Univerzita Karlova v Praze
Matematicko-fyzikalni fakulta

DIPLOMOVA PRACE

Marek Kukacka

Artificial neural networks for pattern
recognition

Katedra teoretické informatiky a matematické logiky

Vedouci diplomové prace: Doc. RNDr. Iveta Mrazova, CSc.

Studijni program: Informatika, obor Teoreticka informatika

2007

Rad bych podékoval predevsim vedouci mé diplomové prace, pani Iveté Mrazové,
za cenné rady a pripominky, které mi pfi realizaci této prace velice pomohly.
Dékuji také knihovné MFF UK za poskytnuti nezbytnych studijnich ma-
terialu.

Dale checi podékovat své rodiné a pratelim za poskytovani podpory a moti-
vace, jak pii psani této prace, tak i po dobu celého mého studia.

Prohlasuji, ze jsem svou diplomovou préaci napsal samostatné a vyhradné s
pouzitim citovanych pramenu. Souhlasim se zapujcovanim préce.

V Praze dne Marek Kukacka

Contents

(1 _Introduction|

2 ATAGal N N =

2.1 History|.

[2.2 Taxonomy of neural networks|

Pattern Recognition|

[3.1 Theory of classification|

[3.2 Preprocessing and Feature Extraction|.

4

Multi-layered perceptron network|

4.1 Model description| L

4.3 Learning algorithm|

4.4 Faster and better learningl

[4.4.2 Altering the derivative]

[4.4.3 Altering the learning rate|

[4.4.4 Avoiding expensive calculations|

CONTENTS

5 Kohonen’s neural networkl
.1 Definitionlo
[>.2 Learning algorithm|
[>.3 Properties of Kohonen's networks|
6__Convolutional network model
6.1 Background| oL
[6.2 Model description|o
6.3 TeNet-3l
[6.4 Learning algorithm|
[6.5 Properties of convolutional networks|
[6.6 Implementation| L
(7 RBF hybrid network model|
[7.1 Model description|
[7.2 Learning algorithm|
[[3 Winnertakesalll. 0.
[7.4 Properties of RBF hybrid networks|
[8 Implementation|
[8.1 Library description|
[8.2 Encountered problems
[9 Generalization and training speed|

[9.1 Over-fitting and early stoppingl

9.2 Test proposal| oo

11

19
19
20
21

23
23
24
25
27
28
29

31
31
33
35
36

37
37
38

CONTENTS
oI . P o
(10.1 Test proposal|
MO2 Resultsl. oo
(11 Conclusion|

[A Script documentation|

111

53
54
95

73

77

Nazev prace: Rozpoznévani vzoru pomoci neuronovych siti

Autor: Marek Kukacka

Katedra (ustav): Katedra teoretické informatiky a matematické logiky
Vedouci bakalaiské prace: Doc. RNDr. Iveta Mrazova, CSc., Katedra soft-
warového inzenyrstvi

e-mail vedouciho: Iveta.Mrazova@mff.cuni.cz

Abstrakt: V této préci jsou popsany moznosti, vyhody a nevyhody vyuziti
neuronovych sit{ pfi rozpoznavani vzort.

Je predstaveno nékolik modelt neuronovych siti pouzitelnych pro tuto tlohu.
Standartni vicevrstva perceptronové sit je porovnavana se sofistikovanéjsi
konvolucni siti. Prace také predstavuje novy model, inspirovany konvolu¢nimi
sitémi, jehoz ucelem je odstranit nékteré jejich nedostatky:.

Préace popisuje vysledky testu porovnavajicich vysledky popsanych neuronovych
siti na uloze rozpoznavani ruéné psanych ¢islic.

Klicova slova: neuronové sité rozpoznavani vzoru

Title: Artificial neural networks for pattern recognition

Author: Marek Kukacka

Department: Katedra teoretické informatiky a matematické logiky

Supervisor: Doc. RNDr. Iveta Mrazova, CSc., Katedra softwarového inzenyrstvi
Supervisor’s e-mail address: Iveta.Mrazova@mff.cuni.cz

Abstract: This work describes the advantages and disadvantages of using
neural networks for pattern recognition.

Several neural network models are described and their use for pattern recogni-
tion is demonstrated. Standard multi-layered perceptron model is compared
to a more sophisticated convolutional network model. A new network model
is introduced, which is inspired by the convolutional networks and aimed at
rectifying some of their shortcomings.

The work describes results of tests performed with the described network
model on the problem of recognizing hand-written digits.

Keywords: neural networks pattern recognition

Chapter 1

Introduction

Artificial neural networks are mathematical models, simulating systems of
biological neurons found in animals’ and humans’ brains. They exhibit some
interesting properties, like the ability to learn or adapt, which hints on how
these abilities could arise in biological networks of interconnected computa-
tion units. In practical applications, artificial neural networks are being used
for solving various problems that are not solvable by conventional means (i.e.
by an optimal deterministic algorithm). These problems include data mining,
image processing and pattern recognition, control of robotic manipulators,
prediction of behavior of complex systems, and many other.

In this work, I shall focus on the pattern recognition problem. It is a
well-known fact that humans still exceed computers by far in the ability to
recognize patterns, whether in visual, aural or other type of data. There
are even tests for discriminating between humans and computers based on
this fact, for example the popular CAPTCHA (Completely Automated Pub-
lic Turing test to tell Computers and Humans Apart) test. Even though
there are many areas, in which neural networks are widely used for pattern
recognition (i.e. ZIP code reading, face recognition), there are still problems
where automation of pattern recognition would be profitable, but the effi-
ciency of the available techniques is not sufficient for them (i.e. hand-written
text reading).

The aim of this work is to summarize some of the models of artificial neural
networks most widely used for pattern recognition. I demonstrate their use
and compare their success rates on a number of various pattern recognition

CHAPTER 1. INTRODUCTION 2

tasks. Furthermore, I propose a hybrid model of neural network, combining
the standard multi-layered perceptron networks with other types of adaptive
computation units. Hopefully, the comparison will expose the advantages of
various properties of the introduced network models, and show new directions
for devising even better models.

Chapter 2

Artificial Neural Networks

2.1 History

The beginning of the research in the field of artificial neural networks dates
back to the first half of 20th century, when various computation models were
being considered and tested. The first model inspired by the working of
biological neurons were the McCulloch-Pitts neurons, proposed in 1943 by
Warren McCulloch and Walter Pitts, and a more general model introduced
by Frank Rosenblatt, the perceptron. Since then, a large number of arti-
ficial neural network models was introduced and studied thoroughly. The
inspiration for these models were the processes in biological brains, the com-
munication between densely interconnected neural cells and the ability of
these networks to adapt to external stimuli.

Artificial neural networks are tightly tied with many other areas of re-
search. The computational power of networks of simple units is being stud-
ied in the area of electronic circuit design. Neurology is often a source of
inspiration for new models of artificial neural networks, which strive to im-
itate newly discovered principles of biological information processing. The
fields of artificial intelligence and cybernetics are proving the usefulness of
the theoretical results in practical applications.

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 4

2.2 Taxonomy of neural networks

Over the years of research of the neural networks, many models were pro-
posed and studied. Some of them were improvements of older models, while
other used new and unique methods of computation. Naturally, there are
many ways to differentiate the neural network models into separated groups.
Usually, a network is classified by its topology, the type of computation it
performs, and the learning algorithm that is used to adapt the network for
the task at hand.

The topology of a neural network strongly influences the way the net-
work processes its inputs. Generally, networks are divided in depence on
the occurence of cycles in the graph of their neurons’ connections. If there
are no loops in the topology, neurons in the network can be ordered into
layers, starting from the ones that accept the input values. The neurons in
the second layer then process the output of neurons in the first layer, and so
on. Such computation model is then called synchronous, as opposed to the
asynchronous model, in which neurons to be computed are chosen stochas-
tically, independently of their position in the network. An example of an
asynchronous model is the Hopfield network.

There are two main types of learning algorithms for the neural networks.
The first one, called supervised learning or learning with a teacher, is used
when for each training input pattern we know what the desired output pat-
tern is. This can be viewed as using the neural network to a function for
which we have a set of input-output value pairs. The learning consists of
iterative adaptation of network parameters aimed to minimize the difference
between real and desired network output for all training input patterns. Gra-
dient descent optimization is usually used for these adaptations, implemented
in the form of backpropagation algorithm or one of its many variations. This
algorithm will be described in detail in later chapters.

The other type of learning of neural network is called unsupervised learning
or learning without a teacher. Here, no desired behavior is presented to the
network. Network parameters then adapt to presented input patterns to
describe their distribution in input space. The network itself decides how to
react to various stimuli, therefore this adaptation strategy is also sometimes
calles self-organization. This kind of learning is usually used to find natural
clustering of similar inputs and teach the neural network to react in the same

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS)

way to the patterns in the same cluster. This kind of adaptation is used for
the Kohonen’s network model, described later in this work.

There are few other ways to classify neural networks. Layered networks
can be differentiated by their number of layers, because this number strongly
influences computational power of the network. Networks can be distin-
guished by the activation function used by their neurons, most common of
which are the signum function for binary networks and a sigmoid function
for analog networks.

Some neural network models are composed of sub-networks of various
types, and therefore cannot be easily classified into one of the above men-
tioned categories. These are called hybrid networks. Examples of such net-
works will be described with more detail in later chapters.

Chapter 3

Pattern Recognition

Pattern recognition problem consists of assigning an input vector to one of
target classes. Such a classification of real-world data is seldom straightfor-
ward, even though humans perform such tasks all the time without effort. For
computers, however, some of these problems prove to be extremely difficult
to solve effectively, i.e. character recognition or speech recognition. In some
simple cases rule-based systems can be manually constructed and used with
success, but usually it is more effective to use one of Artificial Intelligence
techniques which can be trained from a set of examples. Such classifiers in-
clude Bayesian networks, Markov models, few "nearest neighbors” methods,
and various kinds of artificial neural network models, which are the focus of
this work.

3.1 Theory of classification

Statistical pattern recognition is a well-studied field, providing a very general
point of view on the problem. Here, input patterns and their classification are
considered to be probabilistic variables and classification is made by finding
the most probable class for the given input. This is formalized by the Bayes’
theorem

P(X|Ck)P(Ck)

(3.1)

CHAPTER 3. PATTERN RECOGNITION 7

where Cj, refers to k-th target class, X refers to the given input, and func-
tion P(-) represents the probability of occurence of its argument. Conditional
probability function P(X;|X3) represents the probability of occurence of X
under the condition that X5 has been observed. Left-hand side of the equa-
tion represents the so-called posterior probability, since it describes the
likelihood for the observed input X to belong to the class C. This value
is expressed in terms of prior probability P(Cy) and class-conditional prob-
ability P(X|Cy). The denominator P(X) is only normalization factor and,
since it depends only on the input, can be ignored when comparing posterior
probabilities for a single input X.

In the optimal case, we would know all the quantities on the right-hand
side of the equation and classification of given input would then be trivial.
Unfortunatelly, in real-world problem we can only estimate these values.
Various means are used to make these estimation, and their fidelity then
influences the precision of the resulting classification. It is usual to make use
of a set of manually classified input patterns, called the training set. Apriori
probability P(C}) of class Cy can then be estimated from rate of occurence
of this class in the training set. Estimating the class-conditional probability,
which can be also viewed as probability density function for the given class, is
more difficult. There is a number of methods for estimating this function, and
they can be separated into groups according to assumptions they take about
the estimated function. Parametric methods take a certain functional form
of the density function (i.e. Gaussian distribution), and then strive to find
its parameters that fit the function to the training data set with minimal
deviation. Non-parametric methods, on the other hand, do not make any
assumptions about the function’s form, rather they let the data determine the
resulting density’s form - the method called ” K-nearest-neighbours” belongs
into this category. Finally, there are methods that take the best from both of
these approaches. These are called semi-parametric, and feed-forward neural
networks, described later, can be regarded as belonging to this category. For
more details about density estimation methods, see chapter 2 of Bishop [2].

3.2 Preprocessing and Feature Extraction

The process of classification is usually divided into several stages. The rea-
son for this is the fact that it is seldom beneficial to present the raw data

CHAPTER 3. PATTERN RECOGNITION 8

straight to the classifier. It is also usually advisable to transform the output
of the classifier into a form usable for the rest of the application. There-
fore, preprocessing and postprocessing stages usually precede and follow the
classification itself.

There are many good reasons to introduce a preprocessing stage into the
classification process. One of them is the decrease in dimensionality of the
data the classifier has to process. Rather than feeding all of 1024 pixels of
32x32 image into the classifier, we can pick only the important information
from the picture, and present it to the classifier. For example, if we want to
determine whether an image contains a character ”A” or "B”, we can either
feed all of its pixels into the classifier, or preprocess the image to figure the
number of "holes” in the character, which will then make the classification
trivial. Also, lower dimensionality of the input increases the speed of learning
of the classifier.

Such pieces of information, describing the object we want to classify, are
commonly called features, and preprocessing aimed at finding values of se-
lected features is then denominated as feature extraction. Classifying features
instead of raw data is a lot easier, because this way it is possible to incorpo-
rate prior knowledge about the problem in the classification process without
the need to modify the classifier itself. Generally, we want features to be in-
variant to transformations that do not influence the classification (i.e. trans-
lation and scaling in character recognition) and discriminable, which means
they should be different for objects of different classes (i.e. the number of
"holes” mentioned earlier, as opposed to, for example, color of the character).
Selecting a suitable set of features to be extracted in the preprocessing stage
can greatly increase the effectiveness of the classification.

However, there are recognition problems which do not allow for a easy
construction of the preprocessing stage. The reading of character-based
CAPTCHA codes used to protect WWW forms from automatic process-
ing can be used as an example of such a problem. The usual preprocessing
in case of visual object recognition consists of separating the object from the
scene, normalizing its size, position and orientation, followed by detecting
characteristic features. When the characters in the image are arbitrarily po-
sitioned and oriented, possibly even overlapping, it is very difficult to design
an algorithm which would produce their standardized form. In case the char-
acters are subjected to arbitrary deformation, automatic remedying of this

CHAPTER 3. PATTERN RECOGNITION 9

deformation is practically impossible.

It would therefore be a great advantage if the used classifier was able to
work on the raw data and adapt to the possible input deformations during
its training. In this thesis, I describe and test two neural network models
designed to answer the need for such classifiers. For comparison, I also test
a very simple neural network model commonly used for classification and
function approximation.

Chapter 4

Multi-layered perceptron
network

Multi-layered perceptron network is perhaps the most frequently used net-
work architecture when supervised learning is applicable. This neural net-
work model is applicable to a wide variety of problems, and, of course, to the
pattern recognition problem as well. In this chapter, I descibe this model in
detail and consider its advantages for pattern recognition.

4.1 Model description

A multi-layer perceptron network is composed of computational units called
neurons, that are organized into ordered layers. Each neuron receives its
input from all neurons in the preceding layer but from no other ones. Input
patterns are presented to the network in the form of a virtual input layer
with the index equal to zero. This input is processed by neurons in the first
layer. Afterwards, their output is taken as the input for the neurons from
the second layer, and so on. Finally, the network’s output is composed of the
output values of neurons in the last layer.

A network of this type maps the vectors from its input space to vectors
in its output space. Its function is encoded in the strengths of connections
between network’s neurons, also called weights. The network is trained by

CHAPTER 4. MULTI-LAYERED PERCEPTRON NETWORK 11

adjusting the weights of its neurons in such a way to produce the desired
output values in reaction to the presented input patterns.

4.2 Notation

Below, we will specify the notation used when describing the details of the
multi-layered perceptron model.

Each perceptron unit computes the dot product of its weights and its
input values, adds a bias, and applies its activation function to the resulting
potential value. Formally, this yields the equation:

J
Yn+1i = ‘I)(Z Wi 1,iYng + bnr1i) = P(Guir) 121 (4.1)

j=1

where y,, ; is the output of j-th neuron in the n-th layer, ® is the activation
function, b,,41, is the bias of the i-th neuron in the layer n + 1, and (y41,
is the potential of the neuron 7. Network’s input values are represented by
Yo,; in this notation. The output values are represente by y; ; where L is the
number of network’s layers. We can simplify the equation by defining
yio = 1 for each layer i, and then storing the bias value in w;;1 ;0. The
resulting equation will have the following form:

J
yn—i-l,i = (I)(Z wn—l—l,i,jyn,j) ? Z 1 (42)
3=0

If not stated otherwise, I will generally work with N layers in the network.
I will also denote the number of the output neurons as I and index the
individual neurons in this layer by 7. For the layer below the last one, I will
use the symbol J for its size and j for the index, and so on. When considering
the set of all weights in the network, I will use only one subscript, e.g. w;
instead of w;J.

For the activation function ®, logistic sigmoid is used. This function has
several useful properties, which will be mentioned later in this chapter. The
formula for the sigmoid can be expressed as follows:

o (x) !

= oo (4.3)

CHAPTER 4. MULTI-LAYERED PERCEPTRON NETWORK 12

The parameter o determines the tangent of the sigmoid around the origin.
Although it can be included as a further parameter into network training
and adjusted by the learning algorithm, I have kept it constant in my imple-
mentation to keep the learning algorithm simple and fast.

It is a common practice to denote the first layer of neurons, to which the
input vector is presented, as the input layer. The last layer, from which the
network’s output is read, is called the output layer, and any intermediate
layers are called hidden layers.

4.3 Learning algorithm

To train multi-layered perceptron networks, the standard back-propagation
algorithm can be used. In order to keep this thesis self-contained, I will
describe the algorithm. Later on, I will refer back to various steps of the
algorithm.

When training neural networks to approximate a function, a set of input-
output pairs is needed, which roughly covers areas of interest of the function’s
input space. Let us denote this set of training patterns as a training set 7
of size T and its members as oriented pairs < 'Zi, 0; >. Here, i; is the input
vector to be presented to the network, and o0; is the vector of the desired
output values after processing the input .

During the optimization of network’s performance, we need an objective
function measuring the error rates of the trained system, which we then try
to minimize. This function is commonly called the error function, denoted
E. Tt is defined as

T
1
F—1N"p 1.4
= ; (4.4)
1 — —
E; = 5(% —0;)° (4.5)

where ¢; is the vector of actual output values obtained from network after
processing the input i;. The function E; can take various forms, here we use

CHAPTER 4. MULTI-LAYERED PERCEPTRON NETWORK 13

the standard Mean Square Error (MSE) function. Vector 0; is the desired,
or target vector. We can also remark that the value i is in fact a function

y =, 7) (4.6)

which for a fixed network topology, vector of network’s weights and input
vector produces the network’s output.

We can see that the function v is differentiable, because it is composed of
differentiable functions ® (see, addition and multiplication by a constant.
Therefore, the function E is also differentiable, and we can use the well-
known gradient descent optimization technique to minimize E. The key idea
of gradient descent lies in determining the partial derivatives gTEj for every
weight w; from , thus determining the direction of the gradient VE, and

adjusting @ in the reverse direction. Written formally:
ok

Aw, = — -
w a o,

J

(4.7)

where « is a learning parameter, determining how much the weight will be
changed in a single learning step. The choice of this parameter influences the
speed and quality of learning, and will be discussed with other parameters
later.

Calculating the partial derivatives for all weight parameters separately can
be very demanding. The chosen model is allows us to reuse values previously
computed in higher layers of the network. This is the main idea of back-
propagation algorithm, or BP-algorithm for short.

First, we will compute the adjustment coefficients for the weights in the
output layer of network.

Awij = — -

(4.8)

Oy, 0G awij

We make use of the equation ¢y’ = y-(1—y) for the logistic sigmoid function
defined earlier. It is extremely easy to evaluate this derivative, considering

CHAPTER 4. MULTI-LAYERED PERCEPTRON NETWORK 14

that the output values of the neurons are usually stored for the next step
when calculating the network’s output.

Next, let us compute the adjustment coeficients for the weights in the
layer below the last one, denoted as Awj.

(4.9)

Awj, = —a-

_ 9E 0y 06 Oy; 0
“ Zayz‘ oG 0Oy; 9¢; Owjy

:—a~Z(yl-—t0,i)-yi-(l—yi)-wij-yj-(l—yj)yk

i=1

Computing these values would be time-consuming, more so for even lower
layers. However, we can use already obtained values, in particular the ‘95
g‘? = (y; —tos) - yi - (1 — y;) part from |4.8] This value is commonly denoted
0; and called the error term of neuron 7. By reusing these values from

we can simplify [£.9] to

I
Awyy, = —Oé'z5z"wz'j'yj' (1 —y5) -y (4.10)
i=1

Further optimization can be achieved by reusing the 9; value, since it can be
calculated only once and then used for determining changes to all weights
connecting the neuron ¢ to the lower layer.

If we consider the equation for Awjj in the next lower layer, we can again
reuse previously obtained values, which will be

I
0= 6 wij-y;- (1—y;) (4.11)
=1

At this point, we have determined the values Awj; using error factors of
neurons from the layer N and the outputs of neuron at the layer N-1. At
the same time, we have determined the error terms for neurons at layer N-1.
we can therefore repeat this step for layer N-2 etc., eventually determining
the weight adjustments for all weights in the network. We proceed from
the output layer of the network, in the opposite direction than the input
processing was carried out. Hence, the name back-propagation algorithm.

CHAPTER 4. MULTI-LAYERED PERCEPTRON NETWORK 15

4.4 Faster and better learning

Training a neural network with the basic Back-propagation algorithm is gen-
erally very time-consuming. Learning simple problems can take seconds or
minutes, while for more complex problems can take even hours to find an
acceptable network parameters. Furthermore, learning often has to be per-
formed several times to determine the optimal parameters of the network.
Over the years of research in the field, many methods have been devised to
speed up the learning process. Some of these methods can be easily added
on top of the basic BP algorithm, other alter the learning process in more
substantial way.

4.4.1 Momentum

One of the first adjustments to consider when looking for an improved learn-
ing performance of a neural network is learning with momentum. Momentum
can be added to the BP-algorithm very easily, and usually helps to speed up
convergence of the network’s weights. The aim of this method is to mini-
mize the perturbation of the weights caused by inconveniently shaped error
function. If the error function forms a shape of a narrow ”valley”, then the
learning gradient doesn’t point to the function’s minimum, but rather to the
other side of the valley. This leads to oscilations of the weight vector, thus
slowing down the convergence of network.

Momentum constitutes a simple solution to the problem of avoiding these
oscilations. Instead of relying solely on the gradient of the error function
when computing change of a weight w; in step s, we add the change of this
weight computed in the previous step s—1. Formally, we rewrite the equation

4.1 to

Aw; = —a- auE); + - Aw! (4.12)
where 7 is the momentum rate, or the rate of mixing the current and the
previous change of the weight. This causes attenuation of oscilations, and
helps the network to converge faster towards minimum in a narrow valley.
Also, it helps the network to get out of flat plateaus of the error function,
where the error function’s derivative is close to zero.

CHAPTER 4. MULTI-LAYERED PERCEPTRON NETWORK 16

4.4.2 Altering the derivative

The change of the weights of a neuron depends on the derivative of the
neuron’s output function, as can be seen in and [4.9 If the neuron’s
output gets close to 0.0 or 1.0, derivative of the output function comes close
to zero, which causes learning of this weight to slow down. Because this
derivative is included in the error term ¢; of the neuron, it also influences
all neurons in lower layers, in the worst case scenario causing the learning
process to freeze for a large part of the network.

One of the solutions to this problem, proposed by Fahlman in [3], is very
simple - we can alter the derivative’s value to stop it from going to zero.
This can be done either by clipping, where we demand the derivative to be
always larger than a certain value, setting it to this value if it gets lower, or
by adding a small offset factor to the derivative. This prevents the learning
from freezing in the flat areas. Drawback of this technique is that it changes
the direction of the gradient vector slightly. However, despite this drawback,
it has been shown in [3] that this simple alteration to BP algorithm can
speed it up by a factor of magnitude.

4.4.3 Altering the learning rate

In the basic version of the BP algorithm, a constant learning rate « is used to
determine the step size of all weights. It is difficult to find an optimal value
of a, as for too small « the learning slows down considerably, while too big «
may cause the learning algorithm to step over the minimum of the learning
function. Moreover, different problems and different network topologies have
different optimal values of learning rate. There are also algorithms that use
a different learning rate for each weight, several of them are examined in this
section.

The general idea of the algorithms for adjusting the learning rates is the
same as the idea of learning with momentum. We want to make larger
steps if we are moving in the right direction. At the same time, we want to
slow down when there are indications we are going too fast, like oscilations.
Algorithm proposed by Almeida is a simple implementation of this principle.
The algorithm works with separate learning rates for each weight. Let agm)
be the learning rate for weight w; in step m, and V;E(™ = (0E/0w;)"™ be

CHAPTER 4. MULTI-LAYERED PERCEPTRON NETWORK 17

the partial derivative of the error function with respect to the weight w; in
step m. In step m + 1, learning rate «; will be adjusted according to the
following rule:

L) _ { aim; VB G0 >0 (41

' o™ - d if VEM VB <0

where u is the acceleration rate and d is the deceleration rate, satisfyin% th
conditions v > 1 and d < 1. At the begining, the learning rates a§° ar
initiated with small values. It is obvious from these equations that both
the acceleration and deceleration is exponential, and this fact can present a
problem if too many acceleration steps are taken.

e
e

The delta-bar-delta algorithm, proposed by Jacobs, addresses this issue
by accelerating linearly while keeping the deceleration exponential. Learn-
ing rates adjustments are in this case carried on according to the following
formulas:

o™ pu i VEM 5 S g

)

SR PO BIET v ol COING GO (4.14)

(m) Z

; otherwise

«

where ﬁi(m) is a floating average of partial derivatives V,;FE:
B = (1 - ¢)VE™ + gpm Y (4.15)

The constant ¢ determines the rate of deterioration of the floating average.
The differences compared to Almeida’s algorithm are meant to help avoid
oscilations. However, this modification forces the user to set up yet another
constant influencing the learning speed.

4.4.4 Avoiding expensive calculations

It is also possible to speed up the BP algorithm by avoiding time-expensive
floating point operations. The main source of these operations is computing
the activation function of the neurons. One way to avoid these calculations
is creating a look-up table with the values of the activation function, and

CHAPTER 4. MULTI-LAYERED PERCEPTRON NETWORK 18

using these values to compute piecewise linear approximation according to
formula

f(z) = s(x;) + $(@i1) = s(wi) (= xy) (4.16)
Lit+1 — L4

where x; are the points for which the function’s values are stored in the
table, s(x;) are the stored values, and z; < z < x;4;. By this, we have
reduced the computation of the activation function to several table lookups,
multiplication and addition. The approximation is more exact if the points x;
are more densely distributed. Since the commonly used activation functions
converge to their limits fairly quickly, the z; points are most important in
the around 0. Areas far away from 0 can be approximated by the function’s
limits.

Chapter 5

Kohonen’s neural network

Since I am using Kohonen’s neural networks for training certain stages of
other models, I will describe this model in more detail. Also called self-
organising map (SOM), this model was proposed by Teuvo Kohonen. It
processes input patterns without having any desired output assigned, and
adjusts its nodes so as to describe the distribution of these patterns in the
input space.

5.1 Definition

The network consists of a set of nodes, or neurons, each of which is charac-
terized by its weight vector. These vectors are of the same size as the input
patterns presented to the network. The reason for this is that the neurons’
weight vectors represent points in the input space. Furthermore, the neurons
are organized into a grid of an arbitrary but fixed form. The most common
form is probably a 2D lattice. However, grids with more dimensions or with
a different topology can be used, too. This grid defines the so-called topo-
logical neighborhood of each neuron, and these neighborhoods are then used
by the learning algorithm.

We denote the weight vector of the i-th neuron as w;. Since a neuron
is defined by its weight vector, I will use the terms "neuron” and ”weight
vector” interchangeably. The notation N(w;,n) will be used to specify the
neighborhood of the neuron w; with the width n, where the width is the

CHAPTER 5. KOHONEN’S NEURAL NETWORK 20

maximum difference in grid coordinates along any grid axis. For example, in
a 2D square grid the neigborhood N(wj;, 1) contains 9 neurons including w;,
considering w; is not on the edge of the grid.

The learning algorithm used with Kohonen network uses a neighborhood
function v(w;, w;,t), which determines the strength of the connection be-
tween neurons w; and wg. The function’s value depends on their position
in the grid and on the number of performed learning steps, specified by the
function’s third argument t. The value of v gets smaller with growing dis-
tance between the neurons in the grid and with ¢. Another parameter of
the learning process is the learning rate a(t), also getting smaller with rising
number of performed learning steps.

5.2 Learning algorithm

The learning algorithm of the Kohonen network can be described in the form
of a few simple steps:

1. initialization: set the n-dimensional weight vectors) .. w,, randomly,
set t =0

2. present a randomly chosen vector &; from the training set to the net-
work

3. find a neuron with the weight vector w; closest to the input vector, i.e.
such a w; that ||; — || < ||Wy — Z4||VE € 1.m

4. update neurons’ weights using the neighborhood function, learning rate
and the following rule:

U_J’,(:H) _ w’gt) +at) v —»Z(t)’w’(:)jw (& — @U](f)),Vk el.m (5.1

5. test stop conditions, if they do not apply, increment ¢ and continue
with step 2

This way, the neurons in the affected neighorhood around the ”winning neu-
ron” determined in step 3 are drawn towards the presented input vector. As

CHAPTER 5. KOHONEN’S NEURAL NETWORK 21

the learning proceeds, a neurons converges to the area which it will later
represent. Presumably, vectors in this area form a cluster distinct from other
vector clusters in the input space.

The functions v(w;, w;,t) and a(t) can have arbitrary arbitrary form, as
long as they have the following properties. They have to have a decreasing
tendency, and they have to yield positive values for ¢ € R". Furthermore,
the speed of their declining should not be too fast, to give the network the
time necessary to fully unfold and fit to the data. The declining speed should
not be too slow, to force the network to converge in reasonable time. In my
implementation, I use the following form of these functions:

at) = Ve Plogt (5.2)

' ‘ . 1 if DChebyshe”u(wi? wj) < davg ' O[(t)
V(wl,w],t) - { 0 otherwise (5.3)

where dg,, is the averaged dimensions of the grid of neurons. The metric
Dchepyshes is the Chebyshev distance, defined as maxy,(|c(w;)y —c(w;)x|) where
cqw;) is a vector of coordinates specifying the position of the neuron w; in
the grid. The parameter P then controls the speed at which the functions
diminish, in all of my tests the value of P was set to 0.25. This value, as well
as the form of the functions described above, were determined heuristicaly,
after trying out different variations.

5.3 Properties of Kohonen’s networks

The key property of Kohonen’s networks is self-organisation. It is also the
main cause of their popularity, and the reason I am using this network model
for data processing.

Using only the presented data samples, the network is able to adapt itself
to describe the samples’ distribution in the input space. For example, if the
data samples are distributed evenly in the input space, then the network’s
grid will also evenly cover the input space, with each neuron representing an
area of roughly the same size. On the other hand, if the data samples are
generated by different distribution, like Gaussian normal distribution, then
the network will accomodate to this fact. The grid of neurons will then be

CHAPTER 5. KOHONEN’S NEURAL NETWORK 22

deformed to cover the areas with high sample density more thickly. Those
areas will then be more "described” by the reaction of network’s neurons.

Different situation occurs when there is a larger number of sample clusters
in the input space, and a small Kohonen’s network is used. In this case, each
cluster will attract one or more neurons. These neurons will then have the
strongest reaction to samples from this cluster, thus representing the cluster.
The Kohonen’s networks can therefore be used for clustering the input space.

In either case, the network creates a chart of the input space, dividing it
into regions represented by a single neuron. If we have a large set of unlabeled
data and only a small set of labeled samples, we can use the Kohonen’s net-
work to create such a chart. From this chart, we can then obtain information
about similarity between samples.

Another interesting property of Kohonen’s network is the topology pre-
serving. Two data samples that are close to each other in the input space
are likely to be represented by neurons that are close to each other in the
network’s grid. Similarity of two samples can therefore be hinted at by the
distance of neurons representing these samples in the network’s grid. How-
ever, this implication cannot be reversed, because the network can converge
to a state with knots in the lattice or any other pathological state.

Chapter 6

Convolutional network model

The convolutional neural network model, proposed by Yann LeCun [§], is
a hybrid network model designed specifically for visual data processing. It
exhibits some exceptional property in the field of 2D pattern recognition,
which is why I have decided to incorporate it into this thesis.

6.1 Background

Since the publication of the article by Hubel and Wiesel [6] about the struc-
ture of the visual cortex in a cat’s brain, numerous artificial neural network
architectures inspired by this article were proposed. Among the first was
Fukushima’s cognitron architecture [4], which inspired many others. Le-
Cun’s convolutional network model is one of them, embracing the idea of
several types of neurons in the network, each type of neuron having its func-
tion in the pattern processing.

Another network architecture that is inspired by the Hubel’s and Wiesel’s
discoveries is Sven Behnke’s Neural Abstraction Pyramid Architecture [1J.
This model incorporates self-organisation, backward and lateral connection
between neurons, much like the original Fukushima’s cognitron and advanced
neocognitron models. The architecture is very complex and gives promising
results in the area of pattern recognition.

However, when considering all of the mentioned network models, I have
decided to include the convolution networks in my thesis. It involves using

CHAPTER 6. CONVOLUTIONAL NETWORK MODEL 24

interesting techniques of data processing and promising very good perfor-
mance, and moreover, it is very well described in [§], thus easy to imple-
ment in comparison with the neocognitron or Behnke’s Pyradim architecture.
That is why I chose this model for analysis and comparison with other neural
network models.

6.2 Model description

There are several key ideas behind the construction of a convolutional net-
work. First of all, neurons in the network’s layers are organized in a 2D-grid,
much like pixels in the visual data presented to the network. Every neuron is
connected only to a small area of the lower layer instead of the whole layer,
which preserves the locality of the information. These local receptive fields
may or may not overlap, depending on the type of operation the neuron
performs.

Every neuron detects features in its receptive field, the reaction to a feature
depending on the weights of the neuron’s connections. We would like a
feature to be detected in the same way across the whole input of the network.
Therefore, we duplicate the neuron across the whole layer, forming a feature
map. This brings us the second inovation of convolutional networks, which
is called weight sharing. The feature map can be thought of as a grid of
neurons that share one common weight vector. During the training of the
network, changes that would normally be made to weights of the neurons
in a feature map are summed up and applied to the shared weight vector.
Every layer of the resulting network architecture consists of several feature
maps, each feature map detecting a certain local feature at every position of
the underlying layer.

A convolutional network utilizes several types of neurons. There are con-
volutional neurons, which perform a dot product of its weights and values in
its receptive field, add a bias and apply an activation function to the result.
The local dot product performed over the whole input grid is equivalent to
the operation of convolution with the weight vector as its kernel, hence the
name of the network model. The convolutional neuron act as feature detec-
tors. Receptive fields of adjacent convolutional neurons overlap and differ in
position by one pixel, the feature detected by this neuron is therefore looked

CHAPTER 6. CONVOLUTIONAL NETWORK MODEL 25

for on every position of the input grid.

Once the feature is detected at a certain place of the receptive plane,
a layer of sub-sampling neurons performs local averaging to blur the ex-
act position of the feature. While preserving the relative position of the
detected features, this operation blurs their exact location, making the net-
work less sensitive to the exact form of the processed patterns. Usually, the
first few layers of a convolutional network are alternating convolutional and
sub-sampling feature map layers. This composition works as an input prepro-
cessor, where higher layers detect more complex features put together from
simpler features detected at the lower layers. Moreover, this preprocessor is
trained on the training data with the rest of the network.

Convolutional networks also contain layers of neurons equivalent to neu-
rons used in multilayered perceptron networks. These neurons process all of
the outputs of the previous layer. Layers of these neurons are put on top
of convolutional and sub-sampling layers, functioning as a classifier of lower
layer’s outputs.

6.3 LeNet-5

The LeNet-5 network is a concrete example of the convolutional architecture.
Its structure is showed on the Figure 6.3
C3: 1. maps 16@10x10

C1: leature maps S4: 1. maps 16@5x5
INPUT
bl S@28x2

S2:f. maps
B@14x14

Full connection Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 6.1: Structure of the convolutional neural network LeNet-5. The
image taken from the article [§] by Yann LeCun.

The first layer of the network, denoted C1 on the image, consists of six
convolutional feature maps. The receptive fields of convolutional neurons in

CHAPTER 6. CONVOLUTIONAL NETWORK MODEL 26

these maps are 5 pixels high and 5 wide. Since neighboring receptive fields
overlap and size of the input is set to 32 by 32 pixels, each feature map in
the first layer consists of grid of 28 by 28 neurons.

The second layers S2 contains six sub-sampling feature maps, one for each
of the convolutional feature maps in the first layer. The sub-sampling neurons
are connected to 2 by 2 non-overlapping input areas of the underlying feature
map. Therefore, the sub-sampling feature map is half the size of its input
feature map. The input values of each sub-sampling neuron are summed,
multiplied by a trainable coeficient, added to a trainable bias and passed
through a activation function. Since the input areas are non-overlapping,
each of the sub-sampling feature map in the S2 layer has the size 14 by 14
neurons.

The third layer C3 is composed of 16 convolutional feature maps, which
extract 16 different features from the layer S2. These feature maps are con-
nected to subsets of maps from the layer S2, the subsets being of size 2 to
6. For schema of these connections, see Figure [6.2] This makes their recep-
tive fields three-dimensional, and the asymetric connections force the feature
maps to extract different features. The following layer, S4, contains 16 sub-
sampling feature maps, which perform the sub-sampling operation on the
maps from layer C3. Feature maps in the layer C3 have the size 10 by 10
neurons, maps in the layer S4 have therefore the size of 5 by 5 neurons.

01 23 45 6 7 8 8 10111213 1415
0| X XXX XX XX XX
11X X XXX XX XX X
21X XX X X X X X X X
3 X XX XX XX X XX
9 XXX XX XX X X X
5 X X X X X XX X X X

Figure 6.2: Schema of connections of feature maps in the layer C3 to the
maps in the layer S2. The rows represent the C3 maps, column represent S2
maps, X marks a connection. The image taken from the article [§] by Yann
LeCun.

The final convolutional layer C5 contains 120 convolutional feature maps,
each of them connected to all sub-sampling maps in the layer S4. Because

CHAPTER 6. CONVOLUTIONAL NETWORK MODEL 27

the maps in S4 have the same size as the receptive fields of neurons in C5,
each of the 120 feature maps has only one neuron.

The layer F6 contains 84 units, each connected to all 120 neurons in the
layer C5. These units function in the same way as neurons in a multilayered
perceptron network - they count the dot product of their inputs and their
weights, add a bias value, and process the result by the activation function.

Finally, the output layer is composed of RBF (Radial Basis Function)
units. Their weight vectors are set to values taken from images of the char-
acters, and are not allowed to adapt during training. These vectors play
the role of target vectors for layer F6. The used images have the size 7 by
12 pixels, which is the reason for the number of units in the layer F6. The
activation of a RBF unit in the last layer is determined in the following way:

J

Yi = Z(yj - wij)2 (6.1)

j=1

The input is then classified based on which RBF unit is activated the
least, which means that the outputs of neurons in the F6 layer are closest
to its weight vector. The reason LeCun chose this output code instead of
classical 7 1-0of-N” code is that for large number of classes, it is difficult to
keep the output units zero most of the time, activating them only for the
one particular class. Also, using RBF units, which are activated only in a
small area of their input space, makes it easier to discard inputs which do
not belong to any of the target classes.

6.4 Learning algorithm

The standart back-propagation learning algorithm, described in Section [4.3]
is used to train a convolutional network. There are, however, several modifi-
cations to incorporate the weight sharing and the RBF functions with fixed
weights used in the last layer of the network. First of all, the MSE error
function as described by is replaced with the following:

CHAPTER 6. CONVOLUTIONAL NETWORK MODEL 28

where ypr is the activation of the RBF unit representing the correct class
for the input sample 7. LeCun proposes further improvement of this error
function, which also penalizes activation of the incorrect classes, and which
can be used in case the weights of the RBF units are trainable.

The incorporation of the weight sharing technique is very simple. Weight
changes are computed in the standard way for all virtual units in a feature
map, using the equations described in Section [£.3] Then, the changes of
weights which share the same parameter are added to produce the change to
this parameter.

The learning algorithm for the LeNet-5 network can be upgraded with all
of the learning acceleration techniques described in Section However,
the techniques must be adjusted to work with the shared weights.

6.5 Properties of convolutional networks

The utilization of techniques introduced above makes the network exhibit
interesting properties when processing visual patterns. Because of the weight
sharing, when a pattern is translated, the response of the first convolutional
layer will be translated accordingly, but otherwise will stay the same. This,
in combination with sub-sampling, which distorts the exact location of a
detected feature, makes the network resistant to transformation of the input
patterns.

Another remarkable feature of the convolutional networks is their ability to
process data with minimum or no preprocessing. The network can be trained
directly on image samples, and it learns to detect the necessary features of
the presented patterns by itself. A network with fully-connected layers, such
as a multilayered perceptron, applied to a real-life problem with large data
samples, will have to have a tremendous number of connection in its first
layer alone. Because of this, the network will need a very large training
set and many epochs to be trained. To solve this problem, data undergo
preprocessing prior to their presentation to the network. This helps to reduce
the number of values submited to the network. In case of pattern recognition,
the preprocessing usually takes form of feature extraction.

The convolutional networks manage to avoid this problem. By using
weight sharing and local receptive fields they keep down the number of train-

CHAPTER 6. CONVOLUTIONAL NETWORK MODEL 29

able parameters in the network. The first few layers function as a feature
detector, and since they are adapted during the training, there is no need for
implementing a problem-dependent preprocessing stage. The same network
architecture can therefore be used on various problems without a need to
make any major changes.

6.6 Implementation

When implementing the convolutional networks, I have followed closely the
model’s description, with a few minor exceptions. These changes to the pro-
posed model might result in slightly worsened performance of the resulting
network. In several cases I have the possibility to compare the original and
the altered implementations, and it will be interested to compare the advan-
tages and disadvatages of the adjustements.

I have changed the operation performed by the sub-sampling neurons.
The original function calculates the dot product of the neuron’s inputs and
its weights, adds a trainable bias, multiplies by a coeficient and then applies
the activation function to the result. This is done to achieve averaging the
values in the receptive field of the neuron. Instead of such a complicated
operation, I implemented the sub-sampling in the form of average of the
input values, without any trainable parameters or an activation function.
The inputs are simply summed and the result is divided by the number of
the inputs, producing the output of the neuron. Although these neurons
do not adapt during the learning, they still propagate the §; values defined
in to lower layers. This change speeded up the learning considerably,
although as a result of lowering the number of adaptable parameters in the
network, it can lead to slightly worse generalization properties.

A have also exchanged the last layer of the LeNet-5 network, composed
of RBF neurons, for an fully connected layer containing 10 neurons. This
allowed me to use the standard ”1-of-N” output coding and the MSE error
function defined in [£.5] The reason for this change was to simplify the net-
work’s architecture and thus speed up the processing of the data. Also, I
found that since I am testing the network on tasks with only a small number
of classes (e.g. recognizing digits), I am not endangered by the problems
that large number of classes may cause with sigmoid neurons. I will compare

CHAPTER 6. CONVOLUTIONAL NETWORK MODEL

both versions of the output layer.

30

Chapter 7

RBF hybrid network model

When I was researching the convolutional networks, I was intrigued with their
ability to adapt very well to raw data without any need for preprocessing. For
some pattern recognition problems, e.g. breaking the CAPTCHA protection,
it is very difficult to design a good preprocessing by hand. It is therefore very
helpful if a part of the used neural network model is trained to function as
a preprocessing stage. Inspired by the convolutional network model, I tried
to experiment with various ways to design a neural network model capable
of having inbuilt feature detection. The RBF hybrid neural network is the
result of these experiments.

7.1 Model description

The RBF hybrid model is very closely based on the convolutional neural
network model introduced earlier. It also uses weight sharing and alternating
layers for feature detection and sub-sampling. However, the operation used
for feature extraction is different from the one used in the convolutional
networks. This difference is the cause of all the divergence between the RBF
hybrid model and convolutional networks.

The operation used for feature detection in the RBF hybrid model is in-
spired by the working of Radial Basis Function (RBF) neural networks, as
described in Chapter 5 of Bishop [2]. This network model consists of two
layers, the first layer occupied by RBF neurons, the second layer consists

CHAPTER 7. RBF HYBRID NETWORK MODEL 32

of neurons which perform weighted sums of the first layer’s outputs. The
neurons in the first layer use a radial basis function as their activation func-
tion. Such a function uses only the distance between the input vector and
the function’s center without regard of the vector’s exact value. The closer
the vector is to the function’s center, the greater is the function’s output.
Usually, the Euclidian distance is used for the norm and the Gaussian bell
function for the basis function. The exact form of the used Gaussian function
is described by the following equation:

M) = eap(—17 1) (7.)
= eaxp(— Y —w; __ch))
— eap(=0)

where ¥ is the input vector, ¢is the center of the Gaussian function (or the
neuron’s weight vector), and & is the parameter controlling the exact shape
of the gaussian "hat”. The neuron’s potential is denoted by (.

In the RBF hybrid network model, the RBF function replaces the convo-
lution operation in the feature-detecting layers. Just like in the convolutional
networks, the neurons in the RBF hybrid network form feature maps by du-
plicating one neuron with a small receptive field over the whole input plane.
Such a neuron, using a radial basis function, measures the distance between
the pattern in its receptive and its weight vector, and reacts stronger if its
input is close to its weights. This way, the neuron functions as a feature
detector, responding only to patterns similar to its archetype, or the pattern
stored in its weight vector.

The assymetric connection scheme, used in the third layer of the LeNet-5
network and described by the Figure[6.2] is not used in the RBF hybrid net-
works. Introducing this connection scheme was done to break the network’s
symetry and force the feature maps in the third layer to recognize diverse
features. This is not an issue in the RBF hybrid model, as the RBF layers
are trained using the Kohonen’s networks, as described in more detail in
the following section. Use of the Kohonen’s networks ensures that different
features will be detected at the feature maps in the RBF layers of this model.

CHAPTER 7. RBF HYBRID NETWORK MODEL 33

In other respects, the RBF hybrid networks have the same architecture
and process input data in the same way as the convolutional networks. The
first few layers of the network are alternating RBF and sub-sampling feature
maps, followed by full-connected layers of perceptron units.

7.2 Learning algorithm

The function evaluated by a RBF hybrid network is differentiable, which
allows the standard back-propagation algorithm to be used to train the net-
work. The application of the Gaussian function presents a disadvantage here,
since it can make the learning time-consuming due to its specific properties.
The function is very sensitive to alterations of its parameters, and big changes
in behavior of the network’s lower layers slow the learning down considerably.

However, here lies one of the advantages of using the RBF neurons as
feature detectors. Tthe weight vectors of these neurons are in direct relation
to the data in the input space, in contrast to the weight vectors of convolu-
tional neurons. Moreover, for extracting the most information from the data
presented to them, the weight vectors of the RBF neurons should be placed
at the points in the input space which best describe the sample data distri-
bution. Ideally, the input samples would form clusters in the input space
and the weight vectors of the RBF neurons would be placed in centers of
these clusters. With this intent, a clustering algorithm can be used to find
the weights for the RBF neurons.

Because of the advantages of Kohonen’s network, 1 use them to find the
values for the weight vectors of RBF neurons. Kohonen’s networks are not
aimed directly at finding the ideal complete clustering the data like the k-
means algorithm frequently used for this purpose. They rather try to chart
the data distribution, and they do it very quickly with satisfactory results.
Their speed of convergence is in this case the key advantage over various
clustering methods. They can be used to find the weights for the RBF neu-
rons in the RBF hybrid networks in time which is insignificant compared
to the rest of the network’s training. Thus trained RBF neurons with local
receptive fields are then able to react to various features of input data. Fur-
ther improvement of this feature detection can be expected after applying
new variants of self-organising networks, example of which is described in

CHAPTER 7. RBF HYBRID NETWORK MODEL 34

Kohonen’s article [7].

After determining suitable values of weights for the RBF neurons, we have
two options. The values can be considered to be only heuristic initialization
for further training by conventional algorithm, in this case by the back-
propagation algorithm. We can also declare these values as final and keep
them from being trained further with the rest of the network. This narrows
down the parameters to be trained to the weights in the full-connected layers
above the last RBF layer, speeding up the learning considerably. Initial
experiments showed the same resulting generalization properties in both of
the mentioned cases, thus making the faster method of fixing the RBF weights
more favourable. As a part of this thesis, I will make further measurements
to find out if this hypothesis holds true.

Because I implemented training of the RBF neurons with the back-propagation
algorithm as well as with the Kohonen’s networks, I needed to alter the back-
propagation algorithm to work with the RBF neurons. The RBF neurons use
different activation function and calculate their potential in a different way
than the perceptron neurons. Namely, the Gaussian function and Euclidian
distance, as described in Figure (7.1}, are used. The partial derivatives used in
the Figures |4.7|through [4.9|have to be altered to work with the RBF neurons.
Using the chain rule and the definition [7.1] I can change the equation [4.10
in the following way:

Awj, = a@yj 3, D (7.2)
I
dy; O¢
- 5wy - 2. 95
azzl(’UJ]) an awjk
I
oC;
= —« (6; - wiz) - (—1) J
; J J awjk
= —a-f 6
(9wjk
:_a.(;j.(_l).w
O

where y; is the output of the j-th RBF neuron in the layer, produced by the
I" function defined by [7.1], yx is the output of k-th neuron in the lower layer,

CHAPTER 7. RBF HYBRID NETWORK MODEL 35

and ¢; is the error term of i-th neuron in the higher layer. The parameters
o can be also adapted by the back-propagation algorithm, but I did not
introduce this functionality to the networks I tested.

The change of the activation function also influences the way the error
terms are propagated to the lower layers. The error terms are no longer
multiplied simply by the weights of the neuron when propagated, but a more
complicated equation has to be used:

J

O = 2(2 05 (Y — wyi))

J=1

Yk
LR 7.3

9 (7.3)
which results from integrating the Gauss function into the back-propagation
equations.

7.3 Winner takes all

The convolutional layers in a convolutional network describe the measure of
each detected feature at each position by a value between 0 and 1. When I
was experimenting with RBF hybrid networks and had the chance to try out
various alterations of the networs’ behaviour, I decided to test a variation
of this feature detecting method. Inspired by Kohonen’s network, I imple-
mented winner-takes-all(WTA) functionality into the RBF layers. Roughly
described, features detected at one location compete between each other. The
feature with the strongest support is marked by value 1 in the corresponding
feature map at the location in question. The other features’ presence is eval-
uated to 0. Therefore, at each location of the input plane, only one feature
is detected, instead of every feature being detected to a certain degree.

This functionality is optional for the RBF hybrid networks. Preliminary
experiments hint at the possibility that using the WTA technique speeds up
the network’s convergence during training. But there are also drawbacks of
using the technique. If I was to create a RBF network with the same layer
composition as the LeNet-5 network described earlier, then using the WTA
would cause only one neuron in the fifth layer to fire. This is of course too
little information for the higher full-connected layers to work with. I have
therefore changed the type of neurons in the fifth layer to full-connected,

CHAPTER 7. RBF HYBRID NETWORK MODEL 36

and added one more full-connected layer before the last to make up for the
change in functionality. I use this architecture for all tests of RBF hybrid net-
works, whether they use the WTA technique or not, to ensure that only the
configuration changes are responsible for the difference in the tests’ results.

Another effect caused by using the WTA is the necessity to use the Koho-
nen’s networks to train the weights of the RBF neurons. This is caused by
the network’s function no longer being differentiable, which prevents us from
using the back-propagation algorithm to train these weights. However, the
layers above the last RBF layer are still trainable by the back-propagation
algorithm.

7.4 Properties of RBF hybrid networks

The RBF hybrid networks share many properties with the convolutional
networks, and hopefully, this will lead to adequately good performance of
these networks. Because of the weight sharing and bluring the position of
detected features with sub-sampling, the RBF hybrid networks should have
the same tolerance to transformation as the convolutional networks. Because
of the feature-detecting layers working as a preprocessing stage for the higher
full-connected layers, the networks are capable of working with image data
with minimal preprocessing.

The main advantage of the RBF hybrid model over the convolutional
model is the faster training when the Kohonens’ networks are used to train
the weights of the RBF layers. On the other hand, the RBF hybrid model
might have worse generalization ability caused by the different operation
used for feature detection. This, as well as other properties of the proposed
network model, will be shown by the results of the performed tests.

Chapter 8

Implementation

As a part of my thesis, I implemented a library containing the code necessary
to build neural networks with arbitrary architecture and perform various
pattern recognition tests on these networks. My language of choise was Java,
therefore the resulting library has the form of a JAR file. It can be found
on the CD enclosed with this thesis, along with source code and scripts for
running sample tests on the network models described in earlier chapters.
The library is called NNL (short for Neural Network Library).

8.1 Library description

The library is divided into three packages. The package nnl.classifiers con-
tains classes implementing the tested neural network models, as well as some
experimentary models not described in this thesis. The key element of this
package is the class hierarchy starting with the class ConvolutionNetwork and
ending with the class ConvolutionNetworkFinal. The first class implements
the basic functionality for building a neural network composed of layers of
feature maps. Each of the layers in the network can be of a different type,
the available layer types are Convolutional, Subsampling, LinearSubsampling,
RBF and FullConnected. These layer types allow the user to compose all of
the tested models of neural networks, as well as any other model which re-
spects the requirements of the various layer types (i.e. the Convolutional
layer can be put only above a layer with large enough feature maps to fit

CHAPTER 8. IMPLEMENTATION 38

the receptive field of convolutional neurons). Other classes in the hierarchy,
i.e. ConvolutionNetWithDeltaBarDelta and others, add various functionality
to the networks, for example learning with the delta-bar-delta technique or
transformations of the presented samples. The last class, ConvolutionNet-
workFinal, works as a wrapper for this class hierarchy, providing access to all
of the necessary functionality. This package also contains the class Logger,
which facilitates the training procedure and records all the important values
measured during the training.

The second package, nnl.datasources, provides classes for standardized
work with visual samples for recognition tasks. These samples can be loaded
from various formats. Currently implemented is the IDX format, used by the
MNIST database, and loading the datasources from a directory with BMP
image files and a file containing the images’ labels.

The third package, nnl.tasks, contains applications for performing test
of the neural network models and various other supporting programs. The
most important are classes ScriptedTrainingTask and Scripted Transforma-
tionTask, which allow the user to perform the two types of tests with pa-
rameters loaded from a script file. Such a script file, described in detail in
the Appendix A, contains all the necessary parameters for the given test. In
case of the training test, the parameters include the data source specification
for the training and testing sets, network’s architecture specification, param-
eters controlling the training process and settings of the learning algorithm
variations. The transformation test script contains a path to the file with
saved trained neural network and ranges of transformation parameters to be
applied to the presented samples.

8.2 Encountered problems

Implementing a general neural network model able to support architectures
with varying layer types proved to be a chalenge, especially when the effi-
ciency and running speed of the resulting program was important. I avoided
a fully objective implementation, because my experience has proven that
the overhead of frequent method calls can slow the program down consider-
ably. For that reason, I tried to keep the code as compact and procedural as
possible.

CHAPTER 8. IMPLEMENTATION 39

When the code complexity reached a certain level, I encountered problems
with sudden drops in the speed of the program. When new code was added,
the program slowed down with factor of up to five, even when the new code
was not executed at all. It seemed that the compiler was having problems
with optimizing the code. The IDE I was using at the time had its own
implementation of Java compiler, and I was not aware of this fact prior
to these troubles. After switching to an IDE which uses the original Java
compiler produced by Sun Microsystems, the problem seemed to be solved.

After adding another piece of rather complex code (it was the training
method using the delta-bar-delta technique), the program slowed down again,
even when the code was not executed. This time, the problem was solved
by splitting the main training method learn() into four separate methods,
containing the four separated stages of a training step. My hypothesis about
the cause of this problem is that the original method was too large to be held
in the CPU’s cache memory at once, and swapping to slower storage ensued,
bringing the program’s speed down. The lesson taken from these obstacles is
therefore the following: while pure objective design can cause a considerable
overhead, avoiding this overhead at all costs will result in troubles as well.

Graphical interface The library does not contain any graphical interface
for assembling a neural network nor for setting up a test. Both of these
features are planned for future development of the library, but were not
necessary for the purposes of this thesis and were left out. The only graphical
interface provided by the library is a tool for viewing the outputs of the
network’s neurons during training.

The Network Viewer is demonstrated on Figure 8.1 It can be opened
during the training by setting the display Viewer option in the training script
to true (for detailed documentation of the training scripts, see Appendix A).
This viewer was implemented purely for practical purposes. I found it is
a great advantage to review the network’s behavior during its training. It
allows the user to diagnose problems in the network architecture or imple-
mentation that are not revealed by other sources of information.

In the window of Network Viewer, you can see the sample presented to
the network, followed by layers of feature maps organised into columns and
ordered from left to right. The displayed activity of neurons in the feature
maps is encoded in gray scale, value 1 is displayed as black, 0 as white. In the
last layer, you can see the correct classification of the sample as a character

CHAPTER 8. IMPLEMENTATION 40

9 in the standard 1-of-N encoding. Additional information about any feature
map can be viewed in the text area in the lower part of the window after
clicking on the map. Aside from the feature map’s type, I planned to display
the map’s weights. I refrained from the idea after trying it out and finding
the weight vector’s extract too chaotic to give any usable information by
itself.

CHAPTER 8. IMPLEMENTATION 41

BAnetwork viewer =10 |

F]’J

¢
258
nﬂ
nﬂ

[»]

Feature map: layer 0, index 3
Map type: COMYOLUTIONAL

-

Figure 8.1: The component for viewing the outputs of the network’s neurons
during its learning. Only a very small network is displayed to make the image
fit onto the page. The input sample is on the left, the layers of feature maps
are organized into columns and ordered from left to right. The output layer
is displayed as the 10 squares in the last column.

Chapter 9

Generalization and training
speed

One of the first things to consider when selecting a neural network model
for a pattern recognition task is the quality of generalization this model is
capable of. Because the size of the validation set is usually very small in
comparison with all possible inputs the network may encounter, we would
like the network trained on the validation set to react similar samples in
the best possible way. The generalization property encompasses reacting to
samples with similar features in the same way, regardless of the exact form of
the samples. In most of the pattern recognition tasks, and especially in the
area of visual pattern recognition, we do not care about the exact values of the
data samples. We rather aim to classify the samples based on their general
properties, on the features they exhibit and their relative organization. A
neural network for pattern recognition should learn to detect these features
and to differentiate the samples based on these features.

Because of the importance of this property of neural network models, I
want to compare the presented models with respect to how well they gener-
alize the information they learn. The standard way to measure the general-
ization is to find the network’s error rate on a set of samples the network has
not been trained on. The need for this validation set puts an additional de-
mand on the number of labeled data samples, but luckily the set can be much
smaller than the size of the training set, as long as it consists of representative
samples.

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 43
9.1 Over-fitting and early stopping

Another interesting quality the network models vary in is the speed with
which they can be trained to a particular problem. This is usually measured
in epochs, where one epoch represents one presentation of the whole training
set to the network. There are many factors which influence the number of
epochs the network needs to converge. Among the most important ones
is the number of adaptable parameters in the network and the complexity
of the problem. But there is also the topology of the network, the initial
values of the adaptable parameters, used activation function, the values of
the constants that directly influence the learning process, and many more.
Some network models converge at a faster rate than others, and if they
offer the same resulting performance, then the faster converging model will
certainly be preffered.

One complication of finding out the speed of convergence of a network is
determining the appropriate stopping condition. The training can stop when
all of the samples from the training set have been classified correctly by
the network, or when the error rate accumulated over the training set in one
epoch reaches a low enough value. These conditions are widely used, however,
in case of more complex problems they can have undesirable effects. One of
the negative effects is called over-fitting, which occurs when the network is
forced to reach extremely low values of the error rate. The generalization of
the network then gets worse, because the network is trying to learn the exact
form of the training samples. This causes the network to behave unexpectedly
when presented with samples even a little different from the ones in the
training set.

A much better stopping condition is based on watching the quality of
the network’s generalization during the training. As the network’s error
rate on the training set converges to zero, the error rate on a validation
set decreases at first, then stops at a cerain value and fluctuates around it.
The validation error rate functions as a rough estimate of how well does the
network generalize. If the training set error rate gets sufficiently low, the
error rate on the validation set starts to increase, signaling that over-fitting
has occured. At that time, it is vital to stop the training. The technique
using this stopping condition is called early stopping. This technique is very
useful especially when the training set is very small in comparison with the
number of parameters of the network, in which case the danger of over-fitting

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 44

is very high.

In my opinion, one of the most effective and perhaps the most simple way
to ensure the quality of the trained network is to watch the error rate of the
network when applied to the validation set of samples. Then, when the error
rate has reached a new minimum, the network is saved. This approach helps
is a simple solution to avoid the over-fitting problem, and does not influence
the training time in a significant way. I have used this technique to get the
best possible results out of this experiment for later comparison of invariance
to transformations.

9.2 Test proposal

As a part of this thesis, I compare the earlier defined network models with
regard to the networks’ qualities described above. This test is aimed at deter-
mining which neural network model will exhibit better training performance
with a pattern recognition task. The key values to be compared is the gen-
eralization error of a trained network and the number of epochs required for
the network to be trained. Beside these values, I will also watch the total
time required for the training to finish.

I use a handwritten digit recognition as a exemplary pattern recogni-
tion problem. Data samples used for this task are taken from the MNIST
database, provided on the Internet by Yann LeCun. Several samples from
this database are shown in the Figure |9.1]

The test will consist of several training sessions with fixed network model
and parameter values, the results of these sessions will then be averaged to
produce the final result. The parameter values and network settings will be
chosen to with respect to the following point of focus:

e Considering networks of various models and their configuration con-
taining approximatelly the same number of adjustable parameters, how
well do they generalize the learned information?

e How do networks of different models and their configuration, again
with approximatelly the same number of parameters, compare as to
the speed of convergence during the training?

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 45

W
-

O kW ¥ LU

~ RN 5w -\

BANNID~—=
S ST LN Seew-0O0I N
SLQOPANQINN

6N WY &~~~ &N
S QO NN oW
AN & —J o & & o
SR Uxmo NO XS
NOSI QOO L) —

Ay
N
O

Figure 9.1: Size-normalized samples from character database MNIST.

e What is the total time required for the training to finish? While some
models take less epochs to converge, the training may take longer be-
cause of more time-demanding calculations carried out by the network.

For the training and validation sets, I have used subsets of the MNIST
database containing 1000 and 500 samples, respectively. These sets contain
representants of the ten target classes in roughly balanced amounts. The
samples are 28 by 28 pixels in size, with the character aligned in the center
of the sample. The samples had to be padded by 2 pixels on each size before
their presentation to the hybrid networks, to conform to the requirements of
the original LeNet-5 network. The compositions of convolutional and sub-
sampling layers in this network requires the samples to be at least 32 by 32
pixels in size, otherwise the fifth layer’s input feature maps would be smaller
than its receptive field.

The following network configurations were tested:

e A multi-layered perceptron model, with 4 layers, containing 120, 84, 30
and 10 neurons, respectively. The numbers of neurons in each layers
were chosen to be the same as in the higher fully connected layers of

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 46

tested convolutional and RBF hybrid networks. The aim of this choice
was to find out if the lower layers of the hybrid networks present any
advantage over this simple classificator.

e A convolutional network similar to the LeNet-5 network, with a few
minor adjustments. The sub-sampling layers were altered to perform
simple averaging of values in their receptive fields, without any train-
able parameters. The last layer of the network, constituted by RBF
neurons with target patterns in the original network, was replaced by
10 perceptrons for easier comparison with the other models.

e A convolutional network similar to the last one, with the exception of
the fifth layer, where perceptron neurons were used instead of convolu-
tional units. Also, one more fully-connected layer was added before the
last one, with 30 perceptron neurons. These adjustments were done to
improve the comparison between the tested models.

e A RBF hybrid network with the same topology as the tested convo-
lutional network described above, with the exception of using RBF
neurons instead of convolutional neurons in its first and third layer.
The fifth layer is composed of perceptron units fully connected to the
neurons in the fourth layer, because this network model uses the winner-
takes-all (WTA) functionality. Using RBF neurons in this layer would
result in only one neuron in this layer to be activated, which would
greatly limit the capabilities of the network. The RBF layers of this
network are trained with help of the Kohonen networks, and then their
weights are frozen when the higher layers are trained.

e A RBF hybrid network similar to the previous one, without the WTA
functionality. Again, the Kohonen networks are used to find suitable
weights for the RBF layers, and the higher layers are then trained using
the standard back-propagation algorithm.

e A RBF hybrid network with topology similar to the previous two. This
time, the whole network is trained with the standard back-propagation
algorithm, including the RBF layers. Comparing the results of the
three variations of the RBF hybrid model will show the advantages
and weaknesses of each configuration.

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 47

The networks were trained by the standard back-propagation algorithm,
if not stated otherwise in the above configuration description. Learning with
momentum with coeficient 0.5 was used in all cases, to help avoid local min-
ima of the error function. Each of the network was trained five times, the
error rate values were then averaged over the five runs to produce the final
results presented below.

9.3 Results

The results of testing the speed of adaptation and the level of generaliza-
tion of the introduced networks brings only minor surprises. Since the main
component of each of the networks is the multi-layered perceptron classifier
and the back-propagation algorithm was used, all of the networks adapted
to some extent to the presented training set. The initial speed of adaptation
was high and slowed down when the network converged to a minimum of the
error function. The use of the learning momentum helped the networks to
escape from some of the local minima, which can be seen from the jumps of
the error rate on the initial slope.

More interesting are the error rates measured on the validation set. These
error rates follow the decrease of the training set error rate and converge to
a certain higher value. This is very well shown on the Figure [9.2] where the
validation error rate converges to a value of approximatelly 0.01. This value is
a rough estimate of the network’s ability to generalize, although it is not very
representative of the overall success rate, as will be demonstrated in the tests
described in the next chapter. This is caused by the fact that the value of
error function, averaged over the set of samples and over the output neurons
of the network, is only weakly related to the actual number of correctly
classified samples. In spite of the lower error rate on the validation set,
the number of samples correctly classified by the multi-layered perceptron is
actually higher than the number of samples correctly classified by the LeNet
convolutional network. The error rate of the LeNet network on the validation
set converged to the value of 0.016, as can be seen on the Figure

When examining the individual results, we can make several assumptions
about the properties of the networks when applied to the pattern recognition
tasks. The Figure demonstrates the importance of using a good stopping

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 48

condition. The multi-layered perceptron network converged fairly well at
first, then after about 25 epochs the over-fitting phenomenon occured and the
error rates increased quickly. The early stopping technique, if used, would
stop the learning at this moment. I was saving the state of the network
frequently, so I was able to retrieve undefiled state of the network usable in
the next experiment.

The tested convolutional networks passed the test very well. The change
of type of the neurons of the fifth layer from convolutional to perceptrons
did not cause much of a difference in the results, the next test will show if
the networks differ in their invariance to transformations.

Much more interesting situation arose among the RBF hybrid networks.
The network with RBF weights trained with Kohonen networks and then
refrained from further adaptation, without the WTA functionality, behaved
very wildly during the adaptation. The resulting error rates, however, were
not as bad as I would expect after such a chaotic adaptation process. I
believe the sudden jumps of the error rate values were caused by stepping
out of local minima of the error function.

The other two configurations of the RBF hybrid model behave well during
the adaptation and finished with good results. The Figure is very similar
to the Figure[9.2] this is caused by basically the same classifier being adapted.
The difference is caused by the presence of the preprocessing stage in the form
of RBF and sub-sampling layers in the case of the RBF network with WTA
functionality. The next test of invariance to transformations will show if this
preprocessing stage, created automatically from the training data, represents
any advantage in the pattern recognition process.

The presented graphs of error rate convergence show only the number of
epochs necessary for the training of the networks. For calculating the actual
duration of training, the time taken by one epoch is needed. The epoch
durations were measured on one computer used to perform all of the tests,
producing the following results:

e multi-layered perceptron: 6 seconds per epoch
e convolutional network: 20 seconds per epoch for both configurations

e RBF hybrid network trained with back-propagation: 32 seconds per
epoch

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 49

e RBF hybrid network with frozen RBF weights: 22.5 seconds per epoch

e RBF hybrid network with WTA: 23.5 seconds per epoch

The training of the RBF weights in case of the RBF network with the WTA
functionality took about 10 seconds. The RBF layers can then be used as
the preprocessing stage for creating a preprocessed training set. The rest of
the network is then reduced to training a multi-layered perceptron, which
would take even shorter time than training of the stand-alone multi-layered
perceptron network due to the lower dimensionality of input.

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 50

Training error of rultilayered perception network

[Sen) g

IRLINS

0.02 -

004

002 R

- eITor b traindng set [size: 1000]
- SITAT ot testing set [size: S00]

e e i S B — T L +— epochs

Figure 9.2: Error rates of the multi-layered network on the training and the
validation sets during the training.

Traiming error of corvolutional network

EITOr

010

0.0% f

0n4-

000
0

006 -\

- EITOT ot traindhg set [size: 1000]
- SITOT ot testing set [size: 500]

—1—1 gpochs
a’F

Figure 9.3: Error rates of the convolutional LeNet-like network on the train-
ing and the validation sets during the training.

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 51

Training error of the altered corsolutional network

[Sen) g

IRLINS

0oz

004

002k

- eITor b traindng set [size: 1000]
- SITAT ot testing set [size: S00]

—— epochs

Figure 9.4: Error rates of the convolutional network with the altered archi-
tecture on the training and the validation sets during the training.

Training error of BBF hybnd network with WT& functionality

EITOr

010

ooz

000
0

006 [

0ok
\\

- EITOT ot traindhg set [size: 1000]
- SITOT ot testing set [size: 500]

| epochs
a’F

Figure 9.5: Error rates of the RBF hybrid network using the WTA function-
ality on the training and the validation sets during the training.

CHAPTER 9. GENERALIZATION AND TRAINING SPEED 52

error
010 -

0.02 -

004

002k

Training exror of BBF hybrid network with frozen BBF weights

- eITor b traindng set [size: 1000]
- SITAT ot testing set [size: S00]

10 20 a0 40 a0

Figure 9.6: Error rates of the RBF hybrid network with frozen RBF weights
on the training and the validation sets during the training.

BITOY
010

0oz

\\
0.06 - -%

0n4-

Traimng error of BBF hybnd network completelsy with back—propagation

- EITOT ot traindhg set [size: 1000]
- SITOT ot testing set [size: 500]

000
0

Figure 9.7: Error rates of the RBF hybrid network on the training and the
validation sets during the training using only the back-propagation algorithm.

Chapter 10

Invariance to transformations

One of the most important properties of a classifier for a pattern recognition
task is its invariance to transformations of input. The input patterns to be
classified are usually subject to many influences which are hard to predict
or to handle in the preprocessing stage. The classifier should be insensitive
to these influences, which can alter the exact form of the presented pattern
without changing the class it belongs to.

When considering a visual pattern recognition task, the usual set of trans-
formations include translation, rotation and scaling of the classified samples.
In addition, the samples are often distorted by noise. A good classifier for
such a task should therefore classify a sample without regard to these influ-
ences, as long as their effect on the sample is inside some reasonable bound-
aries.

The preprocessing stage of the classification is aimed at minimizing the
effect of transformations on the input presented to the classifier itself. In some
cases, this can be done very effectively, and complete removal of the effects
of undesirable transformations can be ensured. In other cases, removing the
effects of transformations and turning the sample to a standardized form is
next to impossible. It is then up to the classifier to generalize the learned
information and classify the sample correctly despite its differences from the
learned patterns.

I expect this test to reveal the real value of the introduced models of neu-
ral networks for the task of visual pattern recognition. When it is possible

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 54

to design a good preprocessing stage, even a simple classifier can be used
with acceptable results. On the other hand, when designing a quality pre-
processing constitutes a very difficult problem, for example when redeeming
the sample’s transformation is not possible, then using a sofisticated classi-
fier is necessary. I expect the hybrid networks described in earlier chapters
to prove their quality in such a case by having high success rates in this
test. This should be shown by the comparison with multilayer perceptron,
which is expected to have very low success rates when presented with the
transformed samples.

10.1 Test proposal

Testing the neural network models for their invariance to transformations
consists of measuring their success rate when presented with appropriatelly
deformed samples. I took representatives of all introduced network models,
trained as a part of the previous test. Then I presented to them a set of
1000 samples from the MNIST database, processed by one of the tested
transformations, and measured the success rate of the network. The following
sample alterations were applied, one at a time:

e Translation by up to 3 pixels along both X and Y axes
e Rotation ranging from -20 to 20 degrees

e Scaling with factor ranging from 0.7 to 1.3

e Additive Gaussian noise with amplitude of up to 0.4

e Salt-and-pepper noise with probability of up to 0.4

The results of these tests are displayed by graphs in the following section.
The translation tests are displayed in the form of a 2D colored matrix, where
position in the matrix specifies the applied vector of transformation. The
zero transformation is in the center of the grid. Failure rate for each tested
translation vector is expressed by a color on the gray scale, darker color
indicates a lower failure rate.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 55

The results of the other experiments are demonstrated by conventional
function graphs. The zero transformation is at the point 0.0 in graphs de-
scribing the rotation and noise experiments. In the scaling experiment, the
zero transformation is at the point 1.0.

The transformation tests differ from the training tests in the fact that
while the results presented in the training tests are the values of the error
function, the results of the transformation tests are the numbers of misclas-
sified samples from the tested set, divided by the number of samples in the
set. For that reason, these values are much more representative of the quality
of the tested classifiers. To distinguish between the two ways of measuring
the network’s success, I use the terms "error rate” for the error function
measurements and "failure rate” for the ratios of misclassified samples.

10.2 Results

The multi-layered perceptron is used as a measurement standard in these
tests, showing how a very simple classifier performs at the pattern recog-
nition task. The tested hybrid networks have fulfilled the expectations to
withstand the transformations better than the multi-layered perceptron. The
comparison of the various configurations of the hybrid networks are far more
interesting.

The convolutional networks performed very well in all the transformation
tests. They managed to keep low failure rates even in spite of the high rates
of rotation, scaling or noise. The translation invariance is profitable, but
this transformation can be easily remedied either by centering the inspected
character, or by applying the network to all possible positions in the inspected
image and then selecting the most supported result. Such a technique is
described by LeCun in his article [§].

The configurations of the RBF hybrid model passed the transformation
tests quite well, too. Their failure rates are comparable to the results of the
convolutional networks. A big surprise was the invariance to the Gaussian
noise of the network using the WTA functionality in its RBF layers, as shown
by the Figure[I0.19] The network was completely insensitive even to the noise
of amplitude of 0.3, with which other networks showed rising failure rates.
This is clearly caused by the use of the WTA functionality, which hides the

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 56

random alterations of the input’s pixels by marking the same neurons as the
winning ones in the output of the RBF layers. The salt-and-pepper noise
causes the failure rate of the network to rise in the same way as seen with
the other tested networks, the WTA functionality is therefore an advantage
only in case the input image contains noise which is similar to the Gaussian
noise.

The lowest reached failure rate was measured on the original LeNet net-
work, which misclassified only 73 out of 1000 samples. This result was mea-
sured when no transformations were modifying the samples. The second best
success rate was measured on the RBF hybrid network fully trained by the
back-propagation algorithm - only 96 misclassified samples. The other net-
works had the failure rate on samples without any applied transformation of
approximately 11 %.

All of these failure rates can be improved by using larger set of samples
for training. Tests performed with larger training sets showed improvement
in the number of correctly classified samples for all of the tested models, but
such tests were too time-demanding to be performed thoroughly. Further-
more, enlarging the training set does not necessarily improve the network’s
invariance to transformations. It is also possible to train the network with
randomly transformed samples, where the basic training set is used and each
sample is transformed with small random coefficients right before it is intro-
duced to the network. This has a significant effect on the number of epoch
required for the network to converge to an acceptable values of the error
function, as each sample presented to the network is in fact unique. The
convergence is slowed down by factor of two or more, however, the trained
network should be less sensitive to transformations.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS o7

Figure 10.1: Failure rate of the multi-layered perceptron network on a set of
translated samples. Darker color means lower failure rate. The value in the
center is 0.116 (116 misclassified samples out of 1000).

05
04 r
03F

0.2

L L L L decress
=20 =10 0 10 20 =

Figure 10.2: Failure rate of the multi-layered perceptron network on a set of
rotated samples.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 58

ngr

06l ™

04t , —

nzr

L TR 1 PR PR Y PR
o7 0g 0.9 10 11 12

Figure 10.3: Failure rate of the multi-layered perceptron network on a set of
scaled samples.

0gr

as

04

02

L L L L fartor
o 0l 02 0z 04

Figure 10.4: Failure rate of the multi-layered perceptron network on a set of
samples with added gaussian noise of various amplitude.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 99

ng

LE

LENJ

02

L L L L fator
on ol 0z 0z 04

Figure 10.5: Failure rate of the multi-layered perceptron network on a set of
samples with salt-and-pepper noise of various probability.

Figure 10.6: Failure rate of the LeNet network on a set of translated samples.
Darker color means lower failure rate. The value in the center is 0.101 (101
misclassified samples out of 1000).

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 60

0.5

L L L L desmess
-0 -1a 1} 10 20 &

Figure 10.7: Failure rate of the LeNet network on a set of rotated samples.

LIk}

06
"

04 A

naf ~ _—
- -

L T 1 C I Rt P "
o7 08 0.9 10 11 12

Figure 10.8: Failure rate of the LeNet network on a set of scaled samples.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 61

SITOT
ng
us
04| P
~
-
-
-
"_-’ g
02k "
.-/---
.-/--
L L o L futar
0o 0.1 0z 03 04

Figure 10.9: Failure rate of the LeNet network on a set of samples with added
gaussian noise of various amplitude.

08

06

04l -

n2r

L L L L L L L L L L L L farter
0o 0.1 0.2 03 0.4

Figure 10.10: Failure rate of the LeNet network on a set of samples with
salt-and-pepper noise of various probability.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 62

Figure 10.11: Failure rate of the altered convolutional network on a set of
translated samples. Darker color means lower failure rate. The value in the
center is 0.073 (73 misclassified samples out of 1000).

[

L L L L decress
=20 =10 0 10 20 =

Figure 10.12: Failure rate of the altered convolutional network on a set of
rotated samples.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 63

ngr

ner

\\
04 - N,

nzr

L TR 1 PR PR Y PR
o7 0g 0.9 10 11 12

Figure 10.13: Failure rate of the altered convolutional network on a set of
scaled samples.

08
06+

04

02l /

L L L L L L L L L L L L
0o 0.1 0.2 03 0.4

Figure 10.14: Failure rate of the altered convolutional network on a set of
samples with added gaussian noise of various amplitude.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 64

ng

ner

04k

nzr

L L L L L L L L L L L L factor
o 0.1 0.2 03 04

Figure 10.15: Failure rate of the altered convolutional network on a set of
samples with salt-and-pepper noise of various probability.

Figure 10.16: Failure rate of the RBF hybrid network with WTA on a set of
translated samples. Darker color means lower failure rate. The value in the
center is 0.117 (117 misclassified samples out of 1000).

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 65

0.5~

L L L L derress
-0 -1a 1} 10 20 e

Figure 10.17: Failure rate of the RBF hybrid network with WTA on a set of
rotated samples.

0gr

.
06

04

02F T

L T 1 C I Rt P "
o7 n.g 0.9 1.0 11 12

Figure 10.18: Failure rate of the RBF hybrid network with WTA on a set of
scaled samples.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 66

ngr

ner

04 -

02t e

L L L L L L L L L L L L factor
o 0.1 0.2 03 04

Figure 10.19: Failure rate of the RBF hybrid network with WTA on a set of
samples with added gaussian noise of various amplitude.

08

06t / i

04 P

n2r

L L L L L L L L L L L L farter
0o 0.1 0.2 03 0.4

Figure 10.20: Failure rate of the RBF hybrid network with WTA on a set of
samples with salt-and-pepper noise of various probability.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 67

Figure 10.21: Failure rate of the RBF hybrid network with frozen RBF
weights on a set of translated samples. Darker color means lower failure
rate. The value in the center is 0.116 (116 misclassified samples out of 1000).

05

02r

L L L — degrees
=20 =10 0 1 0

Figure 10.22: Failure rate of the RBF hybrid network with frozen RBF
weights on a set of rotated samples.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 68

ng

ner N

04+ \

nar I

L TR 1 PR PR Y PR
o7 0g 0.9 10 11 12

Figure 10.23: Failure rate of the RBF hybrid network with frozen RBF
weights on a set of scaled samples.

ng

as

04

0zr

L L L L fartor
o 0l 02 0z 04

Figure 10.24: Failure rate of the RBF hybrid network with frozen RBF
weights on a set of samples with added gaussian noise of various amplitude.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 69

ng

ner

04k

nzr

L L L L L L L L L L L L factor
o 0.1 0.2 03 04

Figure 10.25: Failure rate of the RBF hybrid network with frozen RBF
weights on a set of samples with salt-and-pepper noise of various probability.

Figure 10.26: Failure rate of the RBF hybrid network trained fully by back-
propagation on a set of translated samples. Darker color means lower failure
rate. The value in the center is 0.096 (96 misclassified samples out of 1000).

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 70

0.5~

L L L L derress
-0 -1a 1} 10 20 e

Figure 10.27: Failure rate of the RBF hybrid network trained fully by back-
propagation on a set of rotated samples.

0gr

LIRS I

04 \,

w2t S

L T 1 C I Rt P "
o7 n.g 0.9 1.0 11 12

Figure 10.28: Failure rate of the RBF hybrid network trained fully by back-
propagation on a set of scaled samples.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 71

LIk}

06+

04t -

02r

L L L L L L L L L L L L fartor
0o 0.1 0.2 03 04

Figure 10.29: Failure rate of the RBF hybrid network trained fully by back-
propagation on a set of samples with added gaussian noise of various ampli-
tude.

ngr

0t /

-
LENS -

n2ar

" " " L " L " " " " L L fartor
0.0 0.1 0.2 03 04

Figure 10.30: Failure rate of the RBF hybrid network trained fully by back-
propagation on a set of samples with salt-and-pepper noise of various prob-
ability.

CHAPTER 10. INVARIANCE TO TRANSFORMATIONS 72

Figure 10.31: The visualization of the failure rates of the tested neural net-
work models when the classified samples were translated. a: multi-layered
perceptron, b: altered LeNet network, c: the original LeNet network, d: RBF
hybrid network with WTA, e: RBF hybrid network with frozen RBF weights,
f: RBF hybrid network fully trained with back-propagation.

Chapter 11

Conclusion

The aim of this thesis was to compare the suitability of several neural network
models for pattern recognition tasks. To this end, the introduced models
were trained to recognize hand-written digits and then tested for invariance
to transformations. These tests were supposed to reveal advantages and
disadvantages of neural network models of varying complexity. The samples
presented to the networks were not preprocessed in any way, to simulate a
recognition problem for which a custom preprocessing cannot be designed
easily. The networks were therefore also tested with regard to their ability
to deal with raw image data.

The problem of pattern recognition spreads over many areas of impor-
tance. It is used for automatic document processing in banks and post of-
fices, for analysis of medical data, even for car identification in traffic control
systems. Many recognition systems were designed for these purposes, vary-
ing from simple classifiers based on clustering to elaborate systems using
advanced algorithms and custom data preprocessing. I have focused on the
set of problems which do not allow for a effective preprocessing stage to
be built. Reading hand-written postal codes or breaking a character-based
CAPTCHA protection of web forms are examples of such problems.

The main obstruction of solving these problems is the unpredictability
of deformation of the input data. A perfect classifier for these problems
would be completely insensitive to these deformations, classifying a sample
correctly in spite of any perturbations to its form. Standard classifiers do
not cope with such complications very well. In this thesis, I tried to test the

CHAPTER 11. CONCLUSION 74

insensitivity to deformations of several classifiers based on neural networks,
hoping to discern a way to a better solution for this class of recognition
problems.

The presented results show that hybrid networks perform much better on
the raw data than a simple classifier, embodied by a multi-layered perceptron
network. Parts of the presented hybrid networks function as a preprocessing
stage. It can either be trained with the rest of the network by a standard
learning algorithm, or automatically from the data by a data mining algo-
rithm. Use of the Kohonen’s networks is demonstrated for configuring the
preprocessing stage. The hybrid networks have higher success rates and are
less sensitive to transformations of the input samples when compared to the
perceptron network.

Several models of hybrid networks were implemented and tested. The
convolutional networks, introduced by Yann LeCun, were tested in two con-
figuration. These networks gave the best overall performance and are recom-
mended for general visual pattern recognition tasks. Inspired by this model,
I introduced its variant which uses neurons with radial basis activation func-
tion instead of the original convolutional units. This model allows for the
fast automatic initial training using the Kohonen’s networks, which is the
main advantage of this model over the convolutional networks. I denoted
this model the RBF' hybrid neural network.

Several configurations of the RBF hybrid network were tested. Although
the model did not reach the success rates of the convolutional networks, it
still performed considerably well in the tests. One of the configurations, using
the winner-takes-all functionality, proved to be almost completely insensitive
to Gaussian noise added to the sample. This surprising result shows a great
advantage of this network over the other models in case a noise is present in
the data to be processed by the network. Along with the very fast training
of the model, the RBF hybrid networks present a viable alternative to the
convolutional networks in the area of visual pattern recognition.

In summary, I have shown in this thesis that hybrid networks pose an ad-
vantage over simple classifiers when a pattern recognition is to be performed
on raw image data, especially when the data is subject to various trans-
formations. Moreover, it was shown that a preprocessing stage for a given
problem can be designed automatically in only a short amount of time. The
use of such a preprocessing improves the precision of classificatoin and trans-

CHAPTER 11. CONCLUSION 75

formation invariance of even a simpler classifier. When the winner-takes-all
functionality is used in this preprocessing stage, it renders the recognition
process insensitive to considerable amount of Gaussian noise. Other train-
ing techniques and hybrid network types which could further improve the
precision of pattern recognition remain the object of future studies.

Bibliography

1]

[9]

Behnke, Sven: Hierarchical Neural Networks for Image Interpretation,
Springer 2003

Bishop, C. M. (1995): Neural networks for pattern recognition. Oxford
University Press, New York.

Fahlman, S. E. (1988): Faster-Learning Variations on Back-
Propagation: An Empirical Study. Proceedings, 1988 Connectionist
Models Summer School, Morgan-Kaufmann, Los Altos CA.

Fukushima, K. (1975). Cognitron: A self-organising multilayered neural
network. Biological Cybernetics, 20, 121-136.

Fukushima, K.(1998) ”A Neural Network for Visual Pattern Recogni-
tion,” Computer, vol. 21, no. 3, pp. 65-75, Mar., 1988

Hubel, D.H. and Wiesel, T.N. : ”Receptive Fields, Binocular Interaction
and Functional Architecture in the Cat’s Visual Cortex”, J. Physiology,
Vol. 160, No. 1, London, 1962, 106-154

Kohonen, Teuvo: ”Self-organixing neural projectinos”, Neural Networks
19 (2006), 723 - 733

LeCun Y., Bottou L., Bengio Y., and Haffner P. (1998): Gradient-Based
Learning Applied to Document Recognition. Proceedings of the IEEFE,
vol. 86, no. 11, 2278-2324.

Rojas, R. (1996): Neural networks: a systematic introduction. Springer-
Verlag, Berlin, New-York.

Appendix A

Script documentation

The implemented NNL library allows the user to run test for training a neural
network and for testing a trained network’s invariance to transformations. To
describe the possible configurations of the training procedure in more detail,
I will document the script used to control the training process. Such scripts
were used to set up all of the training tests described in the thesis, and can
be found on the CD enclosed with this thesis.

trainSetFormat: IDX

trainSetFile: data/t10k-images.idx3-ubyte
trainSetLabels: data/t10k-labels.idxl-ubyte
trainSetSize: 1000

trainSetStart: 0

trainSetPadding: 2

testSetFormat: IDX

testSetFile: data/t10k-images.idx3-ubyte
testSetLabels: data/t10k-labels.idxl-ubyte
testSetSize: 500

testSetStart: 1000

testSetPadding: 2

architecture: custom

APPENDIX A. SCRIPT DOCUMENTATION

numlLayers: 6

layerltype: convolutional
layerlsize: 4

layer2type: linear_subsampling
layer2size: 4

layer3type: convolutional
layer3size: 8

layer4type: linear_subsampling
layerdsize: 8

layerbtype: convolutional
layerbsize: 40

layer6type: fullconnected
layer6size: 10

learnParam: 0.2
maxWeightInit: 0.6
sigmoidLambda: 2.0

useMomentum: true
momentParam: 0.5

useDeltaBarDelta: false
dbdUpParam: 0.1
dbdDownParam: 0.85
dbdDerivationWeight: 0.5

enableRandomTransform: false

enableTranslation: false
enableRotation: false
enableScale: false
enableGaussNoise: false

78

APPENDIX A. SCRIPT DOCUMENTATION

enableSapNoise: false
setTranslationX: 3
setTranslationY: 3
setRotationDgr: 20
setScale: 0.7
setGaussNoise: 0.1
setSapNoise: 0.1

useSigmoidLookup: true

enablelogging: true
loggingInterval: 1
targetErrorRate: 0.01
exactEpochs: 20
maxEpochNumber: 60

saveOnExit: true
displayViewer: true
logDirPrefix: \\testNetworks

79

Detailed description of the configuration parameters follows.

To keep

this chapter within reasonable size limits, I will not describe in detail the
parameters for turning on the transformations of the samples presented to the
network and the parameters specifying properties of these transformations.

e trainSetFormat, testSetFormat: specifies the format of input data.

Currently supported types are IDX and IMAGE.

e trainSetFile, trainSetLabels, testSetFile, testSetLabels: for the IDX for-
mat, specifies the locations of files containing the sample data and
sample labels. For the IMAGE format, the values contain the path to

the image files and the name of the file containing samples’ labels.

o trainSetSize, trainSetStart, testSetSize, testSetStart: specifies the size
of training and testing sets, along with index of the first image used
for these sets from the whole sample database found at the location

described by the previous parameters.

APPENDIX A. SCRIPT DOCUMENTATION 80

o trainSetPadding, testSetPadding: specifies the size of additional sample
padding. Enlarging the samples is necessary for some of the more
complex architectures like the original LeNet network.

e architecture: this parameter was originally meant to allow the user to
specify either a particular network’s architecture (i.e. LeNet), or the
value ”custom” followed by list of layer sizes and types. Currently,
"custom” is the only supported value.

e numlLayers: specifies the number of layers in the network.

e layerXtype: specifies the type of the network’s layer, X is substituted
for index of the layer, starting from 1. The supported types are full-
connected, convolutional, rbf, subsampling and linear_subsampling.

e layerXsize: specifies the size of the layer with index X.

e learnParam: the parameter controlling the size of learning steps, de-
noted « in the equation 4.7|

o maxWeightInit: the value controlling the range for random initializa-
tion of the network’s weights. Where applicable, the weights will be
initially set to random values from the interval between -max WeightInit
and maz WeightInit.

e sigmoidLambda: the used steepness of the sigmoid function, denoted A
in the equation 4.3|

o useMomentum: set to "true” or "false”, this parameter controls the
use of the learning with momentum technique

e momentParam: in case learning with momentum is used, this param-
eter controls the portion of the last change of the weight to be added
to the current change. It is denoted ~ in the equation [4.12]

e useDeltaBarDelta: this parameter specifies whether the delta-bar-delta
algorithm for altering the learning rates will be used. It can be set to
values "true” or "false”.

e dbdUpParam: denoted u in the equation this parameter controls
acceleration of change in the delta-bar-delta algorithm.

APPENDIX A. SCRIPT DOCUMENTATION 81

e dbdDownParam: denoted d in the equation [4.14} this parameter con-
trols deceleration of change in the delta-bar-delta algorithm.

e dbdDeriwvation Weight: denoted ¢ in the equation this parameters
is used to control the speed of change of the learning rates by the
delta-bar-delta algorithm.

e cnableRandom Transform: if this parameter is set to ”true”, the trans-
formation set by the following parameters are applied at random within
the specified limits to the samples presented to the network. If set to
"false”, the enabled transformations are applied with the specified val-
ues only.

o useSigmoidLookup: specifies whether values of the sigmoid function
will be directly evaluated, or read from a look-up table constructed

beforehand.

e cnableLogging: turns on recording important values during the training
of the network.

e loggingInterval: specifies the interval, in epochs, in which the recorded
values are read. The usual value is 1.

e targetErrorRate: one of the ending conditions controlling the training.
If the error rate of the network on the training set is below the specified
value, the training is ended.

e cxactEpochs: another ending condition. The training will last at least
the specified number of epochs.

o maxEpochNumber: the last ending condition. The training will be cut
off after the specified number of epochs.

e saveOnKExit: If this parameter is set to "true”, the network will be
saved when the training is finished or interrupted.

o displayViewer: If this parameter is set to "true”, the Network Viewer
window will be displayed during the training, showing the reaction of
the network to a random sample after each epoch.

APPENDIX A. SCRIPT DOCUMENTATION 82

The script used to control the transformation test contains only the pa-
rameters specifying the location of the testing set, the applied transforma-
tions, and the file containing the saved network to be tested.

	Introduction
	Artificial Neural Networks
	History
	Taxonomy of neural networks

	Pattern Recognition
	Theory of classification
	Preprocessing and Feature Extraction

	Multi-layered perceptron network
	Model description
	Notation
	Learning algorithm
	Faster and better learning
	Momentum
	Altering the derivative
	Altering the learning rate
	Avoiding expensive calculations

	Kohonen's neural network
	Definition
	Learning algorithm
	Properties of Kohonen's networks

	Convolutional network model
	Background
	Model description
	LeNet-5
	Learning algorithm
	Properties of convolutional networks
	Implementation

	RBF hybrid network model
	Model description
	Learning algorithm
	Winner takes all
	Properties of RBF hybrid networks

	Implementation
	Library description
	Encountered problems

	Generalization and training speed
	Over-fitting and early stopping
	Test proposal
	Results

	Invariance to transformations
	Test proposal
	Results

	Conclusion
	Script documentation

