Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Jan Calta

Analyzer of Windows Kernel Models

Department of Software Engineering
Advisor: Mgr. Pavel Jezek
Study Program: Computer Science, Software Systems

| would like to thank FrantiSek PIaSil,7JiAdamek and Jan Kofiiowho introduced me
to the software verification research area. | thank advisor Pavel Jezek and especially
Tomas MatousSek for a discussion on issues relatéoetthesis.

| declare that | have elaborated this master thesismy own and listed all used
references. | agree with lending of this mastesitheThe thesis may be reproduced for
academic purposes.

In Prague on December',322007 Jan Calta

Table of Contents

N [11 0o (U Tox 1 o] o N 9
1.1, MoOdel ChECKING.....ciiiiiiiiiiiiiiiiiii ettt e s esbessbnnnne 9
1.2. Verification of WINAOWS DIIVEIS..... ..o 9
1.3. Modeling Windows Driver ENVIFONMENTcccoeiiiiiiiiiiiiiiiiiiiieieeeeeeeeeee e 10
R S I L= 8 =] 1 PP PPPPPPPPPPPPTI 10

2. Verification of Driver Environment Model ... 12
2.1, DESPEC LANQUAGE ... oeeiieiiiiiii e emmmeet sttt e e e e e e e teb b sene e e e e e e e e e tnnaanas 12
A | T SRR 13
2.3, EXraction Of MOGElooiiiiiiiiiiee et 14
P2 S = 11 LG (o] G @0 o g o 11T 16

3. Structure Of MOl EXIFACIONttt e e e e e et e e e e nmmneee e e e e nee s 17
3.1, DeSPEC FrON-ENG.....cuuuiiiiiiiriiinssmmmmmmn s sssssssssssssssssssssssssssensssssssnsnnssnssnsnnns 17

3.1.1. [or LAY F= 1)) PP 17
3.1.2. SYNEAX ANAIYSIS Leutviviiiiiiiiiiiiiiereree e et eeeeee e e e aeeeee e s rereeeeeaaaeeaeeees 17
3.1.3. SEMANTIC ANAIYSIS....eiiiiiiiiiiiiiitirrrrrer s a e e e e e e e e e s esesee s 17
3.1.4. BUIIE-IN TYPBS ittt amaame e e e e e eeseeseeees 17
3.1.5. Eliminating Compile-Time CONSIIUCES ... cccueerrvrririiiiiiiiiiiiiiiiiiiiiieannn 18
3.2. Kernel and Driver Code ANAlYSIS........ccciieieiiiiiee e 18
3.3. Determination of Resulting MOdel e e 18
3.4, ZING BACK-ENG ... ettt ettt et et e e e e e e e e e e e e e e e eeeaeeeea e 18
3.4.1. Implementation of Modeling FEAtUIeS. . cauaume e 18
3.4.2. Implementation of Constraints and RuleS ..., 19
3.4.3. EMIttiNg ZING COU@......uuuuiiiiiiieitimmmmr et eeeeeeeteeieetesbeseeeeeebaeesseesbsbneenneeeeeeeeeeeees 19

4. Approaches to Implementation ... 20

5. Implementation Of COMPIIET...........u.. ittt eee e e e e e eeeeeeeeeees 21
5.1, GENETALING LEXEN ...ttt rmmmmm e et e e et e et et e e ettt e et e et e et e et e e e e e e e e e e aaaaaaaaaaaaaaaas 21
5.2, GENEIALING PAISEI .. .uuiuiiiiiiiiiiiiemmemceeeeee ettt eteteeaeeeaeaesssssessesbesbeeaeeetaeaeaeaeeeaeeeeeaees 21
5.3, ADSLACt SYNTAX TIEE.....uuuiiitiiiiitimmmmmm e a e e e e seeeees e nnnsenannnes 22

5.3.1. Support for Model EXIFACHION e eeeeeeeeeee e 22
5.3.2. Hierarchy Of NOAESoviiieiieeeeee e 25
5.3.3. Child-Parent BiNAINGS...........coiaeaeee e ieeieeeieeeeeeeeeeeeeeee s reeeeeeaeeeeeeeeeas 30
5.4. Processing of NamMESPACES........coo i e 31
5.5. Providing Built-In ColleCtIONS..........ooiiieei e 32
5.6. Processing Of GrOUPScooiiiiiiiiiiiiiiieii ittt b e e eeeeeeeeeeeeeeeeeeeees 34
5.7, TYPE ANAIYSIS ..ot e 37
5.7.1. ClassSification Of TYPESvuviiiiiiiceeeeeeeeeieieeeieiee et aee e rrrrreeeeeeaeaeaees 38
5.7.2. Declarations Of GENErIC TYPES......ciueeemeeurimiiiiiian s ees e eas e sesssnnnenes 40
5.7.3. Underlying Types of Enumerations and Ranges...............uueeeevemeiniinninnnnns 14
5.7.4. Resolving of Type of EXPreSSION. ... 41
5.8. POSE-TYPE ANAIYSIS ...uuuuiiiiiiiiiiiis s s s s e s s e s e s ensssnsnnannsnnnnnnnn 44
5.9. Implementation of INhertanCe...........ccccee e 45
5.9.1. Phases of Inheritance Implementationcccccvvieiiie e, 45
5.9.2. Analysis of Inheritance RelatioNSNIPS . evvveviiiiiiiiiiiiiiiiiiiiiiiiieieeeveeeee e 46

5.9.3. Support for TYPE CONVEISION ... e eeeeeeee e ee e e eeree e a7

5.9.4. Access to Inherited MEMDEISuiiiiiiiiiiiiiii e 48
5.10. RUIES e ettt e e e e e e 50
5.10.1. RUIE @S AULOMEALONceeiiieiiiiiitcmmmmim e e e ettt e e e e e e st e e e eesenbneeeeeaeeas 52
5.10.2. Analysis Of RUIE EXPrEeSSIONS........acuummureieiiiiiiiaiiiaaaseaeaeseaeeesasseessseessnnnnnnns 55
5.10.3. Evaluation of RUle EXPreSSIONScccueeeiiiiiiiiiiiiiiiieeieeeeeeeeieeeee e eeeeeaaae e 56
5.10.4. Transition of Rule AUtOMALON.........corieriiiiiiiiie e 57
5.10.5. States of Rule AULOMALONoiieeeeeee e 59
5.11. MELNOA MOUAEISoiiieieiiie e e 60
5.11.1. MethOd Patternc..uviiiiiiiies ettt e e e e e e s e e e e e eeeeeeeas 60
5.11.2. ZiNQG LIMITATIONS ...uuuitiiiiiiiiiiiereeseeeeeeeeeeeeeeeeeeeeeaeeseeeseseesssssssbrnneneeseeseeseeeeesees 62
5.11.3. Initialization in ENtry POINT.......co et 63
5.11.4. Checking Rules before Terminationcccceoiiiiiiiiieeeee 64
5.11.5. Transformation of Expressions into StatdBien..............c.eeveviviiiiiiiiiiiieiiienes 64
5.11.6. EMIttiNg ZING COUEcccoiii ettt eee e eee e e eeeeeeeeeeeeeeeees 68
6. Open Problems and FUrther Worko 71
N = L= = =0 IRV 74
S T O o [1113 [o P 75
S B L2 (=] (= o = U OPP 76
A. DESPEC GraMIMANcoiiiiiiiiii e eee ettt e et e et e e e e e e e ee bbb seaeaae e e e eeeensnnn e aeeeeees 78
N A 0 (=T 1 PP 78
A.2. ProducCtion RUIESuuiiii i eeeeee e e s e e e e e e e e e e ae e b e e e e e e e 78
)N B €1 (o] o = I =T ox F= T = L1 0] 78
A2 . TP S e ———— ettt e e e e e eeeeneeeen e e aaeaeene 79
A.2.3. Modifiers and AHDULESoii i e 80
A.2.4. Members and INner DecClarationscceeuuuiiiiiieeeieeiiiieis e 80
N T o U | = PP 82
A.2.6. Temporal Patternsoooiiiiii e s s s enenennnnnes 83
A.2.7. Parameters and ArgUMENTS........oi it cccmmm oot 83
AL2.8. EXPIESSIONS. . euuiuuiuiuiiiuitiuttitiirereeaeeeeeeeeeeeeeeeeeeeeeeeteeeeseesrereessrraanreeaaeaaataaaaaeaaees 84
A2.9. STAIEMENLS ...oeeeiiiiieeiiee et ettt ettt et e e e e e e e e s e e e eneeeeeeeeeaeneeeneees 85
B. Sample SPECIfICAION........uuiiiiiiiiieeiee e 88
B.1. DeSpec Class DeCIarationueeeeeeeeeieiieiiiiieiieiee ettt naaa e 88
B.2. ZING MOUEL ... 89

Title: Analyzer of Windows Kernel Models

Author: Jan Calta

Department: Department of Software Engineering
Advisor: Mgr. Pavel Jezek

Advisor’s e-mail address: jezek@nenya.ms.mff.cani.c
Abstract:

The thesis introduces a tool for analyzing modei$ten in the specification language
DeSpec and translating them into the Zing modelargguage. Resulting models can be
verified by the Zing model checker. The DeSpec lamyg is designed primarily to specify
the Windows NT kernel driver environment. It maki#spossible to abstract this
environment in the object-oriented way and it usesporal logic patterns to capture rules
imposed by the Windows kernel on drivers. The Ziagguage is designed to describe
executable concurrent models of software, which banexplored by the Zing model
checker. Properties to check are expressed bysderteons. So far, there has been no way
to automatically extract a model from DeSpec sjpeatibn and verify its properties by a
model checker. The DeSpec-to-Zing compiler takesuaial part in this task.

The thesis demonstrates that it is feasible tostat® DeSpec specifications into Zing
models and that DeSpec is a suitable language doiehthecking of the Windows kernel
driver environment. The introduced analyzer is bégdo check correctness of DeSpec
specifications and under the constrained conditgimen by absence of other necessary
tools it is capable to translate a subset of sjpatibns into the Zing model.

Keywords: Windows drivers, compilers, Zing, modeécking, software verification

Nazev prace: Analyzator modghdra OS Windows
Autor: Tomas Matousek

Katedra (Ustav): Katedra softwarového inZenyrstvi
Vedouci diplomové prace: Mgr. Pavel Jezek
e-mail vedouciho: jezek@nenya.ms.mff.cuni.cz
Abstrakt:

Diplomova prace fedklada nastroj pro analyzu moilele specifikégnim jazyce
DeSpec a pro jejichipklad do modelovaciho jazyka Zing. Vysledné mogei mohou
byt verifikovany model checkerem Zing. Jazyk DeSpgecnavrZzen fedevSim pro
specifikaci progedi, ve kterém pracuji ovlagka operanich systéra rodiny Windows NT.
Umoziuje abstrahovat toto prdstli objekto¥ orientovanym zfisobem a pouziva formule
linearni temporalni logiky k popisu pravidel, jéjic splni jddro OS Windows od
ovladau vyZaduje. Jazyk Zing je navrZzen pro popis vykomaimgch modal software
véetrg paralelismu, které mohou byt dale zkoumany motieckerem Zing. Vlastnosti k
ovéieni jsou vyjateny ikazy assert. Dosud neexistovalugpb, jak automaticky
extrahovat ze specifikace v DeSpecu model, ktergnbial byt formalg verifikovan model
checkerem. feklad& z DeSpecu do Zingu hraje v tomto Ukolu zasadii rol

Prace ukazuje, Ze je mozniekladat specifikace v DeSpecu do mddelZingu a tedy
Ze DeSpec je vhodnym jazykem pro model checkingvéfio prosedi. Uvedeny nastroj
umoziuje kontrolu spravnosti specifikace v DeSpecu arpazeni danych absenci dalSich
nezbytnych nastréjumo#iuje preklad vybrané podmnoziny specifikaci do Zingu.

Kli¢ova slova: ovladge Windows, peklad&e, Zing, model checking, verifikace software

1. Introduction

Verification of correctness and expected propelisesne of the key tasks in software
development. It becomes even more apparent whiigngirconcurrent programs, where
concurrency is often the source of bugs, whichharrel to find and debug. As this problem
is crucial for most of industrial and heavily usedftware, significant effort to find a
suitable solution has been made. Stress-testingotamtirely eliminate this issue and in
some applications it is necessary to combine ieplace it with a formal approach. One of
the techniques, which has proved to be suitabléhiertask, is model checking.

1.1. Model Checking

Model checking is the most successful approach Hest emerged for verifying
requirements. The idea of model checking is asofwt A model of the analyzed
environment is made. The requirement imposed onetingronment is formulated. A
model-checking tool (i.e. model checker) accepéstiodel and the requirement that the
final system is expected to satisfy. After verifioa, the model checker outputs yes if the
given model satisfies given requirements (and iation passed) and generates a
counterexample otherwise (verification failed).

The counterexample details why the model does abtisfg the requirement. It is
usually demonstrated by an execution path brea#tiegrequirement. Once all errors are
discovered and fixed and verification passes, @mebe confident about the correctness of
the model in all its reachable states. In fact ttieal state is not always reached because of
undecidability (model checker is unable to verlig property in finite time), however, the
results of verification are useful even if someha bugs are not discovered.

The main drawback of this technique is a so-cadtade explosion problenit refers to
an exponentially growing number of model’'s statathveach added parameter. Thus
verification becomes more resource-demanding amenoéven impossible to finish in
acceptable time. This problem can be solved by fimagi¢he system on a higher level of
abstraction and by providing necessary resources.

1.2. Verification of Windows Drivers

The kernel of Windows NT operating system is mdrant suitable subject of formal
verification. It is very complex and heavily usedftware and correct interfacing with
drivers is the crucial property of the whole kerdgler environment.

There is a set of rules and guidelines dealing witeraction of drivers and kernel
published in Windows Driver Kit (WDK) [1] availabléor driver authors. However, the
rules are described in plain English and a drivevetbper has no implicit assistance in
following them.

Verification of this system requires solution ofotvissues. Firstly, the model of the
environment must be extracted from the system Bpaton and driver and kernel sources.
Extraction must focus on problems emerging fromféwt that the system is written in the
low-level C language and it is difficult to create appropriate abstraction. Secondly, rules
defined in WDK in plain English must be transformatb some form of temporal logic
formulae to allow them to be verified by a modetcker.

1.3. Modeling Windows Driver Environment

Based on the motivation described above, the spatdn language DeSpec [2] was
designed to make the verification of Windows drieevironment possible. This language
introduces the object-oriented approach to desoripof Windows kernel and allows
creating models on various levels of abstractiorsupports describing requirements and
rules in a form of linear temporal logic (LTL) foulae, more precisely by Temporal Logic
Patterns derived from Bandera project [3]. Alonghwlianguage itself, a specification of
Windows driver environment was published in [2]

DeSpec was designed with Zing [4] as target modelcker in mind. Zing model
checker accepts models written in the Zing modelarmgguage [5], which is an object-
oriented language for modeling concurrent softvear@ supports basic level of abstractions
like classes, non-deterministic choices, threads amays. However the requirements
imposed on the verified system can be expressegdbyraissertions.

With a DeSpec specification of the system to veoifythe one hand and Zing model
checker on the other, it is necessary to extracttbdel from the specification and translate
it to the Zing language. The resulting model cawvdréied by the Zing model checker.

1.4. The Thesis

The goal of this thesis is to provide the missing between DeSpec specification and
Zing model checker to enable the formal verificatad Windows driver environment. The
complete extraction of Zing models of the driverviemnment from DeSpec specification
may require several tools dealing with various ésstrhus the tasks that are crucial for the
extraction process must be defined. Above all,ithe®duced tool should be capable of
correct translation of the DeSpec language to Zling key features of DeSpec, which are
not supported by Zing, must be implemented, pderty those, which allow expressing
the requirements to verify.

The following text firstly introduces both the soarand target language and analyses
the process of the model extraction and translation

Then the structure and required features of theetnextractor are described in chapter
3. In this chapter, all tasks necessary for crgdtie complete model are mentioned and the
individual phases of the extraction are determinfdirst, DeSpec specification must be
parsed and its inner representation must be Quikn the semantic analysis takes place. It
is also necessary to analyze the C sources ofritiercand the kernel and complete the
model with parts extracted from this input. Anotheportant task is reduction of the
model to include only parts relevant to the vedfpoperties. When the model is complete,
its transformation to Zing representation takes@ldinally, Zing code is produced.

In chapter 4, the basic analysis of possible aghres to the implementation is made.
The development platform and tools are chosen astt ladesign decisions for the compiler
and Zing representation are made.

The thesis continues by the detailed descriptiothefimplementation of the compiler
in chapter 5. For every phase and task in the peookthe model extraction, the key issues
are identified and their solution is described. dgeeffort is made to explain the type
analysis, the implementation of DeSpec-specifictuies and the representation of
requirements to verify.

1C

In chapter 6, missing tools, which are required fidly automatic extraction of the
complete model, are mentioned. Also unimplemengsdufres of the compiler itself are
described there.

Finally, the related work is mentioned and the itssaf the thesis are summarized.

Appendix A contains the modified grammar of the peSlanguage in the version that
is used by the compiler.

Appendix B contains a simplified example of DeSpxass specification and the
corresponding Zing model generated by the compiler.

The thesis is accompanied with a CD. The source abdhe compiler is stored there
along with the executable file. A sample DeSpeciipgation of the driver environment,
which is derived from the specifications publisled?], is also available, together with the
corresponding generated Zing model and its exeltadrsion, which can be run in Zing
model checker.

The CD includes whole package with the compilengZcompiler and Zing model
checker, so it is possible to run accompanied &ct@gpcreate the model from the provided
specification and verify it by the model checkehneTinstructions for running the scripts are
included inreadme.htmlfile, along with the structure of the source caaled whole
package. Since the source code of the compileaomnalso files generated by other tools,
the origin of all included source files is expligistated there.

11

2. Verification of Driver Environment Model

Under the given conditions, i.e. with DeSpec speaiion of the Windows driver
environment and Zing as a target model checkerptbeess of verification of the system
comprises several complex steps. This chapter ieenghort introduction to the DeSpec
language and Zing framework and later on, the toanmation of the model is described.
Finally, the role of the introduced tool in thiskas explained.

2.1. DeSpec Language

The DeSpec specification language was designedaphnto describe the Windows
driver environment. It supports an object-orientggbroach despite the fact that both
Windows kernel and drivers are written in the Cglaage. This approach is well founded
because the environment simulates an object-odesiésign on a specific level, which is
limited by means of the C language. With constrlikess namespaces, classes, properties
and groups and with the support of inheritanceemrsibn and built-in collection types,
DeSpec allows writing models of environments strd@wardly and transparently.

DeSpec does not focus only on the high-level atistra but also allows modeling of
threads and concurrency and features constructsredsby Windows kernel specific
concepts and required by the use of the C languagapportsdelegatesor modeling of
ILateBoundDriverRoutinesinterface andfunction pointer mappingfor modeling of
IEarlyBoundDriverRoutinesnterface. These interfaces are designed for pgske driver
callbacks to the kernel.

Thanks tonamespacesnd attributes, DeSpec allows specifying models on various
levels of abstraction and determination of the mdrthe model that will be subject to
verification. Thus it is possible to adjust comptgof the model to make its verification
feasible in acceptable time.

The key feature of DeSpec is its extensive sudpomxpressing requirements imposed
on the system. There are three concepts for therigésn of these requirements —
assertionsconstraintsandrules

Assertion is the most primitive way to describequired property and can be used as it
Is usual in common programming languages.

Constraints can be used to assure that some camdidilds in interesting places during
execution of the model, typically when enteringleaving a method or accessing a field.
Some of the constraints backed by DeSpec gramncarde for example non-nullity of
method arguments and class fields, range constraintmethod precondition and
postcondition.

Rules are the key means of expressing the requirsnoa the model and play a crucial
role in model checking. Rules allow the use of temp logic and thus enable the
formulation of required properties that cannot Bpressed otherwise. Moreover, DeSpec
does not require specification of rules directhLifiL but introducesule patternsbased on
the Bandera toolset. These patterns were desigmedescribe properties in a well-
understood but still precise way. The set of paiéncluded in DeSpec is universal enough
to describe probably all the rules that could btepially imposed in the Windows driver
environment. However, if there is a need to exps®e property by an unsupported
pattern, it will be easy to add it in DeSpec. Ofi¢he rule patterns that is often used to

12

describe requirements is for exampeexists between Q and. Rhe same property
expressed by LTL formula i§] (Q 0-R = (-R W (PO -R)))~. It is obvious that rule
patterns are more appropriate to describe the nemgents, especially when expressivity of
raw LTL is not needed.

Interesting constructs of DeSpec will be mentioteger in sections describing their
analysis and implementation in Zing.

2.2. Zing

The Zing framework is developed in Microsoft Resbaand is divided into 4 parts: a
modeling language for expressing concurrent modekoftware systems, a compiler for
translating a zing model into an executable reprt@as®n of its transition relation, a model
checker for exploring the state space of the zingdeh and model generators that
automatically extract Zing models from programstten in common .NET programming
languages.

All components except extractors from .NET langsage important for the process of
verification. The Zing model checker has 2 integfae a command-line tool (Zinger) and
an application with GUI that allows inspecting staif the model (Viewer). The Zing
framework in its current state of development sufspall features necessary for
implementation of DeSpec models and is usablehigr formal verification.

The fact that some constructs of the DeSpec lareyaag taken over from the Zing
language implies that the implementation of som8pi&e features is quite straightforward.
On the other hand, Zing is also an object-orietdeduage but it lacks some of the typical
features, namely inheritance and constructors. rOtbemplications emerge when
implementing for example DeSpec delegates, threatic sdata, structures or built-in
collections as Zing does not support these concefawever, the current version of Zing
allows all workarounds necessary for the implementaof DeSpec models.

In the Zing language, types may be eithenple or complex the primary difference
being that complex types are allocated on the la@apsimple types are not. Simple types
contain enumerations, ranges, structures and the paedefined types as C# excepar
and string. Simple typestring could be useful for implementing internals of misde
however it can be replaced by enumerations. Raagestructures are not fully supported.
Complex types include arrays whose sizes can leel it the time of allocation, classes and
object type. Anobjecttype may be used in place of a strongly-typed dattan. Any
complex type reference may be assigned to a variabthe typeobject Zing does not
support typecasts, but abjectvalue may be assigned to a strongly-typed variathech
results in a typecast to the target type (if pdejibThis is used to implement poor
polymorphism and DeSpésandasoperators.

Zing also supports asynchronous calls and synchation via blocking select
statement. Statements of different threads canrbiraily interleaved unless they are
enclosed in an atomic block.

Correct models of the Windows driver environmentjuiee some form of non-
determinism, which can be achieved $slectand choosestatements. Non-determinism

1 W denoting weak until operator, defined by stromg| operator e.g. by equivalence p W o=p) O (p U
g). O is universal time quantifier (always in the futyr® is existential time quantifier (sometime in the
future).

13

leads usually to exponential grow of the explor&atesspace. Sometimes it is useful to
reduce the state space by cutting off a trace uadertain condition. Thessumestatement

is used for this purpose. It cuts off the curreate if the specified condition does not hold.
The assert statement can be used to ensure that specifiedepi®s hold. During
verification of a model by Zing, the model checkaited assumptions are marked but not
reported in contrast to failed assertions that edls failure of the whole verification.

The assertionsare the only constructs for expressing requirement the model in
Zing. This means that they must be used to implémde patterns supported by DeSpec.
As assert statement accepts only common boolean expressiansyorkaround
implementing features of Linear Temporal Logic mastntroduced.

2.3. Extraction of Model

The technologies described in previous chaptersfgaequirements for the verification
of the Windows driver environment and DeSpec isnegiesigned directly for this task.
However, the transformation of the model to chexlstill quite complex. The tool that
transforms DeSpec specification into the Zing moldat to deal above all with the
following issues:

First of all, parsing and semantic analysis of DexSgpde must be made. In this task, an
extensive support for syntactic sugar in DeSpectrbastaken into consideration. This
language features many constructs, which are dedigilo write the specification
straightforwardly and on a high level of abstractiBarticular attention is paid to semantic
analysis, as it is not possible to restrict the asedvanced constructs on the level of
grammar and syntax analysis. This issue is paatubpparent in constructs designed for
formulating constraints and rules. Another featuhat requires special attention is
attributes There are several types of attributes with varimeanings and some of them are
related to a driver or kernel source code. Thisnbt possible to restrict their formulations
by DeSpec grammar and their potential incorrectiressto be checked on the semantic
level.

When DeSpec specification is analyzed and its imegresentation is made, the
remaining inputs must be accepted. For a completdeimof the driver environment
information about the kernel and the driver is meedSymbols that are used in DeSpec
specification must be extracted from kernel hediies, e.g. values of enumerations and
constants abstracted by the model. The more coatetictask is an analysis of driver
source files. The driver part of the model hastdude C code of the driver itself. DeSpec
does not require inserting appropriate segmentseo€ode into the specification manually.
It rather introduces constructs, suchEaslyBoundattribute andextractedlabel that allows
merging of specification and driver code by exiactithout the help of a user. It is
obvious that quite a complex tool for parsing Ceaahd extracting necessary parts of the
model is needed.

Another important task is slicing of the model. BEvié an extensive and detailed

specification of the whole environment can be pied, the complexity of the resulting
Zing model and the verification depends mainly braked properties and a selected level

14

of abstraction. To enable this flexibility, it iecessary to analyze which parts of the model
are relevant for the particular verification prazePeSpec also provides means for
influencing this analysis by the user. It is poksilbto enforce inclusion of specific
constraints into the model b@heckConstraintsattribute. Before the extraction process
starts, the user is supposed to select a speeaifiegpace to check and thus a specific level
of abstraction can be chosen. The contents ofehigdting model influence the extraction of
C source files. It is also possible that theresamme parts of the extracted model that are
never used by the specific driver so the slicinguith be applied again at the end of the
model extraction to further reduce its state spate required analysis can be made by
performing a slicing algorithm described in [6].

After a particular part of the model is determirsedl analyzed, it must be transformed
into Zing model, i.e. the inner representation lué model must be translated into Zing
language. Despite of the fact that DeSpec uses auoflconstructs taken over form Zing,
there are key features specific to DeSpec thatatape implemented in Zing in a trivial
way.

The concept of inheritance is not supported by Zwg use of this relationship in
DeSpec specification of Windows driver environmentwell-founded. Windows kernel
simulates kind of polymorphism by overlapping stawes and there must be a possibility
to abstract this behavior in the specification. ldger, not all features provided by
inheritance are simulated by the kernel so it figant to provide only specific necessary
workarounds for transformation to Zing. Implemeintat of polymorphism relies on
implicit typecasts made by Zing runtime when assigran objectvalue to strong-typed
variable.

Other abstractions useful for specifying the drigavironment are DeSpec delegates
(analogous to function pointer types in C) thatéhawo counterpart in Zing language. The
model of delegates expects a pointer-to analysgetermine a set of functions, which the
specified function pointer can point to. In the txt of kernel-driver environment it means
that driver source code must be analyzed to findwhich functions can be bound to a
particular delegate. For every DeSpec delegataltse from the set of applicable functions
is tracked throughout the model and invocationsl@égate are replaced with dispatch to
an appropriate function.

A crucial task is representation of temporal lofpemulae supported by DeSpec in
Zing language that support only assertions. Exprgssequirements via temporal logic
patterns is one of the main features of DeSpec raalles verification of the system
comfortable for users. Under these conditions, italsle Zing representation of automata
equivalent to specified rules must be found andeahanism for their transitions must be
implemented.

To cope with the issues described above a followetgf tools must be developed:

At first a tool for parsing and analyzing specifioas in DeSpec language should be
produced. Next, an extractor of the model from d@halyzed specification, kernel header
files and driver source code is needed. On thimaetdd model a slicing algorithm should
be performed to determine the part of the modehterk. To complete the task, a translator
of the model into Zing language is necessary.

15

It is apparent that the key component is a compilégh DeSpec front-end and Zing
back-end. Operations implemented by C code extrastd slicer must be preformed on
inner representation of the model after the seroamalysis.

2.4. Tasks for Compiler

During the development it proved to be infeasibléniplement whole set of necessary
tools in the scope of this thesis. Rather, it wasided to focus on the semantic analysis of
DeSpec, which is needed for all the other stepmeStasks even seem to be suitable as a
topic for another master thesis.

However, there are certain subsets of DeSpec |gegubat allows describing a
specification, which does not require the othetgdo finish the extraction. Only analyzer
of DeSpec and translator to Zing can perform coteglansformation of such model. With
some workarounds and help of user it is possibleréate such specification, analyze it
with the implemented tool and translate it into @imodel. Analysis of C source files as
well as basic model has to be made manually. Viigh rhotivation in mind, an attempt to
implement a simplified Zing back-end and produeeaking compiler was made.

Main part of the introduced compiler is focusedta front-end and DeSpec analysis.
The back-end translating DeSpec model into Zinguage rather proves that the proposed
approach to modeling Windows driver environmenteasible and that DeSpec can be
successfully used for model-checking of such systedowever, implementation of the
other tools is required to process a full-fledgedfication of the environment.

16

3. Structure of Model Extractor

For extracting a Zing model from DeSpec specifaratiof Windows driver
environment, Windows kernel header files and drs@urce code, 4 main tasks must be
solved: Semantic analysis of DeSpec code to entucerrectness, analysis and extraction
of relevant C code to complete the model, slicommgeduce the state space of the model and
translation of the model into Zing language. Suuetof the model extractor is determined
by these 4 steps. In following sections organizatibtasks and development is described.

3.1. DeSpec Front-End

For processing of DeSpec specification the typaahpiler approach [7] is applied.
The analysis is divided into 3 levels: lexical, synand semantic.

3.1.1. Lexical Analysis

The analysis of tokens is made by a lexer generted DeSpec lexical grammar.
There is no need to implement the lexer by harld>as generators are available. However,
the lexer generator should be chosen with respedarget language of the compiler
implementation.

3.1.2. Syntax Analysis

The syntax analysis is made by a parser that i®rgeed from DeSpec syntactic
grammar. Same as for lexer, there are tools foemgimg parsers available. A chosen
generator should produce parsers that are abhedace with the generated lexer.

During the process of parsing, an inner representaf the specified model is built. It
has a form ofAbstract Syntax TrefAST) [8]. The structure of AST nodes is desigied
such a way that there is no need to transform #remted AST to another intermediate
form during the processing of a model. All necegsaperations on the model can be
performed easily through the generated AST.

Changes in DeSpec, which turn out to be desiralnimg the development of extractor,
are reflected in its syntax grammar.

3.1.3. Semantic Analysis

During semantic analysis, the compiler has to chéwk semantic rules for using
DeSpec constructs as described in [2]. This algoires a complete static type analysis.
Whole task is completed by several passages thringgAST. During traversing the AST,
operations necessary to support further translatitmnZing are performed.

3.1.4. Built-In Types

DeSpec specification of built-in types is actualyspecification of templates, which
cannot be used directly in the model. Instead, materized instances of these generic
templates should be created. It is necessary tbdihreferences to various built-in types
and supply the model with specification of instanoé required templates. This must be
completed before type analysis to enable the mappirbuilt-in type references to their
declarations.

17

3.1.5. Eliminating Compile-Time Constructs

DeSpec features several constructs that are deksitmanake specifications more
readable and make ideas behind them clear, grgups namespacesor extension
mechanism. All of them must be eliminated during #xtraction of the model and their
meaning must be represented in a different way. @lensemantic of these features
implies that their implementation by other meansastrivial.

3.2. Kernel and Driver Code Analysis

A specification of Windows driver environment must merged with C code of the
Windows kernel and a driver to be verified. Kerhelader files must be inspected for
extracting symbols referenced by the model. Formgta abstractions of kernel
enumeration and constants must be supplied witropppte values. As for the driver part,
extraction is more complicated and requires e.goiater-to analysis of function pointer
types and merging of method abstractions in DeSp#cbodies of driver functions in C.
Complete source code of a verified driver is reggiito complete the model.

3.3. Determination of Resulting Model

Only relevant parts of DeSpec specification and addecshould be included in the
extracted model to limit its state space. Thestsae determined by two means — DeSpec
namespaceand slicing algorithm. Before the model extracteord its verification a set of
rules to verify should be chosen. According to @moset, user can select a namespace with
model on desired level of abstraction. During theaetion slicing must be performed on
the model to determine, which parts influence cheglof selected rules and constraints,
and what parts of C code are to be merged withntbdel. The slicing algorithm must
respectCheckConstraintsattributes and include abstractions marked witk #tiribute into
resulting model even if they are not directly coeted with verified rules.

3.4. Zing Back-End

Since the target language of the compiler is a-tegkl modeling language, there is no
need to perform operations on an inner representafi code typical for compilers to low-
level or binary code. Main task for the back-endngplementation of DeSpec specific
features by means common to both DeSpec and Ziegergting automata for
corresponding rules and emitting Zing code accéptaypthe Zing compiler.

3.4.1. Implementation of Modeling Features

As Zing does not support some concepts providelddfypec, appropriate workarounds
must be introduced.

Inheritance is one of such features and its impigai®n requires an analysis of
classes involved in this relationship. Involvedsskes must be provided with an additional
mechanism that dispatches dynamic access to iadamembers. Compile-time access to
inherited declarations is provided during type gsial in the front-end of the compiler.
Moreover, methods for implementing operator must be generated and added into every
class involved in inheritance. Other features, bkerriding, are not required by DeSpec.

Zing does not supporproperties which are heavily used not only in DeSpec
specifications. Firstly use of properties improwgecification simplicity and readability.

18

Secondly properties are used by the compiler fgglementation of some constraints, as
properties allow controlled access to data in @gtto fields. Access to properties can be
simulated by generating and invoking correspondeghods.

Use of various expressions is quite restricted iog grammar, compared with DeSpec
and also common programming languages like C#. d@pe occurrences of method
invocations and assignment expressions are limiEeen if these limitations propagated
into DeSpec grammar probably would not cause aalglem in writing specifications, it is
not suitable to transfer them to users, especitliijey expect typical functionality from
such basic language constructs. Complex expresiahare not allowed by Zing grammar
must be turned into equivalent segments of statsmemd simplified expressions
acceptable by Zing.

Implementation of delegates relies on a pointeat@lysis of driver source code
provided by the C code extractor. A dispatch merdmanbased on the results of the
analysis must be generated and added into the model

3.4.2. Implementation of Constraints and Rules

As Zing provides none of the constructs for expregssconstraints supported by
DeSpec, workarounds using assertions must be intemtl Constrained fields are
transformed into properties. Constrains relatech&thods and properties are expanded to
assertion statements.

For implementation of rules equivalent automata tmhes generated at first. Their
transition methods must be added into involvedseas The actual value of a property
expressed by a rule and represented by an autoroanone changed from various places of
the model during its execution. A mechanism fonsraon of appropriate automata from
these places must be generated. A routine thaksHewal states of the automata must be
added at the end of model execution.

3.4.3. Emitting Zing Code

When all DeSpec specific features are implementeddnstructs common to both
DeSpec and Zing, Zing code of the resulting model be generated. A dumping routine
must be provided for every node of AST presenheresulting model. Some branches of
AST that were generated by the compiler duringekiaction are not valid parts of the
extracted model and must be cut off.

Built-in collection types cannot be specified by3pec on necessary level of detail and
can be represented by AST nodes only on very hégylellof abstraction. Their real
functionality can be expressed only in Zing bydtsn built-in types. Thus transformation
from DeSpec to Zing can be made only in this stepwithout appropriate representation
in DeSpec. However, intended functionality is kndwom [2].

19

4. Approaches to Implementation

An analysis of possible approaches to implementatiothe DeSpec-to-Zing compiler
Is in this case quite simple and straightforward.

.NET development platform is suggested in the assent of the thesis and seems to
be the most suitable choice. Since C# was chosea lasguage of implementation, it
necessary to find lexer and parser generatorsptioaiice outputs in the same language or
at least in any .NET language. A GPPG parser gang@ proved to be a suitable tool for
generating DeSpec parser. GPPG takes a Bison/Yg@ecgrammar specification with
semantic actions coded in C# and produces an LALRétser. However it does not
include a lexer generator so a standalone tool mesised. A CsLex lexer generator is
such a tool that works well with GPPG. It acceptiex-like input specification and
produces a C# output. Recently a GPLEX lexer géoersas developed by authors of
GPPG. This tool is designed to be used with GPP& iamwould be probably suitable
replacement for CsLex, if necessary.

As the goal of the thesis is translation of DeStmwuage into Zing, the typical
approach to the implementation of a compiler shdwgdtaken. A choice whether AST
nodes will be so-calledmart or dumb objects should be made. Since Zing is the only
intended target language, there should be no prebleith smart nodes, i.e. with nodes
represented by classes with rich functionality. e other hand, the concept of dumb
nodes with few or no methods makes a design ofmapger more comprehensible and
keeps code with related functionality at the samaeg An ideal solution seems to be use
of dumb nodes and implementation of required fumgtiity in visitors. However, in case
that implementation of some task seems to be matabée in specific nodes, there is no
reason to avoid that.

Compilers are referenced as ideal examples footisesitor design pattern [10] and it
Is apparent that in case of translation of DeSpefinig it holds as well.

A specified model is represented by AST nodes, Whiorrespond to DeSpec
constructs, during whole process of extraction. lémntation of DeSpec features,
especially in the back-end of the compiler, recgigenerating of other nodes, adding new
branches to the AST and replacing old ones. Usuadlw nodes should be at least partially
based on those to be replaced. Implementatiganaibtypedesign pattern described in [10]
and providing nodes witlelone method significantly simplifies generating of adalial
code.

On if the key issues of translating DeSpec intogZia representation of DeSpec
temporal rules. Since the rules follow temporaltgras, they can be expressed in LTL
formulae. Raw LTL formulae can be represented bghBiautomata. The appropriate
(potentially non-deterministic) automaton can bestaucted by algorithm described in [11]
and then transformed into a deterministic minimaltes automaton. Nevertheless, with
regard to a specific set of rule patterns and ateraf the models, it is also possible to
construct an automaton for each DeSpec rule pattamually. Automata representing the
rules can be driven by events triggered during et@c of the model. At the end of the
execution their states can be checked by assertiimss it is possible to implement
DeSpec rule patterns by Ziagsertstatements.

20

5. Implementation of Compiler

5.1. Generating Lexer

A lexer necessary for providing a DeSpec parsdr tikens is generated by CsLex tool
from lex-like DeSpec lexical grammar defined in.[@Ine change was made in the lexical
structure. Compiler needs to create additionalamsts of DeSpec constructs during the
model extraction, among others named enumerataasses, members and variables. To
avoid potential conflicts with names used in thigioal specification, a unique prefix must
be reserved for identifiers generated by compilevo underscores (*__") are chosen for
this prefix. Regular expressions standing for idems in lexical grammar are modified to
enforce this restriction.

Conflicts of identifiers in DeSpec specificationtiwiZing keywords are solved during
emitting of Zing code by inserting the same prefix.

5.2. Generating Parser

A parser processing DeSpec code is generated bysGé&® from DeSpec syntactic
grammar. GPPG accepts grammars written in Yacc/iBssgle [11] and allows defining a
custom semantic value type Myaluetype and %union directives, as well as a custom
location type.

This is a C# pseudo-union for transferring semardloes:

%union

public string str;
public int n;
) public object obj;

The field ofstring type is designed for holding string literals addrtifiers, thent field
contains integer literals and enumeration values abject field holds instances of AST
nodes created during parsing. The union is flexdrleugh to transfer any semantic value
or AST node. In case that it is necessary to teansfo objects at a time, e.g. in rule
AttributesAndModifiers : Attributes Modifieran instance of generic claBair<F, S> can
be used for them and itself can be assignabjdield of the union.

A default location-information class contains fielbr both start and end position and
fit the needs of error reporting. The only necegsaformation that is not automatically
provided by the parser is name of processed fite.efror reporting purposekpcation
structure with name of file and position in fileadded to every node of AST.

GPPG allows to provide additional code of parserYiacc-like way directly in
%{prologue%} section of input grammar file or in separate @& liiy declaring parser class
partial. This is used for adding a set of fields necessarybuilding an AST tree to the
generated parser. Most of them are C# dictiondoesegistering of DeSpec declarations
and representing current context of processed rodenters for generating uniqgue names
of anonymous constructs are also added to the aeakparser.

The grammar production rules are usually suppleeterwith piece of C# code
implementing appropriate semantic actions. Theséimes are usually triggered after the

21

completion of the rule. In that case they gathenas#ic values passed from a lower level
and generate an AST node corresponding to the sesani the rule. The result of this
processing is then passed to a superior rule.

Sometimes an initialization is required before @esling into a particular part of a rule.
E.g. the rule foclass declaratioras following form:

Classbecl : o)
AttributesAndModifiers fclass‘ T_IDENTIFIER Inherits ‘{‘ MemberDecls
l}l

Example 1: Production rule for class declaration

Before parsing of member declarations of a cleesberpecls), it is necessary to reset
some context-related fields of the parser. Duriagsing of the declarations, these fields are
filled with data necessary for generating the claeslaration AST node after the
completion of the rule.

However, most of functionality is moved to C# saufides in order to keep grammar
file simple and readable. It is also more comfdedb work with and debug pure C# code
than code mixed with grammar rules and insertealtim implementation of a parser. Main
purpose of the code segments in grammar file iem@eimg of instances of AST nodes and
building the AST from them.

5.3. Abstract Syntax Tree

The input specification is represented by an abstsgntax tree (AST) constructed
during its parsing. Individual constructs of DeSpetguage are represented by different
node types and its occurrences in the parsed sgmh have their counterparts in the
nodes of the constructed AST. Every type of nodeegsesented by a specific class and
relations between similar node types are expresg@aheritance.

5.3.1. Support for Model Extraction

All types of nodes are derived from an abstracelwasdNode (its simplified structure
is described in Figure 1). This class has no copatein DeSpec grammar and contains
only members that are required by the compiler fadhspecific node types to process a
specification. It includes information about thedton of corresponding segment of code
in DeSpec specification and bindings to parent sodAST.

A key member for whole process of model extracigoficcept method. Being a part of
visitor design pattern it allows traversing the AST byiteis that implement specific
functionality in theirEnter/Returncallbacks.

Another feature that can be required from all typésnodes is cloning of their
instancesClone method returns the deep copy of a node. The adalg fvhose copy is
shallow is a reference into the table of DeSpec tgeclarations. Changes in nodes
representing type declarations are supposed tapgeade to all their references. This would
not hold if a declaration in table of types changed these references pointed to cloned
instances.

Node types representing constructs common to be®pBc and Zing also must be able
to emit their representation in Zing language atehd of model extractioumpmethod

22

serves for this purpose. Inheritance relationshgisieen node classes express similarity of
specific DeSpec constructs rather then their inciugn both Zing and DeSpec grammar.

This property is not caught in the hierarchy of edgipes by any means so dumping

method is included in every type of node as athein inherit from the base node class.

| Node 2] |
Abstract Class
i

=l Properties

i*'? ZodeLocation : Location
i parentDeclaration | Mode
5 ParentMode : Mode
=I Methods
W Accepfi) : Mode
@ Clonel) : Node
@ Durmp() 2 void

Figure 1: Structure of base class for AST nodes

In contrast with base node class, a class repiageparticular DeSpec construct must
contain some additional members. Fields correspani individual parts of the construct
are included and non-default constructor that asce@lues of these parts must be
provided. In some cases methods with added furalitgrcan be also included. It does not
conform to the concept of dumb AST objects bus i isimple solution with no drawbacks.
An example of such case ApplyAttributesmethod that processes attributes assigned to
some DeSpec constructs.

Most of node types can be instantiated quite ditkogvardly just after the
corresponding DeSpec construct is parsed. Wheagheopriate syntax rule is completed,
a constructor of the node type is called and subsideeld in syntactic value unions are
passed as arguments. The newly created node igptbpagated up to its superior rule by
the parser. When parsing of this superior ruleoimmleted, the process is repeated on that
level, and so on.

However, there are some DeSpec constructs thaireegpecial treatment when their
node types are instantiated and incorporated h@d\ST.

One of them is DeSpec class declaration represéyt€thssDecinode type. This class
contains several dictionaries for declared membeugs, structures, etc. to keep
declarations of different kind separated and easilyessible. The constructor of ClassDecl
class expects these separated collections as angginiiéat is the reason why declarations
created in the context of a parsed class mustdyedsin parser’s collections. When class
declaration rule is completed, filled collectiong aused for construction of the ClassDecl
node.

A different approach is taken when creatind-ialdDecl node, which represents a
DeSpec field declaration. In DeSpec it is possibleleclare more variables of the same
type together in one field declaration (here detian means a line of code terminated by
semicolon). However, the type of declared fieldsn® known until whole rule is
completed. Thus a list of field names and initialz must be maintained during parsing of
the field declaration construct. When leaving thke rlist of realFieldDecl nodes must be

23

created and passed to a superior rule, where litbb@iadded to other field declarations of
the parent class.

DeSpec allows distribution of a namespace dectardti the specification much like
C#. Therefore, one namespace can be entered eted expeatedly during parsing. Since
DeSpec does not support declaration of partialsclaamespaces are the only constructs
that have to cope with this problem. Even if theatfire is not explicitly used in a
specification, at least impliciDefault namespace can be divided by another namespace
declaration. Unlike the other nodes, the one remtasg namespace declaration is created
at the start of namespace syntax rule, of courseibthe namespace has not been already
created at some other place. When the rule is aethl contents of the namespace
declaration are just added to existing namespade.no

Except building of AST, there is another task tbah be completed during parsing.
DeSpec supports 5 modifiers that can be appliedtasious constructs static, synthetic,
abstract, basendreadonly If some construct contains an applicable modiftemust be
propagated to all nested relevant constructs. Amrnmation about modifiers is necessary
for most of the tasks in the model extractionsinecessary to do the propagation as soon
as possible.

It would be possible to implement a special visit@at would do the job but this is not
necessary. Instead, correct modifiers are passarhaments already when creating a node.
2 fields are added to the parser, one holding amkioation of current propagating
modifiers and one being a stack that stores thes®inations for corresponding scopes.
When entering DeSpec class declaration or structigearation, a copy of current
propagating modifiers is saved on the stack ang #ne combined with modifiers applied
on this declaration. When creating a node withohaas or structure declaration that accepts
modifiers, they are combined with currently progaga ones before passing them to
constructor. When leaving the declaration, the frralue of the propagating modifiers is
loaded from the stack. Thus in every scope all iagpinodifiers are known before the
construction of nodes starts. It is possible thattipular combination of propagating
modifiers is not applicable to a specific construdevertheless this is not a problem
because those flags that are not applicable arer méecked for presence.

Most of the tasks in model extraction process ateesl by appropriate visitors when
traversing the constructed AST. All visitors impkemt [Visitor interface (Figure 2) and
their traversing is driven bfcceptmethods of AST nodes.

| I¥isitor £ |
Interface

=l Methaods

W Enferfiods nodal ! boaf
W Refunifiode noda) » Mode

Figure 2: IVisitor interface

Original visitor design pattern proposes only onethrad for visiting objects called
simply Visit. However, for working with an AST it is desirable support conditional

24

traversing to avoid visiting branches that arenetgvant for a particular visitor. Moreover,
for some tasks it is more suitable to perform thvehen descending the tree and for other
the opposite direction is more appropriate. Bosiés are solved by replaciWgsit method
with EnterandReturnmethods.

A visitor's Enter method is invoked by a node at the beginnindhotept(when the
visitor is descending the tree and enters a ndtd&nter returns true, descent can continue
by calling Accepton its child nodes. At the end of nod&sceptmethod (when visitor is
ascending the tree and leaves the node) visiRetarnmethod is invoked.

Visitors implement both methods actually only byliapatch based on the type of a
node passed as argument. When the type is detetnireeappropriate override is called.

5.3.2. Hierarchy of Nodes

Since the rest of this text will mainly discuss Iempentation of specific DeSpec
language constructs, a brief introduction to sofrt@eir counterparts in AST follows.

Specificatiomnode is the root of every generated AST. As sitdigs an important role
in driving the process of model extraction and leetite structure of this class is rather
specific. The fact that DeSpec specification isially a list of namespaces is represented
by Namespacedictionary. Nothing else can be declared on tkellef specification, since
all declarations out of explicit namespaces areluded into the implicit Default
namespace. Partial namespaces and implid#fault namespace require creating
Namespacenodes on a higher level. As the only node aboveesaaces is the
specification, it is implemented by iEBnterNamespacand ExitNamespacenethods and
CurrentNamespacmember. Other data members serve the needs obthgiler.

25

>

| Specification
Class
= Made

=l Properties
i CurrentFileMame
_'*‘*F CurrentMamespace
5 DedaredGroups
i DeclaredTypes
_'*‘*F Errors

_'*‘*F Mamespaces
= Methods
Accept
Clone
Durnp
EliminateInheritedFislds
EliminateStructs
EnterMarnespace
ExitMamespace
GetGroupDeclarations
GetTypeleclarations
ImplernentInheritance
ImplementInheritanceForkode
LoadFile
LoadRecursive
Preprocesshamespaces
ResolvelnheritancelnClass
Specification (+ 1 overload)
TransformFieldsToProps

Lok oX ol S S S Sl S S S ¢

&

e e ¢ ¢

Figure 3: Selected members of Specification node

As can be seen on FigureSecificatiomnode does not conform to the notion of dumb
object. Specificationclass contains some additional properties and sumbmethods that
are used for processing of the model. The key menftre extracting of models is
DeclaredTypedictionary of all class, structure, union, enurtierg range and delegate
declarations present in the specification. Thigiolary represents global type table of the
compiler and is required by most of visitors. Arethmportant member i&rrors list
holding semantic errors accompanied w@hrrentFileNamemember for error reporting
purposes.

All other methods excefplodemethods’ overrides trigger or implement some phase
model analysis and extraction and they will be dbed later.

Namespac@odes provide access to other DeSpec declaraimh®s soon as the type
table is filled, they are needed only to checkbiigy of DeSpec members and declarations
during the type analysis. Namespaces do not maodepeoperty or feature of a specified
environment and thus they are not preserved byna@gns in the resulting Zing model.
Their main purpose is dividing specifications iptrts with various levels of abstraction.

26

The highest nodes in AST hierarchy that have copates in DeSpec code are
representations of DeSpec declarations. As allagatbns have some common features, a
base class for declaration nodes exists. Membetki®Decl class (Figure 4) reflect the
fact that every DeSpec declaration can be marked some modifiers and attributes.
Combinations of applicable modifier flags and btites are specific for each type of
declaration, howeveEonditionalattributé can be applied on all of them.

" pedt 2
Abstract Class T
=+ Mode Modifier ES
T Ernurn
= Fields

o¥ attrCondition : Expression Static

Syntheti
o attributes : List<Expression > AEZtr:clic
2 modifiers : Modifier
’ . Base
= name : skring

ReadOnly

=l Methods
2% CloneAttributes() : List<Expression:

Figure 4: Abstraction of declaration and applicablemodifiers

Another common property of all declaration typeshist they must have a name. Even
if DeSpec grammar allows anonymous rule declarafi@ome identifier is required by
compiler for their implementation. For anonymoudesy names are generated during
parsing. These autogenerated names start with Hamprefix. The same mechanism is
used for anonymous namespaces.

DeSpec declaration types are divided in two groielarations from the first group
can be used on the namespace feaal those from the second group must be nested in
some declaration from the first group. The firsbugy is represented I§pecDechbstract
class and the second oneMgmberDechbstract class. Neither class adds new members to
the parenDecl class and their only purpose exploiting the poksds of polymorphism. It
is often useful to maintain a collection of eittwarly global declarations or only member
declarations an&pecDeclandMemberDeclclasses make this separation easy. The group
of global declarations types consists of classp@ration, range and delegate. The group
of member declarations consists of field, propemgthod, structure, group and rule. The
hierarchy of respective AST node types is depicedrigure 5.

2 This attribute assures inclusion of the declaraiito the resulting model only under a certaindition. It
is designed for model reduction process.
% Declarations of classes and delegates are eveittes only to the namespace level, they cannatdsted.

27

| Aode %) |
Abstract Class

- Ded % |
Abstract Class
= Mode
. SpecDed ¥ | - MemberDed (%)
Abstract Class Abstract Class
=& Decl = Decl
Fily
ClassDecl ¥ EnumDecl & FieldDecl ¥ RuleDecl ¥
Sealed Class Sealed Class Sealed Class Sealed Class
= Spechecl =+ Spechecl = MamberDecl = MamberDecl
DelegateDecl (¥ RangeDecl 3 MethodDecl £3 GroupDecl £3
Sealed Class Sealed Class Sealed Class Sealed Class
= Spechecl =+ Spechecl = MamberDecl = MamberDecl
PropertyDec (¥ StructDecl E3
Sealed Class Sealed Class
= MamberDecl = MamberDecl

Figure 5: Hierarchy of declaration nodes

Main drawback of this classification is that it oabh be used for recognizing
declarations of types, since structure declaratefines a type but it can only be nested in a
class declaration. Another level of inheritance amdtract classes could be added for
distinguishing e.g. between global declarationsictvitan appear only on the namespace
level and those, which can also be nested, etc.eMexy such detailed classification would
be utilized only very rarely by the compiler.

Nodes in lower layers of AST can represent videetyarof DeSpec constructs, which
generally have nothing or very little in common.isTts given by different constructs used
for specifying content of individual declaratiorpgs. Classes representing these constructs
will be described later in appropriate places gfessary.

28

The lowest layers of AST show a kind of uniformégain. This is due to the fact that
the longest paths in the tree usually end withimethod body or rule declaration. Thus,
nodes closest to the leaves of AST represent ysaaipressions, especially member
accesses and literals. All expression node typesdarived from common base class
Expression (Figure 6). This abstract class introduces membeotding the type
information.

¥

| Expression
Abstract Class
=+ Mode

= Properties
5 TsLvalue @ bool
5 Type : DesType

Figure 6: Base class for expressions

Value of IsLvalue member says, whether the expression can be adsignerThis
property is determined by the kind of expressionlyOMemberAccessSpecialAccesand
ElementAccesxpressions can be potentially assigned to, ifotiter restrictions are
applied. In case obpecialAccessxpression, which represents occurrencethisf result,
valueandthreadkeywords, value of this member is dependent orctimerete keyword. As
a consequencdsLvalue cannot be a static member and is resolved in namists of
corresponding classes.

In contrary, type of an expression is almost alwaysnown in the time of construction
due to the fact that type information is incompldteging parsing. The only exception is
instantiation ofLiteral class, because its type is given by its value.tR@rother cases, the
type analysis must be run to correctly set theevalil'ypemember. Until the type analysis,
type information represented by this member is nmgete. Type hierarchy and type
analysis is described in detail in chapter 5.8.

General idea about AST nodes hierarchy can be djdimmen Figure 7. It shows a
sample branch of the tree ending in an expressioluded in a statement of a method.
Vertical arrows represent inclusion of a subnodthwiouble arrows denoting subnodes,
which represent items from a collection. Horizontatrows indicate inheritance
relationship. To keep the sample clear, only nergssode types are included. To show a
real branch consisting exclusively from instancels non-abstract classes, further
inheritance bindings would have to be depicted.

29

| Specification [|
Class
= MHode

" Mamespaces .,

I

Mamespace
Sealed-Class
=+ kode

% Declarations .|,

e i 7
ClassDecl specited
Sealed Class e Abstract Class

=+ Spechacl = Crecl

L -

o
)

5 Methods

= L
MethodDecl

Sealed Class

= MemberDecl

L e

I

S Body

€«

-~
Block

Sealed-Class

= EmbeddedStaternent

L e

O Statements .,

. Statement ¥ | | Embeddedstatement (¥ | | StatementWithENDression
Abstract Class g Abstract Class bt Abstract Class

11—

=+ MHode F = Staternent F = EmbeddedStaternant

=

j StatementExpression
' Expression
Abstract Class
=+ Mode

<€)

Figure 7: Sample AST branch

5.3.3. Child-Parent Bindings

During the model extraction, visitors often needbraader context when processing
some nodes, i.e. information about ancestors ofigieed node is required. This context
can be obtained by two mechanisms.

Firstly, when descending the AST, a visitor can it® Enter method save the
information about visited node on the top of ite@pl stack. With such a stack for every
node type, which the visitor is interested insifpossible to determine at any moment the

3C

closest ancestor of a specific node type as wethaothers on the path to the AST root.
For example, if visitor needs to know during thesitviof statements declaring local
variables, what is the most nested paflaick statement, an additional stack accepting
Block nodes is declared in visitor's class. Every tintgew visitor enters 8lock node, it
pushes the entered node on the stack. When leavigck it pops the stack. Thus, the
closest ancestor d@lock type is always accessible on the top of the stéfth one stack
common for all node types, it would be possiblé&eep track of traversing the AST, since
the stack would contain all nodes on the path ® AI$T root. However, a convenient
implementation of such stack would require a comrhase class of all visitors, which
would work with the stack in itEnter andReturnmethods. Moreover, this stack does not
allow inspecting ancestors of nodes, which areonahe current branch.

More straightforward and convenient way, how toed®ine an ancestor of visited
node, is to set up bindings from child nodes tartparents. Every node type inherits two
members designed for these bindings from Nade base classParentNode holds
information about the closest node of any type twe path to the AST root.
ParentDeclarationpoints to the closest structure, union, classastendeclaration. Due to
these bindings, every node knows its parent and ihis possible to effectively inspect
whole path to the AST root from an arbitrary node.

The parent bindings are established BgrentingVisitor in an early phase of
specification processing. The parser could alsotli® job, but determining parent
declarations would be more complicated. Moreovehe timplementation via
ParentingVisitorallows updates of the bindings later in the precef extraction. This
feature is very useful for the compiler, as it does need to keep bindings correct when
changing the AST. After a phase involving criticgderations ParentingVisitoris run on
the modified AST and repairs inconsistencies.

5.4. Processing of Namespaces

Namespaces are used in DeSpec specifications trasepthe models on different
levels of abstraction. Before the processing giecsication starts, a namespace containing
a model with desired level of detail is supposedbeéoselected. This selection determines
which parts of the specification are to be extrdctdamespaces can be involved in a
refinement relation to achieve code reuse. Thar@ideSpec specification proposes three
types of refinement inclusion replacemenanextensionA concept of extension involves
also classes and enumerations and is not currentpported, as it requires quite
complicated merging of code and detailed type amalyThe inclusion of another
namespace can be achieved wing clause.Refine clause causes merging of the two
involved namespaces and replacement of declaratfom® the refined one with
declarations with the same names from the refiomg All declarations on the global level
of a specification together compose so-calbedaultnamespace. ThHeefaultnamespace is
implicitly included in every other namespace.

Selection of a namespace with a model to extrasvismplemented. The main purpose
of the namespaces is reduction of model's stateespahich should be performed by a
slicing tool. As this tool is not implemented ystjpport for namespace selection is not
necessary. It is easy to enforce the selection désared namespace manually, because

31

currently theDefault namespace is always processed. Hence, it sutiicesove desired
top-level model class out of its original namespace

Namespaces are not preserved in the resulting mdadelcomplete the namespace
containing a model to extract, the refining operati must be preformed in a kind of
preprocessingSpecificatiorclass declareBreprocessNamespacesethod, which performs
this preprocessing as soon as the specificatiopaised. For every namespace its
namespace to refine is found, merging is perforrmed then theDefault namespace is
included in the result by adding appropriagingclause.

The namespace to refine must be found by spedditatbject, because a namespace
itself has no access to the other namespaces.ninacg refinement itself is implemented
recursively byRefinemethod of theNamespaceslass. At first, the refined namespace is
cloned and processed kyamespaceDereferenceVisitorhis visitor simply turns all
references to the original namespace into refeseteéhe refining namespace. Thesing
clauses of both namespaces are combined and elgnhgadeclarations are merged and
refinesclause is deleted. During merging, declaratioas$ #éne not specified in the refining
namespace are inserted into it. Since M@mespaceDereferenceVisitapdated the
references in these declarations, they are camele new context.

Inclusion ofDefault namespace by using clause simulates implicit ¢labeess to the
declarations in this namespace from the other npaces without the need of using
corresponding prefix. Contrary to refinement, rddecg of specifications from an
included namespace is not allowed in the includiagnespace.

Although inclusion of a namespace in another ormmilshresult in the incorporation of
the included namespace into the including one, ithisot actually necessary. Since the
usingclauses are preserved, they can be used in teeatyalysis when the corresponding
declarations are looked for. At the end, during teng Zing code, the content of an
included namespace can be dumped as it is, bethes@corporation would cause no
changes in it.

5.5. Providing Built-In Collections

The built-in collection types are not generatecelsoby compiler. Their generation is
based on the specification of collection templatdsich is supplied with the compiler and
which is a mandatory part of every specification.

These templates can be parameterized with a Defypecand thus allow to define
specific collection types (actually instances aésh templates), which can be used in the
specification. A specific template instance is defi simply by its occurrence in the
specification on any place where a name of typebmmsed. The specification must be
explored and all instances of collection templatest be found. For every type, which is
used as the parameter of the template, a new pomdsg collection type is generated and
integrated into the specification. It is includedthe type table and thus during the type
analysis, all occurrences of a particular templagtance are identified as valid DeSpec
types.

A new instance oArrayList collection template can be introduced in the dpation
e.g. by declaring a variable of this type:

ArrayList<int> integerArray = new ArrayList<int>(10);

32

or also by using it as a type of method parameter:

static synthetic int IndexofSignaled())]
ArrayList<Dispatcherobject>! objects)

Necessary built-in collection types are provided ByiltinTypesVisitor When a
reference to a parameterized collection type isidoin the specification, it is checked,
whether this type has not been already generattetht| a new collection type, which is
based on the appropriate template, is declaredadddd to the specification. Type of its
items is fixed by the parameter of the templateisitalso necessary to generate an
appropriate instance éfrray template parameterized with the same type, ascttlisction
type is used for theemsmember representing underlying low-level collectamd a proxy
to Zing array. Implementation of built-in high-ldwellection types by instances Afray
template and notion of Zing array proxy are desatim section 5.11.6. Finally, references
in the generated class declaration must be cod&placeTypeVisitor

synthetic class ArrayListofT

ArrayofT items;

ArrayListofT(int size)
{items = new ArrayOfT(size);}

void Resize(int index,int size)
ArrayOofT new_items = new ArrayOofT(size);

}
¥oid}Add(T newvalue)

T Remove()
{...}
void RemoveAt(int index)

ArrayOofT new_items = new ArrayOfT(items.Count-1);

}
}nt %ndexOf(T item)

g this[int 1]

get {...}

set {...}
h
int Count

get {...}
) set {...}

Example 2: ArrayList template

33

There is a simplified DeSpec specification of bunltArrayList template in Example 2.
Its instances are backed b#rray collection with the same underlying type.
BuiltinTypesVisitorstarts deriving a collection type parameterizethvei.g.int type from
this template in it€reateTypenethod.

This class declaration is cloned and renamefrtayList<int> to match the identifier,
by which it is referred to from the rest of the Gfieation. Then all occurrences af
placeholder for the type parameter are replaceld thv@int type by theReplaceTypeVisitor
The same process is applied for replacing refesetaehe original typeArrayListOfT)
with those addressing the generated tyjreafyList<int>).

After that, theArray<int> type is required for the items member of the negvbated
class. It can happen that this type has been glgaerated during deriving of an instance
of another template parameterized also withIf not, the same deriving process is applied
to get the required declaration. In the end, refege toArrayOfT are replaced with
Array<int> in the declaration ofArrayList<int> class by th&ReplaceTypeVisitofThus, a
correct DeSpec class declaration is generated,hwdaa be transformed into Zing in the
same standard way as any other DeSpec class. ritdidoality relies solely on Zing
implementation oArray<int> class, which is described in section 5.11.6.

5.6. Processing of Groups

The group construct is a mean for code reuse as well aarfabstraction in a specific
context. The group declaration is basically a $ahethods that can be interchanged in a
specific context.

As for code reuse, it allows declaring a numbemethods while providing only one
common body. This feature can be used when modaliogmmon behavior of methods,
while their different names and signatures must greserved. DeSpec language
specification also proposes a possibility of meggthe common body with extensions,
which are specific for the individual methods. Nekeless, this feature is quite limited,
since the extension mechanism is not currently supg.

The group declaration can be used also to abdnaut differences between grouped
methods, which are not important in a specific eatjtespecially in rules. In such a case,
the name of the group can be used as a placeHolddgre names of the included methods.
Semantics of group invocation is dependent on theepwhere it is used. When the name
of a group is used in an invocation expressiomeatns that any of the included methods
can be called at that place. The target is choaedomly. When the group invocation is
used as in a boolean rule expression, it is agteaibanded into the conjunction of calls of
all grouped methods. Thus, quantification overnfethods with an existence quantifier is
introduced. A group can be also used to parametarguantified rule. It allows to express
that rule must hold for all methods from the group.

The group construct is syntactic sugar and haooaterpart in the resulting model. As
such, it must be eliminated during an early phakenodel extraction, in a kind of
preprocessing. Groups are eliminated by individiedlaring of all included methods and
by expanding the expressions referring to thems Efimination is performed by a set of
visitors.

34

At first, all group declarations from all class teations are gathered into one table for
further use by the visitors. Since group declarasibows including not only method names
but also names of other groups, these lists mustxpanded to contain only names of
methods before the elimination star@roupExpandingVisitolis designed for this task.
When expanding the lists of grouped methods,stiitable to use the gained information to
provide correct declarations for these methodeeasaime time.

() Ivisitor

¥

(GroupExpanding¥isitor
Class

= Fields

¢ enteredGroups : Stack=GroupDedl=
g nextMamespace @ Mamespace
¢ parenthodes : Stack<Pair<hamespace, ClassDecl=>
¢ resolvedGroups : List<GroupDecl>
o specification : Specification
=l Methods

Enter() : bool

5% ExpandGroupltems() : GroupDecl
¥ GroupExpandingisitar()

4" CheckSignatures() : boal
@ Return) : Mode

Figure 8: GroupExpandingVisitor class

Traversing of this visitor is not quite typical, miy due to the possibility to recursively
include other groups in the group declaration. @éscent of th&roupExpandingVisitois
limited to the level of group declarations. Wheavi@g agroup node, all its items are
inspected byExpandGroupltmesnethod. If some of them stands for another gradpch
is not resolved yet, the visitor is redirected togess this group first. To manage these
redirections, visitor contains some additionaldeeFigure 8). To avoid reprocessing of
already resolved groups during this redirectiregolvedGroupdist is maintained by the
visitor. The membeenteredGroupss a stack that keeps track of visitor’'s redireesi and
allows detecting mutual inclusions in group dedliares. Information about parent class
and namespace of currently processed group (ma@daiin parentNodes and
nextNamespackelds) is needed to identify the methods and gsowvhich are represented
by the items of the group.

When a class containing a group declaration indualso a declaration of a method
with the same signature, it means that declaratfotinis method represents the common
declaration shared by all methods listed in theigrdn the following text, this declaration
is referred as “common declaration”. This code eeigspossible only when the modifiers
and signatures of the group, its methods and thenamn declaration match. The part of
this check involving inspecting on arguments andrretypes is don€heckSignatures
method.

Methods listed in a group are defined as follows.

When an item in the group has no counterpart insgecification, a new method is
declared with the name of the item, and the sigeafiLe. parameters and return value) and
body copied from the common declaration.

35

When both the declaration of a listed method aedcimmon declaration are provided,
contracts are merged together (if present) andbtidly from the declaration of the specific
method is used (i.e. it overwrites the common one).

Merging of the bodies vigroup label and the extension mechanism described in
DeSpec language specification is not supported.

When group declarations are resolved and apprepmaethod declarations are
generated, group invocations can be replaced bygcations of individual methods and
then groups can be removed from the model.

It remains to explain, how the group invocationg aeplaced by visitors. Since
replacing of group invocations requires generatijugie complex segments of code, it
cannot be managed in a single pass through the @8The other hand, it is not necessary
to repeatedly traverse the whole AST. Rather, glsidescent from the AST root to the
group invocations is performed and only relevartitees are processed repeatedly by
special visitors. The whole process is driven by @roupReplacingVisitor(Figure 9).
There are also three helper visitors that deal wita individual expansions in the
invocation subtrees GrouplnvocationSearchingVisitpGrouplnvocationReplacingVisitor
andGroupVarlnvocationReplacingVisitor

() TWisitar

*

| GroupReplacing¥isitor
Class

=l Methods
i Enter() : bool

GroupReplacingWisitor)
Checkaroupl) 1 GroupDec
ReplaceGroupInvocationsInE xpressiond) | void
ReplaceGroupInvocationsInstatement) : void

5* ReplaceGroupWariable) : List<RuleSpecification =

2" Returni) @ Mode (+ 2 overloads)
= Mested Types

L]
av
o
av
v
G

() Twisitar

4

. GroupInyocationReplacing¥isitor
Class

() TWisitar

44

. GroupInvocationSearching¥isitor
Class

() TWisitar

44

. Group¥arInvocationReplacing¥isitor
Class

Figure 9: Visitors for elimination of groups

36

To deal with the invocation of groups in method amdoperty bodies,
GroupReplacingVisitorruns GrouplnvocationSearchingVisitoon every statement. This
helper visitor looks for group invocation expressian the statement and when it detects
such an expression, it stores information aboutuerl group and about the target of the
invocation expression in its fields. In that castgplaceGrouplnvocationinStatement
method of the controllinroupReplaceVisitogenerates an appropriaelectstatement as
a replacement for the original statement contairtiveg group invocation expression. For
every method included in the group, a clone of dhiginal statement is processed by
GrouplnvocationReplacingVisitofThis visitor simply replaces the first invocatioh the
group in the cloned statement with the invocatibrome of the grouped methods. These
clones with replaced invocations are then usedatstatements for the non-deterministic
select. This process is repeated on the statenmgihtall group invocations are replaced
with the select statements. Thus it is assuredaidéihe places of original group invocations
an arbitrary method from that group is invoked.

Groups can be used also as quantification variabléiseforall clause of a quantified
rule. This variable is then used in the rule exgimss to denote method events. In this
context it means that the rule must be satisfiedef@ry method from the group. When a
rule quantified by one or more group variables asnd by GroupReplaceVisitgrits
ReplaceGroupVariablenethod is used to clone the rule specificatiords tanmodify them
to involve each of the grouped methods. In evergnetl rule specification, the
GroupVarlnvocationReplacingVisitoreplaces the method events referring to the group
with events referring to one of the grouped methddken the rule is quantified by more
group variables, this process is repeated for evariable over the newly expanded rule.
Thus, in the end each rule specification containe eombination of invocations of
methods from the respective groups. Whole rule isoak possible combinations.

While a group quantification variable correspormsa universal quantifier, the usage of
group invocation directly as a target of a methodné operator in the rule expression
represents quantifying over the group methods bgxéstence quantifier. Every invocation
expression using a method event operator is a &oa@gpression. Thus, it can be replaced
with a conjunction of its clones and each clonem@lified to refer to one specific method
from the group. The required conjunction is created by
ReplaceGrouplnvocationsinExpressiohthe GroupReplaceVisitorSince the replacement
of targets of method event operators is analogotiset replacement of method invocations
in clonedwait statements from the first case, same visitorsised for this task.

5.7. Type Analysis

The type analysis is the crucial phase of the meaehction. It is necessary to prove
the semantic correctness of the specification #hdesults are used in further phases to
generate the correct additional code. During thalysis, the type information is added to
every expression present in the specification. Witls information, it is possible to
implement inheritance, to check the type corredr@sassignments, matching of method
calls to their signatures, etc.

37

5.7.1. Classification of Types

DeSpec types can be eithalue or reference That corresponds to Zingimple and
complextypes respectively. Built-in integer types, booleiype and specifications of
enumerations, ranges and delegates are all vghes.tiReference types include built-in end
user classes. Instances of the built-in templag8)g and object type represent built-in
reference types. This classification does not Wll®eSpec grammar, though. Only
generi¢c range and primitive types are distinguished syntactically. Moreovére type
analysis requires yet another categorization otypes. Its representation by the AST node
types is depicted on Figure 10.

i DesType =
Abstract Class
= MHode
=l Methods
9 ESubtpe
& ToSkring
Fa
- .
MameOfType = SimpleType 3
Sealed Class Sealed Class
= DezType = DezType
r r
=| Properties =I Properties
5 Declaration o CoreType
i Name .
.,
- -
SignatureType = GenericType 2)
Sealed Class Sealed Class
= DezType = DezType
r r
=| Properties =I Properties
5 Kind 25 Dedlaration
i signature R MetaType
i signatureDec o Marne
+| Mested Tyvpes EE Parameters
\ J
r -
UnknownType ¥ Range 2)
Sealed Class Sealed Class
= DezType = DezType
\ r
=I Properties
25 From
= 7o
P UnderlvingType

e

Figure 10: Type classification

PrimitiveType

Erurn

Bool
Shyte
Bvte
Short
Ishort
Ink

Llink
Lang
Ulong
SubByte
SubShort
Sublnt
SubLang
Skring
rull

Yoid
Ignored
Ay

38

The base class for all type categoriePDesType The key member provided by this
class is thdsSubtypamethod, since this relation must be defined fbtygles to enable the
type analysis. OnlyimpleTypendGenericTypeandRangerepresent the types generated
during parsing the specification. However thesedhtategories do not match the value-
reference classification. Rath&impleTypenodes correspond to primitive types without
any explicit declaration like for example integgpés andRangeand GenericTypenodes
correspond to the type declarations present in sppecification, like ranges, classes,
enumerations, etc. The other type categories asigyrked only for the needs of the type
analysis.

The SimpleTypecategory consists of types, which do not need adgitional
information about themselves. The identifier fullgscribes the type. An example of such
type can be any built-in integer type. Nevertheless only a value type can be represented
by theSimpleTypelass. For examplgtring is a reference type, but it is self-describing and
thus it falls into theSimpleTypecategory. This category also covers some spexsaliike
null or ignoredtype. The concrete type represented bySimepleTypenode is determined
by the value of theCoreTypefield, which holds one of the items &frimitiveType
enumeration (Figure 10).

In contrary, GenericTypeclass represents reference types, which are éeclarthe
specification. It allows specifying parameters lo¢ type in theParameterslist, however
this property can be used only by the instancethefbuilt-in templates. User-defined
classes cannot be parameterized. The referenbe ttetlaration of the type is contained in
the Declarationmember. The value of this member is resolved dutie type analysis and
represents the complete type information. Oftes gufficient to know, whether the type
stands for a class, enumeration, etc., it meantiig the information about the kind of the
declaration is needed. This information can be iobth by inspecting the type of
Declaration member, but for convenience, it is also contaiimethe MetaTypemember.
The value of this member is an item of thgpeDeclarationsenumeration (Figure 11).
Both of these members are resolved during the &yysis and they cannot be used till
this phase.

F

TypeDeclarations [#
Emnurn

nknown
Enum
R.ange
Delegate
Skruck
Class

Figure 11: MetaType classification

Similarly to GenericTypgRangenodes require additional fields to hold the cortele
type information. In contrary t@&enericType this information is held directly in the
appropriate fields, since no range type is preskimethe form of a declaration, which
could be pointed to.

The other type classes are designed only for tpe @ynalysis and they have no
counterparts among DeSpec types. TdignatureTypeclass is used for holding the
declaration of the method. IfMemberAccessode refers to a method, its type is set to the

39

SignatureTyp@ode. In its parent expression — the invocatiothefmethod or an operation
with the delegate it represents — the declaratidhemethod is used to determine its type.
The NameOfTypeclass has a similar purpose — it is used as the of MemberAccess
nodes, which refer to the declarations of typesithdlds these declarations. For example,
in the invocation of a static method of some cldks, type of theMlemberAccessiode
denoting the name of the class is resolved to NlaeneOfTypenode containing the
declaration of this class. This declaration is theed for searching of the declaration of the
invoked static method. Th&nknownTypenodes are used for initializing of the type
members before the type analysis and then for kign#hat the type of an expression
cannot be resolved (for example if the appropriearation cannot be found).

The type analysis consists of two phases. Firitly,information about the type itself
must be known. As the type information abouGeanericTypenode is represented by its
declaration, references to these declarations beuptovided. As for th®angenode, their
type information is given by the bounds of the gnghich are already known in the time
of instantiation. However, determining of the urlgeg type of the range is not a trivial
process, so the underlying type must be resolvddstored in the node.

When all type nodes contain the complete type médion, the types of the expressions
in the specification are resolved and their typeeaminess is checked.

5.7.2. Declarations of Generic Types

When instances of th@enericTypeclass are created during parsing, nothing is known
about the corresponding declarations. It can hapgpanhat the time of instantiation, the
AST does not contain the declaration of the refeedrtype, since it is not parsed yet. Thus,
DeclarationandMetaTypemembers cannot be correctly set in the construatdrthey are
initialized with the special values to indicatetttize corresponding type is unknown.

When whole specification is parsed and the typéet&completed, it is possible to
determine the types, which th&enericTypenodes refer to. This is done by the
FindTypeVisitor This visitor has an access to the type table,tsknows about all
declarations in the specification.

For everyGenericTypenode, it finds the path back to the AST root amsesuit to
generate the fully qualified name of the type. Thes checked in the type table, whether a
type declaration with such name exists. It actualans that the type declaration is looked
for in the closest possible scope. If the declarais not found, the scope is broadened by
shortening the prefix of the type name and theatatibn is looked for in this new scope.
This process is repeated until the declarationusd or the namespace scope is reached. If
the declaration is not present in the parent naaeespall namespaces included using
clause are searched. If the search is not suctesisfneans that the original name is
already fully qualified and the declaration canftiend in the type table keyed exactly by
this name. This process ensures that the closesptable declaration is chosen.

When the declaration of the type is found, it mreat in theDeclaration member and
the MetaTypemember is set according to its kind. Thus, the gete type information is
provided for the node.

4C

5.7.3. Underlying Types of Enumerations and Ranges

For checking the type correctness of expressioasitivolve a variable of the range
type, it is necessary to determine underlying iatggpes of these ranges. It is also required
for the translation into Zing, since the ranges iarplemented by the appropriate integer
types and additional constraints checking the bsuile underlying types of enumeration
declarations also must be resolved to allow chexfkghe bit operations over the flag
enumerations.

The underlying types are resolved by thederlyingTypeVisitar This visitor inspects
declarations of enumerations and ranges and WederlyingTypemembers to the least
built-in integer type, which covers all values fraime domain given by the type. For
ranges, the underlying type is the integer typepsehdomain includes both of the range
bounds. For enumerations, the underlying typeasatfie, whose domain includes both the
minimal and the maximal item.

To allow the usage of some binary operators inékpressions involving range or
enumeration value, additional integer types must iftteoduced. This need can be
demonstrated for example on the assignment of'eviabm a specific range (selected e.g.
by non-deterministichoosestatement) to a variable of some integer type. 8$sgnment
expression passes the type check only if the tygbeoright side is a subtype of - or the
same type as - the left-side type. Let the bourfdéh@ range on the right side of the
assignment be e.g. 0..1024. Then it should be lpessi assign a value from this domain to
the variable on the left side no matter if its typaiint or int, because both of the types
cover all values from the range. However, regasdtisthe underlying type, which is set
for the range, (botimt anduint are possible), there are combinations of the vesiolypes,
which would not pass the type check. The same emobtan occur in an expression
involving an integer literal, as its type is resin the same way.

To allow expressions like this, it is necessaryntooduce the artificial integer types,
which represent the intersections of the signed amsigned versions of each built-in
integer type. These intersections are represent&libByteSubShortSubintandSubLong
items of PrimitiveTypessnumeration (Figure 10) and are subtypes of boiit-ib versions
of the corresponding type. The underlying typesrafmerations, ranges and integer literals
are always set to the least possible intersectipe.tAs a consequence, these expressions
always pass the type check. The intersection intggees are not included in DeSpec
grammar and can be used only by the compiler ®mn#eds of the type analysis.

5.7.4. Resolving of Type of Expression

As soon as th®esTypenodes contain the complete type information, passible to
resolve the types of the expressions. Together wiéh operators, the expressions can
involve accesses to members or variables and métirodations. ThdresolveTypeVisitor
identifies the types of these subexpressions (septed by th®esTypenodes) and check
the type correctness of whole expression with kgarthe used operator and to the types
of these subexpressions. This phase is also smithdyl evaluation of the constant
expressions. However, this feature is not impleant

There are 5 basic expressions that can be regaadethe building units of the
compound expressions involving operators. Theyrgpeesented in the AST by following
nodes types:MemberAccessSpecialAcces ElementAccessinvocationExpressionand

41

Literal. TheMemberAccesgefers to any variable or parameter, to any gldealaration, to

an enumeration item or to any class or structummbes — a field, a property, a method or a
nested declaration. ThepecialAccessefers to the special variablesthread this, value
andresult TheElementAccesefers to a collection item. ThdethodInvocationrefers to a
call of any class method. In the following texi, thlese basic expressions are referred to as
“accesses”.

The key task for th&®esolveTypeVisitais to identify the types of the accesses. Then
the types of the compound expressions can be easibyved their type correctness can be
checked. Resolving dbpecialAccesss quite straightforward, as the types can belyeasi
extracted from the parent method declaration omfithe parent class declaration. For
resolving of theElementAccesand theMethodInvocatiorit is necessary to know the type
of their targets, which are represented by khemberAccessThus, the main issue is
resolving of theMemberAccessodes.

For resolving of the type of thHdemberAccest is necessary to identify the declaration
of its target. The declaration contains a membpresented by the DesType node, which
holds the complete type information, since it wasoived in the previous phase. The
ResolveTypeVisitocontains two methods, which are used for idemtdyithe target
declaration. Th&earchUpmethod traces the path from thiemberAccessode to the AST
root and in every relevant node on the path (beerthat can contain the target declaration)
it invokes the other method SearchinNodeThis method, according to the kind of the
node that is inspected, explores the relevant mesnbkethe node that can contain the
searched declaration. When the declaration is foutedtype (that was resolved in the
previous phase) is retrieved and returned.

There are several complications related to the tgs®lving of theMemberAccess
nodes.

In some cases it is necessary to impose additioeglirements on the searched
declaration, which must be taken into account by SearchinNodemethod. These
requirements depend on the context of MemberAccessode and must be recognized
within the Returnmethod when the visitor is leaving the access nBde example, when
the access appears on the left side of an assignmemplies that the target must be
writable. Thus, wherSearchinNodeinspect members of a class and finds a property
declaration with the desired name, it must be chédkat the property includes the setter.
The MemberRedflag enumeration is defined for specifying all pibde combinations of
additional requirements:

[Flags]
enum MemberReq

Static = 1,
Instance
Readable
writable

oo h N

Another issue is related to the return value ofgbarching methods. The visit of the
access node should result in determination of ridgee. Thus, the searching methods
should return @esTypenode that contains the complete type informatidowever, there

42

are some cases, when this output is not suffici€hére are two types of the bindings
related to the access nodes. In one directionaticess node contains the reference to the
type of its target declaration. In the other di@ct the property declarations and the field
declarations contain the lists of the access nodlbgh refer to them. These bindings are
needed during the transformation of fields intopgamies later in the process of the model
extraction. These lists of references are filledrduthe type analysis, when the targets of
the accesses are identified. To update the listefefences, the corresponding declarations
must be returned by the searching methods as well.

The last problem emerges from the fact that in sa@ses the type of access is
dependent on the context of the access. When thettaf an access node is identified as
the name of a method and its declaration is fothmelsemantic meaning of the access is not
clear. It can stand not only for the target of thethod invocation or for the delegate
instance, but also for the boolean expression $lags, whether the function pointer
mapping is established for this methotihe real meaning of the access must be determined
from its context. In the first two cases, type loé access is represented by the instance of
SignatureTypanode type. This type has no counterpart among Be8pes. Rather, it is
designed only for compiler’'s needs when it chegk® tcorrectness of the expressions. In
the second case, the type of the access is sbbdbrepresented by the appropriate
SimpleTypenode. By default, the type of the method accesahisys resolved to the
appropriateSignatureTypeTo deal with this issu&esolveTypeVisitor.Retuoverride for
MemberAccesaodes accepts one more parameter, which saysherhetresolve the type
as usual or whether the boolean expression is &ghetn the context of the parent
expression, the real meaning of the method aceedstermined and if the boolean type is
expected, rather than the provideignatureTypgethe Return method is invoked once more
with this access and the additional parameter ctiyreset. This quite complicated
workaround would not be needed, if the determirohthe function pointer mapping was
supported syntactically by a unary operator. Themwauld be possible to resolve the
method access always t&GagnatureTypenode and the type of whole expression including
the operator would be set to the bool&mpleTypeThis process would be analogous to
resolving of the type of the method invocation’sg and the type the invocation itself
(which is given by the return type of the invokedthod).

When the types of the accesses are determinedyirgsof the types of their parent
expressions is quite simple, especially in cas¢hefbinary and unary expressions that
involve only the operators applied on the accesdes.main task of thResolveTypeVisitor
during visits of the compound expressions and iation expressions is checking of the
type correctness. For the binary expressionsahecked, whether the operator is defined
for the operands of the resolved types and wheheis-subtype relation is correct.

In case of the method invocation the more compleck is performed to ensure that
the passed arguments match the condensed versibe ofethod signature. The condensed
version of the signature contains only those pataragwhich are neither placeholders nor
instances This signature is used for the method invocatidhe input arguments are
checked to be subtypes of the appropriate parasndefined in the condensed signature
and the output arguments are checked to be supsrbtfpthe corresponding parameters. In

4 DeSpec makes it possible to determine, whetheivardnethod from théEarlyBoundRoutineinterface is
bound to the method from the specification.

43

case that this check passes but the referencedfypa actual argument value does not
strictly match the type of the corresponding partamehe appropriate cast must be added.
The polymorphism is emulated by transformation leé argument value into the type
expression withas operator. The similar operation must be perforrmedhe right operand
of an assignment expression, when its type is pabty the left operand’s type.

When ascending the part of the AST representingompound expression, the
ResolveTypeVisitoresolves at first the types of the accesses alethees of the subtree.
The types of literals are already solved, as theywin at the time of their creation. With
the type information about the leaves, the visitletermines the type of its parent
expression and performs the check of the type ctility for the operator, which defines
the parent expression. This process is repeateth@rhigher and higher levels of the
subtree, until the root expression is resolvedeAftaversing the AST, every expression
contains the complete type information and is chddk be type-correct or its type is set to
UnknownTypgwhen it cannot be resolved and the appropriate & added into the error
list.

5.8. Post-Type Analysis

When the type correctness of the specificatioms&iged by passing the type analysis, it
Is necessary to check that the other semantic aresatisfied. The specification of the
DeSpec language defines a large number of ruleshirusage of all sorts of DeSpec
constructs. It is not possible to classify the isgubrules into some strict categories, as they
are related to a wide variety of aspects of thguage and they must be checked on the
various levels of the AST. However, some basic gsoof the rules related to the common
issues can be distinguished. There are rules coingethe application of modifiers, non-
nullable constraints, contracts and parameter caingt, initialization of the fields and
variables, properties of the constructors and itdreze. Beside these groups, still there are
many rules that do not fit into any category.

Checks of these rules are covered mostly byPs TypeSemanticsVisitddnlike most
of the other visitors, this one extensively ex@dhe possibility to act both when entering
an AST node and when leaving it and at the same itiloes not restrict its operation only
to a few specific node types.

The PostTypeSemanticsVisitdoes not only check the semantic rules but it hips
to implement some of the DeSpec features. In tiokad&ions of methods, it transforms the
constraints imposed on the parameters into thevelguit contracts (i.e. preconditions for
the input parameters and postconditions for th@uwiuparameters). This move simplifies
the implementation of the method constraints ldteing the model extraction, since it is
sufficient just to turn the contracts into the e@lent assertions (see section 5.11.1).

Another important task accomplished by BastTypeSemanticsVisite providing the
initializers of the local variables and class feeldhe generated field initializers are then
inserted into the bodies of the constructors. Tp@w@priate default values are generated by
visitor's GetlnitExpressiommethod on the base of the type of the variabléetd being
initialized.

The implementation of DeSpec features often requimgercepting the access to some
field and performing a check or another actionsTikiachieved by transforming such fields
into the properties. The code performing the remlioperation is then inserted into the

44

generated getter or setter. For example the déiclaraf a non-nullable field requires that
the null value is never assigned to this field. To implem#ns constraint, the field
declaration is replaced with the corresponding ertypdeclaration of the same name and
with the declaration of the backing field. Then thesertion ensuring that the assigned
value is notnull is inserted into the generated setter. The tramsftion of the fields into
the properties supplemented with required checks also performed by the
PostTypeSemanticsVisitorheFieldToPropertymethod is designed for this purpose.

5.9. Implementation of Inheritance

Since inheritance is not supported by Zing so fprite a complex workaround is
required for its emulation. Not all features supedrin common class-based languages are
necessary for DeSpec specifications. The desigthefWindows kernel environment
involves several patterns that simulate classegtanthheritance hierarchy and exploits the
possibilities given by the control of memory layaatimplement kind of polymorphism.
DeSpec should allow to express these conceptsit mainnot use kernel's approach to
achieve this aim, since the properties of C andjre quite different in this respect. The
features that are useful for modeling the kernelratated to polymorphism. Above all, the
support for the type conversion and access tontierited members should be provided.

5.9.1. Phases of Inheritance Implementation

The implementation of inheritance is divided in&veral steps.

At first, in every class from which others are intesl, all its fields are turned into the
properties. This is necessary for delegating theesx to the inherited fields. This
transformation must be completed before the tydyais, because that process sets up the
bindings between the member declarations and Hemiesses in the specification. If the
transformation of the fields into the propertiesk@lace after the establishment of these
bindings, they would be lost. Since this modifioatimust be performed globally and
traversing of the AST is not needed, it is impletednby theEliminatelnheritedFields
method, which is declared in tispecificationclass.

Although during the type analysis the support fgpet conversion is not yet
implemented, it is suitable to prepare the typeresgions, which are necessary for
emulation of polymorphism, in this phase. Sincedbmeversion of arguments in the method
invocations and right values in assignments ta thigpertypes is expected to be implicit in
DeSpec, these values must be explicitly convertedhe required supertypes by the
compiler.

When the semantic correctness of the specificatorchecked, further steps in
implementing inheritance take place. The hierarchyglasses involved in inheritance is
determined and corresponding inheritance treedwteduring the analysis of inheritance
relationships. Thus, inheritance bindings betweelividual classes are recognized and the
appropriate typecasting mechanism can be implerdente

For implementation of polymorphism and support fbe type operators, the type
conversion routines are generated for every clagshied in inheritance. These routines
require references to the instances of the pamedtchild classes. The fields for these
references are also declared in this phase. Déolasaof these fields allow building of

45

whole chain of instances of the inherited classebe(itance chain). Since the chains
represent the complete pattirs individual inheritance trees, they allow typstiag both to
the subtypes and to the supertypes and they coathitarget instances for delegating
accesses to the inherited members.

In the last step, the code for setting up pareiittdiindings, building of inheritance
chains and especially dispatching of accessestmtierited members is generated.

5.9.2. Analysis of Inheritance Relationships

Minor preparations for the inheritance implemetatiake place in early phases of the
model extractions and during the type analysis, elartransformation of the inherited
fields into the properties and the explicit typesas the values to the supertypes on places,
where the implicit conversion is expected. The &@ps are made after the completion of
the semantic analysis.

First of all, hierarchy of classes involved in inkence must be recognized. This
information is gained during traversing the ASTthg InheritanceAnalysisVisito(Figure
12).

() Ivisitor

-
InheritanceAnalysis¥isitor 2)

Sealed Class

=l Fields
¢ inherited
Z# inheriting
= Methods
@ Enter
i GetInheritanceTrees
@ Inheritancednalysisyisitar

¥ Return
\ A

Figure 12: Visitor for inheritance analysis

This visitor descends just to the level of classlalations and stores the information
about inheritance relationships in two collectiofke inheriting list contains all non-base
classes, which are involved in inheritance, i.eytimherit from other classes. Timherited
collection contains for every class the list ofitdl descendants, i.e. the classes, which are
inherited from it directly or indirectly. Thugheritedincludes the base classes and all their
derivatives except the terminating ones. These reesnbre designed for gathering the
information about the inheritance bindings wheneasing the AST. A data structure that
reflects the class hierarchy more convenientlyeisded for further processing.

When the analysis is completed, the visit@stinheritanceTreemethod creates such
structure. For every group of classes, which anmévelé from a specific base class, an
inheritance tree is generated. This tree is compo$theritanceNodenodes. Every node
contains the declaration of the represented cladgle list of nodes, which represent the

® Here the complete path stands for the path framehl class of the object to the root of the iitarce tree,
which represents the base class. The object cagpbesented by any instance from the inheritanaénch
depending on its actual type context.

46

immediately derived classes. Since DeSpec doesllwt multiple inheritance, there are
no cycles in the hierarchy and every inheritedslasncluded in exactly one tree.

Although Zing object type can be regarded as the base class of evbey otass
declared in the model, it has quite specific meguine to it typecasting possibilities and it
is not included in the inheritance hierarchy.

5.9.3. Support for Type Conversion

The support for the type conversion is necessarefiaulation of polymorphism. It is
required for both explicit casting vias operator and implicit casting to a supertype in
expressions which require that. Tl type expressions for implicit casting of the
arguments and the right values are prepared dthintype analysis.

For every class involved in inheritance, two typ@werting routines are generated and
added to its declaration —upcastand _downcast The __upcastmethod attempts to find
an instance of the target type in the upper pati@inheritance chain, i.e. among the nodes
on the path from the actual instance to the ingtarfiche base class. Thedowncasimake
this attempt in the lower part of the inheritand®in, i.e. on the path from the actual
instance to the instance of the real type of theabTheis andas type operators are
implemented using these methods.

The information about the target type is passdtidese methods by the argument of the
__Classe®numeration type. The declaration of such enunoeré possible due to the fact
that number of classes involved in inheritancexsd and known to the compiler from the
results of the inheritance analysis. This enumemats filled during the final phase of
inheritance implementation on the specificationele\Every item represents one class
involved in inheritance. Thus, the type operandss @ndas operators can be represented
by these items and passed as arguments to thedyperting routines.

Absence of Zingbjecttype in inheritance hierarchy is not a problemeigwalidis
expression with thebjectoperand is implicitly true and thus no calls of tgpe converting
routines are needed to replace it. Zing allowsgassent of a strongly typed value to a
variable ofobjecttype as well as assignment of a value held inrebie ofobjecttype to
the variable of the same real type. In both ofdhges, the necessary type cast is provided
by Zing. Thus, no explicias expression witlobjectoperand is needed in the specification.

When theis operator is used in a type expression, the typererding methods are
called and attempt to convert the actual type efdkpression value into the target type is
made. Since it is not known, whether the targeé tgmsupertype or subtype of the value’s
actual type, both of the parts of the inheritanicaic must be inspected. The expression is
true, iff one of the attempts is successful, he. ihstance of the appropriate type is present
in the inheritance chain. Since this conditionuge simple, alis expressions in this form

<variable-name>is <type-name>
are replaced with this equivalent conditional espien:

<variable-name>__downcast(__Classes.<type-namey != null
|
<variable-name>__upcast(__Classes.<type-named != null

47

In case of theas expressions, the replacement is more complicaiede the return
value must be preserved. To solve this issugsmethod is generated for every class
involved in inheritance and added to its declarati®his method calls the appropriate
__downcastand __upcastmethods as necessary and returns the result otase For
returning the result, the implicit Zing typecastirgm and toobject type is used. The
instance of the target type, which is returnedegittom ___downcastor __upcasthas
already theobject type and it is returned from the as method unchanged. Out of the
method, the result is implicitly converted backhe target type. When the cast to the target
type is not possible, because the real type ofiriepected object is a supertype of the
target,null value is returned. The declaration of thesmethod is following:

object __as(__Classes.<type-name>
{

result = __downcast(__Classes.<type-name>;
if(result == null)
result = __upcast(__Classes.<type-name>;

}

This implementation exploits the implicit declacati of theresult variable and the
implicit return statement provided in by tl@ngFinalizingVisitor during generating of
method’s models (see section 5.11).

The support for the type conversion is providedh®/CastimplementingVisitomwhen
it enters theClassDeclnodes representing the classes from the inhedténerarchy. It
generates declarations @iild andparentfields for child-parent bindings in the inheritanc
chain and also the type converting routines -downcast, _ upcasand __as The
information about the inheritance bindings is gdifi®m the inheritance trees generated
during the inheritance analysis.

5.9.4. Access to Inherited Members

To make use of the class hierarchy, access tantterited members must be provided.
This is achieved by the delegating the accessetinitance of the class, which contains the
declaration of the accessed member.

Let class B be inherited from A. The B class corgaan additional field of type A
(paren) and the A class contains an additional fielddeery class, which is inherited from
it (child). Everychild field has a type of the corresponding inheritemssl When a new
instance of the class B is created, the classasis instantiated and bindings between the
two objects are established. The object of typs et aparentin the object of type B and
reference to this B object is stored in the appatechild field of the A object. When a
member inherited from A is accessed in the B instanhe access is delegated via the
parentfield to the instance of the parent class.

In case of a class hierarchy with more levels bentance, the members inherited from
more distant ancestors are accessed recursively anvtigher level of indirection. When
creating an instance of a class involved in inhagg, all its ancestors must be instantiated
at the same time. They are linked by the parertidiindings and the inheritance chain is

48

formed. This chain can correctly represent theamst in any valid type context. As the
instances of all ancestors must be included inctian, the abstract classes, which can
stand on the top of inheritance hierarchy, areddrimto ordinary classes to enable their
instantiation. Theabstractmodifier is relevant only for the semantic anaysvhich checks
that no instances are created explicitly in thegjgation.

DeSpec does not allow overriding of the inheritéas€ members and the semantic
analysis checks that the names of the membersnégeeuwhen merged into one set. The
only exceptions are auto-generated metHodalize and CopyTo These methods should
be declared in every class in the specificationthed purpose is to enable zero-initializing
and copying off all class’ fields. These methodanta be modeled in the specification,
because the complete set of the declared fieldstiknown till the end of the extraction
process. The methods also allow specifying how miaytes of the fields should be
initialized with zeros or copied. For implementatiof this functionality it is necessary to
determine the offsets of the fields in the corresipoag C declaration. Since the analyzer of
C source code is not yet availablajtalize and CopyTo methods are not currently
supported.

The approach via the inheritance chains is quitagsttforward but requires generating
of the dispatching code. For methods and propetties redirection to the parent instance
is inserted into their bodies. The fields must iméd into properties and the redirecting
code is inserted into their getters and setters.

Example 3 shows access to the inherited membemplified fragments of two
classes involved in inheritand€EVENTCclass is inherited fro@ispatcherObjectlass and
no other classes are included in the correspondihgritance treeDispatcherObject
contains the original declarations of one instanwethod and one static method. The
additional __child_Default. KEVENTfield that contains an instance of the derived
KEVENTCclass is generated by tkastimplementingVisitofdescribed in detail in section
5.9.3). Most of the code shown in the fragment &VENT class is generated by the
compiler. The reference to the instance of the mjacdass (paren} is set to the
DispatcherObject object instantiated by the extendddEVENT constructor. The
declarations of the inherited methods are copied toeir bodies are replaced with
expressions, which invoke the methods on the apiateptargets — the instance methods
are invoked on the parentfield and static methods are invoked on EhispatcherObject
class.

class Dispatcherobject
synthetic KEVENT __child_bpefault_KEVENT;
synthetic bool IsIrglCorrect(LARGE_INTEGER timelimit)
{...}
static synthetic bool IsSignaling(

ArrayList<Dispatcherobject>! objects,
waitType type)

49

class KEVENT
synthetic DispatcherObject __parent;
synthetic KEVENT()
{

—_parent = new DispatcherObject();
__parent.__child_bpefault_KEVENT = this;

}

synthetic bool IsIrqlCorrect(LARGE_INTEGER timelimit)
{ __parent.IsIrwlCorrect(timelimit); }

static synthetic bool IsSignaling(ArrayList<DispatcherObject>!
objects,
waitType type)
{ DispatcheroObject.IsSIgnaling(objects, type); }

}

Example 3: Access to inherited members

The supplementary code for providing access tadrtherited members is generated at
several different places during the model extractio

The declarations of the additional fields for thargmt-child bindings and the code
instantiating the parent class and setting theibgs] is created in the earlier steps. The
dispatching methods and properties are addedRbgolvelnheritancelnClassethod
declared in theSpecificationclass .In the final phase of inheritance impleragan, the
specification recursively calls this method for@d#dsses from the inheritance trees

5.10. Rules

Rules are the major feature of DeSpec languageasodone of the most complicated.
Their implementation requires generating of a cexmhecking mechanism and extensive
changes in the extracted model.

At first, a brief introduction into the semantic§ mles is appropriate. Detailed
description of all features and properties candomd in [2].

A rule can express requirements related to sodtaibeirce code event3he source
code events can be addressed by two groupswte code event operatoiihe first group
contains operators that address entering a metibdesurning from a method. The second
group consists of operators that address acces§iefds and properties.

The operators can be combined together in commariedio expressions. These
expressions are then used in spediimporal patternsThe patterns express an order of
precedence or a chronology of specified events rthadt hold during the execution of a
model.

Moreover, a temporal rule pattern can be quantifigdariables listed ifiorall clause.
Variables listed in the clause can be used in exlgressions as parameters or targets of
operators. A quantified rule must hold when appledevery value (or combination of
values) of quantification variable (or variables@gent in the model during its execution.

5C

An example of a rule using some of these featwksw¥s:

rule
forall(DEVICE_OBJECT device)
{ CreateDevice(_,out device)::succeeded }
Teads to
{ device.IoDeleteDevice()::returned }
globally;

Example 4: Quantified “leads-globally” rule

This rule verifies that all instances BfEVICE_OBJECTcreated byCreateDevice
method whenever during model execution are evegtdaleted. Every instance created in
the model must be checked for fulfilling this regument.

Rule patterns supported by DeSpec are easy tohastcsts for temporal patterns in
LTL. Actually the LTL-X subset is sufficient for flaition of the patterns becaudéext
operator can be avoided. It is possible to verify-iX formulas by a corresponding Buichi
automaton on finite traces. Reasons why it sufficesonstrain only to finite traces are
discussed in detail in [2]. For every LTL-X formulais possible to construct a Bichi
automaton for its run-time verification.

In the context of driver environment, verificatigeroperties of necessary Bichi
automata can be further concretized. As requirechBautomata are defined by their states,
input alphabet and state-transition function, aresentation by Zing integer variables,
arrays, enumerations and a transition method catoeconsideration.

Rules can benstanceor static depending on targets of used operators. Thiseptppf
a rule determines a place, where the state ofdhesponding automaton is stored. Thus,
mixing of static and instance targets in one ra@e bring forth significant problems in the
implementation, even if it is allowed by DeSpec.

Rules are declared within the scope of a DeSpess ddat they are bound to the parent
class by no means. However, an implementation efdbrresponding automaton must
reside in a particular class and its location daetees its accessibility from other parts of
the model. This is an issue in case of instanaesyds some mechanism must be provided
for keeping track of instantiated automata andragliheir transition methods.

During the development, the implementation of alittires of DeSpec rules turned to
be very time-consuming task. Priority was givenatoimplementation of basic features,
which are necessary to express at least some vireetents imposed by Windows kernel
on drivers. Successful completion of this task wloptove that concept of rule temporal
patterns is feasible and its role in model vertfmais well-designed.

Current state of rule patterns implementation feio

Basically, it is possible to declare instance ruleslified by a single variable of a
reference type, if other variables are listed, thayst represent a group. Group variables
have different semantics and causes expansion leftou cover all methods listed in
referenced groups. Only default sevestyor is supported.

Only selected temporal patterns are supported. lirhigation results from the fact that
equivalent automata templates are built-in in t@giler rather than generated by an LTL-
converting algorithm. Implementation of an algamitifor converting LTL formulae to
Blchi automata would be a more universal solutidavertheless, this task is not quite
trivial and generated automata should be furthecgssed to make them deterministic and

51

normalized. Considering the closed set of DeSp@pdeal patterns and low complexity of
corresponding formulae (at most 4 variables invé)vienplementation of rule patterns by
built-in automata templates is acceptable. Evettepaconsists of two partspropertyand
scope All properties exceptorresponds-tare implemented. Asorresponds-tqroperty

is the conjunction ofeads-toandprecedegroperties, it can be easily replaced with them,
if needed. As for the scopeter-until andbetween-andre not implemented so far.

As for pattern expressions, or§ and | |combinations of method event operators are
allowed. Access to variables is forbidden with gt of the one declared forall clause
and this. These two variables can be used only as invataaogets or arguments of
methods supplied with an event operator. Use oicsteethod is allowed only if a variable
with instance of parent class of the rule is passe@dn argument. Regarding limitations
imposed on variables and logical operators in esgio@s, there is no use fos= method
event operator. Using literals as arguments isapported.

DeSpec introduces syntactic sugar that allows pyess rules containing factories in a
short form without quantification. This is not supfed since the expansion of such rule
into appropriate long form by the compiler is guitenplicated.

Pure static rules, i.e. rules with only static &sgof event operators, are not supported,
since they are not used in the specification of dvims driver environmen§taticmodifier
is not applicable. In spite of this, a procedure denerating automaton for a static rule
should be similar to the one for instance rules.

Even with all limitations described above, the gnaan for rule patterns is still
expressive enough to specify many properties, waiehrequired by Windows kernel.

Generating of automata for specified rules is drilsgg RuleimplementingVisitomhich
triggers construction of an automaton for everylated rule. This visitor also maintains
segments of code triggering source code events ddule is generated during automata
construction but it is inserted into appropriatagals later, when the compiler is finalizing
bodies of methods.

5.10.1. Rule as Automaton

Once a rule is transformed into an automaton, jgossible to verify it by Zingssert
statements. Breach of a rule can be recognizedwoyways. If there is no possible
transition for a triggered source code event frow turrent state of the automaton, an
assert in its transition method is broken. When rimel checker discovers this state,
verification fails and violation of the rule is @ped together with the corresponding trace.
But even if for every received source code eveanarsition in the automaton exists, it does
not necessarily mean that the represented ruldddlifIf at the end of model execution the
automaton is found in a non-accepting state, ithaehat the rule is violated as well.

The solution for the first case is quite straightfard, as the violation of the rule is
realized within its transition method. When implettieg this method, it is sufficient to list
only transitions that do not break the rule andeslpan assertion that always fails.

The second case requires checking of the statbeohtitomaton at the end of model
execution. Firstly, it implies that information alicstate of the automaton must be stored
independently on the automaton itself becausedbpesof its existence is the same as that
of its parent class. Secondly, states of all autamaust be accessible from one place at the

52

end of model execution. Both persistence and aitxigsissues are solved by using static
arrays added to the declaration of a main claseeomodel. These arrays hold information
about an actual state and non-accepting statedl au@mmata, which were instantiated
during model execution.

The solution of this problem relies on some prdpsrof the specification, which are
characteristic for a model of Windows driver enaiment. In context of this environment,
the end of model execution always corresponds ¢oettid ofMain method. This static
method is a required part of the specifications¢esiit manages entire life of the driver. It
serves as the entry point for Zing model checkamust be declared iModel static class,
which represents model of /0 manager’s behavier wlith respect to the driver. These
requirements are stated by DeSpec language sgidficrather then by the compiler. As
the presence d¥lodel.Mainmethod can be taken for granted, code that cheolkation of
rules is appended at its end. The static arrayl witrrent and non-accepting states of
automata are declared in thimdelclass.

In the following text only instance automata aresidered. Potential implementation
of static automata would be similar and in somes&ven more simple.

From the discussion, it is obvious that an automagnnot be represented by a single
Zing class. Rather, its representation is scattet@dughout the model. At first,
automaton’s parent class must be determined. Ittdmeesponding rule is quantified, the
class represented by the quantification variabléhes parent one. Otherwise, the class
declaring the rule is the one. A parent class ¢ostdeclarations of automaton’s transition
method and fields necessary for determining currieiter of the input alphabet.
Automaton’s states must be stored on common plac&ladel class. The violation
checking routine is placed Model.Mainmethod. Moreover, enumeration of all methods,
which can trigger an event used in the rule, masddxclared. It is used also for determining
current letter of the input alphabet. Since itnsemumeration, it must be declared in global
scope, according to Zing grammatr.

Since generating of the transition method will lesalibed in detail, an example of its
representation in Zing follows. It moves an autanagenerated for this rule:

rule
forall(IRP irp)
irp === IoAllocateIrp() ||
irp === IoBuildAsynchronousFsdrRequest(_,_,_,_,_,_)
leads to
{ irp.IoFreelrp()::returned }
globally;

Example 5: DeSpec rule

53

This rule uses0 leads to v1 globallfemporal pattern, which is expressedbfv0 =
<Ovl) LTL formula. An equivalent Biichi automaton ispicted in Figure 13:

Figure 13: “v0 leads to v1 globally” equivalent aubmaton

The simplified and commented transition methodfies automaton follows. :

//Parameters determine the event which caused the transition.
//"'action' tells about the method triggering the event and '_event'
denotes //the event operator (entered/returned/failed/succeeded).
//Since the rule is anonymous, ‘Tlambda3‘ suffix was autogenerated.
void __Step_lambda3(IRP_Actions_Tlambda3 action,__Events _event)

atomic

//1. Find out which event was triggered
//and update corresponding sub-expression.
if((action == IRP___Actions_lambda3.IoAllocatelIrp))
(__action_0_lambda3 = (_event == __Events.Succeeded));
else if((action ==
IRP___Actions_lambda3.IoBuildAsynchronousFsdRequest))

(__action_1_lambda3 = (_event == __Events.Succeeded));
else if((action == IRP___Actions_lambda3.irp_IoFreeIrp))
(__action_2_Tlambda3 = (_event == __Events.Returned));
//2. Evaluate root expressions.
bool new__ruleExpressionvalue_0_lambda3 = (__action_0_lambda3 ||
__action_1_Tambda3);
bool new__ruleExpressionvalue_1_Tlambda3 = __action_2_Tlambda3;

//3. Check whether some of the root expressions were changed by
event

bool change =
((__ruleExpressionvalue_1_lambda3 !=
new__ruleExpressionvalue_1_lambda3)

| |
((__ruleExpressionvalue_0_lambda3 != "
new__ruleExpressionvalue_0_lambda3)

94

//4. If so, update the stored root expressions values
if(change)

(__ruleExpressionvalue_0_lambda3 =
new__ruleExpressionvalue_0_lambda3);

(__ruleexpressionvalue_1_1lambda3 =

) new__ruleExpressionvalue_1_Tlambda3);

else
return ;

//5. Copy values to variables used in the transition routine common
//for this rule pattern

bool vO = __ruleExpressionvalue_0_lambda3;

bool vl = __ruleExpressionvalue_1_lambda3;

//6. Load current state of the automaton from the global arraylist
int state;)
(state = Model.__automataStates.thisGet(__automatonIndex_lambda3));

//7. Transition routine - [states] X [alphabet] -> [states] step
select first

wait(((state == 0) && (! (v0) || v1))) -> ;
wait(((state == 0) && (VO && !(v1)))) -> (state = 1);
wait(((state == 1) && !(v1))) -> ;

wait(((state == 1) && v1)) -> (state = 0);

wait(true) -> assert(false, "rule broken");

3

//8. Save the new state of the automaton back to the global
arraylist]
) (Model.__automataStates.thisSet(__automatonIndex_Tlambda3,state));
h

Example 6: Transition method of automaton

For every supported rule pattern, a common pattamisition method and a set of non-
accepting states are generated. They are avadaldepart oRulelmplementingVisitoThe
generated transition routine (Example 6, sectioims ommon for all rules following the
particular rule pattern. Thus, it must not conte@miables with values of rule-specific sub-
expressions. It includes only variables standingdot expressions, which are known from
the rule pattern (Example 6, section 5). To adbptdommon transition routine into the
transition method of the specific rule, it is neszy to analyze these expressions and
evaluate the variables in the routine accordingly.

5.10.2. Analysis of Rule Expressions

The analysis of rule expressions is performed BRukeExploringVisitor One instance
of the visitor explores all expressions in the rulée goal of this visitor is generating
supporting code for the transition method of aromatton. It prepares declaration rafe
expression variablethat reflect values of the rule expressions. Thalues will be then
used in the transition routine of the automaton tifesresult of transition routine is given
by the current state of the automaton and by theegaof these variables, the boolean
combinations of these variables actually formsitipait alphabet of the automaton.

55

The visitor is run on clones of the rule expressiand recognizes method events. It
replaces these operators with boolean helper Jasaéffectively generating initializers for
the rule expression variables (Example 6, sectjort 2lso prepares declarations of these
helper variables and bindings between these vasabhd corresponding method events.
Thus, after traversing the rule the visitor corgaafi bindings for the automaton.

RuleExploringVisitoralso prepares items for an enumeration repregeatirmethods
in rule expressions. This enumeration is then @setype of an argument of the transition
method to determine the event (Example 6, sectjorrdr the sample rule (Example 5),
following enumeration is generated:

enum IRP___Actions_lambda3

IoAllocateIrp,
IoBuildAsynchronousFsdrequest,
irp_IoFreeIrp

Another enumeration with items representing eveperators is declared. This
enumeration is used globally by transition methofdsll automata.

enum __Events

Returned,
Succeeded,
Failed,
Entered

};

This enumeration does not include an item repr@sgat= operator, as it is translated
to succeededperator. This transformation is possible thawokisnitations imposed on rule
variables. Since only reference quantification alales andhis can be used as the left
value for === operator and only invocation expression can stamdts right side, an
expression including this operator is true iff theoked method successfully returns the
instance from the left side. Thus, the transiticgthod of an automaton checking the rule
for the instance is triggered Isyicceedeevent iff the instance is returned by the invoked
method.

With the outputs of the rule expression analysi$ emumeration of the event operators
it is possible to provide arguments for transitioethod calls. When a method event
occurs, i.e. the method is entered or returniramsition methods of all interested automata
are called. Arguments passed to these calls spetifyh method triggered the event (by an
item from the first enumeration) and which kindesent it is (by an item from the second
enumeration). In the transition methods, this infation is used for evaluation of rule
expression variables, which were declared duriegtle expression analysis.

5.10.3. Evaluation of Rule Expressions

During the rule expressions analysis, method ewgdrators were replaced with
variables. When transition method of the automasomvoked, these variables must be

56

correctly evaluated and their values must be usespecify, which letter from the input
alphabet will determine the transition.

The input alphab€eX is defined as a set of all combinations of rogiressions. For the
sample rule (Example 5), which follow® leads to vl globallypattern involving two
variables, the alphabet is {MOv1, vO[-v1, -vOllvl, -vOO —v1}. Generated transition
routines understand only variables from rule patewhich correspond to rule expressions
in specific rules. The letter determining the tiias is given by the combination of these
variables.

To get the values of root expressions it is necgsta evaluate rule expression
variables declared corresponding to used methodt eyeerators. At first, event triggering
the transition method must be determined from tharaents (Example 6, section 1). Then,
root expressions are evaluated (Example 6, se@)oiTriggered event itself does not
necessarily cause the transition of particular maton. It just informs interested automata
and they alone decide whether to move or not. dia@sion is based on changes in values
of the root expressions. This is the reason, wigyuhlues of root expressions must be
persistent and appropriate fields storing theiugal must be declared in parent classes.
After the evaluation of root expressions, the denisbout performing a transition is made
and updated values of root expressions are sawear(fle 6, section 3 and 4).

The last necessary step before performing theitiamss mapping of rule expressions’
values to variables, which are understood by #esition routine (Example 6, section 5).

5.10.4. Transition of Rule Automaton

The core of a transition method is its transiti@utne —selectstatement, which
implements the transition function of an automat&@xample 6, section 7). For an
automaton with an input alphali®tand a set of states S, this function is define@ a$ x
> - S. The codomain of the function is given by detarsm of used automata. Belect
statement, they can be assured by uisgqualifier and by correct order wfait branches.
First qualifier ensures selection of the first vahdit statement in the list. Another option is
to use strictly only the letters defined in the ubmlphabet and include all possible
transitions given by the alphabet. Thus, alwaysctyane wait statement in the select
would be valid and determinism would be assured.

It remains to explain, what exactly is meant byifigsstrictly only letters from the
alphabet”. A transition from one particular statlor two different letter$ andy can end
up in another statecommon for both of them, i.e. §@) =t and T,) =t . In this case,
the two transitions can be merged together and ¢taaybe conditioned by the disjunction
of the two letters - H ¢ [l) =t. As the letters represent logic formulae, theytaion
inner semantics, which is hidden to the alphabetvéter, this semantics allows to express
the compound formulae by letters, which are notuthed the alphabet, but which are
logically equivalent with the included ones. E.g.an automaton on Figure 13, there is
actually only one transition (from state O to sthYelefined by a valid letter from its input
alphabet The others make use of merging and logical megoirihe letters. The transition
from state O to state O through “not-defined” leti&@0 [1v1 covers three transitions driven

® Addressing the alphabet defined in section 5.13.3

57

by valid letters vdJv1, -v0 vl and-vO0 O -v1. The transition from state 1 to state O
trough letter v1 covers transitions for letters @1 and-vO [v1. The transition from
state 1 to state 1 covers transitions for the oéghe alphabet. It is obvious that every
transition function that exploits merging possiigé and the extended alphabet is
equivalent to T.

Computation of the values necessary for determitinegletter parameter of transition
function was described in the previous section. dtier parameter — current state of the
automaton — is simply retrieved from the globaltgessible static array, which is declared
in Modelclass (Example 6, section 6). The index into &gy is set during instantiation of
the automata and it is fixed for whole its lifetime

Bodies ofwait statements are actually just simple assignmet¢ratants that set new
state of the automaton. When no transition is neteide. the new state is the same as the
old state, only void statement is used. The onlgepkon is the lastvait statement with
“catch” functionality. This branch is selected oiflyo listed transition is possible, results
in violation of assert statement and causes faitdréhe verification. This is one of two
mechanisms for reporting the breach of a rule. dther mechanism is based on checking
the current states of automata at the end of meretution and is described in next
section.

It would be possible to extend the set of statdh wne special non-accepting stéte
and extend the transition function with transitiomslating the rule, ending up in state
Thus, no catchingvait statement would be necessary and no breach ofeamvauld be
recognized until the global check at the end of ehoelkecution. However, the first
approach is more suitable, because it can lowetirtiee necessary for Zing model checker
to detect a mistake in the verified model. It agsuhat violation of the rule is reported as
soon as it is certain that the automaton cannotogah accepting state any more. Detection
of such violating state requires exploring of (ofteéramatically) lesser state space than
checking of automata at the end of model execution.

After the transition, it remains to update actuates of automaton. This is done by
rewriting the old state with the new one in theagiricontaining current states of all
automata (Example 6, section 8). It can happenahautomaton moves to a non-accepting
state and later it is deleted from the heap togetlith the instance of its parent class. This
means that the rule represented by the automatmoken, however it is not reported at the
end of automaton’s lifetime. An instance of thegmairclass can be deleted e.g. when the
scope of its declaration is exited. Quite a comptegchanism would be required to
recognize this moment, because Zing does not stuplestructors. The solution of this
issue is to retain the last state of the automettdhe array even after its deletion. The fact
that this state is non-accepting is recognizedrapdrted at the end of model execution.

If generated automata were non-deterministic tiamsition function was defined by T’
: Sx ¥ - P(S)! the transition routine would have to be slightlpdified. Bodies ofwait
statements would be extended witfioosestatement, which would non-deterministically
select a new state from the appropriate set. kdhse, use of the extended alphabet and
merging of transitions is not recommended, sinbedomes quite confusing.

" P(S) denotes power set of S.

58

5.10.5. States of Rule Automaton

The implementation of automata and mechanism fepikeg track of its state requires
declaration of several fields and data structuregrious places of the model.

Firstly, there are some fields needed to deterntieeletter parameter of transition
routine within the transition method (computatidntltis parameter from root expressions
was described in section 5.10.3). The persisteragé for values of root expressions is
provided by fields in the parent class of the awttam. For evaluating the root expressions,
variables holding values of their subexpressiores regeded. Instead of declaring local
variables in every call of the transition methoddiional fields are generated in the parent
class, even if persistence is not required in¢hge.

Secondly, current state of an automaton must beateiaed for providing the state
parameter of its transition function. This statestriie accessible from the transition routine
itself as well as from the place of final checkanftomata’s states iModel.Mainmethod.
Moreover, the last state of an automaton must bédadole even if the automaton is deleted
before the final check. These requirements impliest a data structure containing
information necessary for the final check and feefing track of automata’s states must be
declared in statiModel class.

This data structure must contain current (or lasétes of all automata instantiated
during model execution for the needs of both ttamsiroutine and final check. Final check
also requires information about non-accepting stdte every instantiated automaton.
Expressed in C#, the data structure could haveviallg form:

Dictionary<AutomatonID, Pair<int, List<int>>>

Example 7: C# collection for automata states

AutomatonID denotes any type of key used for access from itramsmethod.
Retrieved dictionary value contains two items, firet being current state of the automaton
and the second being a list of all non-acceptiagest of the automaton. The transition
method uses only the first item. Key of the diciionis not used in the final check, because
it is necessary to enumerate all the items in tbgodary and only their values are needed.

As Zing does not support generic collections, apl@mentation using only Zing arrays
must be generated in the model:

class Model

static ArrayList_int_ __automataStates;

static ArrayList_int_ __automataNonTerminalsCounts;
static ArrayList_int_ __automataNonTerminalsStarts;
static ArrayList_int_ __automataNonTerminals;

... //other members

}

59

array InnerArrayint[] int;

Example 8: Zing arrays for automata states

ArrayList_int_type denotes a class that represents integenoestsf DeSpeérrayList
built-in template, being basically an extended wepof Zing InnerArrayint array
(declared out oModelclass).

The first array __automataStatecontains current states of automata. The array
__automataNonTerminalsontains lists of non-accepting states of all en#tta. The lists
are sequentially serialized in the same order assthtes of corresponding automata in
__automataStatearray. To recognize where the lists for individaatomata begin and
end, two supplementary arrays are needed. The arraytomataNonTerminalsStarts
contains indices of beginnings of these lists_irautomataNonTerminaland the array
__automataNonTerminalsCountentains lengths of these lists. With informatretrieved
from the two supplementary arrays, it is possibleffectively iterate through the lists of
non-accepting states, which are stored inutomataNonTerminaksray.

As the described arrays are used for keeping toddkstantiated automata, they are
filled gradually during the model execution. Wheneaw automaton is instantiated, it must
be registered in these fields. Its initial statd aformation about its list of non-accepting
states is added to the corresponding arrays amtlar pointing to these values is assigned
to the automaton. This index simulates functionAatomatonIDkey for C# dictionary
from Example 7 and is stored in another field dbawaton’s parent class.

5.11. Method Models

The key goal of DeSpec language is to allow spmaiibn and verification of
requirements imposed on Windows drivers in formrofes and constraints. Most of
mechanisms that support these DeSpec featuremplemented in model’s methods. They
also require declaration of some supporting claasdsenumerations, but most of the work
related to verification is done by transition meth@f automata and by compiler-generated
code inserted into methods specified in the model.

5.11.1. Method Pattern

The original patterns for extending DeSpec methaes described in [2]. Based on
these patterns and using the same notation, thereflecting currently implemented
features is stated below. A pattern for extendiymfteetic methodsis quite simple, as it
involves only insertion of preconditions and posititions. A pattern for extending driver
methods relies on analysis and extraction of drégemce code, which is to be provided by
another tool. Until it is available, it is necesstw do its work manually. Since the rest of
the pattern is similar to the one for kernel me#fipi suffices to describe just the model of
extended kernel methods:

8 Synthetic methods have no counterpart in kerndrioer code and they cannot be involved in rules.
° The only difference is that method body is placatiof the atomic block.

6C

<return-type> <name>(<arguments>)

<return-type> result; o
assert(<conjunction of preconditions>);
atomic

//method event triggering for interested automata
<trigger-enter-event>;

)]éxtracted method body with modified returns
<method-body>

//1label for redirecting returns from method-body
__returning:
atomic

//method event triggering for interested automata
if (IsSuccessful(result))
<trigger-successful-event>;

else]
<trigger-failed-event>;

<trigger-returned-event>;

assert(<conjunction of postconditions>);

return result;

Example 9: Pattern for kernel method model

Original methods of the model are adapted to thitepn by theZingFinalizingVisitor
Most of the code was already prepared by duringgssing of the model and this visitor
just retrieves prepared segments and the origiréthod body, supplies code common for
all methods and assembles all parts to match ttterpaThe same process is applied to
properties, because they will be transformed tchoud as well.

Firstly, resultvariable must be declared. The declaration mustt blee beginning of the
method, because using &sult keywordn specification is backed by this auto-generated
variable.

After that, it is necessary to check conformancehwionstraints expressed in
preconditions. This is done by asserting the cartjan of all preconditions. Constraints
imposed on arguments via non-nullity checks, rangtes were added to preconditions and
postconditions byostTypeSemanticsVisitor

In contrary with the original pattern, snapshotsvafiables fromold operators and
blocking pre- and postconditions are not supportéalvever, sinceold operator is only
syntactic sugar, it can be easily avoided in spetibns.

As the final body of the method is appended with @omic postblock with
postconditions and method events, it is necessargssure that this block is always
executed. It means that evesturn statement in original method body must be redaect

61

to the atomic postblock. Thus, evesturn statement is replaced @ngFinalizingVisitor
with storing the return value intoesult variable (if applicable) and with jump to
__returninglabel leading to the postblock. The return statgna¢ the end of the postblock
is the only one in the final method. During fingig methods, the returninglabels are
inserted before every postblock. It is not mandatorfinish all branches of an original
DeSpec method with return statement, because hicgteeturn is always added during the
extraction of the model.

Segments of code triggering method events are prémhuring implementation of rules
and they are stored iRulelmplementingVisitorA data structure holding these segments
has a form of a dictionary keyed by methods, whalst include the triggering code. The
value retrieved from the dictionary is a pair ddtdi each of them containing calls of
transition methods of interested automata. The fiss contains calls foenteredevent
operator and the other one contains calls for &s¢ of the method event operators. Calls
corresponding tsucceededndfailed operators are already correctly conditioned.

5.11.2. Zing Limitations

There are other tasks to be donednygFinalizingVisitoreven if they are not directly
related to modeling methods. Nevertheless, thisseha model extraction is the most
suitable place for them. These tasks involve t@nstion of some expression, which Zing
does not understand, propagation of enumerationsobuwlasses and modification of
factories.

DeSpec boolean expressions can as€implies) operator, which is not supported by
Zing. As A= B expression is equivalent to HAB, all expressions using> operator are
transformed appropriately.

Expression withis operator are not understood by Zing, because ilahee is not
supported. Even if the value of a strongly-typedialde can be assigned to abject
variable and vice versa, there is no built-in mecsra for retrieving the type of the value
stored in theobject variable at runtime. When an invalid typecast assignment of a
strongly-typed value is attempted, a runtime eisaeported by Zing. The mechanism for
determining the type is generated during implentertaof inheritance and is described in
section 5.9. It includes declaration of two typéicasmethods in every class involved in
inheritance —upcastand downcast If one of them returns a non-null value, the ¢ebr
typecast is possible, otherwise it is invalid.

Thus, every boolean expression wiloperator matching following pattern:

<variable> is <typename>

62

can be replaced with

<variable>.downcast(<typename>) != null &&
<variable>.upcast(<typename>) != null

expression. More preciselytypename>argument must be turned into an appropriate
item frominheriting classeenumeratiotf to match the signatures déwncastandupcast
method.

Using ofthis keyword in DeSpec factory methods has specificasgits. In contrary to
Zing and common object-oriented languages, theevalicessed vithis keyword is not
read-only. In context of factorietis represents a newly created object, which is retirn
by a method either as its return value or as itpuduyparameter. Thus, keywotiis refers
to a variable access according to type of the qadati factory. In case of a factory returning
its product as the return valugijs is equivalent to access itesultvariable. When a factory
returns its product via the output parame€teit is equivalent to access tostance
argumentZingFinalizingVisitorreplaceshis access with the access to the corresponding
variable. Factory methods are declared as instaretod, because use thiis in static
methods would be misleading. Nevertheless, sensmmicfactories implies that these
methods are actually static and must be marked wh <during the visit of
ZingFinalizingVisitorto enable their invocation during model execution.

Another limitation of Zing is related to declarat®of enumerations. Enumerations can
be declared only at global scope. Contrary of ZIdgSpec grammar allows to including
enumerations in class declarations. These enuroesatust be moved outside the classes
and their names must be mangled to show, whereliblyng. The same mangled names
are used for updating references to original enatizar declarations. Everything stated
above holds for range declarations as well.

5.11.3. Initialization in Entry Point

Model.Main method has a specific role in the model and reguspecial extension.
This method is the only one marked waébtivate Zing modifier and thus it represents a
single entry point of the extracted model. This ngethat initialization of whole model,
which is not caught by the specification, must baelat the beginning dflain method.
Segment of initialization code is generated dutimg visit of ZingFinalizingVisitorby its
InsertProloguemethod.

Firstly, a new instance dthreadclass is created. This object represents a pHrerdad
of whole model. All other threads are created dhlgpecified in the model viasync
statement. Thread static data included in thesectbjare available in method bodies
through DeSpethread keyword. This keyword is actually transformed toeference to
hiddenthreadparameter, which is passed to every invoked method

Secondly, static constructors fall some classescatked. It would be possible to
determine the classes, whose static members aessact in the model and invoke only

' See section 5.9.3
1 According to DeSpec languge specification, sutdctory must have exactly one output parameter dame
instance

63

their static constructors. However, this analysigot implemented and static initialization
is preformed for all classes that contain non-ersgayic constructors. Thus, an access to all
static members of all classes in the model is asisur

5.11.4. Checking Rules before Termination

The other important extension of Main method tgiese at its end. If no violation of a
rule is detected during model execution, this i phace where the verification finishes.
Not all breaches can be recognized during thariebf an automaton. Thus it is necessary
to check, whether its last state was acceptingor This check could be performed at the
time of automaton deletion, but it is quite difficto recognize this moment. Since the last
states of all automata remain stored till the ehdhodel execution, it suffices to perform
the check at that time.

A segment of code for checking the last states wioraata is generated in
InsertEpilogue method of ZingFinalizingVisitor.dhecks for every registered automaton,
whether its last state is included on the setsofhdn-accepting states and if so, an assertion
is violated and the verification fails. Zing implentation of the algorithm is following:

int _i = 0;
int___count = __automataStates.CountGet();
while(_i < __count)

int __from;

__from = __automataNonTerminalsStarts[__i];
int __to;
__to = __from + __automataNonTerminalsCounts[__i];
int _j = __from;
?hi1e(__j < __to)
assert(__automatastates[__i] != __automataNonTerminals[__j],
"rule broken");
—J=_3+1;
} .
i=_1+1

Example 10: Final automata check

This check is possible thanks to arrays declarethgumplementation of rules. Their
structure was described in detail in section 5.10.5

5.11.5. Transformation of Expressions into Statements

The last issue that is related to modeling methads translating them to Zing is its
restriction set on expressions. Especially usessignment expressiorand invocation
expressionss limited. Some fragments of Zing grammar thatseathese limitations are
listed below. The rules are taken from [5] and sahéhem are expanded to a specific
form, which points to the restriction. In such cgsexpansion is marked by ellipsis:

64

statement:
labeled-statement
declaration-statement
embedded-statement

declaration-statement:
'.[S/'pe identifier = expression;
embedded-statement:
iHvocation-expression;

expression:
conditional-or-expression
assignment

conditional-or-expression:
primary-expression

boolean-expression:
expression

assignment:
unary-expression = expression
unary-expression = invocation-expression

Example 11: Zing rules for expressions

One of the significant limitations is the fact, thavocation-expressiorcan be
transcribed neither tprimary-expressiomor to expression In contrary, DeSpec allows
invocation-expression$oth in boolean-expressiongnd in initializer of declaration-
statementsFrom Example 11, it is apparent that this is pagsible in Zing. As a result,
invocation-expressionan appear only on the right sideassignmenbr in anexpression-
statementalone. Since properties will be eventually transied into methods, this
restriction holds for them too.

Moreover, even ikelement-accessan be transcribed farimary-expressioraccording
to Zing grammatical rules, it is treated as an catmn by Zing compiler.

Similarly, despite of the fact that choose-exp@ssian be syntactically transcribed to
primary-expressionZing limits its use only to right operand of assgnment.

Since constructors are not supported by Zing atDdSpemew-expressionmust be
implemented by Zingbject-creation-expressioand accompanied with an invocation of
DeSpec constructor as an initialization routineug;ithe replacement must be moved out
of the place of originahew-expressian

These issues must be solved by replacing the arigxpressions with Zing-acceptable
equivalents.

65

ForbiddenExpressionVisitovisits nodes representing an invocation, propadgess,
element access, new-expression and choose-expredsi@cognizes the context of the
expression and if it is not valid for Zing, it rapks the expression with an auto-generated
variable of the same type. When returning frompheent statement of the expression that
is being replaced, the visitor inserts additiortatesments before the parent one. The first
one is a declaration of the local variable, whistused as the replacement of the invalid
expression. The second one is an assignment tové#niable, its right side being the
expression invalid in its original context. Thidwg@n is possible thanks to the fact that all
problematic expressions can stand on the rightcfiéd@ assignment.

When replacingnew-expressignthe original expression cannot be simply assigoed
the variable. Constructors are not supported afettshare instantiated v@bject-creation-
expressionwithout parameters. To assure that the body ofragpjate constructor is
executed, constructors are transformed into votdrmeng methods. They are actually
degraded to initializing routines. By executing gimstantiation and the initialization
consecutively, the intended functionality of DeSpenstructor is provided.

It remains to discuss the equality of original DeSpcode and generated Zing
replacement. The first problem emerges from possdidie-effects. For example, if the
critical expression is included as a parameter ffmoffirst one) of an invocation statement,
its evaluation can count on a side-effect causetthé®yomputation of a previous parameter.
As the evaluation of the critical expression is embefore the side-effect, its result can be
different. Another, less significant problem iserieaving of threads. When the critical
expression is enclosed in an atomic block, it igsi@lss that neither the original DeSpec
statement containing the expression nor its reptace with the list of described statements
can be interleaved with execution of another segraéthe model. On the other hand, if
the critical expression appears in the body of isedrmethod or a method marked with
non-atomicattribute, interleaving can take place. An intavied thread cannot access the
newly created variable holding the value of theical expression, as this variable is not
referenced outside of the method. However, therlegdeed thread can change some
accessible data that are used for evaluation oéxpeession. This is not a serious problem,
because a correct model cannot rely on a spenificsection of threads.

Paradoxically, the same limitations of Zing, whialequire this problematic
workaround, eliminate the problem with side-effe€ge- and postincrements and pre- and
postdecrements are supported neither by Zing noDéSpec. The original DeSpec
grammar includes these expressions, but they areinmgemented yet. If they were
implemented, they would belong to the other criteogpression and they would be treated
uniformly. All other expressions, which can caugkesffects, are already included in the
critical ones. Thus, all possible sources of siiffleees are moved before the original
statement and their order is preserved. Correceroad the evaluation of the critical
expressions is guaranteed by the replacing algorith

When ForbiddenExpressionVisitortraverses the AST and recognizes a critical
expression, it sets a replacing flag and untilstiimg the replacement of this expression, no
other replacement can be started. As the repladesénished when the visitor is leaving
the parent statement of the critical expressioty one replacement per statement can be
made during one traversing of the AST. If some est@nt contains more critical
expressionskorbiddenExpressionVisitomust be run on the AST several times, till there
are expressions to replace. Thus it is assuretctiti@al expressions are propagated before

66

the statement in the same order as they would béuaed in the statement, if Zing
supported them.

One minor issue is related to the replacing alborit The statements, which are
generated by the algorithm and are to be inseréord the parent statement of the critical
expression, are actually enclosed together withpéaent one in a newly created block
statement. This block statement is returned wherviitor is leaving the parent statement.
This original statement is then replaced by the héek. Enclosing in a block does not
change the meaning of the replacement, it only make modification of the parent
method easier. However, if the parent statemeatagal declaration, it cannot be nested in
this block, because it would become hidden wittsroriginal scope. When returning from
a block determining the scope of some local vagisibthe statements from the generated
blocks are moved to the original one.

The conclusion is that the replacement of a ctitespression with a block of
statements is functionally equal to the intendddogfof the original DeSpec expression.
Nevertheless, because of thread interleaving, whaih occur if the replacement is not
enclosed in an atomic block, the state space aftieg model can be larger then expected.

A context, which makes an expression critical,esatibed in detail for the individual
expression types

An invocation expressiordoes not become critical, if it is used in an esgion
statement, just to denote an invocation of the owktht can also be used as a right side of
an assignment statement. If the parent assignmeem@sited in another expression or in local
declaration statement, the invocation expressiaomes critical, as well as in any other
case. These limitations are apparent from Examgle vihere the only two allowed
occurrences of the invocation expression are listed

The only place, wherelement accessloes not become critical, is an assignment
statement. Zing compiler treats element accesdaslgnas invocation expression, however
it has no sense as a standalone statement an@ othér hand, it can appear on both sides
of assignment statements.

A choose-expressiobecomes critical anywhere except the right sidarofssignment
statement. This restriction is not expressed by grammar, but it is explicitly stated in
Zing language specification.

A member accesdenoting getting a property value is transformao ian invocation
expression later during model extraction. Thuslialltations stated for invocations hold
for these expressions too. Fornember accesdenoting setting a property value, the
situation is different. DeSpec semantics requines access to appear only on left side of
assignment expressions. When eliminating propeitieshe model, these assignment
expressions are turned into method invocationsh witeir right sides turned into
arguments. Thus, whole parent assignment expressiost be treated as a future
invocation expression. Appropriate limitations mbst applied on this parent expression,
not on the member access itself. This expressioarbes critical in one more special case.
In DeSpec it is possible to assign a property pyaperty 6etter-access = getter-accgss
After property elimination, this would result intmllowing invocation expression —
propertyNameSet(propertyNameGet(which is critical. As property elimination takes
place after the processing BprbiddenEpressionVisitothis critical expression would not
be replaced. Thus it is necessary to recognizeptiiern even before the elimination and
treat it as critical too.

67

Since anew expressiommust be always replaced with separate instantiatind
initialization, it is critical in any context.

DeSpec ternary conditional operater nor is not supported, but its implementation
could use a similar mechanism. Expressions usiisgoerator would be treated as critical
and they would be transformed into Zing supportatesnents. The value of the variable,
which would replace such expression, would haveetdetermined iif-statement

5.11.6. Emitting Zing Code

After traversing the AST b¥forbiddenEpressionVisitoithe extraction of the model is
almost done. Most of the model is described by toots common for both DeSpec and
Zing and it is prepared for representation in ZiRgmnants of DeSpec-specific code will
be translated to Zing “on-the-fly”, in specific dping routines.

Emitting of Zing code is performed by dumping methowhich are declared in every
AST node, since they are inherited frtdodebase class. For nodes representing DeSpec-
only constructs, these methods are empty.

For most of the node®ump method simply takes an instanceT&xtWriterpassed as
the argument and appends it with serialized Zipgegentation of the node. At the end, the
instance ofTextWritercontains a string with Zing code of the model andes it into a
selected file. However, some of the nodes use tBeimp methods for non-trivial
transformation of their content to Zing. Most immt of these transformations is
elimination of properties and generating built-ollection classes.

Since Zing does not support properties, they muastrdplaced by methods. When
dumping method of a parent class calls for dump pfoperty declaration, the appropriate
Dumpactually emits a declaration of a special methardcbrresponding getter and setter,
if provided.

Signatures of these methods have following forms:

<property-type> <property-namecet(Thread thread)

for the getter and

void <property-name=set(Thread thread, <property-type>value)

for the setter.

68

For getters and setters of indexed propertiesatiges are

<property-type> <property-nameget(Thread thread,
<index-type> <index-name>y

and

void <property-name=set(Thread thread, <index-type> <index-namey
<property-type> value)

respectively.

Access to original properties is transformed imteoication expressions in three types
of nodes -member acces&lement accesandassignment expressioin member access
node, references to getters of original common gnms are simply transformed into
<property-namexet(thread) calls. In element access node, references torgette
original indexed properties are transformed igfwoperty-namexet(thread, index)
calls. Finally, in assignment expression node,gassents to setters of original properties
are replaced witkkproperty-name=set(thread, <right-expressiony calls for common
properties and<property-nameset(thread, index, <right-expressiony calls for
indexed properties.

Whereas the process of dumping was chosen forforamation of properties just
because of the effectiveness and convenienceyfaementing the built-in collections it is
the only possibility.

Templates for built-in collections are included emery specification; however they
cannot specify the access to underlying arrays exessary level of detail. To abstract
higher-level collection templates likkrrayList or Queuefrom necessary implementation
details,Array template is included in DeSpec specifications.ijthe model extraction, it
serves as a proxy to a zing array, which will euelly replace the instances of Arfay
providing desired functionality in the resultingngi model. Thus it is possible to represent
collections by DeSpec constructs during the mogghetion. In the end, when generating
Zing representation of the AST, DeSpAcrays are replaced with Zing arrays. This
transformation cannot be done earlier in the ekitrggrocess, because it is not possible to
represent Zing-specific code in AST nodes.

However, such exploiting of DeSpdaray template prevents it from being used in
specifications as common built-in collection tent@laA proxy to Zing array serves entirely
compiler’s needs and cannot appear in Zing reptasen of the model. However this
limitation can be easily overcome by using DeSpeayList template on places, where
Array would be used. This template provides the sanerfate asArray, extended with
methods for adding and removing items. When theitianal methods are not used, it
represents an equivalent replacement Aofay template from the point of DeSpec
specifications. Still, ifArray template were required for purposes of specifcatit would
be possible to use it, provided that another ptoxging array would be created.

2 |nstances of a built-in template denote classesetefrom this template with specified type argurndor
exampleArrayList<int> class is an instance AfrayListtemplate.

69

When dumping of an instance AfrayList template, Zing declaration of underlying
array type is prepared and initializeritfmsfield*® is modified. The original instantiation
of DeSpec instance d&rray template is turned into an instantiation of thepared Zing
array type. The originasize argument is used. Referencesitems are preserved and
element accesses into this member remain valid. drilg expression includingems
which must be changed, is accessitems.Countproperty, because this expression is
invalid in Zing. Occurrences dfems.Countexpression are replaced with Zing operator
sizeofwith itemspassed as the argument. The prepared declardtiéingarray is dumped
out of the generated class as required by Zing.

13 This field represents underlying instancedofay template during the model extraction.

7C

6. Open Problems and Further Work

The compiler in the current state of developmeng¢sdoot support all features of
DeSpec language. The reason is partly absencesdbtils necessary for complete model
extraction and partly complicated implementation soimne of DeSpec constructs. The
unimplemented features are described below.

The limitations are given above all by the abserfctols for C source code analysis
and for slicing of the model. The analysis of kéimeader files is necessary for extraction
of symbols used in the specification. For exampédues of modeled constants and
enumerations must be retrieved. The analysis eedisource code is more complicated,
since it is required for automatic merging of DeSmpecification with the bodies of
modeled driver functions. Not only mapping of DeSpaethod declarations to driver
functions must be set, but also bodies of the fanstmust be analyzed. Once the parser
and analyzer of C source code are implementedoalices for completion of the model
will be available.

For determining relevant code of both DeSpec spatibn and supplied driver and
kernel, a tool performing a slicing algorithm isceesary. With this tool it will be possible
to select one of defined namespaces and thus detetime level of detail of DeSpec
specification. Specific constraints and rules tofyewill be selected. Based in these inputs,
reduction of the model will be performed, effectiviowering the state space of resulting
model as well as the time necessary for model etxdra If the slicing algorithm is applied
on the model once more at the end of the extradti®state space can be further reduced.

Implementation of these tools is beyond the scdpki® thesis and it is the key task for
further development. Other unsupported featuresmigpn their outputs.

One of these features is DeSpaelegateconcept. This construct is designed for
modeling callbacks fronlLateBoundDriverRoutinesterface passed to the kernel by the
driver. Since Zing has no notion of function porstea mechanism for calling referenced
functions must be provided. The implementationragpsed in [2] and involves declaration
of a specific class for every delegate in the dmation. This class keeps track of where
appropriate function pointers refer to and providiéspatch to the target methods. To
enable such functionality, it is necessary amormgrstto determine all possible targets of
the particular delegate. This requires a pointartalysis of driver C source code.

Another issue related to function pointers is magpiof driver functions from
IEarlyBoundDriverRoutinesnterface. Since these function bindings do natngfe during
driver's executiondelegatesare not required for their modeling. Rather, lessplicated
mapping exploiting DeSpec attributes is used. ButiesEarlyBoundand EarlyBoundOpt
applied on a field, which represents the pointeatdriver function, accept an argument
with name of the function model. Since pointers téunctions from
IEarlyBoundDriverRoutinesinterface are passed to kernel DRIVER_OBJECTand
DRIVER_EXTENSIONtructures, fields in DeSpec models of these &iras are marked
with EarlyBoundEarlyBoundOptttributes with names of appropriate function niede

For reflecting the bindings stored in the kernelcures in specification, outputs of
driver source code analysis are needed. WithoutuCce code analyzeEarlyBoundand

71

EarlyBoundOptattributes are not supportefinonymousattribute, which says that marked
structure or union has no name in the C declaraitsogiso relevant only for this analyzer.

Other attributes require the slicing tool for thiemplementation. BotiConditionaland
CheckConstraintattributes are relevant only for determining, whparts of the model are
to be extracted.

Selection of the namespace to verify is not suggbgo far. It means that only the
model specified in default namespace is checkednbsits Main method is marked as the
entry point of the model. Models specified in othemespaces are correctly processed and
translated, but they are not included in the resgiinodel.

Several features of rules, which were proposed eSpg&c language specification, are
not implemented. The most important of them apeess event operatorsvhich are
applicable on properties and fields, full-fledgedeuof parameters in method events,
arbitrary quantification variables and use of sgtithmembers in rule expressions. There is
also no support folrhreadBoundEventattribute, which assures that events are watched
separately in the context of each relevant threfadupported rule patterns and other minor
limitations were described in section 5.10.

One of the main issues related to implementatiomles is quite loose syntax and even
semantics of rule expressions. DeSpec grammarlgcaliaws using any valid expression
in the rule. This obviously allows creating manytsgtically correct rules that have no
sense. Due to lack of syntactic restrictions, seimarontrol of rule expressions is quite
complicated. It could be beneficial to reconsidehether it would be possible to create
more accurate grammar rules for the rule expressioneventually, whether some more
suitable means for specifying them could be found.

With current grammar rules, it is necessary to gacxe the context of expression and
treat it differently, if it is included in a ruleDeSpec event operators are designed
exclusively for using in rule expressions and tacisially a special language is defined just
for them. It is possible that if this language wbulot be just extension of DeSpec
constructs for expressions, but also some limiatiovould be defined and expressed by a
special grammar, a better control over rule expoasscould be gained on syntax level.

The verification of unions is not supported. It medhat unions can be used in the
specification, but their correct behavior is noecked. Correct behavior of unions is that
only the last written field is read from. Verificat of this rule requires a discriminator
field, which maintains information about the lasttten field of the union.

Original DeSpe&etbuilt-in collection template is not supported. ths template relies
on Zingsettype, an approach to its implementation shouldri@ogous to the one used for
Array template and its higher-level derivatives.

Other unsupported features are actually syntactgarsand they do not lower the
expressive power of implemented subset of DeSpeaminparison with original version.
However, these constructs should be implementethake writing specifications more
convenient and straightforward. The most significhmitation is missing support for
extension Extension is a mean of code reuse and is naatefil in the resulting model. It
cannot be eliminated simply during preprocessiregalse it requires information about

72

types. Main issues of its implementation are reldteincomplete type information at the
time of elimination and to loose rules for its canation with inheritance. Other minor
restrictions on the usage of syntactic sugar apargmt from the modified grammar.

The usage of some DeSpec constructs, which werdoned above, is limited or even
forbidden usually due to the missing implementationthe back-end if the compiler.
However, in most of the cases, the classes foespanding AST node types are prepared
for their full-fledged usage and usually also thmantic analysis takes them into account.

73

7. Related Work

The compiler from DeSpec to Zing is intended toabeart of a framework for formal
verification of Windows driver environment. In aolder context, any work addressing
model extraction for further model checking is tethto the thesis. Some tools that cover
model extraction and model checking are Bogor fraark [12], Spin [13], Java
PathFinder [14] and also Zing compiler and modeic&ler [4], [5].

As for the compiler itself, there are no other sofar translating or analyzing DeSpec.
DeSpec language is inspired in particular by Zingdeling language and some of its
constructs for expressing requirements on modelsrepired by the Spec# language[15]
and Spec temporal patterns [3]. Gauss projectifh@]lves translation of a model to Zing
language, however the input is an MPI program amiih C.

Main goal of the verification framework based onSpec is the verification of
Windows drivers. With respect to this fact, Stadgver Verifier (SDV) [17] is the closest
work, as it has a similar goal. However, SDV exsdabe model directly from the C source
code and requirements and constraints are statedi® language [18], which is much less
expressive than DeSpec. The mechanism of verificas different from the one used by
Zing model checker (i.e. exploring of model’s stgpace). SDV uses a predicate discoverer
and a theorem prover for generating potential etraces and analyses, whether these
traces can occur during the execution of the drivemost of the cases, modeling of kernel
interaction with the driver is degraded to yieldingn-deterministically chosen return
values and output parameters. This can cause atiogpof a trace as correct even if the
driver incorrectly relies on a value that was gatemt non-deterministically. A more
detailed comparison of SDV and DeSpec can be fauf@].

As there is no other tool capable of extraction tbé model from a DeSpec
specification, contribution of the compiler to mbdg Windows driver environment by
DeSpec is apparent.

74

8. Conclusion

The thesis has introduced a tool for extractinggdimodels from DeSpec specifications
of Windows driver environment. Thus, it allows falwerification of these models by
Zing model checker.

For the model extraction from a complete and fidtifjed specification, it is necessary
to implement other tools, namely an extractor cddDrce code of kernel and driver and a
tool for slicing and reduction of the models. Deyghent of these tools is beyond the
scope of the thesis.

Under these conditions, main focus was given to ithplementation of DeSpec
analyzer, as the semantic analysis is crucialdghér steps of the extraction. The analyzer,
which is represented by the front-end of the intietl compiler, supports most of the
features of DeSpec language. Unsupported constraptesent syntactic sugar and their
absence does not reduce expressivity of DeSpec.

The back-end of the compiler represents an attémpirove that extraction of Zing
models from DeSpec is possible, rather than aféallured implementation. Since all key
features of DeSpec, like rules, constraints, groopsnheritance, are at least partially
implemented, this attempt can be claimed successful

Since the tools for analysis of C source code #nihg the model are not yet available,
extraction of Zing model from DeSpec specificatisrimited. A specification can contain
only constructs from the supported subset of th§{dee language. Extraction of C source
code is done manually and necessary symbols awdrdtinction bodies are incorporated
in the specification. If reduction of state spasedesired, slicing must be performed
manually by removing irrelevant parts. When a dpetion matching these requirements
is passed as an input, the compiler produces aivagnt Zing model, which can be
transformed into the executable form by Zing coemillhe resulting model then can be
verified by Zing model checker. Thus, the main gafahe thesis is accomplished.

The usage of the compiler is not bound only togpecifications of the Windows driver
environment. The compiler can create Zing modelmfrohe specification of any
environment that defines some interface and intenaith plugins, providing that it can be
described with the supported subset of DeSpec.

The successful though not full-fledged implementatof the compiler proves that the
DeSpec language is well designed and that it ilska for creating the specifications of
real-world environments, which can be further apatiyand formally verified.

75

9. References

[1]
[2]
[3]
[4]

[5]
[6]

[7]
[8]

[9]
[10]

[11]
[12]
[13]
[14]
[15]

[16]

Microsoft: Windows Driver Kit, WHDC,
http://www.microsoft.com/whdc/DevTools/WDK/defauttspx

Matousek, T.: Model of the Windows Driver Enmmment, 2005

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Ratis in Property Specifications for
Finite-state Verification, Proceedings of the 2Ilsternational Conference on
Software Engineering 1999

Andrews, T., Qadeer, S., Rajamani, S. K., ReligfXie, Y., Zing: A Model Checker
for Concurrent Software, Microsoft Research TecanReport, 2004

Microsoft: Zing Language Specification, Micrds&esearch, 2005

Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing d&ware for Model Construction,
Journal of Higher-order and Symbolic Computatio(4},31999

Aho, AV, Sethi, R., Ullman, J.D.: Compilersriftiples, Techniques, and Tools,
Addison-Wesley, 1986

Jones, J.: Abstract Syntax Tree Implementatidioms, The 10th Conference on
Pattern Languages of Programs, 2003

Gough, J., Kelly, W.: The GPPG Parser Generd&bAS, 2007

Gamma, E., Helm, R., Johnson, R., Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wedl698

Adamek, J., Kofra, J., PIaSil, F.: Lectures on Behavior Models argfification,
Lecture 6, DSRG MFF CUNI, 2006

Robby, Dwyer, M.B., Hatcliff, J.: Bogor SoftneaModel Checking Framework,
http://bogor.projects.cis.ksu.edu

Bell Labs: Spin,

http://spinroot.com

Robust Software Engineering Group, NASA AR@vd PathFinder,
http://javapathfinder.sourceforge.net

Barnett, M., Rustan, K., Leino, M., Schulte,..\Whe Spec# programming system:
An overview, Springer, 2004

Palmer, R., Barrus, S., Yang, Y., Gopalakrmin G., Kirby, R.M.: Gauss:
A Framework for Verifying Scientific Computing Sefare,' Workshop on Software
Model Checking, Edinburgh, 2005

7€

List of Appendices

A, DESPEC GraMIMAI.....ccoiiiiiiiiiieeeieees ot e e et e tab e e e e e e e e ee s aeeaa s e e e e e eeernsnnn e e eeeans
B. Sample SPECIfICALIONooeiiiiiiiiiii e e

77

A.DeSpec Grammar

The grammar stated below is based on the origim8d@c grammar published in [2]
and reflects the modifications made during the tigraent of the compiler.

A.l. Tokens

Although not all keywords introduced in the oridieSpec grammar are used in the
current version, they remain reserved. This is s&gyy to avoid conflicts in existing
specifications, when the currently missing featuaes implemented. The definition of
Identifier is modified and forbids the usage of double urctees () prefix. This prefix
is reserved for needs of the compiler. The deéinitf the other literals is not changed.

This is the unchanged list of keywords:

absent entered max short
abstract enum min static
abstracts error namespace string
after executes new struct
and exists notice succeeded
any extends null synthetic
anytimes extracted object this

as failed old thread
assert false otherwise timeout
assume first out to

async flags precedes true
atomic forall raise try

base foreach range uint
before forever read ulong
between get readonly union
bool globally ref universal
break goto refines until
byte group requires ushort
class choose responds using
const if result value
correspond in return void

s instance returned wait
delegate int rule warning
else is sbyte while

end Teads select with
ensures Tong set written
A.2. Production Rules

The production rules are stated in Backus-Naur FdYon-terminals are marked by
acute brackets and terminals are named or markesthgle quotes. The empty right sides

of the rules are marked bgmpty comment. The starting symboldspecification>.

A.2.1.Global Declarations

<Specification> :

<GlobalbDecls> :

:= <Globalbecls>

lempty

:= <GlobalDecls> <GlobalbDecl>

78

<Globalbecl> ::= <Specbecl>

| <Namespace>
<Specbecl> ::= <ClassDecl>
| <EnumbDecl>
| <RangeDecl>
| <Using>
<Specbecls> ::= <Specbecls> <Specbecl>
| Tempty
<Namespace> ::= <AttributeList> 'namespace' <Refines>
'{"' <Specpecls> '}' o)
| <AttributeList> 'namespace' Identifier <Refines>
'"{' <Specbecls> '}'
<Refines> ::= 'refines' Identifier
| lempty
<ClassDecl> ::= <AttributesAndModifiers> 'class' Identifier <Inherits>
"{' <MemberbDecls> '}'
<Abstracts> ::= 'abstracts' <Type>
| Tempty
<Inherits> ::= ':' Identifier
| l'empty
<Using> ::= 'using' <QualifiedName> ';'
A.2.2.Types
<Types> ::= <Types> ',' <Type>
| <Type>
<Type> ::= <PrimitiveOrRangeType>

| <QualifiedName> <GenericParameters>

<PrimitiveOrRangeType> ::= <PrimitiveType>
| <RangeType>
<RangeType> ::= 'range' '(' <Range> ')'
<GenericParameters> ::= '<' <Types> '>'
| lempty
<QualifiedName> = Identifier
| ‘any' .
| <qualifiedName> '.' Identifier
| <QualifiedName> '.' 'any'
<QualifiedNamesex> ::= <QualifiedNamesex> ',' <QualifiedName>

| <QualifiedNamesex> ',' '!' <qQualifiedName>

| <QualifiedName>

<IntegerPrimitiveType> ::= 'sbyte' | 'byte'

79

| 'short' | 'ushort'
| "int' | 'uint'
| "lTong' | 'ulong'

<ReferencePrimitiveType> ::= 'string'

<PrimitiveType> ::= <IntegerPrimitiveType>

| <ReferencePrimitiveType>
| "bool'

<Literal> ::= "'null' | 'true' |

s 'false' | stringLiteral | IntLiteral |
HexLiteral

A.2.3.Modifiers and Attributes

<Modifier> = 'static'

| 'synthetic'
| "abstract'
| "base'

| 'readonly'

<Modifiers> ::= <Modjfjers> <Modifier>
| <Modifier>

<AttributesAndModifiers> <Attributes> <Modifiers>

| <Attributes>
| <Modifiers>
| lempty
<AttributeList> ::= <Attributes>
| l'empty
<Attributes> ::= <Attributes> <Attribute>
| <Attribute>
<Attribute> ::= '[' <Expression> ']’

A.2.4.Members and Inner Declarations

<MemberDecls> ::= <MemberDecls> <MemberbDecl>
| lempty

<MemberbDec1> <Fieldpecl>

| <MethodDecl>

| <Structbecl>

| <EnumbDecl>

| <RangeDecl>

| <RuleDecl>

| <PropertybDecl>
| <GroupbDecl>

<Fieldbecl> ::= <AttributesAndModifiers> <Type> <NullitySpec>

<FieldvariableList> ';'

| <AttributesAndmodifiers> 'const'
<FieldvariableList> ';'

<Type>

8C

<FieldvariableList> ::= <FieldvariableList> ',' <Fieldvariable>
| <Fieldvariable>

<Fieldvariable> ::= Identifier]
entifier '=' <Expression>
| Identif '=" <E
<PropertybDecl> ::= <AttributesAndModifiers> <Type> <NullitySpec>
Identifier
"{' <PropertyAccessors> '}’]
<AttributesAndmodifiers> <Type> <NulTitySpec>
o | AttributesAndmodif T Nullitys
Identifier o
" '"['" <Type> Identifier ']' '{' <PropertyAccessors>
< ributesAndModifiers> <Type> <Null1itySpec>
| AttributesAndModif T Nullitys
'this'
" '"['" <Type> Identifier ']' '{' <PropertyAccessors>
| <AttributesAndModifiers> '_' Identifier
<PropertyAccessors>
'{' <P tyAccessc Ea e
< ributesAndMmodifiers> '_ entifier
| <AttributesAndmodifi '_' Identif
'"['" <Type> Identifier ']' '{' <PropertyAccessors>
l}l
<PropertyAccessors> ::= <PropertyGetter> <PropertySetter>
| <PropertySetter> <PropertyGetter>
| <PropertyGetter>
| <PropertySetter>
<PropertyGetter> Ti= <AttributeList> 'get'
<ContractDec1L1st0rSem1co1on>]]
<PropertySetter> = <AttributeList> 'set'

<ContractDec1L1st0rSem1co1on>

<MethodDec1> ::= <AttributesAndModifiers> <MethodSignature>
<ContractbeclListOrSemicolon>
| <AttributesAndModifiers> <CtorSignature>
<ContractbeclListOorSemicolon>

<MethodSignature> <Type> <NullitySpec> Identifier '

(' <ParameterList> ')’

| 'void' Identifier '(' <ParameterList> ')'
| '_" Identifier '(' <ParameterList> ')'

| "instance' Identifier '(' <ParameterList> ')'
<CtorSignature> ::= Identifier '(' <ParameterList> ')'

<NullitySpec> ::= '!'
| lempty

<ContractbDeclListOrSemicolon> ::= <ContractDeclList> <MethodBody>

<ContractbeclList> ::= <ContractDeclList> <ContractDecl>
| lempty

'requires' <Expression> ';

<Contractbecl> ::= S
| 'ensures' <Expression> '

<MethodBody> ::= <Block>
| lempty

81

<Groupbecl> ::= <AttributesAndMmodifiers> 'group' <MethodSignature> '='

"{' <QualifiedNamesex> '}' ';

<StructDecl> ::= <AttributesAndModifiers> <Structorunion> Identifier
'{' <Fieldorstructbecls> '}'

<Fieldorstructbecls> <FieldDecl>

<Fieldorstructbecls> = i
| <FieldorStructbecls> <StructbDecl>
I
I

<Fieldorstructbecls> <PropertybDecl>

lempty
<Structorunion> ::= 'struct'
| 'union'
<EnumbDecl1> ::= <AttributesAndModifiers> <Enumorflags> Identifier

<Abstracts> '{' <EnumFieldDeclList> '}'

<Enumorflags> ::= 'enum'
| "flags'
<EnumFieldDeclList> ::= <EnumFieldDecls>
| lempty
<EnumFieldbDecls> ::= <EnumFieldDecls> ',' <Enumvariable>

| <Enumvariable>

<Enumvariable> ::= <Fieldvariable>
| Identifier '=' <Range>)
| Tdentifier '=' '{' <RangeItemList> '}'
<Range> ::= <IntLiteral> '..' <IntLiteral>
| <IntLiteral> '..' <HexLiteral>
| <HexLiteral> '..' <IntLiteral>
| <HexLiteral> '..' <HexLiteral>
<RangeItemList> ::= <RangeItemList> ',' <RangeItem>
| <RangeItem>
<RangeItem> ::= <Range>
| <Expression>
<RangeDec1> Ti= <AttributesAndModifiers> 'range’ Identifier
<Abstracts> '='
<Range> ';'
A.2.5.Rules
<RuleDecl> ::= <AttributesAndModifiers> 'rule' <RuleSpecification> ';'
<AttributesAndModifiers> "rule’ Identifier

<RuleSpecificationList> ';

<RulespecificationList> 1= <RulespecificationList> ,
<RuleSpecification> o]
| <RuleSpecification>

<RuleSpecification> ::= <Quantification> <RulePattern>

82

<Quantification> ::= 'forall' '(' <QuantifiedvariableList> ')'

| lempty
<QuantifiedvariableList> 1= <QuantifiedvariableList> !
<Quantifiedvariable> o]
| <Quantifiedvariable>
<Quantifiedvariable> ::= <Type> Identifier

A.2.6. Temporal Patterns

<RulePattern> ::= <RuleExpression> 'is' 'universal' <RuleScope>
| <RuleExpression> 'is' 'absent' <RuleScope>
| <RuleExpression> 'exists' <RuleScope>
| <RuleExpression> '"precedes’ <RuleExpression>
<RuleScope>
| <RuleExpression> 'leads' 'to' <RuleExpression>
<RuleScope>
| <RuleExpression> 'responds' 'to' <RuleExpression>
<RuleScope>
<RuleScope> ::= 'globally'
| "before' <RuleExpression>
| "after' <RuleExpression>
<RuleExpression> ::= '{' <Expression> '}'

A.2.7.Parameters and Arguments

<ParameterList> ::= <Parameters>
| lempty
<Parameters> ::= <Parameters> ',' <Parameter>
| <Parameter>
<ArgumentList> ::= <Arguments>
| lempty

<Arguments> ::= <Arguments> ',' <Argument>

| <Argument>
<Parameter> ::= <AttributeList> <ParamModifier> <Type>
Identifier

| <AttributeList> 'out' 'instance'
| <AttributeList> 'instance'
I
I

<Argument> <Parammodifier> <Expression>
]]
]

<ParamModifier> ::= 'out' | l!empty

<NullitySpec>

83

A.2.8.Expressions

<PrimaryExpression> ::= <Literal>
<SpecialvariableAccess>
<ParenthesizedExpression>
<InvocationExpression>
<MemberAccessExpression>
<ETementAccessExpression>
<PostIncExpression>

<PostDecExpression>
<NewExpression>
<ChooseExpression>
<ParenthesizedeExpression> ::= '(' <Expression> ')'
<MemberAccessExpression> ::= Identifier
| vanyl
| <PrimaryExpression> '.' Identifier
| <PrimaryExpression> '.' 'any'
<ETementAccessExpression> ::= <PrimaryExpression> '[' <Expression> ']'
<InvocationExpression> ::= <MemberAccessExpression> '(' <ArgumentList>
l)'
<InvocationEvent>
<SpecialvariableAccess> ::= 'thread' | 'this' | 'result' | 'value'
<NewEXpression> ::= 'new' <Type> '(' <ArgumentList> ')'
<ChooseExpression> ::= <ChooseConstruct> '(' 'bool' ")’
| <ChooseConstruct> '(' <Expression> ')'
<ChoosecConstruct> ::= 'choose'
<Expressions> ::= <Expressions> ',' <Expression>
| <Expression>
<InvocationEvent> ::= '::' 'succeeded'
"' 'failed'
'::' 'entered'
"::' 'returned'
lempty
<UnaryExpression> ::= <PrimaryExpression>
'+' <UnaryExpression>
'-' <UnaryExpression>
"' <UnaryExpression>
'~"' <UnaryExpression>

Ve

<MulExpression> ::= <MulExpression> <UnaryExpression>
| <MulExpression> '/' <uUnaryExpression>
| <MulExpression> '%' <UnaryExpression>
I

<UnaryExpression>

<AddExpression> '+' <MulExpression>
1 A}

| <AddExpression> '-' <MulExpression>
| <MulExpression>

<AddExpression>

84

<ShiftExpression>

<RelExpression>

<EqUEXpression>

<BitAndExpression>

<BitXoreExpression>

<BitOrexpression>

<AndExpression>

<Orexpression>

::= <ShiftExpression> '

| <ShiftExpression> '

| <AddExpression>
<RelExpression> '<' <
<RelExpression> '>' <
<RelExpression> '<='
<RelExpression> '>='
<RelExpression> 'is'
<RelExpression> 'as'

<ShiftExpression>

<EqUEXpression>
<EqUEXpression>
<EqUEXpression>
<RelExpression>

<BitAndExpression>
<EqUEXpression>

<BitXorexpression>
| <BitAndExpression>

<BitOrexpression>
| <BitXorExpression>

<AndExpression> '&&'
<BitOrexpression>

| <AndExpression>

<ImpliesExpression>

<ConditionalExpression>

<AssignmentExpression>

<Expression>

<AssignmentOperator>

<Expression>

::= <ImpliesExpressio
| <OreExpression>

<ImpliesExpre

| l&=l | 1

1= <AssignmentExpression>

| <ConditionalExpression>

<StatementExpression>

<AssignmentExpr
| <InvocationExpr

A.2.9.Statements

<BTock>

<StatementList>

'"{' <StatementList> '}'

lempty

<PrimaryExpression>

<<' <AddExpression>
>>"' <AddExpression>

ShiftExpression>
ShiftExpression>
<ShiftExpression>
<ShiftExpression>
<QualifiedName>
<QualifiedName>

<RelExpression>
<RelExpression>
<RelExpression>

'&' <EQUExpression>
'"A' <BitAndExpression>
|]

<BitXorexpression>

<BitOrExpression>

::= <OreExpression> '||' <AndExpression>

n> '==>' <Orexpression>

ssion>

<Assignment0perator>

l/=| | |%=l

| Tos=! | Teg="

ession>
ession>

::= <StatementList> <Statement>

85

<Embeddedstatement>
<LocalbeclSstatement>
<Labelstatement>

<Statement>

<Embeddedstatement> ::= ';'
<ExpressionStatement>
<ReturnStatement>
<GotoStatement>
<Ifstatement>
<LoopStatement>
<SelectStatement>
<AtomicStatement>
<AssertStatement>
<AssumeStatement>
<AsyncStatement>
<TrywithStatement>
<RaiseStatement>
<Block>

= <StatementExpression> ';'

<ExpressionStatement>

<ReturnStatement> = 'return' <Expression> ';
| 'return' ';'
<GotoStatement> = 'goto' Identifier ';'
<Ifstatement> ::= 'if' '(' <Expression> ')' <EmbeddedStatement>
"if' '(' <Expression> ')' <Embeddedstatement> 'else'
<EmbeddedStatement>
<LoopStatement> ::= 'while' '(' <Expression> ')'
<EmbeddedStatement> o))
| 'foreach' '(' <Type> Identifier 'in' <Expression>
l)l
<EmbeddedStatement>
<SelectStatement> = 'select' <SelectQualifiers> '{' <waitStatements>
I}'

<SelectQualifiers> ::= <SelectQualifiers> <SelectQualifier>

<SelectQualifier>

<WaijtStatements>

lempty

'end'
"first'

1:= <WaitStatements> <waitStatement>

| <waitStatement>
<WaijtStatement> = 'wait' (' <Expression> D! 't
<Embeddedstatement>)
| "timeout' '->' <EmbeddedStatement>
<AtomicStatement> = 'atomic' <Block>
<AssertStatement> ::= 'assert' '(' <Expression> ')' ';'
\l

'assert' l(l ' l)l

<Expression> ',' StringLiteral

86

<AssumeStatement> ::= 'assume' '(' <Expression> ')' ';

<Labelstatement> ::= Identifier

<AsyncStatement> 1= 'async' <InvocationExpression> 'with'

<Expression> ';

<LocalbeclStatement> ::= <PrimitiveOrRangeType> Identifier ';

| <PrimitiveOrRangeType> Identifier '='

<Expression> ';]
| <MemberAccessExpression>

<MemberAccessExpression>
] L}

Identifier ';]
| <MemberAccessExpression>

<MemberAccessExpression>

Identifier '=' <Expression> ';'
<TrywithStatement> ::= 'try' <Block> 'with' '{' <withClauses> '}'
<WithClauses> ::= <WithClauses> <withClause>

| <withClause>
<withClause> ::= Identifier '->' <EmbeddedStatement>

| 'any' '->' <EmbeddedStatement>

<RaiseStatement> ::= 'raise' Identifier ';

87

B.Sample Specification

This appendix contains a simplified yet repres@rgaspecification of a class from the
sample model of the driver environment and theesponding Zing model generated by
the compiler. The sample class contains a rulesaweéral constraints. Since the class is
involved in inheritance, the simplified specifiaatiof its parent class is also included.

To make the sample shorter and better readable, seiected class members are
included in the specification. As for the Zing mbdmly some of its interesting parts are
included and the compiler’s output is formattede Homplete sample specification, which
is derived from the specification published in [@}, well as complete translated model can
be found on the accompanying CD.

B.1. DeSpec Class Declaration

// Event dispatcher object
class KEVENT : DispatcherObject

{

// Whether event is auto-reset when a wait function succeeds on it
synthetic bool AutoReset;

void KeInitializeEvent(instance,EVENT_TYPE type,bool signals)
{...

// Sets event to a signaled state
int KeSetEvent(instance,_,bool dowait)
requires thread.Irql <= KIRQL.DISPATCH_LEVEL;
requires dowait ==> (thread.Irql == KIRQL.PASSIVE_LEVEL);

// Sets event to a non-signaled state
int KeResetEvent(instance)
requires thread.Irql <= KIRQL.DISPATCH_LEVEL;

// Sets event to a signaled state
void KeClearEvent(instance)
requires thread.Irql <= KIRQL.DISPATCH_LEVEL;

// Gets the current state of the event
int KeReadStateEvent(instance)
requires thread.Irql <= KIRQL.DIRQL;
requires thread.Irql <= KIRQL.DISPATCH_LEVEL;

// Checks whether the event is initialized before used

rule
{ KeInitializeEvent(_,_)::returned }
precedes
{ KeSetEvent(_)::returned ||

88

KeResetEvent()::returned ||
KeClearevent()::returned ||
KeReadStateEvent(): :returned

}
globally;

B.2. Zing Model

class KEVENT

bool AutoReset; _
// binding to the instance of the parent class
Dispatcherobject __parent;

int __automatonIndex_lambdal;

bool __ruleExpressionvalue_0_Tlambdal;
bool __ruleExpressionvalue_1_Tlambdal;
bool __action_0_1lambdal;

bool __action_1_lambdal;

bool __action_2_1lambdal;

bool __action_3_1lambdal;

bool __action_4_lambdal;

// delegation to parent property
bool SignalsGet(Thread thread){
bool result;

atomic{{{
(result = __parent.SignalsGet(thread));
113 goto __returning;

__returning:
atomic {return result;}

}

//delegation to parent property

void SignalsSet(Thread thread, bool value){
atomic{{
1 (__parent.SignalsSet(thread, value));

__returning:
atomic {return ;}

}

void KeInitializeEvent(Thread thread,
KEVENT_EVENT_TYPE type, bool signals){
atomic{{
(AutoReset =
(type ==
KEVENT_EVENT_TYPE.SynchronizationEvent));
(Signalsset(thread, signals));
Initialized(thread);
1} _
__returning:
atomic{
// triggering ::returned event
_ Step_lambdal(thread,
KEVENT___Actions_lambdal.KeInitializeEvent,
__Events.Returned);
return ;

89

int KeSetEvent(Thread thread, bool dowait){
int result;
// preconditions
assert(((true && (
thread.Irql <= KIRQL.DISPATCH_LEVEL)) &&

~ (!(dowait) || (thread.Irql == KIRQL.PASSIVE_LEVEL))));
atomic
{{(signalsset(thread, true));}}
__returning:
atomicq{

// triggering ::returned event
__Step_lambdal(thread,
KEVENT___Actions_lambdal.KeSetEvent,
__Events.Returned);
return result;

}

// type converting routine
object __upcast(Thread thread, __Classes typeName) {
object result;

atomic{{
if((typeName == __Classes.Default_KEVENT)){
(result = this);
goto __returning;
else{
(result = __parent.__upcast(thread,
__Classes.Default_KEVENT))
goto __returning;’
1})
__returning:

atomic {return result;}

}

// type converting routine
object __downcast(Thread thread, __Classes typeName)

object result;

atomic{{
object cast;
if((typeName == __Classes.Default_KEVENT)){
(result = this);
; goto __returning;
{
(result = null);
goto __returning;
1} _
__returning:

atomic {return result;}

}

// as operator replacement
object __as(Thread thread, __Classes typeName)

object result;
atomic{{
(result = this.__upcast(thread, typeName));
if((result == null))
(result = this.__downcast(thread, typeName));

9C

1} _
__returning:
atomic {return result;}

}

void KEVENTCtor(Thread thread) {
atomic{{

// linking into the inheritance chain

Dispatcherobject __tmpl6;

(__tmpl6 = new Dispatcherobject);

__tmpl6.DispatcherobjectCtor(thread);
) (__parent = __tmpl6);

(__parent.__child_bpefault_KEVENT = this);
(this.AutoReset = false);

// registration of the automaton
Model.__automataStates.Add(thread,0);
(__automatonIndex_lambdal =
Model.__automataStates.CountGet(thread));
) (__automatonIndex_Tlambdal = (__automatonIndex_Tlambdal -
int __start_Tlambdal;
(__start_lambdal =
¥gde1.__automataNonTermina1s.CountGet(thread
Model.__automataNonTerminalsStarts.Add(thread,
__start_lambdal);
Model.__automataNonTerminalsCounts.Add(thread,0);
Model.__automataStates.Add(thread,0);
(__automatonIndex_lambda6 =
Model.__automataStates.CountGet(thread

));
X (__automatonIndex_lambda6 = (__automatonIndex_lambda6 -
1))
int __start_lambda6;
(__start_lambda6 =
3 Model.__automataNonTerminals.CountGet(thread

Model.__automataNonTerminalsStarts.Add(thread,
] __start_lambda6) ;
Model.__automataNonTerminalsCounts.Add(thread,0);
3}
__returning:
atomic {return ;}

}

// transition method of the rule automaton
void __Step_lambdal(Thread thread,
KEVENT Actions_lambdal action,
__Events _event){
// determine the event
if(false)

else if((action ==
KEVENT___Actions_lambdal.KeInitializeEvent))
{(__action_0_lambdal =
(_event == __Events.Returned));?}
else if((action ==
KEVENT___Actions_lambdal.KeSetEvent))
{(__action_1_lambdal =
(_event == __Events.Returned));?}

91

else if((action ==
KEVENT___Actions_lambdal.KeResetEvent))
{(__action_2_lambdal =
(_event == __Events.Returned));?}
else if((action ==
KEVENT___Actions_lambdal.KeClearEvent))
{(__action_3_lambdal =
(_event == __Events.Returned));?}
else if((action ==
KEVENT___Actions_lambdal.KeReadStateEvent))
{(__action_4_lambdal =
(_event == __Events.Returned));?}

// check if value of a rule expression changed
bool new__ruleExpressionvalue_0_lambdal =
__action_0_lambdal;

bool new__ruleExpressionvalue_1_lambdal =
(((_action_1_lambdal || __action_2_Tlambdal)
|| _action_3_Tambdal) ||
__action_4_lambdal);

bool change =
((__ruleExpressionvalue_1_lambdal !=
new__ruleExpressionvalue_1_lambdal)

((__ruleExpressionvalue_0_lambdal !=
new__ruleExpressionvalue_0_lambdal)
|| false));

}f(change)

(__ruleExpressionvalue_0_lambdal =
y new__ruleExpressionvalue_0_Tlambd
al
(__ru]eExpress1onVa1ue 1_lambdal =
N new__ruleExpressionvalue_1_Tambd
al);

else
return ;

// perform the transition

bool vO = __ruleExpressionvalue_0_1lambdal;

bool vl = __ruleExpressionvalue_1_1lambdal;

int state;

(state = Model.__automataStates.thisGet(thread,

__automatonIndex_lambdal))

select first{
wait(((state == 0) && (!(v0) && !'(v1)))) -> ;
wait(((state == 0) && v0)) -> (state = 1);
wait((state == 1)) -> ;
wait(true) -> assert(false, "rule broken");

3
(Model1.__automataStates.thisSet(thread,
__automatonIndex_lambdal,state))

92

