which are bundled with the game

44



Figure A.5: Overview of main game screen.

Figure A.6: Game control buttons.

starts and the buttons becomes disabled. The other button, Abandon Game, may
be pressed at any time during gameplay to immediately end the current game
and return to the configuration screen.

On the left side of the screen, we can also see miscellaneous information about
the game state written in plain text. This information includes the amount of
modules left in the deck, the player on turn, and the current game phase.

The player overview areas are a core part of gameplay, you can see an example
of this area in Figure A.7.

This area contains all information about a given player. In the top left, it
shows the player’s position and their name (meaning either Human Player, or
the name of the AI playing this player). In the top left we can also see the
amount of Omnium the player has (the game’s currency) and the number of
points the player has. The number of points determines the ranking at the end
of the game.

On the left side of the player overview is the player’s colonist card. This shows
the colonist this player has selected. A colonist is a character controlled by the
player for a single turn, and the colonist provides the player with special abilities
to use at specific times of the game. The colonist is easily identifiable by the icon
and large text below it. For a full description of what abilities colonists have,
please refer to Section 2.2.3.

It is possible for this colonist card to be hidden, instead displaying a card
featuring a large question mark. This can happen when hidden information is

45



Figure A.7: Player overview.

enabled during game configuration. Specifically, a player can only see another
player’s colonist if the other player has already taken their turn.

Another feature shown by Figure A.7 is the colony overview, seen in Fig-
ure A.8. This area contains the modules the player has built during the game.
The colony area has eight possible slots to build on. A square with a grey dashed
border is an empty slot. When any player builds eight modules in their colony,
the game will end at the end of the round, after all players have taken their turn.

Figure A.8: The colony overview.

The elements with colored borders and two numbers inside them are called
modules. They are drawn by players from the deck, and they can be built in
a player’s colony. In order to build a module, the player must pay its build cost.
A module’s build cost is the number shown in the upper part of the module. When
build in a player’s colony, modules count towards that player’s score. A module’s
contribution to a player’s score is the number found in the bottom part of the
module. Modules also have a color, depicted by the colored border 2 . This
color is relevant during interactions with certain colonist abilities. The modules
in a player’s colony are not hidden, and are visible to other players even when
information hiding is enabled.

The player overview seen in Figure A.7 also contains the player’s hand, as
seen in Figure A.9.

Whenever a player draws modules from the deck, they go into their hand.
They then remain in their hand until they are built, or removed by other means.

2In order for the game to be accessible to colorblind persons, the borders are also distin-
guished by the border pattern. A solid line means green, a dashed line means blue, a dotted
line means red, and a double line means a module without a color.

46



Figure A.9: A player’s hand.

The hand has a size limit of five, it is not possible to draw more modules when
a player is at five modules in hand. The modules in other players’ hands are among
the parts of the game board affected by information hiding. If information hiding
is enabled, modules in the hands of other players will be displayed without color,
and with question marks instead of their real values.

The last feature of the player overview is its blue border. In Figure A.7, this
border is dashed, meaning it is currently another player’s turn. The player on
turn always has a solid border around their player overview.

Taking Turns

Firstly, it should be noted that AIs take turns autonomously without any need of
input from the user. Whenever the turn is passed to an AI, it will immediately
start looking for the best move, and as soon as that move is found, it is played and
the game continues. This means that with AIs that make decisions particularly
fast, if the game is configured to have four of these AIs, the game can potentially
end in mere seconds. Therefore we will be discussing only features related to
human players taking turns for the rest of this section.

The first phase of a turn is the colonist pick phase. If you set up a game
where the first position has a human player, you will immediately be greeted
with a selection similar to the one seen in Figure A.10.

Figure A.10: Colonist selection.

At the start of each round, all players will take turns picking a colonist, in
order of first player to last. Note that only five out of the total six are available
for selection at any given time, since one is randomly removed from play every
round. Selecting a colonist is done by clicking on the corresponding colonist card.

47



After all players have picked their colonist, players will each take their turn,
in order from first to last. The first phase of a player’s individual turn is the
draw phase, as seen in Figure A.11. The shown buttons will be present in a card
overlaying the game board, similarly to the colonist pick phase. Colonist passive
abilities trigger automatically during the draw phase.

Figure A.11: Draw phase selection.

At this point, a player may choose to either gain two Omnium, or draw two
modules from the deck and discard one of them. Note that the draw action will
be unavailable if the player’s hand is full. If the player chooses to draw modules,
they will be presented with an additional dialog as seen in Figure A.12. The
player must choose which module they want to keep, and which they want to
discard. The choice is made by clicking on the module the player wishes to keep.

Figure A.12: Choice of module to discard.

The next phase is the colonist power phase. If the player controls a colonist
with an active ability (Opportunist or Spy), they will be presented with a choice
similar to that shown in Figure A.13. The player may choose to target a given
colonist by clicking on their respective card, or the player may choose to not use
their colonist’s ability by clicking the Do nothing button to the right.

Players controlling colonists without active abilities will instead be presented
with a small dialog containing a single button which passes the phase.

The last phase of a turn is the build phase. In this phase, players may build
up to one module from their hand by spending the required amount of Omnium.

48



Figure A.13: Selection of colonist active ability target.

Modules which the player can afford to build will have a hammer icon present.
Clicking this icon will build the module in the player’s colony. If the hammer
icon is not present, it means that the player cannot afford the module, or the
game is not in the build phase. The hammer icon is shown in Figure A.14, next
to a module without the hammer icon.

Figure A.14: Hammer icon used to build modules from the hand.

After all players end their turns, the round will end and a new round will
begin, starting again with the colonist pick phase. New rounds will keep starting
after the previous round ends until a player has built eight modules in their colony.
The first player to reach eight modules receives four bonus point on game end,
and subsequent players to reach eight modules receive two points each. When
the game ends, a dialog will open showing the user the final ranking and final
scores. This final score table is shown in Figure A.15.

Figure A.15: Game over screen with final scores.

Here, the player may either click OK to go back to the game configuration

49



screen, or they may simply close the dialog and spend time looking at the final
game board state. When the user wishes to return to the game configuration
screen, they may press the Abandon Game button to do so.

Some dialogs which present the player with choices can sometimes cover useful
information on the screen. For this purpose, there is a button on the top of the
screen used to show and hide the decision dialogs. This button is shown in
Figure A.16

Figure A.16: Button for toggling dialog presence.

50



A.2 Developer Documentation

A.2.1 Prerequisites
In order to do development work on Colonizers, the following software is required:

• .NET Core 3.1 SDK

• Python 3.7 (NOTE: there is an issue if you are using the embeddable version
of Python, please refer to Attachment A.2.5 for more information)

• Node.js 10 and NPM 6.4.1

The game’s UI is designed for a minimum screen resolution of 1920x1080 at 100%
zoom level. It is not recommended to play the game on lower resolution screens,
since graphical errors may occur.

In order to build and run Colonizers in Electron, the Electron.NET CLI pack-
age is required. You may install this package as a .NET Core tool by running the
dotnet tool install ElectronNET.CLI -g command. This gives you access
to the electronize command.

It is also highly recommended to use Visual Studio 2019 for development
work on the game engine or the UI. Visual Studio 2019 provides support for
debugging both the UI and the game engine in the same window, which makes
for a seamless development experience. Visual Studio 2019 is also capable of
attaching to an external process for debugging, which turns out to be extremely
useful with Electron.NET.

For developing and debugging Python AI scripts, the author used Visual Stu-
dio Code, but other software capable of debugging Python scripts is viable as
well.

The project can be run by navigating to the project directory of the Desktop
project and running the command electronize start. This will build the ap-
plication and start it inside Electron. Building the application is also done with
the electronize command-line tool. If we want to build Colonizers for Windows
64-bit, we would use the command electronize build /target win. Further
documentation for the electronize command-line tool is available in the doc-
umentation for the Electron.NET project [17]. Among other things, the CLI
can also produce Win32 builds of the application with the following command:
electronize build /target custom win7-x86;win /electron-arch ia32.

A.2.2 Project Structure
The entire game is contained in a .sln (solution) file, which is a file type used to
organize projects in Visual Studio. This solution contains five projects:

• AICore — project with the API for AI scripts and the AICore scripts them-
selves.

• Desktop — project with the UI, consisting of an Angular web application
and an ASP.NET Core Web API. The Web API is the ClientApp subdirec-
tory of this project’s directory.

51



• Game — C# library project containing the game logic and code responsible
for communicating with Python AIs.

• Experiments — console application project containing the experiment sce-
narios explored in this thesis.

• ColonizersTests — unit test project using xUnit as the testing framework.
Tests can be run with the command dotnet test, or through Visual Studio
2019’s test explorer.

The flow of data in the application starts with the UI, since all initiative starts
with the user. The UI then uses the ASP.NET Core Web API to execute game
logic. If required, game logic then talks to processes executing Python AI scripts.
This flow can be seen in Figure A.17.

Figure A.17: Colonizers sequence diagram.

The aforementioned components will be discussed in more detail in the fol-
lowing subsections.

A.2.3 Game Engine
This subsection will discuss not only the C# library implementing the game logic,
but also the ASP.NET Core Web API, since the library is provided to the user
Interface through Web API calls.

52



ASP.NET Core Web API

The Web API consists of controllers, which define REST (Representational State
Transfer) API endpoints. These endpoints are then called by the Angular ap-
plication. In order to promote code reusability, functionality was extracted from
controller methods into separate services, which perform more complex operations
such as formulating method calls to the game engine. The following controllers
are present in the project (in the Controllers directory at the top level of the
project directory):

• GameController is responsible for manipulating game state. It contains
endpoints for creating new games, performing actions during gameplay, and
for cleaning up after a game is finished.

• AIController provides methods for configuring the AI scripts in Colonizers
— it facilitates adding new AIs and changing the Python executable path
used to execute AI scripts.

The following services are present in the Web API project (in the Services
directory at the top level of the project directory):

• FileDialogService uses the Electron API to open file dialogs. These are
used to select AIs to add and to configure the Python executable path.

• GameService makes calls to the game engine library. It is responsible for
configuring and managing.

• PlayerService is responsible for the creation of player objects. Since there
are three different types of players in Colonizers (human player, AI script
player and an AI folder player), their creation is not trivial. Therefore this
logic was extracted to this service.

• PythonExecutableService is responsible for managing the path to the
used Python executable. Selecting the path every time the application
restarts would be very inconvenient, therefore the application remembers
the configured path. This path is stored in on disk in the game’s installation
folder.

• StateService only serves to store game state information in between API
calls from the UI application. This avoids unnecessary transfer of JSON
data containing the entire game state with every API call.

The ASP.NET Core Web API also sets up DI (dependency injection) for both
itself and the game engine. ASP.NET Core provides its own DI framework which
is used in this application. The DI is configured in the ConfigureServices
method of the Startup class. The game engine provides an extension method
AddColonizersGame for easy registration of all its components into DI.

Game Engine Library

All game logic is implemented in the Game C# library. This makes game logic
a reusable unit, which was useful during the implementation of the experiment
project.

53



First, we will discuss the representation of game state. The root of the model
class hierarchy is the GameState class, shown in Figure A.18. This class may be
found in the root of the Game project.

/// <summary>
/// Indicates whether the game is over in this state
/// </summary>
public bool GameOver { get; set; } = false;

/// <summary>
/// If the game is over, contains game results
/// </summary>
public GameEndInfo GameEndInfo { get; set; }

/// <summary>
/// The state of the game board
/// </summary>
public BoardState BoardState { get; set; }

/// <summary>
/// Things the current player can do on their turn
/// </summary>
public IList<IGameAction> Actions { get; set; }

Figure A.18: GameState class from the game engine library.

This object represents all game state data during a single game of Colonizers.
Therefore it (or modified versions of it) is used for communicating the game state
to other components, be it the UI or AI scripts. Note that it also contains
information about whether the game ended and how it ended. Lastly, it also
contains a list of possible actions that could be taken from the current game state.
This allows AIs to easily work with the game state without having to worry about
enumerating the action space themselves. We also include a simplified version of
the BoardState class for reference, since it contains all data concerned with the
actual state of the board, as seen in Figure A.19. This class is also located in the
root folder of the Game project.

A noteworthy property of the BoardState class is DiscardTempStorage. This
property is used to temporarily hold modules after a player has chosen to draw
modules from the deck, but before they have decided which one to keep.

Another interesting part of the game engine is the way the game logic is
implemented. The game has multiple turns in every round and multiple phases in
each turn, organized in a way that resembles a state machine. Maintaining such a
class hierarchy would not be a viable strategy, since cyclic references would be an
inevitability. In order to avoid dependency hell and make the code structure easier
to maintain and understand, we have employed the mediator pattern, facilitated
by the MediatR library. This allows us to separate logic pertaining to particular
game phases into their own, self-contained units without complicated external
dependencies. The game logic classes are separated into three categories:

54



public enum Phase { ColonistPick, Draw, Discard, Power, Build }
public IList<PlayerInfo> Players { get; set; }
public IReadOnlyList<Colonist> PlayableColonists { get; set; }
public IList<Colonist> AvailableColonists { get; set; }
public List<Module> Deck { get; set; }
public IReadOnlyList<Module> StartingDeck { get; set; }
public IList<Module> DiscardTempStorage { get; set; }
public int PlayerTurn { get; set; }
public Phase GamePhase { get; set; }

Figure A.19: BoardState model class (simplified).

• Commands — the basic models of actions to perform on a particular board
state. Every kind of action taken by players in the game has its own Command
associated with it, marked by the IGameAction interface. These commands
may be dispatched via the mediator. They are located in the Commands
directory.

• CommandHandlers — classes which implement logic mutating the game
board. For example, if we have a command representing the action of
building a module, a BuildModule command will be dispatched via the me-
diator, and then handled by the BuildModuleCommandHandler. Command
handlers only mutate the game state based on their input command, they do
not enumerate possible actions. They are located in the CommandHandlers
directory.

• ActionGetters — these classes are responsible for enumerating the actions
space. They receive an input game state, and from it they generate a list of
actions which are legal in this state. They are located in the ActionGetters
directory.

Each CommandHandler has a reference to its associated ActionGetters. If we
imagine this situation in a state machine context, the CommandHandlers handle
movement between states, and ActionGetters are responsible for finding out
which states we can move to next afterwards. The whole game logic system
consists of pure classes and functions, meaning for the same input, they provide
the same output. This is a crucial property of this design, considering the game
logic is quite complex in certain places. It gives the code consistency between
runs, and makes it easy to debug and understand.

We can examine a high-level method which processes a single turn of the
game in Figure A.20. We can see that given a game state and a list of players,
we first ask the current player to choose a move. After they have selected a
move, the appropriate Command is passed into the game logic structure through
the mediator. The structure then returns a new game state along with a list of
actions possible in this new state.

Lastly, the game engine library contains the code responsible for communicat-
ing with the Python AI implementations. This communication is done via named
pipes. When a game is starting, a named pipe is created for each AI. The AI is

55



public async Task<GameState> ProcessTurn(GameState gameState,
IReadOnlyList<IPlayer> players)

{
var boardState = gameState.BoardState;
IPlayer currentPlayer = players[boardState.PlayerTurn - 1];
int moveId = await currentPlayer.GetMove(gameState, resolver);
var selectedMove = gameState.Actions[moveId];
return await resolver.Resolve(selectedMove);

}

Figure A.20: Processing of a single game turn.

then started as a separate process using the configured Python executable path.
This process is passed its pipe name as an argument. When the AI starts up, it
connects to the pipe and starts listening. The game engine will send a request
for a decision to be made, and the AI may start deciding. When the AI chooses
a move, the move is returned through the same pipe. The pipe is also used for
other communication between the AI and the game engine, notably for requesting
determinization and simulating moves. It is worth mentioning that due to the
fact that the named pipes have pre-defined names, it is not currently possible to
run multiple instances of the game on the same machine. We say currently, since
implementing a mechanism for randomizing the pipe names would not be a very
complicated extension of the library.

A.2.4 User Interface
Colonizers uses Electron as a means to run the game as a desktop application,
since the game is developed using web technologies. Specifically, it uses the
Electron.NET library, which provides an access to the Electron APIs to C#
applications, and it also facilitates usage of Electron’s build tools to package C#
applications. C# and the whole .NET platform in general still do not have a
widely-used cross-platform UI framework, therefore Electron was a good fit for
this project.

The UI for Colonizers is an Angular application, which is then served inside
Electron. This application is located in the ClientApp directory in the Desktop
project directory. Electron then uses the Chromium rendering engine and Node.js
in the background. The Angular application allows configuration of the game, it
handles presentation of game state to the user, and it is responsible for commu-
nicating with the ASP.NET Core Web API.

In order to do development work on the UI, it is recommended that you use
Visual Studio 2019. It has a very useful feature whereby it allows you to debug
both JavaScript and C# code at the same time in the same project. Since the
Angular application is located in the same project as the Web API, this is an
invaluable feature. Since the UI is an Angular application, naturally it is possible
to run and debug it without running it in Electron. The source code for this
project contains launch settings pre-configured for Visual Studio 2019 in order
to accomplish exactly this. A sidenote is that while running outside Electron,

56



the application does not have access to Electron APIs. Colonizers uses the File
Dialog API multiple times, therefore this functionality will be unavailable in this
case. Interaction with the Electron APIs is always preceded by a check whether
the application instance is running inside Electron, therefore calls to methods
which use Electron APIs will not cause exceptions. We can see such a guard for
Electron presence in Figure A.21.

It is also possible to debug the application while it is running inside Electron.
The command electronize start will launch the application inside Electron
when run. It is then possible to attach to the application’s process in Visual
Studio 2019. This allows us to debug code which uses Electron API calls, which
is not possible when not running in Electron. The mentioned command also has
a useful option — electronize start /watch which will watch application files
for changes and re-compile only changed application files.

public async Task<bool> AddSingleScript()
{

if (HybridSupport.IsElectronActive)
{

BrowserWindow mainWindow = Electron.WindowManager
.BrowserWindows.First();

OpenDialogOptions options = new OpenDialogOptions
{

Properties = new OpenDialogProperty[] {
openDialogProperty

}
};

string[] files = await Electron.Dialog.ShowOpenDialogAsync(
mainWindow, options);

}

return false;
}

Figure A.21: Electron API call guarded by check for Electron presence.

The source code for the Angular application is written in TypeScript, CSS and
HTML. The HTML used is not pure HTML, rather the HTML files are Angular
templates. Angular Templates are a way to insert data into markup seamlessly.
The TypeScript files are transpiled to JavaScript at build-time. We use Angular
in a client-side mode, whereby the source files are compiled ahead of time, and
are delivered to the client on-demand. Angular also offers a server-side rendering
option, allowing to offload some work from clients onto servers. However, due to
the fact that both client and server run on the same machine in Colonizers, this
option was not used.

The most important building blocks of Angular are Components. Components
control the view presented to the user, and they prepare data for presentation by
the view. We can see the source code for a component in Figure A.22

We can see a few important component features in Figure A.22:

57



@Component({
selector: ’app-discard’,
templateUrl: ’./discard.component.html’,
styleUrls: [’./discard.component.css’]

})
export class DiscardComponent implements OnInit {

@Input() gameState: GameState;
@Output() onPick = new EventEmitter<number>();

constructor() { }

ngOnInit() {
}

getModules(): Module[] {
// Find the appropriate modules in the temp discard storage
return this.gameState.actions.map(

x => this.gameState.boardState.discardTempStorage
.find(y => y.name === x.module));

}

keep(module: Module) {
this.onPick.next(this.gameState.actions.findIndex(

x => x.module == module.name));
}

}

Figure A.22: An Angular component.

• The definition of the component’s template and styles in the @Component
decorator. Notably, the styles specified in this scope only apply to this
component’s template.

• The component has an @Input() and an @Output(). These are the ways
other components interact with this one. Keeping component interaction
to only inputs and outputs makes components pure, meaning they will
output the same data when provided with the same inputs. In a complex
application, this is a very desirable property, since it makes debugging easier
and bugs more rare.

• The component defines a selector — app-discard. Using this selector,
other components can include this one in their templates.

We can see an example of the aforementioned component being used in Fig-
ure A.23. The excerpt is from GameComponent’s template, and it demonstrates
how it binds one of its own fields as an input for the DiscardComponent, and
that it is listening for events emitted by it.

58



<div *ngIf="isWaitingForHumanPlayer && isDiscardPhase()">
<app-discard [gameState]="gameState"

(onPick)="onHumanPlayerAction($event)">
</app-discard>

</div>

Figure A.23: Usage of Angular component in another component’s template.

These features are the core of how the UI application is built — it is based
on a divide-and-conquer principle, where the entire view is composed of smaller
components, which are in turn composed of even smaller components.

Another notable building block of Colonizers is the usage of Angular ser-
vices. A service in Angular is meant to be a way to abstract data manipulation
and API calls away from components. Therefore, all code pertaining to commu-
nication with the ASP.NET Core Web API is contained within the two service
classes — GameService and ScriptsService.

A.2.5 AI framework
In the previous subsection, we have already discussed the communication between
game engine and the AI from the game engine’s point of view. In this subsection,
we will examine the other side. The API provided to AIs is contained within the
AICore.py source file (located in the root folder of the AICore project), in the
abstract class AIBase. This class is meant to be a base class for all AI implemen-
tations added to the game. It provides the AIs with the following functionality:

• Communication with the game engine. The AIs do not need to manually
read from and write to pipes, this is handled by base class methods. When-
ever the game engine requests an action from the AI, the base class will
read this message from the named pipe, and invoke the AI code to get a
response. It then writes this response back to the named pipe.

• Other communication with the game engine — determinization and simu-
lation. Determinization, provided a game state with hidden information,
will produce a game state with perfect information. This is done by the
game engine using information set data it tracks internally. This is used in
algorithms like ISMCTS or our adapted version of MaxN, both of which we
examined in the experimental part of this thesis.

• The AICore.py source file also contains various utility functions for working
with game state. Game state is provided to AIs as a dictionary which copies
the structure of the GameState object we discussed in Attachment A.2.3.
Among these functions are utilities like counting modules in a player’s
colony on a per-color basis.

Since the game engine executes the AIs by running them from the command
line with a Python interpreter, it is crucial that the AICore.py file be accessible
to them. To this end, whenever an AI is added to the game, it is copied into a
folder in the game files containing the AICore.py file. With folder-based AIs the

59



situation is a little more tricky, since importing files higher in a folder hierarchy
is not straightforward in Python. Therefore, when copying in folder-based AIs,
a copy of AICore.py is copied along with the new files into the new folder. This
way, the AI has access to this file at runtime.

Observe that during application build or publish, the AIs which ship with the
game are copied into the publish folder. This is accomplished through the .csproj
files for the Desktop and Experiments projects.

While creating AIs for the game, debugging the AI is relatively straightfor-
ward. Simply set a breakpoint at the game engine location where the AI is being
run with the Python interpreter, then skip the line creating the actual process and
instead run your own process in debug mode in your development environment
of choice.

The following is a description of the API provided by the AIBase class:

• messageCallback(self, gameState) — abstract method, must be imple-
mented in descendants. This method is called by the framework when it is
the AI’s turn in the game, and its response is required. The gameState ob-
ject represents the current game state (the object will be described later in
this section). The expected return value is a string containing a single num-
ber, corresponding to the index of the chosen action. The by index we mean
the zero-based index of the chosen action in the gameState["Actions"]
list.

• determinize(self) — uses the information set stored by the game engine
to produce a determinized version of the current game state. The return
value is the determinized version with all hidden information revealed.

• simulate(self, boardState, move) — simulates the given move on the
given board state, and returns the new game state. The move parameter
must be a string representation of an action, following the specific format
returned by the getActionString(action) function of the AICore.py file.

• run(self, pipeName) — initializes the communication with the game en-
gine. The pipeName parameter is passed to the AI script as the only argu-
ment, therefore it is located at sys.argv[1] in the main AI file. A typical
usage pattern is shown in Figure A.24

if name == " main ":
ai = ISMCTS AI() # Inherits from AIBase
ai.run(sys.argv[1])

Figure A.24: Common usage scenario of the run(self, pipeName) method.

There are a number of other utility functions in the AICore.py file, however
most of them are not worth mentioning here, since they are simply one line
shorthands for common operations. There is one worth mentioning however —
getActionString(action). This function converts an action (as obtained from
the gameState["Actions"] list) into the shorthand string format used by the
simulate(self, boardState, move) method.

60



Issues with embeddable Python

Embeddable versions of Python ignore PYTHONPATH, and this causes issues when
running AI scripts. To avoid this issue, either use a regular Python installation,
or add the lines shown in Figure A.25 to the top of your AI script. However,
editing the scripts in the aforementioned way sometimes still does not fix the
issue. The only sure way to get rid of the problem is to use a regular Python
installation.

import sys
sys.path += ’.’

Figure A.25: Workaround for issues with embeddable Python installations.

A.2.6 Experiments
The experiments performed in this thesis are implemented in the Experiments
project of the Colonizers solution. It is a C# console application project. It
is invoked via the command line with two arguments — the first is a number
between 1 and 5, corresponding to the experiment number, and the second is the
path to the Python executable to use when executing AI scripts. Note that the
attachments to this thesis do not contain a binary for the Experiments project,
therefore you will have to build and run it yourself. This may be done by installing
the required software for developing Colonizers mentioned in this chapter, nav-
igating to the Experiments project folder, and running the command dotnet
run, followed by the parameters required by the program.

After the experiment is run, it will produce a JSON file containing the results
of the experiment. This file is generated in the directory where the Experiments
project is run from. Figure A.26 shows the structure of these JSON files, with
less important fields omitted for brevity. The JSON files associated with the five
experiments are also located in the Results folder of the Experiments project.
They were added there for reference, since some experiments may take tens of
hours to run even on reasonably fast machines. Be aware that a simple diff of
the JSON result files is not sufficient for determining whether or not a given
experiment was successfully replicated. This is because the files contain running
times of the games as well.

The class Scenarios contains the configuration and setup for the experiments,
and each scenario then calls ExperimentRunner to performed the experiment
itself. There is no need to configure anything more than passing the program the
required parameters, the experiment scenarios are set up exactly as they were
performed by the author.

A noteworthy point is the implementation of the shuffling of players between
games. Since the game engine already possessed an implementation of the Fisher-
Yates Shuffle [16] for shuffling lists, this implementation was reused for shuffling
the players themselves. This means that if we were to run the experiments without
shuffling, and instead assigning the players the same positions they would have
been assigned by the shuffle, the results of this experiment would be different.

61



{
"Players": [

"Name": "ISMCTS",
"PlayerEndInfo": {

"Ranking": 3,
"VictoryPoints": 24,
"Player": {

"ID": 1,
...

}
}

],
"Duration": "00:12:28.1879334"

}

Figure A.26: Experiment result JSON file structure (simplified).

This is because running the shuffle manipulates the game engine’s random number
generator.

62


	Introduction
	Foreword
	Goals

	Related Work
	Game Frameworks
	OpenAI Gym
	boardgame.io

	Algorithms
	MaxN
	Monte Carlo Tree Search


	Game Design
	High Level Design
	Game Rules
	Colonist Pick
	Proper Turns
	Colonists
	Modules

	Branching Factor

	AI Framework
	Design
	Interface
	Adding new AIs

	Used Algorithms
	Random Decisions
	Heuristics
	MaxN
	Information Set Monte Carlo Tree Search

	Experiment Description
	Game Balance Experiments
	Description
	Findings

	Algorithm Comparison Experiments
	Description
	Findings


	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	User Documentation
	Requirements
	Installation
	Game Configuration
	Gameplay

	Developer Documentation
	Prerequisites
	Project Structure
	Game Engine
	User Interface
	AI framework
	Experiments



