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checker. Properties to check are expressed by the assertions. So far, there has been no way 
to automatically extract a model from DeSpec specification and verify its properties by a 
model checker. The DeSpec-to-Zing compiler takes a crucial part in this task. 

The thesis demonstrates that it is feasible to translate DeSpec specifications into Zing 
models and that DeSpec is a suitable language for model checking of the Windows kernel 
driver environment. The introduced analyzer is capable to check correctness of DeSpec 
specifications and under the constrained conditions given by absence of other necessary 
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Diplomová práce předkládá nástroj pro analýzu modelů ve specifikačním jazyce 
DeSpec a pro jejich překlad do modelovacího jazyka Zing. Výsledné modely pak mohou 
být verifikovány model checkerem Zing. Jazyk DeSpec je navržen především pro 
specifikaci prostředí, ve kterém pracují ovladače operačních systémů rodiny Windows NT. 
Umožňuje abstrahovat toto prostředí objektově orientovaným způsobem a používá formule 
lineární temporální logiky k popisu pravidel, jejichž splnění jádro OS Windows od 
ovladačů vyžaduje. Jazyk Zing je navržen pro popis vykonavatelných modelů software 
včetně paralelismu, které mohou být dale zkoumány model checkerem Zing. Vlastnosti k 
ověření jsou vyjádřeny příkazy assert. Dosud neexistoval způsob, jak automaticky 
extrahovat ze specifikace v DeSpecu model, který by mohl být formálně verifikován model 
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umožňuje kontrolu správnosti specifikace v DeSpecu a za omezení daných absencí dalších 
nezbytných nástrojů umožňuje překlad vybrané podmnožiny specifikací do Zingu. 
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1. Introduction 
Verification of correctness and expected properties is one of the key tasks in software 

development. It becomes even more apparent while writing concurrent programs, where 
concurrency is often the source of bugs, which are hard to find and debug. As this problem 
is crucial for most of industrial and heavily used software, significant effort to find a 
suitable solution has been made. Stress-testing cannot entirely eliminate this issue and in 
some applications it is necessary to combine it or replace it with a formal approach. One of 
the techniques, which has proved to be suitable for this task, is model checking. 

1.1. Model Checking 
Model checking is the most successful approach that has emerged for verifying 

requirements. The idea of model checking is as follows: A model of the analyzed 
environment is made. The requirement imposed on the environment is formulated. A 
model-checking tool (i.e. model checker) accepts the model and the requirement that the 
final system is expected to satisfy. After verification, the model checker outputs yes if the 
given model satisfies given requirements (and verification passed) and generates a 
counterexample otherwise (verification failed). 

The counterexample details why the model does not satisfy the requirement. It is 
usually demonstrated by an execution path breaking the requirement. Once all errors are 
discovered and fixed and verification passes, one can be confident about the correctness of 
the model in all its reachable states. In fact, this ideal state is not always reached because of 
undecidability (model checker is unable to verify the property in finite time), however, the 
results of verification are useful even if some of the bugs are not discovered. 

The main drawback of this technique is a so-called state explosion problem. It refers to 
an exponentially growing number of model’s states with each added parameter. Thus 
verification becomes more resource-demanding and often even impossible to finish in 
acceptable time. This problem can be solved by modeling the system on a higher level of 
abstraction and by providing necessary resources. 

1.2. Verification of Windows Drivers 
The kernel of Windows NT operating system is more than suitable subject of formal 

verification. It is very complex and heavily used software and correct interfacing with 
drivers is the crucial property of the whole kernel-driver environment. 

There is a set of rules and guidelines dealing with interaction of drivers and kernel 
published in Windows Driver Kit (WDK) [1] available for driver authors. However, the 
rules are described in plain English and a driver developer has no implicit assistance in 
following them.  

Verification of this system requires solution of two issues. Firstly, the model of the 
environment must be extracted from the system specification and driver and kernel sources. 
Extraction must focus on problems emerging from the fact that the system is written in the 
low-level C language and it is difficult to create an appropriate abstraction. Secondly, rules 
defined in WDK in plain English must be transformed into some form of temporal logic 
formulae to allow them to be verified by a model checker. 
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1.3. Modeling Windows Driver Environment 
Based on the motivation described above, the specification language DeSpec [2] was 

designed to make the verification of Windows driver environment possible. This language 
introduces the object-oriented approach to description of Windows kernel and allows 
creating models on various levels of abstraction. It supports describing requirements and 
rules in a form of linear temporal logic (LTL) formulae, more precisely by Temporal Logic 
Patterns derived from Bandera project [3]. Along with language itself, a specification of 
Windows driver environment was published in [2]  

DeSpec was designed with Zing [4] as target model checker in mind. Zing model 
checker accepts models written in the Zing modeling language [5], which is an object-
oriented language for modeling concurrent software and supports basic level of abstractions 
like classes, non-deterministic choices, threads and arrays. However the requirements 
imposed on the verified system can be expressed only by assertions. 

With a DeSpec specification of the system to verify on the one hand and Zing model 
checker on the other, it is necessary to extract the model from the specification and translate 
it to the Zing language. The resulting model can be verified by the Zing model checker. 

 

1.4. The Thesis 
The goal of this thesis is to provide the missing link between DeSpec specification and 

Zing model checker to enable the formal verification of Windows driver environment. The 
complete extraction of Zing models of the driver environment from DeSpec specification 
may require several tools dealing with various issues. Thus the tasks that are crucial for the 
extraction process must be defined. Above all, the introduced tool should be capable of 
correct translation of the DeSpec language to Zing. The key features of DeSpec, which are 
not supported by Zing, must be implemented, particularly those, which allow expressing 
the requirements to verify. 

 
The following text firstly introduces both the source and target language and analyses 

the process of the model extraction and translation.  
Then the structure and required features of the model extractor are described in chapter 

3. In this chapter, all tasks necessary for creating the complete model are mentioned and the 
individual phases of the extraction are determined. At first, DeSpec specification must be 
parsed and its inner representation must be built. Then the semantic analysis takes place. It 
is also necessary to analyze the C sources of the driver and the kernel and complete the 
model with parts extracted from this input. Another important task is reduction of the 
model to include only parts relevant to the verified properties. When the model is complete, 
its transformation to Zing representation takes place. Finally, Zing code is produced. 

In chapter 4, the basic analysis of possible approaches to the implementation is made. 
The development platform and tools are chosen and basic design decisions for the compiler 
and Zing representation are made. 

The thesis continues by the detailed description of the implementation of the compiler 
in chapter 5. For every phase and task in the process of the model extraction, the key issues 
are identified and their solution is described. Special effort is made to explain the type 
analysis, the implementation of DeSpec-specific features and the representation of 
requirements to verify. 
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In chapter 6, missing tools, which are required for fully automatic extraction of the 
complete model, are mentioned. Also unimplemented features of the compiler itself are 
described there. 

Finally, the related work is mentioned and the results of the thesis are summarized. 
Appendix A contains the modified grammar of the DeSpec language in the version that 

is used by the compiler. 
Appendix B contains a simplified example of DeSpec class specification and the 

corresponding Zing model generated by the compiler. 
 
The thesis is accompanied with a CD. The source code of the compiler is stored there 

along with the executable file. A sample DeSpec specification of the driver environment, 
which is derived from the specifications published in [2], is also available, together with the 
corresponding generated Zing model and its executable version, which can be run in Zing 
model checker. 

The CD includes whole package with the compiler, Zing compiler and Zing model 
checker, so it is possible to run accompanied scripts to create the model from the provided 
specification and verify it by the model checker. The instructions for running the scripts are 
included in readme.html file, along with the structure of the source code and whole 
package. Since the source code of the compiler contains also files generated by other tools, 
the origin of all included source files is explicitly stated there.  



 12

2. Verification of Driver Environment Model 
 

Under the given conditions, i.e. with DeSpec specification of the Windows driver 
environment and Zing as a target model checker, the process of verification of the system 
comprises several complex steps. This chapter contains short introduction to the DeSpec 
language and Zing framework and later on, the transformation of the model is described. 
Finally, the role of the introduced tool in this task is explained. 

2.1. DeSpec Language 
The DeSpec specification language was designed primarily to describe the Windows 

driver environment. It supports an object-oriented approach despite the fact that both 
Windows kernel and drivers are written in the C language. This approach is well founded 
because the environment simulates an object-oriented design on a specific level, which is 
limited by means of the C language. With constructs like namespaces, classes, properties 
and groups and with the support of inheritance, extension and built-in collection types, 
DeSpec allows writing models of environments straightforwardly and transparently. 

DeSpec does not focus only on the high-level abstraction but also allows modeling of 
threads and concurrency and features constructs inspired by Windows kernel specific 
concepts and required by the use of the C language. It supports delegates for modeling of 
ILateBoundDriverRoutines interface and function pointer mapping for modeling of 
IEarlyBoundDriverRoutines interface. These interfaces are designed for passing the driver 
callbacks to the kernel. 

Thanks to namespaces and attributes, DeSpec allows specifying models on various 
levels of abstraction and determination of the part of the model that will be subject to 
verification. Thus it is possible to adjust complexity of the model to make its verification 
feasible in acceptable time. 

The key feature of DeSpec is its extensive support for expressing requirements imposed 
on the system. There are three concepts for the description of these requirements – 
assertions, constraints and rules.  

Assertion is the most primitive way to describe a required property and can be used as it 
is usual in common programming languages. 

Constraints can be used to assure that some condition holds in interesting places during 
execution of the model, typically when entering or leaving a method or accessing a field. 
Some of the constraints backed by DeSpec grammar include for example non-nullity of 
method arguments and class fields, range constraint or method precondition and 
postcondition.  

Rules are the key means of expressing the requirements on the model and play a crucial 
role in model checking. Rules allow the use of temporal logic and thus enable the 
formulation of required properties that cannot be expressed otherwise. Moreover, DeSpec 
does not require specification of rules directly in LTL but introduces rule patterns based on 
the Bandera toolset. These patterns were designed to describe properties in a well-
understood but still precise way. The set of patterns included in DeSpec is universal enough 
to describe probably all the rules that could be potentially imposed in the Windows driver 
environment. However, if there is a need to express some property by an unsupported 
pattern, it will be easy to add it in DeSpec. One of the rule patterns that is often used to 
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describe requirements is for example P exists between Q and R. The same property 
expressed by LTL formula is � (Q ∧ ¬R ⇒ (¬R W (P ∧ ¬R)))1. It is obvious that rule 
patterns are more appropriate to describe the requirements, especially when expressivity of 
raw LTL is not needed. 

Interesting constructs of DeSpec will be mentioned later in sections describing their 
analysis and implementation in Zing. 

2.2. Zing 
The Zing framework is developed in Microsoft Research and is divided into 4 parts: a 

modeling language for expressing concurrent models of software systems, a compiler for 
translating a zing model into an executable representation of its transition relation, a model 
checker for exploring the state space of the zing model, and model generators that 
automatically extract Zing models from programs written in common .NET programming 
languages. 

All components except extractors from .NET languages are important for the process of 
verification. The Zing model checker has 2 interfaces - a command-line tool (Zinger) and 
an application with GUI that allows inspecting states of the model (Viewer). The Zing 
framework in its current state of development supports all features necessary for 
implementation of DeSpec models and is usable for their formal verification. 

 
The fact that some constructs of the DeSpec language are taken over from the Zing 

language implies that the implementation of some DeSpec features is quite straightforward. 
On the other hand, Zing is also an object-oriented language but it lacks some of the typical 
features, namely inheritance and constructors. Other complications emerge when 
implementing for example DeSpec delegates, thread static data, structures or built-in 
collections as Zing does not support these concepts. However, the current version of Zing 
allows all workarounds necessary for the implementation of DeSpec models. 

In the Zing language, types may be either simple or complex, the primary difference 
being that complex types are allocated on the heap and simple types are not. Simple types 
contain enumerations, ranges, structures and the same predefined types as C# except char 
and string. Simple type string could be useful for implementing internals of models, 
however it can be replaced by enumerations. Ranges and structures are not fully supported. 
Complex types include arrays whose sizes can be fixed at the time of allocation, classes and 
object type. An object type may be used in place of a strongly-typed declaration. Any 
complex type reference may be assigned to a variable of the type object. Zing does not 
support typecasts, but an object value may be assigned to a strongly-typed variable, which 
results in a typecast to the target type (if possible). This is used to implement poor 
polymorphism and DeSpec is and as operators. 

Zing also supports asynchronous calls and synchronization via blocking select 
statement. Statements of different threads can be arbitrarily interleaved unless they are 
enclosed in an atomic block. 

Correct models of the Windows driver environment require some form of non-
determinism, which can be achieved by select and choose statements. Non-determinism 

                                                 
1 W denoting weak until operator, defined by strong until operator e.g. by equivalence p W q = (�p) ∨ (p U 
q). � is universal time quantifier (always in the future), � is existential time quantifier (sometime in the 
future). 
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leads usually to exponential grow of the explored state space. Sometimes it is useful to 
reduce the state space by cutting off a trace under a certain condition. The assume statement 
is used for this purpose. It cuts off the current trace if the specified condition does not hold. 
The assert statement can be used to ensure that specified properties hold. During 
verification of a model by Zing, the model checker failed assumptions are marked but not 
reported in contrast to failed assertions that cause the failure of the whole verification. 
 

The assertions are the only constructs for expressing requirements on the model in 
Zing. This means that they must be used to implement rule patterns supported by DeSpec. 
As assert statement accepts only common boolean expressions, a workaround 
implementing features of Linear Temporal Logic must be introduced.  

2.3. Extraction of Model 
The technologies described in previous chapters satisfy requirements for the verification 

of the Windows driver environment and DeSpec is even designed directly for this task. 
However, the transformation of the model to check is still quite complex. The tool that 
transforms DeSpec specification into the Zing model has to deal above all with the 
following issues:  

 
First of all, parsing and semantic analysis of DeSpec code must be made. In this task, an 

extensive support for syntactic sugar in DeSpec must be taken into consideration. This 
language features many constructs, which are designed to write the specification 
straightforwardly and on a high level of abstraction. Particular attention is paid to semantic 
analysis, as it is not possible to restrict the use of advanced constructs on the level of 
grammar and syntax analysis. This issue is particularly apparent in constructs designed for 
formulating constraints and rules. Another feature that requires special attention is 
attributes. There are several types of attributes with various meanings and some of them are 
related to a driver or kernel source code. Thus it is not possible to restrict their formulations 
by DeSpec grammar and their potential incorrectness has to be checked on the semantic 
level. 

 
When DeSpec specification is analyzed and its inner representation is made, the 

remaining inputs must be accepted. For a complete model of the driver environment 
information about the kernel and the driver is needed. Symbols that are used in DeSpec 
specification must be extracted from kernel header files, e.g. values of enumerations and 
constants abstracted by the model. The more complicated task is an analysis of driver 
source files. The driver part of the model has to include C code of the driver itself. DeSpec 
does not require inserting appropriate segments of the code into the specification manually. 
It rather introduces constructs, such as EarlyBound attribute and extracted label that allows 
merging of specification and driver code by extractor without the help of a user. It is 
obvious that quite a complex tool for parsing C code and extracting necessary parts of the 
model is needed. 

 
Another important task is slicing of the model. Even if an extensive and detailed 

specification of the whole environment can be provided, the complexity of the resulting 
Zing model and the verification depends mainly on checked properties and a selected level 
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of abstraction. To enable this flexibility, it is necessary to analyze which parts of the model 
are relevant for the particular verification process. DeSpec also provides means for 
influencing this analysis by the user. It is possible to enforce inclusion of specific 
constraints into the model by CheckConstraints attribute. Before the extraction process 
starts, the user is supposed to select a specific namespace to check and thus a specific level 
of abstraction can be chosen. The contents of the resulting model influence the extraction of 
C source files. It is also possible that there are some parts of the extracted model that are 
never used by the specific driver so the slicing should be applied again at the end of the 
model extraction to further reduce its state space. The required analysis can be made by 
performing a slicing algorithm described in [6]. 

 
After a particular part of the model is determined and analyzed, it must be transformed 

into Zing model, i.e. the inner representation of the model must be translated into Zing 
language. Despite of the fact that DeSpec uses number of constructs taken over form Zing, 
there are key features specific to DeSpec that cannot be implemented in Zing in a trivial 
way.  

The concept of inheritance is not supported by Zing but use of this relationship in 
DeSpec specification of Windows driver environment is well-founded. Windows kernel 
simulates kind of polymorphism by overlapping structures and there must be a possibility 
to abstract this behavior in the specification. However, not all features provided by 
inheritance are simulated by the kernel so it is sufficient to provide only specific necessary 
workarounds for transformation to Zing. Implementation of polymorphism relies on 
implicit typecasts made by Zing runtime when assigning an object value to strong-typed 
variable. 

Other abstractions useful for specifying the driver environment are DeSpec delegates 
(analogous to function pointer types in C) that have no counterpart in Zing language. The 
model of delegates expects a pointer-to analysis to determine a set of functions, which the 
specified function pointer can point to. In the context of kernel-driver environment it means 
that driver source code must be analyzed to find out which functions can be bound to a 
particular delegate. For every DeSpec delegate its value from the set of applicable functions 
is tracked throughout the model and invocations of delegate are replaced with dispatch to 
an appropriate function. 

A crucial task is representation of temporal logic formulae supported by DeSpec in 
Zing language that support only assertions. Expressing requirements via temporal logic 
patterns is one of the main features of DeSpec and makes verification of the system 
comfortable for users. Under these conditions, a suitable Zing representation of automata 
equivalent to specified rules must be found and a mechanism for their transitions must be 
implemented.  

 
To cope with the issues described above a following set of tools must be developed: 
At first a tool for parsing and analyzing specifications in DeSpec language should be 

produced. Next, an extractor of the model from the analyzed specification, kernel header 
files and driver source code is needed. On this extracted model a slicing algorithm should 
be performed to determine the part of the model to check. To complete the task, a translator 
of the model into Zing language is necessary. 



 16

It is apparent that the key component is a compiler with DeSpec front-end and Zing 
back-end. Operations implemented by C code extractor and slicer must be preformed on 
inner representation of the model after the semantic analysis.  

2.4. Tasks for Compiler 
During the development it proved to be infeasible to implement whole set of necessary 

tools in the scope of this thesis. Rather, it was decided to focus on the semantic analysis of 
DeSpec, which is needed for all the other steps. Some tasks even seem to be suitable as a 
topic for another master thesis. 

However, there are certain subsets of DeSpec language that allows describing a 
specification, which does not require the other tools to finish the extraction. Only analyzer 
of DeSpec and translator to Zing can perform complete transformation of such model. With 
some workarounds and help of user it is possible to create such specification, analyze it 
with the implemented tool and translate it into Zing model. Analysis of C source files as 
well as basic model has to be made manually. With this motivation in mind, an attempt to 
implement a simplified Zing back-end and produce a working compiler was made. 

Main part of the introduced compiler is focused on the front-end and DeSpec analysis. 
The back-end translating DeSpec model into Zing language rather proves that the proposed 
approach to modeling Windows driver environment is feasible and that DeSpec can be 
successfully used for model-checking of such systems. However, implementation of the 
other tools is required to process a full-fledged verification of the environment. 
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3. Structure of Model Extractor 
For extracting a Zing model from DeSpec specification of Windows driver 

environment, Windows kernel header files and driver source code, 4 main tasks must be 
solved: Semantic analysis of DeSpec code to ensure its correctness, analysis and extraction 
of relevant C code to complete the model, slicing to reduce the state space of the model and 
translation of the model into Zing language. Structure of the model extractor is determined 
by these 4 steps. In following sections organization of tasks and development is described. 

3.1. DeSpec Front-End 
For processing of DeSpec specification the typical compiler approach [7] is applied. 

The analysis is divided into 3 levels: lexical, syntax and semantic. 

3.1.1. Lexical Analysis 
The analysis of tokens is made by a lexer generated from DeSpec lexical grammar. 

There is no need to implement the lexer by hand as lexer generators are available. However, 
the lexer generator should be chosen with respect to target language of the compiler 
implementation.  

3.1.2. Syntax Analysis 
The syntax analysis is made by a parser that is generated from DeSpec syntactic 

grammar. Same as for lexer, there are tools for generating parsers available. A chosen 
generator should produce parsers that are able to interface with the generated lexer. 

During the process of parsing, an inner representation of the specified model is built. It 
has a form of Abstract Syntax Tree (AST) [8]. The structure of AST nodes is designed in 
such a way that there is no need to transform the generated AST to another intermediate 
form during the processing of a model. All necessary operations on the model can be 
performed easily through the generated AST.  

Changes in DeSpec, which turn out to be desirable during the development of extractor, 
are reflected in its syntax grammar. 

3.1.3. Semantic Analysis 
During semantic analysis, the compiler has to check the semantic rules for using 

DeSpec constructs as described in [2]. This also requires a complete static type analysis. 
Whole task is completed by several passages through the AST. During traversing the AST, 
operations necessary to support further translation into Zing are performed. 

3.1.4. Built-In Types 
DeSpec specification of built-in types is actually a specification of templates, which 

cannot be used directly in the model. Instead, parameterized instances of these generic 
templates should be created. It is necessary to find all references to various built-in types 
and supply the model with specification of instances of required templates. This must be 
completed before type analysis to enable the mapping of built-in type references to their 
declarations. 
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3.1.5. Eliminating Compile-Time Constructs 
DeSpec features several constructs that are designed to make specifications more 

readable and make ideas behind them clear, e.g. groups, namespaces or extension 
mechanism. All of them must be eliminated during the extraction of the model and their 
meaning must be represented in a different way. Complex semantic of these features 
implies that their implementation by other means is not trivial. 

3.2. Kernel and Driver Code Analysis 
A specification of Windows driver environment must be merged with C code of the 

Windows kernel and a driver to be verified. Kernel header files must be inspected for 
extracting symbols referenced by the model. For example abstractions of kernel 
enumeration and constants must be supplied with appropriate values. As for the driver part, 
extraction is more complicated and requires e.g. a pointer-to analysis of function pointer 
types and merging of method abstractions in DeSpec with bodies of driver functions in C. 
Complete source code of a verified driver is required to complete the model. 

3.3. Determination of Resulting Model 
Only relevant parts of DeSpec specification and C code should be included in the 

extracted model to limit its state space. These parts are determined by two means – DeSpec 
namespaces and slicing algorithm. Before the model extraction and its verification a set of 
rules to verify should be chosen. According to chosen set, user can select a namespace with 
model on desired level of abstraction. During the extraction slicing must be performed on 
the model to determine, which parts influence checking of selected rules and constraints, 
and what parts of C code are to be merged with the model. The slicing algorithm must 
respect CheckConstraints attributes and include abstractions marked with this attribute into 
resulting model even if they are not directly connected with verified rules. 

3.4. Zing Back-End 
Since the target language of the compiler is a high-level modeling language, there is no 

need to perform operations on an inner representation of code typical for compilers to low-
level or binary code. Main task for the back-end is implementation of DeSpec specific 
features by means common to both DeSpec and Zing, generating automata for 
corresponding rules and emitting Zing code acceptable by the Zing compiler.  

3.4.1. Implementation of Modeling Features 
As Zing does not support some concepts provided by DeSpec, appropriate workarounds 

must be introduced. 
Inheritance is one of such features and its implementation requires an analysis of 

classes involved in this relationship. Involved classes must be provided with an additional 
mechanism that dispatches dynamic access to inherited members. Compile-time access to 
inherited declarations is provided during type analysis in the front-end of the compiler. 
Moreover, methods for implementing is operator must be generated and added into every 
class involved in inheritance. Other features, like overriding, are not required by DeSpec. 

Zing does not support properties, which are heavily used not only in DeSpec 
specifications. Firstly use of properties improves specification simplicity and readability. 
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Secondly properties are used by the compiler for implementation of some constraints, as 
properties allow controlled access to data in contrary to fields. Access to properties can be 
simulated by generating and invoking corresponding methods. 

Use of various expressions is quite restricted by Zing grammar, compared with DeSpec 
and also common programming languages like C#. Especially occurrences of method 
invocations and assignment expressions are limited. Even if these limitations propagated 
into DeSpec grammar probably would not cause any problem in writing specifications, it is 
not suitable to transfer them to users, especially if they expect typical functionality from 
such basic language constructs. Complex expressions that are not allowed by Zing grammar 
must be turned into equivalent segments of statements and simplified expressions 
acceptable by Zing. 

Implementation of delegates relies on a pointer-to analysis of driver source code 
provided by the C code extractor. A dispatch mechanism based on the results of the 
analysis must be generated and added into the model. 

3.4.2. Implementation of Constraints and Rules 
As Zing provides none of the constructs for expressing constraints supported by 

DeSpec, workarounds using assertions must be introduced. Constrained fields are 
transformed into properties. Constrains related to methods and properties are expanded to 
assertion statements. 

For implementation of rules equivalent automata must be generated at first. Their 
transition methods must be added into involved classes. The actual value of a property 
expressed by a rule and represented by an automaton can be changed from various places of 
the model during its execution. A mechanism for transition of appropriate automata from 
these places must be generated. A routine that checks final states of the automata must be 
added at the end of model execution.  

3.4.3. Emitting Zing Code 
When all DeSpec specific features are implemented by constructs common to both 

DeSpec and Zing, Zing code of the resulting model can be generated. A dumping routine 
must be provided for every node of AST present in the resulting model. Some branches of 
AST that were generated by the compiler during the extraction are not valid parts of the 
extracted model and must be cut off. 

Built-in collection types cannot be specified by DeSpec on necessary level of detail and 
can be represented by AST nodes only on very high level of abstraction. Their real 
functionality can be expressed only in Zing by its own built-in types. Thus transformation 
from DeSpec to Zing can be made only in this step and without appropriate representation 
in DeSpec. However, intended functionality is known from [2]. 
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4. Approaches to Implementation 
An analysis of possible approaches to implementation of the DeSpec-to-Zing compiler 

is in this case quite simple and straightforward. 
.NET development platform is suggested in the assignment of the thesis and seems to 

be the most suitable choice. Since C# was chosen as a language of implementation, it 
necessary to find lexer and parser generators that produce outputs in the same language or 
at least in any .NET language. A GPPG parser generator [9] proved to be a suitable tool for 
generating DeSpec parser. GPPG takes a Bison/Yacc-style grammar specification with 
semantic actions coded in C# and produces an LALR(1) parser. However it does not 
include a lexer generator so a standalone tool must be used. A CsLex lexer generator is 
such a tool that works well with GPPG. It accepts a Lex-like input specification and 
produces a C# output. Recently a GPLEX lexer generator was developed by authors of 
GPPG. This tool is designed to be used with GPPG and it would be probably suitable 
replacement for CsLex, if necessary. 

As the goal of the thesis is translation of DeSpec language into Zing, the typical 
approach to the implementation of a compiler should be taken. A choice whether AST 
nodes will be so-called smart or dumb objects should be made. Since Zing is the only 
intended target language, there should be no problems with smart nodes, i.e. with nodes 
represented by classes with rich functionality. On the other hand, the concept of dumb 
nodes with few or no methods makes a design of a compiler more comprehensible and 
keeps code with related functionality at the same place. An ideal solution seems to be use 
of dumb nodes and implementation of required functionality in visitors. However, in case 
that implementation of some task seems to be more suitable in specific nodes, there is no 
reason to avoid that. 

Compilers are referenced as ideal examples for use of visitor design pattern [10] and it 
is apparent that in case of translation of DeSpec to Zing it holds as well.  

A specified model is represented by AST nodes, which correspond to DeSpec 
constructs, during whole process of extraction. Implementation of DeSpec features, 
especially in the back-end of the compiler, requires generating of other nodes, adding new 
branches to the AST and replacing old ones. Usually, new nodes should be at least partially 
based on those to be replaced. Implementation of prototype design pattern described in [10] 
and providing nodes with clone method significantly simplifies generating of additional 
code. 

On if the key issues of translating DeSpec into Zing is representation of DeSpec 
temporal rules. Since the rules follow temporal patterns, they can be expressed in LTL 
formulae. Raw LTL formulae can be represented by Büchi automata. The appropriate 
(potentially non-deterministic) automaton can be constructed by algorithm described in [11] 
and then transformed into a deterministic minimal state automaton. Nevertheless, with 
regard to a specific set of rule patterns and character of the models, it is also possible to 
construct an automaton for each DeSpec rule pattern manually. Automata representing the 
rules can be driven by events triggered during execution of the model. At the end of the 
execution their states can be checked by assertions. Thus it is possible to implement 
DeSpec rule patterns by Zing assert statements. 
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5. Implementation of Compiler 

5.1. Generating Lexer 
A lexer necessary for providing a DeSpec parser with tokens is generated by CsLex tool 

from lex-like DeSpec lexical grammar defined in [2]. One change was made in the lexical 
structure. Compiler needs to create additional instances of DeSpec constructs during the 
model extraction, among others named enumerations, classes, members and variables. To 
avoid potential conflicts with names used in the original specification, a unique prefix must 
be reserved for identifiers generated by compiler. Two underscores (“__”) are chosen for 
this prefix. Regular expressions standing for identifiers in lexical grammar are modified to 
enforce this restriction. 

Conflicts of identifiers in DeSpec specification with Zing keywords are solved during 
emitting of Zing code by inserting the same prefix. 

5.2. Generating Parser 
A parser processing DeSpec code is generated by GPPG tool from DeSpec syntactic 

grammar. GPPG accepts grammars written in Yacc/Bison style [11] and allows defining a 
custom semantic value type by %valuetype and %union directives, as well as a custom 
location type. 

This is a C# pseudo-union for transferring semantic values: 
 
%union 
{ 
  public string str; 
  public int n; 
  public object obj; 
} 

 
The field of string type is designed for holding string literals and identifiers, the int field 

contains integer literals and enumeration values and object field holds instances of AST 
nodes created during parsing. The union is flexible enough to transfer any semantic value 
or AST node. In case that it is necessary to transfer two objects at a time, e.g. in rule 
AttributesAndModifiers : Attributes Modifiers, an instance of generic class Pair<F, S> can 
be used for them and itself can be assigned to obj field of the union. 

A default location-information class contains fields for both start and end position and 
fit the needs of error reporting. The only necessary information that is not automatically 
provided by the parser is name of processed file. For error reporting purposes, Location 
structure with name of file and position in file is added to every node of AST. 

GPPG allows to provide additional code of parser in Yacc-like way directly in 
%{prologue%} section of input grammar file or in separate C# file by declaring parser class 
partial. This is used for adding a set of fields necessary for building an AST tree to the 
generated parser. Most of them are C# dictionaries for registering of DeSpec declarations 
and representing current context of processed node. Counters for generating unique names 
of anonymous constructs are also added to the generated parser.  

 
The grammar production rules are usually supplemented with piece of C# code 

implementing appropriate semantic actions. These routines are usually triggered after the 
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completion of the rule. In that case they gather semantic values passed from a lower level 
and generate an AST node corresponding to the semantics of the rule. The result of this 
processing is then passed to a superior rule. 

Sometimes an initialization is required before descending into a particular part of a rule. 
E.g. the rule for class declaration has following form: 

 
ClassDecl : 
AttributesAndModifiers ‘class‘ T_IDENTIFIER Inherits ‘{‘ MemberDecls 
‘}‘ 

Example 1: Production rule for class declaration 

 
Before parsing of member declarations of a class (MemberDecls), it is necessary to reset 

some context-related fields of the parser. During parsing of the declarations, these fields are 
filled with data necessary for generating the class declaration AST node after the 
completion of the rule. 

However, most of functionality is moved to C# source files in order to keep grammar 
file simple and readable. It is also more comfortable to work with and debug pure C# code 
than code mixed with grammar rules and inserted into the implementation of a parser. Main 
purpose of the code segments in grammar file is generating of instances of AST nodes and 
building the AST from them.  

5.3. Abstract Syntax Tree 
The input specification is represented by an abstract syntax tree (AST) constructed 

during its parsing. Individual constructs of DeSpec language are represented by different 
node types and its occurrences in the parsed specification have their counterparts in the 
nodes of the constructed AST. Every type of node is represented by a specific class and 
relations between similar node types are expressed by inheritance. 

 

5.3.1. Support for Model Extraction 
All types of nodes are derived from an abstract base class Node (its simplified structure 

is described in Figure 1). This class has no counterpart in DeSpec grammar and contains 
only members that are required by the compiler from all specific node types to process a 
specification. It includes information about the location of corresponding segment of code 
in DeSpec specification and bindings to parent nodes in AST.  

A key member for whole process of model extraction is Accept method. Being a part of 
visitor design pattern it allows traversing the AST by visitors that implement specific 
functionality in their Enter/Return callbacks. 

Another feature that can be required from all types of nodes is cloning of their 
instances. Clone method returns the deep copy of a node. The only field whose copy is 
shallow is a reference into the table of DeSpec type declarations. Changes in nodes 
representing type declarations are supposed to propagate to all their references. This would 
not hold if a declaration in table of types changed and these references pointed to cloned 
instances. 

Node types representing constructs common to both DeSpec and Zing also must be able 
to emit their representation in Zing language at the end of model extraction. Dump method 
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serves for this purpose. Inheritance relationships between node classes express similarity of 
specific DeSpec constructs rather then their inclusion in both Zing and DeSpec grammar. 
This property is not caught in the hierarchy of node types by any means so dumping 
method is included in every type of node as all of them inherit from the base node class. 

 
Figure 1: Structure of base class for AST nodes 

In contrast with base node class, a class representing particular DeSpec construct must 
contain some additional members. Fields corresponding to individual parts of the construct 
are included and non-default constructor that accepts values of these parts must be 
provided. In some cases methods with added functionality can be also included. It does not 
conform to the concept of dumb AST objects but it is a simple solution with no drawbacks. 
An example of such case is ApplyAttributes method that processes attributes assigned to 
some DeSpec constructs. 

 
Most of node types can be instantiated quite straightforwardly just after the 

corresponding DeSpec construct is parsed. When the appropriate syntax rule is completed, 
a constructor of the node type is called and subnodes held in syntactic value unions are 
passed as arguments. The newly created node is then propagated up to its superior rule by 
the parser. When parsing of this superior rule is completed, the process is repeated on that 
level, and so on. 

However, there are some DeSpec constructs that require special treatment when their 
node types are instantiated and incorporated into the AST. 

One of them is DeSpec class declaration represented by ClassDecl node type. This class 
contains several dictionaries for declared members, rules, structures, etc. to keep 
declarations of different kind separated and easily accessible. The constructor of ClassDecl 
class expects these separated collections as arguments. That is the reason why declarations 
created in the context of a parsed class must be stored in parser’s collections. When class 
declaration rule is completed, filled collections are used for construction of the ClassDecl 
node.  

A different approach is taken when creating a FieldDecl node, which represents a 
DeSpec field declaration. In DeSpec it is possible to declare more variables of the same 
type together in one field declaration (here declaration means a line of code terminated by 
semicolon). However, the type of declared fields is not known until whole rule is 
completed. Thus a list of field names and initializers must be maintained during parsing of 
the field declaration construct. When leaving the rule, list of real FieldDecl nodes must be 
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created and passed to a superior rule, where it will be added to other field declarations of 
the parent class. 

DeSpec allows distribution of a namespace declaration in the specification much like 
C#. Therefore, one namespace can be entered end exited repeatedly during parsing. Since 
DeSpec does not support declaration of partial class, namespaces are the only constructs 
that have to cope with this problem. Even if this feature is not explicitly used in a 
specification, at least implicit Default namespace can be divided by another namespace 
declaration. Unlike the other nodes, the one representing namespace declaration is created 
at the start of namespace syntax rule, of course only if the namespace has not been already 
created at some other place. When the rule is completed, contents of the namespace 
declaration are just added to existing namespace node. 

 
Except building of AST, there is another task that can be completed during parsing. 

DeSpec supports 5 modifiers that can be applied on various constructs – static, synthetic, 
abstract, base and readonly. If some construct contains an applicable modifier, it must be 
propagated to all nested relevant constructs. As information about modifiers is necessary 
for most of the tasks in the model extraction, it is necessary to do the propagation as soon 
as possible. 

 It would be possible to implement a special visitor that would do the job but this is not 
necessary. Instead, correct modifiers are passed as arguments already when creating a node. 
2 fields are added to the parser, one holding or-combination of current propagating 
modifiers and one being a stack that stores these combinations for corresponding scopes. 
When entering DeSpec class declaration or structure declaration, a copy of current 
propagating modifiers is saved on the stack and they are combined with modifiers applied 
on this declaration. When creating a node within a class or structure declaration that accepts 
modifiers, they are combined with currently propagating ones before passing them to 
constructor. When leaving the declaration, the former value of the propagating modifiers is 
loaded from the stack. Thus in every scope all applied modifiers are known before the 
construction of nodes starts. It is possible that particular combination of propagating 
modifiers is not applicable to a specific construct. Nevertheless this is not a problem 
because those flags that are not applicable are never checked for presence. 

 
Most of the tasks in model extraction process are solved by appropriate visitors when 

traversing the constructed AST. All visitors implement IVisitor interface (Figure 2) and 
their traversing is driven by Accept methods of AST nodes. 

 
Figure 2: IVisitor interface 

 
Original visitor design pattern proposes only one method for visiting objects called 

simply Visit. However, for working with an AST it is desirable to support conditional 
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traversing to avoid visiting branches that are not relevant for a particular visitor. Moreover, 
for some tasks it is more suitable to perform them when descending the tree and for other 
the opposite direction is more appropriate. Both issues are solved by replacing Visit method 
with Enter and Return methods.  

A visitor’s Enter method is invoked by a node at the beginning of Accept (when the 
visitor is descending the tree and enters a node). If Enter returns true, descent can continue 
by calling Accept on its child nodes. At the end of node’s Accept method (when visitor is 
ascending the tree and leaves the node) visitor’s Return method is invoked. 

Visitors implement both methods actually only by a dispatch based on the type of a 
node passed as argument. When the type is determined, the appropriate override is called.  

 

5.3.2. Hierarchy of Nodes 
Since the rest of this text will mainly discuss implementation of specific DeSpec 

language constructs, a brief introduction to some of their counterparts in AST follows. 
 
Specification node is the root of every generated AST. As such, it has an important role 

in driving the process of model extraction and hence the structure of this class is rather 
specific. The fact that DeSpec specification is actually a list of namespaces is represented 
by Namespaces dictionary. Nothing else can be declared on the level of specification, since 
all declarations out of explicit namespaces are included into the implicit Default 
namespace. Partial namespaces and implicit Default namespace require creating 
Namespace nodes on a higher level. As the only node above namespaces is the 
specification, it is implemented by its EnterNamespace and ExitNamespace methods and 
CurrentNamespace member. Other data members serve the needs of the compiler. 
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Figure 3: Selected members of Specification node 

As can be seen on Figure 3, Specification node does not conform to the notion of dumb 
object. Specification class contains some additional properties and number of methods that 
are used for processing of the model. The key member for extracting of models is 
DeclaredTypes dictionary of all class, structure, union, enumeration, range and delegate 
declarations present in the specification. This dictionary represents global type table of the 
compiler and is required by most of visitors. Another important member is Errors list 
holding semantic errors accompanied with CurrentFileName member for error reporting 
purposes. 

All other methods except Node methods’ overrides trigger or implement some phases of 
model analysis and extraction and they will be described later. 

 
Namespace nodes provide access to other DeSpec declarations and as soon as the type 

table is filled, they are needed only to check visibility of DeSpec members and declarations 
during the type analysis. Namespaces do not model any property or feature of a specified 
environment and thus they are not preserved by any means in the resulting Zing model. 
Their main purpose is dividing specifications into parts with various levels of abstraction. 
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The highest nodes in AST hierarchy that have counterparts in DeSpec code are 
representations of DeSpec declarations. As all declarations have some common features, a 
base class for declaration nodes exists. Members of this Decl class (Figure 4) reflect the 
fact that every DeSpec declaration can be marked with some modifiers and attributes. 
Combinations of applicable modifier flags and attributes are specific for each type of 
declaration, however Conditional attribute2 can be applied on all of them. 

 
Figure 4: Abstraction of declaration and applicable modifiers 

Another common property of all declaration types is that they must have a name. Even 
if DeSpec grammar allows anonymous rule declarations, some identifier is required by 
compiler for their implementation. For anonymous rules, names are generated during 
parsing. These autogenerated names start with “lambda” prefix. The same mechanism is 
used for anonymous namespaces. 

DeSpec declaration types are divided in two groups. Declarations from the first group 
can be used on the namespace level3 and those from the second group must be nested in 
some declaration from the first group. The first group is represented by SpecDecl abstract 
class and the second one by MemberDecl abstract class. Neither class adds new members to 
the parent Decl class and their only purpose exploiting the possibilities of polymorphism. It 
is often useful to maintain a collection of either only global declarations or only member 
declarations and SpecDecl and MemberDecl classes make this separation easy. The group 
of global declarations types consists of class, enumeration, range and delegate. The group 
of member declarations consists of field, property, method, structure, group and rule. The 
hierarchy of respective AST node types is depicted on Figure 5. 

                                                 
2 This attribute assures inclusion of the declaration into the resulting model only under a certain condition. It 
is designed for model reduction process. 
3 Declarations of classes and delegates are even restricted only to the namespace level, they cannot be nested. 
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Figure 5: Hierarchy of declaration nodes 

Main drawback of this classification is that it cannot be used for recognizing 
declarations of types, since structure declaration defines a type but it can only be nested in a 
class declaration. Another level of inheritance and abstract classes could be added for 
distinguishing e.g. between global declarations, which can appear only on the namespace 
level and those, which can also be nested, etc. However, such detailed classification would 
be utilized only very rarely by the compiler. 

 
Nodes in lower layers of AST can represent vide variety of DeSpec constructs, which 

generally have nothing or very little in common. This is given by different constructs used 
for specifying content of individual declaration types. Classes representing these constructs 
will be described later in appropriate places, if necessary. 
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The lowest layers of AST show a kind of uniformity again. This is due to the fact that 
the longest paths in the tree usually end within a method body or rule declaration. Thus, 
nodes closest to the leaves of AST represent usually expressions, especially member 
accesses and literals. All expression node types are derived from common base class 
Expression (Figure 6). This abstract class introduces members holding the type 
information.  

 
Figure 6: Base class for expressions 

Value of IsLvalue member says, whether the expression can be assigned to. This 
property is determined by the kind of expression. Only MemberAccess, SpecialAccess and 
ElementAccess expressions can be potentially assigned to, if no other restrictions are 
applied. In case of SpecialAccess expression, which represents occurrences of this, result, 
value and thread keywords, value of this member is dependent on the concrete keyword. As 
a consequence, IsLvalue cannot be a static member and is resolved in constructors of 
corresponding classes. 

In contrary, type of an expression is almost always unknown in the time of construction 
due to the fact that type information is incomplete during parsing. The only exception is 
instantiation of Literal class, because its type is given by its value. For the other cases, the 
type analysis must be run to correctly set the value of Type member. Until the type analysis, 
type information represented by this member is incomplete. Type hierarchy and type 
analysis is described in detail in chapter 5.8. 

 
General idea about AST nodes hierarchy can be gained from Figure 7. It shows a 

sample branch of the tree ending in an expression included in a statement of a method. 
Vertical arrows represent inclusion of a subnode with double arrows denoting subnodes, 
which represent items from a collection. Horizontal arrows indicate inheritance 
relationship. To keep the sample clear, only necessary node types are included. To show a 
real branch consisting exclusively from instances of non-abstract classes, further 
inheritance bindings would have to be depicted. 
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Figure 7: Sample AST branch 

 

5.3.3. Child-Parent Bindings 
During the model extraction, visitors often need a broader context when processing 

some nodes, i.e. information about ancestors of the visited node is required. This context 
can be obtained by two mechanisms. 

Firstly, when descending the AST, a visitor can in its Enter method save the 
information about visited node on the top of its special stack. With such a stack for every 
node type, which the visitor is interested in, it is possible to determine at any moment the 
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closest ancestor of a specific node type as well as the others on the path to the AST root. 
For example, if visitor needs to know during the visit of statements declaring local 
variables, what is the most nested parent Block statement, an additional stack accepting 
Block nodes is declared in visitor’s class. Every time when visitor enters a Block node, it 
pushes the entered node on the stack. When leaving a Block, it pops the stack. Thus, the 
closest ancestor of Block type is always accessible on the top of the stack. With one stack 
common for all node types, it would be possible to keep track of traversing the AST, since 
the stack would contain all nodes on the path to the AST root. However, a convenient 
implementation of such stack would require a common base class of all visitors, which 
would work with the stack in its Enter and Return methods. Moreover, this stack does not 
allow inspecting ancestors of nodes, which are not on the current branch. 

More straightforward and convenient way, how to determine an ancestor of visited 
node, is to set up bindings from child nodes to their parents. Every node type inherits two 
members designed for these bindings from the Node base class. ParentNode holds 
information about the closest node of any type on the path to the AST root. 
ParentDeclaration points to the closest structure, union, class or node declaration. Due to 
these bindings, every node knows its parent and thus it is possible to effectively inspect 
whole path to the AST root from an arbitrary node.  

The parent bindings are established by ParentingVisitor in an early phase of 
specification processing. The parser could also do the job, but determining parent 
declarations would be more complicated. Moreover, the implementation via 
ParentingVisitor allows updates of the bindings later in the process of extraction. This 
feature is very useful for the compiler, as it does not need to keep bindings correct when 
changing the AST. After a phase involving critical operations, ParentingVisitor is run on 
the modified AST and repairs inconsistencies.  

 

5.4. Processing of Namespaces 
Namespaces are used in DeSpec specifications to separate the models on different 

levels of abstraction. Before the processing of a specification starts, a namespace containing 
a model with desired level of detail is supposed to be selected. This selection determines 
which parts of the specification are to be extracted. Namespaces can be involved in a 
refinement relation to achieve code reuse. The original DeSpec specification proposes three 
types of refinement – inclusion, replacement an extension. A concept of extension involves 
also classes and enumerations and is not currently supported, as it requires quite 
complicated merging of code and detailed type analysis. The inclusion of another 
namespace can be achieved via using clause. Refine clause causes merging of the two 
involved namespaces and replacement of declarations from the refined one with 
declarations with the same names from the refining one. All declarations on the global level 
of a specification together compose so-called Default namespace. The Default namespace is 
implicitly included in every other namespace.  

Selection of a namespace with a model to extract is not implemented. The main purpose 
of the namespaces is reduction of model’s state space, which should be performed by a 
slicing tool. As this tool is not implemented yet, support for namespace selection is not 
necessary. It is easy to enforce the selection of a desired namespace manually, because 
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currently the Default namespace is always processed. Hence, it suffices to move desired 
top-level model class out of its original namespace. 

Namespaces are not preserved in the resulting model. To complete the namespace 
containing a model to extract, the refining operations must be preformed in a kind of 
preprocessing. Specification class declares PreprocessNamespaces method, which performs 
this preprocessing as soon as the specification is parsed. For every namespace its 
namespace to refine is found, merging is performed and then the Default namespace is 
included in the result by adding appropriate using clause. 

The namespace to refine must be found by specification object, because a namespace 
itself has no access to the other namespaces. In contrary, refinement itself is implemented 
recursively by Refine method of the Namespace class. At first, the refined namespace is 
cloned and processed by NamespaceDereferenceVisitor. This visitor simply turns all 
references to the original namespace into references to the refining namespace. Then using 
clauses of both namespaces are combined and eventually the declarations are merged and 
refines clause is deleted. During merging, declarations that are not specified in the refining 
namespace are inserted into it. Since the NamespaceDereferenceVisitor updated the 
references in these declarations, they are correct in the new context. 

Inclusion of Default namespace by using clause simulates implicit global access to the 
declarations in this namespace from the other namespaces without the need of using 
corresponding prefix. Contrary to refinement, redeclaring of specifications from an 
included namespace is not allowed in the including namespace. 

Although inclusion of a namespace in another one should result in the incorporation of 
the included namespace into the including one, this is not actually necessary. Since the 
using clauses are preserved, they can be used in the type analysis when the corresponding 
declarations are looked for. At the end, during emitting Zing code, the content of an 
included namespace can be dumped as it is, because the incorporation would cause no 
changes in it. 

 

5.5. Providing Built-In Collections 
The built-in collection types are not generated solely by compiler. Their generation is 

based on the specification of collection templates, which is supplied with the compiler and 
which is a mandatory part of every specification.  

These templates can be parameterized with a DeSpec type and thus allow to define 
specific collection types (actually instances of these templates), which can be used in the 
specification. A specific template instance is defined simply by its occurrence in the 
specification on any place where a name of type can be used. The specification must be 
explored and all instances of collection templates must be found. For every type, which is 
used as the parameter of the template, a new corresponding collection type is generated and 
integrated into the specification. It is included in the type table and thus during the type 
analysis, all occurrences of a particular template instance are identified as valid DeSpec 
types. 

A new instance of ArrayList collection template can be introduced in the specification 
e.g. by declaring a variable of this type: 

 
ArrayList<int> integerArray = new ArrayList<int>(10); 
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or also by using it as a type of method parameter: 
 
static synthetic int IndexOfSignaled( 

ArrayList<DispatcherObject>! objects) 

 
Necessary built-in collection types are provided by BuiltInTypesVisitor. When a 

reference to a parameterized collection type is found in the specification, it is checked, 
whether this type has not been already generated. If not, a new collection type, which is 
based on the appropriate template, is declared and added to the specification. Type of its 
items is fixed by the parameter of the template. It is also necessary to generate an 
appropriate instance of Array template parameterized with the same type, as this collection 
type is used for the items member representing underlying low-level collection and a proxy 
to Zing array. Implementation of built-in high-level collection types by instances of Array 
template and notion of Zing array proxy are described in section 5.11.6. Finally, references 
in the generated class declaration must be corrected ReplaceTypeVisitor. 

 
synthetic class ArrayListOfT 
{ 
 ArrayOfT items; 
 
 ArrayListOfT(int size) 
 {items = new ArrayOfT(size);} 
  
 void Resize(int index,int size) 
 { 
  ArrayOfT new_items = new ArrayOfT(size); 
  ... 
 } 
  
 void Add(T newValue) 
 {...} 
 
 T Remove() 
 {...} 
 
 void RemoveAt(int index) 
 { 
  ArrayOfT new_items = new ArrayOfT(items.Count-1); 
  ... 
 } 
  
 int IndexOf(T item) 
 {...} 
 
 T this[int i] 
 { 
  get {...} 
  set {...} 
 } 
   
 int Count 
 { 
  get {...} 
  set {...} 
 } 
}  

Example 2: ArrayList template 
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There is a simplified DeSpec specification of built-in ArrayList template in Example 2. 
Its instances are backed by Array collection with the same underlying type. 
BuiltInTypesVisitor starts deriving a collection type parameterized with e.g. int type from 
this template in its CreateType method.  

This class declaration is cloned and renamed to ArrayList<int> to match the identifier, 
by which it is referred to from the rest of the specification. Then all occurrences of T 
placeholder for the type parameter are replaced with the int type by the ReplaceTypeVisitor. 
The same process is applied for replacing references to the original type (ArrayListOfT) 
with those addressing the generated type (ArrayList<int>).  

After that, the Array<int>  type is required for the items member of the newly created 
class. It can happen that this type has been already generated during deriving of an instance 
of another template parameterized also with int. If not, the same deriving process is applied 
to get the required declaration. In the end, references to ArrayOfT are replaced with 
Array<int>  in the declaration of ArrayList<int> class by the ReplaceTypeVisitor. Thus, a 
correct DeSpec class declaration is generated, which can be transformed into Zing in the 
same standard way as any other DeSpec class. Its functionality relies solely on Zing 
implementation of Array<int>  class, which is described in section 5.11.6. 

 

5.6. Processing of Groups 
The group construct is a mean for code reuse as well as for an abstraction in a specific 

context. The group declaration is basically a set of methods that can be interchanged in a 
specific context.  

As for code reuse, it allows declaring a number of methods while providing only one 
common body. This feature can be used when modeling a common behavior of methods, 
while their different names and signatures must be preserved. DeSpec language 
specification also proposes a possibility of merging the common body with extensions, 
which are specific for the individual methods. Nevertheless, this feature is quite limited, 
since the extension mechanism is not currently supported. 

The group declaration can be used also to abstract from differences between grouped 
methods, which are not important in a specific context, especially in rules. In such a case, 
the name of the group can be used as a placeholder for the names of the included methods. 
Semantics of group invocation is dependent on the place where it is used. When the name 
of a group is used in an invocation expression, it means that any of the included methods 
can be called at that place. The target is chosen randomly. When the group invocation is 
used as in a boolean rule expression, it is actually expanded into the conjunction of calls of 
all grouped methods. Thus, quantification over the methods with an existence quantifier is 
introduced. A group can be also used to parameterize a quantified rule. It allows to express 
that rule must hold for all methods from the group. 

 
The group construct is syntactic sugar and has no counterpart in the resulting model. As 

such, it must be eliminated during an early phase of model extraction, in a kind of 
preprocessing. Groups are eliminated by individual declaring of all included methods and 
by expanding the expressions referring to them. This elimination is performed by a set of 
visitors. 
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At first, all group declarations from all class declarations are gathered into one table for 
further use by the visitors. Since group declaration allows including not only method names 
but also names of other groups, these lists must be expanded to contain only names of 
methods before the elimination starts. GroupExpandingVisitor is designed for this task. 
When expanding the lists of grouped methods, it is suitable to use the gained information to 
provide correct declarations for these methods at the same time. 

 
Figure 8: GroupExpandingVisitor class 

Traversing of this visitor is not quite typical, mainly due to the possibility to recursively 
include other groups in the group declaration. The descent of the GroupExpandingVisitor is 
limited to the level of group declarations. When leaving a group node, all its items are 
inspected by ExpandGroupItmes method. If some of them stands for another group, which 
is not resolved yet, the visitor is redirected to process this group first. To manage these 
redirections, visitor contains some additional fields (Figure 8). To avoid reprocessing of 
already resolved groups during this redirecting, resolvedGroups list is maintained by the 
visitor. The member enteredGroups is a stack that keeps track of visitor’s redirections and 
allows detecting mutual inclusions in group declarations. Information about parent class 
and namespace of currently processed group (maintained in parentNodes and 
nextNamespace fields) is needed to identify the methods and groups, which are represented 
by the items of the group. 

When a class containing a group declaration includes also a declaration of a method 
with the same signature, it means that declaration of this method represents the common 
declaration shared by all methods listed in the group. In the following text, this declaration 
is referred as “common declaration”. This code reuse is possible only when the modifiers 
and signatures of the group, its methods and the common declaration match. The part of 
this check involving inspecting on arguments and return types is done CheckSignatures 
method. 

Methods listed in a group are defined as follows.  
When an item in the group has no counterpart in the specification, a new method is 

declared with the name of the item, and the signature (i.e. parameters and return value) and 
body copied from the common declaration.  
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When both the declaration of a listed method and the common declaration are provided, 
contracts are merged together (if present) and the body from the declaration of the specific 
method is used (i.e. it overwrites the common one). 

Merging of the bodies via group label and the extension mechanism described in 
DeSpec language specification is not supported. 

 
When group declarations are resolved and appropriate method declarations are 

generated, group invocations can be replaced by invocations of individual methods and 
then groups can be removed from the model.  

 
It remains to explain, how the group invocations are replaced by visitors. Since 

replacing of group invocations requires generating quite complex segments of code, it 
cannot be managed in a single pass through the AST. On the other hand, it is not necessary 
to repeatedly traverse the whole AST. Rather, a single descent from the AST root to the 
group invocations is performed and only relevant subtrees are processed repeatedly by 
special visitors. The whole process is driven by the GroupReplacingVisitor (Figure 9). 
There are also three helper visitors that deal with the individual expansions in the 
invocation subtrees – GroupInvocationSearchingVisitor, GroupInvocationReplacingVisitor 
and GroupVarInvocationReplacingVisitor. 

 
Figure 9: Visitors for elimination of groups 
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To deal with the invocation of groups in method and property bodies, 

GroupReplacingVisitor runs GroupInvocationSearchingVisitor on every statement. This 
helper visitor looks for group invocation expressions in the statement and when it detects 
such an expression, it stores information about the used group and about the target of the 
invocation expression in its fields. In that case, ReplaceGroupInvocationInStatement 
method of the controlling GroupReplaceVisitor generates an appropriate select statement as 
a replacement for the original statement containing the group invocation expression. For 
every method included in the group, a clone of the original statement is processed by 
GroupInvocationReplacingVisitor. This visitor simply replaces the first invocation of the 
group in the cloned statement with the invocation of one of the grouped methods. These 
clones with replaced invocations are then used as wait statements for the non-deterministic 
select. This process is repeated on the statement until all group invocations are replaced 
with the select statements. Thus it is assured that on the places of original group invocations 
an arbitrary method from that group is invoked. 

Groups can be used also as quantification variables in the forall clause of a quantified 
rule. This variable is then used in the rule expressions to denote method events. In this 
context it means that the rule must be satisfied for every method from the group. When a 
rule quantified by one or more group variables is found by GroupReplaceVisitor, its 
ReplaceGroupVariable method is used to clone the rule specifications and to modify them 
to involve each of the grouped methods. In every cloned rule specification, the 
GroupVarInvocationReplacingVisitor replaces the method events referring to the group 
with events referring to one of the grouped methods. When the rule is quantified by more 
group variables, this process is repeated for every variable over the newly expanded rule. 
Thus, in the end each rule specification contains one combination of invocations of 
methods from the respective groups. Whole rule covers all possible combinations. 

While a group quantification variable corresponds to a universal quantifier, the usage of 
group invocation directly as a target of a method event operator in the rule expression 
represents quantifying over the group methods by an existence quantifier. Every invocation 
expression using a method event operator is a boolean expression. Thus, it can be replaced 
with a conjunction of its clones and each clone is modified to refer to one specific method 
from the group. The required conjunction is created by 
ReplaceGroupInvocationsInExpression of the GroupReplaceVisitor. Since the replacement 
of targets of method event operators is analogous to the replacement of method invocations 
in cloned wait statements from the first case, same visitors are used for this task. 

 

5.7. Type Analysis 
The type analysis is the crucial phase of the model extraction. It is necessary to prove 

the semantic correctness of the specification and its results are used in further phases to 
generate the correct additional code. During this analysis, the type information is added to 
every expression present in the specification. With this information, it is possible to 
implement inheritance, to check the type correctness of assignments, matching of method 
calls to their signatures, etc.  
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5.7.1. Classification of Types 
DeSpec types can be either value or reference. That corresponds to Zing simple and 

complex types respectively. Built-in integer types, boolean type and specifications of 
enumerations, ranges and delegates are all value types. Reference types include built-in end 
user classes. Instances of the built-in templates, string and object type represent built-in 
reference types. This classification does not follow DeSpec grammar, though. Only 
generic, range and primitive types are distinguished syntactically. Moreover, the type 
analysis requires yet another categorization of the types. Its representation by the AST node 
types is depicted on Figure 10. 

 
Figure 10: Type classification 

 



 39

The base class for all type categories is DesType. The key member provided by this 
class is the IsSubtype method, since this relation must be defined for all types to enable the 
type analysis. Only SimpleType and GenericType and Range represent the types generated 
during parsing the specification. However these three categories do not match the value-
reference classification. Rather, SimpleType nodes correspond to primitive types without 
any explicit declaration like for example integer types and Range and GenericType nodes 
correspond to the type declarations present in the specification, like ranges, classes, 
enumerations, etc. The other type categories are designed only for the needs of the type 
analysis.  

The SimpleType category consists of types, which do not need any additional 
information about themselves. The identifier fully describes the type. An example of such 
type can be any built-in integer type. Nevertheless, not only a value type can be represented 
by the SimpleType class. For example string is a reference type, but it is self-describing and 
thus it falls into the SimpleType category. This category also covers some specialties, like 
null or ignored type. The concrete type represented by the SimpleType node is determined 
by the value of the CoreType field, which holds one of the items of PrimitiveType 
enumeration (Figure 10). 

In contrary, GenericType class represents reference types, which are declared in the 
specification. It allows specifying parameters of the type in the Parameters list, however 
this property can be used only by the instances of the built-in templates. User-defined 
classes cannot be parameterized. The reference to the declaration of the type is contained in 
the Declaration member. The value of this member is resolved during the type analysis and 
represents the complete type information. Often it is sufficient to know, whether the type 
stands for a class, enumeration, etc., it means that only the information about the kind of the 
declaration is needed. This information can be obtained by inspecting the type of 
Declaration member, but for convenience, it is also contained in the MetaType member. 
The value of this member is an item of the TypeDeclarations enumeration (Figure 11). 
Both of these members are resolved during the type analysis and they cannot be used till 
this phase. 

 
Figure 11: MetaType classification 

Similarly to GenericType, Range nodes require additional fields to hold the complete 
type information. In contrary to GenericType, this information is held directly in the 
appropriate fields, since no range type is preserved in the form of a declaration, which 
could be pointed to.  

The other type classes are designed only for the type analysis and they have no 
counterparts among DeSpec types. The SignatureType class is used for holding the 
declaration of the method. If a MemberAccess node refers to a method, its type is set to the 
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SignatureType node. In its parent expression – the invocation of the method or an operation 
with the delegate it represents – the declaration of the method is used to determine its type. 
The NameOfType class has a similar purpose – it is used as the type of MemberAccess 
nodes, which refer to the declarations of types and it holds these declarations. For example, 
in the invocation of a static method of some class, the type of the MemberAccess node 
denoting the name of the class is resolved to the NameOfType node containing the 
declaration of this class. This declaration is then used for searching of the declaration of the 
invoked static method. The UnknownType nodes are used for initializing of the type 
members before the type analysis and then for signaling that the type of an expression 
cannot be resolved (for example if the appropriate declaration cannot be found). 

 
The type analysis consists of two phases. Firstly, the information about the type itself 

must be known. As the type information about a GenericType node is represented by its 
declaration, references to these declarations must be provided. As for the Range node, their 
type information is given by the bounds of the range, which are already known in the time 
of instantiation. However, determining of the underlying type of the range is not a trivial 
process, so the underlying type must be resolved and stored in the node.  

When all type nodes contain the complete type information, the types of the expressions 
in the specification are resolved and their type correctness is checked. 

 

5.7.2. Declarations of Generic Types 
When instances of the GenericType class are created during parsing, nothing is known 

about the corresponding declarations. It can happen that at the time of instantiation, the 
AST does not contain the declaration of the referenced type, since it is not parsed yet. Thus, 
Declaration and MetaType members cannot be correctly set in the constructor and they are 
initialized with the special values to indicate that the corresponding type is unknown. 

When whole specification is parsed and the type table is completed, it is possible to 
determine the types, which the GenericType nodes refer to. This is done by the 
FindTypeVisitor. This visitor has an access to the type table, so it knows about all 
declarations in the specification. 

For every GenericType node, it finds the path back to the AST root and uses it to 
generate the fully qualified name of the type. Then it is checked in the type table, whether a 
type declaration with such name exists. It actually means that the type declaration is looked 
for in the closest possible scope. If the declaration is not found, the scope is broadened by 
shortening the prefix of the type name and the declaration is looked for in this new scope. 
This process is repeated until the declaration is found or the namespace scope is reached. If 
the declaration is not present in the parent namespace, all namespaces included by using 
clause are searched. If the search is not successful, it means that the original name is 
already fully qualified and the declaration can be found in the type table keyed exactly by 
this name. This process ensures that the closest acceptable declaration is chosen. 

When the declaration of the type is found, it is stored in the Declaration member and 
the MetaType member is set according to its kind. Thus, the complete type information is 
provided for the node. 
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5.7.3. Underlying Types of Enumerations and Ranges 
For checking the type correctness of expressions that involve a variable of the range 

type, it is necessary to determine underlying integer types of these ranges. It is also required 
for the translation into Zing, since the ranges are implemented by the appropriate integer 
types and additional constraints checking the bounds. The underlying types of enumeration 
declarations also must be resolved to allow checks of the bit operations over the flag 
enumerations. 

The underlying types are resolved by the UnderlyingTypeVisitor. This visitor inspects 
declarations of enumerations and ranges and sets UnderlyingType members to the least 
built-in integer type, which covers all values from the domain given by the type. For 
ranges, the underlying type is the integer type, whose domain includes both of the range 
bounds. For enumerations, the underlying type is the one, whose domain includes both the 
minimal and the maximal item. 

To allow the usage of some binary operators in the expressions involving range or 
enumeration value, additional integer types must be introduced. This need can be 
demonstrated for example on the assignment of a value from a specific range (selected e.g. 
by non-deterministic choose statement) to a variable of some integer type. The assignment 
expression passes the type check only if the type of the right side is a subtype of - or the 
same type as - the left-side type. Let the bounds of the range on the right side of the 
assignment be e.g. 0..1024. Then it should be possible to assign a value from this domain to 
the variable on the left side no matter if its type is uint or int, because both of the types 
cover all values from the range. However, regardless of the underlying type, which is set 
for the range, (both int and uint are possible), there are combinations of the resolved types, 
which would not pass the type check. The same problem can occur in an expression 
involving an integer literal, as its type is resolved in the same way. 

To allow expressions like this, it is necessary to introduce the artificial integer types, 
which represent the intersections of the signed and unsigned versions of each built-in 
integer type. These intersections are represented by SubByte, SubShort, SubInt and SubLong 
items of PrimitiveTypes enumeration (Figure 10) and are subtypes of both built-in versions 
of the corresponding type. The underlying types of enumerations, ranges and integer literals 
are always set to the least possible intersection type. As a consequence, these expressions 
always pass the type check. The intersection integer types are not included in DeSpec 
grammar and can be used only by the compiler for the needs of the type analysis.  

 

5.7.4. Resolving of Type of Expression 
As soon as the DesType nodes contain the complete type information, it is possible to 

resolve the types of the expressions. Together with the operators, the expressions can 
involve accesses to members or variables and method invocations. The ResolveTypeVisitor 
identifies the types of these subexpressions (represented by the DesType nodes) and check 
the type correctness of whole expression with regard to the used operator and to the types 
of these subexpressions. This phase is also suitable for evaluation of the constant 
expressions. However, this feature is not implemented. 

There are 5 basic expressions that can be regarded as the building units of the 
compound expressions involving operators. They are represented in the AST by following 
nodes types: MemberAccess, SpecialAcces, ElementAccess, InvocationExpression and 
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Literal. The MemberAccess refers to any variable or parameter, to any global declaration, to 
an enumeration item or to any class or structure member – a field, a property, a method or a 
nested declaration. The SpecialAccess refers to the special variables – thread, this, value 
and result. The ElementAccess refers to a collection item. The MethodInvocation refers to a 
call of any class method. In the following text, all these basic expressions are referred to as 
“accesses”. 

The key task for the ResolveTypeVisitor is to identify the types of the accesses. Then 
the types of the compound expressions can be easily resolved their type correctness can be 
checked. Resolving of SpecialAccess is quite straightforward, as the types can be easily 
extracted from the parent method declaration or from the parent class declaration. For 
resolving of the ElementAccess and the MethodInvocation it is necessary to know the type 
of their targets, which are represented by the MemberAccess. Thus, the main issue is 
resolving of the MemberAccess nodes. 

 
For resolving of the type of the MemberAccess it is necessary to identify the declaration 

of its target. The declaration contains a member represented by the DesType node, which 
holds the complete type information, since it was resolved in the previous phase. The 
ResolveTypeVisitor contains two methods, which are used for identifying the target 
declaration. The SearchUp method traces the path from the MemberAccess node to the AST 
root and in every relevant node on the path (i.e. node that can contain the target declaration) 
it invokes the other method – SearchInNode. This method, according to the kind of the 
node that is inspected, explores the relevant members of the node that can contain the 
searched declaration. When the declaration is found, its type (that was resolved in the 
previous phase) is retrieved and returned. 

 
There are several complications related to the type resolving of the MemberAccess 

nodes. 
In some cases it is necessary to impose additional requirements on the searched 

declaration, which must be taken into account by the SearchInNode method. These 
requirements depend on the context of the MemberAccess node and must be recognized 
within the Return method when the visitor is leaving the access node. For example, when 
the access appears on the left side of an assignment, it implies that the target must be 
writable. Thus, when SearchInNode inspect members of a class and finds a property 
declaration with the desired name, it must be checked that the property includes the setter. 
The MemberReq flag enumeration is defined for specifying all possible combinations of 
additional requirements:  

 
[Flags] 
enum MemberReq 
{ 

Static = 1, 
Instance = 2, 
Readable = 4, 
Writable = 8 

} 

 
Another issue is related to the return value of the searching methods. The visit of the 

access node should result in determination of nodes’ type. Thus, the searching methods 
should return a DesType node that contains the complete type information. However, there 
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are some cases, when this output is not sufficient. There are two types of the bindings 
related to the access nodes. In one direction, the access node contains the reference to the 
type of its target declaration. In the other direction, the property declarations and the field 
declarations contain the lists of the access nodes, which refer to them. These bindings are 
needed during the transformation of fields into properties later in the process of the model 
extraction. These lists of references are filled during the type analysis, when the targets of 
the accesses are identified. To update the lists of references, the corresponding declarations 
must be returned by the searching methods as well. 

The last problem emerges from the fact that in some cases the type of access is 
dependent on the context of the access. When the target of an access node is identified as 
the name of a method and its declaration is found, the semantic meaning of the access is not 
clear. It can stand not only for the target of the method invocation or for the delegate 
instance, but also for the boolean expression that says, whether the function pointer 
mapping is established for this method4. The real meaning of the access must be determined 
from its context. In the first two cases, type of the access is represented by the instance of 
SignatureType node type. This type has no counterpart among DeSpec types. Rather, it is 
designed only for compiler’s needs when it checks type correctness of the expressions. In 
the second case, the type of the access is set to bool represented by the appropriate 
SimpleType node. By default, the type of the method access is always resolved to the 
appropriate SignatureType. To deal with this issue, ResolveTypeVisitor.Return override for 
MemberAccess nodes accepts one more parameter, which says, whether to resolve the type 
as usual or whether the boolean expression is expected. In the context of the parent 
expression, the real meaning of the method access is determined and if the boolean type is 
expected, rather than the provided SignatureType, the Return method is invoked once more 
with this access and the additional parameter correctly set. This quite complicated 
workaround would not be needed, if the determining of the function pointer mapping was 
supported syntactically by a unary operator. Then it would be possible to resolve the 
method access always to a SignatureType node and the type of whole expression including 
the operator would be set to the boolean SimpleType. This process would be analogous to 
resolving of the type of the method invocation’s target and the type the invocation itself 
(which is given by the return type of the invoked method). 
 

When the types of the accesses are determined, resolving of the types of their parent 
expressions is quite simple, especially in case of the binary and unary expressions that 
involve only the operators applied on the accesses. The main task of the ResolveTypeVisitor 
during visits of the compound expressions and invocation expressions is checking of the 
type correctness. For the binary expressions it is checked, whether the operator is defined 
for the operands of the resolved types and whether the is-subtype relation is correct.  

In case of the method invocation the more complex check is performed to ensure that 
the passed arguments match the condensed version of the method signature. The condensed 
version of the signature contains only those parameters, which are neither placeholders nor 
instances. This signature is used for the method invocation. The input arguments are 
checked to be subtypes of the appropriate parameters defined in the condensed signature 
and the output arguments are checked to be supertypes of the corresponding parameters. In 

                                                 
4 DeSpec makes it possible to determine, whether a driver method from the IEarlyBoundRoutines interface is 
bound to the method from the specification.  
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case that this check passes but the reference type of an actual argument value does not 
strictly match the type of the corresponding parameter, the appropriate cast must be added. 
The polymorphism is emulated by transformation of the argument value into the type 
expression with as operator. The similar operation must be performed on the right operand 
of an assignment expression, when its type is subtype of the left operand’s type. 

When ascending the part of the AST representing a compound expression, the 
ResolveTypeVisitor resolves at first the types of the accesses at the leaves of the subtree. 
The types of literals are already solved, as they known at the time of their creation. With 
the type information about the leaves, the visitor determines the type of its parent 
expression and performs the check of the type compatibility for the operator, which defines 
the parent expression. This process is repeated on the higher and higher levels of the 
subtree, until the root expression is resolved. After traversing the AST, every expression 
contains the complete type information and is checked to be type-correct or its type is set to 
UnknownType, when it cannot be resolved and the appropriate error is added into the error 
list. 
 

5.8. Post-Type Analysis 
When the type correctness of the specification is ensured by passing the type analysis, it 

is necessary to check that the other semantic rules are satisfied. The specification of the 
DeSpec language defines a large number of rules for the usage of all sorts of DeSpec 
constructs. It is not possible to classify the imposed rules into some strict categories, as they 
are related to a wide variety of aspects of the language and they must be checked on the 
various levels of the AST. However, some basic groups of the rules related to the common 
issues can be distinguished. There are rules concerning the application of modifiers, non-
nullable constraints, contracts and parameter constraints, initialization of the fields and 
variables, properties of the constructors and inheritance. Beside these groups, still there are 
many rules that do not fit into any category. 

Checks of these rules are covered mostly by the PostTypeSemanticsVisitor. Unlike most 
of the other visitors, this one extensively exploits the possibility to act both when entering 
an AST node and when leaving it and at the same time it does not restrict its operation only 
to a few specific node types. 

The PostTypeSemanticsVisitor does not only check the semantic rules but it also helps 
to implement some of the DeSpec features. In the declarations of methods, it transforms the 
constraints imposed on the parameters into the equivalent contracts (i.e. preconditions for 
the input parameters and postconditions for the output parameters). This move simplifies 
the implementation of the method constraints later during the model extraction, since it is 
sufficient just to turn the contracts into the equivalent assertions (see section 5.11.1). 

Another important task accomplished by the PostTypeSemanticsVisitor is providing the 
initializers of the local variables and class fields. The generated field initializers are then 
inserted into the bodies of the constructors. The appropriate default values are generated by 
visitor’s GetInitExpression method on the base of the type of the variable or field being 
initialized. 

The implementation of DeSpec features often requires intercepting the access to some 
field and performing a check or another action. This is achieved by transforming such fields 
into the properties. The code performing the required operation is then inserted into the 
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generated getter or setter. For example the declaration of a non-nullable field requires that 
the null value is never assigned to this field. To implement this constraint, the field 
declaration is replaced with the corresponding property declaration of the same name and 
with the declaration of the backing field. Then the assertion ensuring that the assigned 
value is not null is inserted into the generated setter. The transformation of the fields into 
the properties supplemented with required checks is also performed by the 
PostTypeSemanticsVisitor. The FieldToProperty method is designed for this purpose. 

 

5.9. Implementation of Inheritance 
Since inheritance is not supported by Zing so far, quite a complex workaround is 

required for its emulation. Not all features supported in common class-based languages are 
necessary for DeSpec specifications. The design of the Windows kernel environment 
involves several patterns that simulate classes and the inheritance hierarchy and exploits the 
possibilities given by the control of memory layout to implement kind of polymorphism. 
DeSpec should allow to express these concepts, but it cannot use kernel’s approach to 
achieve this aim, since the properties of C and Zing are quite different in this respect. The 
features that are useful for modeling the kernel are related to polymorphism. Above all, the 
support for the type conversion and access to the inherited members should be provided. 

 

5.9.1. Phases of Inheritance Implementation 
The implementation of inheritance is divided into several steps.  
At first, in every class from which others are inherited, all its fields are turned into the 

properties. This is necessary for delegating the access to the inherited fields. This 
transformation must be completed before the type analysis, because that process sets up the 
bindings between the member declarations and their accesses in the specification. If the 
transformation of the fields into the properties took place after the establishment of these 
bindings, they would be lost. Since this modification must be performed globally and 
traversing of the AST is not needed, it is implemented by the EliminateInheritedFields 
method, which is declared in the Specification class.  

Although during the type analysis the support for type conversion is not yet 
implemented, it is suitable to prepare the type expressions, which are necessary for 
emulation of polymorphism, in this phase. Since the conversion of arguments in the method 
invocations and right values in assignments to their supertypes is expected to be implicit in 
DeSpec, these values must be explicitly converted to the required supertypes by the 
compiler. 

When the semantic correctness of the specification is checked, further steps in 
implementing inheritance take place. The hierarchy of classes involved in inheritance is 
determined and corresponding inheritance trees are built during the analysis of inheritance 
relationships. Thus, inheritance bindings between individual classes are recognized and the 
appropriate typecasting mechanism can be implemented. 

For implementation of polymorphism and support for the type operators, the type 
conversion routines are generated for every class involved in inheritance. These routines 
require references to the instances of the parent and child classes. The fields for these 
references are also declared in this phase. Declarations of these fields allow building of 
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whole chain of instances of the inherited classes (inheritance chain). Since the chains 
represent the complete paths5 in individual inheritance trees, they allow typecasting both to 
the subtypes and to the supertypes and they contain all target instances for delegating 
accesses to the inherited members.  

In the last step, the code for setting up parent-child bindings, building of inheritance 
chains and especially dispatching of accesses to the inherited members is generated. 

5.9.2. Analysis of Inheritance Relationships 
Minor preparations for the inheritance implementation take place in early phases of the 

model extractions and during the type analysis, namely transformation of the inherited 
fields into the properties and the explicit typecasts of the values to the supertypes on places, 
where the implicit conversion is expected. The key steps are made after the completion of 
the semantic analysis.  

First of all, hierarchy of classes involved in inheritance must be recognized. This 
information is gained during traversing the AST by the InheritanceAnalysisVisitor (Figure 
12).  

 

Figure 12: Visitor for inheritance analysis 

This visitor descends just to the level of class declarations and stores the information 
about inheritance relationships in two collections. The inheriting list contains all non-base 
classes, which are involved in inheritance, i.e. they inherit from other classes. The inherited 
collection contains for every class the list of all its descendants, i.e. the classes, which are 
inherited from it directly or indirectly. Thus, inherited includes the base classes and all their 
derivatives except the terminating ones. These members are designed for gathering the 
information about the inheritance bindings when ascending the AST. A data structure that 
reflects the class hierarchy more conveniently is needed for further processing. 

When the analysis is completed, the visitor’s GetInheritanceTrees method creates such 
structure. For every group of classes, which are derived from a specific base class, an 
inheritance tree is generated. This tree is composed of InheritanceNode nodes. Every node 
contains the declaration of the represented class and the list of nodes, which represent the 

                                                 
5 Here the complete path stands for the path from the real class of the object to the root of the inheritance tree, 
which represents the base class. The object can be represented by any instance from the inheritance chain, 
depending on its actual type context. 
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immediately derived classes. Since DeSpec does not allow multiple inheritance, there are 
no cycles in the hierarchy and every inherited class is included in exactly one tree. 

Although Zing object type can be regarded as the base class of every other class 
declared in the model, it has quite specific meaning due to it typecasting possibilities and it 
is not included in the inheritance hierarchy.  

 

5.9.3. Support for Type Conversion 
The support for the type conversion is necessary for emulation of polymorphism. It is 

required for both explicit casting via as operator and implicit casting to a supertype in 
expressions which require that. The as type expressions for implicit casting of the 
arguments and the right values are prepared during the type analysis. 

For every class involved in inheritance, two type converting routines are generated and 
added to its declaration – __upcast and __downcast. The __upcast method attempts to find 
an instance of the target type in the upper part of the inheritance chain, i.e. among the nodes 
on the path from the actual instance to the instance of the base class. The __downcast make 
this attempt in the lower part of the inheritance chain, i.e. on the path from the actual 
instance to the instance of the real type of the object. The is and as type operators are 
implemented using these methods. 

The information about the target type is passed to these methods by the argument of the 
__Classes enumeration type. The declaration of such enumeration is possible due to the fact 
that number of classes involved in inheritance is fixed and known to the compiler from the 
results of the inheritance analysis. This enumeration is filled during the final phase of 
inheritance implementation on the specification level. Every item represents one class 
involved in inheritance. Thus, the type operands of is and as operators can be represented 
by these items and passed as arguments to the type converting routines.  

Absence of Zing object type in inheritance hierarchy is not a problem. Every valid is 
expression with the object operand is implicitly true and thus no calls of the type converting 
routines are needed to replace it. Zing allows assignment of a strongly typed value to a 
variable of object type as well as assignment of a value held in a variable of object type to 
the variable of the same real type. In both of the cases, the necessary type cast is provided 
by Zing. Thus, no explicit as expression with object operand is needed in the specification. 

 
When the is operator is used in a type expression, the type converting methods are 

called and attempt to convert the actual type of the expression value into the target type is 
made. Since it is not known, whether the target type a supertype or subtype of the value’s 
actual type, both of the parts of the inheritance chain must be inspected. The expression is 
true, iff one of the attempts is successful, i.e. the instance of the appropriate type is present 
in the inheritance chain. Since this condition is quite simple, all is expressions in this form 

 
<variable-name> is <type-name> 
 
are replaced with this equivalent conditional expression: 
 
<variable-name>.__downcast(__Classes.<type-name>) != null 
|| 

<variable-name>.__upcast(__Classes.<type-name>) != null 
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In case of the as expressions, the replacement is more complicated, since the return 

value must be preserved. To solve this issue, __as method is generated for every class 
involved in inheritance and added to its declaration. This method calls the appropriate 
__downcast and __upcast methods as necessary and returns the result of the cast. For 
returning the result, the implicit Zing typecasting from and to object type is used. The 
instance of the target type, which is returned either from __downcast or __upcast has 
already the object type and it is returned from the __as method unchanged. Out of the 
method, the result is implicitly converted back to the target type. When the cast to the target 
type is not possible, because the real type of the inspected object is a supertype of the 
target, null value is returned. The declaration of the __as method is following: 

 
object __as(__Classes.<type-name>) 
{ 

 result = __downcast(__Classes.<type-name>); 
 if(result == null) 

  result = __upcast(__Classes.<type-name>); 
} 

 
This implementation exploits the implicit declaration of the result variable and the 

implicit return statement provided in by the ZingFinalizingVisitor during generating of 
method’s models (see section 5.11). 

 
The support for the type conversion is provided by the CastImplementingVisitor, when 

it enters the ClassDecl nodes representing the classes from the inheritance hierarchy. It 
generates declarations of child and parent fields for child-parent bindings in the inheritance 
chain and also the type converting routines – __downcast, __upcast and __as. The 
information about the inheritance bindings is gained from the inheritance trees generated 
during the inheritance analysis. 
 

5.9.4. Access to Inherited Members 
To make use of the class hierarchy, access to the inherited members must be provided. 

This is achieved by the delegating the access to the instance of the class, which contains the 
declaration of the accessed member.  

Let class B be inherited from A. The B class contains an additional field of type A 
(parent) and the A class contains an additional field for every class, which is inherited from 
it (child). Every child field has a type of the corresponding inherited class. When a new 
instance of the class B is created, the class A is also instantiated and bindings between the 
two objects are established. The object of type A is set as parent in the object of type B and 
reference to this B object is stored in the appropriate child field of the A object. When a 
member inherited from A is accessed in the B instance, the access is delegated via the 
parent field to the instance of the parent class. 

In case of a class hierarchy with more levels of inheritance, the members inherited from 
more distant ancestors are accessed recursively with a higher level of indirection. When 
creating an instance of a class involved in inheritance, all its ancestors must be instantiated 
at the same time. They are linked by the parent-child bindings and the inheritance chain is 
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formed. This chain can correctly represent the instance in any valid type context. As the 
instances of all ancestors must be included in the chain, the abstract classes, which can 
stand on the top of inheritance hierarchy, are turned into ordinary classes to enable their 
instantiation. The abstract modifier is relevant only for the semantic analysis, which checks 
that no instances are created explicitly in the specification. 

DeSpec does not allow overriding of the inherited class members and the semantic 
analysis checks that the names of the members are unique when merged into one set. The 
only exceptions are auto-generated methods Initalize and CopyTo. These methods should 
be declared in every class in the specification and their purpose is to enable zero-initializing 
and copying off all class’ fields. These methods cannot be modeled in the specification, 
because the complete set of the declared fields is not known till the end of the extraction 
process. The methods also allow specifying how many bytes of the fields should be 
initialized with zeros or copied. For implementation of this functionality it is necessary to 
determine the offsets of the fields in the corresponding C declaration. Since the analyzer of 
C source code is not yet available, Initalize and CopyTo methods are not currently 
supported.  

 
The approach via the inheritance chains is quite straightforward but requires generating 

of the dispatching code. For methods and properties, this redirection to the parent instance 
is inserted into their bodies. The fields must be turned into properties and the redirecting 
code is inserted into their getters and setters. 

Example 3 shows access to the inherited members in simplified fragments of two 
classes involved in inheritance. KEVENT class is inherited from DispatcherObject class and 
no other classes are included in the corresponding inheritance tree. DispatcherObject 
contains the original declarations of one instance method and one static method. The 
additional __child_Default_KEVENT field that contains an instance of the derived 
KEVENT class is generated by the CastImplementingVisitor (described in detail in section 
5.9.3). Most of the code shown in the fragment of KEVENT class is generated by the 
compiler. The reference to the instance of the parent class (__parent) is set to the 
DispatcherObject object instantiated by the extended KEVENT constructor. The 
declarations of the inherited methods are copied and their bodies are replaced with 
expressions, which invoke the methods on the appropriate targets – the instance methods 
are invoked on the __parent field and static methods are invoked on the DispatcherObject 
class.  

 
class DispatcherObject 
{ 
 synthetic KEVENT __child_Default_KEVENT; 
  
 synthetic bool IsIrqlCorrect(LARGE_INTEGER timelimit) 
 {...} 
  
 static synthetic bool IsSignaling( 

ArrayList<DispatcherObject>! objects, 
WaitType type) 

 {...} 
  
 ... 
} 
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class KEVENT 
{ 
 synthetic DispatcherObject __parent; 
  
 synthetic KEVENT() 
 { 
  __parent = new DispatcherObject(); 
  __parent.__child_Default_KEVENT = this; 
  ... 
 } 
  
 synthetic bool IsIrqlCorrect(LARGE_INTEGER timelimit) 
 { __parent.IsIrwlCorrect(timelimit); } 
  
 static synthetic bool IsSignaling(ArrayList<DispatcherObject>! 
objects,  

WaitType type) 
 { DispatcherObject.IsSIgnaling(objects, type); } 
 ... 
} 

Example 3: Access to inherited members 

 
The supplementary code for providing access to the inherited members is generated at 

several different places during the model extraction. 
The declarations of the additional fields for the parent-child bindings and the code 

instantiating the parent class and setting the bindings, is created in the earlier steps. The 
dispatching methods and properties are added by ResolveInheritanceInClass method 
declared in the Specification class .In the final phase of inheritance implementation, the 
specification recursively calls this method for all classes from the inheritance trees  

 

5.10. Rules 
Rules are the major feature of DeSpec language and also one of the most complicated. 

Their implementation requires generating of a complex checking mechanism and extensive 
changes in the extracted model. 

 
At first, a brief introduction into the semantics of rules is appropriate. Detailed 

description of all features and properties can be found in [2].  
A rule can express requirements related to so-called source code events. The source 

code events can be addressed by two groups of source code event operators. The first group 
contains operators that address entering a method and returning from a method. The second 
group consists of operators that address accesses to fields and properties.  

The operators can be combined together in common boolean expressions. These 
expressions are then used in specific temporal patterns. The patterns express an order of 
precedence or a chronology of specified events that must hold during the execution of a 
model. 

Moreover, a temporal rule pattern can be quantified by variables listed in forall clause. 
Variables listed in the clause can be used in rule expressions as parameters or targets of 
operators. A quantified rule must hold when applied on every value (or combination of 
values) of quantification variable (or variables) present in the model during its execution.  
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An example of a rule using some of these features follows: 
 

rule 
 forall(DEVICE_OBJECT device) 
 { CreateDevice(_,out device)::succeeded }  
 leads to  
 { device.IoDeleteDevice()::returned }  
 globally; 

Example 4: Quantified “leads-globally” rule 

This rule verifies that all instances of DEVICE_OBJECT created by CreateDevice 
method whenever during model execution are eventually deleted. Every instance created in 
the model must be checked for fulfilling this requirement. 

 
Rule patterns supported by DeSpec are easy to use shortcuts for temporal patterns in 

LTL. Actually the LTL-X subset is sufficient for definition of the patterns because Next 
operator can be avoided. It is possible to verify LTL-X formulas by a corresponding Büchi 
automaton on finite traces. Reasons why it suffices to constrain only to finite traces are 
discussed in detail in [2]. For every LTL-X formula it is possible to construct a Büchi 
automaton for its run-time verification.  

In the context of driver environment, verification properties of necessary Büchi 
automata can be further concretized. As required Büchi automata are defined by their states, 
input alphabet and state-transition function, a representation by Zing integer variables, 
arrays, enumerations and a transition method come into consideration.  

Rules can be instance or static, depending on targets of used operators. This property of 
a rule determines a place, where the state of the corresponding automaton is stored. Thus, 
mixing of static and instance targets in one rule can bring forth significant problems in the 
implementation, even if it is allowed by DeSpec.  

Rules are declared within the scope of a DeSpec class but they are bound to the parent 
class by no means. However, an implementation of the corresponding automaton must 
reside in a particular class and its location determines its accessibility from other parts of 
the model. This is an issue in case of instance rules, as some mechanism must be provided 
for keeping track of instantiated automata and calling their transition methods. 

 
During the development, the implementation of all features of DeSpec rules turned to 

be very time-consuming task. Priority was given to an implementation of basic features, 
which are necessary to express at least some of requirements imposed by Windows kernel 
on drivers. Successful completion of this task would prove that concept of rule temporal 
patterns is feasible and its role in model verification is well-designed.  

Current state of rule patterns implementation follows. 
Basically, it is possible to declare instance rules qualified by a single variable of a 

reference type, if other variables are listed, they must represent a group. Group variables 
have different semantics and causes expansion of rule to cover all methods listed in 
referenced groups. Only default severity error is supported. 

Only selected temporal patterns are supported. This limitation results from the fact that 
equivalent automata templates are built-in in the compiler rather than generated by an LTL-
converting algorithm. Implementation of an algorithm for converting LTL formulae to 
Büchi automata would be a more universal solution. Nevertheless, this task is not quite 
trivial and generated automata should be further processed to make them deterministic and 



 52

normalized. Considering the closed set of DeSpec temporal patterns and low complexity of 
corresponding formulae (at most 4 variables involved) implementation of rule patterns by 
built-in automata templates is acceptable. Every pattern consists of two parts – property and 
scope. All properties except corresponds-to are implemented. As corresponds-to property 
is the conjunction of leads-to and precedes properties, it can be easily replaced with them, 
if needed. As for the scopes, after-until and between-and are not implemented so far.  

As for pattern expressions, only && and ||combinations of method event operators are 
allowed. Access to variables is forbidden with exception of the one declared in forall clause 
and this. These two variables can be used only as invocation targets or arguments of 
methods supplied with an event operator. Use of static method is allowed only if a variable 
with instance of parent class of the rule is passed as an argument. Regarding limitations 
imposed on variables and logical operators in expressions, there is no use for !== method 
event operator. Using literals as arguments is not supported. 

DeSpec introduces syntactic sugar that allows to express rules containing factories in a 
short form without quantification. This is not supported since the expansion of such rule 
into appropriate long form by the compiler is quite complicated. 

Pure static rules, i.e. rules with only static targets of event operators, are not supported, 
since they are not used in the specification of Windows driver environment. Static modifier 
is not applicable. In spite of this, a procedure for generating automaton for a static rule 
should be similar to the one for instance rules. 

Even with all limitations described above, the grammar for rule patterns is still 
expressive enough to specify many properties, which are required by Windows kernel. 

 
Generating of automata for specified rules is driven by RuleImplementingVisitor, which 

triggers construction of an automaton for every declared rule. This visitor also maintains 
segments of code triggering source code events. This code is generated during automata 
construction but it is inserted into appropriate places later, when the compiler is finalizing 
bodies of methods. 
 

5.10.1. Rule as Automaton 
Once a rule is transformed into an automaton, it is possible to verify it by Zing assert 

statements. Breach of a rule can be recognized by two ways. If there is no possible 
transition for a triggered source code event from the current state of the automaton, an 
assert in its transition method is broken. When the model checker discovers this state, 
verification fails and violation of the rule is reported together with the corresponding trace. 
But even if for every received source code event a transition in the automaton exists, it does 
not necessarily mean that the represented rule fulfilled. If at the end of model execution the 
automaton is found in a non-accepting state, it means that the rule is violated as well. 

The solution for the first case is quite straightforward, as the violation of the rule is 
realized within its transition method. When implementing this method, it is sufficient to list 
only transitions that do not break the rule and append an assertion that always fails. 

The second case requires checking of the state of the automaton at the end of model 
execution. Firstly, it implies that information about state of the automaton must be stored 
independently on the automaton itself because the scope of its existence is the same as that 
of its parent class. Secondly, states of all automata must be accessible from one place at the 
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end of model execution. Both persistence and accessibility issues are solved by using static 
arrays added to the declaration of a main class of the model. These arrays hold information 
about an actual state and non-accepting states of all automata, which were instantiated 
during model execution. 

The solution of this problem relies on some properties of the specification, which are 
characteristic for a model of Windows driver environment. In context of this environment, 
the end of model execution always corresponds to the end of Main method. This static 
method is a required part of the specifications, since it manages entire life of the driver. It 
serves as the entry point for Zing model checker. It must be declared in Model static class, 
which represents model of I/O manager’s behavior the with respect to the driver. These 
requirements are stated by DeSpec language specification rather then by the compiler. As 
the presence of Model.Main method can be taken for granted, code that checks violation of 
rules is appended at its end. The static arrays with current and non-accepting states of 
automata are declared in the Model class. 

 
In the following text only instance automata are considered. Potential implementation 

of static automata would be similar and in some cases even more simple.  
From the discussion, it is obvious that an automaton cannot be represented by a single 

Zing class. Rather, its representation is scattered throughout the model. At first, 
automaton’s parent class must be determined. If the corresponding rule is quantified, the 
class represented by the quantification variable is the parent one. Otherwise, the class 
declaring the rule is the one. A parent class contains declarations of automaton’s transition 
method and fields necessary for determining current letter of the input alphabet. 
Automaton’s states must be stored on common place in Model class. The violation 
checking routine is placed in Model.Main method. Moreover, enumeration of all methods, 
which can trigger an event used in the rule, must be declared. It is used also for determining 
current letter of the input alphabet. Since it is an enumeration, it must be declared in global 
scope, according to Zing grammar. 

 
Since generating of the transition method will be described in detail, an example of its 

representation in Zing follows. It moves an automaton generated for this rule: 
 

rule 
 forall(IRP irp) 
 {  
  irp === IoAllocateIrp(_) || 
  irp === IoBuildAsynchronousFsdRequest(_,_,_,_,_,_) 
 } 
 leads to 
 { irp.IoFreeIrp()::returned } 
 globally; 

Example 5: DeSpec rule 
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This rule uses v0 leads to v1 globally temporal pattern, which is expressed by �(v0 ⇒ 
�v1) LTL formula. An equivalent Büchi automaton is depicted in Figure 13: 

 
Figure 13: “v0 leads to v1 globally” equivalent automaton 

 
The simplified and commented transition method for this automaton follows. : 

 
//Parameters determine the event which caused the transition. 
//'action' tells about the method triggering the event and '_event' 
denotes //the event operator (entered/returned/failed/succeeded). 
//Since the rule is anonymous, ‘lambda3‘ suffix was autogenerated. 
void __Step_lambda3(IRP___Actions_lambda3 action,__Events _event) 
{ 
atomic 
{ 
 //1. Find out which event was triggered 
 //and update corresponding sub-expression. 
 if((action == IRP___Actions_lambda3.IoAllocateIrp)) 
  (__action_0_lambda3 = (_event == __Events.Succeeded)); 
 else if((action ==  

IRP___Actions_lambda3.IoBuildAsynchronousFsdRequest)) 
  (__action_1_lambda3 = (_event == __Events.Succeeded)); 
 else if((action == IRP___Actions_lambda3.irp_IoFreeIrp)) 
  (__action_2_lambda3 = (_event == __Events.Returned)); 

 
 //2. Evaluate root expressions. 
 bool new__ruleExpressionValue_0_lambda3 = (__action_0_lambda3 || 
__action_1_lambda3); 
 bool new__ruleExpressionValue_1_lambda3 = __action_2_lambda3; 
 
 //3. Check whether some of the root expressions were changed by 
event 
 bool change =  
 ((__ruleExpressionValue_1_lambda3 !=  

new__ruleExpressionValue_1_lambda3) 
 ||  
 ((__ruleExpressionValue_0_lambda3 != ¨ 

new__ruleExpressionValue_0_lambda3) 
 ; 
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 //4. If so, update the stored root expressions values 
 if(change) 
 { 
 (__ruleExpressionValue_0_lambda3 =  

new__ruleExpressionValue_0_lambda3); 
 (__ruleExpressionValue_1_lambda3 =  

new__ruleExpressionValue_1_lambda3); 
 } 
 else 
  return ; 

 
 //5. Copy values to variables used in the transition routine common 
 //for this rule pattern 
 bool v0 = __ruleExpressionValue_0_lambda3; 
 bool v1 = __ruleExpressionValue_1_lambda3; 
 
 //6. Load current state of the automaton from the global arraylist 
 int state; 
 (state = Model.__automataStates.thisGet(__automatonIndex_lambda3)); 
 
 //7. Transition routine - [states] X [alphabet] -> [states] step 
 select first  
 { 
  wait(((state == 0) && (!(v0) || v1))) -> ; 
  wait(((state == 0) && (v0 && !(v1)))) -> (state = 1); 
  wait(((state == 1) && !(v1))) -> ; 
  wait(((state == 1) && v1)) -> (state = 0); 
  wait(true) -> assert(false, "rule broken"); 
 } 
 
 //8. Save the new state of the automaton back to the global 
arraylist 
 (Model.__automataStates.thisSet(__automatonIndex_lambda3,state)); 
} 
} 

Example 6: Transition method of automaton 

For every supported rule pattern, a common part of transition method and a set of non-
accepting states are generated. They are available as a part of RuleImplementingVisitor. The 
generated transition routine (Example 6, section 7) is common for all rules following the 
particular rule pattern. Thus, it must not contain variables with values of rule-specific sub-
expressions. It includes only variables standing for root expressions, which are known from 
the rule pattern (Example 6, section 5). To adopt the common transition routine into the 
transition method of the specific rule, it is necessary to analyze these expressions and 
evaluate the variables in the routine accordingly. 

 

5.10.2. Analysis of Rule Expressions 
The analysis of rule expressions is performed by a RuleExploringVisitor. One instance 

of the visitor explores all expressions in the rule. The goal of this visitor is generating 
supporting code for the transition method of an automaton. It prepares declaration of rule 
expression variables that reflect values of the rule expressions. Their values will be then 
used in the transition routine of the automaton. As the result of transition routine is given 
by the current state of the automaton and by the values of these variables, the boolean 
combinations of these variables actually forms the input alphabet of the automaton.  
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The visitor is run on clones of the rule expressions and recognizes method events. It 
replaces these operators with boolean helper variables, effectively generating initializers for 
the rule expression variables (Example 6, section 2). It also prepares declarations of these 
helper variables and bindings between these variables and corresponding method events. 
Thus, after traversing the rule the visitor contains all bindings for the automaton. 

 
RuleExploringVisitor also prepares items for an enumeration representing all methods 

in rule expressions. This enumeration is then used as type of an argument of the transition 
method to determine the event (Example 6, section 1). For the sample rule (Example 5), 
following enumeration is generated: 

 
enum IRP___Actions_lambda3  
{ 
 IoAllocateIrp, 
 IoBuildAsynchronousFsdRequest, 
 irp_IoFreeIrp 
}; 

 
Another enumeration with items representing event operators is declared. This 

enumeration is used globally by transition methods of all automata. 
 
enum __Events  
{ 
 Returned, 
 Succeeded, 
 Failed, 
 Entered 
}; 

 
This enumeration does not include an item representing === operator, as it is translated 

to succeeded operator. This transformation is possible thanks to limitations imposed on rule 
variables. Since only reference quantification variables and this can be used as the left 
value for === operator and only invocation expression can stand on its right side, an 
expression including this operator is true iff the invoked method successfully returns the 
instance from the left side. Thus, the transition method of an automaton checking the rule 
for the instance is triggered by succeeded event iff the instance is returned by the invoked 
method. 

 
With the outputs of the rule expression analysis and enumeration of the event operators 

it is possible to provide arguments for transition method calls. When a method event 
occurs, i.e. the method is entered or returning, transition methods of all interested automata 
are called. Arguments passed to these calls specify which method triggered the event (by an 
item from the first enumeration) and which kind of event it is (by an item from the second 
enumeration). In the transition methods, this information is used for evaluation of rule 
expression variables, which were declared during the rule expression analysis. 

 

5.10.3. Evaluation of Rule Expressions 
During the rule expressions analysis, method event operators were replaced with 

variables. When transition method of the automaton is invoked, these variables must be 
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correctly evaluated and their values must be used to specify, which letter from the input 
alphabet will determine the transition. 

 
The input alphabet Σ is defined as a set of all combinations of root expressions. For the 

sample rule (Example 5), which follows v0 leads to v1 globally pattern involving two 
variables, the alphabet is {v0 ∧ v1, v0 ∧ ¬v1, ¬v0 ∧ v1, ¬v0 ∧ ¬v1}. Generated transition 
routines understand only variables from rule patterns, which correspond to rule expressions 
in specific rules. The letter determining the transition is given by the combination of these 
variables. 

To get the values of root expressions it is necessary to evaluate rule expression 
variables declared corresponding to used method event operators. At first, event triggering 
the transition method must be determined from the arguments (Example 6, section 1). Then, 
root expressions are evaluated (Example 6, section 2). Triggered event itself does not 
necessarily cause the transition of particular automaton. It just informs interested automata 
and they alone decide whether to move or not. This decision is based on changes in values 
of the root expressions. This is the reason, why the values of root expressions must be 
persistent and appropriate fields storing their values must be declared in parent classes. 
After the evaluation of root expressions, the decision about performing a transition is made 
and updated values of root expressions are saved (Example 6, section 3 and 4).  

The last necessary step before performing the transition is mapping of rule expressions’ 
values to variables, which are understood by the transition routine (Example 6, section 5). 

 

5.10.4. Transition of Rule Automaton 
The core of a transition method is its transition routine – select statement, which 

implements the transition function of an automaton (Example 6, section 7). For an 
automaton with an input alphabet Σ and a set of states S, this function is defined as T : S × 
Σ → S. The codomain of the function is given by determinism of used automata. In select 
statement, they can be assured by using first qualifier and by correct order of wait branches. 
First qualifier ensures selection of the first valid wait statement in the list. Another option is 
to use strictly only the letters defined in the input alphabet and include all possible 
transitions given by the alphabet. Thus, always exactly one wait statement in the select 
would be valid and determinism would be assured. 

It remains to explain, what exactly is meant by “using strictly only letters from the 
alphabet”. A transition from one particular state s for two different letters ϕ and ψ can end 
up in another state t common for both of them, i.e. T(s, ϕ) = t and T(s, ψ) = t . In this case, 
the two transitions can be merged together and they can be conditioned by the disjunction 
of the two letters - T(s, ϕ ∨ ψ) = t. As the letters represent logic formulae, they contain 
inner semantics, which is hidden to the alphabet. However, this semantics allows to express 
the compound formulae by letters, which are not included the alphabet, but which are 
logically equivalent with the included ones. E.g. in an automaton on Figure 13, there is 
actually only one transition (from state 0 to state 1) defined by a valid letter from its input 
alphabet6. The others make use of merging and logical meaning of the letters. The transition 
from state 0 to state 0 through “not-defined” letter ¬v0 ∨ v1 covers three transitions driven 

                                                 
6 Addressing the alphabet defined in section 5.13.3 
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by valid letters v0 ∧ v1, ¬v0 ∧ v1 and ¬v0 ∧ ¬v1. The transition from state 1 to state 0 
trough letter v1 covers transitions for letters v0 ∧ v1 and ¬v0 ∧ v1. The transition from 
state 1 to state 1 covers transitions for the rest of the alphabet. It is obvious that every 
transition function that exploits merging possibilities and the extended alphabet is 
equivalent to T.  

Computation of the values necessary for determining the letter parameter of transition 
function was described in the previous section. The other parameter – current state of the 
automaton – is simply retrieved from the globally accessible static array, which is declared 
in Model class (Example 6, section 6). The index into this array is set during instantiation of 
the automata and it is fixed for whole its lifetime. 

 
Bodies of wait statements are actually just simple assignment statements that set new 

state of the automaton. When no transition is needed, i.e. the new state is the same as the 
old state, only void statement is used. The only exception is the last wait statement with 
“catch” functionality. This branch is selected only if no listed transition is possible, results 
in violation of assert statement and causes failure of the verification. This is one of two 
mechanisms for reporting the breach of a rule. The other mechanism is based on checking 
the current states of automata at the end of model execution and is described in next 
section. 

It would be possible to extend the set of states with one special non-accepting state f 
and extend the transition function with transitions violating the rule, ending up in state f. 
Thus, no catching wait statement would be necessary and no breach of a rule would be 
recognized until the global check at the end of model execution. However, the first 
approach is more suitable, because it can lower the time necessary for Zing model checker 
to detect a mistake in the verified model. It assures that violation of the rule is reported as 
soon as it is certain that the automaton cannot get to an accepting state any more. Detection 
of such violating state requires exploring of (often dramatically) lesser state space than 
checking of automata at the end of model execution. 

 
After the transition, it remains to update actual state of automaton. This is done by 

rewriting the old state with the new one in the array containing current states of all 
automata (Example 6, section 8). It can happen that an automaton moves to a non-accepting 
state and later it is deleted from the heap together with the instance of its parent class. This 
means that the rule represented by the automaton is broken, however it is not reported at the 
end of automaton’s lifetime. An instance of the parent class can be deleted e.g. when the 
scope of its declaration is exited. Quite a complex mechanism would be required to 
recognize this moment, because Zing does not support destructors. The solution of this 
issue is to retain the last state of the automaton in the array even after its deletion. The fact 
that this state is non-accepting is recognized and reported at the end of model execution.  

 
If generated automata were non-deterministic, i.e. transition function was defined by T’ 

: S × Σ → P(S),7 the transition routine would have to be slightly modified. Bodies of wait 
statements would be extended with choose statement, which would non-deterministically 
select a new state from the appropriate set. In this case, use of the extended alphabet and 
merging of transitions is not recommended, since it becomes quite confusing. 
                                                 
7 P(S) denotes power set of S. 
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5.10.5. States of Rule Automaton 
The implementation of automata and mechanism for keeping track of its state requires 

declaration of several fields and data structures in various places of the model. 
  
Firstly, there are some fields needed to determine the letter parameter of transition 

routine within the transition method (computation of this parameter from root expressions 
was described in section 5.10.3). The persistent storage for values of root expressions is 
provided by fields in the parent class of the automaton. For evaluating the root expressions, 
variables holding values of their subexpressions are needed. Instead of declaring local 
variables in every call of the transition method, additional fields are generated in the parent 
class, even if persistence is not required in this case. 

 
Secondly, current state of an automaton must be maintained for providing the state 

parameter of its transition function. This state must be accessible from the transition routine 
itself as well as from the place of final check of automata’s states in Model.Main method. 
Moreover, the last state of an automaton must be available even if the automaton is deleted 
before the final check. These requirements implies that a data structure containing 
information necessary for the final check and for keeping track of automata’s states must be 
declared in static Model class. 

This data structure must contain current (or last) states of all automata instantiated 
during model execution for the needs of both transition routine and final check. Final check 
also requires information about non-accepting states for every instantiated automaton. 
Expressed in C#, the data structure could have following form: 

 
Dictionary<AutomatonID, Pair<int, List<int>>> 

Example 7: C# collection for automata states 

AutomatonID denotes any type of key used for access from transition method. 
Retrieved dictionary value contains two items, the first being current state of the automaton 
and the second being a list of all non-accepting states of the automaton. The transition 
method uses only the first item. Key of the dictionary is not used in the final check, because 
it is necessary to enumerate all the items in the dictionary and only their values are needed. 

As Zing does not support generic collections, an implementation using only Zing arrays 
must be generated in the model: 

 
class Model  
{ 
 static ArrayList_int_ __automataStates; 
 static ArrayList_int_ __automataNonTerminalsCounts; 
 static ArrayList_int_ __automataNonTerminalsStarts; 
 static ArrayList_int_ __automataNonTerminals; 
 
 ... //other members 
} 
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... 
 
array InnerArrayint[] int; 

Example 8: Zing arrays for automata states 

ArrayList_int_ type denotes a class that represents integer instance of DeSpec ArrayList 
built-in template, being basically an extended wrapper of Zing InnerArrayint array 
(declared out of Model class). 

The first array __automataStates contains current states of automata. The array 
__automataNonTerminals contains lists of non-accepting states of all automata. The lists 
are sequentially serialized in the same order as the states of corresponding automata in 
__automataStates array. To recognize where the lists for individual automata begin and 
end, two supplementary arrays are needed. The array __automataNonTerminalsStarts 
contains indices of beginnings of these lists in __automataNonTerminals and the array 
__automataNonTerminalsCounts contains lengths of these lists. With information retrieved 
from the two supplementary arrays, it is possible to effectively iterate through the lists of 
non-accepting states, which are stored in __automataNonTerminals array. 

 
As the described arrays are used for keeping track of instantiated automata, they are 

filled gradually during the model execution. When a new automaton is instantiated, it must 
be registered in these fields. Its initial state and information about its list of non-accepting 
states is added to the corresponding arrays and an index pointing to these values is assigned 
to the automaton. This index simulates function of AutomatonID key for C# dictionary 
from Example 7 and is stored in another field of automaton’s parent class. 
 

5.11. Method Models 
 
The key goal of DeSpec language is to allow specification and verification of 

requirements imposed on Windows drivers in form of rules and constraints. Most of 
mechanisms that support these DeSpec features are implemented in model’s methods. They 
also require declaration of some supporting classes and enumerations, but most of the work 
related to verification is done by transition methods of automata and by compiler-generated 
code inserted into methods specified in the model.  

 

5.11.1. Method Pattern 
The original patterns for extending DeSpec methods are described in [2]. Based on 

these patterns and using the same notation, the one reflecting currently implemented 
features is stated below. A pattern for extending synthetic methods8 is quite simple, as it 
involves only insertion of preconditions and postconditions. A pattern for extending driver 
methods relies on analysis and extraction of driver source code, which is to be provided by 
another tool. Until it is available, it is necessary to do its work manually. Since the rest of 
the pattern is similar to the one for kernel methods9, it suffices to describe just the model of 
extended kernel methods: 
                                                 
8 Synthetic methods have no counterpart in kernel or driver code and they cannot be involved in rules. 
9 The only difference is that method body is placed out of the atomic block. 
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<return-type> <name>(<arguments>) 
{ 

<return-type> result; 
assert(<conjunction of preconditions>); 
atomic 
{ 

//method event triggering for interested automata 
<trigger-enter-event>; 
... 
//extracted method body with modified returns 
<method-body> 

 
} 
//label for redirecting returns from method-body 
__returning: 
atomic 
{ 

//method event triggering for interested automata 
if (IsSuccessful(result)) 

<trigger-successful-event>; 
... 

else 
<trigger-failed-event>; 
... 

 
<trigger-returned-event>; 
... 

 
assert(<conjunction of postconditions>); 

 
return result; 

} 
} 

Example 9: Pattern for kernel method model 

 
Original methods of the model are adapted to this pattern by the ZingFinalizingVisitor. 

Most of the code was already prepared by during processing of the model and this visitor 
just retrieves prepared segments and the original method body, supplies code common for 
all methods and assembles all parts to match the pattern. The same process is applied to 
properties, because they will be transformed to methods as well.  

 
Firstly, result variable must be declared. The declaration must be at the beginning of the 

method, because using of result keyword in specification is backed by this auto-generated 
variable. 

After that, it is necessary to check conformance with constraints expressed in 
preconditions. This is done by asserting the conjunction of all preconditions. Constraints 
imposed on arguments via non-nullity checks, ranges, etc. were added to preconditions and 
postconditions by PostTypeSemanticsVisitor.  

In contrary with the original pattern, snapshots of variables from old operators and 
blocking pre- and postconditions are not supported. However, since old operator is only 
syntactic sugar, it can be easily avoided in specifications. 

As the final body of the method is appended with an atomic postblock with 
postconditions and method events, it is necessary to assure that this block is always 
executed. It means that every return statement in original method body must be redirected 
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to the atomic postblock. Thus, every return statement is replaced by ZingFinalizingVisitor 
with storing the return value into result variable (if applicable) and with jump to 
__returning label leading to the postblock. The return statement at the end of the postblock 
is the only one in the final method. During finalizing methods, the __returning labels are 
inserted before every postblock. It is not mandatory to finish all branches of an original 
DeSpec method with return statement, because a catching return is always added during the 
extraction of the model.  

Segments of code triggering method events are prepared during implementation of rules 
and they are stored in RuleImplementingVisitor. A data structure holding these segments 
has a form of a dictionary keyed by methods, which must include the triggering code. The 
value retrieved from the dictionary is a pair of lists, each of them containing calls of 
transition methods of interested automata. The first list contains calls for entered event 
operator and the other one contains calls for the rest of the method event operators. Calls 
corresponding to succeeded and failed operators are already correctly conditioned. 

 

5.11.2. Zing Limitations 
There are other tasks to be done by ZingFinalizingVisitor even if they are not directly 

related to modeling methods. Nevertheless, this phase of model extraction is the most 
suitable place for them. These tasks involve transformation of some expression, which Zing 
does not understand, propagation of enumerations out of classes and modification of 
factories. 

 
DeSpec boolean expressions can use ⇒ (implies) operator, which is not supported by 

Zing. As A ⇒ B expression is equivalent to ¬A ∨ B, all expressions using ⇒ operator are 
transformed appropriately. 

Expression with is operator are not understood by Zing, because inheritance is not 
supported. Even if the value of a strongly-typed variable can be assigned to an object 
variable and vice versa, there is no built-in mechanism for retrieving the type of the value 
stored in the object variable at runtime. When an invalid typecast via assignment of a 
strongly-typed value is attempted, a runtime error is reported by Zing. The mechanism for 
determining the type is generated during implementation of inheritance and is described in 
section 5.9. It includes declaration of two typecasting methods in every class involved in 
inheritance – upcast and downcast. If one of them returns a non-null value, the queried 
typecast is possible, otherwise it is invalid. 

Thus, every boolean expression with is operator matching following pattern: 
 

<variable> is <typename> 
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can be replaced with 
 

<variable>.downcast(<typename>) != null &&  
<variable>.upcast(<typename>) != null 

 
expression. More precisely, <typename> argument must be turned into an appropriate 

item from inheriting classes enumeration10 to match the signatures of downcast and upcast 
method. 
 

Using of this keyword in DeSpec factory methods has specific semantics. In contrary to 
Zing and common object-oriented languages, the value accessed via this keyword is not 
read-only. In context of factories, this represents a newly created object, which is returned 
by a method either as its return value or as its output parameter. Thus, keyword this refers 
to a variable access according to type of the particular factory. In case of a factory returning 
its product as the return value, this is equivalent to access to result variable. When a factory 
returns its product via the output parameter11, it is equivalent to access to instance 
argument. ZingFinalizingVisitor replaces this access with the access to the corresponding 
variable. Factory methods are declared as instance method, because use of this in static 
methods would be misleading. Nevertheless, semantics of factories implies that these 
methods are actually static and must be marked as such during the visit of 
ZingFinalizingVisitor to enable their invocation during model execution. 

 
Another limitation of Zing is related to declarations of enumerations. Enumerations can 

be declared only at global scope. Contrary of Zing, DeSpec grammar allows to including 
enumerations in class declarations. These enumerations must be moved outside the classes 
and their names must be mangled to show, where they belong. The same mangled names 
are used for updating references to original enumeration declarations. Everything stated 
above holds for range declarations as well. 

 

5.11.3. Initialization in Entry Point 
Model.Main method has a specific role in the model and requires special extension. 

This method is the only one marked with activate Zing modifier and thus it represents a 
single entry point of the extracted model. This means that initialization of whole model, 
which is not caught by the specification, must be done at the beginning of Main method. 
Segment of initialization code is generated during the visit of ZingFinalizingVisitor by its 
InsertPrologue method. 

Firstly, a new instance of Thread class is created. This object represents a parent thread 
of whole model. All other threads are created only if specified in the model via async 
statement. Thread static data included in these objects are available in method bodies 
through DeSpec thread keyword. This keyword is actually transformed to a reference to 
hidden thread parameter, which is passed to every invoked method. 

Secondly, static constructors fall some classes are called. It would be possible to 
determine the classes, whose static members are accessed in the model and invoke only 
                                                 
10 See section 5.9.3 
11 According to DeSpec languge specification, such a factory must have exactly one output parameter named 
instance. 
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their static constructors. However, this analysis is not implemented and static initialization 
is preformed for all classes that contain non-empty static constructors. Thus, an access to all 
static members of all classes in the model is assured. 

 

5.11.4. Checking Rules before Termination 
The other important extension of Main method takes place at its end. If no violation of a 

rule is detected during model execution, this is the place where the verification finishes. 
Not all breaches can be recognized during the lifetime of an automaton. Thus it is necessary 
to check, whether its last state was accepting or not. This check could be performed at the 
time of automaton deletion, but it is quite difficult to recognize this moment. Since the last 
states of all automata remain stored till the end of model execution, it suffices to perform 
the check at that time. 

A segment of code for checking the last states of automata is generated in 
InsertEpilogue method of ZingFinalizingVisitor. It checks for every registered automaton, 
whether its last state is included on the set of its non-accepting states and if so, an assertion 
is violated and the verification fails. Zing implementation of the algorithm is following: 
 

int __i = 0; 
int __count = __automataStates.CountGet(); 
while( __i < __count) 
{ 
 int __from; 
 __from = __automataNonTerminalsStarts[__i]; 
 int __to; 
 __to = __from + __automataNonTerminalsCounts[__i]; 
 int __j = __from; 
 while(__j < __to) 
 { 
  assert(__automataStates[__i] != __automataNonTerminals[__j], 

"rule broken"); 
  __j = __j + 1; 
 } 
 __i = __i + 1 
} 

Example 10: Final automata check 

This check is possible thanks to arrays declared during implementation of rules. Their 
structure was described in detail in section 5.10.5. 

 

5.11.5. Transformation of Expressions into Statements 
The last issue that is related to modeling methods and translating them to Zing is its 

restriction set on expressions. Especially use of assignment expressions and invocation 
expressions is limited. Some fragments of Zing grammar that cause these limitations are 
listed below. The rules are taken from [5] and some of them are expanded to a specific 
form, which points to the restriction. In such cases, expansion is marked by ellipsis: 
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statement: 
labeled-statement 
declaration-statement 
embedded-statement 

 
declaration-statement: 

... 
type identifier = expression; 

 
embedded-statement: 

... 
invocation-expression; 

 
expression: 

conditional-or-expression 
assignment 

 
conditional-or-expression: 

... 
primary-expression 
 

boolean-expression: 
expression 
 

assignment: 
unary-expression = expression 
unary-expression = invocation-expression 

Example 11: Zing rules for expressions 

One of the significant limitations is the fact, that invocation-expression can be 
transcribed neither to primary-expression nor to expression. In contrary, DeSpec allows 
invocation-expressions both in boolean-expressions and in initializer of declaration-
statements. From Example 11, it is apparent that this is not possible in Zing. As a result, 
invocation-expression can appear only on the right side of assignment or in an expression-
statement alone. Since properties will be eventually transformed into methods, this 
restriction holds for them too.  

Moreover, even if element-access can be transcribed to primary-expression according 
to Zing grammatical rules, it is treated as an invocation by Zing compiler.  

Similarly, despite of the fact that choose-expression can be syntactically transcribed to 
primary-expression, Zing limits its use only to right operand of an assignment. 

Since constructors are not supported by Zing at all, DeSpec new-expressions must be 
implemented by Zing object-creation-expression and accompanied with an invocation of 
DeSpec constructor as an initialization routine. Thus, the replacement must be moved out 
of the place of original new-expression. 

 
These issues must be solved by replacing the critical expressions with Zing-acceptable 

equivalents. 
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ForbiddenExpressionVisitor visits nodes representing an invocation, property access, 
element access, new-expression and choose-expression. It recognizes the context of the 
expression and if it is not valid for Zing, it replaces the expression with an auto-generated 
variable of the same type. When returning from the parent statement of the expression that 
is being replaced, the visitor inserts additional statements before the parent one. The first 
one is a declaration of the local variable, which is used as the replacement of the invalid 
expression. The second one is an assignment to this variable, its right side being the 
expression invalid in its original context. This solution is possible thanks to the fact that all 
problematic expressions can stand on the right side of an assignment. 

When replacing new-expression, the original expression cannot be simply assigned to 
the variable. Constructors are not supported and objects are instantiated via object-creation-
expression without parameters. To assure that the body of appropriate constructor is 
executed, constructors are transformed into void returning methods. They are actually 
degraded to initializing routines. By executing Zing instantiation and the initialization 
consecutively, the intended functionality of DeSpec constructor is provided. 

It remains to discuss the equality of original DeSpec code and generated Zing 
replacement. The first problem emerges from possible side-effects. For example, if the 
critical expression is included as a parameter (not the first one) of an invocation statement, 
its evaluation can count on a side-effect caused by the computation of a previous parameter. 
As the evaluation of the critical expression is moved before the side-effect, its result can be 
different. Another, less significant problem is interleaving of threads. When the critical 
expression is enclosed in an atomic block, it is obvious that neither the original DeSpec 
statement containing the expression nor its replacement with the list of described statements 
can be interleaved with execution of another segment of the model. On the other hand, if 
the critical expression appears in the body of a driver method or a method marked with 
non-atomic attribute, interleaving can take place. An interleaved thread cannot access the 
newly created variable holding the value of the critical expression, as this variable is not 
referenced outside of the method. However, the interleaved thread can change some 
accessible data that are used for evaluation of the expression. This is not a serious problem, 
because a correct model cannot rely on a specific intersection of threads. 

Paradoxically, the same limitations of Zing, which require this problematic 
workaround, eliminate the problem with side-effects. Pre- and postincrements and pre- and 
postdecrements are supported neither by Zing nor in DeSpec. The original DeSpec 
grammar includes these expressions, but they are not implemented yet. If they were 
implemented, they would belong to the other critical expression and they would be treated 
uniformly. All other expressions, which can cause side-effects, are already included in the 
critical ones. Thus, all possible sources of side-effects are moved before the original 
statement and their order is preserved. Correct order of the evaluation of the critical 
expressions is guaranteed by the replacing algorithm.  

When ForbiddenExpressionVisitor traverses the AST and recognizes a critical 
expression, it sets a replacing flag and until finishing the replacement of this expression, no 
other replacement can be started. As the replacement is finished when the visitor is leaving 
the parent statement of the critical expression, only one replacement per statement can be 
made during one traversing of the AST. If some statement contains more critical 
expressions, ForbiddenExpressionVisitor must be run on the AST several times, till there 
are expressions to replace. Thus it is assured, that critical expressions are propagated before 
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the statement in the same order as they would be evaluated in the statement, if Zing 
supported them. 

One minor issue is related to the replacing algorithm. The statements, which are 
generated by the algorithm and are to be inserted before the parent statement of the critical 
expression, are actually enclosed together with the parent one in a newly created block 
statement. This block statement is returned when the visitor is leaving the parent statement. 
This original statement is then replaced by the new block. Enclosing in a block does not 
change the meaning of the replacement, it only makes the modification of the parent 
method easier. However, if the parent statement is a local declaration, it cannot be nested in 
this block, because it would become hidden within its original scope. When returning from 
a block determining the scope of some local variables, the statements from the generated 
blocks are moved to the original one.  

The conclusion is that the replacement of a critical expression with a block of 
statements is functionally equal to the intended effect of the original DeSpec expression. 
Nevertheless, because of thread interleaving, which can occur if the replacement is not 
enclosed in an atomic block, the state space of resulting model can be larger then expected. 

 
A context, which makes an expression critical, is described in detail for the individual 

expression types  
An invocation expression does not become critical, if it is used in an expression 

statement, just to denote an invocation of the method. It can also be used as a right side of 
an assignment statement. If the parent assignment is nested in another expression or in local 
declaration statement, the invocation expression becomes critical, as well as in any other 
case. These limitations are apparent from Example 11, where the only two allowed 
occurrences of the invocation expression are listed. 

The only place, where element access does not become critical, is an assignment 
statement. Zing compiler treats element access similarly as invocation expression, however 
it has no sense as a standalone statement and on the other hand, it can appear on both sides 
of assignment statements. 

A choose-expression becomes critical anywhere except the right side of an assignment 
statement. This restriction is not expressed by Zing grammar, but it is explicitly stated in 
Zing language specification. 

A member access denoting getting a property value is transformed into an invocation 
expression later during model extraction. Thus, all limitations stated for invocations hold 
for these expressions too. For a member access denoting setting a property value, the 
situation is different. DeSpec semantics requires this access to appear only on left side of 
assignment expressions. When eliminating properties in the model, these assignment 
expressions are turned into method invocations, with their right sides turned into 
arguments. Thus, whole parent assignment expression must be treated as a future 
invocation expression. Appropriate limitations must be applied on this parent expression, 
not on the member access itself. This expression becomes critical in one more special case. 
In DeSpec it is possible to assign a property to a property (setter-access = getter-access). 
After property elimination, this would result into following invocation expression – 
propertyNameSet( propertyNameGet() ), which is critical. As property elimination takes 
place after the processing by ForbiddenEpressionVisitor, this critical expression would not 
be replaced. Thus it is necessary to recognize this pattern even before the elimination and 
treat it as critical too. 
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Since a new expression must be always replaced with separate instantiation and 
initialization, it is critical in any context. 

DeSpec ternary conditional operator ?: nor is not supported, but its implementation 
could use a similar mechanism. Expressions using this operator would be treated as critical 
and they would be transformed into Zing supported statements. The value of the variable, 
which would replace such expression, would have to be determined in if-statement.  

5.11.6. Emitting Zing Code 
After traversing the AST by ForbiddenEpressionVisitor, the extraction of the model is 

almost done. Most of the model is described by constructs common for both DeSpec and 
Zing and it is prepared for representation in Zing. Remnants of DeSpec-specific code will 
be translated to Zing “on-the-fly”, in specific dumping routines. 

Emitting of Zing code is performed by dumping methods, which are declared in every 
AST node, since they are inherited from Node base class. For nodes representing DeSpec-
only constructs, these methods are empty. 

For most of the nodes, Dump method simply takes an instance of TextWriter passed as 
the argument and appends it with serialized Zing representation of the node. At the end, the 
instance of TextWriter contains a string with Zing code of the model and writes it into a 
selected file. However, some of the nodes use their Dump methods for non-trivial 
transformation of their content to Zing. Most important of these transformations is 
elimination of properties and generating built-in collection classes. 

 
Since Zing does not support properties, they must be replaced by methods. When 

dumping method of a parent class calls for dump of a property declaration, the appropriate 
Dump actually emits a declaration of a special method for corresponding getter and setter, 
if provided. 

Signatures of these methods have following forms: 
 
<property-type> <property-name>Get( Thread thread ) 
 
for the getter and 
 
void <property-name>Set( Thread thread, <property-type> value ) 
 
for the setter. 
 



 69

For getters and setters of indexed properties, signatures are  
 
<property-type> <property-name>Get( Thread thread,  

<index-type> <index-name> ) 
 
and 
 
void <property-name>Set( Thread thread, <index-type> <index-name>, 

<property-type> value ) 
 
respectively. 
Access to original properties is transformed into invocation expressions in three types 

of nodes – member access, element access and assignment expression. In member access 
node, references to getters of original common properties are simply transformed into 
<property-name>Get(thread) calls. In element access node, references to getters of 
original indexed properties are transformed into <property-name>Get(thread, index) 
calls. Finally, in assignment expression node, assignments to setters of original properties 
are replaced with <property-name>Set(thread, <right-expression>) calls for common 
properties and <property-name>Set(thread, index, <right-expression>) calls for 
indexed properties. 

 
Whereas the process of dumping was chosen for transformation of properties just 

because of the effectiveness and convenience, for implementing the built-in collections it is 
the only possibility. 

Templates for built-in collections are included in every specification; however they 
cannot specify the access to underlying arrays on necessary level of detail. To abstract 
higher-level collection templates like ArrayList or Queue from necessary implementation 
details, Array template is included in DeSpec specifications. During the model extraction, it 
serves as a proxy to a Zing array, which will eventually replace the instances of Array12 
providing desired functionality in the resulting Zing model. Thus it is possible to represent 
collections by DeSpec constructs during the model extraction. In the end, when generating 
Zing representation of the AST, DeSpec Arrays are replaced with Zing arrays. This 
transformation cannot be done earlier in the extracting process, because it is not possible to 
represent Zing-specific code in AST nodes. 

However, such exploiting of DeSpec Array template prevents it from being used in 
specifications as common built-in collection template. A proxy to Zing array serves entirely 
compiler’s needs and cannot appear in Zing representation of the model. However this 
limitation can be easily overcome by using DeSpec ArrayList template on places, where 
Array would be used. This template provides the same interface as Array, extended with 
methods for adding and removing items. When these additional methods are not used, it 
represents an equivalent replacement of Array template from the point of DeSpec 
specifications. Still, if Array template were required for purposes of specification, it would 
be possible to use it, provided that another proxy to Zing array would be created. 

                                                 
12 Instances of a built-in template denote classes derived from this template with specified type argument. For 
example ArrayList<int> class is an instance of ArrayList template. 
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When dumping of an instance of ArrayList template, Zing declaration of underlying 
array type is prepared and initializer of items field13 is modified. The original instantiation 
of DeSpec instance of Array template is turned into an instantiation of the prepared Zing 
array type. The original size argument is used. References to items are preserved and 
element accesses into this member remain valid. The only expression including items, 
which must be changed, is accessing items.Count property, because this expression is 
invalid in Zing. Occurrences of items.Count expression are replaced with Zing operator 
sizeof with items passed as the argument. The prepared declaration of Zing array is dumped 
out of the generated class as required by Zing. 

                                                 
13 This field represents underlying instance of Array template during the model extraction. 
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6. Open Problems and Further Work 
The compiler in the current state of development does not support all features of 

DeSpec language. The reason is partly absence of the tools necessary for complete model 
extraction and partly complicated implementation of some of DeSpec constructs. The 
unimplemented features are described below. 

 
The limitations are given above all by the absence of tools for C source code analysis 

and for slicing of the model. The analysis of kernel header files is necessary for extraction 
of symbols used in the specification. For example values of modeled constants and 
enumerations must be retrieved. The analysis of driver source code is more complicated, 
since it is required for automatic merging of DeSpec specification with the bodies of 
modeled driver functions. Not only mapping of DeSpec method declarations to driver 
functions must be set, but also bodies of the functions must be analyzed. Once the parser 
and analyzer of C source code are implemented, all sources for completion of the model 
will be available. 

For determining relevant code of both DeSpec specification and supplied driver and 
kernel, a tool performing a slicing algorithm is necessary. With this tool it will be possible 
to select one of defined namespaces and thus determine the level of detail of DeSpec 
specification. Specific constraints and rules to verify will be selected. Based in these inputs, 
reduction of the model will be performed, effectively lowering the state space of resulting 
model as well as the time necessary for model extraction. If the slicing algorithm is applied 
on the model once more at the end of the extraction, its state space can be further reduced. 

Implementation of these tools is beyond the scope of this thesis and it is the key task for 
further development. Other unsupported features depend on their outputs. 

 
One of these features is DeSpec delegate concept. This construct is designed for 

modeling callbacks from ILateBoundDriverRoutines interface passed to the kernel by the 
driver. Since Zing has no notion of function pointers, a mechanism for calling referenced 
functions must be provided. The implementation is proposed in [2] and involves declaration 
of a specific class for every delegate in the specification. This class keeps track of where 
appropriate function pointers refer to and provides dispatch to the target methods. To 
enable such functionality, it is necessary among others to determine all possible targets of 
the particular delegate. This requires a pointer-to analysis of driver C source code. 

 
Another issue related to function pointers is mapping of driver functions from 

IEarlyBoundDriverRoutines interface. Since these function bindings do not change during 
driver’s execution, delegates are not required for their modeling. Rather, less complicated 
mapping exploiting DeSpec attributes is used. Attributes EarlyBound and EarlyBoundOpt 
applied on a field, which represents the pointer to a driver function, accept an argument 
with name of the function model. Since pointers to functions from 
IEarlyBoundDriverRoutines interface are passed to kernel in DRIVER_OBJECT and 
DRIVER_EXTENSION structures, fields in DeSpec models of these structures are marked 
with EarlyBound/EarlyBoundOpt attributes with names of appropriate function models.  

For reflecting the bindings stored in the kernel structures in specification, outputs of 
driver source code analysis are needed. Without C source code analyzer, EarlyBound and 
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EarlyBoundOpt attributes are not supported. Anonymous attribute, which says that marked 
structure or union has no name in the C declaration, is also relevant only for this analyzer. 

 
Other attributes require the slicing tool for their implementation. Both Conditional and 

CheckConstraints attributes are relevant only for determining, which parts of the model are 
to be extracted.  

Selection of the namespace to verify is not supported so far. It means that only the 
model specified in default namespace is checked, as only its Main method is marked as the 
entry point of the model. Models specified in other namespaces are correctly processed and 
translated, but they are not included in the resulting model. 

 
Several features of rules, which were proposed in DeSpec language specification, are 

not implemented. The most important of them are access event operators, which are 
applicable on properties and fields, full-fledged use of parameters in method events, 
arbitrary quantification variables and use of synthetic members in rule expressions. There is 
also no support for ThreadBoundEvents attribute, which assures that events are watched 
separately in the context of each relevant thread. Unsupported rule patterns and other minor 
limitations were described in section 5.10. 

One of the main issues related to implementation of rules is quite loose syntax and even 
semantics of rule expressions. DeSpec grammar actually allows using any valid expression 
in the rule. This obviously allows creating many syntactically correct rules that have no 
sense. Due to lack of syntactic restrictions, semantic control of rule expressions is quite 
complicated. It could be beneficial to reconsider, whether it would be possible to create 
more accurate grammar rules for the rule expressions, or eventually, whether some more 
suitable means for specifying them could be found.  

With current grammar rules, it is necessary to recognize the context of expression and 
treat it differently, if it is included in a rule. DeSpec event operators are designed 
exclusively for using in rule expressions and thus actually a special language is defined just 
for them. It is possible that if this language would not be just extension of DeSpec 
constructs for expressions, but also some limitations would be defined and expressed by a 
special grammar, a better control over rule expressions could be gained on syntax level.  

 
The verification of unions is not supported. It means that unions can be used in the 

specification, but their correct behavior is not checked. Correct behavior of unions is that 
only the last written field is read from. Verification of this rule requires a discriminator 
field, which maintains information about the last written field of the union. 

 
Original DeSpec Set built-in collection template is not supported. As this template relies 

on Zing set type, an approach to its implementation should be analogous to the one used for 
Array template and its higher-level derivatives. 
 

Other unsupported features are actually syntactic sugar and they do not lower the 
expressive power of implemented subset of DeSpec in comparison with original version. 
However, these constructs should be implemented to make writing specifications more 
convenient and straightforward. The most significant limitation is missing support for 
extension. Extension is a mean of code reuse and is not reflected in the resulting model. It 
cannot be eliminated simply during preprocessing, because it requires information about 
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types. Main issues of its implementation are related to incomplete type information at the 
time of elimination and to loose rules for its combination with inheritance. Other minor 
restrictions on the usage of syntactic sugar are apparent from the modified grammar. 

 
The usage of some DeSpec constructs, which were mentioned above, is limited or even 

forbidden usually due to the missing implementation in the back-end if the compiler. 
However, in most of the cases, the classes for corresponding AST node types are prepared 
for their full-fledged usage and usually also the semantic analysis takes them into account. 
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7. Related Work 
The compiler from DeSpec to Zing is intended to be a part of a framework for formal 

verification of Windows driver environment. In a broader context, any work addressing 
model extraction for further model checking is related to the thesis. Some tools that cover 
model extraction and model checking are Bogor framework [12], Spin [13], Java 
PathFinder [14] and also Zing compiler and model checker [4], [5]. 

As for the compiler itself, there are no other tools for translating or analyzing DeSpec. 
DeSpec language is inspired in particular by Zing modeling language and some of its 
constructs for expressing requirements on models are inspired by the Spec# language[15] 
and Spec temporal patterns [3]. Gauss project [16] involves translation of a model to Zing 
language, however the input is an MPI program written in C. 

Main goal of the verification framework based on DeSpec is the verification of 
Windows drivers. With respect to this fact, Static Driver Verifier (SDV) [17] is the closest 
work, as it has a similar goal. However, SDV extracts the model directly from the C source 
code and requirements and constraints are stated in SLIC language [18], which is much less 
expressive than DeSpec. The mechanism of verification is different from the one used by 
Zing model checker (i.e. exploring of model’s state space). SDV uses a predicate discoverer 
and a theorem prover for generating potential error traces and analyses, whether these 
traces can occur during the execution of the driver. In most of the cases, modeling of kernel 
interaction with the driver is degraded to yielding non-deterministically chosen return 
values and output parameters. This can cause acceptation of a trace as correct even if the 
driver incorrectly relies on a value that was generated non-deterministically. A more 
detailed comparison of SDV and DeSpec can be found in [2]. 

As there is no other tool capable of extraction of the model from a DeSpec 
specification, contribution of the compiler to modeling Windows driver environment by 
DeSpec is apparent.  
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8. Conclusion 
The thesis has introduced a tool for extracting Zing models from DeSpec specifications 

of Windows driver environment. Thus, it allows formal verification of these models by 
Zing model checker. 

For the model extraction from a complete and full-fledged specification, it is necessary 
to implement other tools, namely an extractor of C source code of kernel and driver and a 
tool for slicing and reduction of the models. Development of these tools is beyond the 
scope of the thesis. 

Under these conditions, main focus was given to the implementation of DeSpec 
analyzer, as the semantic analysis is crucial for further steps of the extraction. The analyzer, 
which is represented by the front-end of the introduced compiler, supports most of the 
features of DeSpec language. Unsupported constructs represent syntactic sugar and their 
absence does not reduce expressivity of DeSpec. 

The back-end of the compiler represents an attempt to prove that extraction of Zing 
models from DeSpec is possible, rather than a full-featured implementation. Since all key 
features of DeSpec, like rules, constraints, groups or inheritance, are at least partially 
implemented, this attempt can be claimed successful. 

Since the tools for analysis of C source code and slicing the model are not yet available, 
extraction of Zing model from DeSpec specification is limited. A specification can contain 
only constructs from the supported subset of the DeSpec language. Extraction of C source 
code is done manually and necessary symbols and driver function bodies are incorporated 
in the specification. If reduction of state space is desired, slicing must be performed 
manually by removing irrelevant parts. When a specification matching these requirements 
is passed as an input, the compiler produces an equivalent Zing model, which can be 
transformed into the executable form by Zing compiler. The resulting model then can be 
verified by Zing model checker. Thus, the main goal of the thesis is accomplished.  

The usage of the compiler is not bound only to the specifications of the Windows driver 
environment. The compiler can create Zing model from the specification of any 
environment that defines some interface and interacts with plugins, providing that it can be 
described with the supported subset of DeSpec. 

The successful though not full-fledged implementation of the compiler proves that the 
DeSpec language is well designed and that it is suitable for creating the specifications of 
real-world environments, which can be further analyzed and formally verified. 
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A. DeSpec Grammar 
The grammar stated below is based on the original DeSpec grammar published in [2] 

and reflects the modifications made during the development of the compiler.  

A.1. Tokens 
Although not all keywords introduced in the original DeSpec grammar are used in the 

current version, they remain reserved. This is necessary to avoid conflicts in existing 
specifications, when the currently missing features are implemented. The definition of 
Identifier is modified and forbids the usage of double underscore (__) prefix. This prefix 
is reserved for needs of the compiler. The definition of the other literals is not changed. 

This is the unchanged list of keywords: 
 
absent 
abstract 
abstracts 
after 
and 
any 
anytimes 
as 
assert 
assume 
async 
atomic 
base 
before 
between 
bool 
break 
byte 
class 
const 
correspond
s 
delegate 
else 
end 
ensures 

entered 
enum 
error 
executes 
exists 
extends 
extracted 
failed 
false 
first 
flags 
forall 
foreach 
forever 
get 
globally 
goto 
group 
choose 
if 
in 
instance 
int 
is 
leads 
long 

max 
min 
namespace 
new 
notice 
null 
object 
old 
otherwise 
out 
precedes 
raise 
range 
read 
readonly 
ref 
refines 
requires 
responds 
result 
return 
returned 
rule 
sbyte 
select 
set 

short 
static 
string 
struct 
succeeded 
synthetic 
this 
thread 
timeout 
to 
true 
try 
uint 
ulong 
union 
universal 
until 
ushort 
using 
value 
void 
wait 
warning 
while 
with 
written 

 

A.2. Production Rules 
The production rules are stated in Backus-Naur Form. Non-terminals are marked by 

acute brackets and terminals are named or marked by single quotes. The empty right sides 
of the rules are marked by !empty comment. The starting symbol is <Specification>. 

A.2.1. Global Declarations  
 

<Specification> ::= <GlobalDecls>   

 
<GlobalDecls> ::= <GlobalDecls> <GlobalDecl>  
                | !empty  
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<GlobalDecl> ::= <SpecDecl>  
               | <Namespace>  

 
<SpecDecl> ::= <ClassDecl>   
             | <EnumDecl>   
             | <RangeDecl>  
             | <Using>   

 
<SpecDecls> ::= <SpecDecls> <SpecDecl>  
              | !empty  

 
<Namespace> ::= <AttributeList> 'namespace' <Refines>  
                '{' <SpecDecls> '}'  
              | <AttributeList> 'namespace' Identifier <Refines> 
                '{' <SpecDecls> '}'  

 
<Refines> ::= 'refines' Identifier  
            | !empty  

 
<ClassDecl> ::= <AttributesAndModifiers> 'class' Identifier <Inherits>   
                '{' <MemberDecls> '}'  

 
<Abstracts> ::= 'abstracts' <Type>  
              | !empty  

 
<Inherits> ::= ':' Identifier  
             | !empty  

 
<Using> ::= 'using' <QualifiedName> ';'  

 

A.2.2. Types  
 
<Types> ::= <Types> ',' <Type>   
          | <Type>   

 
<Type> ::= <PrimitiveOrRangeType>  
         | <QualifiedName> <GenericParameters>  

 
<PrimitiveOrRangeType> ::= <PrimitiveType> 
                         | <RangeType>  

 
<RangeType> ::= 'range' '(' <Range> ')' 

 
<GenericParameters> ::= '<' <Types> '>'  
                      | !empty  

 
<QualifiedName> ::= Identifier  
                  | 'any'   
                  | <QualifiedName> '.' Identifier   
                  | <QualifiedName> '.' 'any'   

 
<QualifiedNamesEx> ::= <QualifiedNamesEx> ',' <QualifiedName>   
                     | <QualifiedNamesEx> ',' '!' <QualifiedName>   
                     | <QualifiedName>  

 
<IntegerPrimitiveType> ::= 'sbyte' | 'byte'   



 80

                         | 'short' | 'ushort'   
                         | 'int'   | 'uint'   
                         | 'long'  | 'ulong'  

 
<ReferencePrimitiveType> ::= 'string'   

 
<PrimitiveType> ::= <IntegerPrimitiveType>   
                  | <ReferencePrimitiveType>   
                  | 'bool'   

 
<Literal> ::= 'null' | 'true' | 'false' | StringLiteral | IntLiteral | 
HexLiteral  

 

A.2.3. Modifiers and Attributes  
  
<Modifier> ::= 'static'   
             | 'synthetic'  
             | 'abstract'  
             | 'base'  
             | 'readonly'  

  
<Modifiers> ::= <Modifiers> <Modifier>   
              | <Modifier>   

  
<AttributesAndModifiers> ::= <Attributes> <Modifiers>   
                           | <Attributes>   
                           | <Modifiers>   
                           | !empty  

  
<AttributeList> ::= <Attributes>   
                  | !empty  

  
<Attributes> ::= <Attributes> <Attribute>   
               | <Attribute>   

  
<Attribute> ::= '[' <Expression> ']'  

 

A.2.4. Members and Inner Declarations  
  
<MemberDecls> ::= <MemberDecls> <MemberDecl>   
                | !empty  

  
<MemberDecl> ::= <FieldDecl>   
               | <MethodDecl>   
               | <StructDecl>   
               | <EnumDecl>   
               | <RangeDecl>  
               | <RuleDecl>   
               | <PropertyDecl>   
               | <GroupDecl>  

  
<FieldDecl> ::= <AttributesAndModifiers> <Type> <NullitySpec>  
                <FieldVariableList> ';'   
              | <AttributesAndModifiers> 'const' <Type>   
                <FieldVariableList> ';'   
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<FieldVariableList> ::= <FieldVariableList> ',' <FieldVariable>   
                      | <FieldVariable>   

  
<FieldVariable> ::= Identifier   
                  | Identifier '=' <Expression>   

  
<PropertyDecl> ::= <AttributesAndModifiers> <Type> <NullitySpec> 
Identifier   
                   '{' <PropertyAccessors> '}'  
                 | <AttributesAndModifiers> <Type> <NullitySpec> 
Identifier   
                   '[' <Type> Identifier ']' '{' <PropertyAccessors> 
'}'  
                 | <AttributesAndModifiers> <Type> <NullitySpec> 
'this'   
                   '[' <Type> Identifier ']' '{' <PropertyAccessors> 
'}'  
                 | <AttributesAndModifiers> '_' Identifier   
                   '{' <PropertyAccessors> '}'  
                 | <AttributesAndModifiers> '_' Identifier   
                   '[' <Type> Identifier ']' '{' <PropertyAccessors> 
'}'  

  
<PropertyAccessors> ::= <PropertyGetter> <PropertySetter>   
                      | <PropertySetter> <PropertyGetter>   
                      | <PropertyGetter>   
                      | <PropertySetter>   

  
<PropertyGetter> ::= <AttributeList> 'get' 
<ContractDeclListOrSemicolon>   
<PropertySetter> ::= <AttributeList> 'set' 
<ContractDeclListOrSemicolon>  

  
<MethodDecl> ::= <AttributesAndModifiers> <MethodSignature>   
                 <ContractDeclListOrSemicolon>  
               | <AttributesAndModifiers> <CtorSignature>   
                 <ContractDeclListOrSemicolon>  

  
<MethodSignature> ::= <Type> <NullitySpec> Identifier ' 
                      (' <ParameterList> ')'  
                    | 'void' Identifier '(' <ParameterList> ')'  
                    | '_' Identifier '(' <ParameterList> ')'  
                    | 'instance' Identifier '(' <ParameterList> ')'  

                  
<CtorSignature> ::= Identifier '(' <ParameterList> ')'  

  
<NullitySpec> ::= '!'   
                | !empty  

  
<ContractDeclListOrSemicolon> ::= <ContractDeclList> <MethodBody>   
                                | ';'   

  
<ContractDeclList> ::= <ContractDeclList> <ContractDecl>    
                     | !empty  

  
<ContractDecl> ::= 'requires' <Expression> ';'  
                 | 'ensures' <Expression>  ';'  

  
<MethodBody> ::= <Block>   
               | !empty  
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<GroupDecl> ::= <AttributesAndModifiers> 'group' <MethodSignature> '='   
                '{' <QualifiedNamesEx> '}' ';'  

  
<StructDecl> ::= <AttributesAndModifiers> <StructOrUnion> Identifier   
                 '{' <FieldOrStructDecls> '}'  

  
<FieldOrStructDecls> ::= <FieldOrStructDecls> <FieldDecl>   
                       | <FieldOrStructDecls> <StructDecl>   
                       | <FieldOrStructDecls> <PropertyDecl>   
                       | !empty  

  
<StructOrUnion> ::= 'struct'   
                  | 'union'   

  
<EnumDecl> ::= <AttributesAndModifiers> <EnumOrflags> Identifier   
               <Abstracts> '{' <EnumFieldDeclList> '}'  

  
<EnumOrflags> ::= 'enum'   
                | 'flags'   

  
<EnumFieldDeclList> ::= <EnumFieldDecls>   
                      | !empty  

  
<EnumFieldDecls> ::= <EnumFieldDecls> ',' <EnumVariable>   
                   | <EnumVariable>   

  
<EnumVariable> ::= <FieldVariable>   
                 | Identifier '=' <Range>   
                 | Identifier '=' '{' <RangeItemList> '}'  

  
<Range> ::= <IntLiteral> '..' <IntLiteral>  
          | <IntLiteral> '..' <HexLiteral>  
          | <HexLiteral> '..' <IntLiteral>  
          | <HexLiteral> '..' <HexLiteral>  

  
<RangeItemList> ::= <RangeItemList> ',' <RangeItem>   
                  | <RangeItem>   

  
<RangeItem> ::= <Range>   
              | <Expression>   

  
<RangeDecl> ::= <AttributesAndModifiers> 'range' Identifier 
<Abstracts> '='   
                <Range> ';'  
 

A.2.5. Rules 
  
<RuleDecl> ::= <AttributesAndModifiers> 'rule' <RuleSpecification> ';'   
             | <AttributesAndModifiers> 'rule' Identifier 
<RuleSpecificationList> ';'   

   
<RuleSpecificationList> ::= <RuleSpecificationList> ',' 
<RuleSpecification>   
                          | <RuleSpecification>   

  
<RuleSpecification> ::= <Quantification> <RulePattern>   



 83

  
<Quantification> ::= 'forall' '(' <QuantifiedVariableList> ')'  
                   | !empty  

  
<QuantifiedVariableList> ::= <QuantifiedVariableList> ',' 
<QuantifiedVariable>  
                           | <QuantifiedVariable>   

  
<QuantifiedVariable> ::= <Type> Identifier   

 

A.2.6. Temporal Patterns 
  
<RulePattern> ::= <RuleExpression> 'is' 'universal' <RuleScope>   
                | <RuleExpression> 'is' 'absent' <RuleScope>   
                | <RuleExpression> 'exists' <RuleScope>   
                | <RuleExpression> 'precedes' <RuleExpression> 
<RuleScope>   
                | <RuleExpression> 'leads' 'to' <RuleExpression> 
<RuleScope>   
                | <RuleExpression> 'responds' 'to' <RuleExpression> 
<RuleScope>   

 
<RuleScope> ::= 'globally'   
              | 'before' <RuleExpression>   
              | 'after' <RuleExpression>   
 
<RuleExpression> ::= '{' <Expression> '}'  

 

A.2.7. Parameters and Arguments 
  
<ParameterList> ::= <Parameters>   
                  | !empty  

  
<Parameters> ::= <Parameters> ',' <Parameter>   
               | <Parameter>   

  
<ArgumentList> ::= <Arguments>   
                 | !empty  

  
<Arguments> ::= <Arguments> ',' <Argument>   
              | <Argument>   

  
<Parameter> ::= <AttributeList> <ParamModifier> <Type> <NullitySpec> 
Identifier   
              | <AttributeList> 'out' 'instance'   
              | <AttributeList> 'instance'   
              | '_'   
              | '...'  

  
<Argument> ::= <ParamModifier> <Expression>   
             | '_'   
             | '...'  

  
<ParamModifier> ::= 'out' | !empty  
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A.2.8. Expressions 
  
<PrimaryExpression> ::= <Literal>   
                      | <SpecialVariableAccess>  
                      | <ParenthesizedExpression> 
                      | <InvocationExpression>   
                      | <MemberAccessExpression>  
                      | <ElementAccessExpression>  
                      | <PostIncExpression>  
                      | <PostDecExpression>  
                      | <NewExpression>  
                      | <ChooseExpression>  

  
<ParenthesizedExpression> ::= '(' <Expression> ')'  

  
<MemberAccessExpression> ::= Identifier  
                           | 'any'  
                           | <PrimaryExpression> '.' Identifier  
                           | <PrimaryExpression> '.' 'any'  

  
<ElementAccessExpression> ::= <PrimaryExpression> '[' <Expression> ']'  

 
<InvocationExpression> ::= <MemberAccessExpression> '(' <ArgumentList> 
')'   
                           <InvocationEvent>  

 
<SpecialVariableAccess> ::= 'thread' | 'this' | 'result' | 'value'  

 
<NewExpression> ::= 'new' <Type> '(' <ArgumentList> ')'  

  
<ChooseExpression> ::= <ChooseConstruct> '(' 'bool' ')'  
                     | <ChooseConstruct> '(' <Expression> ')'  

  
<ChooseConstruct> ::= 'choose'  

 
<Expressions> ::= <Expressions> ',' <Expression>  
                | <Expression>  
                   

  
<InvocationEvent> ::= '::' 'succeeded'   
                    | '::' 'failed'   
                    | '::' 'entered'   
                    | '::' 'returned'  
                    | !empty  

                      
<UnaryExpression> ::= <PrimaryExpression>   
                    | '+' <UnaryExpression>   
                    | '-' <UnaryExpression>   
                    | '!' <UnaryExpression>   
                    | '~' <UnaryExpression>   

  
<MulExpression> ::= <MulExpression> '*' <UnaryExpression>   
                  | <MulExpression> '/' <UnaryExpression>   
                  | <MulExpression> '%' <UnaryExpression>   
                  | <UnaryExpression>   

  
<AddExpression> ::= <AddExpression> '+' <MulExpression>   
                  | <AddExpression> '-' <MulExpression>   
                  | <MulExpression>   
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<ShiftExpression> ::= <ShiftExpression> '<<' <AddExpression>   
                    | <ShiftExpression> '>>' <AddExpression>   
                    | <AddExpression>   

  
<RelExpression> ::= <RelExpression> '<' <ShiftExpression>   
                  | <RelExpression> '>' <ShiftExpression>   
                  | <RelExpression> '<=' <ShiftExpression>   
                  | <RelExpression> '>=' <ShiftExpression>   
                  | <RelExpression> 'is' <QualifiedName>  
                  | <RelExpression> 'as' <QualifiedName>  
                  | <ShiftExpression>   

  
<EquExpression> ::= <EquExpression> '==' <RelExpression>   
                  | <EquExpression> '!=' <RelExpression>   
                  | <EquExpression> '===' <RelExpression>   
                  | <RelExpression>   

  
<BitAndExpression> ::= <BitAndExpression> '&' <EquExpression>   
                     | <EquExpression>   

  
<BitXorExpression> ::= <BitXorExpression> '^' <BitAndExpression>   
                     | <BitAndExpression>   

  
<BitOrExpression> ::= <BitOrExpression> '|' <BitXorExpression>   
                    | <BitXorExpression>   

  
<AndExpression> ::= <AndExpression> '&&' <BitOrExpression>   
                  | <BitOrExpression>   

  
<OrExpression> ::= <OrExpression> '||' <AndExpression>   
                 | <AndExpression>   

  
<ImpliesExpression> ::= <ImpliesExpression> '==>' <OrExpression>   
                      | <OrExpression>   

  
<ConditionalExpression> ::= <ImpliesExpression>  

  
<AssignmentExpression> ::= <PrimaryExpression> <AssignmentOperator> 
<Expression>   

  
<AssignmentOperator> ::= '=' | '+=' | '-=' | '*=' | '/=' | '%='   
                       | '&=' | '|=' | '^=' | '>>=' | '<<=' 

  
<Expression> ::= <AssignmentExpression>   
               | <ConditionalExpression>   

      
<StatementExpression> ::= <AssignmentExpression>   
                        | <InvocationExpression>   

 

A.2.9. Statements 
  
<Block> ::= '{' <StatementList> '}'  

  
<StatementList> ::= <StatementList> <Statement>   
                  | !empty  
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<Statement> ::= <EmbeddedStatement>  
              | <LocalDeclStatement>  
              | <LabelStatement>  

  
<EmbeddedStatement> ::= ';'   
                      | <ExpressionStatement>   
                      | <ReturnStatement>   
                      | <GotoStatement>  
                      | <IfStatement>  
                      | <LoopStatement>  
                      | <SelectStatement>  
                      | <AtomicStatement>  
                      | <AssertStatement>  
                      | <AssumeStatement>  
                      | <AsyncStatement>  
                      | <TryWithStatement>  
                      | <RaiseStatement>  
                      | <Block>  

  
<ExpressionStatement> ::= <StatementExpression> ';'   

  
<ReturnStatement> ::= 'return' <Expression> ';'   
                    | 'return' ';'   

                  
<GotoStatement> ::= 'goto' Identifier ';'  

  
<IfStatement> ::= 'if' '(' <Expression> ')' <EmbeddedStatement>  
                | 'if' '(' <Expression> ')' <EmbeddedStatement> 'else'   
                  <EmbeddedStatement>  

  
<LoopStatement> ::= 'while' '(' <Expression> ')'   
                    <EmbeddedStatement>  
                  | 'foreach' '(' <Type> Identifier 'in' <Expression> 
')'   
                    <EmbeddedStatement>  

  
<SelectStatement> ::= 'select' <SelectQualifiers> '{' <WaitStatements> 
'}'  

                  
<SelectQualifiers> ::= <SelectQualifiers> <SelectQualifier>   
                     | !empty  

  
<SelectQualifier> ::= 'end'   
                    | 'first'  

  
<WaitStatements> ::= <WaitStatements> <WaitStatement>   
                   | <WaitStatement>  

  
<WaitStatement> ::= 'wait' '(' <Expression> ')' '->' 
<EmbeddedStatement>  
                  | 'timeout' '->' <EmbeddedStatement>  

  
<AtomicStatement> ::= 'atomic' <Block>  

  
<AssertStatement> ::= 'assert' '(' <Expression> ')' ';'  
                    | 'assert' '(' <Expression> ',' StringLiteral ')' 
';'  
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<AssumeStatement> ::= 'assume' '(' <Expression> ')' ';'  

  
<LabelStatement> ::= Identifier ':'  

                  
<AsyncStatement> ::= 'async' <InvocationExpression> 'with' 
<Expression> ';'  

  
<LocalDeclStatement> ::= <PrimitiveOrRangeType> Identifier ';'   
                       | <PrimitiveOrRangeType> Identifier '='  
                         <Expression> ';'   
                       | <MemberAccessExpression> 
<MemberAccessExpression> 
                         Identifier ';'   
                       | <MemberAccessExpression> 
<MemberAccessExpression>  
                         Identifier '=' <Expression> ';'   

  
<TryWithStatement> ::= 'try' <Block> 'with' '{' <WithClauses> '}'  

  
<WithClauses> ::= <WithClauses> <WithClause>   
                | <WithClause>  

  
<WithClause> ::= Identifier '->' <EmbeddedStatement>  
               | 'any' '->' <EmbeddedStatement>  

             
<RaiseStatement> ::= 'raise' Identifier ';' 



 88

B. Sample Specification 
This appendix contains a simplified yet representative specification of a class from the 

sample model of the driver environment and the corresponding Zing model generated by 
the compiler. The sample class contains a rule and several constraints. Since the class is 
involved in inheritance, the simplified specification of its parent class is also included.  

To make the sample shorter and better readable, only selected class members are 
included in the specification. As for the Zing model, only some of its interesting parts are 
included and the compiler’s output is formatted. The complete sample specification, which 
is derived from the specification published in [2], as well as complete translated model can 
be found on the accompanying CD. 

B.1. DeSpec Class Declaration 

 
// Event dispatcher object 
class KEVENT : DispatcherObject 
{ 

 
 // Whether event is auto-reset when a wait function succeeds on it 
 synthetic bool AutoReset; 

 
 void KeInitializeEvent(instance,EVENT_TYPE type,bool signals) 
 {...}  
 

  
 // Sets event to a signaled state 
 int KeSetEvent(instance,_,bool doWait) 
  requires thread.Irql <= KIRQL.DISPATCH_LEVEL; 
  requires doWait ==> (thread.Irql == KIRQL.PASSIVE_LEVEL); 
 {...}  

 
 // Sets event to a non-signaled state 
 int KeResetEvent(instance) 
  requires thread.Irql <= KIRQL.DISPATCH_LEVEL; 
 {...}  

 
 // Sets event to a signaled state 
 void KeClearEvent(instance) 
  requires thread.Irql <= KIRQL.DISPATCH_LEVEL; 
 {...}  

 
 // Gets the current state of the event 
 int KeReadStateEvent(instance) 
  requires thread.Irql <= KIRQL.DIRQL; 
  requires thread.Irql <= KIRQL.DISPATCH_LEVEL;  
 {...}  

 
 

 
 // Checks whether the event is initialized before used 
 rule 
  { KeInitializeEvent(_,_)::returned }  
  precedes  
  { KeSetEvent(_)::returned || 
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   KeResetEvent()::returned || 
   KeClearEvent()::returned || 
   KeReadStateEvent()::returned 
  }  
  globally;  
} 

 

B.2. Zing Model 
 
class KEVENT 
{ 
 bool AutoReset; 

 // binding to the instance of the parent class 
DispatcherObject __parent; 

 
 int __automatonIndex_lambda1; 
 bool __ruleExpressionValue_0_lambda1; 
 bool __ruleExpressionValue_1_lambda1; 
 bool __action_0_lambda1; 
 bool __action_1_lambda1; 
 bool __action_2_lambda1; 
 bool __action_3_lambda1; 
 bool __action_4_lambda1; 
  

 // delegation to parent property 
 bool SignalsGet(Thread thread){ 
  bool result; 
  atomic{{{ 
   (result = __parent.SignalsGet(thread)); 
   goto __returning; 
  }}} 
  __returning: 
  atomic {return result;} 
 } 

 
 //delegation to parent property 

 void SignalsSet(Thread thread, bool value){ 
  atomic{{ 
   (__parent.SignalsSet(thread, value)); 
  }} 
  __returning: 
  atomic {return ;} 
 } 
 
 void KeInitializeEvent( Thread thread,  

KEVENT_EVENT_TYPE type, bool signals){ 
  atomic{{ 
   (AutoReset =  

(type == 
KEVENT_EVENT_TYPE.SynchronizationEvent)); 

   (SignalsSet(thread, signals)); 
   Initialized(thread); 
  }} 
  __returning: 
  atomic{ 

   // triggering ::returned event 
   __Step_lambda1(thread, 

KEVENT___Actions_lambda1.KeInitializeEvent, 
__Events.Returned); 

   return ; 
  } 
 } 
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 int KeSetEvent(Thread thread, bool doWait){ 
  int result; 

  // preconditions 
  assert(((true && ( 

thread.Irql <= KIRQL.DISPATCH_LEVEL)) &&  
(!(doWait) || (thread.Irql == KIRQL.PASSIVE_LEVEL)))); 

  atomic 
  {{(SignalsSet(thread, true));}} 
  __returning: 
  atomic{ 

// triggering ::returned event 
   __Step_lambda1(thread, 

KEVENT___Actions_lambda1.KeSetEvent, 
__Events.Returned); 

   return result; 
  } 
 } 
 

 // type converting routine 
 object __upcast(Thread thread, __Classes typeName){ 
  object result; 
  atomic{{ 
   if((typeName == __Classes.Default_KEVENT)){ 
    (result = this); 
    goto __returning; 
   } 
   else{ 
    (result = __parent.__upcast(thread, 

__Classes.Default_KEVENT))
; 

    goto __returning; 
   } 
  }} 
  __returning: 
  atomic {return result;} 
 } 
 

// type converting routine 
 object __downcast(Thread thread, __Classes typeName) 
 { 
  object result; 
  atomic{{ 
   object cast; 
   if((typeName == __Classes.Default_KEVENT)){ 
    (result = this); 
    goto __returning; 
   } 
   { 
    (result = null); 
    goto __returning; 
   } 
  }} 
  __returning: 
  atomic {return result;} 
 } 
 

 // as operator replacement 
 object __as(Thread thread, __Classes typeName) 
 { 
  object result; 
  atomic{{ 
   (result = this.__upcast(thread,typeName)); 
   if((result == null)) 
    (result = this.__downcast(thread,typeName)); 
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  }} 
  __returning: 
  atomic {return result;} 
 } 
 
 void KEVENTCtor(Thread thread){ 
  atomic{{ 
   { 

    // linking into the inheritance chain 
    DispatcherObject __tmp16; 
    (__tmp16 = new DispatcherObject); 
    __tmp16.DispatcherObjectCtor(thread); 
    (__parent = __tmp16); 
   } 
 
   (__parent.__child_Default_KEVENT = this); 
   (this.AutoReset = false); 
 

   // registration of the automaton 
   Model.__automataStates.Add(thread,0); 
   (__automatonIndex_lambda1 = 

Model.__automataStates.CountGet(thread)); 
   (__automatonIndex_lambda1 = (__automatonIndex_lambda1 - 
1)); 
   int __start_lambda1; 
   (__start_lambda1 =  

Model.__automataNonTerminals.CountGet(thread
)); 

   Model.__automataNonTerminalsStarts.Add(thread, 
__start_lambda1); 

   Model.__automataNonTerminalsCounts.Add(thread,0); 
   Model.__automataStates.Add(thread,0); 
   (__automatonIndex_lambda6 = 

Model.__automataStates.CountGet(thread
)); 

   (__automatonIndex_lambda6 = (__automatonIndex_lambda6 - 
1)); 
   int __start_lambda6; 
   (__start_lambda6 =  

Model.__automataNonTerminals.CountGet(thread
)); 

   Model.__automataNonTerminalsStarts.Add(thread, 
__start_lambda6); 

   Model.__automataNonTerminalsCounts.Add(thread,0); 
  }} 
  __returning: 
  atomic {return ;} 
 } 
 

// transition method of the rule automaton 
 void __Step_lambda1(Thread thread,  

KEVENT___Actions_lambda1 action,  
__Events _event){ 

   // determine the event 
   if(false) 
    {;} 
   else if((action ==  

KEVENT___Actions_lambda1.KeInitializeEvent)) 
    {(__action_0_lambda1 =  

(_event == __Events.Returned));} 
   else if((action == 
KEVENT___Actions_lambda1.KeSetEvent)) 
    {(__action_1_lambda1 =  

(_event == __Events.Returned));} 
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   else if((action == 
KEVENT___Actions_lambda1.KeResetEvent)) 
    {(__action_2_lambda1 =  

(_event == __Events.Returned));} 
   else if((action == 
KEVENT___Actions_lambda1.KeClearEvent)) 
    {(__action_3_lambda1 =  

(_event == __Events.Returned));} 
   else if((action ==  

KEVENT___Actions_lambda1.KeReadStateEvent)) 
    {(__action_4_lambda1 =  

(_event == __Events.Returned));} 
 

   // check if value of a rule expression changed 
   bool new__ruleExpressionValue_0_lambda1 = 

__action_0_lambda1; 
   bool new__ruleExpressionValue_1_lambda1 =  

(((__action_1_lambda1 || __action_2_lambda1) 
|| __action_3_lambda1) || 
__action_4_lambda1); 

   bool change =  
((__ruleExpressionValue_1_lambda1 !=  
new__ruleExpressionValue_1_lambda1)  
||  
((__ruleExpressionValue_0_lambda1 != 
new__ruleExpressionValue_0_lambda1)  
|| false)); 

   if(change) 
   { 
    (__ruleExpressionValue_0_lambda1 =  

new__ruleExpressionValue_0_lambd
a1); 

    (__ruleExpressionValue_1_lambda1 =  
new__ruleExpressionValue_1_lambd

a1); 
   } 
   else 
    return ; 
    

   // perform the transition 
   bool v0 = __ruleExpressionValue_0_lambda1; 
   bool v1 = __ruleExpressionValue_1_lambda1; 
   int state; 
   (state = Model.__automataStates.thisGet(thread,  

__automatonIndex_lambda1))
; 

   select first{ 
    wait(((state == 0) && (!(v0) && !(v1)))) -> ; 
    wait(((state == 0) && v0)) -> (state = 1); 
    wait((state == 1)) -> ; 
    wait(true) -> assert(false, "rule broken"); 
   } 
   (Model.__automataStates.thisSet(thread,  

__automatonIndex_lambda1,state))
; 

  } 
 } 
}; 

 


