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Abstract: This thesis analyzes what acoustically sets apart recordings of healthy
people from recordings of people afflicted with multiple sclerosis, and how this dis-
tinction can be used to automatically detect multiple sclerosis from fairly simple
recordings of a subject’s voice, potentially discovering early cases of this disease.
Chapter 1 includes the theoretical background of the effect of multiple sclerosis on
speech and the descriptions of the data, software, hypotheses and assumptions
used here. Two sets recordings of read speech were used, a corpus of afflicted
speakers and a control corpus of healthy speakers, totalling 250 individuals. A
subset of this corpus was manually annotated, resulting in one dataset. Simul-
taneously, these entire corpora were also annotated automatically, resulting in
another dataset, which was created to explore the possibility of detecting mul-
tiple sclerosis automatically. Chapter 2 describes the 13 acoustic parameters
used in this thesis, their exact hypothesized relationships with the symptoms of
multiple sclerosis and the ways they were calculated. Chapter 3 elaborates on
the statistical testing of the aforementioned parameters, their interpretation, the
success rate of the two machine learning models used to assess their total pre-
dictive power, and a potential way to apply the principles of one of these models
practically. In the case of the manual dataset, all 13 parameters were used, of
which 9 were statistically significant. The machine learning model trained with
these data exhibited a 93% raw accuracy with a Cohen’s kappa of κ = 0.63. The
automatically annotated dataset was paremeterized using only 12 parameters, of
which 7 were significant. The machine learning model employed on these data
exhibited a raw 85% accuracy and a kappa κ = 0.5. The thesis then goes on to
propose a way to practically apply these findings in a clinical setting.
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Abstrakt: Tato práce se zabývá akustickými odlǐsnostmi nahrávek zdravých lid́ı
a lid́ı postižených roztroušenou sklerózou a také t́ım, jak mohou tyto odlǐsnosti
být použity za účelem automatické detekce roztroušené sklerózy z jednoduchých
hlasových nahrávek a z toho vyplývaj́ıćıho př́ıpadného brzkého nalezeńı rozv́ıjej́ıćı
se choroby. Kapitola 1 obsahuje teoretické pozad́ı vlivu roztroušené sklerózy
na řeč a také popis dat, softwaru, hypotéz a předpoklad̊u v práci užitých. Za
t́ımto účelem byly užity dva soubory nahrávek čteného textu, jeden s nahrávkami
nemocných mluvč́ıch a druhý obsahoval zdravé kontrolńı mluvč́ı. Některé z těchto
soubor̊u byly ručně anotovány, což představuje prvńı soubor dat. Současně byly
celé tyto dva soubory nahrávek anotovány automaticky, č́ımž byl vytvořen druhý,
větš́ı soubor dat. Tento byl vytvořen za účelem přezkoumáńı možnosti deteko-
vat roztroušenou sklerózu čistě automaticky. Kapitola 2 popisuje 13 akustických
parametr̊u použitých v této práci, jejich předpokládané vztahy se symptoma-
tologíı roztroušené sklerózy a metody jejich byly výpočtu. Kapitola 3 se zabývá
statistickým testováńım parametr̊u, jejich interpretaćı, úspěšnost́ı dvou machine
learningových model̊u vytvořených za účelem zhodnoceńı jejich celkové predik-
tivńı śıly a možným praktickým využit́ım druhého z nich. Z ručńıho datového
souboru bylo vypočteno 13 parametr̊u, u 9 z nichž byla prokázána statistická
významnost. Model na nich založený vykázal 93% hrubou úspěšnost a Cohenovu
kappu κ = 0,63. Automaticky anotovaný soubor dat byl parametrizován pouze 12
z nich, z nichž 7 bylo významných. Model vytvořený pomoćı těchto dat vykázal
85% hrubou úspěšnost a kappu κ = 0,5.
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Preface
The primary reason I have decided to write this thesis is trivial – when my mother
was diagnosed with multiple sclerosis, it was because I had noticed neurological
symptoms in her one year prior, when I was but a 17-year-old boy with absolutely
no medical training. About a year ago, this, along with the assumption that the
entire situation had not just been pure luck on my part, led me to believe that if
neurological red flags can be noticed by a boy, then perhaps these red flags could
be theoretically detected by automatic means by a biometric system of sorts.

What inspired this, at least in part, was hearsay of some incredibly successful
research going on at ČVUT regarding Parkinson’s disease and also, it just so
happened that at that time, I was a student of phonetics pondering the topic
of his future Master’s thesis. I put two and two together and decided to con-
struct a machine learning model that would be able to detect multiple sclerosis
automatically.

The original title of this thesis was supposed to be something along the lines
of “Automatic detection of multiple sclerosis” from read speech, but my super-
visor felt that the selection, assessment and testing of potentially useful acoustic
parameters for the purposes of this application was ambitious enough. Trusting
his judgment, I hearkened his advice, but deciding not to abandon my hopes of
constructing a bona-fide proof of concept of such a detection tool, I regardless
attempted to go through with my original concept. I would like to take this oppor-
tunity to alert the reader to a matter perhaps obvious but nevertheless critical to
mention – in its current state, the model is absolutely nothing but proof of concept.
It is not practically applicable in any way due to its unwieldiness, inefficiency,
overreliance on otherwise irrelevant software and a tedious workflow that nearly
defeats its purpose. However, I wish to emphasize this point as well: all of the
tedious labour, inefficiency and unwieldiness can indisputably be automated and
streamlined by a team of skilled programmers. However, such an accomplishment
is well beyond both the scope of this thesis and my software engineering skills.

Ultimately, I would say that my personal motivation for choosing this topic
is twofold. First, regarding quality of life, the sooner neurological diseases are
diagnosed, the better the quality of life of the patient. Since “Patients who begin
treatment later do not reap the same benefits as those who begin treatment earlier
during the disease course.”, as Miller [2004] slightly understates in the abstract of
his article, it seems obvious that it would be ultimately highly beneficial to many
people to have a cheap, reausable tool that can detect MS early on. As I was
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fortunate enough to have the opportunity to attempt to do something genuinely
pro bono publico, I decided to go through with this thesis topic despite the fact
that my mathematical and data scientific background can be described as limited
at best.

Secondly, I just consider the entire idea of this model to be inherently incred-
ibly appealling. There is something just inherently fascinating about simulating
an artificial brain-like structure and training it to acoustically detect and recog-
nize a potentially debilitating disease. I thus knew that I would enjoy working on
this, and consequently give my absolute best performance. I am happy to report
that I indeed have thoroughly enjoyed working on this model, and thus hopefully
have given an exceptional performance.

Please note that I will try my best to refrain from using the term diagnose,
since I strongly prefer detect. This is because a tool like this cannot be used
to diagnose MS in the same way that a skilled neurologist equipped with an
magnetic resonance imaging (MRI) machine and all the necessary knowledge and
intuition can. Any “diagnosis” given by such a model cannot be considered on
par with a result from such a physician, and thus this detection tool can only
be used to find people who should be referred to a professional. More on this in
subsection 3.3.1 on page 45.
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1. Introduction
The objective of this thesis is to lay grounds for the construction of a tool that
automatically detects multiple sclerosis from the voice recording of a potentially
afflicted individual using no input but that individual’s voice recordings and their
basic biometric data such as age and sex.

This encompasses the statement, theoretical evaluation and statistical testing
of relevant acoustical measurements for the purposes of constructing such a model.
If possible, the construction of a proof-of-concept machine learning (ML) working
model proving the workability of the proposition also falls within the objective
of this work, as well as a proposition of a practical application paradigm.

The practical part of this thesis consists of two largely similar parts, one con-
sisting of manually annotated data, the other of automatically annotated data.
Annotation in this context means that in recordings such as used in this thesis, it
has to be temporally discriminated when relevant phenomena, such as particular
phoneme realizations, occur, so that their acoustic characteristics can be mea-
sured. This can be done in two ways – it can be done manually or it can be done
automatically.

The manual approach is much more reliable in terms of errors and thus pro-
duces results which are in and of themselves interpretable and scientifically rel-
evant. Therefore, statistical tests can be performed on thus acquired data and
based on them, general statements about dysarthric individuals can be made,
conclusions be drawn and the sum of human knowledge expanded.

Annotating data automatically is much cheaper and makes it possible for
full automatic detection to be potentially applied, but is much less reliable in
terms of error rate. Parameters thus acquired are therefore much less suitable
for intrepretation, but are reliable enough to train a machine learning model to
discriminate healthy recordings from dysarthric ones.

The objective of this thesis is, however, not the assessment of how acous-
tic features of multiple sclerosis (MS)-afflicted speech correlate with the various
subtypes of MS. This work concentrates fully on the possibility of constructing
and applying such a model along with the evaluation of possible parameters used
therein, without delving too deep into the intricacies of what happens between
MS and its associated dysarthrias. This sacrifice is made purely for the sake of
focus.

Similarly, for the same reason, no effort will be made to generalize any of these
findings beyond the borders of the Czech language. It is not unreasonable to
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assume that having tweaked parameters and being trained on a different dataset,
a similar model could be deployed to detect multiple sclerosis in speakers of
languages other than Czech, but this is by no means the objective of this thesis.

1.1 Theoretical background
In this chapter, I will put forward a general theoretical foundation on what mul-
tiple sclerosis actually is, along with its symptoms, especially in the context of
speech, and why it is important that it is treated as early as possible. This will
be done in subsection 1.1.1.

Next, in subsection 1.1.2, I will briefly elaborate on how such biological phe-
nomena are measured acoustically according to the scientific literature in practice.
This will be a general overview of sorts; not all techniques and methods described
here will ultimately be used for the construction of the ML model.

In section 1.2, all recordings, annotation methods, software and machine learn-
ing tools used in this thesis will be described and properly attributed to their
respective authors, since they have been aggregated from various sources.

The final section, 1.3, will present all assumptions, theoretical, statistical, and
otherwise, that are necessary to draw all the conclusions claimed at the end of
this thesis.

1.1.1 Multiple sclerosis

In this subsection, I will give a short introduction on what multiple sclerosis
actually is. Following this general description is a deeper explanation of the three
main symptoms (or rather clusters of symptoms) most relevant to this work.

Multiple sclerosis, or MS for short, is a neurodegenerative disorder affecting
the central nervous system (CNS) of the affected individual. More precisely, for
reasons unknown as of the time this thesis is being written, the body’s immune
system attacks the myelin sheath of the individual’s nervous system. The myelin
sheath is a protective layer made of a fatty substance that covers one’s nervous
tissue. If we imagine nerves as being electric wires, the myelin sheath serves as
an insulating layer.

When MS develops, the immune system’s attack manifests as localized areas
of swelling and inflammation in the myelin-rich white matter of the CNS (though
grey matter, which contains less myelin, may be affected as well), which, after
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some time, may develop into areas of hardened scar tissue called lesions.1 These
lesions compromise the myelin sheath’s ability to properly insulate the nervous
tissue to let it transmit signals around the body properly, resulting in a potentially
wide array of neurological symptoms.

Not only that, but these lesions often seep into the nervous tissue itself, dis-
rupting any signals attempting to pass through. ([Amor and Van Noort, 2012, p.
3-8])

Because of the localized nature of the damage, it is critical to understand
that the precise neurological difficulties any single patient may experience often
vary significantly. Intuitively, this is because these symptoms stem from the
exact part of the brain, spine or other location in the nervous system that is
affected. This presents a significant challenge for anyone attempting to build a
detection system – because of the unusually high (among neurological disorders)
symptomatic variability.

Symptoms of MS may include difficulty walking, ataxia and lowered coordi-
nation, psychological symptoms such as depression, various cognitive difficulties
such as impaired memory, tremors, spastic muscles and cramps, pain, sensory
difficulties such as blurred, double or otherwise impaired vision, insufficient blad-
der function and sphincter functions, general fatigue, dysphagia and dysarthria.
(Kister et al. [2013])

Not all of these are necessarily relevant for speech biometrics, but some of
them are in an indirect way. For example, impaired vision and memory may
contribute to the fact that when reading a text aloud (like in the recordings
used in this thesis), subjects may experience increased difficulty understanding
and processing the text, which may exhibit in their speech in a measurable way
despite not being dysarthria per se.

Multiple sclerosis manifests itself in several standardized subtypes depending
on author, these being relapsing-remitting, secondary progressive, primary pro-
gressive and progressive relapsing. Clinically isolated syndrome is also sometimes
mentioned, although that term is reserved for individuals with MS-like symp-
toms, but who do not otherwise meet necessary criteria to be diagnosed with the
disease proper.

The relapsing-remitting form is the most common one, constituting about
85% of known cases of multiple sclerosis. (Hurwitz [2009]) Typically, its symp-
tomatology constitutes of so-called attacks, where the patient’s condition worsens
significantly for a short amount of time spanning roughly days before getting bet-

1The word “sclerosis” comes from the Greek σκληρός, meaning hard.
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ter again for some time.
This presents another challenge for both the construction of a functional de-

tection model and its application, because the patient might be nearly completely
asymptomatic during recording. Relapsing-remitting MS often (but not always)
transforms into the secondary progressive form, where the attacks cease to
appear and the patient’s condition instead deteriorates much more gradually.

Similar to this is the primary progressive form, which is not preceded by
relapsing-remitting MS and typically develops much more steadily. (Hurwitz
[2009])

According to Wilkins [2019], the total population prevalence of MS in the
USA is about 0.3 % at the time. Despite the fact that MS seems appears more
commonly further from the equator, there is no reason to assume that the gen-
eral prevalence will be significantly different in the Czech republic, at least for
detection purposes.

For the purposes of this work and especially this chapter, as well as chap-
ter 2, three relevant symptoms, or rather perhaps three symptom subgroups,
have been identified as especially relevant. It is critical that the reader under-
stands that these symptom groups exhibit significant overlap in the manner that
they manifest themselves in dysarthric speech, and one symptom may exhibit as
several acoustic phenomena, as well as one acoustic abnormality may be caused
by symptoms from more than one group. These follow in no particular order.

Spasticity in speech

According to a rigorous definition found in Mclellan [1981], muscular spasticity
in MS “is a motor disorder characterised by a velocity dependent increase in
tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from
hyperexcitability of the stretch reflex, as one component of the upper motor
neurone syndrome.”

For the purposes of this thesis, this definition will be loosened somewhat.
Various episodes of muscle stiffness, jerkiness, poor muscle control, tremors or
similar phenomena all fall into this category.

Assuming the figures found in Barnes et al. [2003] on Northern English pa-
tients diagnosed with MS can be extrapolated to the Czech republic with a rea-
sonable degree of accuracy, acoustic correlates of spasticity are of great value to
speech-based MS detection, because patients with this family of symptoms con-
stitute 43% of all patients diagnosed with MS. Because the definition used for the
purposes of this thesis is looser, acoustical correlates of spasticity logically have
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a chance of being found in at least 43% of positive recordings.
Acoustic abnormalities hypothesized to be found in dysarthric speech with

spastic components in this study include irregularites in amplitude due to im-
paired control of the breathing muscles – spasms, even mild ones, can be presumed
to produce abnormal fluctuations in amplitude. It is also hypothesized that
spastic individuals would have a larger number of glottal stops present in
their speech due to them involuntarily closing the glottis inappropriately. It can
also be assumed that articulating any full oral aperture, spastic individuals will
have trouble reopening that same aperture due to muscle stiffness, resulting in
longer stop consonants.

Longer recordings due to articulatory muscle control difficulties and fre-
quent mistakes (and subsequent corrections) stemming thereof, although this pa-
rameter is presumably related to all three of the main symptom groups roughly
equally, albeit for different reasons. It should be noted here that all data used in
this thesis are recordings of the same text read by various individuals.

Fatigue in speech

Fatigue is one of the less outwardly salient symptoms of MS. It appears in roughly
78% of MS patients (applying the same assumptions and caveats as in 1.1.1).
(Freal et al. [1984]) In this thesis, the term “fatigue” refers to what one intuitively
expects it to – a feeling of tiredness, be it cognitive, psychological, physical or
otherwise.

Acoustical abnormalities hypothesized to be found in dysarthric speech with
components of fatigue are longer vowels and longer pauses. This relies on the
presumption that a fatigued individual can be expected to try and find moments
of respite during speech, which is an activity involving a non-negligible amount of
physical strain, a fairly high cognitive strain and an exceedingly high coordinative
strain.

Because of this, fatigued individuals may attempt to rest by prolonging vowels,
since this takes off coordinative strain for a moment, reduces physical strain and
buys them time to think or read slightly ahead, or they may rest by prolonging
pauses, since those take off all of the aforementioned types of strain.

Additionally, as previously mentioned, longer recordings are to be expected,
due to fatigued individuals gradually lowering their articulation rates as they
speak.
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Ataxia in speech

Ataxia (adj.: atactic) is a neurological symptom describing a compromised ability
to voluntarily control muscle movements. Outwardly, it often exhibits as a sort
of perceived clumsiness, since it often affects gait, which may become visibly
unsteady. This is arguably the most obvious symptom observable by a layman
in the disease. It is assumed to occur in roughly 80% of all cases of MS, which
makes it a potentially invaluable biomarker for early detection. (Wilkins [2017])

Acoustical components of hypothesized to be found in dysarthric speech with
components of ataxia is general articulatory decay. The main challenge in
measuring this phenomenon is the fact that atactic individuals are unlikely to mis-
pronounce anything in particular in a consistent manner, so a method that takes
general articulatory inconsistency is required. Prime candidates for such mea-
surements are vowel quality and duration, due to their ease of measurement,
and realizations of the phoneme /s/, due to its difficulty of pronunciation.

Longer recording lengths are to be expected as well as in previous cases,
due to atactic individuals having a tendency to mispronounce words and correct
themselves much more often, leading to longer recording times.

1.1.2 Speech in neurological disorders

In this subsection, various methods already used in the past in regards to multiple
sclerosis will be described. Especially important to this thesis is Jan Rusz’s
work Characteristics of motor speech phenotypes in multiple sclerosis (Rusz et al.
[2018]), which will be mentioned here as well on multiple occasions throughout
this thesis.

Speech processing itself is based on signal processing. What this means is
critical – it means that by using recordings of speech as data, we can extract
incredible amounts of information out of them thanks to the likes of Claude
Shannon and Jean-Baptiste Fourier, as well as many others. This poses a sig-
nificant advantage over say data in the form of videos of subjects ambulating,
because analysis of movement (and especially from video) lacks such a robust,
established and relatively accessible mathematical background.

Furthermore, as mentioned in section 1.1.1, speech is physiologically incredibly
complex, meaning that it can be reasonably expected that many neurological
abnormalities appear therein, often before they manifest themselves elsewhere or
are noticed by the afflicted individual.

We call speech afflicted like this dysarthric. Using tools including but not
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limited to spectral analysis, we can then define parameters that we deem system-
atically influenced by the disease we are studying, measure them in the recordings
that we have acquired, and then perform statistical tests which confirm or falsify
our conjectures.

Pioneering in the study of MS is a study by Gerald et al. [1987], which, while
revealing interesting findings, had the drawback of being perception-based and
thus insufficiently objective, in addition to a rather small sample of 23 indiviudals.
The authors primarily mention deviations in vocal quality, imprecisions in conso-
nant production and amplitude control, which are mostly objectively measurable.
It did, however, delve into topics which are a lot more difficult to measure ob-
jectively, much less automatically, such as deficits in sentence construction and
comprehension of logico-grammatical constructions.

Critical to the existence of this thesis and the study of MS-related dysarthria
is the work of Jan Rusz and his colleagues, whose studies will be mentioned along
others here briefly in chronological order.

The most relevant study this thesis is called Characteristics of motor speech
phenotypes in multiple sclerosis. Rusz et al. [2018] Here, it was discovered that in
a sample of 141 MS patients, at least 56% exhibited some degree of dysarthria,
typically with both spastic and atactic components, as measured using objective
acoustic measurements. This dysarthria typically exhibited low pitch variation,
articulation problems, amplitude fluctuations and a slow articulatory rate. Be-
cause of this, this thesis attempts to cover these symptoms as uniformly as pos-
sible, as described in subsection 1.1.1. Most importantly, this study, along with
Orozco-Arroyave et al. [2016] and Rusz [2018], opened up the possibility that au-
tomatic detection of MS is a feasible idea. The results of the first of these studies
will be compared in-depth to the results of this thesis in subsection 3.3.2 on page
47.

Worth mentioning is also Rusz et al. [2019], where the authors attempt to find
connections between specific acoustic abnormalities and MRI-based volume mea-
surements. In other words, they try to find out how specific forms of dysarthria
relate to which parts of the brain are attacked by the disease. Since this thesis
conflates all MS subtypes into one group of simply positive patients, this partic-
ular study is not immediately relevant. It is, however, potentially highly in the
context of the possibility of a construction of a different, more advanced algo-
rithm and testing paradigm, which could output prognoses or discern between
MS subtypes.

What is much more relevant is Rozenstoks et al. [2020], because the method
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described in this article it may potentially be used in conjunction with the model
described here. On the details of this possibility, please refer to subsection 3.3.1
on 45. This article presents a method on how to detect syllables in repetition
paradigms with more than reasonable accuracy for the purposes of temporal mea-
surements. The study discovers that MS patients have an impaired ability to
perform alternating, repeated articulatory movements, resulting in both slower
articulation rates and temporal irregularities.

Lastly, Hlavnička et al. [2020] is relevant to this thesis in that it states that
objectively measurable vocal tremor is only present in 8% of all MS patients.
Realizing this, the decision to not try to cover vocal tremor with the parameters
used in this thesis becomes obvious.

1.2 Data and software
In this section, all data and software will be properly described, mentioned, eval-
uated and attributed to all the incredibly kind people who have made the usage
of their tools and data available, knowingly or unknowingly, for the purposes of
creating this thesis and the accompanying ML model.

1.2.1 Recordings

In this thesis, two sets of recordings of various individuals reading the same text
aloud were used. Various subsets of these two corpora were then used in the
two experiments that comprise the practical segment of this thesis, meaning that
some recordings were dropped for various reasons. Some recordings were not
technically usable, sometimes critical personal data (such as age or gender) on a
given individual were missing, not enough recordings were manually annotated
for the purposes of a given experiment or some speakers were discarded because
the data had to satisfy certain statistical criteria.

The text the subjects were reading is an excerpt from Karel Čapek’s short
story Měl jsem psa a kočku. It contains 230 syllables, takes about just under a
minute to read and goes as follows:

I na tom, že člověk si opatř́ı psa, aby nebyl sám, je mnoho pravdy. Pes
opravdu nechce být sám. Jen jednou jsem nechal Mindu o samotě v
předśıni; na znameńı protestu sežrala všechno, co našla, a bylo j́ı pak
poněkud nedobře. Podruhé jsem ji zavřel do sklepa s t́ım výsledkem,
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že rozkousala dveře. Od té doby nez̊ustala sama ani po jedinou min-
utu. Když ṕı̌si, chce, abych si s ńı hrál. Když si lehnu, považuje to za
znameńı, že si mně smı́ lehnout na prsa a kousat mě do nosu. Přesně o
p̊ulnoci s ńı muśım provádět Velikou Hru, při ńıž se s velikým hlukem
hońıme, koušeme a kutáĺıme po zemi. Když se uř́ıt́ı, jde si lehnout;
pak si smı́m lehnout i já, ovšem s tou podmı́nkou, že nechám dveře
do ložnice otevřené, aby se Mindě nestýskalo. (Čapek [1939])

It is not particularly cognitively demanding, but upon being read aloud forces
one to realize all Standard Czech phonemes.

Healthy individuals

A healthy corpus of recordings of 133 female and 104 male native Czech speak-
ers, totalling 237 individuals, was kindly provided by the Institute of Phonetics,
Faculty of Arts, Charles University. This corpus had originally been recorded
for the purposes of studying dysarthric speech in neurological disorders; thus, it
was not recorded in a studio. The participants were given a small fee for their
efforts and were recorded in a quiet furnished room with a high-quality condenser
microphone at the Institute of Phonetics. The median age of the subjects at the
time of recording is 55 years with a standard deviation of about 19.

Affected individuals

Two sets of recordings of MS patients were kindly provided by the Department
of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University
in Prague. These were recorded using a professional handheld voice recorder set
to uncompressed mode (48 kHz sampling rate and 16 bit resolution) in a quiet
room equipped with a Bayerdynamic Opus 55 head-mounted microphone.

The first set contains 26 female and 23 male native Czech speakers, with an
age median of 42 years and a standard deviation of about 13. These recordings
had previously all been labelled as perceptually dysarthric by trained speech
therapists and thus consist a more salient, but also biased (for the purposes of
recognition and ML model evaluation) sample of MS speakers. The second set
contains 17 females and 13 males, with an age median of 42 years and a standard
deviation of about 10. Unlike the previous set of recordings, these were selected
at random with no regard as to their dysarthric status as evaluated by ear.

Thus, 65 females and 36 males form the backbone MS-afflicted corpus of this
thesis, median age of 42 with a standard deviation of about 12.
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1.2.2 Software

In this subsection, all software tools used in this thesis will be properly mentioned
and cited.

The TextGrids and some preliminary perceptual and spectrographic analyses
were made with the help of Praat (Boersma and Weenink [2009]), a free computer
software package intended for use in phonetics.

The R programming language (R Core Team [2019]) and its integrated de-
velopment environment (IDE), RStudio (RStudio Team [2015]), were used for
data wrangling, statistical analysis and some signal processing. R packages used
include tuneR (Ligges et al. [2018]), rPraat (Bořil and Skarnitzl [2016]), tidyverse
(Wickham [2017]) and stringr (Wickham [2019]).

The Python programming language (Van Rossum and Drake [2009]) and its
IDE, PyCharm (JetBrains) were used for the construction of an ML algorithm
along with its scikit-learn (Pedregosa et al. [2011]) and pandas (McKinney et al.
[2010]) packages.

Unless stated otherwise, the default settings and parameters of all functions
of all software used in these thesis were used.

1.2.3 Annotation

As mentioned in 1, apart from the recordings, text files that delimit where pho-
netically relevant phenomena begin and end in a given recording are necessary for
proper statistical analysis of some parameters. The process of generating these
text files is called annotation, as the name of this subsection suggestis, and have
been dubbed TextGrids by Paul Boersma, the author of Praat.

This can be done in two ways, either manually, which requires some amount of
workforce at least semi-competent in phonetics, or automatically, which at least
theoretically requires nothing but computing power.

Manual annotation

Manual annotation requires a considerable amount of tedious and time-consuming
labour, which is typically provided by students of phonetics and/or linguistics.
Due to them being human, this typically requires some form of compensation, be
it academical or financial in nature.

Luckily, all recordings from the healthy corpus already came with manually
created TextGrids, so for the purposes of this thesis, nothing in particular had to
be done regarding annotation.

13



The MS-afflicted recordings, however, came with no TextGrids to accompany
them, which meant these had to be made by hand. Several students including
the author of this thesis were thus rallied to provide their services as annotators
for either a small amount of money, credits, or both.

These had originally been being made from scratch until it was discovered that
it was in fact practical to use automatically generated TextGrids as templates to
save time. As no difference in quality was found between the results of the
two approaches, both of these are considered to be manually annotated for the
purposes of this thesis.

All TextGrids used in the thesis were annotated in a consistent way, using ex-
plicit guidelines described in Fonetická segmentace hlásek. (Machač and Skarnitzl
[2010])

Similar files containing the base frequency (f 0) within given time windows
called PitchTiers of the recordings had to be created using Praat. Since it mea-
sures vocal fold pulses (the acoustic correlate of f 0) using autocorrelation, mean-
ing it correlates slices of the signal with itself. Because vocal folds often pulsate
irregularly (especially if the associated muscles are impaired in some way), this
leads to so-called octave jumps, which occur when the algorithm correlates the
slices not by period, or by half-period or double-period. These need to be cor-
rected by hand in a process that is surprisingly difficult to automate.

In the case of manually annotated data, this was simply done by whoever
annotated the recording. In the case of automatically annotated data, this was
not done at all.

Automatic annotation

As already mentioned, a tool exists that allows for the automatic creation of
TextGrids, called Prague Labeller. It was created by a doctoral student from
the Czech Technical University, as commissioned by the Institute of Phonetics.
Pollák et al. [2007]

It is a ML-based algorithm implemented in Perl and the HTK Toolbox (and
thus exhibiting certain peculiarities) that takes TextGrids with the orthographic
transcript of the recording as input, and outputs phonetically annotated Text-
Grids. This is why it was mentioned earlier that theoretically, this requires only
computing power – there is a non-zero amount of busywork involved with the
generation of these. However, all of this busywork is definitely automatable. This
point becomes important in subsection 3.3.1 on page 45.

It is critical to point that out in order for the tool to work properly, the
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orthographic transcript of the recording must exist. This is the main reason why
the potential MS detection tool would probably need recordings of the same text.

In the case of automatically annotated data, octave jump correction was not
performed at all.

1.3 Assumptions
In this section, all statistical and non-statistical assumptions that are required
for all of the conclusions presented by this thesis to be logically valid will be
presented.

The first assumption regularly relied on throughout this thesis is the presup-
position that given an extreme enough sample from a certain distribution under
a null hypothesis, the null hypothesis can be safely rejected. The metric used to
assess the extremeness of a sample will be the p value, with its arbitrary thresh-
old being 0.05, as convention dictates. Furthermore, no data in this thesis are
assumed to be normally distributed. The reasons for this decision are further
elaborated upon in chapter 3 on page 24.

Next, it is assumed that multiple sclerosis influences speech acoustically in a
way that can be reasonably modelled as linear. To be more exact, it is assumed
that the acoustic abnormalities associated with MS do not generally discontinu-
ously appear or disappear at any point as the disease develops, but rather appear
in a gradual way as the patient’s condition worsens and get more and more salient
along with the disease’s progress.

It is also assumed that the success rate and general performance of the ma-
chine learning models presented in subsections 3.1.2 and 3.2.1 on pages 39 and 40
respectively do not owe their success to random chance. This can be made arbi-
trarily improbable by repeated testing, but is impossible to completely rule out
using a finite amount of tests. Details on the methods used to mitigate this
possibility are to be in found in the aforementioned subsection of this thesis.

Regarding the data used in this work, the acoustical differences between the
two sets of recordings used are assumed to be made negligible by the parametriza-
tion methods described in chapter 2. These differences stem from the fact that
the recordings were made using different equipment in different acoustical condi-
tions. This presupposition mainly rests upon the fact that the parametrization
methods used in this thesis are robust against such differences.

It is also assumed that these models will be reasonably reliable in predict-
ing recordings of multiple sclerosis cases which are generally significantly less
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developed (and thus less acoustically abnormal) than the ones in the trainings
datasets. In other words, it is assumed that the model’s relatively high reliability
in predicting strongly progressed MS cases (if achieved) can be extrapolated to
reasonable reliability in predicting weakly progressed MS cases. This is by far
the weakest presupposition, but practicality dictates that it is logically unavoid-
able, since the entire point of these models is to catch multiple sclerosis cases
before they can be reasonably detected by other means. If these cases cannot be
detected by conventional means, then there is no way to reliably produce data
on them, and thus there is no way to train a model using them. Thus any such
model logically has to be trained on more developed cases than it is designed to
detect, at least in the case of detection paradigms similar to the one described in
subsection 3.3.1 on page 45.

Next, it is assumed that all individuals labelled as healthy do not suffer from
any neurological disorders that might interfere with statistical tests and ML mod-
els. This is assumed because none of these subjects reported any such difficulties.

Lastly, it is assumed that the acoustic speech parameters most affected by any
slowly progressing neurological disease will be the ones that are relatively difficult
to detect by (untrained) ear alone. This is because it can reasonably be assumed
that the human brain, and by extension the entire nervous system, continually
adapts to everything including neurological difficulties. As the functionality of
the nervous system slowly decays, the brain can be presumed to focus on trying
to maintain speech functions more relevant to communication at the expense of
those less relevant. It is critical to note that this assumption, unlike the others,
is not related to the validity of any of the conclusions presented in this work, but
is rather the driving force behind the choice of the presented parameters.
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2. Method
The method of how all data used in this thesis were evaluated and tested will
presented in this chapter for the purposes of reproducibility.

2.1 Hand-annotated data
The data used for this section of the thesis were obtained using TextGrids that
were manually annotated, as described in 1.2.3.

This means that a subset of the individuals from the afflicted corpus were
used. 16 recordings of individuals (13 females and 3 males) with MS were used
here, since those are the TextGrids that we had the time to annotate. All of
these were taken from the dataset where dysarthria was confirmed by a speech
therapist. The median of their age was 41 with a standard deviation of about 7.

By contrast, 145 individuals (110 females and 35 females) from the healthy
data were used. The ones left out from the larger dataset mentioned in 1.2.1 were
removed for two reasons:

• Some of the recordings were incomplete, corrupted or were technologically
unusable for other reasons,

• some males were removed so that the male-to-female ratios would be roughly
equal in both the MS and healthy datasets.

These individuals had a median age of 59 with a standard deviation of about
18.

What follows is a list of what methods were employed to objectively measure
the various hypothesized effects of multiple sclerosis on speech, as described in
1.1.1 on page 5.

2.1.1 Parameters mostly related to spasticity

The methods that have been used in this thesis to measure the effect of spastic
muscles on speech are described here. Brief descriptions of the computation
method and the meaning of the cumulative slope index (CSI) are also included.

Glottal stop rate

It was hypothesized in 1.1.1 that individuals with spastic muscles would have
more difficulty keeping control of the size of their glottis. Assuming that this
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would manifest as their closing or constricting the glottis when inappropriate,
instances of this happening were simply measured by counting the occurrences of
the glottal stop [P] and dividing them by the recording’s durations.

This rather simple and elegant measurement carries a significant drawback
by not being practical using automatic annotation, for reasons described in sec-
tion 3.2 on page 40.

Cumulative Slope Index of intensity

Similarly, spastic individuals can be presumed to have poor control of their
breathing muscles. Because spasticity, at least according to the ad-hoc defini-
tion presented in this thesis (see 1.1.1) involves both involuntary contraction
and rigidity, the effect on the way this can have on the amplitude development
throughout a given person’s recording can be quite diverse. The absolute value
of intensity across the whole recording is useless as a parameter, because mea-
sured sound intensity decreases with the square of the distance from the source
according to the inverse-square law described by the equation:

I ∝ 1
r2

where I is the measured sound intensity, r is the distance from the source, and
∝ denotes proportionality.

Because the r is squared, measured intensity is much more sensitive to dis-
tance from the source than the intensity of the source itself. Thus, if has their
microphone further away from their face than another subject, the difference in
measured intensity between the two subjects has much more to do with that
and much less to do with the behaviour of their breathing muscles or anything
relevant.

A much better choice is, then, to calculate the net change of the measured
intensity across the recording, as spastic activity in muscles presumably intro-
duces spikes to the intensity contour, while stiffness could lead to an unusually
flat intensity curve. CSI is a good formula to apply in these cases. It is the sum
of the absolute values of differences between each point:

CSI =
N−1∑︂

n

|x[n + 1] − n[1]]|

where x is the vector of values (be it intensity at certain points in time or
something else), n represents the index of a certain value in that vector and N is
the length of vector x, as introduced by Voĺın et al. [2017].
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Because the number of syllables is constant (or should be in unaffected speech),
whenever CSI will be used an normalized in this thesis, it will be normalized by
the duration of the recording. CSI was implemented in R using the following
code:

c s i <− function ( x ) {
sum( abs ( d i f f ( x ) ) )

}

Average unvoiced stop duration

As already mentioned, MS patients often have difficulty performing voluntary
antagonistic movements in quick succession.

Prime candidates for measuring this phenomenon are stop consonants, because
they require a full oral aperture to be made and then quickly reopened (see 1.1.1
on page 7, which is a good example of oral diadochokinesis.

To measure the effect of MS on this, the durations of all detected unvoiced stop
consonants were measured and the mean of those was taken for each individual.
The advantage of the mean in this case is its sensitivity to outliers; this should
properly capture a stronger statistical tendency to overextend the timing of oral
apertures in individuals with MS, if it exists.

2.1.2 Parameters mostly related to fatigue

The methods that have been used in this thesis to measure the effect of various
kinds of fatigue on speech are described here. Recording duration is somewhat
arbitrarily included here, as it has been deemed that duration the relationship
between it and fatigue is the most obvious of the three symptom clusters.

Please note that none of these parameters need take larger values for affected
indiviuals. Fatigue may result in frustration in subjects, leading to hastiness.

Silence percentage

It can be assumed that speakers who feel tired may try and find moments of
rest whenever possible. Since not speaking is less tiring on just about every level
than speaking, it stands to reason that fatigued individuals will pause more often,
make longer pauses, or both.

All three of these possibilities can be measured by taking the sum of silent
seconds in the recording and dividing them by the duration of the recording,
resulting in the percentage of the recording which constitutes silence.
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Despite the fact that all recordings have been trimmed, the first and last
silent segment of each recording (before and after each speaker reads their text
out loud) is not included in this metric.

Vowel percentage

Similarly to the previous parameter, vowels can present a short moment of artic-
ulatory respite for a speaker, since no precise movements have to be made and
vowels are generally less straining. For this reason, this parameter might also
be influenced by patients who have problems with spasticity. As mentioned in
chapter 1 on 4, precisely mapping symptom clusters to individuals measurements
does not fall into the scope of this thesis.

Analogically, the total time the speaker spends producing vowels will be added
up and divided by the recording duration.

Recording duration

Fatigued speakers may take longer to read a text out loud. This is for a variety
of reasons – they might spend more time being silent or producing vowels, as
described earlier, or they might simply slow down their articulation rate, spend
more time fiddling around, they might have difficulty reading certain words if their
vision is affected, or perhaps problems processing the unfamiliar name Minda and
so on.

For this reason, this is a seemingly simple, but in reality deep and complex
parameter.

CSI of f 0

The principle here is described here is the formula described in 2.1.1. The purpose
of this is to measure the intonation range of the individual across the whole
recording, since it can be assumed that fatigue may distract the reader from
intonating properly, focusing more on (in their view) important aspects of the
exercise, such as not misreading words. Unlike in the case of intensity, base
frequency (or f 0) absolute values are meaningful in and of themselves, though we
are still more interested in the rate of change across the whole recording.

The CSI of f 0 the whole recording is recorded for each individual, having been
converted from Hertz to semitones to account for differences between males and
females.
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Quantile difference of f 0

What we are measuring with the quantile difference is similar to the Cumulative
Slope Index of f 0. The reason for this seemingly reduntant measurement is the
fact that CSI measures total rate of change across time, while quantile difference
measures the span of all values.

The 10th quantile of the entire PitchTier is taken and subtracted from the
90th quantile after the PitchTier is converted from Hertz to semitones.

2.1.3 Parameters mostly related to ataxia

The methods that have been used to measure the effect of various kinds of ataxia
on speech are described here. Speech is an incredibly motorically complex ac-
tivity and thus atactic symptoms should presumably reliably produce acoustic
phenomena.

Formant value standard deviation

Formants can be described as local maxima in the spectrum of a speech signal
in a given interval. The first two, first formant (f 1) and second formant (f 2),
correlate to jaw angle and tongue blade position respectively (Skarnitzl and Voĺın
[2012]), while third formant (f 3) correlates mainly with vocal fold laxness and
tightness, which makes f 3 also relevant to spasticity. (Sawyer [2013]) However,
f 3 may sometimes also correlate with tongue tip positioning in certain contexts.
(Monahan and Idsardi [2010])

Because atactic individuals presumably exhibit worsened with speech organ
precision, it can be presumed that the range that their formant values take across
all vowels will be larger than in healthy subjects. Thus, the standard deviations
of f 1, f 2 and f 3 will be taken, with the express presupposition that these value
will be larger for affected individuals.

Sibilant spectral centroid standard deviation

Sibilants are valuable for articulatory precision measurement because they present
a challenging sound to produce. To produce a sibilant, one must create a groove
in their tongue while maintaining proper tongue positioning to produce a sharp
sound. If either of these is incorrect, a sound of the incorrect perceptual bright-
ness for the given language is produced. (Reidy [2016]) The acoustic correlate of
brightness (and thus tongue positioning and groove depth) is called the spectral
centroid and is given by the following formula:
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Centroid =
∑︁N−1

n=0 f [n]x[n]]∑︁N−1
n=0 x[1]]

where x[n] is the magnitude of bin number n, and f [n] represents the central
frequency of the spectral bin, as described by Grey and Gordon [1978].

Praat was not used, the formula was instead implemented in R and was per-
formed on the raw .wav recordings using the tuneR package using the following
code:

r f f t <− function ( x ) {
spec <− f f t ( x )
real spec <− spec [ 1 : ( round ( ( length ( spektrum )/2))+1) ]
return ( real spec )

}

f f t f r e q real <− function (n , f s ) {
vec <− 0 : length (n)
vec <− vec∗ ( f s /length (n ) )
return ( vec [ 1 : ( round ( ( length (n)/ 2) )+1) ] )

}

s p e k t r a l n i t e z i s t e <− function (x , f s ) {
magnitudes <− abs ( r f f t ( x ) )
length <− length ( x )
f r e q s <− f f t f r e q real (x , f s )
return (sum( magnitudes∗ f r e q s ) / sum( magnitudes ) )

}

where rfft() is a function that extracts the positive frequency terms of a given
spectrum, fft freq real() determines the central frequencies of its spectral bins and
spektralni teziste() is simply an implementation of the aforementioned formula.

Because of the assumption in section 1.3 on page 15 regarding linguistically
relevant phenomena, it can be assumed that the central value of the sibilants
remains unchanged in afflicted subjects, otherwise they would have a perceptible
lisp (or similar), which they do not, at least according to a random informal listen-
ing test performed by the author. Thus, similarly to the previous measurement
method, the standard deviation of the spectral centroids of their [s] consonants
was taken.
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CSI of vowel duration

Atactic individuals may have trouble keeping rhythm in speech, because proper
rhythm requires a complex interplay of speech organs such as breathing muscles.
Apart from that, as already described in 2.1.2, fatigue may also contribute to
abnormal rhythm.

To measure this, CSI was simply applied to individual vowel durations across
the individuals’ recordings.
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3. Results and discussion
In this section, statistical findings of all the aforementioned measurements will
be described and discussed as to their potential scientific impact and practical
application.

3.1 Results
All hypotheses were using the Kolmogor-Smirnov test due to the fact normality
was not proved for the afflicted dataset in any parameter. This was tested visually
using a Q-Q plot of the dataset and a randomly generated normal distribution of
the same parameters and the one-sample Kolmogorov-Smirnoff test.

Unless stated otherwise, the two-tailed alternative hypothesis was used. This
was because it is quite difficult to predict how exactly the disease will affect a
certain parameter, as stated numerous times in chapter 2.

Please note that in figures, “MS” stands for “multiple sclerosis” and “H”
stands for “healthy”.

3.1.1 Manually annotated data

The reader may notice quite a significant age disparity between the studied group
and the healthy control group, as described in section 2.1. There had originally
been an intention to balance things out by removing some of the older individuals
from the control group. However, this disparity was later deemed to serve as a
failsafe to make sure that the physiologically more aged voice of older outliers did
not skew the statistical results in favour of the hypotheses proposed here.

Recording duration

Recording duration was found to be nearly statistically significant under the
alternative hypothesis that the cumulative distribution function of the afflicted
individuals lies below that of the healthy ones, with a p value = 0.056. The
reasoning for the decision is the simple assumption that afflicted individuals take
longer to read their text for various reasons, as described in chapter 2. The
turning point of this measurements might be the aforementioned age disparity.

As we can see in Figure 3.1, the medians do not differ very much at all.
It is however clear that there are many more outliers with longer recordings,
resulting in a much more skewed distribution on part of the afflicted. It is thus
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Figure 3.1: Boxplot of the recording durations of afflicted and healthy individuals.

not the difference in medians the carries the near significance, but rather the
entire skewness of the distribution.

Silence percentage

Silence duration was found to be moderately significant with a p value = 0.02
under the two-sided alternative hypothesis.

As seen in Figure 3.2, this significance comes from two main factors. One, the
standard deviation of the MS is larger, and two, the group contains two massive
outliers, with one of whom spends nearly half of the reading being silent.

Vowel percentage

Vowel percentage was not found significant at all with a p value = 0.74 under
the two-sided alternative hypothesis. This is surprising due to the fact that
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Figure 3.2: Boxplot of the silence percentages of afflicted and healthy individuals.
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Figure 3.3: Boxplot of the vowel percentages of afflicted and healthy individuals.

informally, vowel percentage has recently become a sort of joke among researchers
at the Institute of Phonetics for being typically incredibly reliable in predicting
speech difficulties of essentially any kind ranging from voice aging to inebriation.

A brief look at Figure 3.3 reveals that the respective boxplots look very similar,
thus the high p value.

CSI of vowel duration

CSI of vowel duration, a measurement of rhythm, was found to be relatively
strongly significant under the two-sided alternative hypothesis with a p value =
0.005.

Looking at Figure 3.4, it is fairly obvious as to why this is. The distributions
have exhibit a significant difference in their medians, along with a substantial
difference in standard deviation. This suggests that not only do vowel durations
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Figure 3.4: Boxplot of the CSIs of vowel durations of afflicted and healthy indi-
viduals.

fluctuate more in afflicted individuals, but also that these fluctuations vary indi-
vidually. Not uninteresting are the several outliers in the top part of the healthy
group – it illustrates the high individual variability that we see in phonetics even
among healthy individuals.

CSI of f 0

CSI of f 0 normalized by recording duration was not found to be significant under
the two-sided hypothesis with a p value = 0.2284. This is surprising, since Rusz
et al. [2018] has found monopitch to be one of the manifestations of MS in speech.

As Figure 3.5 shows, we can assess that the two boxplots look fairly similar,
though a difference can be seen. What sets the figure apart from the other
more is the relative symmetricity of the MS group, though some skewness can be
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Figure 3.5: Boxplot of the CSIs of afflicted and healthy individuals.

recognized (this may be attributed to small sample size, though). Thus, it can
be assumed that this parameter is of non-negligible importance for the detection
of MS

Glottal stop rate

Glottal stop rate was found to be slightly significant under the two-sided hypoth-
esis with a p value = 0.038. A caveat has to be expressed here – some of the
MS group annotators were expressly asked to specifically pay attention to glottal
stops, so the amount may be overestimated in favour of the afflicted glottalizing.
Nothing of the sort was explicitly asked of the annotators of the healthy dataset,
although they were, of course, tasked to annotate glottal stops as well – they just
were not told to pay special attention to them. A short informal check revealed
no sloppiness regarding glottal stop annotation in the healthy TextGrids, but this
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Figure 3.6: Boxplot of glottal stops per second as realized by afflicted and healthy
individuals.

was not investigated thoroughly.
Please refer to Figure 3.6 to reveal a surprising fact – contrary to the hypoth-

esis mentioned in chapter 2, on average, MS patients do not glottalize any less
– they just have a much larger standard deviation, suggesting that they have as
much trouble holding the glottis closed when appropriate as they have holding it
open.

Quantile difference of f 0

The quantile difference of f 0 was found to be slightly significant under the two-
sided hypothesis with a p value of 0.02. This is surprising, as this measurement
is close related to 3.1.1. This means that while the relative rate of change of f 0

is generally similar in both healthy and afflicted speakers, their intonation span
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Figure 3.7: Boxplot of quantile differences of f0 of afflicted and healthy individ-
uals.

differs significantly.
As posited in Rusz et al. [2018], we can see from Figure 3.7 that MS speakers

do indeed exhibit monopitch, as basically every parameter of their sample is
smaller than those of healthy speakers.

Average unvoiced stop duration

Average unvoiced stop duration exhibits strong significance under the two-sided
hypothesis: p value = 0.005.

Visible from Figure 3.8 is the general tendency of MS patients to drag out
their unvoiced stops in accordance with the hypothesis posited in subsection 2.1.1.
The outliers visible in the upper part of the healthy group are important – they
again highlight the importance of using a large amount of parameters when au-
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Figure 3.8: Boxplot of average unvoiced stop durations of afflicted and healthy
individuals.

tomatically detecting MS.

CSI of intensity

CSI of intensity has failed to yield a significant result under the two-sided hy-
pothesis with a p value of 0.38.

Despite this, there are two clear presumably spastic (according to the hypoth-
esis in subsection 2.1.1 on page 17) inviduals in the top part of the MS group
graph in Figure 3.9. These individuals illustrate the need to have diverse param-
eters in this ML model even when they are not significant, because they can serve
as an auxiliary parameters for discrimination.
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Figure 3.9: Boxplot of the CSI of the intensity of afflicted and healthy individuals.
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Figure 3.10: Boxplot of the CSI of the standard deviation of the spectral centroid
of [s] of afflicted and healthy individuals.

Sibilant spectral centroid standard deviation

The standard deviation of the spectral centroid of /s/ realizations turned out to
be strongly significant with a p value of 0.0003 under the two-sided hypothesis.
This is surprisingly significant, despite the fact that both spastic and atactic
individuals can be presumed to struggle with sibilants due to their difficulty of
pronunciation.

Not following the prediction in subsection 2.1.1, the afflicted individuals seem
to have a smaller median than the healthy ones according to Figure 3.10. This
seems to suggest that the [s] phone is much more influenced by spasticity, because
the lower median suggests a smaller range of motion of the tongue.
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Figure 3.11: Boxplot of the standard deviation of f 1 across all vowels of afflicted
and healthy individuals.

Formant standard deviations

The standard deviations of the of formants f 1, f 2 and f 3 of all vowels combined
turned out to be statistically significant, with f 1 being extremely significant with
a p value of 1.4 × 10−11, f 2 less so with a p value of 0.01 and f 3 being also
extremely significant with a p value of 9.9 × 10−8.

All of these can be attributed to impaired movement of the tongue and jaw.
Moving the jaw especially requires a relatively high amount of kinetic energy (due
to the organ’s mass), which is difficult in afflicted individuals to do, which can
clearly be seen in how the two groups almost do not overlap at all in Figure 3.11.

Contrary to that, it seems that the tongue is easier to move in comparison,
which makes sense due to its smaller mass and more ease of movement. Despite
this, a significant difference can be seen in the formant value standard deviation
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Figure 3.12: Boxplot of the standard deviation of f 2 across all vowels of afflicted
and healthy individuals.

of f 2 in both groups in Figure 3.12.
Finally, the MS group seems to have the control of their vocal folds impaired

both ways, meaning that their glottis tends to be too open or closed at inappro-
priate times. This is obvious from Figure 3.13, where the standard deviation of
the MS is much smaller and thus suggests afflicted individuals have a harder time
keeping their glottis under control.

Overall, it has turned out that even though these results violate the presuppo-
sition posited in subsection 2.1.3 on page 21, they are still incredibly informative
and useful.
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Figure 3.13: Boxplot of the standard deviation of f 3 across all vowels of afflicted
and healthy individuals.
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Parameter p value hypothesis

Recording duration 0.056 Less
Silence percentage 0.02 Two-sided
Vowel percentage 0.74 Two-sided
CSI of vowel duration 0.005 Two-sided
CSI of f 0 0.2284 Two-sided
Glottal stop rate 0.038 Two-sided
Quantile difference of f 0 0.02 Two-sided
Average unvoiced stop duration 0.005 Two-sided
CSI of intensity 0.38 Two-sided
Sibilant spectral centroid standard deviation 0.0003 Two-sided
Standard deviation of f 1 1.4 × 10−11 Two-sided
Standard deviation of f 2 0.01 Two-sided
Standard deviation of f 3 9.9 × 10−8 Two-sided

Table 3.1: A table of the p values calculated from parameters measured using
manual labelling.

Summary and figures

For a concise summary of the measurements of parameters extracted using manual
annotation of data, please refer to Table 3.1, where all the parameters, p values
and hypotheses used are respectively listed.
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3.1.2 Machine learning model

Overall, significant results were mostly found. There is an important caveat here,
however – the fact that some of the results were not statistically significant does
not mean that they are irrelevant, as already stated.

Because MS is such a symptomatologically complex disease, it was decided
that a neural network model would be trained for the manual annotation datasets
as well, as such ML models are good at capturing complex parameters. If it is
possible to train such a model using these parameters, we can assert that they
capture the MS in a good way as a whole. In this case, it can be assumed that
the whole is more than just a sum of its parts.

Because of this, it has been decided that a ML model will be trained for the
manual dataset as well, despite the fact that this is presumably not practically
applicable. Such a model would need someone competent to laboriously annotate
TextGrids and correct PitchTiers for an estimation to be made, which would be
expensive and impractical.

Instead, this model will in this case serve as a benchmark for how all the pa-
rameters described can work in conjunction to reliably determine multiple scle-
rosis on a theoretical level.

In other words, this model will be used to test the hypothesis that MS, as
a disease, creates a characteristic acoustic fingerprint, and that by assessing the
parameters put forth in this thesis, this fingerprint has been captured reasonably
well. This capturing ability of the parameters can be tested holistically as consis-
tent performance of a ML model trained using these paremeters. As mentioned in
section 1.3 on page 15, the validity of this claim can only be assured by repeated
training and testing of the model.

A monotone multi-layer perceptron was initiated using the caret package of
R as a binary discriminator between healthy and afflicted individuals. It was
mainly left with the default settings, the only exceptions being that all data
were decorrelated and standardized before being fed into the network and the
bootstrapping train control technique was specified. The data was first split into
a training and testing set. The entirety of the training and bootstrapping process
took place over the training set and the testing set was only used as the last
to verify that the model had not overtrained itself. In other words, the model’s
accuracy was measured only on data the model had never seen.

This entire process was repeated 5 times and the model yielded a median
accuracy of 93%, with median Cohen’s kappa (which we might call effective ac-
curacy) being 0.63. This metric is normalized for a situation when a model de-
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cides completely randomly, yet has a non-zero success rate due to random chance.
Generally, this can be assessed as more than satisfactory, as according to Landis
and Koch [1977], any result over 0.6 is substantial. The reader should be re-
minded here that the MS patients in this particular dataset all had perceptually
detectable dysarthria.

3.2 Automatically annotated data
A dataset of 250 individuals was used, of that 66 MS-afflicted ones. Unlike in
the case of manually annotated data, the automatically annotated parameters
are much less individually meaningful, because they are mostly heavily biased by
the shortcomings of the automatic annotation. For example, the algorithm tends
to assume that any silence preceding an unvoiced stop is part of the unvoiced
stop. They make up for this by being much more telling in whether or not an
automatic detection tool is feasible. For this reason, only Table 3.2 of all p values
is included. It is clear that those parameters that are unburduned by the bias
of annotation tend to carry over their significance. These are CSI of intensity,
Quantile difference of f 0 and Recording duration.

Please note that one of the parameters, glottal stop rate, has been excluded.
The reasoning for this decision is the simple fact that the Prague Labeller tool
does not annotate glottal stops. Even if it did, it would presumably not be very
reliable anyway – it is not very good at detecting elisions and tends to annotate
phenomena that are not present in the speech signal if it expects them being
there based on the input transcription.

3.2.1 Machine learning model

Unlike previously, this time the Python module scikit-learn was used to con-
struct a monotone multi-layer perceptron binary classification model using the
class MLPClassifier. Its performance was tested much more thoroughly. The
maximum epoch amount (how many times the entire dataset is run through dur-
ing training) was set to 10000 cycles and the learning rate was set to 0.001. The
data were normalized before being fed in but were not decorrelated. All other
settings were left in their default state.

A similar train/test split was made as in the previous model, but this time,
the entire cycle was carried out 50 times and the performance of the model was
measured therefrom. The model had a median accuracy of 85% and a Cohen’s
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Parameter p value hypothesis

Recording duration 0.009 Two-sided
Silence percentage 0.11 Two-sided
Vowel percentage 0.72 Two-sided
CSI of vowel duration 0.0002 Two-sided
CSI of f 0 0.13 Two-sided
Quantile difference of f 0 0.004 Two-sided
Average unvoiced stop duration 0.034 Two-sided
CSI of intensity 0.09625 Two-sided
Sibilant spectral centroid standard deviation 0.35 Two-sided
Standard deviation of f 1 2.5 × 10−5 Two-sided
Standard deviation of f 2 1.3 × 10−5 Two-sided
Standard deviation of f 3 0.79 Two-sided

Table 3.2: A table of the p values calculated from parameters measured using
automatic labelling.

kappa of 0.5. This is by Landis and Koch [1977] to be interpreted as a moderate
success rate.

3.3 Discussion
It has been proven beyond reasonable doubt that MS leaves a specific, objectively
measurable acoustic fingerprint on read speech. It is a much deeper and more
complicated question whether or not this fingerprint is substantial enough to
make a detection paradigm based on its automatic detection feasible.

Looking at the statistics of the measured recordings, we can see that some
hypotheses originally posited in chapter 1 were false. It seems that most of
the differences between the two datasets boil down to overall reduced muscle
mobility. This does not counterpoint the usefulness or validity of these findings,
since two-sided hypotheses were used in the Kolmogorov-Smirnoff statistical tests
as a failsafe mechanism for the unpredictability of MS even at the cost of smaller
decision power.

It seems from the data, specifically the significance of pause percentage and
vowel percentage, but the non-significance of vowel percentage that afflicted indi-
viduals generally have a tendency to speak in short laborious bursts with frequent
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articulatory mistakes.1

Poor glottis control due to affected muscle coordination is also obvious, which
is backed by the massive significance of the standard deviation of f 3. Similar to
this is worsened jaw coordination, evident from the standard deviation of f 1.

Similarly, MS speakers also seem to not use the prosodic and intonational
potential of their language, because their intensity and f 0 patterns seem to be
consistently quite flat, as seen in figures 3.9 and 3.7.

As for the total predictive power of all parameters combined, the first ma-
chine learning model speaks for itself, with an unbalanced accuracy of 93% and
a Cohen’s kappa of 0.63. This is even with the fact that the model did not train
using the age parameter, which would normally be required to account for natural
aging processes. The model’s practicality is another matter entirely, though.

The constraint of manually annotating data before parametrization renders it
practically unusable, because there is no way to practically implement a paradigm
that contains annotators labelling data in a cost- and time-efficient way. The
negligible operating costs (both financial and temporal) are in fact the number
one advantage of such an algorithm, because it is in fact what complements the
incredibly high expenses of neurologists and MRI machines.

Thus the other model, the purely automatic one, will be now discussed in-
depth. Its main advantage is of course its practically non-existent operating costs,
which would presumably boil down to some non-zero but nearly negligible amount
of electricity, comparable to a mobile phone.

Its investment costs would depend on its practical implementation and range
from zero in the form of a free smartphone app to roughly the price of a new
laptop if implemented as a standalone device. This will be further elaborated
upon in subsection 3.3.1.

With an accuracy of 85% and a Cohen’s kappa of 0.5, the model seems to
be fairly good as far as such models go in general. However, this is way below
the performance necessary for practical implementation, because during the per-
formed cycles of training, validation and testing, false negative and false positive
errors appeared with roughly equal frequency. This model would thus terrify
healthy people into visiting neurologists for no reason while simultaneusly some-
times falsely reassuring people with possible neurological symptoms.

The good news is that chances are in favour of the presupposition that the
model’s exhibited performance is largely suboptimal when compared to its po-

1This observation is further supported by informal listenings performed by the author. These
are not part of this thesis per se.
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tential. The main reasoning points for this assumption are presented as follow,
in presumed order of importance:

• The dataset is very small, which means the model will not generalize very
well. 250 observations might even be the bare minimum to construct a semi-
workable model with real-life data like this. Obtaining more recordings
would presumably improve the model’s performance significantly.

• The parametes used in this thesis constitute little more than a pilot set
based mostly on theoretical hypotheses with some inspiration from Rusz’s
research. Many more useful parameters can surely be found, perhaps based
on comparing different parts of the recording to one another.

• The recordings that were available were not created with this particular
application in mind. Thus, only recordings of subjects reading a fixed text
were analyzed. No extra exercises like syllable repetition, prolonged vowel
production, spontaneous dialogue or elicited monologuing were thus used.

• The author of this thesis is a phoneticist, not a speech technologist. While
this offers an advantage in the form of a strong intuition regarding the
linguistic relevance of certain phenomena and thus the presumed human
behaviour in relation to them, it presents a drawback that the signal pro-
cessing techniques used for parameterization in this thesis are rather basic.

• The author of this thesis is a phoneticist, not a data scientist, statistician
or mathematician. This means the model selection and hyperparameter
tuning process can be described as crude at best. Related to this is the fact
that all models exhibited a 100% success rate when tested on the entire
training set on each iteration, suggesting some amount of overfitting.

• Due to the scientific nature of this thesis, the data have been overly para-
metrized quite heavily. For example, it would probably be beneficial to have
separate parameters for each realization of the /s/ phoneme as opposed to
just taking the standard deviation of all of them, since it would allow the
model to fit to deeper patterns present in the data.

• Binary classification might not be the optimal solution. It may be more
practical to use a regression algorithm that outputs an estimate expanded
status disability scale (EDSS) score, which is a kind of numeric representa-
tion of the patient’s disability due to MS.
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There are some caveats keep in mind, however. While the model’s accuracy
seems promising, there are some reasons to think they might be somewhat overex-
aggerated. These are again presented in the order of their presumed importance.

• There is a slight bias in the dataset in that about half of the MS patients
reliably do have hearable dysarthria, while in the other half the ratio is
unknown. This is mitigated by the fact that what is mostly measured
here are parameters that are difficult to detect by ear, such as standard
deviations of long-term trends.

• The dataset has an age bias. It was deemed to be necessary to include the
subject age parameter for model training and assessment, because otherwise
the model would not be able to map natural aging processes to the ages of
the subjects, reducing its accuracy by an unrealistic amount – since in any
practical setting, the age of any subject is known a priori. This might have
skewed the results somewhat.

• Despite the fact that all parameters used in this thesis are robust against
noise, it cannot be mindlessly assumed they are not influenced by it at all.
Since the recordings were recorded in different rooms, there is a chance that
the differing noise levels and acoustical setting skewed the results in favour
of a favourable outcome.

• The ratio of healthy and afflicted individuals in the dataset is not the same
as in the general population. That is, the model would probably produce
a large amount of false positives upon being deployed on a truly random
sample of individuals.2

Since there is no way to address any of these as of now, further research
into this are is necessary. While this statement is true by default (so much so
that its negation approaches absurdity) and a staple of the conclusion of every
thesis discussion, the liberty has been taken to rephrase it slightly to make it less
obvious and more informative:

Further research is necessary if the lives of undiagnosed MS patients are to be
improved.

The next part describes how this might be achieved.
2Assuming that the set of people who would end up being assessed in a practical scenario

by the model would truly be a random sample, which in turn might not be true. People who
suspect neurological symptoms would presumably have a stronger tendency to submit to the
test, skewing the numbers.
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3.3.1 Detection paradigm proposition

Assuming a model exhbiting sufficient accuracy is constructed, the question of
its practical implementation arises.

It is important to remind ourselves that no such model can probably ever re-
place a proper neurological examination performed by a specialist physician using
an MRI machine and a spinal tap, as pointed in out in chapter 1. However, such
a model can be implemented as a catch-early mechanism for patients exhibiting
subclinical symptoms of MRI to refer suspectedly dysarthric individuals to a spe-
cialist. As is mentioned in the very preface of this thesis, beginning MS therapy
as early as possible is crucial in MS. So how does one apply this model to catch
MS cases earlier?

One approach would be to create a smartphone app, which in the author’s
personal opinion has several significant drawbacks. These are listed here in no
particular order:

• A smartphone app severely limits the potential for any financial revenue
stemming from such a project, making it much more difficult to acquire
funding;

• With a smartphone, one has very limited control over the acoustical prop-
erties of the measuring device, specifically its microphone, which a) may be
of low quality and b) varies significantly smartphone to smartphone;

• Test subjects may find apps in general to be untrustworthy and may refrain
from trusting their output;

• There is no one available apart from the app test subjects themselves to
properly interpret the output of the app, which in some implementations
may be more complicated than a simple yes/no answer;

• There is no one to assure that the test subject is doing everything properly.

All of these drawbacks can be solved in one fell swoop by implementing the
model not as an app, but by a specialized physical device intended for use in a
practical physician’s office. This would be physically and conceptually similar
to a device called an ESR Sed Screener used to measure erythrocyte sedimenta-
tion. (Bio-One) Such a device would essentially be just a voice recorder (possibly
equipped with a condenser microphone) with a small attached computer with the
model and an interface loaded in, which would automatically analyze acoustic

45



input similarly to the aforementioned app. A small speaker can also be included,
should it be necessary for the speaker to imitate a pre-recorded task.

Such a device is much more attractive to potential investors than an app
because there is a clear potential buyer and thus source of revenue – specifically,
physicians’ offices looking to improve their services. In an app, this is much less
obvious. Since it is a physical object rather than a piece of sotware, a non-zero
price is always justified, offering the opportunity for a profit margin, thus making
the project interesting to investors.

An app can of course be offered for money, but then it might get used only
sporadically, because people presumably rarely pay money for an app that they
plan on using once. Additionally, people suspecting that they might have debil-
itating disease may tend to put off the decision to find out if they have one. A
price tag on the app may stimulate this behaviour further, defeating the origi-
nal purpose of the app. An app can also be offered for free, but then there is
little space for financial revenue, placing the entire project in danger of being
underfunded and thus not reaching its full potential or not being realized at all.

A physical device also gives the manufacturer full control over the quality of
the measuring device, specifically the microphone, while also (and this is nothing
but the author’s conjecture) feeling much more trustworthy to potential patients.
This effect is strengthened by the device’s placements in a physician’s office, who
can also be used to interpret the output of the physical device should it be more
complex than just a recommendation to see a neurologist.

If then during check-up, a patient mentions difficulties that could potentially
be caused by MS, has a history of neurological diseases in the family, is in some
other way at a high risk of developing the disease or simply wishes to check if
everything is alright, the physician then assesses the patient’s eligibility to take
the test.

Non-native Czech speakers, for example, would have to be excluded (at least
until such time as similar models are implemented for their particular language),
as would patients with already existing speech disorders, because this could very
easily skew the results.

Next, the patient is guided through the entire testing process, which will
probably include more exercises than the ones presented in this thesis. The
device automatically outputs a result, which is then interpreted by the physician
and the patient either is or is not referred to a neurologist by the physician. If
the results look severe, the device’s output can be used to prioritize the patient
in question so that they get treatment as soon as possible.
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Similarly, the device can be used to perform screening tests in schools, for ex-
ample, because it is in young adults that the disease typically develops. (Murray
[2006]) A physician or other competent person would visit a school, taking record-
ings of individuals who wish to find out if they may be developing MS. Since the
test would take no more than a few minutes, individuals with suspected dysarthria
could then be referred to a specialist almost immediately.

Implementing the model as a piece of software intended for use on personal
computers that physicians have in their offices is another option that is in between
the app/dedicated device question. It has its own limitations in that physicians
would be required to buy specific recording equipment, possibly having to set it
up, which a) lowers the possible revenue potential of the project by decreasing
the profit margin, making the project less attractive to investors, and b) making
matters much more complicated for the physicians, discouraging them from using
it.

3.3.2 Comparison with previous research

This thesis bears some amount resemblance to some previous works, be it by
topic, method of study or scope.

The oldest work this thesis can be compared to is Merson and Rolnick [1998],
who used perceptual analysis to lay the ground for following research. Because
his parameters were perceptual, it obviously follows that it was not possible to
construct a working automatic detection model. This was not the goal of the
study, however. The purpose, unlike that of this thesis, was to map general speech
and language impediments found in MS patients for mainly for the purposes of
direct therapy. The research was not limited to strictly phonetic phenomena and
included elaborations on cognitive defects as they manifest linguistically.

Next, worth mentioning is definitely Rusz et al. [2019], where the goal was to
produce a mapping the set various dysarthric manifestations of MS onto parts of
the brain affected by the disease’s lesions. This study likewise does not attempt
to predict MS.

All of these studies are similar to this thesis in their topic, but differ in that
their general purpose of attempting to expand the knowledge of how MS influences
speech, not to assess the overall predictive power of the parameters associated
with the MS vocal fingerprint as a whole, extending that to the applicability of
these findings to a possible detection device.

A similar study that does attempt to do this is Rusz et al. [2018]. In it,
the authors use monopitch and articulatory decay to reach an accuracy 78%
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in discriminating healthy speakers from asymptomatic MS speakers, despite the
fact that they were only able to detect dysarthria in 56% of all MS speakers.
This study used three speech tasks, as opposed to this thesis measuring one,
and measured a larger amount of parameters. The study unfortunately does not
mention Cohen’s kappa or any other metric of the model apart from its raw
accuracy, which makes comparison with the model in this thesis impossible. By
raw accuracy, the model in this thesis performs slightly better (+7%), but this
number is unreliable in unbalanced datasets and the model presented in Rusz
et al. [2018] might actually still be better.

That said, presumably the most successful model would presumably be con-
structed by combining the approaches used in both works. Further research is
thus necessary.
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Conclusion
This thesis has shown that MS conclusively does create a robust acoustic finger-
print that can be objectively measured and evaluated and which furthermore has
good predictive value. Aside from that, there is a high chance that these acous-
tic characteristics can be used to construct a physical device which can then be
deployed as early warning mechanisms either in practical physicians’ offices, or
as bulk screening tests in schools.

The thesis combined data extracted from manually annotated recordings of
healthy and afflicted individuals reading a standardized text with data extracted
from automatically annotated recordings. The former had the advantage of being
much more accurate and interpretable per se, while the second approach had
the advantage of more closely modelling a practical implementation while also
working with more data overall.

13 acoustic parameters variously relating to spasticity, fatigue and ataxia were
measured on the smaller manually annotated dataset. Of these, 9 were found to
be statistically significant when comparing the afflicted and control groups with
Kolmogorov-Smirnov tests. A multi-layer perceptron model implemented in R’s
caret library was employed to try and assess the ability of these parameters to
discriminate between the two groups, using separate training and testing datasets.
The model had an accuracy of 93% with Cohen’s kappa (a measure of model
accuracy adjusted for random successful guesses) of 0.63, which indicates that
the parameters as a set are robust and have high minimum theoretical predictive
power.

To extended this to a more practical scenario, a larger dataset was used,
this time annotated automatically using Praat and the Prague Labeller tool. 12
parameters were used this time, of which 7 were found to be significant. A similar
model was employed using Python’s scikit library, with an accuracy of 85% and
a Cohen’s kappa of roughly 0.5 after repeated testing using split training/testing
datasets. This can be interpreted as the automatic parameters having a moderate
minimum practical predictive power.

Since it can be assumed that a much better success rate can be achieved by
using a better tuned model with a larger dataset, along with more parameters
and exercises, the question of practical application then arises. In the author’s
opinion, an optimal way to do this would be to create a dedicated physical device
intended for use by practical physicians either in their offices or by performing
screening tests in schools. Those individuals who would get a positive result
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would get referred to a professional, thus potentially increasing their quality of
life significantly due to early therapy, which is of utmost importance in MS.

Further research is necessary to confirm that more accurate models are in-
deed possible to create, but if that is the case, there is nothing stopping the
development of a practical solution.
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Horák, Ivan Kopeček, and Karel Pala, editors, Text, Speech, and Dialogue:
19th International Conference, TSD 2016, Brno, Czech Republic, September
12-16, 2016, Proceedings, pages 367–374, Cham, 2016. Springer International
Publishing. ISBN 978-3-319-45510-5. doi: 10.1007/978-3-319-45510-5 42. URL
http://dx.doi.org/10.1007/978-3-319-45510-5_42.

J. E. Freal, G. H. Kraft, and J. K. Coryell. Symptomatic fatigue in multiple
sclerosis. Archives of physical medicine and rehabilitation, 65(3):135–138, 1984.

Fiona J. Fitz Gerald, Bruce E. Murdoch, and Helen J. Chenery. Multiple
Sclerosis: Associated Speech and Language Disorders. Australian Journal
of Human Communication Disorders, 15(2):15–35, December 1987. ISSN
0310-6853. doi: 10.3109/asl2.1987.15.issue-2.02. URL https://doi.org/

10.3109/asl2.1987.15.issue-2.02. Publisher: Taylor & Francis eprint:
https://doi.org/10.3109/asl2.1987.15.issue-2.02.

John M. Grey and John W. Gordon. Perceptual effects of spectral modifications
on musical timbres. The Journal of the Acoustical Society of America, 63(5):
1493–1500, May 1978. ISSN 0001-4966. doi: 10.1121/1.381843. URL https://

asa.scitation.org/doi/10.1121/1.381843. Publisher: Acoustical Society
of America.

51

http://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=475459&lang=cs&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=475459&lang=cs&site=ehost-live
https://doi.org/10.1177/0888439002250449
https://doi.org/10.1177/0888439002250449
https://shop.gbo.com/en/row/products/preanalytics/instruments/esr-instruments/
https://shop.gbo.com/en/row/products/preanalytics/instruments/esr-instruments/
http://www.praat.org
http://dx.doi.org/10.1007/978-3-319-45510-5_42
https://doi.org/10.3109/asl2.1987.15.issue-2.02
https://doi.org/10.3109/asl2.1987.15.issue-2.02
https://asa.scitation.org/doi/10.1121/1.381843
https://asa.scitation.org/doi/10.1121/1.381843
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son’s disease in running speech spoken in three different languages. The Jour-
nal of the Acoustical Society of America, 139(1):481–500, January 2016. ISSN
0001-4966. doi: 10.1121/1.4939739. URL https://asa.scitation.org/doi/

10.1121/1.4939739. Publisher: Acoustical Society of America.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

P Pollák, J Voĺın, and R Skarnitzl. HMM-based phonetic segmentation in Praat
environment. In Proceedings of the VII th International Conference “Speech
and Computer–SPECOM, volume 1, pages 537–541, 2007.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2019. URL https:

//www.R-project.org/.

Patrick F. Reidy. Spectral dynamics of sibilant fricatives are contrastive and
language specific. The Journal of the Acoustical Society of America, 140(4):

53

http://www.sciencedirect.com/science/article/pii/S1047965118302547
http://www.sciencedirect.com/science/article/pii/S1047965118302547
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893733/
https://asa.scitation.org/doi/10.1121/1.4939739
https://asa.scitation.org/doi/10.1121/1.4939739
https://www.R-project.org/
https://www.R-project.org/


2518–2529, October 2016. ISSN 0001-4966. doi: 10.1121/1.4964510. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132428/.
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