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STORAGE CELLS AND THEIR ROLE IN TARDIGRADE PHYSIOLOGY 

Abstract 

Tardigrades possess remarkable tolerance to numerous stress conditions (e.g. almost 

complete desiccation, exposure to very low sub-zero temperature, heat stress and even 

exposure to space in low Earth orbit). Indeed, they are among the most radiation-resistant 

multi-cellular organisms. The body cavity of tardigrades is filled with the storage cells (SC). 

Their role in anhydrobiosis has been discussed. The main objectives of this work were to 

analyse (i) the occurrence of mitosis in SC, (ii) the factors constraining anhydrobiotic survival, 

and (iii) the general ultrastructure of SC and their ultrastructure concerning the stress 

conditions. Our model species, R. cf. coronifer is one of the most extensively studied 

tardigrades concerning anhydrobiosis. Comprehensive histochemical techniques were used 

in combination with SEM, TEM, and confocal microscopy. First, mitotic divisions of tardigrade 

SC occur with a higher frequency in juveniles than in adults and correlate with animal growth. 

Mitosis is more frequent in moulting tardigrades, but the overall mitotic index is low. 

Furthermore, tardigrades of R. cf. coronifer can survive the maximum of 6 repeated 

desiccation cycles with significantly declining survival rate with repeated desiccations and 

significantly lower number of SC and more incorrectly formed tuns (“semi-tuns”) after the fifth 

desiccation cycle. Tardigrades of R. cf. coronifer survive 6 months of desiccation. Heat stress, 

however, decreases the survival rate of desiccated tardigrades. Only a few ultrastructural 

changes were observed concerning to desiccation: (i) change in pigmentation in epidermal 

cells, (ii) overall cellular shrinkage, (iii) increments of heterochromatin in SC, (iv) change in 

density and contents of reserve material in SC, (v) partially loss of nucleoli.  The SC of active 

specimens contain a large nucleus, distinct nucleolus, ribosomes, mitochondria, RER, GA, large 

autophagosomes. Lipids and polysaccharides are the main stored material in SC. Finally, two 

cell-types with different ultrastructure were defined in tardigrades of R. cf. coronifer: (i) type I 

cells are metabolically active and store nutrients in form of reserve spheres and type II cells 

that might represent undifferentiated stem-cell-like cells. 

 Key words: storage cells, coelomocytes, mitosis, tardigrades, anhydrobiosis, tun formation, 

cryptobiosis, Tardigrada, Richtersius coronifer 
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PREFACE 

The main objectives of studies were to analyze (A) the occurrence of mitosis in storage 

cells (section 3.1), (B) the factors constraining anhydrobiotic survival (section 3.2), and 

(C) the ultrastructure of storage cells and their ultrastructure in relation to survival of stress 

conditions (section 3.3). The aim was to document the internal morphology and ultrastructure 

of tissues and cells under desiccation stress. My thesis primarily aimed to address several 

aspects of the storage cells (coelomocyte-type cells) of the phylum Tardigrada with regard 

to stress tolerance, and hereby provide new insights into the general cell biology and stress 

biology of this animal group. This was done by applying different microscopic techniques, such 

as scanning and transmission electron microscopy, fluorescent and confocal microscopy, 

histochemical and cytochemical techniques which offered qualitative as well as quantitative 

data on tardigrade cell biology, and stress related survival analyses. The experiments were 

carried out mainly at the Kristianstad University in Kristianstad, Sweden. Part of the work was 

performed at the Department of Animal Histology and Embryology, University of Silesia 

in Katowice, Poland.   

My thesis consists of an introduction to the general biology of tardigrades: their 

morphology, ecology and classification, as well as the biology of storage cells and cryptobiosis 

with a focus on anhydrobiosis. All studies were performed on the tardigrade model species 

Richtersius cf. coronifer (Richters, 1903) described in the Materials and methods-section 

in detail. My thesis further provides an extensive study on mitosis occurence in tardigrade 

storage cells. It also brings new data on the ultrastructure of tardigrade tun formation and 

storage cells. It focuses on potential ultrastructural changes connected with tardigrade stress 

tolerance, especially desiccation and heat stress. An overview of the results is presented 

thematically based on four manuscripts that form the basis of this thesis. All publications are 

published in peer-reviewed journals with myself as the first author. One side stude in form 

of poster presentation is included as well. One additional manuscript was published during my 

Ph.D. studies, but is not included in the thesis.  

This work was supported by Kristianstad University, Mobility Fund of the Charles 

University in Prague and Academy of Sciences of the Czech Republic. 

Ústí nad Labem, the 22th of January 2020 

Michaela Czerneková 
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1 INTRODUCTION  

1.1 Tardigrades (phylum Tardigrada) as model organisms. 

Tardigrades, commonly called water bears, are multicellular hydrophilous 

micrometazoans (0.1 – 1.2 mm) that belong to protostomes with close affinities 

to the euarthropod complex (Giribet et al., 1996; Aguinaldo et al., 1997; Halberg et al., 

2009b). They are often described as a lesser-studied group as they have no impact 

on the human economy (Nelson, 2002   uil   Cabrero-San udo, 2007). The first description 

of tardigrades was reported in notes of J. A.  oeze “Über den kleinen Wasserbären” (“About 

the small water bear”, named due to their resemblance to a tiny bear), but the current name 

Tardigrada was given by the Italian naturalist Spallanzani in 1776 (Lat. tardus - slow, grado - 

walker).  

Some of the tardigrade species live in oceans, but most of the ~1300 tardigrade 

species (Degma et al., 2019) occur in freshwater, terrestrial or semi-terrestrial environments 

from continental Antarctica to the icecap of Greenland, some of which are the most extreme 

natural habitats on the Earth (Kinchin, 1994  Sømme and Meier, 1995). They inhabit mostly 

mosses and lichens where they constitute a major component of the microfauna (Halberg et 

al., 2009b). Their active life proceeds only in the presence of a moist environment and water 

surrounding their bodies with a liquid layer (Ramazzotti and Maucci, 1983; Kinchin, 1994). 

However, tardigrades are fascinating organisms for biologists because they can withstand 

a variety of extreme stress conditions (see below) by entering an ametabolic state called 

cryptobiosis (Crowe and Cooper, 1971; Crowe, 1972; Wright et al., 1992). Once conditions 

become favourable, they reactivate metabolism and continue their life. They share this ability 

with several species from the phyla Rotifera, Nematoda and Arthropoda. Although 

the cryptobiotic ability of tardigrades has been known and investigated for quite a long time 

(Broca, 1860; Keilin, 1959; Wright et al., 1992; Wright, 2001), the molecular and cellular 

mechanisms of this ability, as well as its limits, are still poorly understood.  

Tardigrades can survive almost complete desiccation (Westh and Ramløv, 1991). They 

can remain in a desiccated cryptobiotic state for as much as 20 years (Jørgensen et al., 2007) 

and be retrieved from a moss sample frozen for over 30 years (Tsujimoto et al., 2016). 

Furthermore, anhydrobiotic (desiccated) tardigrades have been reported to survive 

and tolerate multiple extreme environmental conditions, including fast cooling to sub-zero 

temperature (Hengherr et al., 2009b, 2010), -80°C for up to three decades without loss 
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of viability (Tsujimoto et al., 2016) and even the temperatures close to absolute zero (Ramløv 

and Westh, 1992; Guidetti et al., 2012). They can also survive temperatures as high as 70°C 

for 1h (Ramløv and Westh, 2001), high external osmotic pressure (Heidemann et al., 2016), 

treatments with alcohols of varying polarity (Ramløv and Westh, 2001) and biocide methyl 

bromide gas (Jönsson and  uidetti, 2001). Tardigrades can further resist low and high 

hydrostatic pressure (up to 600-1200 MPa; Ono et al., 2008; Horikawa et al., 2009), several 

thousand grey (Gy) of gamma irradiation (Jönsson et al., 2005; Horikawa et al., 2006), heavy 

ion irradiation in the form of 4He (Horikawa et al., 2006), protons (Nilsson et al., 2010), alpha 

particles 4H (Horikawa et al., 2012), iron ions and helium ions (Jönsson and Wojcik, 2017), 

high doses of UV radiation, including UVA (Jönsson et al., 2008), UVB (Altiero et al., 2011), 

and UVC (Horikawa et al., 2013), and exposure to space in low Earth orbit (Jönsson et al., 

2008; Persson et al., 2011). Although several hypotheses explaining tardigrade tolerance 

to environmental stress have been formulated, they have not been united 

in a comprehensive theory yet mainly because the underlying molecular and physiological 

mechanisms are largely unknown.  

In general, cell biology of tardigrades have been a neglected field, even though a few 

ultrastructural studies have been conducted (Walz, 1973  Węglarska, 1975  Dewel et al., 

1993; Avdonina et al., 2007; Persson et al., 2012; Hyra et al., 2016b). Tardigrades have 

sometimes been characterised as organisms with constant cell numbers in their adult lives 

(Gabriel et al., 2007; Guidetti et al., 2012; Wright, 2014), however, occasionally, some cell 

divisions were observed (Bertolani, 1970a, b; Gross et al., 2018). Conceivably, this assumption 

may have discouraged any attempts to culture tardigrade cells.  As detailed above, 

tardigrades exhibit an impressive capacity to survive under the most hostile environmental 

conditions. Actually, they are among the most radiation-resistant multi-cellular organisms, 

not very far from the abilities of bacteria in terms of short-term post-irradiation survival 

(Jönsson and  uidetti, 2001  Schill et al., 2004  Jönsson et al., 2005  Horikawa et al., 2006  

Halberg et al., 2009b; Altiero et al., 2011; Nilsson et al., 2013).  

Research on tardigrades, therefore, has profound potential for the development 

of novel technologies in the field of radioprotection, cryopreservation, and preservation 

of dried biological material. Although possible applications of tardigrade research findings 

in the fields of medicine and health protection have been recognized (Keilin, 1959; Clegg, 

2001), very few studies investigating the effects of various stressors on living organisms used 

tardigrades as model organisms (Hashimoto and Kunieda, 2017  Jönsson, 2019), especially 

in biomedical sciences (Guidetti et al., 2012). Nevertheless, several interesting studies have 
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emerged recently. Expression of tardigrade-specific proteins, such as RvLEAM (mitochondrial 

heat-soluble) and MAHS, in human cells (Hep-2) increased their tolerance to hyperosmotic 

stress (Tanaka et al., 2015). Another tardigrade-specific protein, Dsup, associating with DNA 

and protecting it from hydroxyl radicals (Hashimoto et al., 2016; Chavez et al., 2019) was able 

to reduce X-ray induced DNA damage by 40% when overexpressed in human embryonic 

kidney cells (HEK293) and it improved their post-irradiation viability. 

Garcia-Arrarás and Dolmatov (2010) highlighted a paradox in biomedical science: 

“The range and accuracy of scientific techniques and tools available to explore the solutions 

to research questions are increasing, but meanwhile there is a smaller number of model 

organisms to apply these techniques”. The “classical model systems” were represented 

mostly by organisms amenable to genetic manipulations, including Tobacco mosaic virus, 

Escherichia coli (Escherich, 1885), yeasts Saccharomyces cerevisiae (Meyen ex E.C. Hansen, 

1883), and some invertebrates. Widely used invertebrate model organisms have been the 

multicellular nematode Caenorhabditis elegans (Maupas, 1899) and the fruit fly Drosophila 

melanogaster (Meigen, 1830) that serve as models for developmental biology, molecular 

or population genetics, and neuropharmacological research as well (Manev et al., 2003; 

Govind, 2011).  

Many animal groups, including tardigrades, were, however, left behind, despite 

possessing special properties that may provide important insights into the systematic, organ, 

cellular and molecular bases of general physiology and pathophysiology. For instance, 

the earthworms have been traditionally used in Chinese medicine for thousands of years, 

but the research and development of biochemical technologies and pharmaceutical effects 

of earthworms only started just in the past few decades (Dinesh et al., 2013). Tardigrades 

have been proposed as model organisms for astrobiological research (Jönsson, 2007; 

Horikawa, 2008; Guidetti et al., 2012) and are becoming the model organisms for studies 

of invertebrate cryptobiosis (Jönsson et al., 2019). Encouraging report have been emerging 

also in other fields, such as food preservation (Colaço and Roser, 1994; Saragusty and Loi, 

2019), cryopreservation of mammalian cells (Eroglu et al., 2000), preservation 

of macromolecules (Piszkiewicz et al., 2019), sperms, blood cells and tissues (Crowe, 1971; 

Clegg, 2001). The research potential of invertebrate model organisms was documented 

by recent investigations of invertebrates with coelomocyte-type cells regarding cancer. 

The studies on earthworms revealed the existence of coelomic fluid humoral proteins 

released from various coelomocytes with cytotoxic, antibacterial, agglutinating, proteolytic 

and mitogenic activities (Dinesh et al., 2013  Mácsik et al., 2015). It was shown that cytolytic 
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factors of coelomic fluid cause apoptosis of tumour target cells and HeLa cells in vitro (Mácsik 

et al., 2015; Augustin et al, 2017). Another example is demonstrated in the study of Homa 

(2018) who showed the function of earthworm coelomocytes in the production 

of extracellular traps that are structurally and functionally similar to those produced 

by human neutrophils. Coelomocyte-type cells occur also in other phyla, such 

as in nematodes, echinoderms, annelids, rotifers, and tardigrades (Tahseen, 2009).  

Tardigrade coelomocyte-type cells are called storage cells (or body cavity cells) which 

occur inside the body cavity filled with coelomic fluid (Węglarska, 1975; Reuner et al., 2010a). 

Much of tardigrade physiology depends on these cells and they are assumed to play a role 

in cryptobiosis of tardigrades (Węglarska, 1975). Several studies showed a role of storage 

cells in starvation (diminishing reserves or size of storage cells after starvation; Węglarska, 

1957) and anhydrobiosis (Jönsson and Rebecchi, 2002). Coelomocytes of other, less 

stress-tolerant, invertebrate groups were found to play an important role in cancer research 

(Dinesh et al., 2013  Mácsik et al., 2015). Recently, Buis et al. (2019) revealed the role of 

nematode coelomocytes in the regulation of starvation-induced fat catabolism.  

Still, we know very little about the tardigrade storage cells´ ultrastructure and 

physiology. Because the properties of tardigrade cells are mostly unknown, and the primary 

cell culture has not been established yet, it makes any studies difficult and time-consuming. 

Moreover, the conditions of cell division and cell cycle, in general, remain puzzling (Paper I; 

Gross et al., 2018  Jönsson et al., 2019). 

To introduce tardigrades as a model organism in cell biology research, it is necessary 

to know whether and under which conditions these cells do divide. Paper I provides 

an extensive evaluation of an occurrence of mitotic division in storage cells and analyses 

the possible connections between the occurrence of mitosis and the different phenotypic 

characteristics of the animal.  

The stress tolerance of tardigrades with a specific focus on the storage cells was also 

investigated. To understand factors constraining dehydration tolerance in tardigrades, 

(1) their survival patterns under repeated cycles of desiccations/rehydration, (2) the potential 

effect of each desiccation cycle on morphometric traits, and (3) the storage cell divisions after 

each desiccation/rehydration cycle were researched in Paper II.  

In paper III, the morphological and ultrastructural changes related to desiccation 

were studied through an analysis of the gross morphology and tissue organisation 
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of tardigrades during so-called tun formation. The ultrastructure of the body wall, ovary, 

midgut and storage cells was analyzed in desiccated samples of R. cf. coronifer, a species 

with pronounced anhydrobiotic abilities. This study includes the first analysis of cuticle 

organisation in moulting and non-moulting tardigrades in a desiccated state. A 3D 

reconstruction of the tun stage is presented. 

The aims of paper IV were to (1) compare the ultrastructure of storage cells in active 

and desiccated specimens, and (2) evaluate the effect of temperature stress on tardigrade 

cells.  

My thesis is divided into four chapters. First, I include a brief introduction 

to the phylum Tardigrada with general characteristics of the phylum and the storage cells. 

Description of model species used in all studies, the study area, data collection and analyses 

are included in Material and method section. Results and discussion section is ordered into 

three subdivisions: 1) Mitosis in storage cells and eutely in tardigrades (Paper I and II), 

2) Anhydrobiosis in R. cf. coronifer (Paper II, III, and IV), 3) Ultrastructure of storage cells 

(Paper III and IV). The storage cells are the main focus of this thesis and of all presented 

manuscripts. The detailed methodology used in my studies can be found directly in my 

publications. each study is described in the separate publications, attached to this thesis. 

Conclusions and future perspectives section brings then the main conclusions of my work. 
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1.2 THE GENERAL BIOLOGY AND MORPHOLOGY OF TARDIGRADES 

The bilaterally symmetrical bodies of tardigrades have five segments: a head and four 

trunk segments, each with a pair of lobopod legs (Fig. 1A), usually terminating with claws 

and/or sucking discs of varying number and shape. The total body length, excluding the 4th 

pair of legs, varies between 50 µm up to 1200 µm (Møbjerg et al., 2019).  

Tardigrades are relatively complex invertebrates with well-developed musculature 

and nervous system, as well as a complex alimentary canal and specialized excretory 

and reproductive system (Rebecchi and Bertolani, 1994; Nelson et al., 2005; Halberg 

and Møbjerg, 2012). Possibly due to their miniaturisation, they lack respiratory and 

circulatory organs (Gross et al., 2019). The gas exchange occurs via diffusion across 

the epidermis and the thick cuticle (Nelson et al., 2015). The circulation is carried out via 

a large body cavity filled with coelomic fluid containing body cavity cells (storage cells) 

varying in numbers and size (Fig. 1A, Paper I and IV). Their specific function is discussed 

below. The body cavity sometimes contains reserved material (Ramazzotti and Maucci, 1983; 

Nelson, 2002). The cells are usually translucent or opaque, but some species exhibit 

colouration in cells of the gut, epidermis, cuticle, or in storage cells (Ramazzotti and Maucci, 

1983). 

The muscular system consists of dorsal, ventral and lateral somatic muscles arranged 

dorsoventrally or longitudinally, pharyngeal stylet and visceral muscles, circular muscles are, 

however, absent (Nelson et al., 2005; Halberg et al., 2009a, b; Marchioro et al., 2013; 

Møbjerg et al., 2018). The entire muscle consists of a single cell. While eutardigrades have 

longitudinal muscle strands in all muscle groups with several additional transverse muscles, 

heterotardigrades exhibit lower complexity in somatic muscles with a lower number of fibres 

and barely recognizable longitudinal strands (Marchioro et al., 2013). The cuticular and 

hydrostatic skeleton works as antagonists to muscle contraction.  

Tardigrade digestive system consists of a foregut with buccal-pharyngeal apparatus 

and oesophagus lined with cuticle, a large midgut, and a short hindgut with cuticular lining 

(Nelson, 2002; Nelson et al., 2015). The hindgut is divided into an anterior part (rectum) and 

it is terminating in a cloaca (in eutardigrades) or anus (as in heterotardigrades reproductive 

and digestive system are separated) (Nelson et al., 2005). The midgut (consisting of ~40 cells) 

is lined with a cuticle and has a digestive function (Nelson et al., 2015; Gross et al., 2019). 

However, it is also involved in oogenesis (Hyra et al., 2016a). The hindgut is associated 

with osmoregulatory functions (Dewel and Dewel, 1979).  
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Excretion and osmoregulation are associated with the cuticle and/or Malpighian 

organs (three osmoregulatory glands, two lateral and one dorsal, in eutardigrades), 

or with ventral organs associated with the cuticle (in some heterotardigrades) (Dewel and 

Dewel, 1979; Møbjerg and Dahl, 1996  Nelson et al., 2015). Excretion occurs through 

the buccal glands at moulting by shedding cuticle with accumulated excretory granules 

together with the wall of midgut and via active transport over folded plasma membrane 

in the initial segment of the Malpighian tubules (in eutardigrades). Malpighian tubules are 

considered secretion-reabsorption “kidneys”; however, they can also serve as nutrient 

(glycogen or lipid) storage (Møbjerg and Dahl, 1996; Halberg et al., 2009b).  

Morphology and ultrastructure of Malpighian organs reveal dissimilarities within 

tardigrades. The Malpighian tubules can be divided into three groups: (i) long monomorphous 

tubules in xerophilic species, e.g. Milnesium tardigradum, (ii) short monomorphous tubules 

in freshwater and semi-terrestrial species, e.g. Isohypsibius granulifer (Thulin, 1928) and 

(iii) dimorphous tubules, e.g. Halobiotus crispae (Kristensen, 1982; Møbjerg and Dahl, 1996). 

The tubules empty into the digestive tract in the transition zone of the midgut and rectum 

(with osmoregulatory function; Halberg et al., 2009b) and can be divided into an initial 

segment (3 cells or 6 cells in M. tardigradum), and a proximal and a distal part that is 

composed of the canal system. The tubules completely lack ciliary structures typical 

for proto- and meta-nephridia (Møbjerg and Dahl, 1996).  

The central nervous system (containing 440 – 650 cells in total) consists of a dorsal 

tripartite brain (consisting of 200-370 neurons) and ventral nerve chain with four bilobed 

segmented ganglia (each containing 60 – 70 cells) linked by somata-free connectives (Mayer 

et al., 2013; Nelson et al., 2015; Gross et al., 2019). Many eutardigrades have a pair 

of eyespots (cup-shaped photoreceptors with pigment granules on the surface of the brain) 

composed of 3-5 cells per eye (ciliary and rhabdomeric receptor cells; Greven, 2007). 

Heterotardigrades have various external cephalic sensory organs, while eutardigrades have 

receptors under the cephalic cuticle. The gonads in females and hermaphrodites have one 

gonoduct, and two gonoducts in males. Gonoducts terminate internally in a cloaca 

in eutardigrades or externally in a gonopore in heterotardigrades (Nelson et al., 2015). 
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Figure 1. General morphology of the tardigrade Richtersius cf. coronifer. 

 (A) An adult specimen of R. cf. coronifer, light microscopy: the head (h) with mouth (m) and 

eye spots (es) and four trunk regions with four paired legs (l) ended with claws (c). Under 

the cuticle are the pedal glands (pg). The stylet of buccopharyngeal apparatus (ba) is not 

present due to moulting. The transparent cuticle allows observation of free storage cells (sc), 

filling the free space among the inner organs, such as ovaries (ov) with two large oocytes (oc) 

and midgut (mg), in the body cavity. Bar = 20 µm; (B) Tun formation of R. cf. coronifer, 

the longitudinal plane, histochemical staining (bromophenylblue), light microscopy: 

ov = ovary, ct = folded cuticle. Bar = 50 µm 

  

      

Figure 2. Tun formation of R. cf. coronifer. (A) A light microscopy of a tun, when the animal 

was desiccated on filter paper. The brownish midgut (mg) is visible through the cuticle. (B) 

Scanning electron microphotograph of a tun, with a dorsal view showing the cuticular folding. 
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1.3 TARDIGRADE PHYLOGENY AND EVOLUTION 

Although tardigrades have been known to science since the 18th century, their 

phylogenetic status has been difficult to resolve (Giribet and Edgecombe, 2017  Jørgensen 

et al., 2018). Previously, tardigrades were considered a part of a group known 

as Aschelminthes (Crowe et al., 1970), however, their relation to arthropods was also 

recognised (Garey et al., 1996). Currently, tardigrades constitute a separate phylum 

Tardigrada, which belong to Protostomia, specifically, to one of its subgroups, 

to the monophyletic clade Ecdysozoa (Aguinaldo et al., 1997). All ecdysozoans have 

the moulting of their exoskeleton (the cuticle) in common. The clade Ecdysozoa (Fig. 3) 

includes Cycloneuralia with a ring-like brain (the phyla Nematomorpha, Nematoda, 

Priapulida, Khinorhyncha, Loricifera) and Panarthropoda with a ganglionic brain (the phyla 

Euarthropoda, Onychophora and Tardigrada; Mallatt and Giribet, 2006; Telford et al., 2008; 

Edgecombe, 2010; Smith et al., 2017). Based on 18S mRNA, tardigrades are a sister group 

of Euarthropoda. According to Dunn et al. (2008) and Yoshida et al. (2017), tardigrades are 

closely related to nematodes.  

Molecular and morphological studies influenced the current taxonomy identifying 

the three classes: (i) Heterotardigrada (orders Arthrotardigrada and Echiniscoidea), 

(ii) Eutardigrada (orders Parachela and Apochela) shown in Fig. 3 and 4. and (iii) 

Mesotardigrada. This sorting is based on taxonomy of claws, cuticle, cephalic appendages, 

buccal apparatus and reproductive structures (Ramazzotti et Maucci, 1983; Nelson, 2002; 

Sands et al., 2008  Jørgensen et al., 2018). The class Heterotardigrada has both marine 

and limnoterrestrial representatives (order Arthrotardigrada and family Echiniscoidea), while 

the class Eutardigrada with few exceptions is represented by limnoterrestrial or freshwater 

species. The class Mesotardigrada is considered dubious, represented by only one species, 

Thermozodium esakii (Rahm, 1937) that was reportedly found in a Japanese thermal spring 

and which has never been found again despite recent efforts (Grothman et al., 2017).  

The tardigrades´ taxonomy relies upon the analysis of morphological characteristics, 

bucco-pharyngeal apparatus, cuticular ornamentation, claws, and egg morphology (Bertolani, 

2001; Nichols et al., 2006). The actual checklist is made available by Degma et al. (2019).  
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Figure 3. Phylogenetic position of Tardigrada. Reprinted from Jørgensen et al. (2018). 
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Figure 4. Tardigrade phylogeny. Major clades and position of model species, including R. cf. 

coronifer (adapted from Møbjerg et al., 2011). 

 

 

1.4 GENOME AND GENETICS 

Although the first data about tardigrade chromosomes derived from histological 

sections by Henneke (1911) and von Wenck (1914), the first precise karyotype of a tardigrade 

species was obtained by Ammermann (1967), who reported a diploid number of ten 

chromosomes in Hypsibius exemplaris (previously H. dujardini Doyère, 1840   ąsiorek et al., 

2018). Karyological studies were later performed mainly on oocytes, which have larger 

chromosomes compared to those observed during mitosis in gametogonia or somatic cells. 

Studies on Feulgen-DNA content and genome size confirmed the presence of diploid and 

polyploid populations and the presence of nuclei with varying amounts of DNA arising from 

endoreplication (Rebecchi and Bertolani et al., 1994  Jönsson et al., 2019).  In diploid strains, 

the haploid chromosome number is 5 or 6. Polyploid (often triploid but also tetraploid) 

populations were also observed in some species, mostly in eutardigrades. Triploidy (17-18 

chromosomes in total) was detected in females of parthenogenetic species of genera 

Paramacrobiotus, Macrobiotus, Xerobiotus, Pseudobiotus, Eremobiotus, and Ramazzottius 
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(Bertolani and Rebecchi, 2018). The chromosomes described so far have been acrocentric. 

Crossing-over was described only in female oocytes and not in spermatocytes (Altiero and 

Rebecchi, 2003). Diploid populations of tardigrades have meiotic (apomictic) parthenogenesis 

with the pairing of homologous chromosomes.  

The genome size of tardigrades is relatively small and ranges from 55 Megabases 

(Mb) up to 800 Mb (Møbjerg et al., 2011  Yoshida et al., 2017). Feulgen-DNA content 

of spermatozoa ranges from 0.08 pg tp 0.73 pg (Bertolani and Rebecchi, 2018) that is among 

the lowest in invertebrates (Bracken-Grissom et al., 2014). Estimated genome size for model 

organisms Caenorhabditis elegans or Drosophila melanogaster is 100.4 Mb (Fierst et al., 

2015) and 175 Mb (Hjelmen et al., 2019). 

Several omics studies contributed to our understanding of genetics, and thus 

physiology, phylogeny and evolution of tardigrades (Mali et al., 2010; Levin et al., 2016, 

Hashimoto et al., 2016; Boothby et al. 2017; Yoshida er al., 2017). Precise genome analysis 

revealed investments in stress-specific adaptations, such as protein, DNA and redox-

protection, maintenance and protein recycling (Förster et al., 2009). An excellent tardigrade 

proteome map was published by Schokraie et al. (2010). Tenlen et al. (2013) performed 

pioneering experiments suggesting the applicability of RNA interference (RNAi) in species H. 

exemplaris using microinjection of several dsRNA into its intestines or gonads. Although 

the reduction of intracellular levels of target mRNA and encoded proteins were not verified, 

the phenotypic analysis indicated that using RNAi in tardigrades is viable. The same method 

was later used to study the role of tardigrade-specific internally disordered proteins 

in desiccation tolerance of H. exemplaris (Boothby et al., 2017). 

 

1.5 CRYPTOBIOSIS 

Organisms living in extreme habitats have developed specific adaptations 

to environmental stressors.  The most widespread adaptation is dormancy, i.e. any form 

of a resting stage (temporary decrease of activity, temporary cessation of growth 

and reproduction, reduced or suspended metabolism, developmental standstill). Dormancy 

includes two forms: diapause and quiescence. Both types of dormancy are associated 

with the low but still measurable metabolic activity (hypo-metabolism), albeit with temporary 

cessation of growth, development and animal activity (Lees, 1955; Neumann, 2006; Rebecchi 

et al., 2019). Diapause is endogenously and centrally mediated temporary interruption 
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of activity, which may persist even after environmental conditions return to favourable range 

and is related to seasonal alterations between favourable and unfavourable conditions (e.g. 

photoperiod) (Womersley, 1981; Watanabe, 2006; Rebecchi et al., 2007; Record et al., 2018). 

Quiescence is a decrease of metabolic activity under exogenous control, induced directly 

by environmental stressors, which is immediately reversed by removal of external stressors 

(Rebecchi et al., 2007). Dormancy is well documented in the invertebrates, plants and 

microbes of extreme environments (tolerance to freezing or drying; Lees, 1955; Guidetti et 

al., 2011; Košťál, 2011). However, some organisms can enter an extreme form of quiescence 

called cryptobiosis reducing their metabolism to undetectable levels (Rebecchi et al., 2007). 

The concept of cryptobiosis (or “hidden life”) was introduced by David Keilin in 1959. Keilin 

(1959) defined cryptobiosis as “...the state of an organism when it shows no visible signs 

of life and when its metabolic activity becomes hardly measurable or comes reversibly 

standstill” (pp. 166). Consequently, during this latent state metabolism, growth, 

reproduction, repair and senescence are reduced or temporarily ceased, and therefore 

the larval, pupal, and adult stages are arrested. As metabolism is a defining characteristic 

of life, cryptobiosis is sometimes considered a third state between life and death (Clegg, 

2001) or even “temporary death” or “potentially reversible death” (Neuman, 2006).  

Cryptobiosis can be induced by several environmental factors, e.g. by lack of water 

(anhydrobiosis), low temperature (cryobiosis), high temperature (thermobiosis), lack 

of oxygen (anoxybiosis), high osmolarity (osmobiosis), starvation or a combination of above 

factors (Crowe, 1971; Walz, 1979; Clegg, 2001;  utiérrez et al., 2001  Watanabe, 2006; 

Rebecchi et al., 2007). Desiccation induced anhydrobiosis and freeze-induced cryobiosis are 

the most extensively studied states. The anhydrobiosis and cryobiosis are, however, not 

equivalent states and likely involve different mechanisms for protecting the cells and tissues 

(Crowe et al., 1992).  

Anhydrobiosis in tardigrades is connected to a special morphological adaptation that 

includes the formation of a barrel-shaped structure (“tun”). The animal transition to a tun 

by actively contracting its body anterior-posteriorly and by withdrawing its legs and head 

(Rebecchi et al., 2019). Successful maintenance of morphological tun state (Figs. 1B, 2A, B, 

5A) in anhydrobiosis does not require interactions between the cells (Halberg et al., 2013). It 

produces a new spatial organization of some internal organs (Paper III). Therefore, 

mechanical injuries are tolerated in the state of cryptobiosis.  
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Only tissues and organisms in the cryptobiotic stage can tolerate very low and very 

high temperatures (over 100°C), or sojourn in liquid helium (Hinton, 1960; Neves et al., 2020). 

It is known that cryptobiosis evolved several times during evolution, because it is present 

in unicellular organisms (bacteria, protists; Potts, 2005), among mosses, lichens, liverworts, 

plants (Cannone et al., 2017) and their seeds (Alpert, 2000, 2005), but also in metazoans 

(nematodes, rotifers, tardigrades, insects, crustaceans; Alpert, 2005; Rebecchi et al., 2019). 

Still, only some species among invertebrates, and no vertebrates, have evolved this capability 

(Wright et al., 1992). Biochemistry and physiology of cryptobiosis allowing survival in a state 

of complete metabolic shut-down remain poorly understood (Watanabe et al., 2002; Schill et 

al., 2004) and our current knowledge is based on the research of few model systems, mainly 

Artemia cysts, corn embryos, and nematodes (Wright, 2001). Although some attention has 

been paid to anhydrobiosis in tardigrades (Wright et al., 1992; Rebecchi et al., 2007  Møbjerg 

et al., 2011), there is still not much known about the induction and reactivation phases 

of cryptobiosis (Westh et al., 1991; Westh and Kristensen, 1992; Halberg et al., 2009a; 

Hengherr et al., 2010).  

Mechanisms underlying the ability to enter cryptobiosis have attracted considerable 

scientific interest for decades (Fry, 1966; Crowe, 1971). In addition, more extreme weather 

conditions around the globe including rising temperatures, severe droughts and generally 

higher weather variability put desiccation-tolerant organisms in a position of increased 

interest. Drought is currently among the main threats to the world´s food security. It may 

reduce maize yield by approximately 15%, soybean yield by approximately 40% (Clement et 

al., 2008). Singh et al. (2015) pointed out how an understanding of the principles 

of anhydrobiosis and programmed cell death may possibly help the development of drought-

resistant crop plants that could solve the global food security problem. Recently, many 

countries and international organizations launched projects on exploring the drought 

tolerance and water-saving mechanisms of plants to identify key genes that could improve 

drought tolerance (Lawlor, 2013). Tardigrade cryptobiosis, therefore, might bring new 

insights and possible solutions to the above problems.  

In general, cryptobiosis can be divided into three phases: (i) the induction phase 

detecting and reaching upon stress stimuli, (ii) the inactive dormant phase and (iii) the 

reactivation phase (Wright, 2001; Carlsson et al., 2008). For a successful survival, the whole 

process must involve production of bioprotectants that either prevent the cellular damage 

during the action of stress stimulus/stimuli or can repair the accumulated damage after a 

return to normal conditions and reactivation of metabolism (Crowe, 2002; Jönsson and Schill, 
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2007; Carlsson et al., 2008; Neumann et al., 2009; Neves et al., 2020). Of note, both pathways 

could act in parallel and are not mutually exclusive (Förster et al., 2009). 

Organisms with cryptobiotic activities can be divided into two groups. The first group 

contains those that possess cryptobiotic ability only during their early stages of development. 

This group includes bacterial and fungal spores, pollen, seeds of vascular/seed plants, certain 

insect larvae, thick-shelled “winter eggs” of shrimp (Artemia) and species from the taxa 

Arthropoda, Crustacea, Brachiopoda and Insecta. The second category includes those 

organisms that may enter cryptobiosis over entire life cycle (also repeatedly during their life 

histories, Paper II) and includes a number of species from Bacteria, Protozoa, and three 

groups of invertebrates (the members of phyla Rotifera, Nematoda, and Tardigrada), various 

species of mosses, lichens and algae, as well as vascular/seed plants (Crowe, 1971; Crowe and 

Cooper, 1971; Wright et a., 1992; Jönsson and Järemo, 2003  Watanabe, 2006).  

 

 

                                                            

 

Figure 5. Anhydrobiosis of R. cf. coronifer. Reversible morphological changes between (A) 

hydrated and fully extended tardigrade and (B) anhydrobiotic, so called tun, formed 

in response to desiccation. Light microscopy, bar = 100 µm. 
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1.6 THE STORAGE CELLS 

The body cavity of tardigrades is filled with body cavity lymph containing free body 

cavity cells, which are coelomocyte-type cells, also called the storage cells or bodies, 

coelomocytes, and Speicher cells (Węglarska, 1975  Dewel et al, 1993; Reuner, 2010a). 

In active animals, the cells move passively in the lymph and fill the empty spaces between 

organs such as gonad, gut and nerve chord, although they seem to temporarily adhere 

to the basement membrane of other tissues (Węglarska, 1975  Dewel et al., 1993).  

The coelomocytes (Gr. koilos, hollow; kytos, container) are omnipresent in most 

of the coelomates. They play a key role in defence response in many invertebrates (Tahseen, 

2009). Generally, they are classified based on differential staining, ultrastructure, behaviour 

and granule composition, but the classifications are inconsistent (Kauschke et al., 2001; 

Adamowicz, 2005). For instance, the older literature distinguishes mucocytes, vacuolocytes 

and lymphocytes as well as large and small granulocytes in earthworms (Kale and 

Krishnamoorthy, 1979). However, hyaline- and granular amoebocytes, both with phagocytic 

activity, and eleocytes (free-floating chloragocytes) without phagocytic activity, but 

producing bioactive molecules, were identified (Cooper et al., 1995). The latter types 

correspond to the three groups of coelomocytes observed using the flow cytometry (Mácsik 

et al., 2015). Other authors reported basophils with eccentrically located nuclei, acidophils 

with red-orange granules, neutrophils with large centrally located nuclei and modified 

peritoneal cells around intestines called chloragocytes and granulocytes (Joris, 2000; Kaushke 

et al., 2001; Calisi et al., 2009).  

Coelomocyte-type cells, called hemocytes, produce humoral proteins and recognize 

the foreign particles. They are mediators of cell-mediated (innate) immunity in insects.  Their 

basic functions are adhesion to foreign particles (nodulation and encapsulation), 

transportation of cuticular particles, and mainly phagocytosis of bacteria, yeast and apoptotic 

bodies. Also, they contain phenoloxidase precursors (Lavine and Strand, 2002). They are 

usually classified into prohemocytes, granulocytes, plasmocytes, spherule cells 

and oenocytes. However, this classification is not united as well (Lavine and Strand, 2002). 

Nematodes, that are phylogenetically close to tardigrades, have highly specialized 

coelomocytes. They occur in fixed positions, adjacent to the gonads or the other internal 

organs in the body cavity. They vary in size, form (ovoid or with many branches) and number 

(Tahseen, 2009). The nematode coelomocytes should have a similar function as tardigrade 

storage cells. The nematode coelomocytes provide the turgor-hydrostatic pressure 



 

- 28 - 

 

for the animal, lubricate space among the tissues and are involved in intercellular signalling 

and nutrient transport. They also may store a vitamin B12, synthesize proteins and secrets 

(Basyoni and Rizk, 2016). Early workers identified two to six cells located in the anterior third 

of the nematode pseudocoelom (Bolla et al., 1972). In parasitic nematodes, coelomocytes 

become giant cells during the parasitic phase of life, whereas in free living species, these cells 

remain relatively small (Bolla et al., 1972). The cells were termed as coelomocytes, stellate 

cells, pseudocoelocytes (Bolla et al., 1972) and amoebocytes, elaeocytes, athrocytes and 

phagocytes (Tahseen, 2009). Due to their small number and size, these cells were largely 

ignored in nematodes (Tahseen, 2009). In tardigrades, the only known coelomocyte-type cells 

are storage cells. 

Tardigrade storage cells are responsible for important physiological functions and are 

highly metabolically active (Ramazzotti and Maucci, 1983  Węglarska, 1957  Poprawa, 2006; 

Hyra et al., 2016a, b). Although their shape and content may vary, whether they may or may 

not be classified into specific groups has not been resolved yet. Our knowledge about these 

cells comes only from studies performed on individual specimens and therefore very little is 

known to classify these cells.  

The main known function of storage cells is to synthesize, accumulate and transport 

nutrients and store reserve material (Węglarska, 1957, 1975; Rosati, 1968; Ramazzotti and 

Maucci, 1983  Szymańska, 1994; Poprawa, 2006; Reuner et al., 2010a; Hyra et al., 2016a; 

Jönsson et al., 2019). In some species, the cells are involved in specific functions and are 

considered to be a kind of a separate adipose tissue. They facilitate lipid and protein 

transport to developing oocytes and synthesize yolk precursors (e.g. in Paramacrobiotus 

richtersi Murray, 1911 and Dactylobiotus dispar Murray, 1907; Szymańska, 1994; Poprawa, 

2006; Rost-Roszkowska et al., 2011; Hyra et al., 2016a) and vitellogenins (in Macrobiotus 

polonicus Pilato, Kaczmarek, Michalczyk and Lisi, 2003, Isohypsibius granulifer granulifer 

Thulin, 1928 and Xerobiotus pseudohufelandi Iharos, 1966). Similarly to fat bodies in insects, 

the storage cells store nutrients, which are used (in some species) during periods 

of starvation (Reuner et al., 2010a) and transport them to the ovary where the nutrients are 

endocytosed (micropinocytosis; Poprawa, 2005; Hyra et al., 2016a, b). The storage cells are 

also active in phagocytosis (Kinchin, 1994) and have tyrosinase activity in the cytoplasm, 

perhaps related to immunological defense functions correlating to hemocytes in insects 

(Volkman and Greven, 1993; Greven, 1993). In species of R. cf. coronifer (Richters, 1903) and 

Milnesium tardigradum (Doyère, 1840), the cells serve as a source of energy for entering to 

and returning from cryptobiosis, especially anhydrobiosis (in species of M. tardigradum, in R. 
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cf. coronifer it is discussed below in section 3.2.1; Węglarska, 1975  Jönsson and Rebecchi, 

2002; Reuner et al., 2010a). However, results presented in Paper II did not confirm this 

for storage cells of R. cf. coronifer. Nutrients can be released from storage cells during periods 

of tardigrade starvation and/or used as the precursors of vitellogenins in some species (e.g. 

H. exemplaris; Hyra et al., 2006b).  

The storage cells have usually an amoeboid shape, but they differ in terms 

of morphology, shape, size and number across species (Szymańska, 1994, 1995  Poprawa, 

2006; Hyra et al., 2016a, b). Nutrients availability, environmental conditions and especially 

synthesis, storage and transport of nutrients and yolk precursors to ovaries during oogenetic 

stages, mainly during time when animals do not intake food, have an impact on storage cell 

ultrastructure and/or numbers (Szymańska, 1994, 1995  Poprawa, 2006  Reuner et al., 2010a; 

Hyra et al., 2016a, b). In general, the size of storage cells is 10 to 15 µm (with a minimum of 5 

and a maximum of 26 µm). During vitellogenesis, the cells are the largest and after the egg 

being laid, they are usually the smallest (Szymańska, 1994, 1995  Poprawa, 2006; Reuner et 

al., 2010a; Hyra et al., 2016a). Small tardigrade species have a higher number of smaller 

storage cells, whereas, the larger species have a lower number of storage cells that are 

bigger. The number of storage cells is discussed in the Results and discussion section (chapter 

3.1, p34). The size of storage cells in some species, e.g R. cf. coronifer, affects the tardigrade 

survival after return from anhydrobiosis (Jönsson and Rebecchi, 2002), whereas in other 

species it seems to be storage cells independent (Reuner et al., 2010a).  

 

1.6.1 General ultrastructure of storage cells 

Storage cells have large irregular polyploid nuclei with the nucleolus, well developed 

rough endoplasmic reticulum (RER), Golgi complex, numerous mitochondria, ribosomes, 

lysosomes and spheres with reserve material. The main structure in storage cells is the large 

autolysosome (Węglarska, 1975) and spheres of various electron densities (Poprawa, 2006).  

Histochemical analyses revealed that the main nutrients stored in storage cells could 

be lipid droplets (e.g. in R. cf. coronifer; Paper III and IV), polysaccharides and glycerol (I. g. 

granulifer; Hyra et al., 2016b), while in some other species (M. richtersi, D. dispar) the major 

nutrients are proteins and also granular glycogen occurring in the whole-cell cytoplasm 

or possibly in cytosomes (Szymańska, 1995  Poprawa, 2006  Hyra et al., 2016b). Animals 

utilize the reserve material (the polysaccharides being utilized first, followed by lipids) from 
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storage cells during encystment. The resorption of whole cells was observed (Węglarska, 

1975). A particular combination of stored substances is species-dependent, and this 

variability is likely caused by tardigrade habitat (freshwater versus limno-terrestrial) and/or 

cryptobiotic ability of the species. For example, lipids are the main component of storage 

cells in H. exemplaris (freshwater and moss dwelling species, feeding on algae), M. polonicus 

(moss dwelling tardigrade, feeding on algae and/or rotifers) and X. pseudohufelandi (dry 

terrestrial, moss dwelling tardigrade, food not known), while they play only the minor role 

of the storage cells in I. granulifer granulifer (freshwater species, food not known) (Hyra et 

al., 2016b). The specimens of X. pseudohufelandi contain large amounts of proteins in storage 

cells in addition to lipids. Large amounts of lipids in storage cells are connected to species 

living in dry habitats and to the ability of cryptobiosis (Węglarska, 1975). For instance, I. g. 

granulifer has no lipids in storage cells and no cryptobiotic ability (Hyra et al., 2016b).  
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2 MATERIALS AND METHODS 

2.1 Model species: Richtersius cf. coronifer 

The model species of all studies R. cf. coronifer (Eutardigrada, Macrobiotidae) is 

a limno-terrestrial herbivorous tardigrade, with documented high ability to tolerate extensive 

desiccation (Jönsson and Rebecchi, 2002  Jönsson et al., 2005, 2008). It is one of the most 

extensively studied tardigrades with respect to anhydrobiosis (Westh and Ramløv, 1991  

Jönsson and  uidetti, 2001  Jönsson et al., 2001, 2005  Ramløv and Westh, 2001  Ivarsson 

and Jönsson, 2004). Likewise, it has been subject to studies on tolerance to other 

environmental stress agents, including high temperatures (surviving up to +70°C for 1 h 

in the anhydrobiotic state; Ramløv and Westh, 2001), and low temperatures (survival 

of -196°C in the hydrated state; Ramløv and Westh, 1992).  

Dehydrated specimens have a remarkable ability to tolerate low linear energy 

transfer (LET) radiation (gamma rays; Jönsson et al., 2005), high-LET irradiation with 2.55 

MeV protons at doses up to 10 000 Gy (Nilsson et al., 2010), ultra-violet (UV) irradiation (280-

400nm) and exposure to space vacuum and solar/galactic radiation (Jönsson et al., 2008). 

Moreover, its desiccated eggs can tolerate even the most extreme desiccation, at residual 

water levels well below one mass per cent (Jönsson et al., 2008). Specimens of R. cf. coronifer 

also withstand exposures to different external salinities (Halberg et al., 2009b). 

Tardigrades generally contain relatively low amounts of trehalose when 

in an anhydrobiotic state (2.3% of the dry body mass  Westh and Ramløv, 1991) compared 

to other anhydrobiotic animals (e.g. cysts of desiccated brine shrimps Artemia salina = 13-

20% of the dry body mass; Clegg, 1965; Watanabe et al., 2002; and larvae of P. vanderplanki = 

20% of the dry body mass; Sakurai et al., 2008). Among the tardigrade species, specimens 

of our model species contain one of the highest amounts of trehalose in anhydrobiotic state 

(the highest trehalose levels were found in Macrobiotus islandicus = 2.9%  Jönsson and 

Persson, 2010). Besides the remarkable stress tolerance, tardigrades of this species also 

belong to the largest measuring sometimes up to 1000 µm.  

 

2.2 Study population 

The species of R. cf. coronifer mainly inhabit mosses of the Arctic and Alpine regions 

(found at altitudes of more than 500 to 1000 meters; Ramazzotti and Maucci, 1983; Westh 
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and Kristensen, 1992; Maucci, 1996). They are known in many localities, such as northern 

Norway (Trømso),  reenland (Disco) Island, Turkey, Svalbard Islands, Spitzbergen, Sweden 

(Öland island), the Himalayas, and in South America (Ramazzotti, 1956; Ramazzotti and 

Maucci, 1983  Westh   Ramløv, 1988).  

Since no culturing method has been developed for R. cf. coronifer, specimens used 

in all presented studies were collected and extracted from a natural moss-living population 

in Alvar habitat of the Baltic Sea island Öland (South-Eastern Sweden). The specimens live 

in mosses (mainly Orthotrichum cupulatum) growing on limestone rock fences, directly 

exposed to winds and insolation, which leads to rapid temperature and humidity changes. 

The relative humidity (RH) may change dramatically over summer, from over 90% RH during 

the night, down to an average of 60% in the mid-day. However, the relative humidity can 

occasionally drop to 20% RH in the summer months (Jönsson et al., 2001). The species thus 

inhabits very exposed and rapidly desiccating substrates. It belongs to the xerophilic 

tardigrade species and can enter anhydrobiosis successfully in conditions with relatively low 

humidity (Jönsson et al., 2001). This Swedish population as well as the population from 

northern Italy are parthenogenetic and consist almost exclusively of females (Rebecchi et al., 

2003). Development of unfertilized eggs seems to be the dominant mode of reproduction 

in this population. However, other populations from Greenland, Mongolia and central Italy 

include females and several males with spermatozoa within the gonad and are considered 

as gonochoristic-amphimictic (Guidetti et al., 2016). The genus Richtersius contains more 

than one evolutionary lineage and Guidetti et al. (2016) suggested distinguishing two 

evolutionary lineages. The first lineage consists of R. cf. coronifer from the neotype locality 

and the second consists of gonochoric-apomictic populations. Based on those data, our 

chosen Swedish population belongs to the first lineage. 

 

2. 3 Data collection and analyses 

The animals were extracted from a natural environment (desiccated moss). After the 

moss cushions were soaked in distilled water for about one hour, the sieve technique was 

used (Paper I, II, III, IV).  

For observation of mitosis (Paper I and II), the specimens underwent the initial 

observations and species analysis, and then were fixed and stained in toto with acetic-lactic 

orcein, which is a standard staining method (Tonzetich, 2004). In animals containing mitotic 
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storage cells, the total number of storage cells was counted, and the mitotic index was 

calculated (Paper I and II). Furthermore, the predictive phenotypic traits of mitosis in storage 

cells were analyzed in relation to hydrated specimens (Paper I) as well as in connection 

to repeated anhydrobiotic cycles (Paper II). The collected data contained measurements 

of total body length, buccal tube length, gut content, egg developmental stage, the 

occurrence of moulting, and number, shape and size of oocytes (Paper I and II). The egg 

developmental stage was classified similarly as in Rebecchi and Bertolani (1994) based on a 

five-grade classification, containing a new category: “Stage O”.  Likewise, the storage cells 

size and shape (regular-spherical or irregular-crescent with not straight borders) were 

examined to predict their connection to mitosis occurrence (Paper I and II). 

Anhydrobiotic induction of individuals was used in Paper II, III and IV to: (A) analyze 

survival after repeated cycles of desiccation/rehydration (Paper II), (B) analyze tun formation 

and tissue and cell organisation in desiccated specimens (Paper III and IV). In Paper II, 

specimens were desiccated for 24 hours followed by 5-hour rehydration. The survival 

estimate was based on body movement (slowly moving, fully moving or fully active, and 

moulting) that occurred within 5 hours. Animals were classified as dead if they did not exhibit 

any body movement within 24 hours. Before each desiccation/rehydration cycle, the number 

of animals in a proper tun stage (full body contraction), semi-tun stage (body not fully 

contracted), and the extended stage were determined under a stereomicroscope. 

The presence or absence of gut content was recorded.  

Tuns (anhydrobiotic stage; Paper III and IV) as well as rehydrated and heat stress 

treated specimens (Paper IV) were analysed using the light microscopy, scanning and 

transmission electron microscopy (based on semi- and ultra-thin sections of animal bodies). 

Polysaccharide, protein and lipid reserves in storage cells were detected using histochemical 

staining techniques (PAS and Bonhag´s method, Sudan black B staining and BODIPY 494/503; 

Litwin, 1985). Three-dimensional reconstruction of tuns was based on series of semi-thin 

sections (500 nm thick). The sections were stained, photographed and aligned into correct 

order and position (in detail described in Paper III). Paper IV consists of a descriptive and 

experimental part. The descriptive part is focused on the comparison of storage cells 

in desiccated and hydrated specimens. The experimental part focused on the effects 

of the combination of long-term desiccation and heating (50°C, 24h) on storage cells and 

specimen survival. In paper IV, confocal microscopy was used to visualize proliferating and 

dying cells using an anti-phosphohistone H3 antibody, and a TUNEL assay, respectively.  
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3 RESULTS AND DISCUSSION 

3.1 Mitosis in storage cells and eutely in tardigrades and (Paper I, II) 

The study presented in Paper I (Czernekova and Jönsson, 2016a) investigates 

the proliferation of tardigrade storage cells. The total number of storage cells was counted 

in those animals containing mitotic storage cells (Paper I, II  Czerneková and Jönsson, 2016b) 

and the mitotic index was calculated. Predictive phenotypic traits of storage cells mitosis 

were analyzed to find the correlation between the occurrence of mitotic storage cells 

and morphometric characteristics. We measured total body length, buccal tube length, gut 

content, egg developmental stage, the occurrence of moulting, and number, shape and size 

of oocytes (Paper I and II). In addition, the storage cells size was measured and correlation 

of their shape and occurrence of mitosis was analyzed (Paper II).  

The number of storage cells varied among the individuals but also between the adults 

and juveniles. The juveniles had a higher frequency of mitosis in storage cells compared 

to adults. Moreover, the numerical growth of storage cells from juvenile to adult stage was 

documented. In both studies (Paper I and II), only about 20% of studied animals had mitotic 

storage cells. Those studies showed that tardigrade storage cells have a low mitotic index, 

1.27% in Paper I and1.60% in Paper II, respectively. Mitotic cells occur also in other tissues, 

such as ganglia, pedal glands, and oesophagus, but those cells were not quantified since 

the storage cells were the main focus of our studies (Paper I and II). R. cf. coronifer specimens 

had on average 600±209 storage cells in adults, and 425±23 in juveniles (Paper I), but 

the total number of storage cells can vary from 300 to 1100 in adults and from 60 to 800 

in juveniles (Paper I and II). Numbers of storage cells varies among tardigrade species and its 

high inter-species variability is observed in other species as well. The total number of storage 

cells was estimated to 395±136 in Milnesium tardigradum, and 1069±324 in Paramacrobiotus 

tonollii (Reuner et al., 2010a). 

Since the mitotic index is low and is connected to moulting that usually corresponds 

to the late egg development stage, in adults, storage cells division seems to be closely related 

to animal growth. This is supported by our finding that mitosis in storage cells was more 

frequent in juveniles than in adults (Paper I), indicating build-up of the storage cells 

in juveniles. Mitotic cells also occur in other tissues (ganglia, pedal glands, oesophagus) 

(Paper I, II), which is in agreement with observations of mitotic cells in some other tardigrade 

species (Bertolani, 1970a, b; Poprawa et al., 2015).  
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Whilst in some tardigrade´s organs (nervous tissue, epidermis) the number of cells 

does not increase with animal growth, claw glands, storage cells and ventral ganglia have 

variable cell numbers (Bertolani, 1970a, b). However, a recent study (Gross et al., 2018) did 

not confirm mitosis in any other cells than midgut cells in the species of Hypsibius exemplaris. 

The mitotic cells were reported as midgut epithelium progenitors “crescent-shaped cells” 

(at the anterior) and “ring-shaped region” (at the posterior). Lack of cell divisions in other 

tissues may indicate that mitosis is triggered by specific physiological and/or environmental 

conditions (Bertolani, 1970a, b; Gross et al., 2018).  

In juveniles, none of the phenotypic characters were significant predictors triggering 

the occurrence of mitosis, whereas, in adults, mitosis was significantly associated 

with the late egg developmental stage (late vitellogenesis and choriogenesis), that is 

connected to moulting process and empty gut content. (Paper I). Gut content was, however, 

a significant predictive trait for mitosis occurrence in storage cells only in the multivariate 

model I. including the egg developmental stage variable, but not in multivariate model II., 

including a moulting variable. This may indicate a stronger association of occurrence 

of mitosis to moulting process that is connected to late choriogenesis. During this stage, 

animals do not eat, and their large ovaries oppress the midgut lumen, therefore the gut 

content is excreted. This explanation is supported also by results presented in Paper II, that 

did not confirm any significant correlation between mitosis in storage cells and gut content.  

Storage cells cytoplasm is filled by a number of vacuoles or vesicles with reserve 

material (Paper III and IV). While reserve material of storage cells increased in early 

vitellogenesis stage, no change was observed during late egg developmental stages when 

mitosis is more likely to take place. Decrements of reserve material after oviposition were 

observed (Paper IV), but since both studies (Paper I and II) did not find correlation between 

occurrence of mitosis and storage cells volume, the explanation that mitotic division 

in storage cells towards the end of egg developmental stage may function as restoration of 

cell number after their resorption has little support. By compiling data from Paper I, II, III, IV 

together it is possible to conclude, that physiological processes related to moulting might 

represent the strongest predictor for the occurrence of mitosis in storage cells.  

Mitosis in storage cells does not seem to be triggered by energetic stress 

of desiccation cycles, since the occurrence of mitotic storage cells, as well as the storage cells 

number, tended to decline with a number of repeated desiccation cycles (Paper II). Because 

the storage cells are the major repository of energy resources (Węglarska, 1957  Rosati, 1968  
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Węglarska, 1975  Szymańska, 1994), the loss of cells might indicate (A) energetic stress (and 

reabsorption of the cells), (B) cellular damage (and possible cell death), or (C) both 

mechanisms.  

Our studies on mitosis are of interest for understanding tardigrade extraordinary 

tolerance to environmental and laboratory stress conditions. This tolerance is related to tun 

formation and metabolic arrest, however, several studies observed that tardigrade tolerance 

to irradiation is independent on whether the animals are desiccated or hydrated (Jönsson et 

al., 2005; Horikawa et al., 2006; Nilsson et al., 2010). Anhydrobiosis and irradiation are both 

processes causing DNA damage and cell divisions are not desirable when there are more 

genomic lesions (Hengherr et al., 2008a, b; Neumann et al., 2009; Beltran-Pardó et al., 

2013b). These lesions cause loss of genomic integrity and might be lethal for the animal 

(Bolus, 2001; Stobbe et al., 2002; Watanabe et al., 2006; França et al., 2007  Neumann et al., 

2009; Beltran-Pardó et al., 2013a, b). Based on a higher sensitivity to gamma-irradiation 

in early embryogenesis, one of the suggested explanations for radio-tolerance in tardigrades 

was their eutely and lack of mitotically active cells (Beltran-Pardó et al., 2013a, b, 2015; 

Jönsson et al., 2013), particularly higher frequency of mitosis in early developmental stage 

(Jönsson, 2019).  

Since results presented in Paper I and II did not confirm eutely in tardigrades of R. cf. 

coronifer and reported mitotic storage cells in juveniles (37.9%) as well as in adults (18.3%), 

this occurrence of mitosis in tardigrade cells could be seen as consistent with the hypothesis 

of an efficient DNA repair system underlying the radiation tolerance of tardigrades (Jönsson 

et al., 2005; Beltran-Pardó et al., 2015). It is also supported by a recent study (Kuzmic et al., 

2018) that reported increased accumulation of protein carbonylation (a common marker 

of oxidative stress) caused by higher doses of UVC irradiation in both the desiccated and 

the hydrated state of tardigrades. The recovery, therefore, requires an efficient DNA repair 

system. However, although the storage cells divide, the animals with observed mitotic cells 

have a very low mitotic index (the percentage of mitotic storage cells of all storage cells; 2.9 

mitotic storage cells per juvenile and 8.8 mitotic storage cells per adult), and thus low cell 

turnover. Thus, most of the storage cells carry out their specialized function and do 

not divide. Such cells are considered to be in the G0 phase. They are not dormant and can be 

very actively engaged in protein synthesis and secretion (Watanabe et al., 2006; França et al., 

2007). Paper IV provides a distinction among storage cells by a description of two types 

of storage cells with different ultrastructure. The first type of storage cells is metabolically 

active, and its main function is energy storage and distribution. These cells probably 
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represent the cells with the cessation of cell division. The second cell type might represent 

young, undifferentiated, possibly stem-cell-like cells that divide after physiological and/or 

environmental triggers (Paper I and IV). The cell division cessation provides extra time 

for DNA repair (Watanabe et al., 2006; França et al., 2007). Since similar delays as seen after 

gamma irradiation were observed in the recovery of tardigrades of R. cf. coronifer after stress 

response (Paper II), it may indicate presence of cell damage, cell cycle arrest and activity 

of repair process (Beltran-Pardó et al., 2013a, b  Jönsson et al., 2016). The observed low 

mitotic index implies that the cell division is suppressed until specific mitotic trigger factors 

occur (O´Farrel, 2001). Such trigger factors for tardigrade storage cells remain to be studied.  

Eutely, a term introduced in 1909 by Eric Martini, was traditionally attributed 

to miniaturized animals such as the nematode C. elegans (Cunha et al., 1999; Azevedo and 

Leroi, 2001), rotifers (Gross et al., 2018), and in earlier studies also to tardigrades. Such 

organisms were described as having tissues without regenerative capacity and zero rate of 

cell turnover in adults (Immelmann, 1959; Beltran-Pardó et al., 2015; Nelson et al., 2015; Milo 

and Philips, 2016). According to this theory, individuals of eutelic organisms have the same 

number of cell lineages and the same total numbers of cells (Rusin and Malakhov, 1998; 

Azevedo and Leroi, 2001).  

Our data, therefore, indicate that tardigrades cannot be characterized as eutelic 

organisms. Up to now, the published literature data on mitosis occurrence in tardigrades is 

scarce. There is no evaluation of the mitotic index of different cell types and current data are 

not consistent. Some authors (Bertolani, 1970a, b; Dewel and Clark, 1973; Greven, 1976; 

Ząbczyk, 2000   ross et al., 2019) did observe mitotic regenerative cells in midgut cells, 

whereas others (Rost-Roszkowska and Poprawa, 2008  Møbjerg et al., 2011  Rost-Roszkowska 

et al., 2011, 2013) did not confirm mitosis occurrence at all. The most recent research verified 

the existence of regenerating cells in the midgut (~40 cells) of adult tardigrade, but these cells 

exhibited very low cell turnover - 6 to 10 cell divisions per day (Gross et al., 2018; Gross et al., 

2019). The precise cell numbers in tardigrade tissues are not known, but no cell number 

constancy was found among the muscle cells (from 40 up to 140; Ramazzotti and Maucci, 

1983), pedal glands, either in nervous tissue, where each ganglion ranges between 20 to 75 

neurons (Bullock and Horridge, 1965  Bertolani, 1970a, b  Węglarska, 1975  Zantke et al., 

2008, Gross et al., 2019). 

Marcus (1929) suggested partial cell constancy since he found a constant cell number 

in pharynx (comprising from 51 cells). The studies on tardigrade relatives, nematodes, also 
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suggest the existence of quasi-eutely, i.e. “almost constant number of cells”, instead of full 

“eutely” (Rusin and Malakhov, 1998). Cunha et al. (1999) support this hypothesis 

with the observation that most of the free-living terrestrial nematode species are not eutelic 

at least in some tissues and show variations in cell numbers. Results presented in Paper I and 

II support the view that tardigrades are quasi-eutelic. The state of quasi-eutely was also 

supported by the observation of regenerative capacity in midgut progenitor cells (Gross et al., 

2018).  

The term “eutely” itself should be used with caution, because of the criticism based 

on the cell number variability (CNV) in various tissues and organs of different, traditionally 

eutelic and non-eutelic taxa (Azevedo and Leroi, 2001). Organs, which were usually 

considered as eutelic, such as the epidermis of Caenorhabditis elegans (CNV=2%), yolk and 

gastric glands of the rotifer Hydatina senta (CNV=4.5%) and the segmental ganglia 

of the leech Hirudo medicinalis (CNV=1%) exhibited CNV ~ 5%. The recent estimations 

in the epidermis of 20 nematode species showed that nine of them had CNV in 5 - 15% range, 

which is higher than in traditionally accepted eutelic organism. Based on results from Paper I 

and II, CNV in tardigrade storage cells was 49% (n=8) in juveniles, and 34% (n=39) in adults, 

which is too high to be considered as eutely.  

 

3.2 Anhydrobiosis in R. cf. coronifer (Paper II, III, IV) 

Since the state of anhydrobiosis is ametabolic and is not connected with energy 

consumption, tardigrades may stay in this state for several years. The anhydrobiosis can be 

entered recurrently and at any stage of the life cycle of R. cf. coronifer. But entrance into and 

exit from anhydrobiosis relies on physiological processes that may be energetically costly 

but are poorly understood.  

Therefore, the aim of the following work (Paper II) was to improve the understanding 

of these processes by determination how many consecutive periods of anhydrobiosis 

tardigrades can survive. The objective of this study was to analyze the factors constraining 

anhydrobiotic survival and patterns of survival under repeated cycles of desiccation: size, 

shape and number of storage cells, morphometric characteristic (such as gut content, body 

size) and frequency of mitosis (discussed above, section 3.1). Two other studies (Paper III and 

IV) aimed to understand the internal morphology of desiccated organisms. We analysed 

the body re-arrangement by 3D reconstruction of body organisation and ultrastructure 
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of tissues and cells in the desiccation state (Paper III). Further, we focused 

on the ultrastructure of tun and body wall, ovary, midgut and especially of the storage cells 

in long term desiccated and rehydrated specimens (Paper III and IV).  

 

3.2.1 Experimentally-induced repeated anhydrobiosis  

Very few previous studies have evaluated how many consecutive periods 

of anhydrobiosis tardigrades can survive. Survival of 8 – 14 desiccations was reported, but 

only on three eutardigrade specimens, and survival of 9 desiccations cycles, with 50% survival 

after fifth desiccation cycle (Lance, 1896; Baumann, 1922). Hengherr et al. (2008a) observed 

recovery rates of 88 -100% over 9 consecutive desiccations, however, the animals could feed 

and replenish their energy. We investigated patterns of survival in our model species under 

repeated cycles of desiccation/rehydration (24 h of desiccation and 5 hours of rehydration) 

when the animals were not fed (Paper II). Tardigrades of R. cf. coronifer can survive 

the maximum of 6 repeated desiccation cycles (non-cultured conditions) with the clear 

significant decline of survival rate after repeated desiccations (Paper II).  

The fifth desiccation cycle seemed to be critical because there was a steeper survival 

decline. The animals had also significantly lowered the number of storage cells after the fifth 

desiccation. As mentioned above, it is assumed that storage cells serve as an energy store 

(Węglarska, 1975) and the re-absorption of storage cells with starvation and anhydrobiosis 

in some tardigrade species has been reported (Reuner et al., 2010a). Therefore, it seemed 

that animals reached an energetic constraint and did not have energy available to exit the 

fifth and enter the next cycle. On the other hand, in contrast to a previous study (Jönsson and 

Rebecchi, 2002), no reduction in cell size after several desiccation cycles, and also 

no depletion of gut content by repeated desiccation was observed (Paper II). In addition, 

the starvation of R. cf. coronifer specimens in continuously hydrated conditions did not result 

in a significant decline in the number of storage cells (Jönsson et al., 2005  Jönsson et al., 

2008). Therefore, it seems that R. cf. coronifer have an energy budget different from other 

tardigrade species and/or the energy budget used for starvation stress and anhydrobiosis can 

also differ. This is consistent with studies performed by Reuner et al. (2010a) and Hyra et al., 

(2016a, b) on other eutardigrade species.  

Midgut digestive cells have been lately shown to serve as another energy budget 

in tardigrades in the species I. g. granulifer (Hyra et al., 2016a). Storage cells of this species 
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contain mainly polysaccharides (Hyra et al., 2016b), whilst the reserve material in storage 

cells of R. cf. coronifer is composed mainly of lipids and polysaccharides (Paper III, IV), 

similarly to the storage cells of H. exemplaris and M. polonicus (Hyra et al., 2016a, b). No 

decrements of lipid or polysaccharide content in storage cells were observed in connection 

to anhydrobiosis (Paper III, IV). Instead, the protein spheres were diminished in desiccated 

tardigrades (Paper IV) which indicates protein degradation and/or utilisation during stress 

conditions. In eukaryotic cells two main pathways of protein degradation were described, 

ubiquitin-proteasome pathway and lysosomal proteolysis, an uptake of proteins by lysosomes 

(Cooper and Hausman, 2018). 

Lysosomes were not observed in storage cells of R. cf. coronifer. Instead, high 

amounts of autophagosomes (double-membrane vesicles with heterogeneous cellular 

contents targeted to degradation) were present after 3-5 hours of rehydration 

from anhydrobiosis (Paper IV). Autophagy was also observed in the midgut digestive cells of I. 

g. granulifer (non-anhydrobiotic species with different reserve material in storage cells), but 

not in the midgut of species H. exemplaris and M. polonicus containing similar reserve 

material in storage cells to R. cf. coronifer. Autophagy is a physiological process involved 

in routine organelle turn-over (e.g. in metamorphosing insects), but it is likewise used for 

recycling of material during starvation. It is involved in starvation tolerance in any cell and 

in the maintenance of minimum metabolic rate ( utiérrez et al., 2001; Lockshin and Zakeri, 

2004). Autophagy contributes to mobilization of intracellular lipid stores and may be crucial 

for lipid metabolism (Kaushik et al., 2010). Furthermore, its protective mechanism in starved 

cells was confirmed (Lockshin and Zakeri, 2004). It is also the first step of cell degradation, 

which is followed by apoptosis (Regiorri and Klionski, 2005). In this context, autophagy may 

play a crucial role in the physiology of storage cells in R. cf. coronifer and anhydrobiosis 

of tardigrades in general. This is supported by the study on ciliates, where autophagy plays 

a crucial role in cyst formation during decrements of cellular volume (Duszenko et al., 2011). 

After the fifth desiccation cycle, significantly more tardigrades were not able 

to contract properly during tun formation. They formed “semi-tuns” instead of “proper tun” 

formations. Thus, contraction started to be uncontrolled and incomplete. This result is 

compatible with the observation of Bauman (1922). In that study, tardigrades undergoing 

repeated desiccation were unable to produce a cuticular secretion, which resulted 

in uncontrolled contraction of the body. Such changes in the ultrastructure of epidermal cells 

in connection to anhydrobiosis are discussed in the next section (3.2.2).  
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Based on collected data, it seems that the declining survival after multiple 

anhydrobiotic cycles in R. cf. coronifer is not only caused by depletion of energy in storage 

cells but rather it is caused by the accumulation of cellular damage. This explanation is also 

supported by the current study of carbonylation accumulation during the anhydrobiotic state 

(Kuzmic et al., 2018). Autophagy also seems to be an important mechanism in tardigrade 

anhydrobiosis and survival. The precise role of intense autophagy and recycling mechanisms 

during nutritional deprivation and anhydrobiosis remain to be studied. 

 

3.2.2 Tun formation in R. cf. coronifer  

The main morphological changes after desiccation include extreme water loss 

connected with cuticle folding, and inner organs packing and relocation. The morphological 

transition into tun formation seems to be necessary for anhydrobiotic survival of limno-

terrestrial tardigrades (Crowe, 1971  Sømme, 1996). Tun formations (Fig. 5a) were observed 

also among the Arthrotardigrades (e.g. Styraconyx haploceros; Jørgensen and Møbjerg, 

2014), but also in Echiniscoides sigismundi, both of which are marine heterotardigrade 

species.  The latter species survive short term desiccation, but the survival is less dependent 

on tun formation (Hygum et al., 2016). Therefore, our understanding of tun formation can 

bring important insight into the understanding of anhydrobiosis. Studies on R. cf. coronifer 

confirmed the necessity of tun formation mediated by musculature for survival in this species 

(Halberg et al., 2013a; Paper II). Results of these studies are in line with our observation 

of decreased survival connected with an inability to form proper tuns (Paper II) and 

with the observations on tun ultrastructure as well (Paper III). Paper III furthermore proved 

that moulting does not restrict tun formation. 

During anhydrobiosis, the organisms lose most of their water by evaporation, which 

causes high structural stress (Halberg et al., 2013a). Reduction of body water 

in R. cf. coronifer was estimated to be up to 87 ± 5% in the course of transfer from the active 

to dehydrated tun stage. In bdelloid rotifers (Bdelloidea) a corresponding loss of water 

of 60% has been reported (Ricci et al., 2008). Tun formation was analyzed by 3D 

reconstruction of the tun with a focus on the inner organ packing (Paper III, Fig. 1). The inner 

organ relocation is dependent on the rigid buccal tube and the ovary size is limited by rigid 

eggshells (Paper III, Fig. 2). The storage cells enclose all the inner organs and fill up almost all 

the inner space between organs, but it is difficult to say, whether the storage cells play any 

role in the protection of those organs (Paper III and IV).  
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One part of tun formation is represented by cuticular folding and formation 

of creases made by this folding. The thick parts of the cuticle are in contact with air, whilst 

the thinner parts, which are more permeable to water, are out of contact with the air. Thus, 

the thick, less permeable parts of the cuticle could block aerial exposure, protect cells against 

reactive oxygen species (ROS; Almeida et al., 2005), and serve as mechanical protection of 

the tun. Based on the results presented in Paper III, although the cells were shrunk as a result 

of desiccation, morphological damage on the ultrastructural level of cells and tissues was 

not found. But changes of pigmentation in epidermal cells in desiccated animals were 

observed. The pigment granules may play a role in desiccation tolerance because they can 

either be utilized or denatured during entry or exit from anhydrobiosis (Paper III). Epidermal 

cells also contain lipid vacuoles, which were previously observed in other tardigrade species 

to discharge their content to the cuticular layers, which provide a barrier to water exchange 

(Baccetti and Rosati, 1971; Walz, 1982; Dewel et al., 1993). Therefore, it is possible, that 

cuticular lipids play an important role in anhydrobiosis (Paper III).  

In conclusion, there seems to be no obvious damage to the overall ultrastructure 

from desiccation. Rather, the incorrectly formed tuns after fifth desiccation cycle (Paper II) in 

combination with the ultrastructure of storage cells (Paper IV) indicate cell damage at a 

molecular level.  

 

3.2.3 The effect of long-term desiccation in combination with temperature stress  

R. cf. coronifer can survive long periods of time in anhydrobiosis and results 

presented in Paper IV confirmed 100% survival (n=14) after 6 months in desiccated state and 

survival up to 6 repeated desiccation cycles (Paper II). Furthermore, it is known 

for extraordinary irradiation capacity and survival up to 19 days of starvation (unpublished 

data). In tardigrade storage cells, an increase in DNA fragmentation with time spent in the dry 

state (up to 10 months) was reported (Neumann et al., 2009). However, some species have 

been reported to survive in the dry state for 9 to 20 years ( uidetti and Jönsson, 2002  

Jørgensen et al., 2007). Therefore, Paper III and IV focused on possible morphological and 

cellular changes linked to desiccation and heat stress. The studies compared 

the ultrastructure of active and desiccated animals after long-term anhydrobiotic state 

(Paper III) and ultrastructure of storage cells in desiccated, hydrated and dead animals (Paper 

IV). In tardigrades, desiccation leads to overall cellular shrinkage, change in cellular shape 

(in case of storage cells the shape changed from the circular to amoeboid). Due to high 
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electron density of cyto- and nucleoplasm in desiccated cells, organelles such as RER and 

 olgi complexes are barely visible. The average desiccated storage cells size is 11.8µm (Paper 

III and IV) and their whole inner space is filled with membrane-coated spheres of different 

electron density (Paper IV). In general, water evaporation causes drastic changes in inter- and 

intra-molecular interactions, such as hydrogen bonding between proteins and membranes 

that normally would not interact in bulk of water (Rebecchi et al., 2007; Wolkers et al., 2002). 

In normal cells, drying damages the cellular membranes and proteins leading to cell death, 

and consequently the death of the whole organism (Rebecchi et al., 2007). Based 

on the ultrastructural analyses from Paper III and IV, no cellular damage on ultrastructural 

level was observed.  

The ultrastructure of normally highly metabolically active cells such as epithelial cells 

of ovary wall or storage cells does not indicate any secretory activity under desiccated 

conditions. Coated vesicles resulting from endocytosis in enterocytes were also not observed 

in a desiccated state (Paper III). These observations support the hypothesis of at least low 

(maybe arrested) metabolic activity in anhydrobiotic stage and are in line with other studies 

(e.g. Pigoń and Węglarska, 1955  Wright, 2001). Electron-microscopic comparison 

of desiccated and rehydrated cells did not reveal structural and morphological damage 

of membranes and organelles in dried cells of R. cf. coronifer. This observation is in line 

with the study on M. hufelandi (Walz, 1979). Generally, we can conclude that the reversible 

evaporative water loss accompanying 6 months long desiccation does not change 

the integrity on the cellular level of organisation in R. cf. coronifer.  

Also, the combined effect of long-term desiccation and temperature stress on those 

animals was included in Paper IV. Hydrated as well as desiccated (6 months long) specimens 

of R. cf. coronifer were exposed to temperature stress of +50°C for 24 hours. While non-

heated desiccated tardigrades were fully active after 3 hours of rehydration (survival 100%, 

n=14), the heat stress of tuns caused a decrease in survival rate (40% survival, n=14). 

Detrimental effects of long-term desiccation plus heating did not arise from general cell 

structure damages. But since the required recovery time was longer in heated specimens, 

the damages may be rather at the level of molecular components necessary for cell survival. 

Moreover, some differences such as heterochromatin increase and change in reserve 

material were observed between dried and hydrated storage cells. These changes support 

the prediction that heat likely caused damage to molecular components of repair 

mechanisms and/or caused such damage that was not possible to repair. Nevertheless, heat 

treatments might produce some sublethally injured cells. Such cells can grow and survive only 
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under appropriate environmental conditions that allow recovery of the cellular lesions 

(Marcén et al., 2018).  

Thermo-tolerance has been studied very little in tardigrades (Rahm, 1921  Ramløv 

and Westh, 2001; Neves et al., 2020). In laboratory conditions, the optimal temperature 

for tardigrade culturing is usually at room temperature (18°C), but it varies among species 

(Altiero and Rebecchi, 2001; Gabriel et al., 2007; Altiero et al., 2018). Nevertheless, 

the hydrated tardigrades tolerate up to 36°C (LTmax=37°C  Rebecchi et al., 2009, LTmax=38.7°C  

Li and Wang, 2005). Temperature exposure time is a significant variable for tardigrade 

survival (Neves et al., 2020). In the anhydrobiotic state, the short-term (1 h) heat tolerance 

up to approximately 100°C has been reported (Hengherr et al., 2008a, b), and R. cf. coronifer 

has been reported to tolerate exposure up to 70°C for 1 hour with no lethal effect while 

exposure to of 80°C resulted in survival of less than 20% (Ramløv and Westh, 2001). Long 

term tolerance to 37°C for 21 days was reported in P. richtersi (Rebecchi et al., 2009), 

and to 63.1°C (LT50) in R. varieornatus (Neves et al., 2020). Thermo-tolerance seems to be 

associated with anhydrobiosis only indirectly (Rebecchi et al., 2009) which is supported 

by observed acclimation to higher temperatures (Li and Wang, 2005; Neves et al., 2020). 

Since thermo-tolerance has been reported in anhydrobiotic stage, it is explained 

by vitrification hypothesis (Hengherr et al., 2009a). Other possible explanations include 

a crucial role of muscle protein filaments (Halberg et al., 2013), the protective role of heat 

shock proteins or LEA proteins (Neves et al., 2020). In general, our observations 

of the ultrastructure of storage cells support the vitrification hypothesis, that cells are 

“frozen” in a glassy state. Detailed ultrastructure of storage cells is described below (section 

3.3). Heat stress, however, caused ultrastructural changes in the density of reserve spheres 

in desiccated storage cells. Spheres in non-heated specimens were homogenous, whereas 

cellular spheres in heated specimens were filled with granules of lower electron density 

indicating a change in the distribution of the stored material.  

The large amounts of lipids were present in all storage cells (Paper III, IV). Lipids have 

been proposed to play a key role in heat stress management of the eukaryotic, especially 

mammalian, cells (Balogh et al., 2013). Likewise, their role in anhydrobiosis has been 

discussed (Womersley et al., 1982; Kinchin, 1993; West et al., 2001; Wharton et al., 2008). 

However, there is a disagreement in the literature whether lipids are involved 

in anhydrobiosis. Some studies claim lipids are not involved (Womersley et al., 1982), 

whereas others suggest a direct relationship between lipid reserve and anhydrobiotic survival 
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(Preston and Bird, 1987). Since lipids are not utilized during the desiccation/rehydration 

cycles in R. cf. coronifer, they may represent immediate energy for starved animals. 

Alternatively, lipids may be used for metabolic processes connected to preparation 

for anhydrobiosis and synthesis of protective molecules such as glycerol (Paper III and IV, 

Kinchin, 1993). Since lipids are present in dehydrated storage cells, they may also maintain 

the spatial distribution of cells in the absence of bulk water (Womersley et al., 1982; Kinchin, 

1993). Large amounts of lipid droplets were also found in epidermal cells of R. cf. coronifer 

(Paper III). This is in line with observations of epidermal cells in other anhydrobiotic 

tardigrade species, M. tardigradum and M. hufelandi (Dewel et al., 1993; Walz, 1982). 

Because specimens of R. cf. coronifer do not have a cuticular wax layer, large lipid reserves 

might serve as lipid supply to the cuticle and thus helping to reduce evaporative water loss 

as shown in nematodes (Womersley et al., 1982).  

It was revealed that desiccated animals of P. richtersi contain a higher percentage 

of polysaturated fatty acids and thiobarbituric acid reactive substances (Rizzo et al., 2010). 

In another tardigrade species, P. areolatus, glycogen is the first utilized material 

during dehydration (Crowe, 1975). In nematodes, lipid and glycogen content is decreased 

during dehydration (Crowe et al., 2005; Womersley et al., 1982). Hyra et al. (2016a) found no 

lipid reserve material in storage cells of tardigrade of I. g. Granulifer that has no 

anhydrobiotic ability. In this context, more studies on the role of lipids in anhydrobiosis (and 

cryptobiosis in general) of tardigrades would be valuable. 

 

 3.3 Ultrastructure of storage cells (Paper III, IV) 

Storage cells are clearly visible as they passively move in the body cavity by currents 

of the body cavity fluid caused by the movement of animals (Kinchin, 1993; Paper I, II). 

The storage cells are coelomocyte-type cells. Their general characteristic, ultrastructure 

and function are described in section 1.6. 

 

3.3.1 The storage cells of R. cf. coronifer 

Like the other tardigrade species (e.g. Macrobiotus hufelandi, Rosati, 1968), 

the shape of storage cells of R. cf. coronifer is quite variable in active animals - from circular, 

amoeboid, oval or spherical. In desiccated animals, the storage cells have an amoeboid shape 
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(Paper I, II, III, IV). The size of storage cells in adult animals varies from 6 up to 20 µm. 

The average size of adult storage cells in the active state is 13.7µm (±2.3, n=295), and 

10.53µm (±2.4, n=32) in juveniles (Paper I, III). In the light microscope, SC appear as circular 

globules with granular structure. Occasionally, oval SC with orange fibrous material were 

observed (unpublished data). Storage cells with irregular edges were previously seen to be 

attached to various organs, such as ovaries (Węglarska, 1957), epidermis and gut (Rosatti, 

1968). Similarly, storage cells of R. cf. coronifer were sometimes attached to epidermis or gut. 

The cells absorb material from the coelomic liquid near the intestine by pinocytosis 

and phagocytosis. The absorbed material is subsequently transported to the epidermis 

(Węglarska, 1975).  

In general, the storage cells in active tardigrades have an electron-lucent cytoplasm 

and a large circular nucleus with a distinct nucleolus. They contain ribosomes, mitochondria, 

RER, Golgi apparatus, large autophagosome. The fine structure of the first cell type is similar 

to other Parachela species (Paper IV), but R. cf. coronifer storage cells differ in the stored 

reserve material. The main compartments of the cells are spheres filled with reserve material 

of different electron density, containing large amount of lipids and polysaccharides, and low 

amount of proteins (Paper III, IV). In other species (e.g. Dactylobiotus dispar, M. richtersi) 

their size varies with the oogenetic stage (Poprawa, 2006  Węglarska, 1957, 1975). In R. cf. 

coronifer, the amount of reserve materials stored in storage cells decrease after oviposition 

and thus vary with regard to moulting stage and starvation (Paper IV). In contrast to studies 

on other species (Szymańska, 1994  Poprawa, 2006  Hyra et al., 2016b), the observations 

presented in Paper IV did not confirm the production of vitellogenins in storage cells of R. cf. 

coronifer.  

Two types of storage cells fill the body cavity fluid in R. cf. coronifer (Paper IV). 

Ultrastructure of type I cells changes during oogenesis. They contain nucleolus with nucleolar 

vacuoles (also called a nucleolar cavity) with low electron density. The presence of irregular 

vacuoles varies with respect to the oogenetic stage. Nucleolar vacuoles were observed during 

previtellogenesis, but not during and after vitellogenesis. Vacuoles are generally rare 

in animal cells (Stępiński, 2014). In plants, vacuoles of irregular shape imply on dispersion and 

activation of chromatin (Stępiński, 2014), and it is, therefore, possible that in tardigrades, it 

relates to high nucleoli activity during previtellogenesis (Paper IV). Type I cells are also 

characterized by the presence of many mitochondria, cisterns of RER and specific spheres 

of reserve material. Large amounts of mitochondria present in these cells indicate high 

metabolic activity.  
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The storage cells of type II were found in a smaller amount and only in females. Their 

ultrastructure is similar during all oogenetic stages. These cells have fewer organelles and no 

nucleolar vacuoles. They may represent young undifferentiated cells or even stem cells. Cell 

lineage origin of storage cells is not known. Interestingly, the cell developmental origin 

of coelomocytes in other species is also unclear. In holothurians, they originate 

from a common stock of stem cells (Hetzel, 1963). They are of mesodermal origin 

in nematodes (Tahseen, 2009) and echinoderms (Chia and Xing, 1996). As storage cells are 

coelomocyte-type cells it is possible that tardigrade storage cells develop from these 

undifferentiated cells of type II, which might represent some kind of stem cells.  The study 

presented by Paper IV is the first to ultrastructurally verify two storage cells types 

in tardigrades. 

 

3.3.2 Storage cell ultrastructure with regard to survival of stress conditions: 

desiccation and heat stress 

In normal cells, the main types of damage related to drying are denaturation 

and aggregation proteins, leakage and fusion of membranes, destabilisation of RNA, DNA 

and chromatin (Tunnaclife et al., 2010). As described above, desiccated storage cells have 

increased proportions of heterochromatin and they partially lose their nucleoli (Paper III). 

Heterochromatin reflects a functionally inactive state of the genome. It is associated with 

gene repression but also determines the spatial organisation of the genome (Nikolov and 

Taddei, 2015). This observation, therefore, supports hypothesized cessation of the cell cycle 

and mitosis in storage cells during anhydrobiosis. Moreover, heterochromatin protects DNA 

against radiation damage and can diminish the accessibility of radicals to the DNA (Falk et al., 

2008) and may thus also enhance radiotolerance of desiccated R. cf. coronifer.  

Although we detected few differences in cell structures between hydrated 

and desiccated animals, our observations are in line with the prediction of vitrification 

hypothesis not only for storage cells but also for epidermal cells, ovary and midgut cells. 

However, a comparison of dead and dried animals revealed intact organelles and membranes 

in both groups. This finding supports the idea that desiccation injury is caused by changes 

proceeding at the biochemical level, while structures are protected from deformations.  
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4 CONCLUSIONS AND FUTURE PERSPECTIVES 

1. Mitotic division of tardigrade storage cells correlates with the growth phase 

of the animal. Mitotic storage cells occurred with higher frequency in examined 

juveniles (38%) than in adults (18%). The mitotic index was higher in adults. Mitosis is 

more frequent in moulting tardigrades. 

2. Even though the mitotic index is low, the number of storage cells in single animal 

varies among individuals and within individuals over time. Tardigrades thus cannot be 

classified as eutelic at least for storage cells.  

3. Tardigrades of R. cf. coronifer can survive the maximum of 6 repeated desiccation 

cycles (non-cultured conditions). Their survival rate, mitosis in storage cells, and 

ability to form “tun” declined with repeated desiccations. 

4. Desiccation stress leads to cellular shrinkage and changes the cellular shape but 

causes no ultrastructural change of organelles and membranes in cells in R. cf. 

coronifer. After desiccation, the epidermal cells reduced their pigmentation granules 

and the lipid vacuole content was also diminished.  

5. Although the combining effect of desiccation and heat stress affected tardigrade 

survival, it did not cause cellular damage at the ultrastructural level. The cause 

of reduced survival may instead depend on damage at a molecular level - 

heterochromatin amounts increased, the nucleolus was partially lost, and the 

amount and content of reserve material changed after desiccation and heat stress.  

6. The content of stored material in storage cells is species-dependent, and R. cf. 

coronifer storage cells differ from those of other tardigrade species. The main reserve 

materials are lipids and polysaccharides. 

7. We identified two storage cells types based on their ultrastructure. The first cellular 

type includes metabolically active cells, exhibiting their specific function. The second 

cellular type is represented by young undifferentiated cells. 

 

In conclusion, the obtained results are in line with the vitrification hypothesis, but 

since detrimental effects of stress conditions did not arise from observable damage 

to general cell structures, the hypothesis alone seems to be insufficient to explain all 
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mechanisms involved in the protection of R. cf. coronifer under desiccation and other 

stress conditions. Since we found large amounts of lipids in all storage cells of R. cf. 

coronifer in all studies presented here, lipid composition and metabolism are next to be 

studied to reveal the mechanisms involved in desiccation survival of this organism.  

The research of anhydrobiosis focused mainly on sugar metabolism and stress 

proteins, but the knowledge of regulatory mechanisms, stabilisation of cellular 

architecture during stress conditions is still fragmentary. The role of lipids has not been 

studied yet and metabolic studies of storage cells are largely lacking. Such studies have 

the potential to bring a deeper insight into cryptobiosis and metabolism of tardigrades. 

They could be of interest for the medical and food industry related to cellular 

preservation, stabilisation and storage of biological materials, organ and tissue 

preservation for transportation, and storage of blood cells or cell lines (Jönsson, 2019). 

Few promising approaches were recently published (Chen et al., 2012; Tanaka et al., 

2015; Hashimoto et al., 2016; Boothby et al., 2017; Hashimoto and Kunieda, 2017; Chavez 

et al., 2019). Some molecules (glucose, paraformaldehyde, dimethylsulfoxide) have 

already been used as additives for preservation but most of those are toxic, causing 

cellular death and have, therefore, weak results (Schill et al., 2009). The non-toxic 

disaccharide trehalose has been shown to preserve stored platelets as cell cryoprotectant 

(Wolkers et al., 2001, 2002). Trehalose has also been microinjected into human oocytes 

providing protection against freeze stress (Eroglu et al., 2002). Application 

of anhydrobiosis might serve as an inspiration for dry vaccines and bring new technology 

that could be more available over the world and used without a need for the refrigerator 

(Schill et al., 2009).  
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