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PREFACE

Small RNA pathways or RNA silencing is a group of pathways, which utilize small (20–
30	nt)	RNAs	as	guides	for	sequence-specific	repression.	This	collection	of	texts	on	small	
RNA pathways originates from a report I prepared for the European Food and Safety 
Authority (EFSA) in 2016 and 2017. EFSA requested literature survey as it was concerned 
because of several works reporting that small RNAs, which naturally exist in plants, can 
enter	into	a	mammalian	body	and	affect	gene	expression.	The	main	issue	was	that	RNA	
interference (one of a small RNA pathways), represented a promising way for developing 
sequence-specific	pesticides.	If	plant	small	RNAs	could	enter	into	a	mammalian	organism	
and regulate genes, RNAi-based pesticides could represent a potential health hazard. 

With help of my colleagues, who set up a systematic literature search, I wrote an exten-
sive systematic literature review for which I inspected ~10,000 titles and abstracts during 
one	year	of	writing.	The	original	EFSA	report	had	a	number	of	technical	sections	describing	
search	methodology	and	was	compiling	information	from	published	works	for	specific	
tasks	defined	by	EFSA.	Once	the	report	was	completed	and	presented	to	EFSA,	I	became	
interested	in	converting	the	scientific	part	of	the	report	into	a	more	coherent	overview	of	
RNA silencing (particularly of RNAi and microRNA pathways) across different animal 
groups	and	plants.	I	thought	it	would	be	better	if	the	scientific	part	would	be	revised,	and	
provided as a coherent collection of chapters for studying RNAi and related pathways.

I subsequently contacted EFSA and discussed possible options for producing a set of 
chapters based on the report, which could serve as a study material for my lecturing. EFSA 
representatives agreed that I could produce a set of study materials from the report that 
would be published by a university publishing house under conditions that EFSA would 
be credited and the book would not be sold – as a solution, the material is provided as an 
open	access	collection	of	chapters.	To	satisfy	the	second	EFSA	requirement,	I	acknowl-
edge hereby that the contents have been produced under a contract with EFSA (OC/EFSA/
GMO/2015/01-CT	01)	and	that	the	opinions	expressed	are	those	of	the	contractor	only	and	
do	not	represent	EFSA’s	official	position.

Regarding the conversion, the original text was reorganized into twelve chapters, which 
were reformatted and revised in order to remove copyrighted material from third parties 
and provide a introductory parts for stand alone chapters. Nine of the chapters focus on 
small	RNA	pathways	in	animals	(mammals,	birds,	fish,	arthropods,	nematodes,	molluscs,	
and	annelids)	and	plants.	The	remaining	three	chapters	include	a	general	introduction	and	
reviews of important phenomena – off-targeting and extracellular small RNAs. I hope that 
this collection will serve as a useful source for many.

Petr Svoboda
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INTRODUCTION
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ABSTRACT

RNA	silencing	denotes	a	group	of	pathways,	which	utilize	small	RNAs	as	sequence-specific	guides	for	repressing	
gene	expression.	Two	related	RNA	silencing	pathways	exist	in	animals	and	plants:	RNA	interference	(RNAi)	and	
microRNA (miRNA) pathway. While the miRNA pathway regulates endogenous protein-coding gene expression, 
RNAi serves as a form of innate immunity targeting viruses and mobile elements, although it occasionally also 
acquired	function	in	protein-coding	gene	regulation.	The	aim	of	the	following	text	is	to	provide	an	elementary	
introduction	into	RNAi	and	miRNA	pathways	for	a	series	of	taxon-specific	and	feature-specific	reviews,	which	
follow.	The	idea	is	to	bring	up	common	general	principles	allowing	the	reader	to	better	navigate	through	common	
and	derived	mechanisms	and	functions	of	RNA	silencing	that	are	presented	in	taxon-oriented	reviews.	The	entire	
review series was derived from an expert report for the European Food and Safety Agency, which was reorganized 
to	be	more	accessible	for	the	scientific	community.

Introduction to mechanistic principles and roles of RNA silencing

The	volume	of	the	RNA	silencing	and	double-stranded	RNA	(dsRNA)-related	published	
data is stunning. In 2016, me and my colleagues did literature assessment for the European 
Food	and	Safety	Agency,	which	identified	over	200	000	publications	(Paces	et	al.,	2017)	
and which served as a foundation for this article series. While selected taxons are reviewed 
separately,	I	 thought	 the	collection	would	benefit	from	introducing	the	core	molecular	
mechanisms of RNAi and miRNA pathways (admittedly animal-centric).

As mentioned in the abstract, RNA silencing (reviewed in Ketting, 2011) designates 
repression guided by small RNA molecules (20–30 nucleotides long) and includes diverse 
silencing mechanisms including RNA degradation, translational repression, induction of 
repressive chromatin, and even DNA deletions. RNA silencing research evolved from paral-
lel	studies	in	several	different	model	systems,	primarily	flowering	plant	models	and	animal	
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models including Caenorhabditis elegans, Drosophila melanogaster,	zebrafish,	mouse,	and	
humans. Some form of RNA silencing exists in almost every eukaryote. Here, the primary 
focus will be on the RNA interference (RNAi) and microRNA (miRNA) pathways (Fig. 1 
and	2).	The	term	RNAi	has	been	originally	used	for	sequence-specific	mRNA	degradation	
induced	by	long	dsRNA	(Fire	et	al.,	1998).	This	mechanism,	which	employs	small	RNAs	
produced from long dsRNA, is the canonical RNAi. However, the term RNAi is also used 
as a common name for a broad range of RNA silencing pathways (Ketting, 2011). Here, 
I will use the term RNAi strictly in its original connotation. miRNAs are genome-encoded 
short RNAs that regulate gene expression by translational repression and/or degradation of 
cognate mRNAs. 
Historically,	 the	first	discovered	RNA	silencing	pathway	was	plant	 co-suppression,	

which	appeared	as	sequence-specific	silencing	of	endogenous	genes	induced	by	trans-
gene	expression	(Napoli	et	al.,	1990).	The	miRNA	pathway	was	first	found	in	1993	in	

Figure 1 RNAi pathway overview
Canonical RNAi is triggered by some form of long dsRNA. dsRNA can originate from various sources 
including viruses and their replication intermediates or base pairing if RNAs transcribed in the genome 
(either as an intramolecular duplex (hairpin dsRNA), or by base pairing RNAs transcribed in cis (con-
vergent transcription) or in trans (from interspersed elements, pseudogenes etc.). The core mechanism 
of RNAi has three steps: dicing – cleavage of long dsRNA into siRNA duplexes by RNase III Dicer, 
loading – where one strand of siRNA duplex is selected and loaded onto an Argonaute protein from 
AGO subfamily forming the RNA-induced silencing complex (RISC), and slicing – where siRNA guides 
RISC to cognate RNAs. Upon making a perfect duplex with a cognate RNA, AGO proteins performs en-
donucleolytic cleavage of the cognate RNA in the middle of the base-paired sequence. In some species, 
RNAi also involves an RNA-dependent RNA polymerase (RdRp), which may generate initial substrates 
or participate in amplification of the response by converting cognate RNAs into dsRNA.
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the nematode Caenorhabditis elegans	(Lee	et	al.,	1993).	The	idea	of	a	conserved	miRNA	
pathway emerged upon discovery of Let-7 miRNA in 2000, which was is conserved from 
Caenorhabditis elegans to mammals (Pasquinelli et al., 2000). In the meantime, RNAi 
was found in Caenorhabditis as well (Fire et al., 1998). Around the year 2000, it became 
apparent that earlier observations, which included the aforementioned plant co-suppression, 
quelling in fungi, and animal RNAi and miRNA pathways (Lee et al., 1993; Napoli et al., 
1990; Romano and Macino, 1992; van der Krol et al., 1990), belong to one group of related 
molecular mechanisms commonly called RNA silencing.
The	core	principle	of	RNA	silencing	(repression	mediated	by	a	ribonucleoprotein	com-

plex guided by a small RNA) was deciphered during 1998–2004 using a combination of 
genetic and biochemical approaches. Key steps in understanding how RNA silencing works 
were biochemical studies in Drosophila	embryo	lysates	(Tuschl	et	al.,	1999;	Zamore	et	al.,	
2000) and genetic studies in Caenorhabditis elegans and plants (e.g. (Bohmert et al., 1998; 
Dalmay et al., 2000; Fagard et al., 2000; Grishok et al., 2000; Lynn et al., 1999; Mourrain 
et	al.,	2000;	Smardon	et	al.,	2000;	Tabara	et	al.,	1999)).	The	last	discovery,	which	argua-
bly closed the era of deciphering the key principles of RNA silencing, was the structural 

Figure 2 Canonical animal miRNA pathway overview
miRNAs are genome-encoded. Their synthesis starts with Pol II-mediated transcription of long primary 
miRNA transcripts (pri-miRNAs), which carry one or more local short hairpins, which are released as 
precursor miRNAs (pre-miRNAs) by the activity of the nuclear “Microprocessor complex”. Pre-miRNAs 
are transported into the cytoplasm via Exportin 5. In the cytoplasm, Dicer cleaves a pre-miRNA and 
one strand of the duplex is loaded onto an AGO protein, which forms the core of the effector complex 
(RISC or miRISC). The effector complex contains additional proteins, which mediate translational re-
pression and RNA degradation. The key bridge between AGO and proteins mediating deadenylation 
and decapping is GW182 protein. Targeted mRNAs usually localize to P-bodies, which are cytoplasmic 
foci associated with RNA metabolism
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analysis of Argonaute 2, which revealed the last missing piece of the big puzzle: this protein 
carries the endonucleolytic activity executing (slicing) targeted mRNAs (Liu et al., 2004; 
Meister et al., 2004; Song et al., 2004). 

RNAi and miRNA pathway components

Substrates

RNA silencing employs different types of substrates, which give rise to different kinds of 
small RNA populations (Fig. 3). Canonical precursors of miRNAs contain short hairpin 
structures, which are released by the Microprocessor complex and processed by Dicer in 
the cytoplasm (reviewed in Kim et al., 2009; Winter et al., 2009). However, additional 
substrates can produce non-canonical miRNAs, which can be generated in Drosha- and/or 
Dicer-independent manner. Long dsRNA substrates for RNAi may come in different forms; 
viral replication (and RdRP activities in general) often yields blunt-end dsRNA whereas 
hybridization of sense and antisense RNAs yields dsRNA with single-strand overhangs. 
Sense and antisense transcripts can be produced in cis by convergent transcription or in 
trans at separate loci. Another type of dsRNA are intramolecular duplexes of dsRNA hair-
pins,	which	form	upon	transcription	of	inverted	repeats.	The	most	efficient	long	dsRNA	for-
mation	comes	from	RdRP	synthesis	followed	by	efficient	forming	intramolecular	duplexes.	
Sense and antisense base pairing is, in principle, less likely to occur in cis, especially when 
sense	and	antisense	RNAs	are	produced	at	distant	loci.	The	reason	is	that	RNAs	are	usu-
ally forming intramolecular secondary structures and are bound by RNA binding proteins, 
which may reduce probability of base pairing of complementary RNAs.

Dicer – structure and function

Dicer is the central enzyme for producing small RNAs in miRNA and RNAi pathways. 
It was discovered in 2001 as the enzyme processing long dsRNA into siRNAs (Bernstein 
et al., 2001). Dicer generates small RNAs in RNAi and many other (but not all) RNA 
silencing pathways (reviewed for example in Jaskiewicz and Filipowicz, 2008). Dicer is 
a large (~200 kDa), multi-domain RNase III endonuclease cleaving various forms of duplex 
dsRNA. It carries two RNase III domains and several other domains that are typically found 
in	Dicer-like	proteins	in	eukaryotes	(Fig.	4).	These	include	an	N-terminal	helicase	domain,	
piwi/Argonaute/zwille	(PAZ)	domain,	domain	of	unknown	function	DuF283,	and	a	C-ter-
minal dsRNA binding domain (dsRBD, duplicated in some plant Dicers). 
The	ribonuclease	activity	of	Dicer	requires	magnesium	ions.	Dicer	preferentially	cleaves	

dsRNA	at	the	termini	but	it	can	also	cleave	internally	with	low	efficiency	(Provost	et	al.,	
2002;	Zhang	et	al.,	2002).	Cleavage	produces	small	(21–27	nt	long)	RNA	duplexes	with	
two nucleotide 3’ overhangs and 5’ monophosphate and 3’ hydroxyl groups at RNA termini. 
Dicer	structure	sets	the	length	of	the	substrate	from	the	PAZ	domain	to	RNase	III	domains	
where	it	is	cleaved.	The	PAZ	domain	binds	the	end	of	dsRNA,	with	high	affinity	to	3’	pro-
truding overhangs (Lingel et al., 2003; Ma et al., 2004; Song et al., 2003; Yan et al., 2003); 
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these termini are typical for canonical miRNA precursors and processive cleavage of long 
dsRNA. RNase IIIa and IIIb domains form a single processing center containing two cata-
lytic „half-sites”, each cleaving one strand of the duplex and producing short dsRNA with 
2 nt 3’ overhang. RNase IIIa domain is processing the protruding 3’-OH-bearing strand and 
RNase	IIIb	cuts	the	opposite	5’-phosphate-containing	strand	(Zhang	et	al.,	2004).
The	crystal	structure	of	the	full	length	Dicer	from	Giardia intestinalis, which repre-

sents a minimal Dicer model (MacRae et al., 2007; MacRae et al., 2006), showed that 
the	RNase	III	domains	form	a	catalytic	center	connected	with	the	PAZ	domain	by	a	long	
α-helix	(„connector“	helix),	which	is	implicated	in	determining	the	product	length.	The	
connector helix is supported by a platform-like structure containing the DUF283 domain, 
which has a dsRBD-like fold (Dlakic, 2006) and perhaps mediates protein-protein inter-
action (Qin et al., 2010). Full-length Dicer proteins from animals and plants were not 
crystalized. However, recent advances in cryo-electron microscopy (cryo-EM) provide 
additional insights into Dicer structure and function in other models (Fig. 4), which uti-
lize	more	complex	Dicer	proteins.	These	results	will	be	summarized	in	corresponding	
taxon-specific	reviews.

Some organisms, like mammals, Caenorhabditis, or Trypanosoma, utilize a single Dicer 
protein to produce both siRNAs and miRNAs. In contrast, Drosophila utilizes two Dicer 
paralogs, DCR-1 to produce miRNAs and DCR-2 to produce siRNAs. Some species utilize 
even more paralogs with distinct functions and different cleavage product lengths (e.g. four 
Dicer paralogs in Arabidopsis thaliana (reviewed in Meins et al., 2005). Animal Dicer pro-
teins are typically found in the cytoplasm. In plants, some Dicer proteins have a dedicated 
nuclear localization.

dsRNA binding proteins (dsRBPs)

Dicer interacts with many proteins of which two protein types stand out: (I) Argonaute 
proteins, which receive small RNAs produced by Dicer, and (II) dsRNA-binding proteins 

Figure 3 Substrate types in RNA silencing pathways.
The lower part schematically depicts typical appearance of small RNAs in mapped RNA-sequencing 
data.
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(dsRBPs) with tandemly arrayed dsRBDs. dsRBPs facilitate substrate recognition, cleav-
age	fi	delity,	and	Argonaute	loading.	However,	despite	a	similar	domain	organization,	
these proteins evolved distinct roles in small RNA biogenesis by Dicer and sorting onto 
Argonautes	in	different	model	organisms.	These	roles	will	be	discussed	for	each	taxon	
separately. 

Argonaute proteins – structure and function

Argonaute proteins have a molecular weight of ~100 kDa and carry four distinct domains: 
the	central	PAZ	domain,	the	C-terminal	PIWI	(P-element	induced	wimpy	testis),	the	N-ter-
minal	domain,	and	the	MID	domain	between	PAZ	and	PIWI	domains	(Fig.	5).	The	PAZ	
domain binds the 3’ end of a short RNA in a sequence-independent manner (Lingel et al., 
2003, 2004; Ma et al., 2004; Song et al., 2003). Structural studies of archaeal Argonaute 
homologs showed that the PIWI domain has an RNase H-like fold (Ma et al., 2005; Parker 
et al., 2004; Song et al., 2004; Yuan et al., 2005). A small RNA is anchored with its 3’ end 
in	the	PAZ	domain.	The	5’	phosphate	of	the	small	RNA	is	buried	in	a	pocket	at	the	interface	
between	the	MID	domain	and	the	PIWI	domain	(reviewed	in	Jinek	and	Doudna,	2009).	The	
5’	end	of	the	base	pairing	cognate	RNA	enters	between	the	N-terminal	and	PAZ	domains	
and	its	3’	end	exits	between	the	PAZ	and	MID	domains.	

Argonaute proteins can be divided into three distinct groups (reviewed in Faehnle and 
Joshua-Tor,	2007):	(1)	AGO	proteins,	found	in	all	kingdoms,	(2)	PIWI	proteins	found	
in	animals,	 and	 (3)	WAGO	proteins	 found	only	 in	nematodes.	The	WAGO	subfamily	
was described last, so it is not recognized in the older literature, which typically divides 

Figure 4 Dicer structure
The fi rst Dicer structure was inferred from the crystal structure of Giardia intestinalis, which corresponds 
to a fragment of larger metazoan Dicer proteins. The schematic structure of human Dicer was subse-
quently derived from cryo-electron microscopy analysis. Dicers typically cleave dsRNA from an end, 
which are bound by the PAZ domain. Each of the RNase III domains cleaves one strand at a defi ned 
distance from the PAZ domain.
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Figure 5 Argonaute protein structure
The order of domains in an Argonaute protein. The scheme shows how Argonaute cleaves a perfectly 
complementary RNA, which becomes accessible by the catalytical center in the PIWI domain upon base 
pairing with a small RNA. Nucleotides 2–8 of the small RNA initiate the interaction with the cognate 
RNA and form the so-called “seed”, which has a highly predictive value for miRNA binding sites and 
siRNA off-targeting.

Argonaute proteins into AGO and PIWI subgroups (e.g. Carmell et al., 2002). Metazoan 
Argonaute proteins functioning in the RNAi pathway include RDE-1 (exogenous RNAi) 
and ERGO-1 (endogenous RNAi) in Caenorhabditis elegans, AGO-2 in Drosophila, and 
AGO2 in mammals. Other Argonautes act in the miRNA and other pathways employing 
small RNAs.
In	RNAi,	one	strand	of	a	siRNA	produced	by	Dicer	serves	as	a	sequence-specific	guide	

in	RNA-induced	silencing	complex	(RISC),	which	is	the	effector	complex	of	RNAi.	The	
key component of RISC is an Argonaute family protein (AGO), which binds the select-
ed	siRNA	strand	and	uses	it	as	a	sequence-specific	guide	recognizing	mRNAs	that	will	
be degraded. Argonaute is the „slicer” (Liu et al., 2004; Meister et al., 2004; Song et al., 
2004), i.e. the enzyme catalyzing the cleavage of the cognate mRNA in the canonical RNAi 
pathway	(Fig.	1).	The	active	site	in	the	PIWI	domain	is	positioned	such	that	it	cleaves	the	
mRNA opposite the middle of the siRNA guide (Song et al., 2004). However, only some 
Argonautes function as slicers. In other cases, silencing is mediated by additional proteins 
forming	a	complex	with	an	Argonaute.	There	is	a	long	list	of	Argonaute-interacting	protein	
factors; they will be described separately in the taxon-dedicated reviews.
While	the	minimal	active	RISC	contains	only	the	„slicing“	Argonaute	protein	and	the	

guide strand of siRNA, RISC activity was found in different models and cell types to reside 
in ~200 kDa, ~ 500 kDa, or 80S complexes (Martinez et al., 2002; Mourelatos et al., 2002; 
Nykanen et al., 2001; Pham et al., 2004). Multiple proteins either contribute to RISC for-
mation or might regulate RISC activity, stability, target selection, mode of repression or 
otherwise contribute to RISC function.
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RNA-dependent RNA polymerase (RdRPs) proteins

RdRPs can contribute to RNA silencing in two ways – either by converting single-stranded 
RNA to dsRNA (Fig. 1) or by synthesizing short RNAs, which could function as guides. 
RdRP	is	an	ancestral	component	of	RNA	silencing	since	RdRP	orthologs	were	identified	in	
RNA silencing pathways in plants, fungi and some animals: QDE-1 in Neurospora crassa 
(Cogoni and Macino, 1999), EGO-1 and RRF-1 in Caenorhabditis elegans (Grishok et al., 
2001; Smardon et al., 2000), SDE1/SGS2 in Arabidopsis (Dalmay et al., 2001; Mourrain 
et al., 2000), and Rdp1 in Schizosaccharomyces pombe	(Hall	et	al.,	2002;	Volpe	et	al.,	
2002). Homologs of these RdRPs exist in numerous metazoan taxons, including Nematoda 
(e.g. Caenorhabditis elegans), Cnidaria (hydra), Chelicerata (tick), Hemichordata (acorn 
worm), Urochordata (sea squirt) but appear absent in others, including Platyhelminthes 
(planaria), Hexapoda (Drosophila), or Craniata (vertebrates). Phylogenetic analysis sug-
gests that RdRPs in RNA silencing pathways have a monophyletic origin, i.e. evolved 
from a single ancestral RdRP (Cerutti and Casas-Mollano, 2006; Murphy et al., 2008). 
The	fact	that	RdRP	orthologs	are	found	in	other	protostomes	and	deuterostomes	but	not	in	
Drosophila or mammals suggests a repeated loss of the ancestral RdRP component of RNA 
silencing. Whether RdRP activity completely disappeared from RNAi in Drosophila and 
mammals is unclear but transitive RNAi generating secondary sequences upstream of the 
region targeted by siRNAs was not observed in Drosophila or mouse (Roignant et al., 2003; 
Schwarz et al., 2002; Stein et al., 2003).

Diversity of RNAi and miRNA pathway functions

Some	taxons,	exemplified	by	vertebrates,	utilize	a	relatively	simple	setup	of	RNA	silencing	
pathways,	which	is	also	reflected	by	the	low	numbers	of	homologs	of	the	key	genes,	listed	
in	the	Table	1.	Other	pathways	diversified,	often	at	the	level	of	Argonaute	protein	adapta-
tion	for	different	pathways	(Table	2).	In	mammals,	the	dominant	somatic	RNA	silencing	
pathway in vertebrates is the miRNA pathway, which employs a single Dicer, one or two 
associated	dsRBPs,	and	four	AGO	proteins,	one	of	which	retains	the	slicing	activity.	There	
is	no	protein	uniquely	dedicated	to	RNAi	and	no	RdRP.	The	other	three	Argonaute	pro-
teins	in	vertebrates	function	in	the	piRNA	pathway,	present	in	the	germline.	This	simple	
setup contrasts with that in Caenorhabditis elegans where 26 Argonaute proteins and three 
RdRPs exist, as well as with that in A. thaliana where there are four Dicer proteins, seven 
dsRBPs, ten Argonaute proteins and six RdRPs. Consequently, nematodes and plants have 
highly complex RNA silencing system adapted to many different biological roles.

RNAi pathway

The	RNAi	pathway	(Fig.	1)	has	three	mains	steps:	(1)	the	cleavage	of	long	dsRNA	by	Dicer	
into siRNAs, (2) loading of small RNAs on the RISC, and (3) recognition and cleavage of 
cognate RNAs by the RISC. In addition to this core pathway, two extensions of the path-
way,	which	are	restricted	to	some	animal	species,	should	be	mentioned:	(1)	an	amplification	
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Table 2 Overview of Argonaute proteins and associated RNAs in key model organisms
The table was compiled form the following literature (Batista et al., 2008; Buckley et al., 2012; Das et al., 
2008; Duran-Figueroa and Vielle-Calzada, 2010; Fischer et al., 2011; Forstemann et al., 2007; Iwasaki 
et al., 2015; Liu et al., 2009; Tijsterman et al., 2002a; Tijsterman et al., 2002b; Vasale et al., 2010; 
Vourekas et al., 2012; Wang and Reinke, 2008; Yigit et al., 2006; Zhang et al., 2016; Zheng et al., 2007). 
Slicer activity “+” indicates that a given Argonaute protein has potential to act as a slicer, not that slicing 
is its primary mode of action. In some case, slicing potential has been inferred from the sequence, i.e. 
it is not supported with experimental evidence.
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step, in which RdRPs generate secondary siRNAs and (2) systemic RNAi where an RNAi 
response can spread across cellular boundaries.

Because dsRNA often originates from viruses, the role of RNAi has been viewed as 
a form of native immunity. While this role is experimentally supported in some models, 
RNAi may also have other roles in maintaining genome integrity, and control of gene 
expression.

RNA viruses generate dsRNA during their replication cycle in host cells. DNA viruses 
often produce complementary sense and antisense transcripts, which can form dsRNA upon 
annealing.	Thus,	dsRNA	is	a	common	marker	of	viral	infection	and	it	is	recognized	by	
different	mechanisms	mediating	an	innate	immune	response.	The	idea	that	RNA	silencing	
may function as a form of innate immunity is supported by several lines of evidence, which 
were	first	found	in	plants	and	later	also	in	invertebrates	(reviewed	in	Marques	and	Carthew,	
2007; Xie and Guo, 2006): 1) siRNAs derived from viral sequences were found in infected 
organism (Hamilton and Baulcombe, 1999), 2) inhibition of RNA silencing resulted in 
increased viral replication (Mourrain et al., 2000), and 3) some viruses produce suppressors 
of	RNA	silencing	(Voinnet	et	al.,	1999).
The	role	of	RNAi	varies	among	different	organisms.	Vertebrates	replaced	the	antiviral	

defense system provided by RNAi by an array of innate immune sensors of dsRNA mol-
ecules,	whose	activation	converges	on	a	sequence-independent	interferon	response.	Thus,	
the canonical RNAi is generally not a ubiquitous primary mechanism in response to dsRNA 
in	vertebrates	although	it	is	observed	in	specific	cases.	In	species,	which	still	use	RNAi	as	
the primary antiviral immunity pathway (such as plants, nematodes, arthropods), it is fre-
quently observed that viruses overcome the RNAi response with various protein inhibitors. 
Whether the more complex interferon system in vertebrates provides a stronger defense 
barrier is unclear as the interferon pathway is just a part of a highly complex immune sys-
tem. One interesting aspect of RNAi and interferon response evolution is the rewiring of the 
RIG-I helicase family, which is associated with RNAi in Caenorhabditis elegans and inter-
feron response in mammals. Understanding the role of the RNAi module in immunity of 
molluscs and annelids requires further research. Molluscs are a particularly interesting case, 
because their genome carries homologs of the genes involved in the interferon response, 
and studying them might provide an insight into how the interferon response has replaced 
RNAi, as the main antiviral response.

Systemic and environmental RNAi

RNAi can either act in a cell autonomous manner, i.e. affecting only cells directly exposed 
to	dsRNA,	or	can	propagate	across	cell	boundaries.	Two	modes	of	non-cell	autonomous	
RNAi are recognized: (1) environmental RNAi involves processes where dsRNA is taken 
up by a cell from the environment. (2) systemic RNAi includes processes where a silencing 
signal spreads from a cell across cellular boundaries into other cells. Both modes can be 
combined	and	systemic	RNAi	can	follow	environmental	RNAi.	Two	pathways	for	dsRNA	
uptake	were	described:	(1)	a	specific	transmembrane	channel-mediated	uptake	and	(2)	an	
alternative endocytosis-mediated uptake (reviewed in Huvenne and Smagghe, 2010; Whang-
bo and Hunter, 2008). 
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The	non-cell	autonomous	RNAi	was	observed	already	during	the	first	RNAi	experi-
ments in Caenorhabditis elegans (Fire et al., 1998). When animals were microinjected with  
dsRNA into head, tail, intestine or gonad arm, or even just soaked in dsRNA solution or fed 
by	bacteria	expressing	dsRNA,	these	treatments	induced	a	specific	null	phenotype	in	the	
whole animal and even in its progeny, demonstrating a surprising ability of dsRNA to cross 
cellular	boundaries	(Fire	et	al.,	1998;	Tabara	et	al.,	1998;	Timmons	and	Fire,	1998).	Non-
cell autonomous RNAi has been discovered also in parasitic nematodes (Geldhof et al., 
2007), hydra (Chera et al., 2006), planaria (Newmark et al., 2003; Orii et al., 2003), insects 
(Tomoyasu	et	al.,	2008;	Xu	and	Han,	2008),	or	plants	(Himber	et	al.,	2003).

miRNA pathway

unlike	siRNAs,	miRNAs	are	genome-encoded	short	RNAs	with	defined	sequences	that	reg-
ulate gene expression by mediating translational repression and/or degradation of cognate 
mRNAs. miRNAs play important roles in many processes and are one of the most common 
small RNAs found in animal and plant cells. miRNAs have been implicated in countless 
cellular and developmental processes; in some cases are changes in their expression linked 
to pathological conditions. Bioinformatics estimates suggest that miRNAs might directly 
target over 60% of mammalian genes (Friedman et al., 2009); miRNA-dependent regulation 
in invertebrates and plants are less extensive.
Thousands	of	miRNAs	have	been	annotated.	The	central	miRNA	database	miRBase	

(http://www.mirbase.org,	(Kozomara	and	Griffiths-Jones,	2014)	 includes	2654	human,	
1978 murine, 469 Drosophila melanogaster , 437 Caenorhabditis elegans, and 428 Arabi-
dopsis thaliana mature miRNAs (release 22.1). Remarkably, there are only a few miRNAs 
conserved between Drosophila and mammals and it is not clear if there are any conserved 
miRNA genes between plants and animals. Animal miRNAs seem to emerge from random 
formation of Drosha/Dicer substrates (discussed in detail in (Svoboda and Cara, 2006). 
Newly evolving miRNAs likely form a considerable portion of annotated miRNAs, espe-
cially in species where miRNAs were intensely studied by next generation sequencing 
(NGS),	which	can	identify	low-abundance	miRNAs.	The	newly	emerging	miRNAs	either	
acquire	significant	 repressive	 functions	and	become	retained	during	evolution	or	 they	
become lost. Furthermore, target repertoire of individual miRNAs can evolve fast since 
a single point mutation can weaken an existing regulation or create a new one.

Animal miRNAs biogenesis starts with long primary transcripts (pri-miRNAs), which 
are	processed	by	the	nuclear	“Microprocessor”	complex,	into	short	hairpin	intermediates	
(pre-miRNAs). Pre-miRNAs are transported to the cytoplasm where they are further pro-
cessed by Dicer into a small RNA duplex, from which is one RNA strand loaded onto an 
Argonaute protein where it guides recognition and repression of cognate mRNAs (Fig. 2). 
The	AGO-containing	effector	complex	has	been	given	different	names;	here	it	will	be	

referred	to	as	miRNA-Induced	Silencing	Complex	(miRISC).	The	mechanism	of	action	of	
an AGO-containing effector complex varies and may include either translational repression 
and/or RNAi-like endonucleolytic cleavage. Functional base pairing of animal miRNAs with 
their	mRNA	targets	appears	to	involve	little	beyond	the	“seed”	region	comprising	nucle-
otides 2 to 8 of the miRNA (Brennecke et al., 2005; Sontheimer, 2005). Pairing between 
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miRNAs and mRNAs in plants is typically much more extensive and results in direct endo-
nucleolytic cleavage. 

Imperfect miRNA:mRNA base pairing in animals generally results in translational 
repression	(Doench	et	al.,	2003;	Hutvagner	and	Zamore,	2002),	which	is	coupled	with	
mRNA	degradation	(Bagga	et	al.,	2005;	Lim	et	al.,	2005).	The	molecular	mechanism	of	
mRNA degradation induced by imperfect base pairing differs from the RNA-like cleavage 
described above (Schmitter et al., 2006) and involves mRNA deadenylation and decapping 
activities (Chen et al., 2014; Djuranovic et al., 2012; Nishihara et al., 2013; Rouya et al., 
2014). RNA degradation might actually be the dominant component of cognate gene repres-
sion (Eichhorn et al., 2014). Repressed mRNAs, miRNAs, and AGO proteins localize to 
cytoplasmic foci known as P-bodies (Liu et al., 2005; Pillai et al., 2005), which contain 
mRNA degrading enzymes such as the decapping complex, deadenylases, and the exonu-
clease XRN1 (reviewed in Decker and Parker, 2012). 
There	are	only	minor	differences	in	miRNA	pathways	across	animals.	The	main	one	is	

genetic separation between miRNA and RNAi pathways in arthropods, which utilize miR-
NA-dedicated Dicer, dsRBP, and AGO while other animals use one Dicer to produce miR-
NAs	and	siRNAs.	There	is	a	clear	difference	between	animals	and	plants.	Plants	employ	
a single RNase III, one of their Dicer paralogs, to process pri-miRNA into pre-miRNA and 
then	into	miRNA	duplex	in	the	nucleus.	These	miRNAs	are	2’-O-methylated	at	their	3’	
termini.	This	modification	is	absent	in	animal	miRNAs	(but	found	in	piRNA	small	RNAs	
in the germline). In addition, animals employ two distinct RNase III enzymes – Drosha in 
the Microprocessor complex in the nucleus, which releases pre-miRNA from pri-miRNA, 
and Dicer, which produces miRNA duplex in the cytoplasm.

Other relevant pathways in Metazoa

Adenosine deamination

A-to-I editing is mediated by Adenosine Deaminases Acting on RNA (ADAR) enzymes, 
which contain dsRBD domains and recognize both inter- and intramolecular dsRNAs 
longer than 20–30 bp (Nishikura et al., 1991). ADARs convert adenosines to inosines, 
which translation and reverse transcription interpret as guanosines. ADARs were found in 
animals (including earliest branching groups) but not plants, yeasts or protozoa (Grice and 
Degnan, 2015; Nishikura, 2010). It was predicted that more than 85% of pre-mRNAs could 
be edited, predominantly in the non-coding regions (Athanasiadis et al., 2004). 
RNA	editing	can	negatively	influence	RNAi	in	several	ways.	First,	ADARs	can	compete	

with RNAi for dsRNA substrates including siRNAs. A change of a single base in a sequence 
may result either in destabilization of dsRNA structure (inosine-uridine pair) or in its stabi-
lization	(inosine-cytidine	pair)	(Nishikura,	2010).	This	transition	in	the	local	and	global	sta-
bility	of	dsRNA	structure	can	influence	further	processing	of	dsRNA,	such	as	the	selection	
of	the	effective	miRNA	strand	(Bartel,	2004;	Du	and	Zamore,	2005;	Meister	and	Tuschl,	
2004). While moderate deamination (one I-U pair per siRNA) does not prevent Dicer pro-
cessing	to	siRNAs	(Zamore	et	al.,	2000),	hyperediting	(~50	%	of	deaminated	adenosines)	
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can make dsRNA resistant to Dicer processing (Scadden and Smith, 2001). Hyperedited 
dsRNA	is	also	degraded	by	Tudor-SN	(TSN)	nuclease	(Scadden,	2005).	ADAR	mutants	in	
Caenorhabditis elegans exhibit defective chemotaxis while the phenotype can be rescued 
by	RNAi-deficiency(Tonkin	and	Bass,	2003).	In	mammalian	cells,	ADAR1	limits	siRNA	
efficiency	(Yang	et	al.,	2005).	Editing	can	affect	target	recognition;	a	mismatch	between	
siRNA	and	target	mRNA	can	reduce	RNAi	efficacy	(Scadden	and	Smith,	2001)	or	modify	
target	specificity	(Kawahara	et	al.,	2007b).	Several	pri-miRNAs	(e.g.	miR-142)	undergo	
editing, which inhibits miRNA biogenesis or causes even degradation of pri-miRNA by 
TSN	(Kawahara	et	al.,	2007a;	Nishikura,	2010;	Scadden,	2005;	Yang	et	al.,	2006).

Interferon pathway

Mammalian somatic cells can respond to dsRNA in a sequence-independent manner. A pio-
neering work by Hunter et al. showed that different types of dsRNA can block translation 
in	reticulocyte	lysates	(Hunter	et	al.,	1975).	Analysis	of	the	phenomenon	identified	protein	
kinase R (PKR) that is activated upon binding to dsRNA and blocks translation by phos-
phorylating	the	alpha	subunit	of	eukaryotic	initiation	factor	2	(eIF2α)	(Meurs	et	al.,	1990).	
Activation of PKR represents a part of a complex response to foreign molecules known as 
the interferon response (reviewed in Sadler and Williams, 2007), which includes activation 
of	the	NFκB	transcription	factor	and	many	interferon-stimulated	genes	(ISGs)	(Geiss	et	al.,	
2001). In addition to PKR, several other proteins recognizing dsRNA induce the interferon 
response, including helicases RIG-I and MDA5, which sense cytoplasmic dsRNA and acti-
vate interferon expression, and the 2’,5’-oligoadenylate synthetase (OAS) , which produces 
2’,5’-linked oligoadenylates that induce general degradation of RNAs by activating latent 
RNase	L,	and	specific	Toll-like	receptors	(TLRs)	(reviewed	in	Gantier	and	Williams,	2007;	
Sadler and Williams, 2007).
There	is	an	evolutionary	connection	between	RNAi	and	the	interferon	response.	Mam-

malian RNA helicases Ddx58, Dhx58 and Ifih1, which are involved in immune response, 
are the closest homologs of helicases involved in processing of long dsRNA during RNAi 
in Caenorhabditis elegans. Notably, DDX58, also known as RIG-I, is an established com-
ponent	of	the	interferon	response	to	long	dsRNA	(Yoneyama	et	al.,	2004).	This	suggests	
that the interferon response, which has a common trigger and evolved after the RNAi path-
way, adopted several components from the latter pathway. Notably, there is also connec-
tion between interferon pathway and A-to-I editing; analysis of mutant mice showed mice 
suggested that Adar1 targets dsRNA and prevents MDA5-mediated interferon response 
(Liddicoat et al., 2015). 
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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	In	mammals,	there	are	two	close-
ly related pathways, which share several protein factors: RNA interference (RNAi) and microRNA (miRNA) 
pathway.	The	miRNA	pathway	regulates	endogenous	protein-coding	gene	expression.	It	has	been	implicated	
in many biological processes and majority of mammalian genes appear to be directly or indirectly exposed to 
miRNA-mediated regulations. RNAi generally serves as a form of innate immunity targeting viruses and mobile 
elements,	although	it	occasionally	also	acquired	function	in	protein-coding	gene	regulation.	The	function	of	RNAi	
in mammals is still poorly understood but it is clear that proteins supporting RNAi are also involved in miRNA 
biogenesis and function. Because of the volume of information, the review of mammalian miRNA and RNAi 
pathways	was	divided	into	two	parts,	where	first	one	presented	here	reviews	components	of	the	pathways	and	the	
second	one	reviews	function	and	significance	of	the	pathways.

Introduction

Mammals	belong	(with	birds	and	fishes)	to	the	group	Craniata of the phylum Chordata. 
Mammals are homeothermic animals distinguished by mammary glands, hair, middle ear 
bones,	and	neocortex.	There	are	~5000	extant	mammalian	species,	most	of	which	are	pla-
cental	mammals	{Margulis,	1998	#2572}.	The	synapsid	animal	lineage	leading	to	mammals	
branched	of	the	sauropsid	lineage	leading	to	dinosaurs	and	birds.	The	mammalian	miRNA,	
RNAi and other dsRNA-responding pathways are among the most studied dsRNA-respond-
ing pathways. Because of the large volume of the literature, I divided the mammalian mate-
rial	into	two	articles.	In	this	first	one,	I	will	define	molecular	components	and	will	review	
key	functional	implications	in	the	second	article.	The	first	reviewed	pathway	will	be	the	
miRNA pathway (Fig. 1).
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The Microprocessor complex – nuclear initiation of miRNA processing

The	canonical	primary	miRNAs	(non-canonical	precursors	are	described	separately	fur-
ther below) are transcribed by polymerase II (polymerase III-transcribed miRNA precur-
sors are uncommon (Borchert et al., 2006; Canella et al., 2010)) and carry local hairpins, 
which are released in the nucleus as stem-loop precursors of approximately 70 nucleotides 
(pre-miRNAs) by the activity of the so-called Microprocessor complex, which is composed 
of RNase III Drosha and DGCR8 proteins (Gregory et al., 2004; Han et al., 2004; Landthal-
er et al., 2004).

Drosha

Drosha, the active component of the Microprocessor complex, was discovered in 2000 as 
a new member of RNase III in Drosophila with a conserved human homolog (Filippov 
et al., 2000). Structurally, Drosha protein carries a single C-terminal dsRNA-binding motif 
(dsRBM), tandem catalytic domains, a proline-rich region (PRR) and an RS domain (For-
tin et al., 2002). Drosha was recognized as the nuclease that executes the initiation step of 
miRNA processing in the nucleus (Lee et al., 2003) and the Microprocessor complex was 
reported in a series of papers in 2004 (Gregory et al., 2004; Han et al., 2004; Landthal-
er	et	al.,	2004).	The	current	understanding	of	the	Microprocessor	complex	includes	the	

Figure 1 Overview of the molecular mechanism of the mammalian miRNA pathway. See text for details.
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resolved X-ray structure of Drosha with the C-terminal helix of DGCR8 (Kwon et al., 
2016). Drosha contains two DGCR8-binding sites, one on each RNase III domain, which 
mediate	the	assembly	of	the	Microprocessor	complex.	The	overall	structure	of	Drosha	is	
similar to that of Dicer (see further below) despite no sequence homology except of the 
C-terminal	part.	This	suggests	that	Drosha	could	have	evolved	from	a	Dicer	homolog	and	
would	be	consistent	with	the	proposed	classification	as	a	non-canonical	Dicer	in	a	single	
RNase III family (Jaskiewicz and Filipowicz, 2008). In addition, Drosha exhibits unique 
features,	including	non-canonical	zinc-finger	motifs,	a	long	insertion	in	the	first	RIIID,	and	
a	kinked	link	between	a	Connector	helix	and	RIIID	explaining	the	11-bp-measuring	“ruler”	
activity	of	Drosha.	The	structural	analysis	is	consistent	with	biochemical	characterization	
of the complex, which suggested that the Microprocessor complex exists as a heterotrimer-
ic complex (Herbert et al., 2016; Nguyen et al., 2015). In addition, Drosha and DGCR8, 
respectively, recognize the basal UG and apical UGU motifs in pri-miRNAs, which deter-
mines	orientation	of	the	complex	(Nguyen	et	al.,	2015).	These	results	clarified	inconsist-
encies and unknowns existing in the earlier literature regarding the stoichiometry of the 
complex and the mode of binding (Barr and Guo, 2014; Gregory et al., 2006; Gregory et al., 
2004; Han et al., 2004; Landthaler et al., 2004; Ma et al., 2013).

DGCR8

While Drosha provides the catalytic site for cleavage, DGCR8 anchors substrate pri-miR-
NAs. A crystal structure of the human DGCR8 core (residues 493–720) showed two dou-
ble-stranded RNA-binding domains (dsRBDs) arranged with pseudo two-fold symme-
try tightly packed against the C-terminal helix (Sohn et al., 2007). Interestingly, DGCR8 
uses heme as a co-factor. DGCR8 contains a previously uncharacterized heme-binding 
motif that is also required for its activity. Heme availability and biosynthesis in HeLa 
cells positively affect pri-miRNA processing and production of mature miRNAs while 
heme-binding-deficient	DGCR8	mutants	are	defective	in	pri-miRNA	processing	(Barr	
and Guo, 2014; Barr et al., 2015; Weitz et al., 2014). Pri-miRNA recognition by DGCR8 
seems to involve N(6)-methyladenosine mark deposited by the methyltransferase-like 3 
(METTL3)	(Alarcon	et	al.,	2015).	DGCR8	is	also	regulated	by	phosphorylation.	There	are	
23 possible phosphorylation sites mapped on the full-length human DGCR8 expressed in 
insect or mammalian cells (Herbert et al., 2013). Subsequent analysis showed that DGCR8 
phosphorylation may increase DGCR8 stability but not processing activity in response to 
extracellular cues (Herbert et al., 2013). DGCR8 phosphorylation by the tyrosine kinase 
ABL has been observed after DNA damage stimulating the processing of selective primary 
miRNAs	(Tu	et	al.,	2015).

Additional Microprocessor co-factors

Apart from the ABL kinase, several additional co-factors of the Microprocessor complex 
were	identified.	One	of	them	is	the	RNA-Binding	Protein	DDX1,	which	appears	to	be	a	reg-
ulatory protein promoting expression of a subset of miRNAs, majority of which is induced 
after DNA damage (Han et al., 2014). A peculiar Microprocessor complex component is 
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Methyl-CpG-binding	protein	MECP2	(Cheng	et	al.,	2014;	Tsujimura	et	al.,	2015),	which	
is known to stably bind methylated DNA. According to one report, MECP2 promotes the 
posttranscriptional processing of particular miRNAs including miR-199a, which stimulates 
mTOR	signalling	(the	key	pathway	regulating	cell	metabolism,	growth,	and	survival)	by	
targeting	inhibitors	of	mTOR	signalling	(Tsujimura	et	al.,	2015).	In	contrast,	Cheng	et	al	
reported that MECP2 binds directly to DGCR8 and interferes with the assembly of the 
Microprocessor complex, thus affecting gene expression posttranscriptionally via relieving 
repression of miRNA targets (Cheng et al., 2014). 

Microprocessor complex localization and function(s)

The	Microprocessor	complex	shows	apparent	nuclear	compartmentalization.	While	tran-
siently expressed pri-miRNAs accumulate in nuclear foci with splicing factor SC35 and 
Microprocessor components, Drosha and DGCR8. (Pawlicki and Steitz, 2008), these foci 
do not appear to be major sites of pri-miRNA processing, which seems to be coupled to 
transcription	 (Pawlicki	 and	Steitz,	2009).	This	 is	 consistent	with	 live-imaging,	which	
revealed that a large fraction of Microprocessor resides with unspliced pri-miRNAs in close 
proximity	to	their	genes.	This	analysis	also	provided	a	direct	visual	evidence	that	DGCR8	
and Drosha are targeted to pri-miRNAs as a preformed complex (Bellemer et al., 2012).
Importantly,	literature	review	identified	also	reports	describing	additional	roles	of	the	

Microprocessor complex and its components beyond miRNA biogenesis although Micro-
processor expression seems to be tuned according to pri-miRNA substrates (Barad et al., 
2012). Non-canonical roles of Microprocessor (or Drosha) include: 1) mRNA cleavage 
(Chong	et	al.,	2010),	exemplified	by	Drosha-dependent	cleavage	of	Hoxd4 RNA (Phua 
et al., 2011) or destabilization of Neurog2 mRNA, which supports neural stem cell main-
tenance by blocking accumulation of differentiation and determination factors (Knuckles 
et al., 2012), 2) processing of long non-coding RNAs restricted to the nucleus (Ganesan 
and Rao, 2008), 3), ribosomal RNA biogenesis (Liang and Crooke, 2011), and 4) cleavage 
of viral RNA (Shapiro et al., 2014). While immunoprecipitation of the Microprocessor 
complex followed by next-generation sequencing showed that precursors of canonical 
miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor com-
plex (Seong et al., 2014), high-throughput sequencing and cross-linking immunopre-
cipitation	(HITS-CLIP)	analysis	of	RNAs	bound	to	DGCR8	suggest	that	miRNAs	may	
not be the most abundant targets. DGCR8-bound RNAs also comprised several hundred 
mRNAs, small nucleolar RNAs (snoRNAs), and long noncoding RNAs (Macias et al., 
2012). Interestingly, DGCR8-mediated cleavage of snoRNAs was independent of Drosha, 
indicating participation of DGCR8 in other RNA processing complexes (Macias et al., 
2012). One of such complexes is the exosome (an hRRP6-containing nucleolar form), 
where DGCR8 is essential for its recruitment to snoRNAs and to the human telomer-
ase	RNA	component	(hTR/TERC)	(Macias	et	al.,	2015).	Thus,	DGCR8	acts	as	an	adap-
tor recruiting the exosome complex to structured RNAs and inducing their degradation. 
(Macias et al., 2015).
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Microprocessor complex crosstalk with other pathways

In terms of a crosstalk with other pathways, it has been established that some miRNA 
precursors are edited by ADARs (Alon et al., 2012; Garcia-Lopez et al., 2013; Peng et al., 
2012;	Tomaselli	et	al.,	2015;	Vesely	et	al.,	2014;	Vesely	et	al.,	2012;	Yang	et	al.,	2006)	
apparently as early as pri-miRNAs (Bahn et al., 2015; Chen et al., 2015). According to one 
model, ADAR1 interacts with Drosha and DGCR8 in the nucleus and possibly outcom-
petes	DGCR8	in	primary	miRNA	binding,	thus	enhancing	mature	miRNA	expression.	This	
appears dependent on ADAR1 editing activity, at least for a subset of targets (Bahn et al., 
2015). According to the selective elimination model, miRNAs, such as miR-151, are edited 
and	eliminated	by	Tudor-SN	(a	ribonuclease	specific	to	inosine-containing	dsRNAs	and	
a reported component of RISC) during mouse preimplantation development (Garcia-Lopez 
et al., 2013). Similarly, pri-miR-142 editing results in suppression of its processing by 
Drosha	while	the	edited	pri-miR-142	is	degraded	by	Tudor-SN.	Consequently,	mature	miR-
NA-142 expression substantially increases in ADAR1-/- or ADAR2-/- mice (Yang et al., 
2006).	According	to	the	stimulation	model,	exemplified	by	miR-497,	abundant	editing	event	
promotes	processing	by	Drosha	of	the	corresponding	pri-miRNA	(Vesely	et	al.,	2014).	

Dicer – cytoplasmic production of miRNA from pre-miRNA

A pre-miRNA produced by the Microprocessor complex is transported to the cytoplasm via 
Exportin	5	in	a	RanGTP-dependent	manner.	The	next	pre-miRNA	processing	step	is	Dicer	
mediated cleavage, which takes place the cytoplasm.

Structure of Dicer 

The	full	length	mammalian	Dicer	has	not	been	crystallized.	The	current	understanding	of	
the mammalian Dicer structure has thus been inferred from several different sources, which 
can be divided into four groups:
(I) Biochemical studies of recombinant Dicer and individual domains (Ma et al., 

2008;	Park	et	al.,	2011;	Provost	et	al.,	2002;	Zhang	et	al.,	2002;	Zhang	et	al.,	2004).	
(II) The crystal structure of Giardia intestinalis Dicer (serving as a comparative scaf-

fold) (MacRae et al., 2007; MacRae et al., 2006b).
(III) Crystallographic studies on mammalian Dicer fragments (Du et al., 2008; Wilson 

et al., 2015) or on individual domains	(Ma	et	al.,	2004;	Takeshita	et	al.,	2007;	Tian	
et al., 2014; Wilson et al., 2015)

(IV) Cryo-EM studies of human Dicer and its complexes with other proteins (Lau 
et	al.,	2012;	Lau	et	al.,	2009;	Taylor	et	al.,	2013;	Wang	et	al.,	2009;	Wilson	et	al.,	
2015).

Dicer is an siRNA-producing RNase III enzyme conserved across eukaryotes (Bernstein 
et al., 2001). Mammalian Dicer proteins are ~220 kDa multidomain proteins, which are 
composed of domains ordered from the N- to the C-terminus as follows: N-terminal DExD 
and helicase superfamily C-terminal domains, a domain of unknown function DUF283, 
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a	PAZ	domain,	RNase	IIIa	and	RNase	IIIb	domains,	and	the	C-terminal	dsRBD	(Fig.	2)	
(Nicholson and Nicholson, 2002). In contrast to the simplest RNase III family members 
(exemplifi	ed	by	E.	coli	RNase	III),	which	carry	only	one	RNase	III	domain	and	dimerize	
when cleaving dsRNA (Johanson et al., 2013; Lamontagne et al., 2001). Dicer proteins 
carry	two	RNase	III	domains,	which	form	an	intramolecular	dimer	(Zhang	et	al.,	2004).

Giardia Dicer structure revealed spatial organization of the core part of eukaryotic Dicer 
proteins	and	explained	how	Dicer	generates	small	RNAs	of	specifi	c	lengths	(MacRae	et	al.,	
2006a).	This	crystal	structure	then	served	as	a	framework	for	deciphering	the	structure	of	
other	Dicer	proteins,	including	mammalian	Dicers.	The	front	view	of	the	Giardia Dicer 
structure	resembles	an	axe.	The	blade	is	formed	of	an	intramolecular	duplex	of	two	RNase	
III domains, which are connected by a bridging domain constituting the back end of the 
blade.	The	platform	domain	is	adjacent	to	the	RNase	IIIa	domain	and	makes	up	the	upper	
part	of	the	handle.	The	PAZ	domain	is	connected	by	a	long	helix	to	the	RNase	IIIa	domain	
and forms the base of the handle (MacRae et al., 2006b). Altogether, the Giardia Dicer is 
formed	of	three	rigid	regions,	which	are	linked	by	fl	exible	hinges.	One	region	is	formed	
by RNase III domains and the bridging domain, the second by the platform domain and 
the	connector	helix,	and	the	third	by	the	PAZ	domain.	These	three	parts	can	swing	relative	
to each other and possibly ensure accommodation of Dicer to the structure of its substrate 
(MacRae	et	al.,	2006a).	This	conformational	fl	exibility	likely	enables	binding	of	dsRNAs	
with non-canonical base pairing as well as imperfect duplexes of pre-miRNAs (MacRae 
et al., 2006a). In addition, dsRNA binding is presumably stabilized by several positively 
charged	patches	on	the	surface	of	Giardia	Dicer	between	the	processing	center	and	the	PAZ	
domain, which are in contact with dsRNA (MacRae et al., 2006a; MacRae et al., 2007).

Mammalian Dicers are much larger and contain domains absent in the Giardia Dicer 
but	follow	the	same	organizational	and	functional	principles	(Fig.	2).	The	crystal	struc-
ture of Giardia	Dicer	confi	rmed	an	earlier	biochemical	analysis	predicting	that	the	two	
RNase III domains of the human Dicer form an intramolecular dimer resulting in a single 
processing	center	placed	at	a	specifi	c	distance	from	the	PAZ	domain	(Zhang	et	al.,	2004).	

Figure 2 Domain architectures of Dicers from Giardia and humans.
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A	structural	component	defining	this	distance	is	an	α	helix	(connector	helix),	which	directly	
links	PAZ	and	RNase	III	domains	(MacRae	et	al.,	2006b).	Thus,	the	key	functional	aspect	
that emerged from Dicer’s structural analysis was that it functions as a molecular ruler, 
measuring	the	length	of	the	substrate	from	the	PAZ	domain	to	RNase	III	domains	where	
each domain cleaves one strand. Importantly, the mammalian Dicer (and metazoan Dicers 
in	general)	differ	from	Giardia’s	in	two	main	aspects.	The	first	is	the	general	topology	
reflecting	the	fact	that	the	typical	mammalian	Dicer	product	is	shorter	(21–23	nt).	The	sec-
ond one is that the mammalian Dicer contains additional functional domains important for 
substrate recognition and processing.

As indicated above, the architecture of the human Dicer and positions of its domains and 
interacting partners have been inferred by cryo-EM of the full length protein and its mutants 
(Lau	et	al.,	2012;	Lau	et	al.,	2009;	Taylor	et	al.,	2013;	Wang	et	al.,	2009;	Wilson	et	al.,	
2015).	The	overall	shape	of	the	human	Dicer	resembles	the	letter	L;	the	shape	is	further	
divided	into	a	head,	a	body	and	a	base	(Fig.	2).	The	PAZ	domain	is	adjacent	to	the	platform	
domain	in	the	head	of	the	protein	while	the	RNase	IIIb	is	located	in	the	body.	Thus,	the	head	
of the human Dicer is a topological equivalent of the base of the handle in Giardia’s Dicer. 
The	helicase	domain	constitutes	the	base,	which	has	no	equivalent	in	Giardia’s	Dicer.	The	
position	of	the	processing	center	relative	to	the	PAZ	domains	differs	between	human	and	
Giardia Dicers, which explains the fact that the human Dicer produces siRNA about four 
nucleotides shorter than the Giardia Dicer, which corresponds to ~ one-third of a dsRNA 
helical	turn	(Lau	et	al.,	2012).	Therefore,	the	processing	center	has	to	access	the	cleavage	
site of dsRNA from the different angle relative to the dsRNA helical end in comparison with 
Giardia Dicer (Lau et al., 2012).

For understanding substrate selection and processing, two areas of Dicer’s structure 
deserve	special	attention:	the	PAZ	and	the	N-terminal	domains,	which	are	described	below.	
The	following	text	represents	exhaustive	literature	survey	focused	on	the	structural	and	
functional aspects of the two domains.

The PAZ domain

The	PAZ	domain	found	in	Dicer	and	Argonaute	proteins	is	a	dsRNA-terminus	binding	
module	(Ma	et	al.,	2004;	MacRae	et	al.,	2006b).	The	PAZ	domain	has	a	3’	overhang	binding	
pocket	but	only	the	PAZ	domain	of	Dicer	has	an	extra	loop	enriched	in	basic	amino	acids,	
changing	electrostatic	potential	and	molecular	surface	of	the	pocket.	These	changes	may	
influence	RNA	binding	by	Dicer	and	handing-off	the	substrate	to	other	proteins	complexes	
(MacRae	et	al.,	2006b).	The	PAZ	domain	of	metazoan	Dicers	also	recognizes	phosphoryl-
ated 5’ end of a pre-miRNA. A mutation of the 5’ binding pocket leads to dysregulation 
of miRNA biogenesis in vivo	(Park	et	al.,	2011).	The	5’	binding	pocket	is	conserved	in	
Drosophila DCR-1 and human Dicer but not in Giardia Dicer (Park et al., 2011). Impor-
tantly, the 5’ binding pocket appears conserved in Dicer proteins functioning in miRNA 
biogenesis (human Dicer, Drosophila DCR-1) but not in Dicer proteins dedicated to long 
dsRNA processing (Giardia, Schizosaccharomyces, Drosophila DCR-2). Accordingly, 
simultaneous	fixing	of	3’	and	5’	ends	emerges	as	a	feature	important	for	fidelity	of	miRNA	
biogenesis but not for siRNAs (Park et al., 2011).
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The N-terminal helicase domain

The	N-terminus	of	metazoan	Dicers	harbours	a	complex	helicase	structure,	which	is	adja-
cent to RNase III catalytic domains (Lau et al., 2012). Although the helicase must come 
into	contact	with	the	substrate,	its	functional	significance	is	still	only	partially	understood.	
However, it is clear that the N-terminal helicase region is the key for the substrate prefer-
ence. In mammals (and in most metazoan phyla), a single gene encodes Dicer, which has 
to process both: miRNA precursors into miRNAs as well as long double-stranded RNAs 
into small interfering RNAs (siRNAs). Different taxons apparently differ in how much 
they employ both types of Dicer activities; the mammalian Dicer is mainly dedicated to the 
miRNA pathway while its natural production is very limited.
The	N-terminal	helicase	belongs	to	the	RIG-I-like	helicase	family	(Zou	et	al.,	2009)	and	

consists of a proximal DExD/H domain and an adjacent helicase superfamily c-terminal 
domain	(Fig.	2).	A	conventional	helicase	domain	has	an	ATPase	activity.	Indeed,	inverte-
brate	Dicers	bind	and	hydrolyze	ATP	(Bernstein	et	al.,	2001;	Ketting	et	al.,	2001;	Nykanen	
et	al.,	2001;	Zamore	et	al.,	2000).	However,	despite	the	N-terminal	helicase	with	conserved	
motifs	important	for	ATP	binding	and	hydrolysis	is	present	in	mammalian	Dicers,	there	
is	no	evidence	of	ATP	requirement	for	 the	human	Dicer	activity	(Provost	et	al.,	2002;	
Zhang	et	al.,	2002).	The	human	Dicer	has	the	same	processing	efficiency	in	the	presence	
or	absence	of	ATP.	Moreover,	the	rate	of	cleavage	is	not	influenced	by	addition	of	other	
nucleotides,	non-cleavable	ATP	analogues	or	a	mutation	in	the	Walker	A	motif	of	ATPase/
helicase	domain	(Provost	et	al.,	2002;	Zhang	et	al.,	2002).	Notably,	these	experiments	were	
performed using a long dsRNA substrate with blunt ends, whose processing by inverte-
brates	Dicers	is	ATP-dependent	(Bernstein	et	al.,	2001;	Ketting	et	al.,	2001;	Nykanen	et	al.,	
2001;	Zamore	et	al.,	2000;	Zhang	et	al.,	2002).	Remarkably,	deletion	of	the	helicase	domain	
results in high cleavage rate of long dsRNAs by human Dicer in vitro (Ma et al., 2008) as 
well as in vivo	in	murine	and	human	cells	(Flemr	et	al.,	2013;	Kennedy	et	al.,	2015).	Thus,	
the N-terminal helicase in mammalian Dicers has a different role in substrate recogni-
tion and processing than the helicase in invertebrate Dicers although the overall shapes of 
human and Drosophila Dicer proteins are similar (Lau et al., 2012).
The	crystal	structure	of	the	N-terminal	helicase	has	not	been	obtained.	Thus,	based	on	

the cryo-EM-based modelling, the N-terminal helicase is composed of three globular sub-
domains (HEL1, HEL2, HEL2i) where the DExD/H domain corresponds to HEL1 and the 
helicase superfamily c terminal domain to HEL2 and HEL2i. All three parts of the helicase 
form a clamp near the RNase III domain active site. Interestingly, the N-terminal helicase 
was found in two distinct conformations, with respect to the body of the enzyme (Lau et al., 
2012), similar to the RIG-I helicase which was used as a template for modelling (Kowal-
inski et al., 2011). 
Analysis	of	substrate-specific	structural	rearrangements	proposed	that	human	Dicer	exists	

in	three	states	depending	on	presence	and	type	of	substrate	(Taylor	et	al.,	2013).	unbound	
Dicer	existing	in	“canonical	state”	rearranges	upon	substrate	binding	that	involves	the	PAZ	
domain	as	well	as	the	helicase	domain.	Substrate-bound	Dicer	exists	either	in	an	“open”	or	
closed”	state.	The	open	state	is	cleavage-competent	and	it	is	typical	for	pre-miRNA	binding.	
It is characterized by binding of a pre-miRNA along the platform, bending of the helicase 
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domain,	and	access	of	RNase	IIIa	and	IIIb	sites	to	the	substrate	(Taylor	et	al.,	2013).	The	
closed state has been observed for a 35 bp A-form RNA duplex, which represents a siRNA 
precursor.	In	this	state,	the	substrate	is	trapped	between	the	PAZ	and	helicase	domains	away	
from	the	catalytic	sites	(Taylor	et	al.,	2013).	This	provides	a	structural	explanation	for	pre-
vious observations that Dicer poorly processes longer perfect duplexes in vitro and in vivo 
(Kim et al., 2005; Nejepinska et al., 2012b). 
Taken	together,	it	is	apparent	that	miRNA	biogenesis	has	been	the	preferred	role	for	Dicer	

during	vertebrate	evolution.	The	helicase	domain	in	mammalian	Dicers	provides	a	structural	
basis	for	substrate	specificity,	namely	distinguishing	pre-miRNAs	as	the	preferred	substrate.	
In addition, a natural Dicer isoform has been found in mouse oocytes, which lacks the N-ter-
minal	helicase	domain,	can	efficiently	generate	siRNAs	from	long	dsRNAs,	and	is	sufficient	
for	enhancing	RNAi	in	cultured	cells.	This	isoform	is	a	consequence	of	a	rodent-specific	
retrotransposon insertion and is present in Muridae	family	(Flemr	et	al.,	2013).	This	demon-
strates that, while the mammalian Dicer primarily dedicated to the miRNA pathway, a small 
change in a mammalian Dicer gene can restore RNAi activity. 

Substrates and their processing by mammalian Dicer proteins

The	first	in vitro studies of recombinant human Dicer showed that substrate cleavage is 
dependent	on	Mg2+	but	not	on	ATP	presence	(Provost	et	al.,	2002;	Zhang	et	al.,	2002).	
Subsequently, it was reported that Dicer can cleave long dsRNAs and pre-miRNAs with 
different	efficiency,	which	stems	from	substrate’s	structural	properties	(Chakravarthy	et	al.,	
2010;	Feng	et	al.,	2012;	Flores-Jasso	et	al.,	2009;	Ma	et	al.,	2008).	Therefore,	cleavage	of	
miRNA precursors and long dsRNAs will be discussed in separate sections.

Canonical miRNA substrates

Canonical miRNAs of ~22 nt in length (Fig. 3) are the dominant Dicer products in mam-
malian cells. Dicer mutagenesis showed that inactivation of the RNase IIIA domain results 
in complete loss of 3p-derived mature miRNAs, but only partial reduction in 5p-derived 
mature miRNAs (Gurtan et al., 2012). Conversely, inactivation of the RNase IIIB domain 
by mutation of D1709, a residue mutated in some cancers, produced complete loss of 5p-de-
rived mature miRNAs, but only partial reduction in 3p-derived mature miRNAs (Gurtan 
et	al.,	2012).	Mutation	of	the	PAZ	domain	caused	global	reduction	of	miRNA	processing,	
while mutation of the Walker A motif in the helicase domain of Dicer did not alter miRNA 
processing	(Gurtan	et	al.,	2012).	These	results	are	consistent	with	the	above	mentioned	
structural features of Dicer.
Pre-miRNAs	are	the	most	efficiently	cleaved	Dicer	substrates	in vitro. In contrast to 

long dsRNA, a canonical pre-miRNA is cleaved only once and releases a single small RNA 
duplex. Human Dicer alone cleaves pre-miRNAs much faster than pre-siRNA substrates 
under both single and multiple turnover conditions; with more than 100-fold difference in 
maximal	cleavage	rates	(Vmax)	under	multiple	turnover	conditions	(Chakravarthy	et	al.,	
2010).	This	indicates	that	the	mammalian	Dicer	is	optimized	for	miRNA	biogenesis	and	
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several	specific	structural	adaptations	discussed	below	support	this	notion.	Dicer	seems	to	
interact directly with the terminal loop region of a pre-miRNA (Feng et al., 2012; Gu et al., 
2012b) while a large pre-miRNA terminal loop further enhances pre-miRNA cleavage (Feng 
et al., 2012). A large-scale in vitro analysis and mutagenesis study of 161 human pre-miR-
NAs showed that human Dicer tolerates remarkable structural variation in pre-miRNA sub-
strates	(Feng	et	al.,	2012).	The	dsRNA	structure	in	the	stem	region	and	the	2-nt	3’-overhang	
structure in a pre-miRNA contribute to binding and cleavage by Dicer (Feng et al., 2012).
A	characteristic	feature	of	the	pre-miRNA	hairpin,	which	is	accessed	by	the	PAZ	domain	

of Dicer, is a 2 nt 3’ overhang generated by the nuclear Microprocessor complex (Gregory 
et al., 2004). Pre-miRNAs with the 2 nt 3’ overhang at the 3’ terminus are bound by Dicer 
with	higher	affinity	than	pre-miRNAs	with	different	ends	(Feng	et	al.,	2012).	Moreover,	
the 2 nt 3’end overhang leads to a higher substrate processing, which was shown on both, 
pre-miRNAs	and	perfect	duplexes	(Feng	et	al.,	2012;	Park	et	al.,	2011;	Zhang	et	al.,	2004).	
Such preference is likely conferred by/due to simultaneous binding of pre-miRNA end by 
both	5’	and	3’	binding	pockets	in	the	PAZ	domain	(Park	et	al.,	2011).	Importantly,	fidelity	of	
miRNA biogenesis is critical for miRNA functionality because a single nucleotide shift at the 
5’	end	of	a	miRNA	would	redefine	its	target	repertoire.	In	contrast,	RNAi,	which	typically	
involves perfect complementarity between a small RNA and its target, would be essentially 
insensitive to a precise cleavage positioning as long as it would not affect Argonaute loading. 
Thus,	the	simultaneous	recognition	of	both	strands	at	the	2	nt	3’	overhang	terminus	by	Dicer	
can be seen as an adaptation driven by miRNA biogenesis (Park et al., 2011).
The	second	structural	adaptation	of	mammalian	Dicer	supporting	miRNA	biogenesis	is	

the N-terminal helicase, which forms a clamp-like structure adjacent to RNase III domains, 
hence it is positioned to bind the stem loop of a pre-miRNA (Lau et al., 2012). While the 
loss of the entire N-terminal helicase only slightly increases pre-miRNA processing activity 

 

0

100

200

300

400

500

18 19 20 21 22 23 24 25 26 27 28

nu
m

be
r o

f m
iR

NA
s

miRNA length

miRNA size distribution in Mus musculus

Figure 3 Mammalian miRNA size distribution
Distribution of mature murine miRNA lengths according to miRNA annotations in miRBase (release 21)

Introduction_to_RNAi.indd   38Introduction_to_RNAi.indd   38 09.07.20   8:3409.07.20   8:34



MAMMALS I

39

in vitro (Ma et al., 2008), pre-miRNA-processing by recombinant Dicer in vitro is much 
faster than that of a perfect duplex (Chakravarthy et al., 2010; Ma et al., 2008). In vivo, 
a naturally occurring N-terminally truncated Dicer isoform can rescue miRNA biogenesis 
in Dicer-/-	embryonic	stem	cells	(ESCs)	(Flemr	et	al.,	2013).	This	suggests	that	the	N-termi-
nal helicase domain in mammalian Dicers is not important for miRNA biogenesis per se; it 
rather provides constrains for substrate selectivity favouring pre-miRNAs.
This	is	consistent	with	the	model	where	pre-miRNA	binding	is	associated	with	the	cleav-

age-competent open conformation. In the open state, a pre-miRNA is bound along the 
platform, the helicase domain is bent, and RNase IIIa and IIIb sites have access to the 
substrate	(Taylor	et	al.,	2013).	It	has	been	proposed	that	the	loop	of	a	pre-miRNA	may	pre-
vent adoption of the closed conformation by Dicer by interacting with HEL1 and HEL2i 
domains and possibly stabilizing the open conformation of Dicer (Feng et al., 2012; Lau 
et	al.,	2012;	Ma	et	al.,	2012).	This	also	indicates	that	the	N-terminal	helicase	had	acquired	
distinct roles in Dicer function in RNA silencing during evolution. In mammalian cells, the 
N-terminal helicase has a gatekeeper function where pre-miRNA loops appear to be a key 
keeping the gate open.

Dicer-dependent non-canonical miRNA substrates

Apart from canonical miRNA substrates mentioned above, Dicer is processing additional 
miRNA-like substrates, which are independent of the Microprocessor complex (described in 
a separate section below). Some non-canonical miRNAs are produced by Dicer in a Micro-
processor-independent fashion, including mirtrons, which utilize the splicing machinery 
to bypass the Microprocessor complex. Mirtrons are substantially longer than Micropro-
cessor-generated pre-miRNAs and exhibit 3’ uridylation and 5’ heterogeneity (Wen et al., 
2015). A recent analysis yielded ~500 novel mouse and human introns that generate Dic-
er-dependent	small	RNA	duplexes	(Wen	et	al.,	2015).	These	represent	nearly	1000	loci	
distributed in four splicing-mediated biogenesis subclasses, with 5’-tailed mirtrons being 
the dominant subtype (Wen et al., 2015). Another example of non-canonical miRNAs found 
in the literature are Microprocessor-independent miRNAs which were originally described 
as small interfering RNAs derived from a unique hairpin formed from short interspersed 
nuclear elements (SINEs) (Babiarz et al., 2008; Castellano and Stebbing, 2013).

While a typical pre-miRNA is a hairpin RNA with 2-nt 3’ overhangs, production of 
a mature miRNA from an endogenous hairpin RNA with 5’ overhangs has also been report-
ed; mouse pre-mir-1982 is a mirtron with an 11 nt tail at the 5’ end (Babiarz et al., 2008). 
A possible mechanism for processing such templates has been provided by an in vitro study 
which showed that Dicer can produce such miRNAs in a two-step cleavage, which releases 
dsRNAs	after	the	first	cleavage	and	binds	them	again	in	the	inverse	direction	for	a	second	
cleavage (Ando et al., 2011a).

Long dsRNA substrates

In addition to pre-miRNA, Dicer can process long dsRNAs coming from different sourc-
es. Exogenous sources of dsRNA include viral dsRNAs and imply function of RNAi in 
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eukaryotic	antiviral	 immune	response	(Vance	and	Vaucheret,	2001;	Wang	et	al.,	2006;	
Wilkins et al., 2005). Endogenous dsRNAs have variable length and termini, and are gen-
erated by transcription of inverted repeats, by convergent transcription or by pairing of 
complementary RNAs in trans. Importantly, mammals lack an ortholog of RNA-depend-
ent-RNA polymerase (RdRP), which is a conserved component of RNAi-related mecha-
nisms in plants, fungi and invertebrates (see the separate RdRP section). Endogenous RNAi 
in mouse oocytes, the best documented mammalian endogenous RNAi example, works 
independently of RdRP activity (Stein et al., 2003).
The	human	Dicer	binds	long	dsRNA	but	not	siRNAs	in vitro (Provost et al., 2002). Long 

dsRNA binding is independent both on Mg2+	and	ATP.	The	human	Dicer	preferentially	
binds	and	cleaves	long	dsRNA	from	the	end,	due	to	inefficient	binding	of	internal	regions	
of	dsRNA	(Zhang	et	al.,	2002).	In	comparison	to	pre-miRNA	processing,	human	Dicer	
exhibits lower cleavage activity on perfect dsRNA substrates (Ma et al., 2008). An expla-
nation was proposed that a closed conformation of the N-terminal helicase domain disturbs 
the RNase III catalytic core and inhibits cleavage of perfect dsRNAs (Lau et al., 2012). As 
it was mentioned, in vitro deletion of the N-terminal helicase domain increases cleavage 
activity of human recombinant Dicer (~65-fold). Authors hypothesize that DExD/H-box 
domain mainly inhibits the functionality of the Dicer active site, but not RNA binding (Ma 
et	al.,	2008).	This	model	is	supported	by	previously	mentioned	structural	data,	where	Dicer	
is	in	a	closed	state	with	a	35	bp	A-form	RNA	duplex	trapped	between	PAZ	and	helicase	
domains	away	from	the	catalytic	center	(Taylor	et	al.,	2013).
The	complexity	of	the	differential	substrate	processing	by	Dicer	is	illustrated	by	a	Dic-

er mutant carrying an in-frame 43-amino-acid insertion immediately adjacent to the 
DExH	box.	This	Dicer	exhibits	defects	in	the	processing	of	most,	but	not	all,	endogenous	
pre-miRNAs	into	mature	miRNA	but	enhanced	processing	efficiency	and	concomitant	
RNA interference when thermodynamically stable, long-hairpin RNAs are used (Soifer 
et	al.,	2008).	This	result	implies	an	important	function	for	the	helicase	domain	in	the	pro-
cessing of thermodynamically unstable hairpin structures (Soifer et al., 2008).

Dicer-mediated cleavage of dsRNA can be stimulated in vitro	by	TARBP2.	However,	it	
is	not	clear	if	TARBP2	stimulation	could	be	sufficient	to	induce	endogenous	RNAi	in vivo 
(Chakravarthy et al., 2010). So far, the evidence for endogenous RNAi (including attempts 
to induce RNAi with exogenous substrates) is scarce (reviewed in detail in Nejepinska 
et	al.,	2012a;	Svoboda,	2014).	The	only	tissue	type,	where	abundant	endogenous	siRNAs	
are present and where long dsRNA readily induces RNAi are mouse oocytes, which express 
an	oocyte-specific	Dicer	isoform	lacking	a	part	of	the	N-terminal	helicase	domain	(Flemr	
et al., 2013), thus mimicking some of the Dicer mutants tested in vitro (Ma et al., 2008). 
Taken	together,	long	dsRNA,	the	typical	endogenous	RNAi	substrate,	is	poorly	processed	
by	endogenous	full-length	Dicer.	This	is	due	to	the	gatekeeper	role	of	the	N-terminal	heli-
case domain, which does not open upon binding long dsRNA.

Off note is that the human Dicer can bind 21-nt ssRNAs in vitro, independent of their 
sequence and secondary structure. Dicer binds ssRNAs having a 5’-phosphate with greater 
affinity	versus	those	with	a	5’-hydroxyl.	(Kini	and	Walton,	2007).

Introduction_to_RNAi.indd   40Introduction_to_RNAi.indd   40 09.07.20   8:3409.07.20   8:34



MAMMALS I

41

Dicer-interacting dsRBPs: TARBP2 and PACT

A common Dicer interacting partner found across Metazoa is a dsRBP with tandemly 
arrayed dsRBDs. Mammals have four dsRBP with tandemly arrayed dsRBDs proteins: 
trans-activation	responsive	RNA-binding	protein	2	(TARBP2),	protein	activator	of	PKR	
(PACT),	Staufen	1	(STAu1),	and	Staufen	2	(STAu2).	However,	only	TARBP2	(also	known	
as	TRBP	or	TRBP2)	and	PACT	were	identified	as	Dicer	binding	partners	(Chendrimada	
et al., 2005; Haase et al., 2005).
TARBP2	and	PACT	are	paralogs,	which	evolved	through	a	gene	duplication	event	in	an	

ancestral	chordate	(Daniels	and	Gatignol,	2012).	The	structure	of	human	TARBP2	has	been	
partially resolved (Benoit and Plevin, 2013). Each protein consists of three dsRBDs, where 
the	first	two	domains	can	bind	dsRNA	(or	miRNA)	while	the	third	domain	has	a	partial	
homology to dsRBD and does not bind dsRNA. Instead, it mediates protein-protein inter-
actions and is a part of a larger protein-protein interacting C-terminal region referred to 
as	Medipal	domain	as	it	interacts	with	Merlin,	Dicer,	and	PACT	(reviewed	in	Daniels	and	
Gatignol,	2012).	TARBP2	and	PACT	can	also	form	homodimers	and	heterodimers	through	
the Medipal domain (Laraki et al., 2008). 
The	binding	site	of	TARBP2	and	PACT	on	Dicer	was	recently	determined	using	cryo-

EM and crystallography (Wilson et al., 2015). Homology-based modelling showed that 
Dicer-binding	residues	are	conserved	in	TARBP2	and	PACT, implicating that binding of 
TARBP2	and	PACT	to	Dicer	is	mutually	exclusive	(Wilson	et	al.,	2015).
TARBP	has	a	positive	effect	on	Dicer	activity.	Human	Dicer	is	much	faster	at	processing	

a pre-miRNA substrate compared to a pre-siRNA substrate under both single and multiple 
turnover	conditions.	Maximal	cleavage	rates	(Vmax) calculated by Michaelis-Menten analy-
sis	differed	by	more	than	100-fold	under	multiple	turnover	conditions.	TARBP2	was	found	
in vitro to stimulate Dicer-mediated cleavage of both, pre-miRNA and pre-siRNA sub-
strates; this stimulation requires the two N-terminal dsRBDs (Chakravarthy et al., 2010). 
Thus,	while	the	structure	of	the	substrate	affects the rate at which Dicer generates small 
RNAs,	TARBP2	stimulates	dicing	by	presumably	enhancing	the	stability	of	Dicer-substrate	
complexes (Chakravarthy et al., 2010).
When	compared	to	Dicer	and	Dicer:TARBP2	complex,	PACT	inhibits	Dicer	processing	

of	pre-siRNA	substrates	(Lee	et	al.,	2013).	The	two	N-terminal	dsRBDs	contribute	to	the	
observed differences in dsRNA substrate recognition and processing behaviour of Dicer:ds-
RNA-binding	protein	complexes	(Lee	et	al.,	2013).	In	addition,	PACT	and	TARBP2	have	
non-redundant effects on the generation of different-sized miRNAs (isomiRs) (Kim et al., 
2014;	Lee	et	al.,	2013;	Wilson	et	al.,	2015).	Cells	lacking	TARBP2	exhibit	altered	cleavage	
sites in a subset of miRNAs but no effect on general miRNA abundance or Argonaute load-
ing	(Kim	et	al.,	2014).	Thus,	impact	of	TARBP2	and	PACT	on	miRNAs	biogenesis	in vivo 
seems to be relatively minor (Kim et al., 2014; Wilson et al., 2015). However, it should be 
pointed out that any change in the 5’ end position of any miRNA will have a strong effect on 
its	target	repertoire.	Taken	together,	TARBP2	and	PACT	are	regulatory	factors	that	contrib-
ute	to	the	substrate	specificity	and	cleavage	fidelity	during	miRNA	and	siRNA	production.	
Moreover,	TARBP2	and	PACT	have	an	additional	role	in	a	cross-talk	of	the	interferon	

(IFN)	response	and	small	RNA	pathways	(reviewed	in	Daniels	and	Gatignol,	2012).	The	
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IFN response is the major antiviral branch of innate immunity in mammals, which deals 
with threats associated with long dsRNA. Among the key components sensing dsRNA in 
the IFN response are protein kinase R (PKR) and helicase RIG-I (reviewed in Gantier and 
Williams,	2007).	The	two	N-terminal	dsRBDs	of	PACT	and	TARBP2	bind	PKR	through	
the	same	residues	(Wilson	et	al.,	2015)	while	the	(C-terminal)	Medipal	domain	of	PACT	is	
needed	for	PKR	activation	(Huang	et	al.,	2002).	In	contrast,	the	Medipal	domain	of	TAR-
BP2	has	an	inhibitory	effect	(Gupta	et	al.,	2003).	Furthermore,	sequestering	of	PACT	by	
TARBP2	has	negative	effect	on	PKR	phosphorylation	and	activation.	PKR	inhibition	by	
TARBP2	is	released	in	stress	conditions,	leading	to	IFN	response	activation	(Daher	et	al.,	
2009).	Therefore,	absolute	and/or	relative	expression	levels	of	TARBP2	and	PACT	might	
be buffering or sensitizing the IFN response to dsRNA. One could envision that suppression 
of the IFN response might result in increased RNAi. However, there is no evidence, so far 
that	TARBP2	would	redirect	long	dsRNA	to	Dicer	and	stimulate	RNAi	in vivo enough to 
achieve	a	robust	sequence-specific	mRNA	knock-down.
Taken	together,	while	TARBP2	and	PACT	are	clearly	associated	with	dsRNA	binding,	

Dicer	and	the	miRNA	pathway.	However,	the	full	extent	of	biological	roles	of	TARBP2	
and	PACT	in	dsRNA	response,	in	the	miRNA	pathway,	and	elsewhere	is	still	not	fully	
understood.	Since	TARBP2	also	interacts	with	and	inhibits	PKR	(Cosentino	et	al.,	1995;	
Park	et	al.,	1994),	it	was	speculated	that	TARBP2	could	be	a	component	of	a	network	of	
protein-protein interactions underlying a reciprocal regulation of RNAi/miRNA and IFN-
PKR	pathway	(Haase	et	al.	2005).	This	notion	is	further	supported	by	PACT,	a	paralog	of	
TARBP2,	which	exerts	the	opposite	role	on	PKR.	PACT	was	shown	to	interact	with	TAR-
BP2 and Dicer and to facilitate siRNA production (Kok et al., 2007). At the same time, the 
role	of	TARB2P	in	RNA	silencing	has	been	studied	in	cells	where	the	physiological	sub-
strate for Dicer processing and RISC loading are miRNA precursors and where long dsRNA 
readily	activates	the	protein	kinase	R	(PKR)	and	interferons	(IFN).	Thus,	while	the	RISC	
loading	role	of	TARBP2	may	be	common	for	miRNA	and	RNAi	pathway,	it	is	not	clear	if	
an	isoform	of	TARBP2	plays	any	specific	role	in	recognition	and	processing	of	long	dsR-
NA in the canonical mammalian RNAi pathway. Accordingly, one of the unexplored areas, 
which	deserve	further	attention	is	the	contribution	of	different	splice	variants	to	TARBP2	
biology	(Bannwarth	et	al.,	2001).	Likewise,	it	needs	to	be	tested	if	TARBP2	plays	a	role	
in directing long dsRNA into RNAi. Finally, there is RNAi silencing-independent function 
of	TARBP2	to	explore.	TARBP2	can	also	bind	mRNA	hairpins	and	it	has	been	proposed	
that	TARBP	promotes	metastasis	by	destabilizing	metastasis	suppressor	through	binding	of	
mRNA structural elements (Goodarzi et al., 2014).

(Absence of) mammalian RNA-dependent RNA polymerase

RNA dependent RNA polymerases were found in RNA silencing in plants an lower inver-
tebrates where they can either produce long dsRNA or short RNAs serving as an initiator 
or	amplifier	of	the	response	(reviewed	in	Maida	and	Masutomi,	2011).	Importantly,	these	
independently discovered RdRPs that act in RNA silencing in plants, fungi and nematodes 
are homologs. Furthermore, homologs of these RdRPs exist in metazoan phyla, including 
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Nematoda (e.g. C. elegans), Cnidaria (hydra), Chelicerata (tick), Hemichordata (acorn 
worm), Urochordata (sea squirt), and Cephalochordata (lancelet) but appear absent in 
others, including Platyhelminthes (planaria), Hexapoda (Drosophila), and Craniata (ver-
tebrates). Phylogenetic analysis suggests that RdRPs in RNA silencing pathways have 
a monophyletic origin, i.e. evolved once from an ancestral RdRP presumably acting in 
a common ancestral RNA silencing mechanism (Cerutti and Casas-Mollano, 2006; Murphy 
et al., 2008). At the same time, mammalian genomes do not contain a homolog of these 
RdRPs, suggesting that it was lost during evolution and is absent in RNA silencing in mam-
mals. Whether RdRP activity completely disappeared from RNAi in mammals is unclear. 
One could speculate that RdRP orthologs in RNA silencing in vertebrates could be replaced 
by another RdRP, for example by exaptation of some viral RdRP.

Our literature search for mammalian RdRPs related to RNA silencing yielded ten original 
research papers related to mammalian RdRPs that could be put in some context of RNA 
silencing. Of these, four articles actually dealt with viral RdRPs and silencing of viruses 
by exogenous siRNAs and not with an RdRP possibly involved in RNAi (Lee et al., 2002; 
Meng et al., 2006; Moon et al., 2016; Nygardas et al., 2009).

One article reported that ectopic expression of plant RdRP has no effect on RNAi in the 
mouse model (De Wit et al., 2002). Another report described Aquarius (AQR), a murine 
protein of unknown function with a weak homology to viral RdRPs expressed in embryos 
and ESCs (Sam et al., 1998). A follow up search for AQR-related data (28 papers citing 
the original one and text search by gene name) suggested that Aquarius is an RNA/DNA 
helicase involved in R-loop processing (Sollier et al., 2014). 

An important contribution to RdRP function in mammalian RNAi was provided by 
a report demonstrating the lack of RdRP activity in RNAi in mouse oocytes (Stein et al., 
2003).	This	report	is	of	a	particular	importance	because	mouse	oocytes	are	the	only	mam-
malian cell type, with strong endogenous RNAi pathway (reviewed in Svoboda, 2014).
Two	reports	proposed	that	two	other	RdRP	activities	could	generate	dsRNA	that	could	

be processed by Dicer. An indirect support for a putative RdRP emerged from Drosophila, 
where it was discovered ELP1, a non-canonical RdRP conserved in all eukaryotes, which 
associates with DCR-2 and its loss results in reduction of endo-siRNAs and upregulation of 
transposon transcripts (Lipardi and Paterson, 2009). However, a follow up search revealed 
the lack of data supporting that notion in mammals.
The	second	proposed	mammalian	RdRP	acting	in	RNAi	is	a	ribonucleoprotein	complex	

of	the	human	telomerase	reverse	transcriptase	(TERT)	and	the	RNA	component	of	mito-
chondrial RNA processing endoribonuclease (RMRP). RMRP shows a strong preference 
for substrates that have 3’ fold-back structures and produces dsRNA that can be processed 
by Dicer yielding self-targeting endogenous siRNAs (Maida et al., 2009). A follow-up anal-
ysis of these siRNAs revealed that these off-target effects of these endo-siRNAs would 
mimic	miRNA	activities	(Maida	et	al.,	2013).	The	latest	report	shows	that	TERT	RdRP	gen-
erates short RNAs that are complementary to template RNAs and have 5’-triphosphorylated 
ends, which indicates de novo synthesis of the RNAs (Maida et al., 2016).
Taken	together,	all	available	data	suggest	that	mammalian	RNAi	does	not	employ	an	

RdRP	in	a	canonical	way	known	from	plants	or	nematodes.	There	are	two	candidate	mech-
anisms that might involve RdRP in RNA silencing – one of them is based just on existence 

Introduction_to_RNAi.indd   43Introduction_to_RNAi.indd   43 09.07.20   8:3409.07.20   8:34



MAMMALS I

44

of	a	homolog	of	ELP1,	so	further	experimental	evidence	is	needed	to	confirm	whether	
mammalian	ELP1	homologs	participate	in	RNAi	at	all.	This	would	include	analysis	of	
small RNAs in mammalian cells lacking Elp1 and further characterization of complexes 
containing	ELP1.	The	second	candidate	mechanism,	the	TERT	RdRP	system,	seems	to	pro-
duce a unique small population self-targeting endo-siRNAs in a highly localized manner, 
i.e. does not appear to be an RdRP acting in RNAi in trans. 

Argonaute proteins

Once a small RNA duplex is produced by Dicer, one of the strands of the duplex is selected 
and loaded onto an Argonaute protein. However, before summarizing AGO loading and 
RISC	assembly,	I	will	review	structure	of	AGO	proteins,	their	covalent	modifications	and	
binding partners. 

AGO2 structure and function

Argonaute proteins are the key components of miRNA and RNAi pathways as they bridge 
the small RNA, its target and the silencing effect. According to the model (Yuan et al., 
2005), AGO proteins exist in four basic states according to the bound RNAs: apo (no sub-
strate), pre-RISC (with a passenger and a guide), activated RISC (with a guide), and RISC 
targeting	(with	a	guide	and	a	target).	Transitions	between	these	four	states	correspond	to	
RISC loading, RISC activation and target recognition, which will be discussed later.

Argonaute proteins are divided into two subfamilies: AGO proteins, which accommo-
date miRNAs and siRNAs (and are in the focus of this section), and PIWI proteins, which 
accommodate piRNAs. As piRNAs are produced in the germline in a Dicer-independent 
manner from single-stranded RNAs, hence they are not systematically covered in this report 
and neither are PIWI proteins.

Mammalian genomes encode four AGO proteins, where AGO1, 3, and 4 are encod-
ed within one locus on the human chromosome 1 (chromosome 4 in mice) and AGO2 
is encoded separately on chromosome 8 (chromosome 15 in mice). independent studies 
have revealed that mammalian Argonautes were originally discovered through screening 
of antibodies generated against intracellular membrane fractions from rat pancreas, which 
yielded a 95-kDa protein that localizing to the Golgi complex or the endoplasmic reticulum 
(Cikaluk	et	al.,	1999).	This	initial	observation	was	later	refined	by	analysis	of	compartmen-
talization of miRNA- and siRNA-loaded AGO2 populations that co-sediment almost exclu-
sively	with	the	rough	endoplasmic	reticulum	membranes,	together	with	Dicer,	TARBP2,	
and	PACT	(Stalder	et	al.,	2013).	The	identified	protein	of	unknown	function	was	originally	
named	GERp95	(Golgi	ER	protein	95	kDa)	and	was	identified	as	a	member	of	a	family	
of highly conserved proteins in metazoans which function in the germline (Cikaluk et al., 
1999).	Apart	from	the	original	GERp95	reference,	there	are	three	others	identified	with	
the GERp95 keyword search. In one of them, GERP95 was found to bind Hsp90 chaperon 
(Tahbaz	et	al.,	2001)	before	it	was	finally	linked	to	RNAi	and	RISC	complex	and	became	
classified	as	an	Argonaute	family	member	(Martinez	et	al.,	2002;	Thonberg	et	al.,	2004).
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AGO2 is the catalytical engine of RNAi and all four AGO proteins operate in the miR-
NA	pathway.	The	key	for	understanding	functional	significance	of	AGO	proteins	for	RNA	
silencing and for summarizing the molecular mechanisms mediated by AGO proteins are 
their structural analyses. 
unlike	Dicer,	mammalian	AGO	proteins	were	successfully	crystalized.	The	core	of	the	

structural reports is thus formed by six articles reporting crystal structures of human Argo-
naute proteins (Elkayam et al., 2012; Faehnle et al., 2013; Nakanishi et al., 2013; Schirle 
and MacRae, 2012; Schirle et al., 2015; Schirle et al., 2014). Four articles describe crystal 
structures of AGO2 (Elkayam et al., 2012; Schirle and MacRae, 2012; Schirle et al., 2015; 
Schirle et al., 2014), which is capable of cleaving cognate transcripts and two describe 
miRNA-pathway dedicated AGO1 (Faehnle et al., 2013; Nakanishi et al., 2013).
There	is	a	number	of	additional	articles,	which	provided	partial	insights	into	AGO	func-

tional	structure.	These	could	be	divided,	as	in	the	case	of	Dicer,	into:
(I) Biochemical studies of recombinant human AGO proteins and individual domains 

(Deleavey et al., 2013; Kalia et al., 2016; Lima et al., 2009; Liu et al., 2004; Meister 
et	al.,	2004;	Rivas	et	al.,	2005;	Tan	et	al.,	2009).

(II) The pioneering AGO crystal structures from archaea Pyrococcus furiosus (Song 
et al., 2004) and Aquifex aeolicus (Yuan et al., 2005) that served as a comparative 
scaffold.

(III) Crystallographic studies on individual domains of human AGO proteins	(PAZ	of	
human AGO 1 (Ma et al., 2004), or MID domain of human AGO2 (Frank et al., 2011; 
Frank et al., 2010)) or modelling (Deerberg et al., 2013; Gan and Gunsalus, 2015; 
Jiang et al., 2015; Kandeel and Kitade, 2013; Kinch and Grishin, 2009).

Human AGO1 and AGO2 structures

Among the four mammalian AGO proteins associating with 21–23 nt long small RNAs, 
only	AGO2	was	identified	to	have	has	the	„slicer“	activity	(Liu	et	al.,	2004;	Meister	et	al.,	
2004).	The	crystal	structure	of	human	AGO2	revealed	a	bilobed	molecule	with	a	central	
cleft for binding guide and target RNAs (Elkayam et al., 2012; Schirle and MacRae, 2012; 
Schirle	et	al.,	2015;	Schirle	et	al.,	2014)	(Fig.	4).	This	domain	organization	is	consistent	
with	that	found	in	archaeal	AGO	proteins	(Song	et	al.,	2004;	Yuan	et	al.,	2005).	The	3’	end	
of	a	short	RNA	is	anchored	by	the	PAZ	domain	in	a	sequence-independent	manner	(Ma	
et	al.,	2004).	The	5’	phosphate	of	the	siRNA	is	buried	in	a	pocket	at	the	interface	between	
the MID domain and the PIWI domain. Structural studies of archaeal AGO homologs 
showed that the PIWI domain has an RNase H-like fold and possess the endonucleolytic 
“slicer”	activity	(Song	et	al.,	2004;	Yuan	et	al.,	2005).	The	5’	end	of	the	base	pairing	cognate	
mRNA	enters	between	the	N-terminal	and	PAZ	domains	and	its	3’	end	exits	between	the	
PAZ	and	MID	domains.
Structural	analysis	provided	a	model	for	recognition	of	target	RNAs,	including	the	first	

nucleotide in the cognate site, which does not base pair with the loaded RNA. Yet, inter-
action with the cognate site is enhanced by adenosine in the position 1 of miRNA binding 
site; the structural analysis revealed that it is recognized indirectly by AGO2 (Schirle et al., 
2015). Importantly, N6 adenosine methylation blocks recognition of the adenosine, which 
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might	refl	ect	a	possible	mechanism	for	regulating	of	miRNA	binding	through	covalent	
modifi	cation	of	the	binding	site	(Schirle	et	al.,	2015).	Nucleotides	2	to	6	of	a	heterogeneous	
mixture of guide RNAs are positioned in an A-form conformation for base pairing with 
target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in 
miRNA target recognition or release of sliced RNA products. (Schirle and MacRae, 2012). 
Crystallization of loaded human AGO2 in the presence of target RNA sequences suggest-
ed a stepwise mechanism for interaction with cognate RNAs. First, AGO2 exposes guide 
nucleotides (nt) 2 to 5 for initial target pairing, which then promotes conformational chang-
es that expose nt 2 to 8 and 13 to 16 for further target recognition (Schirle et al., 2014). 
miRNA	binding	seem	to	lock	otherwise	fl	exible	AGO2	enzyme	in	a	stable	conformation	
(Elkayam	et	al.,	2012).	The	structure	of	human	Ago2	bound	to	miRNA-20a	implies	that	
the	miRNA	is	anchored	at	both	ends	by	the	MID	and	PAZ	domains	with	several	kinks	and	
turns along the binding groove (Elkayam et al., 2012). Spurious slicing of miRNA targets is 
avoided through an inhibitory coordination of one catalytic magnesium ion (Schirle et al., 
2014). Importantly, the PIWI domain contains tandem tryptophan-binding pockets, which 
function in recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofac-
tors (Schirle and MacRae, 2012). 
Structures	of	human	AGO1	bound	to	endogenous	co-purifi	ed	RNAs	or	loaded	with	let-7	

miRNA are strikingly similar to the structures of AGO2 (Faehnle et al., 2013; Nakanishi 
et al., 2013). Evolutionary changes that rendered hAGO1 inactive included a mutation of 
a catalytic tetrad residue and mutations on a loop near the actives site (Faehnle et al., 2013; 
Nakanishi et al., 2013).
Taken	 together,	 crystal	 structures	 of	AGO2	 explained	 the	 nucleotide-pairing	 pat-

terns that emerged during previous studies of miRNA sequences, namely analyses of 

Figure 4 AGO2 structure
The fi gure shows domain composition and structure of human AGO2. Different colours indicate posi-
tions of the central PAZ domain and the c-terminal PIWI domain, which has an RNase H fold (Song 
et al., 2004). Two additional domains are recognized, the N-terminal domain and the MID domain be-
tween PAZ and PIWI domains. The ribbon model was taken from (Schirle et al., 2014).
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conservations of miRNA binding sites and biochemical analyses of target recognition, 
which are discussed later.

Post-translational modifications of AGO proteins

Annotation of Argonaute-related literature yielded a number of reports describing covalent 
modifications	of	AGO	proteins	implicated	in	post-translational	regulations,	namely	phos-
phorylation (Horman et al., 2013; Lopez-Orozco et al., 2015; Mazumder et al., 2013; Patra-
nabis	and	Bhattacharyya,	2016;	Rudel	et	al.,	2011;	Shen	et	al.,	2013;	Zeng	et	al.,	2008),	
prolyl 4-hydroxylation (Qi et al., 2008; Wu et al., 2011), sumoylation (Josa-Prado et al., 
2015), ubiquitination (Bronevetsky et al., 2013; Johnston et al., 2010; Rybak et al., 2009; 
Smibert et al., 2013), and poly-ADP-ribosylation (Leung et al., 2011; Seo et al., 2013).

Phosphorylation

Phosphorylation of AGO occurs at multiple positions and published data imply that phos-
phorylation operates through multiple different mechanisms. Phosphorylation has been 
detected	on	AGO1	and	AGO2	in	the	PAZ	domain	(pS253,	pT303,	pT307),	the	PIWI	domain	
(pS798), in the L2 linker region (pS387, pY393) and in the MID domain (pY529) (Rudel 
et al., 2011).

S387 phosphorylation – Serine-387 (S387) was found to be the major Ago2 phospho-
rylation site in vivo	(Zeng	et	al.,	2008).	Phosphorylation	of	Ago2	at	S387	was	significantly	
induced upon stress in a mitogen-activated protein kinase (MAPK)-dependent manner 
but,	apparently	independently	of	JNK	and	MEK	kinases	(Zeng	et	al.,	2008).	Another	
kinase	 implicated	in	S387	phosphorylation	was	AKT3	(Horman	et	al.,	2013).	S387A	
mutation or treatment with a p38 MAPK inhibitor reduced the localization of Ago2 to 
cytoplasmic	P-bodies	suggesting	a	potential	regulatory	mechanism	(Zeng	et	al.,	2008).	
Conversely, S387 phosphorylation downregulated RNAi-like cleavage and increased 
miRNA-mediated translational repression (Horman et al., 2013). Furthermore, AGO2 
phosphorylation at S387 facilitated interaction with GW182 and localization to P bodies 
(Horman et al., 2013).

S798 phosphorylation – Serine-798 (S798) phosphorylation has been also associated 
with P-body localization as mutation analysis of phospho-residues within AGO2 revealed 
that S798D completely abrogated association of Ago2 with P-bodies and stress granules 
(Lopez-Orozco et al., 2015).

Y529 phosphorylation	–	Tyrosine	529	(Y529),	which	is	conserved	in	all	other	species	
that have been analyzed. is located in the small RNA 5’-end-binding pocket of Ago proteins 
was found to be phosphorylated in vivo (Rudel et al., 2011). Y529E phosphomimicking 
mutation strongly reduced small RNA binding suggesting a potential regulatory role (Rudel 
et al., 2011). Y529 phosphorylation causing impaired binding miRNAs was subsequently 
implicated as a mechanisms transiently relieving miRNA repression during macrophage 
function (Mazumder et al., 2013). Y529 phosphorylation was also proposed as a mecha-
nism relieving Let-7-mediated repression during neuronal differentiation (Patranabis and 
Bhattacharyya, 2016)
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Y393 phosphorylation	–	Tyrosine	393	(Y393)	was	implicated	in	EGFR-mediated	repres-
sion of miRNA biogenesis during hypoxia (Shen et al., 2013). According to the model, 
Y393 negatively impacts the interaction between AGO2 and Dicer and inhibits maturation 
of long-loop pre-miRNAs carrying tumour-suppressor-like miRNAs (Shen et al., 2013).

Prolyl 4-hydroxylation

Prolyl 4- hydroxylation has been implicated in AGO stabilization and increased RNAi. 
Mass spectrometry analysis hydroxylation of the endogenous AGO2 at proline 700 (P700) 
and P700A mutation resulted in destabilization of AGO2 (Qi et al., 2008). Prolyl hydrox-
ylation was observed under hypoxic conditions, where it lead to increased AGO2 stability 
(Wu et al., 2011). AGO2 hydroxylation correlated with increased miRNA levels as well as 
the endonuclease activity of AGO2 (Wu et al., 2011). Conversely, human cells depleted 
and	mouse	embryonic	fibroblast	cells	depleted	of	a	specific	prolyl-4-hydroxylase	showed	
reduced stability of AGO2 and impaired RISC activity (Qi et al., 2008). Hydroxylation of 
AGO2 was required for its association with HSP90 (see further below), which is implicated 
in the RISC loading with miRNAs and translocation to stress granules (Wu et al., 2011).

SUMOylation

The	small	ubiquitin-like	modifier	(SuMO)	regulates	various	cellular	processes.	AGO2	was	
identified	as	a	substrate	for	SuMO	E3	ligase	PIAS3.	AGO2	was	SuMOylated	in	mamma-
lian cells by both SUMO1 and SUMO2 primarily at lysine 402. Mutation of the SUMO 
consensus site reduced RNAi activity of AGO2, suggesting that SUMOylation might reg-
ulate endonucleolytic activity of AGO2 (Josa-Prado et al., 2015)

Ubiquitination

Ubiquitin-proteasome apparently tunes AGO levels to adjust miRNA, AGO and Dicer stoi-
chiometry (Smibert et al., 2013). It was found that levels of AGO1 are adjusted according to 
miRNA expression in a ubiquitin-proteasome-dependent manner (Smibert et al., 2013). Sim-
ilarly, lower stability of AGO2 in Dicer-knockout cells could be rescued by proteasome inhi-
bition or Dicer expression (Smibert et al., 2013). AGO and GW182 protein levels also depend 
on	HSP90	availability	(Johnston	et	al.,	2010).	Two	studies	show	examples	of	developmen-
tally regulated ubiquitination, which is apparently used to suppress AGO activities during 
developmental transitions. First, the let-7 target Lin-41	gene	in	mice	is	a	stem	cell	specific	E3	
ubiquitin ligase targeting AGO1, AGO2, and AGO4 proteins (Rybak et al., 2009). Second, 
AGO	proteins	are	downregulated	in	a	proteasome-dependent	manner	during	T	cell	differen-
tiation, presumably as a part of gene expression reprogramming (Bronevetsky et al., 2013).

Poly-ADP-ribosylation

This	AGO	modifications	seems	to	be	linked	to	suppression	of	RNA	silencing.	Poly(ADP-ri-
bose) has been associated with the assembly of stress granules, which accumulate 
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RNA-binding proteins regulating mRNAs stability and translation upon stress. Stress gran-
ule	proteins	modified	by	poly(ADP-ribose)	include	AGO1—4	(Leung	et	al.,	2011).	Inter-
estingly, poly-ADP-ribosylation of RISC associated with reduced RISC activity has been 
observed upon viral infection (Seo et al., 2013). According to the model, poly-ADP-ribo-
sylation after viral infection releases miRNA-mediated repression of interferon-stimulated 
genes, hence boosting innate antiviral pathways (Seo et al., 2013).

Other Dicer and AGO interacting proteins

Apart	from	the	RISC-loading	complex	and	miRISC	components	such	as	GW182/TNRC6	
or DDX6 and others mentioned above and elsewhere, a large number of AGO-interacting 
partners	has	been	identified	in	the	past	and	reported	individually	(see	further	below)	or	
comprehensively (Meister et al., 2005). Here, I provide an overview of those interacting 
partners.

DDX3 – DEAD-box helicase 3 is one of the helicases sensing viral double-stranded 
RNAs. DDX3 was also among the P-body components recruited to the West Nile virus 
replication sites and regulating viral replication (Chahar et al., 2013). DDX3 was also iden-
tified	by	an	RNAi	screen	as	an	essential	factor	involved	in	RNAi	pathway	(Kasim	et	al.,	
2013). DDX3 is co-localized with AGO2 and a dominant negative mutant of DDX3 affect-
ed the RNAi activity (Kasim et al., 2013).

CLIMP-63	–	The	cytoskeleton-linking	endoplasmic	reticulum	(ER)	membrane	protein	
of	63	kDa	(CLIMP-63)	was	identified	as	a	novel	Dicer-interacting	protein	through	a	yeast	
two-hybrid screening. CLIMP-63 interacts with Dicer to form a high molecular weight 
complex,	which	is	catalytically	active	in	pre-miRNA	processing	(Pepin	et	al.,	2012).	These	
results are consistent with analysis of Dicer compartmentalization, which showed that load-
ing of small RNAs into RISC, cognate mRNA binding, and Ago2-mediated mRNA slicing 
in mammalian cells are nucleated at the rough endoplasmic reticulum (Stalder et al., 2013). 
While the major RNAi pathway proteins are found in most subcellular compartments, 
the miRNA- and siRNA-loaded AGO2 populations co-sediment almost exclusively with 
the	rough	endoplasmic	reticulum	membranes,	together	with	Dicer,	TARBP2,	and	PACT	
(Stalder et al., 2013).

NUP153	–	The	nuclear	pore	complex	protein	NuP1	was	found	to	associate	with	human	
Dicer	protein.	The	association	was	detected	mainly	in	the	cytoplasm	but	was	also	apparent	
at the nuclear periphery. Accordingly, it has been suggested that NUP153 plays a role in the 
nuclear localization of Dicer (Ando et al., 2011b)

FMRP – X mental retardation protein (FMRP) is included in the list despite its ques-
tionable role in mammalian RNA silencing. In any case, our literature search revealed 
a number of articles dealing with mammalian FMRPs because FMMRP is a highly con-
served protein and its Drosophila ortholog dFXR was implicated in RNAi (Caudy et al., 
2002; Ishizuka et al., 2002). According to the available data, FMRP is associated with 
RNA silencing factors. FMRP co-localized with AGO2 (Goodier et al., 2007) and immu-
noprecipitation suggested that a portion of Dicer and AGO were associated with each other 
and with FMRP (Lugli et al., 2005). In vitro data using recombinant proteins, suggested 
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that human FMRP can act as a miRNA acceptor protein for Dicer and facilitate the assem-
bly	of	miRNAs	on	specific	target	RNA	sequences	(Plante	et	al.,	2006).	The	requirement	of	
FMRP	for	efficient	RNAi	was	also	supported	in vivo by reporter assays supporting the role 
of FMRP in the mammalian RISC (Plante et al., 2006). However, the loss of mammalian 
FMRP did not reveal any apparent direct impact on RISC function (Didiot et al., 2009; 
Madsen et al., 2009).

Huntingtin – AGO2 was found as one of the Huntingtin associated proteins by co-im-
munprecipitation. Furthermore, Huntingtin and AGO2 co-localized in P-bodies and, impor-
tantly, depletion of Huntingtin compromised RNA-mediated gene silencing (Savas et al., 
2008).	However,	the	molecular	mechanism	by	which	Huntingtin	would	influence	RNA	
silencing remain unknown.

14–3–3 – Cell cycle regulating 14–3–3 proteins were reported to bind the amino termi-
nus of AGO1 and AGO2 (Stoica et al., 2006). Overexpression of the Ago1 amino terminus 
in yeast resulted in cell cycle delay at the G(2)/M boundary prompting a hypothesis that 
14–3–3 proteins contribute to Argonaute protein functions in cell cycle and/or gene-silenc-
ing pathways (Stoica et al., 2006). 

UPF1 – mRNA surveillance protein appears to provide a nexus between three dif-
ferent mechanisms of RNA metabolism: adenosine deamination, mRNA surveillance 
(non-sense-mediated decay) and RNA silencing. Both, human ADAR1 and UPF1 were 
found associated within nuclear RNA-splicing complexes (Agranat et al., 2008). At the 
same time, UPF1 was connected to RNA silencing (Jin et al., 2009). UPF1 interacts 
with human AGO1 and AGO2 and co-localizes with them into P-bodies. UPF knock-
down yielded upregulation of miRNA targets while its overexpression resulted in their 
downregulation	(Jin	et	al.,	2009).	This	would	suggest	that	uPF	may	contribute	to	RNA	
silencing, maybe at the level of RISC binding to its targets and accelerating their decay 
(Jin et al., 2009).

RBM4	–	The	RNA-binding	motif	protein	4	(RBM4)	plays	multiple	roles	 in	mRNA	
metabolism.RBM4 was found during proteomic analysis of AGO-containing miRNPs (i.e. 
miRISC) and RBM4 knockdown showed that it is required for miRNA-guided gene regula-
tion (Hock et al., 2007). It was also found to co-localize with AGO2 during muscle cell dif-
ferentiation	(Lin	and	Tarn,	2009).	RBM4	interacts	directly	with	AGO2	and	may	selectively	
enhance	miRISC	association	with	target	mRNAs	(Lin	and	Tarn,	2009).	RBM4	was	also	
implicated	it	miRNA-mediated	repression	in	inflammation	where	inflammation-induced	
miRNA-146	promotes	a	feed-forward	loop	that	modifies	through	phosphorylation	the	sub-
cellular localization RBM4 and promotes its interaction with AGO2 and, subsequently, 
tames	an	excessive	acute	inflammatory	response	(Brudecki	et	al.,	2013)

TRIM32	–	TRIM-NHL	32	protein	regulates	protein	degradation	and	miRNA	activity	in	
neural progenitor cells to control the balance between differentiating neurons and daughter 
cells	retaining	the	progenitor	fate.	TRIM32	was	shown	to	bind	AGO1	and	increase	the	
activity	of	specific	miRNAs,	such	as	Let-7	(Schwamborn	et	al.,	2009)

QKI-6 – QKI-6 is one of the protein isoforms encoded by the qkI gene in mice. QKI-6 
was found to interact with AGO2 and to co-localize with AGO2 into stress granules (Wang 
et al., 2010). At the same time QKI-6 depletion lead to increased miR-7 expression while 
QKI-6 presence inhibits processing of pri-miR-7 into miR-7 in glioblastoma cells (Wang 
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et al., 2013). It has been suggested that OKI-6 mediates selective nuclear retention of pri-
miR-7, hence preventing its processing (Wang et al., 2013). Further research is needed to 
clarify these two seemingly distant activities of OKI-6.

RACK – receptor for activated protein kinase C (RACK1), a constituent of the eukar-
yotic 40S subunit, was reported to be important for miRNA-mediated gene regulation in 
C. elegans and humans, essentially linking miRISC with the ribosome (Jannot et al., 2011). 
RACK1	was	also	identified	as	a	gene	necessary	for	full	miRNA	function	a	screen	for	genes	
regulating miRNA function (Otsuka et al., 2011). RACK1 interacts with components of the 
miRISC in nematodes and mammals; the alteration of RACK1 expression alters miRNA 
function and impairs the association of the miRNA complex with the translating ribosomes 
(Jannot et al., 2011). Another study found that RACK1 binds to KH-type splicing regulatory 
protein (KSRP) and is required for the recruitment of mature miRNAs to RISC (Otsuka 
et al., 2011)

PTB	–	Polypyrimidine	Tract	Binding	Protein	(hnRNP	I)	was	found	during	a	search	for	
proteins	involved	in	let-7	mediated	gene	regulation.	(Engels	et	al.,	2012).	PTB	interacts	
with miRNAs and human AGO2 through RNA and there is a population of cellular targets 
that	are	co-regulated	by	PTB	and	AGO2	(Engels	et	al.,	2012).

LRRK2 – leucine-rich repeat kinase 2 (LRRK2) gain-of-function mutations cause 
age-dependent degeneration of dopaminergic neurons. the analysis of the molecular 
mechanism of pathogenesis in Drosophila and humans revealed that LRRK2 associates 
with Drosophila AGO1 or human AGO2 (Gehrke et al., 2010) and that the gain-of-func-
tion LRRK2 mutant antagonizes let-7, causing derepression of Let-7 targets (Gehrke 
et al., 2010)

APOBEC3G – the apolipoprotein-B-mRNA-editing enzyme catalytic polypeptide-like 
3G (APOBEC3G or A3G) is cytidine deaminase. APOBEC3G is an antiviral factor is found 
in P-bodies (Izumi et al., 2013; Wichroski et al., 2006). APOBEC3H also inhibits miR-
NA-mediated repression of translation (Huang et al., 2007) by competitively inhibiting 
binding	of	MOV10	to	AGO2,	causing	either	abnormal	assembly	or	abnormal	maturation	of	
miRISC (Liu et al., 2012a).

AGO loading and RISC formation

The	next	important	step	is	formation	of	RISC,	the	effector	complex	of	miRNA	and	RNAi	
pathways. It involves formation of the RISC Loading Complex (RLC), transfer of a small 
RNA on an AGO-protein, and RISC activation.

RISC Loading Complex (RLC)

RISC assembly was so far explored more in Drosophila (Iwasaki et al., 2010; Pham et al., 
2004;	Tomari	et	al.,	2004a;	Tomari	et	al.,	2004b)	than	in	mammals	(Bernard	et	al.,	2015;	
Gregory et al., 2005; MacRae et al., 2008) perhaps because of the robust in vitro system 
of Drosophila embryo lysate. Mammals differ from Drosophila because they do not use 
different Dicer and Argonaute proteins dedicated to RNAi and miRNA pathway although 
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it is assumed that both pathways use a similar if not the same RLC. Our knowledge of the 
mammalian RLC comes mainly from cells where RLC normally loads miRNAs or from 
in vitro	reconstitution	of	the	RLC	with	purified	proteins.	The	minimal	RLC	is	composed	
of	Dicer,	TARBP2	and	AGO2	(Gregory	et	al.,	2005;	MacRae	et	al.,	2008).	In vitro recon-
stituted mammalian RLC contains one copy of each protein and has dicing, guide-strand 
selection, loading, and slicing activities (Bernard et al., 2015; Gregory et al., 2005; MacRae 
et al., 2008; Martinez et al., 2002). 

AGO interacts with Dicer through a subregion of the PIWI domain (the PIWI-box), 
which	binds	directly	to	the	Dicer	RNase	III	domain.	(Tahbaz	et	al.,	2004).	Single-particle	
EM	analysis	suggested	that	Dicer’s	N-terminal	DExH/D	domain	interacts	with	TARBP2,	
whereas its C-terminal catalytic domains in the main body are proximal to AGO2 (Wang 
et al., 2009). Interestingly, binding of AGO to Dicer inhibits dicing activity in vitro	(Tah-
baz et al., 2004). Analysis of individual siRNA positions revealed that RNA sequences 
at	positions	9–12	and	15–18	were	associated	with	TARBP2	while	positions	19–21	with	
AGO.	AGO	binding	was	enhanced	by	positions	15–18	(Takahashi	et	al.,	2014).	AGO2	
was reported to binds primarily to the 5’- and alternatively, to the 3’-end of pre-miRNAs. 
(Tan	et	al.,	2011).	All	four	human	AGO	proteins	show	remarkably	similar	structural	pref-
erences for small-RNA duplexes: central mismatches promote RISC loading, and seed 
or 3’-mid (guide position 12–15) mismatches facilitate unwinding. All these features of 
human	AGO	proteins	are	highly	reminiscent	of	fly	AGO1	but	not	fly	AGO2.	(Yoda	et	al.,	
2010).	Biochemical	and	structural	analysis	suggests	that	TARBP2	is	flexibly	bound	to	the	
Dicer	DExH/D	domain	(Daniels	et	al.,	2009;	Wang	et	al.,	2009).	TARBP2	seems	to	bridge	
release	of	the	siRNA	by	Dicer	and	loading	of	the	duplex	onto	AGO2.	Binding	by	TARBP2	
may allow the siRNA intermediate to stay associated with the RLC after release from Dic-
er	and	may	also	help	in	orientation	of	the	siRNA	for	AGO2	loading.	Just	as	in	flies,	human	
RISC assembly is uncoupled from dicing (Yoda et al., 2010).

Analysis of miRNA-carrying RISC (miRISC) yielded a similar picture. Since loading 
of miRNA duplexes to AGO proteins is assisted by HSP70/ HSP90 chaperones (Maniataki 
and Mourelatos, 2005b; Yoda et al., 2010), HSP90 is sometimes also included as the com-
ponent	of	miRLC	(Liu	et	al.,	2012b).	At	the	same	time,	AGO2	and	Dicer	are	sufficient	for	
processing	and	loading	of	miRNAs	into	RISC	(Tan	et	al.,	2011).	

Combination of in vivo studies in Dicer-/- cells reconstituted with wild-type or catalyt-
ically inactive Dicer showed that the miRNA loading complex (miRLC) is the primary 
machinery	linking	pre-miRNA	processing	to	miRNA	loading	and	lead	also	to	definition	
of a miRNA Precursor Deposit Complex (miPDC) for Dicer-independent RISC loading 
exemplified	by	miR-451	(Liu	et	al.,	2012b).	miPDC	is	formed	of	AGO,	pre-miRNA,	and	
HSP chaperone. It functions in Dicer-independent miRNA biogenesis (e.g. miR-451) and 
also promotes miRNP assembly of certain Dicer-dependent miRNAs (Liu et al., 2012b). 
Earlier	studies	suggested	a	difference	between	fly	and	human	systems	because	human	

RISC	assembly	using	immunopurified	or	reconstituted	human	RLC	containing	AGO2,	Dic-
er	and	TARBP2	did	not	require	ATP	hydrolysis,	(Gregory	et	al.,	2005;	MacRae	et	al.,	2008;	
Maniataki	and	Mourelatos,	2005b).	Recent	data	suggest	that	ATP	facilitates	also	human	
RISC loading while it is dispensable for unwinding (Yoda et al., 2010). 
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Accessory RLC factors

Apart from the three established RLC components, several proteins emerged as RLC cofac-
tors, among which stand out HSP70/90 chaperones. Heat shock protein 90 was actually the 
first	identified	AGO-associated	protein	even	before	AGO	was	associated	with	RNA	silenc-
ing	(Tahbaz	et	al.,	2001).	Inhibition	of	HSP90	reduces	AGO	levels	(Johnston	et	al.,	2010;	
Martinez	and	Gregory,	2013;	Tahbaz	et	al.,	2001)	as	well	as	GW182	protein	levels	and	
abolishes P-bodies (Johnston et al., 2010). In addition, stable binding between AGO and 
Dicer	is	dependent	on	the	activity	of	Hsp90	(Tahbaz	et	al.,	2004)	and	association	of	AGO2	
with HSP90 involves prolyl-hydroxylation of AGO2 (Wu et al., 2011). HSP90 activity is 
not	required	for	association	of	AGO	with	intracellular	membrane	(Tahbaz	et	al.,	2001)	but	
appears to chaperon AGO proteins before binding RNA and may facilitate loading of small 
RNAs (Johnston et al., 2010). Interestingly, miRNA*s (miRNA* is an equivalent of the 
passenger strand) with fast turnover exhibited different sensitivity to HSP90 inhibition sug-
gesting differential HSP90 requirements for different miRNA*s (Guo et al., 2015). HSP90 
is also a negative regulator of PKR; it is able to bind and inhibit PKR phosphorylation 
and	prevent	apoptosis	(Donze	et	al.,	2001).	Thus,	HSP90	provides	a	factor	bridging	RNA	
silencing and innate immunity.

Furthermore, HSP90 co-chaperones FKBP4/5 control AGO2 expression and facilitate 
RISC	assembly	(Martinez	et	al.,	2013).	FKBP4/5	were	identified	as	AGO2-associated	pro-
teins in mouse embryonic stem cells. Inhibition of FKBP4/5 lead to decreased Ago2 protein 
levels while overexpression stabilized AGO2 expression (Martinez et al., 2013). Another 
study has found that FKBP4 forms a stable complex with human AGO2 before small RNA 
loading	in	the	cytoplasm	and	is	required	for	efficient	RNAi	(Pare	et	al.,	2013).

Another component reported to function as an RISC-loading factor is RNA helicase 
A (RHA, also known as DHX9) Dicer (Robb and Rana, 2007). RHA is a conserved protein 
with two dsRBDs (Nagata et al., 2012) with multiple roles in the gene expression of cellular 
and viral mRNAs. RHA recognizes highly structured nucleotides and catalytically rearrang-
es the various interactions between RNA, DNA, and protein molecules to provide a plat-
form for the ribonucleoprotein complex. RHA was shown in human cells to function in 
the	RNAi	pathway	and	interact	with	siRNA,	AGO2,	TARBP2,	and	Dicer	(Robb	and	Rana,	
2007). RHA-depleted cells, showed reduced RNAi, apparently as a consequence of lower 
active RISC suggesting that RHA functions in RISC as an siRNA-loading factor (Robb and 
Rana, 2007). A later structural analysis of dsRBDs showed that both dsRBDs are required 
for RISC association, and such association is mediated by dsRNA (Fu and Yuan, 2013).

Are mammalian miRNAs sorted?

As mentioned above, of the four AGO proteins that can be loaded with small RNAs equally 
well (Meister et al., 2004). All four mouse AGO proteins seem to be functionally redundant 
in the miRNA pathway as shown by rescue experiments in ESCs lacking all four Argonaute 
genes (Su et al., 2009). Consistent with this, all four AGOs are functionally equivalent when 
accommodating bulged miRNA duplexes, whereas AGO1 and AGO2 appear to be more 
effective at utilizing perfectly matched siRNAs (Su et al., 2009). Furthermore, AGO2 can 
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execute endonucleolytic cleavage of cognate RNAs while all four can mediate translational 
repression.	This	raises	a	question	whether	small	RNAs	may	undergo	some	kind	of	sorting	
that	would	result	in	preferential	loading	onto	specific	AGO	homologs.	

Structural analysis showed that all four human AGO proteins showed similar structural 
preferences for small-RNA duplexes, which were highly reminiscent of Drosophila AGO1 
but not of AGO2 (Yoda et al., 2010). Human AGO2 and AGO3 immunoprecipitation and 
subsequent sequencing of small RNAs revealed that both AGOs were associated with 
21–23	nt	RNAs,	majority	of	which	were	miRNAs	(Azuma-Mukai	et	al.,	2008).	While	fifteen	
miRNAs	showed	more	than	2-fold	significant	difference	in	loading	onto	AGO2	or	AGO3,	
it is not clear whether this discrimination occurs also in vivo (Azuma-Mukai et al., 2008). 

A detailed analysis of small RNAs associated with all four human AGO proteins revealed 
approximately equivalent amounts of sequence tags derived from miRNA loci associat-
ed	with	individual	AGOs	with	some	exceptions	that	could	be	coupled	to	specific	AGOs	
(Burroughs et al., 2011). However, further analysis suggested existence of some sorting 
mechanism affecting a subset of distinct isomiRs that seemed to be differentially associated 
with	distinct	AGO	proteins	(Burroughs	et	al.,	2011).	This	observation	contrasts	with	another	
cloning and deep sequencing experiment addressing distribution of endogenous miRNAs 
associated	with	AGO1–3,	which	did	not	find	evidence	for	miRNA	sorting	in	human	cells.	
(Dueck et al., 2012). 

It is possible that sorting of small RNAs on AGO proteins may not be a general phenom-
enon while differential presence of small RNAs on AGO proteins can also emerge from 
selective	mechanisms	operating	after	loading.	This	can	be	illustrated	on	selective	progres-
sive 3’ shortening of AGO2-bound miRNAs observed in the brain (Juvvuna et al., 2012). 
Furthermore,	Dueck	et	al	also	reported	that	AGO	identity	appears	to	influence	the	length	
of	some	miRNAs,	while	others	remain	unaffected	(Dueck	et	al.,	2012).	Taken	together,	it	
seems that miRNAs are generally not sorted for loading onto AGO proteins. Notable excep-
tions include miRNAs with unique biogenesis such as miR-451 whose biogenesis requires 
AGO2 slicing activity (Dueck et al., 2012).

Loading asymmetry

While both siRNA strands can guide post-transcriptional silencing in mammals (Wei et al., 
2009), selection of the loaded strand exhibits a clear and long-known thermodynamic bias 
where	the	strand	whose	5′-end	is	less	thermodynamically	stable	is	preferentially	loaded	
onto AGO as the guide strand (Khvorova et al., 2003; Schwarz et al., 2003). Selection of 
the guide strand involves multiple sensors – this includes AGO2 strand selection capabil-
ity (Noland and Doudna, 2013; Suzuki et al., 2015), which is enhanced in complex with 
Dicer	and	TARBP2	or	PACT.	In	addition,	strand	selection	for	some	miRNAs	is	enhanced	
in	complexes	containing	PACT	but	not	TARBP2	(Noland	and	Doudna,	2013).	Notably,	
TARBP2	was	predicted	to	be	a	sensor	of	the	thermodynamic	stability	of	5’	siRNA	in	strand	
selection	during	RISC	loading,	similarly	to	DCR-2	and	R2D2	(a	TARBP2	homolog)	in	
Drosophila (Wang et al., 2009). However, the supporting evidence is inconclusive (Haase 
et	al.,	2005)	although	some	argue	that	TARBP2	can	indeed	acts	as	a	sensor	(Gredell	et	al.,	
2010).	Furthermore,	while	TARBP2	function	is	similar	to	that	of	R2D2,	TARBP2	sequence	
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is more closely related to Loquacious than R2D2 (Murphy et al., 2008). Finally, quantitative 
analysis of RISC assembly and target silencing activity in the presence or absence of Dicer 
suggest that the mammalian Dicer is nonessential for asymmetric RISC loading in vivo and 
in vitro.	(Betancur	and	Tomari,	2012).

RISC activation

The	next	step	after	AGO	loading	is	removal	of	the	passenger	strand	from	the	loaded	duplex	
RNA. In some cases, the passenger strand can be eliminated by the slicer activity where the 
RISC	complex	uses	the	guide	siRNA	to	cleave	the	passenger	strand.	In	other	words	the	first	
cleavage actually targets the passenger strand of a loaded siRNA duplex to free the guiding 
strand,	so	it	can	base	pair	to	cognate	mRNAs	(Matranga	et	al.,	2005).	The	cleavage-assisted	
mechanism	is	typical	for	AGO2-loaded	fly	and	human	siRNAs	in	the	RNAi	pathway	while	
passenger strand cleavage is not important for loading miRNAs (Matranga et al., 2005). 

Slicer-independent mechanism is needed to remove the passenger strands from non-slic-
ing AGO proteins and from miRNA duplexes bound to AGO2 where the passenger strand 
cannot	be	cleaved.	As	slicer-deficient	hAGO1,	hAGO3,	and	hAGO4	are	able	to	eject	the	
passenger strand of siRNA duplexes at 37°C, it is apparent that AGO1, 3, and 4 can be 
readily programmed with siRNAs at the physiological temperature (Park and Shin, 2015). 
This	implies	that	a	slicer-independent	mechanism,	which	relies	on	the	thermal	dynamics	
of	the	PAZ	domain	(Gu	et	al.,	2012a;	Park	and	Shin,	2015),	is	likely	a	common	feature	of	
human AGOs.

Importantly, RISC activation has been associated with additional factors. One of them 
is C3PO, an endonuclease that activates RISC (Ye et al., 2011). According to the model 
of RISC activation that integrates the C3PO crystal structure, Ago2 directly binds duplex 
siRNA and nicks the passenger strand, and then C3PO activates RISC by degrading the 
Ago2-nicked passenger strand (Ye et al., 2011)> Another factors is La, Sjogren’s syndrome 
antigen B (SSB)/autoantigen, which is acting as an activator of the RISC-mediated mRNA 
cleavage	activity.	(Liu	et	al.,	2011).	Thus,	similarly	to	C3PO,	La	is	a	regulatory	factor	
helping to remove AGO2-cleaved products in order to promote active RISC formation (Liu 
et al., 2011).

Additional small RNAs associated with AGO proteins

Our literature search revealed a heterogeneous group of publications describing small 
RNAs loaded on AGO proteins that were clearly distinct from canonical miRNAs – small 
RNAs generated by the mechanism described above. A canonical miRNA is transcribed by 
polymerase II, the primary transcript contains a ~ 70 nt short hairpin precursor pre-miRNA, 
which is released by the Microprocessor complex, transported to the cytoplasm where Dicer 
cleaves of the loop and one of the strands of the miRNA duplex is loaded onto miRISC. 
However, next generation sequencing revealed existence of AGO-loaded small RNAs that 
were apparently generated from different substrates and by molecular mechanisms, which 
deviated from the canonical pathway. Below is an overview of diversity of AGO-bound 
RNAs, which emerged from the literature search. 
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Non-canonical miRNAs can be divided across two axes – (I) according to the RNA 
precursor and (II) according to the proteins involved in (or omitted from) their biogene-
sis. Non-canonical miRNAs were discovered during systematic analyses of small RNAs 
in different model systems, such as disease models (e.g. (Xia et al., 2013) or cultured 
cells (Babiarz et al., 2011; Babiarz et al., 2008). A good experimental strategy to identify 
non-canonical miRNAs is a high throughput sequencing analysis of genetic models lacking 
some of the components of RNA silencing such as Dicer or DGCR8 (Babiarz et al., 2011; 
Babiarz et al., 2008). Phenotypic difference and differential expression of distinct miR-
NA-like sequences can indicate biological roles of non-canonical miRNAs while knock-out 
data offer an insight into the non-canonical biogenesis mechanism 

Perhaps the best known non-canonical miRNA class, which comes from unique, Micropro-
cessor-independent precursors, are mirtrons, miRNA-like molecules arising from spliced-out 
introns, which are Microprocessor-independent (Babiarz et al., 2011; Berezikov et al., 2007; 
Ladewig et al., 2012; Schamberger et al., 2012; Sibley et al., 2012; Westholm et al., 2012). 
Interestingly, some predicted mirtron-like miRNAs (miR-1225 and miR-1228) are splic-
ing-independent (simtrons) and their biogenesis involves Drosha but neither DGCR8 nor 
Dicer (Havens et al., 2012). Other non-canonical substrates can be, for example, 5‘-Capped 
RNAs (Xie et al., 2013), SINE repeat-derived, (Babiarz et al., 2008; Castellano and Steb-
bing, 2013), small vault RNA (svtRNA2–1a) (Minones-Moyano et al., 2013), or RNase III 
transcripts (Maurin et al., 2012) including annotated RNAs such as snoRNAs (Burroughs 
et al., 2011; Ender et al., 2008; Li et al., 2012), 7SL RNA (Ren et al., 2012), tRNA fragments 
(Burroughs et al., 2011; Haussecker et al., 2010; Kumar et al., 2014; Li et al., 2012; Mani-
ataki	and	Mourelatos,	2005a;	Maute	et	al.,	2013;	Venkatesh	et	al.,	2016).	Non-canonical	
miRNAs can be also produced from viral RNAs (Bogerd et al., 2010; Kincaid et al., 2014; 
Li	et	al.,	2009;	Xu	et	al.,	2009).	A	non-canonical	small	RNA	class	of	unclear	significance	are	
semi-microRNAs (smiRNAs), which are ~ 12nt short RNA fragments apparently emerging 
from other miRNAs, such as let-7 or miR-223 (Plante et al., 2012).
Non-canonical	miRNAs	can	be	also	classified	by	their	biogenesis	as	Microprocessor,	

DGCR8-, or Dicer-independent. For instance, the above-mention mirtrons do not require 
the Microprocessor complex while simtrons require Drosha but neither DGCR8 nor Dicer. 
Non-canonical	miRNAs	can	be	also	produced	from	bona-fide	miRNA	precursors,	which	
give a rise to a small RNA in a non-canonical way, for example by a dual role of AGO 
protein (Diederichs and Haber, 2007). A classic example is miR-451, a Dicer-independent 
miRNA	biogenesis	pathway	that	requires	Ago	catalysis	(Cheloufi	et	al.,	2010).	A	unique	
type of non-canonical miRNAs are loop-miRs, which are released from the loop region of 
a pre-miRNA (Okamura et al., 2013; Winter et al., 2013).

Target recognition and modes of silencing

Target recognition

Target	recognition	by	RISC	is	mediated	by	base	pairing	between	RISC-loaded	small	RNAs	
and cognate RNAs. Consistently with the structural analysis of AGO proteins, target 
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recognition by siRNAs exhibits a distinct 5’ bias. Analysis of miRNA-targeted mRNAs in 
Drosophila	and	mammals	revealed	that	miRNA	bases	2–8	form	a	distinct	„seed“,	which	
base	pairs	perfectly	to	the	target	transcript	(Enright	et	al.,	2003;	Lewis	et	al.,	2003).	This	is	
consistent with the fact that the 5’ half of a small RNA provides most of the binding energy 
that	tethers	RISC	to	a	target	RNA	(Doench	et	al.,	2003;	Haley	and	Zamore,	2004).	Structur-
al features of the target site are only important for RISC binding, while sequence features 
such	as	the	A/u	content	of	the	3’	uTR	are	important	for	mRNA	degradation.	(Hausser	et	al.,	
2009). According to analyses of RISC kinetics, small RNAs loaded onto AGO proteins are 
actually	composed	of	five	distinct	domains	(Fig.	5):	the	anchor,	seed,	central,	3’	supplemen-
tary, and tail (Wee et al., 2012).

Biochemical analysis of target recognition by mammalian RISC showed that the RISC 
is apparently not systematically scanning transcripts. RISC is unable to unfold structured 
RNA.	Thus,	RISC	randomly	transiently	contacts	single-stranded	RNA	and	promotes	siR-
NA-target base pairing where the 5’end of the loaded siRNA creates a thermodynamic 
threshold for stable association of RISC with its target (Ameres et al., 2007).
The	fact	that	5’	and	3’	ends	of	a	siRNA	are	bound	by	distinct	binding	pockets	and	that	

both ends contribute differently to binding to the target lead to a „two-state model of Argo-
naute function proposed based on the Drosophila	model	(Tomari	et	al.,	2004b).	In	this	
model,	the	3’	end	is	bound	in	the	PAZ	domain	and	the	5’	end	to	in	a	pocket	at	the	interface	
between	the	MID	and	the	PIWI	domains.	The	5’	end	is	pre-organized	to	interact	with	the	
cognate mRNA and, upon binding, the 3’ end is dislodged from the binding pocket to allow 
for base pairing of the 3’ end.

Importantly, kinetics of silencing is critical for understanding target recognition and 
silencing by of small RNAs. A kinetic study of Drosophila and mouse AGO2 found that 
mouse AGO2, which mainly mediates miRNA-directed repression in vivo, dissociates rap-
idly and with similar rates for fully paired and seed-matched targets (Wee et al., 2012). An 
important conclusion from this study is that low-abundant miRNAs are unlikely to contrib-
ute much biologically meaningful regulation because they are present at a concentration 
less than their KD for seed-matching targets (Wee et al., 2012).
These	results	were	subsequently	corroborated	by	single	molecule	analysis.	Single-mol-

ecule	fluorescence	experiments	using	a	minimal	RISC	(a	small	RNA	and	AGO2)	showed	
that target binding starts at the seed region of the guide RNA (Chandradoss et al., 2015; 
Jo et al., 2015a; Jo et al., 2015b). AGO2 initially scans for complementarity to nucleotides 
2–4 of the miRNA and this interaction propagates into a stable association when target 
complementarity extends across the seed (Chandradoss et al., 2015). Stable RISC binding is 
thus	efficiently	established	with	the	seed	match	only,	providing	a	potential	explanation	for	
the seed-match rule of miRNA target selection (Chandradoss et al., 2015; Jo et al., 2015a; 
Jo et al., 2015b). Remarkably, mouse AGO2 binds tighter to miRNA targets than its RNAi 
cleavage product, even though the cleaved product contains more base pairs (Salomon 
et al., 2015). In contrast, target cleavage required extensive sequence complementarity and 
accelerated core-RISC dissociation for recycling (Jo et al., 2015b) and sensitively depended 
on	the	sequence	(Jo	et	al.,	2015a).	RISC	thus	utilizes	short	RNAs	as	specificity	determi-
nants with thermodynamic and kinetic properties more typical of RNA-binding proteins 
while a small RNA loaded on AGO no longer follows rules by which sole oligonucleotides 

Introduction_to_RNAi.indd   57Introduction_to_RNAi.indd   57 09.07.20   8:3409.07.20   8:34



MAMMALS I

58

fi	nd,	bind,	and	dissociate	from	complementary	nucleic	acid	sequences (Salomon et al., 
2015). Importantly, target site recognition is coupled to lateral diffusion of RISC along the 
target RNA, which facilitates recognition of target sites within the cellular transcriptome 
space (Chandradoss et al., 2015).
To	put	the	aforementioned	kinetic	data	into	comparison	with	laboratory	practice,	the	table	

below shows on ten randomly selected examples of RNAi experiments that an effective 
repression by exo-RNAi in cultured cells usually employs siRNA transfection in 20–50 nM 
range	(v	1).	Thus,	a	robust	biological	effect	of	a	specifi	cally	designed	perfectly	comple-
mentary siRNA acting through the AGO2-mediated endonucleolytic cleavage is usually 
observed with a nanomolar concentration of siRNA. Silencing by direct endonucleolytic 
cleavage – RNAi-like silencing

Base pairing in the middle of siRNA results in correct positioning of the cognate strand 
and its cleavage in the active site of the PIWI domain of AGO2 – out of four mammalian 
AGO	proteins,	which	bind	small	RNAs,	only	AGO2	has	the	„slicer“	activity	(Liu	et	al.,	
2004;	Meister	et	al.,	2004).	These	simple	facts	have	several	important	consequences.	First,	
siRNAs loaded on AGO1, AGO3, and AGO4 will repress their perfectly complementary 
targets by other means (translational repression/deadenylation/decapping) than by cleavage. 
Conversely, AGO2 loaded miRNA binding perfectly complementary targets will behave as 
siRNAs and mediate RNAi-like endonucleolytic cleavage. Third,	imperfect	complementa-
rity in the middle of the base pairing site of AGO-loaded siRNAs will result in miRNA-like 
effects	(Doench	et	al.,	2003).	Thus,	RISC-loaded	siRNAs	have	additional	silencing	effects	
due to 2–8 nucleotide seed matches to other RNAs (which is the molecular foundation of 
the off-targeting phenomenon). 

Figure 5 miRNA/siRNA functional domain
(A) miRNA precursor stem loop (exemplifi ed by human Let-7a from miRBase). In red is highlighted se-
quence of mature miRNA, in black is depicted the passenger (miRNA-star) strand. (B) Mature miRNA 
can be divided into several functionally distinct regions (Wee et al., 2012).

Introduction_to_RNAi.indd   58Introduction_to_RNAi.indd   58 09.07.20   8:3409.07.20   8:34



MAMMALS I

59

Silencing by translational repression and RNA degradation –  
common miRNA silencing

In order to understand the molecular mechanism of repression mediated by small 
RNA-loaded	AGO,	many	AGO-associated	proteins	were	identified	in	mammalian	cells	
(reviewed	in	detail	in	Peters	and	Meister,	2007).	These	include	MOV10,	DDX6	(Rck/p54),	
DDX20	(Gemin3),	TNRC6A	(GW182),and	many	others	(Hauptmann	et	al.,	2015;	Meister	
et al., 2005). Over a decade of research focused on understanding how miRNA-guided 
RISC suppresses gene expression. it became clear that miRNAs provide the guide while 
the repression is mediated through AGO and associated proteins as shown by suppression 
occurring upon tethering AGO proteins (Pillai et al., 2004). Building a model of silencing, 
was a lengthy and convoluted process (which is not over yet) from which emerged GW182 
as a key docking factor integrating miRNA-mediated silencing.

GW182 proteins

Mammalian GW182 proteins carry at the N-terminus multiple glycine-tryptophan (GW) 
repeats, a central ubiquitin-associated (UBA) domain, a glutamine-rich (Q-rich) domain, 
and an RNA recognition motif (RRM) (Fig. 6). Interestingly, GW182 seems to be largely 
unstructured protein, including functionally essential domains, such as the N-terminus, 
which is interacting with AGO2 (Behm-Ansmant et al., 2006; Lazzaretti et al., 2009; Lian 

Table 1 Random selection of RNAi experiments in cultured cells

concentration method cells exposure 
time

knockdown
efficiency

reference – doi

5 nM transfection mouse preadipocytes 
3T3-L1

48 h 70 % 10.1128/
MCB.01856–08

20 nM transfection human	HuVEC 0–5 d 60–80 % 10.1016/ 
j.bone.2014.12.060

20	μM transfection human breast 
carcinoma cell lines

48 h 60 % 10.1038/onc.2014.421

20	μM transfection murine breast 
epithelial cell

48 h 60 % 10.1038/onc.2014.421

25 nM transfection mouse kidney 7 d 20 % 10.1152/
ajprenal.00052.2014

20–40 nM transfection human LA4 24 h 60–80 % 10.1155/2015/473742

50 nM transfection mouse cardiomyocyte 48 h 60 % 10.5582/
bst.2015.01159.

80 nM transfection mouse osteoblasts 0–5 d 40–50 % 10.1016/ 
j.bone.2014.12.060

100 nM transfection human endothelial 
cells

72 h 80% 10.1152/
ajplung.00263.2009

500 nM electroporation human monocytic cell 24 h 60–90% 10.1111/jdi.12434
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et	al.,	2009;	Takimoto	et	al.,	2009).	Similarly,	the	silencing	domain	is	also	predicted	to	be	
disordered	(Huntzinger	et	al.,	2010;	Lazzaretti	et	al.,	2009;	Zipprich	et	al.,	2009).
The	N-terminal	part	of	GW182	can	interact	with	any	human	(and	presumably	all	mam-

malian) AGO proteins through multiple GW repeats, which bind tryptophan binding pock-
ets on AGO and contribute to the interaction in an additive manner (El-Shami et al., 2007; 
Jakymiw et al., 2005; Lazzaretti et al., 2009; Lian et al., 2009; Liu et al., 2005a; Schirle and 
MacRae,	2012;	Takimoto	et	al.,	2009;	Yao	et	al.,	2011;	Zipprich	et	al.,	2009).	The	role	of	
AGO is most likely to anchor through miRNA-mediated interaction GW182 to the silenced 
RNA	as	tethering	of	GW182	alone	or	even	of	(its	silencing	domain)	is	suffi	cient	to	mediate	
repression	(Chekulaeva	et	al.,	2011).	The	silencing	domain	directly	binds	PolyA	Binding	
protein	(PABP)	as	well	as	with	PAN3	and	NOT1	components	of	PAN2/PAN3	and	CCR4–
NOT	deadenylase	complexes,	respectively.	(Chekulaeva	et	al.,	2011;	Fabian	et	al.,	2009;	
Huntzinger	et	al.,	2010;	Jinek	et	al.,	2010;	Zekri	et	al.,	2009).	
The	general,	somewhat	simplistic	model	of	miRNA-mediated	silencing	proposes	that	

GW182	interacts	with	PABP	of	the	cognate	RNA	and	recruit	PAN2/3	and	CCR4-NOT	
deadenylases, which would result in translational repression likely occurring at the level of 
initiation and the repressed RNA would be deadenylated (Braun et al., 2011; Chekulaeva 
et al., 2011; Christie et al., 2013; Fabian et al., 2011a; Fabian et al., 2011b; Huntzinger 
et	al.,	2013;	Kuzuoglu-Ozturk	et	al.,	2016;	Zekri	et	al.,	2013).	Deadenylated	RNAs	in	
mammalian cells are generally decapped and degraded by XRN1 exonuclease (Schoen-
berg and Maquat, 2012).

Several mechanisms have been proposed how the GW182–PABPC interaction contrib-
utes	to	silencing	(Fabian	et	al.,	2009;	Jinek	et	al.,	2010;	Zekri	et	al.,	2009)	although	it	is	not	

Figure 6 GW182 domain structure and function.
(A) Domain composition: UBA, ubiquitin-associated motif; RRM, RNA recognition motif. (B) A schematic 
depiction of GW182-mediated bridging of AGO and translational repression and mRNA degradation. 
See the text below for details.
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clear how critical this role is as mRNAs lacking polyA tail (i.e. neither circularize nor are 
deadenylated)	are	silenced	nonetheless	(Chekulaeva	et	al.,	2011;	Pillai	et	al.,	2005;	Zekri	
et	al.,	2013).	This	would	suggest	for	a	non-essential	role	of	PABPC/GW182	interaction.
There	are	additional	RISC	interactions,	which	are	important	for	miRNA-mediated	silenc-

ing, such as DDX6/RCKp54 (Chu and Rana, 2006; Kuzuoglu-Ozturk et al., 2016; Mathys 
et	al.,	2014)	or	LIM	domain	proteins	LIMD1,	Ajuba,	and	WTIP,	which	are	required	for	
miRNA-mediated, but not siRNA-mediated gene silencing (James et al., 2010). According 
to the model, the LIM proteins facilitate miRNA-mediated gene silencing by creating an 
inhibitory closed-loop complex where they bridge the translationally inhibited cap structure 
and	AGO1/2	within	the	miRISC	complex	bound	to	the	3’-uTR	(James	et	al.,	2010).	The	list	
of proteins associated with RISC or the target repression is longer, and includes, for exam-
ple, also Pumilio/FBF , a miRNA targeting cofactor (Friend et al., 2012) or eIF4GI (Ryu 
et al., 2013). However, for understanding the miRNA mechanism, their detailed review is 
would be overreaching.

P-bodies

Studies on localization of miRNA pathways components revealed their presence in distinct 
cytoplasmic foci, known as P-bodies or GW-bodies (Liu et al., 2005a; Liu et al., 2005b; 
Pillai et al., 2005; Yu et al., 2005). P-bodies (reviewed in detail by Jain and Parker, 2013) 
are distinct cytoplasmic foci, which contain proteins associated miRNA-mediated repres-
sion (Behm-Ansmant et al., 2006; Chahar et al., 2013; Chu and Rana, 2006; James et al., 
2010; Johnston et al., 2010; Liu et al., 2005b; Ozgur and Stoecklin, 2013; Pare et al., 2011; 
Rehwinkel	et	al.,	2005;	Yu	et	al.,	2005;	Zhou	et	al.,	2009).	P-body	association	has	been	
observed for the mature RISC components and RNA degradation pathway proteins but not 
for	Dicer	or	TARBP2,	indicating	that	P-bodies	are	associated	with	miRNA-mediated	sup-
pression	but	not	biogenesis.	This	is	supported	by	the	presence	of	miRNA-targeted	mRNAs	
in P-bodies (Liu et al., 2005b; Shih et al., 2011). P-bodies are highly dynamic (Aizer et al., 
2014; Kedersha et al., 2005) but not an essential structure for miRNA-mediated repression 
(Eulalio et al., 2007). P-bodies probably should be seen as aggregating foci, which may 
facilitate miRNA-mediated repression. Since inhibition of the miRNA pathway prevents 
P-body formation, it was proposed that aggregation of miRNA pathway factors to P-bodies 
is not required for miRNA function and mRNA degradation per se but rather is a conse-
quence of miRNA activity (Eulalio et al., 2007).
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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	In	mammals,	there	are	two	close-
ly related pathways, which share several protein factors: RNA interference (RNAi) and microRNA (miRNA) 
pathway.	The	miRNA	pathway	regulates	endogenous	protein-coding	gene	expression.	It	has	been	implicated	
in many biological processes and majority of mammalian genes appear to be directly or indirectly exposed to 
miRNA-mediated regulations. RNAi generally serves as a form of innate immunity targeting viruses and mobile 
elements,	although	it	occasionally	also	acquired	function	in	protein-coding	gene	regulation.	The	function	of	
RNAi in mammals is still poorly understood but it is clear that proteins supporting RNAi are also involved in 
miRNA biogenesis and function. Because of the large volume of the existing literature, the review of mammalian 
miRNA	and	RNAi	pathways	was	divided	into	two	parts,	where	first	one	reviewed	components	of	the	pathways	
and	the	second	one,	presented	here,	reviews	roles	and	significance	of	the	pathways.

Introduction

In	the	first	part	of	the	review	off	mammalian	RNAi	and	miRNA	pathways,	I	focused	on	
mechanistic description of the pathways. Here, I will provide an overview of biological 
roles and biological phenomena associated with mammalian RNAi and miRNA pathways 
(Fig. 1).

miRNA-mediated control of gene expression – important functional aspects

The	current	miRBase	(Kozomara	and	Griffiths-Jones,	2014)	edition	22.1	annotates	1917	hum- 
an	miRNA	loci	that	give	rise	to	2654	annotated	miRNAs.	There	are	1234	precursors	and	
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1978 mature miRNAs annotated in mouse. A simple connection of these counts with the 
fact	that	only	nucleotides	2–8	of	a	miRNA	are	suffi	cient	for	target	recognition	and	sup-
pression implies that miRNA-mediated repression is a widespread and extremely evolv-
able regulatory system for gene expression. At the same time, one should not forget the 
above-mentioned stoichiometry between miRNAs and their target sites that is needed for 
effi	cient	silencing.

Evolution of miRNAs is fast – there are only a few miRNAs conserved between Drosoph-
ila and mammals. Given the diversity of canonical and non-canonical miRNAs, it is con-
ceivable that miRNAs to emerge from random formation of Drosha/Dicer substrates. New-
ly evolving miRNAs likely form a considerable portion of annotated miRNAs, especially 
in	species	where	miRNAs	are	deeply	sequenced	and	low-abundant	miRNAs	are	identifi	ed.

According to the evolutionary theory, new miRNAs would either acquire function and 
become	fi	xed	during	evolution	or	they	would	be	lost.	In	addition,	the	target	repertoire	of	
existing miRNAs can also rapidly evolve since a single point mutation can weaken an 
existing	regulation	or	create	a	new	one.	This	idea	is	consistent	with	the	data	showing	that	
mammalian	mRNAs	are	under	selective	pressure	to	maintain	and/or	avoid	specifi	c	7-nucle-
otide	seeding	regions	(Farh	et	al.,	2005).	It	can	be	nicely	exemplifi	ed	on	the	Texel	sheep	
phenotype where a single mutation creating a novel miRNA target site in myostatin causes 
the exceptional meatiness of this breed (Clop et al., 2006). 

Figure 1 Mechanistical merging of miRNA and RNAi pathways in mammals
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The	set	of	miRNAs	in	each	cell	type	forms	a	combinatorial	post-transcriptional	reg-
ulation system stabilizing gene expression pattern. miRNAs have widespread impact 
on	expression	and	evolution	of	protein-coding	genes	(Farh	et	al.,	2005).	The	number	of	
mRNAs that have functionally important interaction with miRNAs (i.e. suppression of this 
interaction yields a phenotype) in a studied model system is presumably small and certain-
ly	difficult	to	discern	among	the	possible	interactions.	Thus,	every	search	for	functionally	
important interactions between miRNAs and their targets has to face the fact that miRNAs 
represent a dynamically evolving system with countless random interactions, which are not 
biologically relevant.

Extracellular microRNAs

An	interesting	research	field	developed	around	the	release	of	miRNAs	from	cells,	detection	
of extracellular miRNAs, and transfer between cells. Importantly, the vast majority of the 
references provided descriptive and correlative data documenting presence of circulating 
miRNAs under different conditions (e.g. (Arroyo et al., 2011; Bellingham et al., 2012; 
Huang	et	al.,	2013b;	Luo	et	al.,	2009;	Novellino	et	al.,	2012;	Turchinovich	et	al.,	2011).	
I will not review the bulk of the circulating RNA literature, which provides data concerning 
biomarker potential of circulating miRNAs, undoubtedly of extreme clinical relevance but 
of minimal relevance for this review. Below, I summarize results, which admittedly raise 
more questions than provide satisfactory answers.

Small RNAs can be transmitted from one cell to another under physiological conditions, 
as evidenced, for example, by systemic RNAi in arthropods or plants. Small RNAs can 
utilize dedicated transporters, common communication channels, or secretory vehicles. It 
was also reported that Gap junctions can serve for miRNA transfer from microvascular 
endothelial	cells	to	colon	cancer	cells	(Thuringer	et	al.,	2016).	Circulating	mammalian	
miRNAs were reported 2008 when they were found in serum of lymphoma patients; they 
were immediately recognized as potential non-invasive biomarkers for cancer diagnostics 
and	treatment	(Lawrie	et	al.,	2008).	The	same	year,	placental	miRNAs	were	found	circulat-
ing in maternal plasma (Chim et al., 2008), which was one of the discoveries leading to the 
notion that miRNAs could be a mobile regulating molecule (Iguchi et al., 2010) and that 
could even mediate transgenerational epigenetic heritance (Sharma, 2015) or be transmitted 
across	species	(Buck	et	al.,	2014;	Zhang	et	al.,	2012).	Since	then,	extracellular	miRNAs	
were	identified	in	a	broad	range	of	biological	fluids,	including	plasma,	aqueous	humour,	
cerebrospinal	fluid,	nasal	mucus,	or	milk	(Baglio	et	al.,	2015;	Dismuke	et	al.,	2015;	Huang	
et al., 2013b; Izumi et al., 2015; Kropp et al., 2014; Pegtel et al., 2011; Wu et al., 2015a). 
miRNAs	were	identified	in	the	cargo	of	exosomes,	membranous	vesicles	40	to	100	nm	in	
diameter, which are constitutively released by almost all cell type and are found essentially 
in	every	biological	fluid	(reviewed,	for	example,	in	Rak,	2013;	Yoon	et	al.,	2014)

However, extracellular miRNAs do not need to be necessarily encapsulated in extracel-
lular vesicles, as two studies showed that 95–99% of extracellular miRNA are not in extra-
cellular vesicles but associated with AGO proteins in serum and cell culture media (Arroyo 
et	al.,	2011;	Turchinovich	et	al.,	2011).	Furthermore,	most	individual	exosomes	in	standard	
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preparations	do	not	seem	to	contain	biologically	significant	numbers	of	miRNAs	(Chevillet	
et	al.,	2014).	The	molecular	mechanism	of	miRNA	release,	either	as	a	cargo	in	a	vesicle	or	
free, is poorly understood and the current knowledge does not allow for building a coher-
ent model as the literature is scarce. Non-templated nucleotide additions were found to 
distinguish between cellular miRNAs, which were 3’ end adenylated in cells whereas 3’ 
end uridylated isoforms appeared overrepresented in exosomes suggesting a possible role 
of	3’	terminal	modifications	in	sorting	miRNAs	into	extracellular	vesicles	(Koppers-Lalic	
et al., 2014). Recently, ALIX, an accessory protein of the endosomal sorting complex, it 
has been implicated in sorting miRNAs into extracellular vesicles based on its interaction 
with AGO2 and reduced miRNAs levels in extracellular vesicles upon Alix knock-down 
(Iavello et al., 2016).

Importantly, any model where miRNAs would be carried over to regulate gene expression 
by the canonical miRNA activity must face the kinetic data mentioned above (Wee et al., 
2012). While one cannot exclude a non-canonical signalling function of circulating miRNAs 
(which has not been conclusively demonstrated yet), the literature on circulating RNAs may 
include misleading statements, which are unsupported by experimental evidence.
Taken	together,	while	existence	of	circulating	miRNAs	has	been	demonstrated	beyond	

a doubt, experimental evidence for their function (if any) is not conclusive. Exosomal 
vesicles can carry miRNAs and siRNAs – in the latter case, exosomes were adapted for 
a delivery tool for siRNAs, which has a good potential for further development of siRNA 
therapy (El-Andaloussi et al., 2012; Kumar et al., 2015; Lasser, 2012; Lee et al., 2012; 
Nguyen and Szoka, 2012; Shtam et al., 2013; Wahlgren et al., 2012; Wahlgren et al., 2016).

RNAi pathway in mammals– important functional aspects 

It	should	reiterated	that	the,	“so-called”	RNAi	knock-down	with	siRNAs	in	mammali-
an cells is essentially using the miRNA pathway with retained the ability to cleave per-
fectly	complementary	targets	by	AGO2.	The	mammalian	canonical	RNAi	(i.e.	long	dsR-
NA-driven) is a dormant pathway, at best. By that is meant that the protein factors present 
in	every	mammalian	cells	(Dicer,	TARBP2,	and	AGO2)	are	competent	to	support	RNAi	
but	long	dsRNA	does	not	efficiently	induce	RNAi	in	most	mammalian	cells	(Nejepinska	
et	al.,	2012).	This	notion	is	supported	by	the	reconstitution	of	human	RNA	interference	in	
budding	yeast	demonstrates	that	Dicer,	TARBP2,	and	AGO2	are	sufficient	to	functionally	
reconstitute	RNAi	(Suk	et	al.,	2011).	This	demonstrates	that	these	three	proteins	consti-
tute the essential core of RNAi mechanism although RNAi is not properly reconstituted 
when	bona	fide	RNAi	precursors	were	co-expressed	(Wang	et	al.,	2013).	The	problem	is	
apparently at the level of Dicer processing as the human slicer AGO2 RNAi role is so con-
served that it could function in RNAi in the early divergent protozoan Trypanosoma brucei, 
demonstrating conservation of basic features of the RNAi mechanism (Shi et al., 2006). 
In an analogous experiment, human AGO2 could not replace Arabidopsis thaliana AGO1 
in the miRNA pathway (Deveson et al., 2013). In a sense, these different results are not 
that surprising considering the minimal requirements for RNAi and the complexity of the 
miRNA pathway, which provides a larger space for evolution of incompatible adaptations. 
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However, there are some cases indicating that RNAi is still active in mammals and, under 
unique circumstances, may be even an essential pathway.
The	main	bottleneck	for	canonical	RNAi	in	mammals	is	efficient	production	of	siRNAs	

from long dsRNA, which is poor in most mammalian cells (Flemr et al., 2013; Nejepinska 
et al., 2012). However, several reports showed that induction of RNAi with intracellu-
lar expression of long dsRNA can be achieved in transformed and primary somatic cells 
(Diallo	et	al.,	2003;	Elbashir	et	al.,	2001;	Gan	et	al.,	2002;	Shinagawa	and	Ishii,	2003;	Tran	
et	al.,	2004;	Yi	et	al.,	2003).	These	data	imply	that	RNAi	can	occur	if	there	is	a	sufficient	
amount of long dsRNA, which is directed preferentially to RNAi but not into other dsRNA 
pathways. Under these circumstances, the limiting factor is just Dicer’s ability to produce 
siRNA (Flemr et al., 2013).

Endogenous RNAi in the germline

Retrotransposon repression in mouse oocytes

RNAi-mediated mobile element silencing has also been documented in the mouse germline 
(Tam	et	al.,	2008;	Watanabe	et	al.,	2006;	Watanabe	et	al.,	2008).	Mutations	in	the	piRNA	
pathway components are detrimental to sperm development, suggesting that piRNAs are 
the dominant class of small RNAs controlling mobile element activity in the male germline 
(reviewed	in	Toth	et	al.,	2016).	In	contrast,	female	mice	lacking	functional	piRNA	pathway	
are fertile with no obvious defects in oocytes (Carmell et al., 2007). Endo-siRNAs suppress 
TEs	silencing	in	mammalian	oocytes	as	documented	by	derepression	of	some	retrotranspos-
ons in oocytes depleted of Dicer or AGO2 (Murchison et al., 2007; Watanabe et al., 2008). 
As already proposed for invertebrates, the piRNA and endo-siRNA pathways likely coop-
erate in creating a complex silencing network against mobile elements in the mammalian 
germline.	Long	terminal	repeat	MT	elements	and	SINE	elements	are	strongly	upregulated	
in Dicer-/- oocytes, while the levels of IAP transposon are elevated in the absence of MILI 
protein but not in Dicer-/- oocytes (Murchison et al., 2007; Watanabe et al., 2008). Still many 
loci	composed	of	other	types	of	TEs,	e.g.	LINE	retrotransposons,	give	rise	to	both	piRNAs	
and endo-siRNAs, again suggesting that the biogenesis of these small RNAs is interde-
pendent.	The	role	of	endogenous	RNAi	in	TE	silencing	extends	from	germ	cells	to	preim-
plantation embryo stages. Apart from maternally derived piRNAs and endo-siRNAs, which 
persist in the embryos for a large part of preimplantation development, zygotic endo-siR-
NAs are generated de novo	mainly	to	control	the	activity	of	zygotically	activated	MuERV-L	
retrotransposon (Ohnishi et al., 2010; Svoboda et al., 2004). SINE-derived endo-siRNAs 
also increase in abundance in early embryo stages, which is consistent with the observation 
that B1/Alu SINE endo-siRNAs account for a vast majority of endo-siRNAs sequenced 
from mouse ES cells (mESCs) (Babiarz et al., 2008). Whether these SINE endo-siRNAs 
play	an	active	role	in	TE	silencing	in	mESCs	similarly	to	other	TE-derived	endo-siRNAs	
in oocytes remains to be determined. RNAi-dependent silencing of LINE transposons has 
also been described in cultured HeLa cells, where endo-siRNAs derived from bidirectional 
transcripts of sense and antisense L1 promoter were proposed to control L1 activity (Yang 
and Kazazian, 2006). Although some evidence for retrotransposon-derived endo-siRNAs 
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from mammalian somatic cells was obtained from deep sequencing data (Kawaji et al., 
2008),	a	convincing	support	for	the	function	of	endo-siRNAs	in	TE	silencing	in	mammalian	
somatic tissues, has yet to be provided. 

Control of endogenous genes in mouse oocytes

In mice, perturbation of the endo-siRNA pathway in oocytes is responsible for severe mei-
otic	defects	and	resulting	female	infertility.	Targeted	oocyte-specific	knockout	of	both	Dicer 
and Ago2 lead to similar phenotypes including chromosome misalignment and defective 
spindle	(Kaneda	et	al.,	2009;	Murchison	et	al.,	2007;	Tang	et	al.,	2007).	These	effects	
were originally attributed to the loss of maternal miRNAs. However, miRNA pathway is 
suppressed in mouse oocytes and oocytes lacking Dgcr8, which is required for canonical 
miRNA	biogenesis,	can	be	fertilized	and	do	not	show	any	significant	disturbance	of	the	
transcriptome	(Ma	et	al.,	2010;	Suh	et	al.,	2010).	This	means	that	the	canonical	miRNA	
pathway is non-essential and largely inactive in mouse oocytes despite intact biogene-
sis of miRNAs (Fig. 2). In fact, the spindle phenotype is caused by the loss of a highly 
active RNAi pathway in mouse oocytes. High-throughput analysis of small RNAs in mouse 
oocytes	revealed	a	unique	class	of	endo-siRNAs	derived	from	processed	pseudogenes	(Tam	
et	al.,	2008;	Watanabe	et	al.,	2008).	Transcriptomes	of	oocytes	lacking	Dicer and Ago2 
(including oocytes expressing catalytically-dead AGO2) are similarly affected (Kaneda 
et al., 2009; Stein et al., 2015). At the same time, genes matching pseudogene-derived 
endo-siRNAs are enriched in the group of upregulated genes in both knockouts (Kaneda 
et	al.,	2009;	Stein	et	al.,	2015;	Tam	et	al.,	2008;	Watanabe	et	al.,	2008).	

In addition, putative endo-siRNA targets are enriched in cell cycle regulators and genes 
involved	in	microtubule	organization	and	dynamics	(Tam	et	al.,	2008).	These	findings	sug-
gest that regulation of protein-coding genes by endo-siRNAs controls the equilibrium of 
protein factors required for proper spindle formation, chromosome segregation and meiosis 
progression in mouse oocytes. As pseudogenes are rapidly evolving source of dsRNA for 
endo-siRNA production, it will be interesting to investigate whether the role of RNAi in 
spindle formation during meiotic maturation of oocytes is conserved in mammals.
The	reason	for	high	levels	of	endo-siRNAs	and	the	high	RNAi	activity	in	mouse	oocytes	

is the aforementioned truncated Dicer isoform that lacks the N-terminal helicase domain 
(Flemr	et	al.,	2013)	(Fig.	2).	It	efficiently	generates	siRNAs	from	long	dsRNAs,	and	is	suf-
ficient	for	enhancing	RNAi	in	cultured	cells	while	its	loss	in	mouse	oocytes	yields	the	same	
phenotype as conditional knock-outs of Dicer or Ago2 (Flemr et al., 2013). 

Endo-siRNAs have also been proposed to contribute to the self-renewal and proliferation 
of mouse embryonic stem cells (mESCs), since the proliferation and differentiation defects 
observed in Dicer-/- mESCs are more dramatic than in Dgcr8-/- mESCs (Kanellopoulou 
et al., 2005; Murchison et al., 2005; Wang et al., 2007). A population of endo-siRNAs 
derived	mostly	from	hairpin	forming	B1/Alu	subclass	of	SINE	elements	was	identified	
in mESCs (Babiarz et al., 2008). Fragments of SINE elements are commonly present in 
untranslated regions of protein-coding transcripts and it is therefore possible that SINE-de-
rived endo-siRNAs participate in posttranscriptional gene silencing in mESCs. However, 
this hypothesis has not been tested experimentally.
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Endogenous RNAi in the soma

Little evidence is available for potential role of endo-siRNAs in the regulation of pro-
tein-coding	mRNAs	in	mammalian	somatic	tissues.	The	natural	antisense	transcription	in	
somatic cells, which has a potential to generate dsRNA, yields low levels of endo-siR-
NAs, whose biological relevance is questionable. At the same time, endo-siRNAs derived 
from natural antisense transcripts of Slc34a	gene	were	identifi	ed	in	mouse	kidney,	where	
Na/phosphate cotransporter exerts its physiological function (Carlile et al., 2009). How-
ever, changes in expression levels of Slc34a upon suppression of the endo-siRNA path-
way have not been addressed. In mouse hippocampus, deep sequencing revealed a set of 
potential endo-siRNAs generated from overlapping sense/antisense transcripts and from 
hairpin	structures	within	introns	of	protein-coding	genes	(Smalheiser	et	al.,	2011)	.	The	
most abundant endo-siRNAs from SynGAP1 gene locus were also found in complexes 
with AGO proteins and FMRP in vivo. Interestingly, a large part of potential hippocampal 
endo-siRNA targets encode for proteins involved in the control of synaptic plasticity and 
the	number	of	endo-siRNAs	derived	from	these	gene	loci	increased	signifi	cantly	during	
olfactory discrimination training (Smalheiser et al., 2011). Given the fact that vast majority 
of	identifi	ed	endo-siRNA	sequences	mapped	to	intronic	regions,	the	endo-siRNAs	could	

Figure 2 miRNA & RNA arrangement in mouse oocytes
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act co-transcriptionally on nuclear pre-mRNAs, perhaps similarly to the mechanism of 
RNAi-mediated inhibition of RNA Pol II elongation described in C. elegans (Guang et al., 
2010). Alternatively, endo-siRNAs could control correct distribution of target mRNAs as 
unspliced pre-mRNA can be exported from the neuronal nucleus and transported to den-
drites	for	processing	(Glanzer	et	al.,	2005).	In	any	case,	these	findings	open	an	attractive	
hypothesis that endo-siRNAs participate in synaptic plasticity during learning process and 
the neuronal endo-siRNA pathway might be also linked to various neurodegenerative dis-
orders (Smalheiser et al., 2011).

Antiviral RNAi

In contrast to nematodes and insects, data supporting involvement of mammalian RNAi 
in antiviral defense is weak (reviewed in detail in Cullen, 2006; Cullen et al., 2013). It is 
unlikely that RNAi substantially acts as an antiviral mechanism in mammals where long 
dsRNA induces a complex sequence-independent antiviral response, commonly known as 
the interferon response (reviewed in Gantier and Williams, 2007). Consistent with this, 
no siRNAs of viral origin have been found in human cells infected with a wide range of 
viruses (Pfeffer et al., 2005). Occasional observations, such as detection of a single siRNA 
in	HIV-1	infected	cells	(Bennasser	et	al.,	2005)	does	not	provide	any	conclusive	evidence	
that RNAi is processing viral dsRNA and suppresses viruses under physiological condi-
tions in vivo.

It must be stressed that circumstantial evidence suggesting the role of RNAi in viral sup-
pression must be critically examined and interpreted. One has to keep in mind, for example, 
that	data,	which	appear	as	evidence	for	viral	suppression	by	RNAi,	could	reflect	miR-
NA-mediated effects. Since viruses co-evolve with different hosts and explore all possible 
strategies	to	maintain	and	increase	their	fitness,	it	is	not	surprising	that	viral	reproductive	
strategies come into contact with mammalian RNA silencing pathways, particularly the 
miRNA pathway, which shares components with the RNAi pathway. For example, Epstein-
Barr	virus	(EBV)	and	several	other	viruses	encode	their	own	miRNAs	(Parameswaran	
et al., 2010; Pfeffer et al., 2005; Pfeffer et al., 2004; Sullivan et al., 2005) or take advantage 
of host cell miRNAs to enhance their replication (Jopling et al., 2005). 

Another evidence for an interaction between viruses and RNA silencing is the presence 
of putative suppressors of RNA silencing (SRS) in various viruses. As viral genomes rap-
idly evolve, SRS should be functionally relevant. For example, B2 protein in Nodaviruses 
(e.g.	FHV)	is	essential	for	replication,	inhibits	Dicer	function,	and	B2-deficient	FHV	can	be	
rescued	by	artificial	inhibition	of	RNAi	response	(Li	et	al.,	2002).	B2	protein	also	enhances	
the accumulation of Nodaviral RNA in infected mammalian cells (Fenner et al., 2006; John-
son	et	al.,	2004).	Other	potential	SRS	molecules	have	been	identified	in	viruses	infecting	
vertebrates,	such	as	Adenovirus	VA1	noncoding	RNA	(Lu	and	Cullen,	2004),	Influenza	
NS1	protein	(Li	et	al.,	2004),	Vaccinia	virus	E3L	protein	(Li	et	al.,	2004),	Ebola	virus	VP35	
protein	(Haasnoot	et	al.,	2007),	TAS	protein	in	primate	foamy	virus	(Lecellier	et	al.,	2005),	
or	HIV-1	TAT	protein	(Bennasser	et	al.,	2005).
The	existence	of	SRS	in	viruses	infecting	mammals	does	not	prove	that	these	viruses	are	

targeted by mammalian RNAi. First, viruses may have a broader range of hosts (or vectors), 
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including,	e.g.	blood	sucking	insects.	Thus,	a	virus	can	be	targeted	by	RNAi	in	one	host	
and by another defense mechanism in another one. For example, the Dengue virus, whose 
life cycle takes place in humans and mosquitoes, is targeted by RNAi in mosquitoes and it 
likely	evolved	an	adaptation	to	circumvent	RNAi	(Sanchez-Vargas	et	al.,	2009).	Second,	
viral SRS in mammalian cells may have other purpose than counteracting viral suppression 
by RNAi. Since biogenesis and mechanism of action of mammalian miRNAs overlaps 
with RNAi, it is possible that the role of such SRS is to modify cellular gene expression by 
suppressing	the	activity	of	miRNAs.	Third,	the	main	effect	of	SRS	may	be	aimed	at	other	
defense mechanisms recognizing and responding to dsRNA and, as a consequence, SRS 
effects on RNAi are observed. 

Systemic RNAi in mammals

Non-cell autonomous RNA with an extent similar to that of C. elegans or in some insects 
is highly unlikely to function in vertebrates. However, a limited environmental or systemic 
RNAi may exist there as the homologs of sid-1 have been found in all sequenced vertebrate 
genomes	(Jose	and	Hunter,	2007).	Two	sid-1	homologs	(SidT1	and	SidT2)	are	present	in	
mice	and	humans	with	a	documented	role	for	SidT1	in	dsRNA	uptake	in	humans	(Duxbury	
et al., 2005; Wolfrum et al., 2007). Furthermore, experimental overexpression of human 
SidT1	significantly	facilitated	cellular	uptake	of	siRNAs	and	resulted	in	increased	RNAi	
efficacy	(Duxbury	et	al.,	2005).	As	it	will	be	discussed	later,	the	mammalian	immune	sys-
tem employs a number of proteins responding to dsRNA independently of RNAi (Gantier 
and Williams, 2007), while RNAi does not seem to participate in the innate immunity 
(Cullen,	2006;	Cullen	et	al.,	2013).	Thus,	the	primary	role	of	a	dsRNA	uptake	mechanism	
in mammals is likely not involving RNAi even though it could have served such a role in 
an ancestral organism. 

Nuclear function of small RNAs

The	literature	search	yielded	a	large	heterogeneous	group	of	publications	concerning	nucle-
ar localization of Dicer and AGO proteins as well as nuclear effects, including transcrip-
tional gene silencing. Some of these observations might come from physiologically relevant 
nuclear silencing mechanisms. However, when critically evaluating published studies, not 
enough evidence was found, to establish a model for transcriptional silencing in mammals; 
except of the PIWI-induced transcriptional silencing in the germline (REF). Here, I will 
provide an overview of nuclear aspects of RNA silencing and highlight those observations 
which might be related to the miRNA pathway or long dsRNA response.
Homology-dependent	phenomena	and	observations	that	may	reflect	nuclear	mechanisms	

involving small RNAs can be sorted into several areas, which will be discussed further 
below:
 Indirect effects of miRNAs on chromatin
 Nuclear RNAi (nuclear post-transcriptional silencing)
 Transcriptional regulations (stimulation/repression) by exogenous small RNAs
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 Transcriptional regulations (stimulation/repression) by miRNAs
 27-nt RNA – mediated regulation of endothelial nitric oxide synthase gene
 Splicing regulation by small RNAs
 DNA repair-associated small RNAs

First, it is necessary to discuss nuclear localization of miRNA and RNAi factors, since 
their nuclear localization is a pre-requisite for nuclear silencing. Pioneering RNAi work 
indicated that silencing occurs in the cytoplasm because dsRNA against intronic sequences 
had	no	silencing	effect	(Fire	et	al.,	1998)	and	the	RISC	complex	co-purified	with	ribosomes	
(Hammond et al., 2000). Early studies in mammalian cells also suggested that RNAi is 
cytoplasmic	(Billy	et	al.,	2001;	Zeng	et	al.,	2002).	However	this	notion	was	subsequently	
challenged by a series of studies reporting nuclear RNAi and small RNA-induced transcrip-
tional	silencing	(Morris	et	al.,	2004;	Robb	et	al.,	2005;	Ting	et	al.,	2005).

Nuclear localization of Dicer

A number of works directly or indirectly implies nuclear localization of Dicer (Doyle et al., 
2013; Drake et al., 2014; Gagnon et al., 2014a; Gullerova and Proudfoot, 2012; Haussecker 
and Proudfoot, 2005; Neve et al., 2016; Ohrt et al., 2012; Sinkkonen et al., 2010; White 
et al., 2014), which contrasts with a recent in vivo study on mouse Dicer where tagging 
of an endogenous Dicer gene with an antibody epitope yielded exclusively cytoplasmic 
localization in all analyzed tissues with an extremely sensitive detection limit for nuclear 
Dicer	(Much	et	al.,	2016).	Thus,	despite	the	collection	of	the	reports	below,	one	should	
still approach the nuclear aspect cautiously. One of the earlier implications for nuclear 
localization of Dicer was the reported Dicer-dependent turnover of intergenic transcripts 
from the human beta-globin gene cluster (Haussecker and Proudfoot, 2005). However, this 
study showed mostly correlation of abundance of nuclear transcripts. Nuclear Dicer pro-
cessing was also implicated by several other studies (Flemr et al., 2013; Neve et al., 2016; 
Valen	et	al.,	2011;	White	et	al.,	2014).	In	terms	of	function,	nuclear	Dicer	was	thought	to	
be involved in nuclear dsRNA processing (?) (White et al., 2014), selection of alternative 
polyadenylation sites (Neve et al., 2016) or rRNA processing (Liang and Crooke, 2011). 
Several studies documented Dicer nuclear localization by microscopy. Dicer was detected 
in cultured mammalian cells with several different antibodies in the chromatin where it 
resided in rDNA clusters on acrocentric human chromosomes (Sinkkonen et al., 2010). 
Finer mapping using chromatin immunoprecipitation suggested that Dicer localizes in the 
proximity of the rRNA transcribed region (Sinkkonen et al., 2010). However, this study 
failed	to	reveal	any	functional	significance	of	Dicer	localization	and	it	is	not	clear	if	the	
localization is related to the later reported role of Dicer in pre-rRNA processing (Liang and 
Crooke, 2011) or to rDNA-derived small RNAs (Wei et al., 2013).

Furthermore, localization of Dicer to rDNA is distinct from the nuclear localization of 
Dicer	detected	by	fluorescence	correlation/cross-correlation	spectroscopy	(FCS/	FCCS)	
(Ohrt et al., 2012), since FCS/ FCCS can detect diffusing and not rDNA chromatin-bound 
Dicer.	FCS/FCCS	identified	Dicer	in	the	nucleus	in	HeLa	cells	and	suggested	that	nuclear	
Dicer is alone while the cytoplasmic Dicer exists in a large complex with AGO2 (presum-
ably	RLC)	(Ohrt	et	al.,	2012).	This	would	imply	that	while	Dicer	could	process	nuclear	
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substrates, they would not be loaded on AGO proteins in the nucleus. However, a later study 
suggested	that	Dicer,	TARBP2,	AGO2	and	GW182	associate	into	a	large	complex	in	the	
nucleus although, consistently with FCS/FCCS data, loading of nuclear small RNA duplex-
es was not detected (Gagnon et al., 2014a). Regarding the nuclear localization mechanism 
of Dicer, it does not employ a canonical nuclear localization signal (NLS). A pyruvate 
kinase fusion system suggested that dsRBP of Dicer could function as an NLS similarly 
to ADAR dsRBD (Doyle et al., 2013). However, this study did not prove nuclear localiza-
tion of full-length Dicer under physiological conditions. Interestingly, an additional report 
implied phosphorylation of Dicer in nuclear localization in nematodes, humans and mice 
(Drake et al., 2014). Remarkably, one of the two reported phosphorylation sites for ERK 
was in the dsRBD, providing a hypothetical link to analysis of the study implying dsRBD 
in nuclear localization of Dicer. Yet, as mentioned above, EGFP tagging of Dicer in mice 
does	not	support	nuclear	localization	of	Dicer	(Much	et	al.,	2016).	Taken	together,	nuclear	
localization/function of Dicer is still poorly understood and further research is needed to 
build a more coherent picture from the contradictory observations.

Nuclear AGO1–4 

A similarly unclear situation exists for nuclear AGO1–4 proteins. AGO1–4 proteins were 
observed	in	the	nucleus	under	different	circumstances	including	immunofluorescent	stain-
ing, such as, for example (Ahlenstiel et al., 2012; Allo et al., 2014; Aporntewan et al., 2011; 
Bai et al., 2014; Berezhna et al., 2006; Gagnon et al., 2014a; Huang et al., 2013a; Jang 
et al., 2012; Janowski et al., 2006; Kim et al., 2012; Kim et al., 2006; Liang and Crooke, 
2011; Nishi et al., 2013; Ohrt et al., 2008; Ohrt et al., 2012; Robb et al., 2005; Rudel et al., 
2008;	Sharma	et	al.,	2016;	Tan	et	al.,	2009a).	Notably,	one	should	be	cautious	about	nuclear	
localization detected by antibodies and cellular fractionation in the absence of appropriate 
controls. While antibody cross-reactivity often cannot be excluded, biochemical fraction-
ations suffer from impurities and endoplasmic reticulum contamination is frequently not 
examined. In any case, if there would be any consensus about nuclear AGO localization, it 
seems that a small fraction of AGO proteins is indeed in the nucleus and can engage com-
plementary RNAs (Berezhna et al., 2006; Gagnon et al., 2014b; Ohrt et al., 2008; Robb 
et	al.,	2005).	The	mechanism	of	nuclear	import	of	AGO	proteins	is	unclear.	AGO	proteins	
do not carry a canonical NLS. It has been proposed that AGO proteins could be imported 
into the nucleus by GW182 (Nishi et al., 2013) or via Importin 8 (Weinmann et al., 2009). 
The	next	section	reviews	effects	of	small	RNA	mechanisms	in	the	nucleus,	starting	with	

indirect ones.

Indirect effects of miRNAs on chromatin

Studies of miRNA targets suggest that 10 to 30% of human genes are potential miRNA 
targets (John et al., 2004; Lewis et al., 2003). Also, experiments with delivering miRNAs 
into different cell types suggest that individual miRNAs can down-regulate a large number 
of	genes	(Lim	et	al.,	2005).	Thus,	it	is	not	surprising	that	many	genes	regulating	chromatin	
structure are directly or indirectly regulated by miRNAs. One of the recent examples of 
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such a connection is the regulation of DNA methylation in murine embryonic stem cells 
(ESCs). Phenotype analysis of Dicer-/- cells revealed that the loss of Dicer in ES cells leads 
to defects in differentiation and it may (Kanellopoulou et al., 2005) or may not (Murchison 
et al., 2005) lead to aberrant changes in centromeric chromatin. It has been speculated that 
Dicer functions in a pathway similar to that of Schizosaccharomyces pombe (Kanellopoulou 
et	al.,	2005).	This	interpretation	was	consistent	with	previous	analysis	of	chicken-human	
hybrid	DT40	cell	line	lacking	Dicer,	where	defects	in	heterochromatin	were	also	observed	
(Fukagawa	et	al.,	2004).	However,	cloning	of	small	RNAs	from	WT	and	Dicer-/- ES cells 
suggests that ES cells do not naturally produce endogenous siRNAs and that Dicer exclu-
sively produces miRNAs (Calabrese et al., 2007).

Detailed analysis of the transcriptome of murine Dicer-/- ES cells (Sinkkonen et al., 
2008) correlated changes of gene expression with the presence of binding sites for 
AAGUGC-seeded miRNAs (miR-290 cluster and other miRNAs), which were previously 
found	in	human	and	murine	ES	cells	(Houbaviy	et	al.,	2005;	Suh	et	al.,	2004).	The	loss	of	
Dicer and miRNAs resulted in down-regulation of de novo DNA methyltransferases and 
defects	in	de	novo	DNA	methylation	during	differentiation.	This	defect	could	be	rescued	by	
over-expressing de novo DNA methyltransferases or by transfection of the miR-290 cluster 
miRNAs	(Sinkkonen	et	al.,	2008).	These	data	were	complemented	by	the	study	of	Benetti	
et al., who showed that the loss of Dicer leads to decreased DNA methylation, concomitant 
with increased telomere recombination and telomere elongation (Benetti et al., 2008).

Regulation of de novo DNA methyltransferases by miRNAs is likely much more com-
plex than described above because other miRNAs were also implicated in their direct regu-
lation in other cell types (Duursma et al., 2008; Fabbri et al., 2007). Importantly, the genetic 
background	or	culturing	conditions	can	also	influence	epigenetic	changes	in	studied	cells,	
which	might	explain	why	a	third	study	of	Dicer-deficient	ESCs	observed	normal	DNA	
methylation dynamics (Ip et al., 2012).

In any case, it is very likely that miRNAs play a similar role in other aspects of chromatin 
formation. Considering that up to 60% of the genes are possibly regulated by miRNAs, data 
from experiments which directly or indirectly affect the miRNA pathway (including siRNA 
off-targeting), should be handled with open mind and great caution.

Post-transcriptional regulations by small RNAs  
in the nucleus – nuclear RNAi

In mammalian cells, Robb et al. showed that nuclear RNAs can be targeted by RNAi (Robb 
et al., 2005). In addition they also provided biochemical data showing that AGO1 and 
AGO2 localize into the nuclear RISC (Robb et al., 2005). While these data did not make 
a conclusive evidence as contamination of the nuclear fraction with AGO proteins asso-
ciated with outer nuclear envelope could not be excluded, nuclear localization of AGOs 
was later backed up by other data (Berezhna et al., 2006; Gagnon et al., 2014b; Ohrt et al., 
2008). Berezhna et al. showed that siRNAs accumulate in the nucleus in a cognate mRNA 
dependent	manner	(Berezhna	et	al.,	2006).	Ohrt	et	al.	reported	that	siRNAs	against	fire-
fly	luciferase	microinjected	into	HeLa	cells	enter	nucleus	but	are	actively	excluded	from	
non-nucleolar space in Exportin-5 dependent manner (Ohrt et al., 2006). 
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Taken	together,	loaded	AGO2	seems	to	be	able	to	engage	nuclear	RNAs	and,	in	case	of	
perfect complementarity, it can cleave its targets. How nuclear RNAi incorporates nuclear 
and cytoplasmic small RNA precursors and how it is working under physiological conditions 
on perfectly complementary and partially complementary targets remains largely unknown.

Transcriptional regulations (stimulation/repression) by exo-siRNAs

In plants and fungi, RNA silencing mechanisms also mediate transcriptional silencing. 
Similar transcriptional silencing phenomena were intensely searched also in mammals. 
The	first	two	reports	of	transcriptional	silencing	in	mammals	were	published	in	2004	when	
two groups reported siRNA-mediated transcriptional silencing coupled with DNA meth-
ylation	(Kawasaki	and	Taira,	2004;	Morris	et	al.,	2004)	and	laid	problematic	foundations	
of	transcriptional	silencing	research	in	mammals.	The	reason	is	that	reproducibility	of	
both reports was quickly questioned and one of them was later forced retracted, formal-
ly	because	“a	proper	data	notebook	is	not	available	as	evidence	to	support	our	findings,	
which	constitutes	non-adherence	to	ethical	standards	in	scientific	research.	In	accordance	
with the recommendations from the National Institute of Advanced Industrial Science and 
Technology,	K.T.	therefore	wishes	to	retract	this	paper.”	(Taira,	2006).	While	the	second	
report has not been retracted, DNA methylation has been doubted as a key silencing effect 
(Ting	et	al.,	2005).	Furthermore,	the	report	did	not	analyse	induction	of	DNA	methyla-
tion	by	informative	bisulfite	sequencing	but	relied	on	suboptimal	methylation-sensitive	
restriction digest. Another troubling aspect of the second report is a technically impossible 
transcriptional silencing experiment shown in Fig. 1B, which raises a question how careful 
was the peer reviewing process. In any case, transcriptional misregulation by exogenous 
oligonucleotides complementary to promoter sequences has been reported by different 
laboratories for different promoters in different cells arguing that some complementari-
ty-based transcriptional regulation by small RNAs functions in mammalian cells. Impor-
tantly, the underlying mechanism was not conclusively revealed after a decade and is still 
a matter of debates. 
The	siRNA-induced	transcriptional	silencing	involves	changes	in	the	chromatin	structure	

such	as	loss	of	“active”	histone	modifications	(H3K4	methylation,	histone	acetylation)	
(Janowski	et	al.,	2006;	Morris	et	al.,	2004),	appearance	of	“inactive”	histone	modifica-
tions (H3K9 and H3K27 methylation) (Castanotto et al., 2005; Janowski et al., 2006; Jiang 
et al., 2012; Kim et al., 2006; Kim et al., 2007; Weinberg et al., 2006), and occasionally 
DNA	methylation	(Morris	et	al.,	2004).	These	are	all	common	features	of	transcriptional	
repression and could be either directly induced by siRNA-containing complexes or they 
be a consequence of transcriptional silencing. DNA methylation is apparently a secondary 
effect	(Ting	et	al.,	2005)	although	a	systematic	analysis	revealed	a	group	of	gene	promoters	
whose	methylation	was	dependent	on	Dicer	(Ting	et	al.,	2008).
Small	RNAs	used	for	silencing	were	either	“classical”	synthesized	siRNAs	(agRNAs)	

(Ahlenstiel et al., 2012; Castanotto et al., 2005; Hawkins et al., 2009; Janowski et al., 2005a; 
Jiang	et	al.,	2012;	Kim	et	al.,	2007;	Morris	et	al.,	2004;	Napoli	et	al.,	2009;	Ting	et	al.,	
2005) or shRNAs expressed from a plasmid (Castanotto et al., 2005; Kim et al., 2007). 
Importantly, transcriptional silencing could be induced by a variety of antisense oligomers 

Introduction_to_RNAi.indd   93Introduction_to_RNAi.indd   93 09.07.20   8:3409.07.20   8:34



MAMMALS II

94

targeting promoter sequences such as single-stranded antigene (ag) peptide nucleic acid 
(PNA) (Janowski et al., 2005b), PNA-peptide conjugates (Hu and Corey, 2007), locked 
nucleic acid (LNA) (Beane et al., 2007) or duplex RNA (siRNA) oligos (Janowski et al., 
2005a).	These	results	represent	a	remarkably	comprehensive	set	of	data	concerning	inhi-
bition of human progesterone receptor A (hPR-A) and B (hPR-B) isoforms. Despite all 
approaches achieved inhibition of gene expression, these silencing oligonucleotides have 
radically different properties and it is questionable whether they would all operate loaded 
on an AGO protein in a RISC-like complex.

Furthermore, studies of oligonucleotides targeting promoter sequences revealed that 
some oligonucleotides have a positive effect on transcription (Janowski et al., 2007; Li 
et	al.,	2006).	The	activating	effect	of	small	RNAs	also	appeared	later	in	other	reports	(Hu	
et	al.,	2012;	Wang	et	al.,	2015a;	Zhang	et	al.,	2014).	“Scanning”	a	promoter	with	oligonu-
cleotides revealed the existence of sites whose targeting results in transcriptional repression 
as well as sites whose targeting promotes expression (Janowski et al., 2005a; Janowski 
et al., 2007). According to these data, a shift by several nucleotides could have an oppo-
site	effect	on	gene	expression	that	would	correlate	with	changes	in	histone	modifications.	
These	data	would	imply	existence	of	a	still-unknown	RISC-like	nuclear	complex	acting	as	
a switch or siRNA strand-selection onto a single RISC-like complex, where the opposing 
effects would stem from targeting sense and antisense RNAs in the locus. Alternatively, 
the observed silencing stems from the oligonucleotide binding and is not mechanistically 
involving AGO proteins.
To	date,	the	active	agent	of	the	silencing	has	not	been	conclusively	identified	and	critical-

ly assessed. It still remains a question whether there is a dedicated transcriptional silencing 
machinery in mammalian cells involving AGO proteins and some binding partners as pro-
posed by some reports (Cho et al., 2014; Hawkins et al., 2009; Hu et al., 2012; Janowski 
et al., 2006; Kim et al., 2006; Suzuki et al., 2008), which are partially contradicting them-
selves and are not supported by proteomic analysis of AGO complexes (Hauptmann et al., 
2015;	Hock	et	al.,	2007;	Meister	et	al.,	2005),	or	various	artificial	disturbances	of	lncRNAs	
generate the observed effects.

Transcriptional regulations (stimulation/repression) by miRNAs

A peculiar phenomenon of miRNA-associated transcriptional activation was reported from 
cultured mammalian cells for the E-cadherin and cold-shock domain-containing protein C2 
(CSDC2)	promoters	and	the	miR-373	(Place	et	al.,	2008).	The	initial	observation	leading	
to discovery of this phenomenon was that transfection of siRNAs homologous to E-cad-
herin,	p21WAF1/CIP1,	and	VEGF	promoters	lead	to	unexpected	transcriptional	activation	
(Li et al., 2006). Subsequent sequence analysis of the E-cadherin promoter revealed high 
complementarity between the miR-373 and the sequence at position -645 relative to the 
transcription start site (Place et al., 2008). Delivery of miR-373, pre-miR373 and a syn-
thetic siRNA sequence targeting -640 position could stimulate E-cadherin expression by 
~5–7-fold in PC-3 cells. Interestingly, intact miRNA pathway was required for the E-cad-
herin stimulation as partial down-regulation of Dicer protein by morpholino oligonucleo-
tides abolished the stimulatory effect of pre-miR-373. Since then, several other reports of 
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miRNA-mediated transcriptional silencing appeared, including transcriptional inhibition of 
HOXD4	expression	by	miRNA-10a	(Tan	et	al.,	2009b),	miR-320-mediated	transcriptional	
silencing of POLR3D (Kim et al., 2008), and others (Adilakshmi et al., 2012; Benhamed 
et al., 2012; Kim et al., 2011)

It remains an open question whether effects of exogenous siRNAs represent the same 
molecular mechanism as those attributed to nuclear activities of miRNAs. It would be sup-
ported by non-cleaving AGO1 implicated in transcriptional regulation (Huang et al., 2013a; 
Janowski et al., 2006; Kim et al., 2006) and transcriptional silencing by miRNA mimics 
targeting gene promoters (Younger and Corey, 2011). In terms of the possible miRNA-me-
diated nuclear silencing, it was reported that POLR3D silencing involves miRNA-mediated 
promoter	association	with	a	complex	including	AGO1	and	EZH2	(H3K27	histone	methyl-
transferase) (Kim et al., 2008). It was also suggested that AGO1 interacts with polymerase 
II (Huang et al., 2013a; Kim et al., 2006). At the same time, others implicated GW182 as 
the factor important for nuclear localization and function of nuclear AGO proteins (Nishi 
et al., 2013; Nishi et al., 2015). However, the mechanistic link between AGO-GW182 and 
histone	modifications	still	remains	elusive.

27nt RNAs – mediated regulation of endothelial nitric oxide synthase gene

This	phenomenon	has	been	observed	in	endothelial	nitric	oxide	synthase	(eNOS)	where	
a 27nt repeat polymorphism in intron 4 was a source of predominantly nuclear 27nt small 
RNAs,	which	could	be	either	a	novel	class	of	small	RNAs,	or	atypical	miRNAs	(Zhang	
et al., 2008b). In any case, these 27nt RNAs were implicated in eNOS suppression by alter-
ing histone acetylation and DNA methylation in regions adjacent to the 27nt repeat element 
and	core	promoter	(Zhang	et	al.,	2008a).	Whether	this	phenomenon	is	related	to	other	ones	
described here remains unclear.

Regulation of splicing

In addition to transcriptional and post-transcriptional silencing, one of the reported effects 
of small RNAs transfected into mammalian cells was also an impact on alternative splicing 
(Allo et al., 2009). A mechanism was proposed, which involves AGO1 recruitment to tran-
scriptional enhancers (Allo et al., 2014), while other reports implicated AGO2 (Liu et al., 
2012; Liu et al., 2015) or both (Ameyar-Zazoua	et	al.,	2012).

Small RNAs associated with DNA repair

The	last	nuclear	phenomenon	associated	with	small	RNAs	is	their	emergence	upon	DNA	
damage. It was reported that DICER and DROSHA-dependent small RNAs emerge as 
DNA-damage response and are functionally associated with it through the MRE11 com-
plex (Francia et al., 2012). In addition, knock-down of Dicer or AGO2 in human cells 
reduced double-stranded break repair (Wei et al., 2012). It was proposed that small RNAs 
emerging from DNA –damage loci may function as guide molecules directing chromatin 
modifications	or	the	recruitment	of	protein	complexes	to	facilitate	repair	(Francia	et	al.,	
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2012; Wei et al., 2012). What is somewhat confusing in DNA-repair associated small 
RNAs	is	 the	role	of	miRNA-specific	factors	Drosha	(Francia	et	al.,	2012)	or	DGCR8	
(Swahari et al., 2016).

Despite the heterogeneity of the nuclear effects and many unknowns, some common 
themes emerged, allowing for formulating testable hypotheses that could be critically eval-
uated. First, nuclear effects can be mediated by small RNAs provided in trans. Second, 
small	RNAs	recruit	AGO	proteins	in	a	sequence-specific	manner,	most	likely	recognizing	
a	local	transcript	(perhaps	an	ncRNA).	Third,	the	effect	involves	a	change	in	the	chromatin	
structure.	Thus,	by	carefully	examining	essential	exogenous	siRNA	properties	in	previously	
reported nuclear effects, one should be able to demonstrate that the silencing phenomenon 
truly involves an AGO-loaded small RNA engaging another nuclear RNA and whether 
the	effect	requires	the	“slicer”	activity.	Detailed	examination	of	the	seed	sequence	would	
also	discern	between	specific	nuclear	effects	and	off-targeting.	Furthermore,	should	the	
effect involve small RNA loaded AGO protein, the kinetics of the phenomenon should be 
in agreement with known RISC kinetics discussed above. Finally, if the aforementioned 
phenomena rely on localized recruitment of AGO-loaded small RNAs, one should be able 
to	mimic	those	effects	by	tethering	AGO	proteins	through	sequence-specific	DNA	binding	
modules	such	as	those	employed	by	TALEN	or	CRISPR	nucleases.	These	research	direc-
tions should be combined with validated antibodies for chromatin immunoprecipitation 
and	immunofluorescence	(or	epitope	knock-in	into	candidate	genes),	more	extensive	use	of	
mutants defective in RNA silencing, detailed quantitative analysis of cellular fractionation 
and	identifications	of	interacting	partner,	studies	of	putative	nuclear	import	and	export	sig-
nals of Dicer and AGO proteins, and advanced imaging techniques.

Other dsRNA–associated mechanisms I – dsRNA sensing  
in the interferon pathway

Long dsRNA is not a usual RNA molecule in eukaryotic cells while RNA viruses produce 
dsRNA during replication. A common mechanism repressing viruses in non-vertebrate 
species is RNA silencing (Wang et al., 2006; Wilkins et al., 2005). However, response to 
foreign long dsRNA in mammals is much more complex and involves a set of sequence-in-
dependent	sensors	triggering	expression	of	a	defined	set	of	genes	known	as	interferon-stim-
ulated	genes	(ISGs).	The	interferon	pathway	is	the	most	ubiquitous	sequence-independent	
pathway	induced	by	dsRNA	in	mammalian	cells	(reviewed	in	detail	in	de	Veer	et	al.,	2005).	
Among the relevant sensors recognizing cytoplasmic dsRNA are protein kinase R (PKR), 
the	helicase	RIG-I,	MDA5,	2’,5’-oligoadenylate	synthetase	(2’,5’-OAS),	or	Toll-like	recep-
tors	(TLR3,	7,	8)	(reviewed	in	Gantier	and	Williams,	2007;	Sadler	and	Williams,	2007).	
Notably, there are also dsRNA-independent mechanisms that can activate interferons in 
mammalian cells. Altogether, different stimuli are being sensed and converge on activation 
of	overlapping	but	distinct	sets	of	ISGs	(Geiss	et	al.,	2001).	The	situation	is	even	more	
convoluted by cellular diversity as some cell types, particularly immune cells, can elicit 
the	interferon	response	by	additional,	cell-type-specific	pathways	(reviewed	in	Schlee	and	
Hartmann, 2010).
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PKR

PKR is the oldest known mammalian dsRNA sensing protein. A pioneering work by Hunter 
et al. showed that different types of dsRNA can block translation in reticulocyte lysates 
(Hunter	et	al.,	1975).	Analysis	of	the	phenomenon	identified	PKR	that	is	activated	upon	
binding to dsRNA and blocks translation by phosphorylating the alpha subunit of eukar-
yotic	initiation	factor	2	(eIF-2α)	(Meurs	et	al.,	1990).	Activation	of	PKR	also	includes	
activation	of	the	NFκB	transcription	factor	and	a	large	number	of	interferon-stimulated	
genes (ISGs) (Geiss et al., 2001). PKR response to viral dsRNA can be coordinated with 
other dsRNA sensors, such as RIG-I and MDA5 (Sen et al., 2011). PKR can also respond 
to endogenous RNAs in unique physiological regulations (Bevilacqua et al., 1998; Bommer 
et al., 2002). However, endogenously expressed long dsRNA does not necessarily induce 
canonical PKR response with interferon activation, although PKR binding to dsRNA and 
restricted translational repression can be observed (Nejepinska et al., 2012; Nejepinska 
et al., 2014). It was believed that dsRNA <30-bp in length does not induce PKR. However, 
Marques et al. reported that, siRNAs can bind and activate PKR in vitro regardless of siR-
NA termini (Marques et al., 2006) arguing against the long-established 30-bp length as the 
minimal size-limit for PKR activation. There	are	also	other	data	indicating	sensitivity	of	
PKR to dsRNA motifs shorter than 30-bp (Puthenveetil et al., 2006; Reynolds et al., 2006; 
Zheng	and	Bevilacqua,	2004).

RIG-I-like receptors (RIG-I, MDA5, LGP2)

Mammalian somatic cells can respond to dsRNA in a sequence-independent manner.. In 
addition to PKR, several other proteins recognizing dsRNA are integrated to the inter-
feron response, including helicases RIG-I (retinoic-acid-inducible gene-I, also known as 
DDX58), MDA5 (IFIH1), and LGP2 (DHX58), which sense cytoplasmic dsRNA and acti-
vate interferon expression.

RIG-I is a cytoplasmic sensor differentiating between endogenous and foreign RNAs 
structures. In particular, RIG-I is activated by blunt-ended dsRNAs with or without 
a 5’-triphosphate, by single-stranded RNA marked by a 5’- triphosphate, and by polyu-
ridine sequences. RIG-I domains organize into a ring around dsRNA, capping one end, 
while contacting both strands; the structure is consistent with dsRNA translocation without 
unwinding and cooperative binding to RNA (Jiang et al., 2011a; Jiang et al., 2011b). Like 
RIG-I and LGP2, MDA5 preferentially binds dsRNA with blunt ends (Li et al., 2009a). 
RIG-I,	MDA5,	and	LGP2	exhibit	differences	in	recognizing	specific	RNA	structures	and	
different types of viruses providing a broader range of coordinated sensitivity do different 
potential threats (Kato et al., 2006; Li et al., 2009b; McCartney et al., 2008; Sen et al., 
2011; Slater et al., 2010; Wu et al., 2015b). Interestingly, RIG-I can become activated also 
with	siRNAs	lacking	2-nt	3’	overhangs	(Marques	et	al.,	2006).	These	data	imply	that	2-nt	
3’ overhangs generated by Dicer are the structural basis for discriminating between Dicer 
products and other short dsRNA. Roles of MDA5 and LGP2 in siRNA-mediated interfer-
on response remains to be addressed. Furthermore, recognition 5’ triphosphate RNA ends 
RIG-I (Hornung et al., 2006; Pichlmair et al., 2006) highlights importance of appropriate 
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processing of 5’ termini of RNAs produced by phage polymerases when such RNAs are 
used in mammalian cells.

It is not clear how PKR and RIG-I pathways are integrated. RIG-I binds siRNAs (with or 
without 2-nt 3’ overhangs) in vitro and it shows greater unwinding of blunt-ended siRNAs. 
Unwinding is then translated into the interferon activation mediated via IRF-3.

Toll-like Receptor 3 (TLR3)

TLR3	is	a	member	of	the	Toll-like	receptor	(TLR)	family	and	functions	as	a	sensor	of	
extracellular, intracellular and viral dsRNAs (Amarante et al., 2011; Seo et al., 2013; Wang 
et	al.,	2015b;	Wu	et	al.,	2015b;	Yang	et	al.,	2006b).	TLR3	has	distinct	or	complementary	
roles to RIG-I and related helicases in sensing foreign molecules and activating downstream 
responses (Livengood et al., 2007; McCartney et al., 2009; Slater et al., 2010; Wu et al., 
2015b).

Oligoadenylate Synthetase (OAS)

Interferon and dsRNA also activate 2’,5’-oligoadenylate synthetase (2’,5’-OAS) that pro-
duces 2’,5’ oligoadenylates with 5’-terminal triphosphate residues that subsequently induce 
activation	of	RNAse	L;	a	protein	responsible	for	general	RNA	degradation	(de	Veer	et	al.,	
2005).

TARBP2 and PACT 

Interactions	between	RNAi,	miRNA,	and	interferon	response	are	poorly	understood.	There	
are	two	clear	mechanistic	connections	between	these	two	pathways.	First,	TARBP2	and	
PACT,	two	dsRNA	binding	proteins,	which	were	mentioned	earlier	as	Dicer-interacting	
proteins,	interact	also	with	PKR.	Notably,	while	TARBP2	inhibits	PKR	(Cosentino	et	al.,	
1995;	Park	et	al.,	1994),	PACT	has	the	opposite	role	(Patel	and	Sen,	1998).	While	cyto-
plasmic long dsRNA in somatic cells apparently triggers the interferon response, it is not 
clear if the same dsRNA is also routed into the RNAi pathways. Experiments in oocytes 
and undifferentiated embryonic stem cells (Stein et al., 2005; Yang et al., 2001) suggest 
that RNAi dominates response to cytoplasmic long dsRNA in the absence of a strong 
interferon response and that the interferon pathway dominates when its relevant compo-
nents are present. On the other hand, this view may be too simplistic as it does not explain 
the lack of both, RNAi and interferon response, in somatic cells expressing long dsRNA 
(Nejepinska et al., 2012; Nejepinska et al., 2014). In any case, understanding the role of 
TARBP2	and	PACT	isoforms	in	routing	long	dsRNA	into	RNAi	and	interferon	pathways	
requires further studies. 
There	is	a	clear	evolutionary	connection	between	RNAi	and	interferon	response.	The	

above-mentioned mammalian RNA helicases RIG-I, LGP2 and MDA5 are the closest 
homologs of helicases involved in processing of long dsRNA during RNAi in C. elegans. 
Notably, RIG-I is an established component of the interferon response to long dsRNA 
(Yoneyama	et	al.,	2004).	This	suggests	that	the	interferon	response,	which	has	a	common	
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trigger and evolved after the RNAi pathway, adopted several components from the latter 
pathway. It remains to be determined whether these and other components of RNAi lost 
their function in RNAi entirely or mediate some form of a cross-talk between RNAi and 
interferon response. 

Finally, there is also a complex relationship between miRNA and interferon pathways 
(Ingle et al., 2015; Ostermann et al., 2012; Shapiro et al., 2014; Xu et al., 2011). One con-
nection	is	exemplified	by	viral	miRNAs,	which	viruses	use	to	regulate	the	host	response,	in	
particular factors of the interferon pathway (Ostermann et al., 2012) or other cellular sig-
nalling (Xu et al., 2011). However endogenous cellular miRNAs may also act to suppress 
the interferon response factors, such as the case mir-485, which has a dual role in targeting 
RIG-I	as	well	as	the	influenza virus H5N1 (Ingle et al., 2015). 

Other dsRNA-associated mechanisms II – Adenosine deamination

A-to-I	editing	is	a	covalent	RNA	modification	system	of	broad	significance	(reviewed	
in Nishikura, 2016). It is mediated by adenosine deaminases acting on RNA (ADARs), 
enzymes that carry two or three dsRBD and recognize both inter- and intramolecular dsR-
NAs longer than 20–30 bp (Nishikura et al., 1991). ADARs convert adenosines to inosines, 
which base pair with cytosines, which are interpreted as guanosines during translation. 
Thus,	RNA	editing	affects	coding	potential, fidelity	of	RNA	replication	reverse	transcrip-
tion, or formation/stability of RNA secondary structures where a change of a single base in 
a sequence may result either in dsRNA destabilization (inosine-uridine pair) or stabilization 
(inosine-cytidine pair) (Nishikura, 2010). Such transition in the local and global stability 
of	dsRNA	structure	can	influence	further	processing	of	dsRNA,	such	as	the	selection	of	the	
effective	miRNA	strand	(Bartel,	2004;	Meister	and	Tuschl,	2004).

Mammals (and vertebrates in general) have three ADAR genes (reviewed in Nishiku-
ra,	2016)	(Fig.	3).	Two	encode	proteins	carrying	deaminase	activity:	ADAR1,	which	is	
interferon-inducible, and ADAR2, which is constitutively expressed. ADAR3 is mostly 
expressed	in	the	brain	but	its	editing	activity	has	not	been	shown	yet.	The	specificity	of	
the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, 
dependent on the duplex structure of the substrate RNA.
The	complete	ADAR	structure	has	not	been	solved	yet	but	structure	of	several	domains	

is	known	–	the	Z	alpha	domain	of	the	human	editing	enzyme	ADAR1	(Schwartz	et	al.,	
1999)	and	dsRBDs	of	ADAR2	(Stefl	et	al.,	2010).	The	analysis	of	dsRBDs	provided	an	
insight	into	editing	of	a	specific	substrate	and	revealed	that	dsRBDs	of	ADAR	not	only	
recognize	the	shape	but	also	the	sequence	of	the	dsRNA	(Stefl	et	al.,	2010).	The	unex-
pected direct readout of the RNA primary sequence by dsRBDs is achieved via the minor 
groove	of	the	dsRNA	and	this	recognition	is	critical	for	both	editing	and	binding	affinity	
of	edited	RNA	(Stefl	et	al.,	2010).	It	was	also	shown	that	ADAR2	forms	dimers	in vivo 
and	that	dsRBDs	are	necessary	and	sufficient	for	dimerization	of	the	enzyme	(Poulsen	
et al., 2006).

ADARs exhibit complex regulation of localization. For example, it was shown that 
mouse ADAR1 isoforms are differentially localized in cellular compartments and that their 
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localization is controlled by several independent signals, which include a nuclear locali-
zation signal (NLS), the nucleolar localization signal (NoLS), the nuclear exporter signal 
(NES)	near	the	N	terminus	(Nie	et	al.,	2004).	ADAR1	interacts	with	TuDOR-SN	nuclease	
(Nishikura, 2010; Scadden, 2005; Weissbach and Scadden, 2012; Yang et al., 2006a) and 
localizes to stress granules upon stress induction (Weissbach and Scadden, 2012) while 
tudor-SN degrades hyperedited dsRNA (Scadden, 2005). 

RNA editing concerns a broad range of RNAs including viral and cellular RNAs. Many 
long perfect dsRNAs (>100 bp) undergo extensive editing with a conversion of approx-
imately 50 % of adenosines to inosines (Nishikura et al., 1991; Polson and Bass, 1994). 
Extensive editing (hyperediting) is linked with nuclear retention (reviewed in DeCerbo 
and Carmichael, 2005). On the other hand, short RNAs (~20–30 bp) or imperfect long 
dsRNAs	are	edited	selectively;	usually	only	a	few	adenines	at	specifi	c	sites	are	deaminated	
(Lehmann and Bass, 1999). High throughput analyses revealed the extent of RNA editing 
of mammalian RNAs in terms of substrate diversity and frequency of editing in the tran-
scriptome (Carmi et al., 2011; Peng et al., 2012). Edited endogenous RNAs (Dawson et al., 
2004; Hundley et al., 2008; Morse et al., 2002; Salameh et al., 2015) include mRNAs, repet-
itive sequences (mainly Alu (Athanasiadis et al., 2004)), and miRNAs. It was predicted that 
more than 85% of pre-mRNAs may be edited, predominantly in the non-coding regions 
(Athanasiadis et al., 2004). 

Several pri-miRNAs (e.g. miR-142) are known to undergo editing, which inhibits Dro-
sha	cleavage	or	even	causes	degradation	of	pri-miRNA	by	Tudor	SN	(Nishikura,	2010;	
Scadden,	2005;	Yang	et	al.,	2006a).	In	other	cases,	pri-miRNA	editing	does	not	infl	uence	
Drosha activity but inhibits processing of pre-miRNA by Dicer (e.g. miR-151) (Kawahara 
et al., 2007a). Last but not least, RNA editing might also inhibit export of miRNAs from 
the nucleus (Nishikura, 2010). A systematic analysis of edited miRNAs in the human brain 
showed that editing of miRNAs affects several miRNAs but it is not widespread (Alon 
et al., 2012). A similar picture was obtained from analysis of embryonic miRNAs (Gar-
cia-Lopez	et	al.,	2013;	Vesely	et	al.,	2012)

One of the roles of ADARs in immunity is to prevent innate immune sensing of self-RNA 
(Heraud-Farlow and Walkley, 2016). ADARs also affect viral RNAs in various ways – 
ADARs are both antiviral and proviral; the effect on virus growth and persistence depends 

Figure 3 Domain composition of mammalian ADAR proteins
NES, nuclear export signal, NLS, nuclear localization signal; dsRBD, dsRNA binding domain.
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upon	the	specific	virus.	(Samuel,	2011).	Viruses	targeted	by	ADARs	in	mammals	include	
HIV	(Clerzius	et	al.,	2009),	herpesvirus	(Gandy	et	al.,	2007),	HRSV	(Martinez	and	Mele-
ro,	2002),	HCMV	(Nachmani	et	al.,	2014),	VSV	(Nie	et	al.,	2007),	and	HDV	(Wong	and	
Lazinski, 2002).

Crosstalk between RNA editing and other dsRNA pathways.

ADARs affect other dsRNA pathways in several ways. In RNA silencing, ADARs can 
compete	with	RNAi	 for	 dsRNA	substrates	 (including	 siRNAs).	The	ADAR1	 isoform	
(ADAR1p150) strongly binds siRNA and reduces thus the availability of dsRNA for RNAi, 
resulting	in	less	efficient	RNAi	in	normal	cells	compared	to	Adar1-/- cells (Yang et al., 
2005). Interestingly, injection of high doses of siRNAs enhances ADAR1 expression, sug-
gesting a role of ADAR1 in a cellular feedback mechanism in response to siRNA (Hong 
et al., 2005). 

Editing affects base pairing quality of dsRNA substrates as well as target recognition 
since a single nucleotide mismatch between siRNA and target mRNA can reduce RNAi 
efficacy	(Scadden	and	Smith,	2001)	or	modify	target	specificity,	especially	when	occurring	
in the seed sequence (Kawahara et al., 2007b). MiRNAs would be affected in a similar 
way. A moderate deamination (one I-U pair per siRNA) does not prevent Dicer processing 
to	siRNAs	(Zamore	et	al.,	2000)	but,	hyperediting	(~50	%	of	deaminated	adenosines)	can	
make dsRNA resistant to Dicer processing (Scadden and Smith, 2001). 
Thus,	ADARs	are	factors	conferring	to	formation	of	RNAi	resistance	(Hong	et	al.,	2005),	

which may be one of the viral strategies to avoid being targeted through a dsRNA-respond-
ing	pathway	(Zheng	et	al.,	2005).	ADARs	influence	the	innate	immunity	either	indirectly	by	
preventing sensing of self-RNA (Heraud-Farlow and Walkley, 2016) or by interacting with 
innate	immunity	factors,	such	as	PKR	(Clerzius	et	al.,	2009).	The	immunosuppressive	role	
of	ADAR1	could	explain	the	phenotype	of	the	Aicardi-Goutieres	syndrome	(AGS,	OMIM#	
225750), an autoimmune disorder caused by ADAR1 mutations (Rice et al., 2012). It has 
been proposed that in the absence of ADAR1, accumulation of cytoplasmic dsRNA may 
provoke interferon signalling and cause upregulation of interferon-stimulated genes, which 
is observed in AGS (Rice et al., 2012).

Summary

In mammals (Fig. 4), the miRNA pathway seems to be the dominant small RNA pathway 
in the soma while the existence and functionality of endogenous RNAi remains unclear. 
The	only	cell	type	with	well	documented	robust	and	mechanistically	explained	endo-RNAi	
is the mouse oocyte. Somatic cells typically respond to long dsRNA with a sequence-inde-
pendent interferon response, which is employing multiple dsRNA sensors, which trigger 
a complex interferon response.
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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	In	vertebrates,	there	are	two	closely	
related pathways, which share several protein factors: RNA interference (RNAi) and microRNA (miRNA) path-
way.	The	miRNA	pathway	regulates	endogenous	protein-coding	gene	expression	and	has	been	implicated	in	many	
biological processes. RNAi generally serves as a form of innate immunity targeting viruses and mobile elements. 
This	text	reviews	miRNA	and	RNAi	pathways	in	birds.	Although	the	available	literature	on	RNA	silencing	in	
birds is very limited, many features can be deduced from the genomic data in the public domain. miRNA, RNAi 
and	other	dsRNA-responding	pathways	in	birds	appear	very	much	like	those	in	mammals,	important	bird-specific	
features	of	RNA	silencing	pathways	are	yet	to	be	identified.	The	miRNA	pathway	is	likely	the	dominant	small	
RNA pathway while the existence and functionality of endogenous RNAi remains unclear. Some variations may 
be present in the main bird antiviral interferon system.

Introduction

Birds (Aves)	belong	together	with	mammals	and	fishes	to	the	group	Craniata within chor-
dates. Some of the birds are of high economic importance (food industry) or medical rel-
evance (viral vectors causing zoonoses). Bird ancestors branched of mammalian ancestors 
over 300 MYA when the synapsid lineage leading to mammals branched of the sauropsid 
lineage	leading	to	dinosaurs	and	birds.	There	are	~9000	extant	bird	species	(Margulis	and	
Schwartz, 1998). During their evolution, birds evolved numerous physiological adaptations 
in which they differ from mammals, including feathers, shelled eggs with external devel-
opment, or different sex chromosome system, to name a few. At the same time, they are 
the closest mammal-related group covered in this series, in terms of synteny and sequence 
similarity.	This	is	useful	for	assessing	features	of	dsRNA	and	miRNA	pathways	because	
the available literature on RNA silencing in birds is very limited. However, many features 
can be deduced from the genomic data in the public domain. miRNA, RNAi and other 
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dsRNA-responding pathways in birds are very much like those in mammals and the literature 
does	not	report	an	important	bird-specific	feature	in	RNA	silencing	pathways.	Since	mech-
anistical	principles	of	vertebrate	miRNA	and	RNAi	pathways	were	introduced	in	the	first	
two reviews of this series (Svoboda, 2019a, b) and in further detail elsewhere (Bartel, 2018; 
Svoboda, 2014), I will focus here directly on features of these pathways described for birds.

Dicer

According	to	the	complete	genome	sequences	of	chicken	and	Zebra	Finch,	birds	have	one	
Dicer protein. Chicken Dicer has been assigned to the chromosome 5 according to the radi-
ation	hybrid	mapping	(Tian	et	al.,	2007)	which	is	in	agreement	with	the	current	chicken	
genome	map.	There	is	no	detailed	analysis	of	avian	Dicer	specificity	and	activity,	which	have	
to be inferred indirectly from other results. Chicken Dicer can process both, long dsRNA and 
miRNA precursors, as evidenced by induction of RNAi with long dsRNA (Mauti et al., 2008; 
Pekarik et al., 2003) and hundreds of avian miRNAs in the miRBase.
The	common	Dicer	product	size	seems	to	be	21–23nt	with	a	typical	size	of	22nt.	This	

information	can	be	inferred	from	available	miRBase	data	(Fig.	1).	Thus,	the	avian	Dicer	
produces small RNAs with the same sizes as the mammalian Dicer (Fig. 1). Another pos-
sible	substrate	of	Dicer	in	birds	might	be	snoRNAs,	although	the	biological	significance	of	
this	observation	remains	unclear	(Taft	et	al.,	2009).

It is unclear if there are functionally different avian Dicer isoforms as is the case in 
murine	oocytes	and	somatic	cells	(Flemr	et	al.,	2013).	There	is	one	report	of	different	Dicer	
splice variant in goose (Anser cygnoides) where one variant lacks a linker between DEAD 
box	and	helicase	C	domains	at	the	N-terminus	(gDicer-b)	(Hu	et	al.,	2014).	The	shorter	iso-
form	gDicer-b	is	present	in	multiple	tissues,	however	its	functional	significance	is	unclear.	
The	truncation	is	found	in	the	N-terminus,	which	is	associated	with	substrate	selectivity	and	
efficient	processing.	Therefore,	one	might	speculate	about	some	functional	divergence	in	
substrate processing between the two isoforms. However, there is no experimental evidence 
at	the	moment.	The	only	available	data,	so	far,	concern	cloning	of	the	short	isoform	and	
expression	analysis	of	several	tissues	and	follicular	stages	by	RT-PCR	(Hu	et	al.,	2014).

dsRBPs

dsRBP binding partners of Dicer have not been studied, so far. Interestingly, the chick-
en	genome	contains	a	dsRBP,	which	is	related	to	TARBP2	and	PACT,	suggesting	a	more	
ancestral vertebrate state and a reduced crosstalk between RNAi and the interferon pathway.

Argonaute proteins

Argonaute	family	proteins	are	effectors	of	RNA	silencing	mechanisms.	They	are	divided	
into two subfamilies: AGO proteins, which accommodate miRNAs and siRNAs, and PIWI 
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proteins, which accommodate piRNAs. Avian AGO proteins have not been characterized 
in a published report but public chicken genome data show that the setup is the same as 
in mammals: Studies in chicken revealed four AGO proteins, where AGO1, 3, and 4 are 
encoded within one locus on chromosome 23 and AGO2 is encoded separately on chro-
mosome	2.	This	arrangement	appears	to	be	shared	within	mammals	and	birds	(Zhou	et	al.,	
2010). Additional information about avian AGOs can be inferred indirectly from the exist-
ence of functional RNAi and miRNA pathways (discussed below), which implies that at 
least	one	AGO	protein	is	a	“slicer”	(presumably	AGO2,	given	its	conserved	role	as	a	slicer	
from Drosophila to mammals). Avian AGO proteins can also mediate post-transcriptional 
silencing guided by imperfectly base paired miRNAs.

In addition, there were two publications found, which mention avian PIWI proteins, 
which primarily control genome integrity in the germline and are not within the scope of 
this report (Kim et al., 2012; Lim et al., 2013). 

Other factors

Birds have additional proteins involved in other dsRNA responses, which are either asso-
ciated with adenosine deamination (Herbert et al., 1995) or interferon response. Interferon 
response factors, which recognize some form of dsRNA and are also found in mammals, 
include MDA5 (Hayashi et al., 2014; Lee et al., 2012, 2014), RIG-I (Chen et al., 2015; Li 
et al., 2014a; Xu et al., 2015), and PKR (Gonzalez-Lopez et al., 2003; Lostale-Seijo et al., 
2016;	Zhang	et	al.,	2014).	Interestingly,	chicken	lack	the	RHA/DHX9	homolog	(Sato	et	al.,	
2015).	The	antiviral	response	to	dsRNA	will	be	discussed	further	below.

miRNA pathway

According	to	miRBase	(Kozomara	and	Griffiths-Jones,	2014),	bird	genomes	encode	hun-
dreds	of	miRNAs	(Table	1)	During	the	systematic	literature	review,	miRNA-related	pub-
lications lacking a mechanistic molecular insight into the miRNA pathway were the most 
common	class	of	annotated	publications	for	birds	(~50%	of	all	selected	publications).	These	
publications fall into four basic categories:
a) annotations of novel miRNAs, including high-throughput expression analyses (for exam-
ple	(Godnic	et	al.,	2013;	Luo	et	al.,	2012;	Taft	et	al.,	2009)	and	many	others).	This	
category	also	includes	the	original	chicken	and	Zebra	Finch	genome	annotation	papers	
(International Chicken Genome Sequencing, 2004; Warren et al., 2010).

b) studies of miRNAs in different biological contexts, including reproduction (Lee et al., 
2015; Lee et al., 2011), skeletomuscular apparatus (Chen et al., 2009a), bird song phys-
iology (Gunaratne et al., 2011), growth/weight gain (Li et al., 2013), and many others; 
their comprehensive listing would be beyond the scope of this report.

c) studies of relationship between miRNAs and the immune system, especially antivi-
ral – these will be discussed further below in the section 3.1.2.7. Other dsRNA response 
pathways
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d) false positives of the search- reports describing mRNA knock-down through short hair-
pin	RNAs	adopting	miRNA-like	appearance.	There	is	a	series	of	nearly	identical	method-
ological papers, apparently published twice in 2006 and 2013, which fall in this category 
(Deng et al., 2015; Lin et al., 2006a; Lin et al., 2006b; Lin and Ying, 2006; Lin et al., 
2013a; Lin et al., 2013b; Lin and Ying, 2013; Ying and Lin, 2009; Ying et al., 2010) and 
several other publications concerning development and adaptations of shRNA systems 
(e.g.	(Andermatt	et	al.,	2014;	Chen	et	al.,	2011;	Das	et	al.,	2006).	These	articles	actually	
belong to the RNAi section below but due to the confusing use of nomenclature, they 
would also fall into the miRNA category.
Taken	together,	essentially	all	miRNA-related	publications	dealt	with	miRNA	annota-

tion,	analysis	of	biological	functions	of	miRNAs,	and	adoption	of	miRNAs	for	artifi	cial	
knock-down systems allowing for suppressing any gene of interest. Avian miRNA-related 
publications	did	not	reveal	any	avian-specifi	c	mechanistic	insight	into	miRNA	biogenesis,	
in which birds would differ from the general consensus for mammals, or other vertebrates 
in	general.	The	complete	list	of	all	miRNA-related	publications	is	available	in	a	library	
accompanying this section.

Figure 1 Avian miRNA lengths
The left graph depicts size distribution of all 994 chicken miRNAs deposited in the miRBase (release 21). 
For comparison, the right graph shows size distribution of 721 high-confi dence murine miRNAs.

Table 1 Bird miRNAs in the miRBase (release 22.1 (Kozomara and Griffi ths-Jones, 2014)):

species [genome annotation] miRNA precursors mature miRNA

Gallus gallus [Gallus-gallus-4.0] 882 1232

Taeniopygia guttata [taeGlu3.2.4] 247  334

RNAi 

Avian RNAi-related literature deals mainly with experimental knock-down of gene expres-
sion, which does not reveal much about the physiological role of RNAi pathway in birds. 
These	studies	cannot	all	be	included	in	the	report	due	to	the	high	number,	but	they	are	
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available in the reference library accompanying this section). What can be inferred from 
those studies is that birds have the complete molecular mechanisms for canonical RNAi 
and	can	efficiently	execute	it.	This	is	evidenced	by	efficient	knock-downs	with	long	dsRNA	
(Mauti et al., 2008; Pekarik et al., 2003). 

Published exogenous RNAi data provide insights into possible routes nucleic acids can 
become biologically active in birds and concern areas of EFSA main interests as various 
forms of RNAi technology (siRNAs or transgenic) were considered a way for preventing 
virulent strain circulation in poultry (O’Neill, 2007) although results of these efforts were 
relatively modest, being typically developed in cultured cells (Hutcheson et al., 2015; Saha-
re et al., 2015; Stewart et al., 2011; Yin et al., 2010). Exogenous RNAi in vivo required 
non-physiological manipulations such as 1) plasmid or siRNA electroporation (Andermatt 
et al., 2014; Baeriswyl et al., 2008; Mauti et al., 2008; Pekarik et al., 2003; Sato et al., 2004; 
Wilson and Stoeckli, 2011, 2012), 2) transfection (Dai et al., 2005; Lin et al., 2006a; Lin 
et al., 2013a; Wei et al., 2015), 3) recombinant virus (Lambeth et al., 2009b), or 4) recom-
binant lentivirus delivery (Chen et al., 2009b; Haesler et al., 2007). Altogether, these data 
suggest that exogenous RNAi would not be achieved by just exposing birds to small RNAs 
or their precursors in the environment or food. 
Regarding	the	endogenous	RNAi,	it	remains	what	its	physiological	role	is.	There	are	

three possible roles for endogenous RNAi: antiviral defense, genome defense against ret-
rotransposons	and	control	of	gene	expression.	These	roles	would	be	associated	with	pro-
duction of viral siRNAs, retrotransposon siRNAs and mRNA-targeting siRNAs in vivo. 
However, an unequivocal evidence for existence of these classes and their function was 
not provided yet.

One report attempted to examine the role of Dicer in retrotransposon repression. It was 
shown that the loss of Dicer in chicken cells does not result in accumulation of chicken 
CR1 retrotransposon while introduction of a human L1 element into cells lacking Dicer 
results in accumulation of L1 transcripts and increased retrotransposition (Lee et al., 2009). 
However,	these	data	are	difficult	to	interpret	as	different	scenarios	could	lead	to	the	same	
observations, especially downstream effects of a perturbed miRNA pathway and chroma-
tin-mediated silencing of CR1.

Other dsRNA response pathways

Chromatin regulation by small RNAs

Two	studies	involving	bird	models	brought	up	a	possible	nuclear	function	of	Dicer	and	its	
link to chromatin regulation, which is of the unsettled issues in vertebrate models. Despite 
a decade of research, there is still no proposed molecular mechanism explaining these phe-
nomena while the literature contains a number of contradicting observations.

Fukagawa et al. produced a conditional loss-of-function Dicer mutant in a chicken-hu-
man	hybrid	DT40	cell	line	that	contains	human	chromosome	21.	The	loss	of	Dicer	resulted	
in cell death and accumulation of premature sister chromatid separation. Furthermore, aber-
rant accumulation of transcripts from human centromeric repeats was also found suggesting 
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loss of heterochromatin at centromeres. While localization of two heterochromatin pro-
teins (Rad21 and BubR1) was abnormal, localization of core centromeric heterochroma-
tin proteins CENP-A and -C was normal (Fukagawa et al., 2004). Although the article 
is highly cited (335 times up to date according to WOS core collection), the molecular 
mechanism of the effect remains elusive. It is possible that the phenomenon is an indirect 
consequence of perturbing the miRNA pathway. Furthermore, the model system is unique 
and human heterochromatin sequences might exhibit unusual behaviour in the chicken 
nuclear environment.

Giles et al. examined a 16 kilobase (kb) heterochromatin domain in the chicken eryth-
roid progenitor cell line 6C2. RNAi-mediated downregulation of the enzyme Dicer result-
ed in increased histone acetylation and transcript levels from the heterochromatin locus 
while compact chromatin structure became more accessible to restriction endonucleases. 
It was also shown that chicken AGO2 homolog binds the 16 kb region in a Dicer-depend-
ent	manner	and	is	necessary	for	a	condensed	chromatin	structure	(Giles	et	al.,	2010).	The	
article has been cited 26 times up to date according to WOS (core collection), yet there 
was no follow up providing any mechanistic explanation of the phenomenon. It is pos-
sible that the observed effects could be an indirect effect of suppression of the miRNA 
pathway or even an experimental artefact. Additional controls and experiments would be 
needed	to	address	these	concerns	and	clarify	inconsistencies	with	other	reports.	Therefore,	
this report should be considered an interesting observation without a clear mechanistic 
explanation.
Taken	together,	small	RNA-mediated	chromatin	changes	in	birds	remain	an	open	ques-

tion. Without knowing the molecular mechanism, especially that of biogenesis of small 
RNAs regulating chromatin and their mode of action, there is simply not enough informa-
tion	for	qualified	conclusions.

Antiviral defense – interferon response and crosstalk with RNA silencing

Many	studies	deal	with	various	aspects	of	viral	infections	in	birds	or	avian	cells.	The	most	
studied model for viral infections in birds is Marek’s disease, which is a consequence of 
a Herpesvirus infection in poultry. Publications linked to Marek’s disease addressed virus 
encoded miRNAs (Coupeau et al., 2012; Luo et al., 2011; Morgan et al., 2008; Muylkens 
et	al.,	2010;	Strassheim	et	al.,	2012;	Xu	et	al.,	2011;	Yao	et	al.,	2008;	Zhao	et	al.,	2011;	
Zhao	et	al.,	2009),	changes	in	host	miRNA	expression	during	infection	(Dinh	et	al.,	2014;	
Han et al., 2016; Lambeth et al., 2009a; Li et al., 2014b; Li et al., 2014c; Lian et al., 2015a; 
Lian	et	al.,	2015b;	Stik	et	al.,	2013;	Tian	et	al.,	2012;	Xu	et	al.,	2010;	Yao	et	al.,	2008),	or	
attempts to block the virus with RNAi (Chen et al., 2009b; Chen et al., 2008; Lambeth et al., 
2009b). A similar set of articles has been found for other studied viruses infecting birds – 
e.g.	avian	influenza	virus	H5N1	and	H9N2,	bursal	disease	virus,	subgroup	J	avian	leucosis	
virus.	The	complete	list	is	available	in	the	library	accompanying	this	section.

Reports concerning host and virus-encoded miRNAs generally represent adaptations 
manipulating	the	miRNA	pathway	for	the	benefit	of	the	pathogen.	At	the	same	time,	these	
articles did not reveal some unique adaptation of the chicken miRNA pathway, which 
would differ from molecular mechanisms and principles described in the previous section. 
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The	last	group	of	articles	reviewed	here	represent	publications	covering	the	interferon	
system, the common antiviral system induced by dsRNA and other RNA species (Kar-
pala et al., 2008; Kint et al., 2015; Lostale-Seijo et al., 2016). Birds generally utilize the 
same antiviral interferon system including its key dsRNA sensing proteins: PKR (Gonza-
lez-Lopez	et	al.,	2003;	Lostale-Seijo	et	al.,	2016;	Zhang	et	al.,	2014),	RIG-I	(Chen	et	al.,	
2015; Li et al., 2014a; Xu et al., 2015), and MDA5 (Hayashi et al., 2014; Lee et al., 2012, 
2014),	2’,5’-OAS	(Lee	et	al.,	2014;	Villanueva	et	al.,	2011).	However,	there	seem	to	be	
some	species-specifi	c	variations.	For	example,	RIG-I	is	found	in	some	birds,	such	as	ducks	
or pigeons (Chen et al., 2015; Xu et al., 2015) but not in chicken, which lack RIG-I and 
the RNA sensing RHA/DHX9 helicase homolog (Sato et al., 2015). Although the lack of 
RIG-I is partially compensated by chicken MDA5 activity (Hayashi et al., 2014; Karpala 
et al., 2011) the absence of RIG-I-like function may contribute to the chicken’s susceptibil-
ity	to	highly	pathogenic	infl	uenza	(Karpala	et	al.,	2011;	Li	et	al.,	2014a).

Adenosine deamination

Birds have also adenosine deaminases that act on RNA (Herbert et al., 1995) but their phys-
iological	signifi	cance	in	birds	is	unknown	at	the	moment.	

Figure 2 Overview of avian pathways 
dsRNA and miRNA pathways in birds are very much similar to the mammalian ones with some minor 
exceptions. Birds have only a single dsRBP homologous to TARBP2, and lack PACT ortholog. 
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Summary

In terms of the mode-of-action of dsRNA and miRNA pathways, birds are closely resem-
bling	mammals	despite	over	300	millions	of	years	of	separate	evolution.	The	molecular	
mechanism of RNAi and miRNA pathways seems to be essentially identical to that of 
mammals	except	of	a	single	dsRBD	instead	of	two	different	ones.	The	significance	of	this	
difference	is	unclear.	The	miRNA	pathway	seems	to	be	the	dominant	small	RNA	pathway	
while the existence and functionality of endogenous RNAi remains unclear. Some varia-
tions were found in the interferon system (lack of RIG-I in chicken), which appears to be 
the main antiviral system in birds.
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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	In	vertebrates,	there	are	two	closely	
related pathways, which share several protein factors: RNA interference (RNAi) and microRNA (miRNA) path-
way.	The	miRNA	pathway	regulates	endogenous	protein-coding	gene	expression	and	has	been	implicated	in	many	
biological processes. RNAi generally serves as a form of innate immunity targeting viruses and mobile elements. 
This	text	reviews	miRNA	and	RNAi	pathways	in	fish.	RNAi	and	other	dsRNA-responding	pathways	in	fish	are	
very	much	like	those	in	mammals,	which	is	remarkable	considering	the	mammalian	and	fish	lineages	separated	in	
Paleozoicum	some	400	million	years	ago.	The	miRNA	pathway	is	likely	the	dominant	small	RNA	pathway	while,	
similarly to other vertebrates, the existence and functionality of endogenous RNAi remains unclear.

Introduction

Fish are an aquatic heterogeneous paraphyletic group with the majority of the species 
belonging	to	the	bony	fish	class	(Osteichthyes) group, which has ~25 000 species, the 
highest species diversity than any other vertebrate group (Margulis and Schwartz, 1998). 
Overall,	the	organization	of	small	RNA	pathways	in	fish	is	very	similar	to	that	of	mammals	
(Fig.	1),	which	is	notable	considering	the	common	ancestor	of	fish	and	mammals	existed	
3602–4500	million	years	ago	(Volff,	2005).

Since mechanistical principles of vertebrate miRNA and RNAi pathways were intro-
duced	in	the	first	two	reviews	of	this	series	(Svoboda,	2019a,	b)	and	in	further	detail	else-
where (Bartel, 2018; Svoboda, 2014), I will focus here directly on features of these path-
ways	reported	from	fish	models.	Next	generation	sequencing	analysis	of	zebrafish	small	
RNAs	identified	miRNAs	and	germline	piRNAs	as	common	small	RNAs.	The	dominant	
small	RNA	pathway	in	fish	is	the	miRNA	pathway.	Studies	of	roles	of	miRNAs	account	
for	the	vast	majority	of	the	literature	on	small	RNA	in	fish.	At	the	same	time,	the	molecular	
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mechanism	of	miRNA	and	RNAi	pathways	was	seldom	drectly	studied	in	the	fish	model.	
The	second	most	studied	studied	small	RNA	pathway	in	fish	is	the	piRNA	pathway,	which	
protects the germline from mobile elements (Houwing et al., 2007; Huang et al., 2011; 
Kamminga et al., 2010) and differs from miRNA and RNAi pathways in small RNA bio-
genesis, which does not require Dicer.

Dicer

Fish genomes carry a single gene for Dicer, which is an ortholog of the mammalian Dicer 
and Dicer-1 in Drosophila	(Murphy	et	al.,	2008).	This	notion	is	supported	by	annotated	fish	
genome data in the UCSC genome browser (https://genome.ucsc.edu/), and tblastn search 
of	fish	sequences	at	NCBI	(e.g. Salmo salar, Danio rerio, Takifugu rubripes, Gasterosteus 
aculeatus (stickleback), Oryzias latipes (medaka)). Existence of a single Dicer gene in 
fish	genomes	is	remarkable	in	teleost	fish	species,	which	underwent	genome	duplication	
(Howe	et	al.,	2013;	Meyer	and	Schartl,	1999).	This	suggests	selective	pressure	could	exist	
against	Dicer	gene	duplication.	Zebrafish	Dicer	is	essential	for	development	and	its	pri-
mary	role	seems	to	be	miRNA	biogenesis	(Wienholds	et	al.,	2003).	The	role	of	Dicer	in	
endogenous	RNAi	in	fish	has	not	been	addressed	in	much	detail.	A	study	of	Dicer	in	grass	
carp Ctenopharyngodon idellar revealed a CDS encoding Dicer protein carrying all known 
functional domains found typically in other Dicers (Shen et al., 2013). Ctenopharyngodon 
idellar Dicer is abundantly expressed in brain, gill, head kidney, liver, spleen, heart, muscle 
and intestine. A positive correlation was found between Ctenopharyngodon idellar Dicer 
mRNA	expression	and	infection	with	grass	carp	reovirus	(GCRV)	infection	in	cultured	
kidney cells and in the liver (8.46-fold, P < 0.01, 12 h post-infection) and spleen in vivo 
(Shen	et	al.,	2013).This	suggests	that Ctenopharyngodon idellar Dicer is an inducible gene 
responding to viral infection although evidence for virus-derived endogenous siRNAs has 
not been provided.

dsRBPs

Fish	genomes	typically	contain	orthologs	of	TRBP2	and	PACT,	which	are	mammalian	
Dicer-interacting dsRBPs (Murphy et al., 2008). However, their function in small RNA 
silencing	was	not	studied	in	the	fish	model,	so	far.

Argonaute proteins

Fish AGO proteins are orthologs of AGO proteins in other vertebrates (Murphy et al., 
2008).	However,	teleost	fish	clade	contains	an	additional	AGO	paralog,	which	emerged	
from	a	fish-specific	genome	duplication	event	that	occurred	approximately	350	million	
years	ago	(McFarlane	et	al.,	2011).	All	five	Ago	genomic	loci	in	teleosts	contain	specif-
ic, conserved sequence elements in non-coding regions indicating that the teleost AGO 
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paralogs are differentially regulated, which is consistent with expression analysis in the 
zebrafish	model.	Multiple	sequence	alignments	show	that	teleost	homologs	possess	critical	
aminoacid	residues	for	AGO	function	as	well	as	ortholog-specific	features	retained	through-
out the vertebrate lineage (McFarlane et al., 2011).

miRNA pathway

In	terms	of	small	RNA	research,	fish	models	are	typically	used	for	exploring	miRNA	pop-
ulations and studying biological roles of different miRNAs. Articles annotating miRNAs 
and	analyzing	their	expression	and	function	represent	the	bulk	of	the	fish-related	references.	
We have found 348 articles, which annotated and/or analyzed expression and function of 
miRNAs	in	fish.	However,	almost	none	of	these	articles	brought	any	specific	mechanistic	
insight	into	the	molecular	mechanism	of	miRNA	in	fish.
According	to	the	miRBase	(release	22.1),	miRNA	population	in	fish	appears	less	com-

plex	than	in	mammals	–	fish	models	have	less	annotated	miRNAs	(Table	1)	although	there	
are dozens of reports on next generation sequencing analysis and miRNA annotation. How-
ever,	zebrafish	is	an	experimentally	easily	accessible	model	for	exploring	conserved	roles	of	
miRNAs	in	different	tissues,	which	is	also	reflected	in	the	number	of	references.	

Table 1 Numbers of annotated miRNAs in selected fishes in miRBase 22.1

species miRNA precursors mature miRNA

Cyprinus carpio 134 146

Danio rerio 355 373

Fugu rubripes 131 108

Ictalurus punctatus 281 205

Oryzias latipes 168 146

Salmo salar 371 498

Tetraodon nigroviridis 132 109

In	terms	of	the	molecular	mechanism	of	RNA	silencing,	studies	in	the	zebrafish	and	other	
fish	models	brought	several	interesting	discoveries	concerning	specific	miRNA	functions	
and	unique	adaptations	in	fish.	Several	examples	have	relevance	for	the	research	of	the	
molecular mechanism of miRNA pathway:
The	first	example	is	the	biology	of	the	miR-430	family	of	miRNAs.	While	miRNAs	

in mice are essentially irrelevant for the oocyte-to-embryo transition (Suh et al., 2010), 
the	zebrafish	oocyte-to-embryo	 transition	 incorporates	zygotically-expressed	miR-430	
family in maternal mRNA degradation (Giraldez et al., 2006; Mishima et al., 2006). Fur-
thermore,	the	onset	of	miR-430	activity	in	the	zebrafish	zygote	allowed	for	addressing	
the relationship between miRNA-induced translational repression and mRNA degradation 
(Bazzini	et	al.,	2012;	Mishima	et	al.,	2012).	using	ribosome	profiling	of	zygotic	stages,	it	
was showed that miR-430 reduces translation before causing mRNA decay (Bazzini et al., 
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2012).	A	significant	technological	outcome	of	these	studies	was	development	of	target	pro-
tectors,	morpholino	oligonucleotides	specifically	disrupting	miRNA-mediated	repression	
via hybridizing to and masking miRNA-binding sites (Choi et al., 2007).
Another	contribution	to	small	RNA	biology	coming	from	fish	model	was	discovery	of	one	

of the non-canonical miRNA biogenesis mechanisms, namely Dicer-independent miRNA 
biogenesis of miR-451, which uses AGO2 slicing activity followed by uridylation and trim-
ming	(Cifuentes	et	al.,	2010).	The	process	also	employs	translation	initiation	factor	eIF1A,	
which directly interacts with AGO2 and promotes miR-451 biogenesis (Yi et al., 2015).
Data	from	zebrafish	also	contributed	to	understanding	other	miRNA	regulations.	Two	

related	terminal	uridyl	transferases	(TuTases),	Zcchc6	(TuT7)	and	Zcchc11	(TuT4),	selec-
tively	3‘	monouridylate	a	subset	of	miRNAs	(Thornton	et	al.,	2014).	TuTase	inhibition	in	
zebrafish	embryos	causes	developmental	defects	and	aberrant	Hox	gene	expression	(Thorn-
ton et al., 2014).
Another	miRNA	regulator	discovered	in	the	zebrafish	is	dead	end	1	(DND1),	which	is	

negatively regulating miRNA targeting. DND1 is an evolutionary conserved RNA-binding 
protein	(RBP)	that	counteracts	the	function	of	several	miRNAs	in	zebrafish	primordial	germ	
cells as well as in human cells. DND1 binds mRNAs and prohibits miRNAs from binding 
cognate mRNAs. DND1 effects involve uridine-rich regions present in the miRNA-targeted 
mRNAs (Kedde et al., 2007)
Taken	together	studies	of	molecular	mechanism	of	miRNA-mediated	repression	in	fish	

did not reveal any notable deviation from what has been observed in mammals. As the 
protein machinery appears to be well-conserved, miRNA pathways among vertebrate tax-
ons primarily differ in sets of miRNAs and their targets, which dynamically evolve over 
time.	This	was	for	example	demonstrated	for	zebrafish	miR-430	and	murine	miR-290–295	
miRNA clusters, which share common ancestry, both are associated with early development 
but do not regulate the same genes although some targets seem to be conserved (Svoboda 
and Flemr, 2010).

RNAi

The	presence	of	RNAi	response	was	examined	in	zebrafish	at	the	same	as	in	other	animal	
models	during	the	turn	of	the	century.	However,	unlike	specific	RNAi	observed	in	mouse	
oocytes	and	early	embryos	(Svoboda	et	al.,	2000;	Wianny	and	Zernicka-Goetz,	2000),	long	
dsRNA	injection	into	zebrafish	had	been	yielding	inconsistent	results	(Li	et	al.,	2000;	Man-
gos	et	al.,	2001;	Oates	et	al.,	2000;	Zhao	et	al.,	2001).	While	some	reported	specific	knock-
down	effects	(Li	et	al.,	2000;	Mangos	et	al.,	2001),	others	observed	non-specific	effects	
(Oates	et	al.,	2000;	Zhao	et	al.,	2001).	Non-specific	effects	remained	a	recurring	theme	
also	in	later	studies	(Wang	et	al.,	2010;	Zhao	et	al.,	2008)	although	some	authors	were	able	
to	achieve	specific	RNAi	effects	(De	Rienzo	et	al.,	2012;	Dong	et	al.,	2013;	Ying	et	al.,	
2010).Non-specific	effects	in	zebrafish	embryos	were	not	remedied	by	the	use	of	siRNAs	
and	it	was	later	shown	that	the	basis	of	the	non-specific	effects	is	interference	with	miRNA	
function	(Zhao	et	al.,	2008).	Injection	of	zebrafish	zygotes	with	siRNA	caused	a	significant	
reduction	in	miR-430	levels	leading	to	unspecific	developmental	defects	(Zhao	et	al.,	2008).	
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Interestingly, literature survey revealed that experiments with the parasitic sea lamprey 
(Petromyzon marinus),	a	jawless	fish	relative,	showed	that	uptake	of	free	siRNA	at	5μg/ml	
did not trigger an RNAi response (Heath et al., 2014). In any case, RNAi did not become 
a	favourite	knock-down	strategy	to	study	genes	during	zebrafish	development;	microinjec-
tion of morpholino oligonucleotides (Blum et al., 2015; Eisen and Smith, 2008) became the 
preferred approach instead. 
Taken	together,	successful	RNAi	experiments	with	long	dsRNA	demonstrate	that	zebraf-

ish	holds	the	molecular	machinery	for	executing	RNAi:	Dicer,	TARBP2,	and	AGO2.	How-
ever,	its	capacity	for	mediating	specific	knock-down	effects	is	limited	because	the	same	
machinery is being simultaneously utilized by the miRNA pathway. Importantly, the avail-
ability of the machinery above the minimum capacity sustaining the miRNA pathway func-
tionality likely differs during development and among different cell types.
While	zebrafish	holds	the	molecular	machinery	for	executing	RNAi,	the	question	remains	

whether	the	endogenous	RNAi	has	any	significant	role	in	fish.	Available	data	do	not	provide	
unequivocal	evidence	for	significant	endogenous	RNAi	in	fish.	Next	generation	sequencing	
of small RNAs contains fractions of non-miRNA small RNAs of endo-siRNA size, yet it 
is not clear if these fragments truly represent bona fide endo-siRNAs. Some other data 
indirectly	point	to	a	possible	antiviral	role,	namely	GCRV-induced	transient	upregulation	
of Ago2 in rare minnow (Gobiocypris rarus) and Dicer upregulation in grass carp (Cten-
opharyngodon idella)	(Guo	et	al.,	2012;	Shen	et	al.,	2013).	Interaction	of	GCRV	with	the	
small RNA machinery (the miRNA pathway should not be excluded) has been suggested 
based	on	the	observation	in	grass	carp	kidney	cells	that	GCRV	dsRNA	could	be	processed	
into	siRNAs	but	GCRV	infection	did	not	yield	GCRV-derived	siRNAs	while	Dicer	upregu-
lation	occurred	(Gotesman	et	al.,	2014).	It	has	been	thus	proposed	that	an	unidentified	RNAi	
suppressor	might	contribute	to	the	survival	of	the	viral	genome	and	efficient	viral	replica-
tion	(Gotesman	et	al.,	2014).	The	presence	of	a	virus-derived	inhibitor	of	RNA	silencing	
in	a	fish	RNA	virus	would	be	indicative	of	an	existing	antiviral	role	of	small	RNAs,	which	
is being suppressed. However, an alternative scenario that should be considered as well is 
that dsRNA formed during viral replication is not accessible for Dicer-mediated cleavage. 
Therefore,	further	research	is	needed	to	address	this	issue.

Other notable silencing phenomena

There	are	two	phenomena,	which	clearly	overlap	with	RNA	silencing	but	their	underlying	
molecular mechanism remains unclear and will require further investigation.

Andrews et al found that introduction of transgenes containing convergent transcription 
units	in	zebrafish	embryos	induced	stable	transcriptional	gene	silencing	in	cis and trans. 
The	silencing	was	suppressed	upon	Dicer	knockdown,	indicating	processing	of	double	
stranded RNA. ChIP revealed that silencing was accompanied by enrichment of the consti-
tutive heterochromatin mark H3K9me3 (Andrews et al., 2014). While small RNA-induced 
transcriptional silencing is well established in fungi and plants (and seems to be a product 
of convergent evolution), the molecular mechanism underlying seemingly related observa-
tions in vertebrates is unclear.
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The	 second	 phenomenon	 deals	with	 the	 role	 of	 small	RNAs	 during	DNA-damage	
response, which has been discussed above in the mammalian section (Francia et al., 2012). 
It	was	shown	in	zebrafi	sh	that	DICER	and	DROSHA,	but	not	downstream	elements	of	
the RNAi pathway, are necessary to activate the DDR upon exogenous DNA damage and 
oncogene-induced genotoxic stress, as studied by DDR foci formation and by checkpoint 
assays.	It	was	also	reported	that	formation	of	DDR	foci	requires	site-specifi	c	DICER-	and	
DROSHA-dependent	small	RNAs,	which	are	suffi	cient	to	restore	the	DDR	in	RNase-A-
treated cells (Francia et al., 2012). 

Summary

The	molecular	mechanism	of	RNAi	and	miRNA	pathways	in	fi	sh	seems	to	be	essentially	
identical	to	that	of	mammals	(Fig.	1).	While	there	are	two	dsRBPs,	the	role	of	PACT	in	
RNA silencing remains to be determined. miRNA pathway is the dominant small RNA 
pathway while the existence and functionality of endogenous RNAi are unclear. Some 
variations (DNA-binding PKR homologs (Rothenburg et al., 2008)) were found in the inter-
feron	system,	which	is	the	main	fi	sh	antiviral	system.

Figure 1 Overview of RNA silencing and dsRNA response in FISH
dsRNA and miRNA pathways in bony fi shes are very much similar to the mammalian ones. 
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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	In	vertebrates,	there	are	two	close-
ly related pathways, which share several protein factors: RNA interference (RNAi) and microRNA (miRNA) 
pathway.	The	miRNA	pathway	regulates	endogenous	protein-coding	gene	expression	and	has	been	implicated	
in many biological processes. RNAi generally serves as a form of innate immunity targeting viruses and mobile 
elements. While Arthropoda are an extremely large and diverse phylum, research on microRNA (miRNA) and 
RNA interference (RNAi) pathway in this phylum primarily used the Drosophila melanogaster model system and 
related species. Notably, both pathways are genetically separated; they utilize dedicated Dicer proteins to produce 
miRNAs and small interfering RNAs (siRNAs), which are sorted onto different Argonaute effector proteins. 
This	review	focuses	on	the	miRNA	pathway	and	pathways	initiated	by	long	dsRNA	in	arthropods.	The	first	part	
introduces	the	key	molecular	players	of	RNA	silencing.	The	second	discussed	biological	roles	of	miRNA	and	
dsRNA-induced pathways in Arthropods.

Introduction

Arthropoda are an extremely large and diverse group of animals. In fact, they are the largest 
animal group on Earth with a million of named species (~80% of described animal species!) 
and estimated tens of millions of species (Margulis and Schwartz, 1998). Arthropoda are 
typically	classified	into	five	subphyla	(Fig.	1).	(Regier	et	al.,	2010).	Trilobita are a famous 
extinct group of marine animals that declined in the Late Devonian extinction and com-
pletely	disappeared	in	the	Permian–Triassic	extinction.	Chelicerata include living fossil 
horseshoe	crabs,	spiders,	mites,	ticks,	scorpions	and	related	organisms.	Their	characteristic	
features are chelicerae appendages, which appear in scorpions and horseshoe crabs as claws 
while spiders use them to inject venom. Myriapoda have repetitive body segments carrying 
one or two pairs of legs and include centipedes, millipedes, and their relatives. Crustacea 
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are with, some exceptions (e.g. armadillo bug an relatives known as woodlice), aquatic 
and	have	differentiated	segmented	body	and	biramous	appendages.	They	include	shrimp,	
crayfi	sh,	lobsters,	crabs,	barnacles,	prawns	and	others.	Hexapoda comprise insects and 
insect-like animals with six thoracic legs.
The	key	model	organism	for	arthropods	is	Drosophila, which has been a workhorse of 

biology for over hundred years. miRNA, RNAi and other dsRNA pathways in Drosoph-
ila are well understood and will serve as benchmarks for the entire phylum. Drosophi-
la evolved an extensive genetic separation of miRNA and RNAi pathways where each 
pathway has a dedicated Dicer, dsRBP, and Argonaute protein. Given the complexity of 
the phylum and evolutionary time, one could question how representative of arthropods 
is the Drosophila model. However, analysis of Dicer and AGO indicates that Drosophila
is	a	more-or-less	acceptable	model	for	most	arthropods	as	the	“two	Dicer	system”	can	
be recognized within phylogeny of Dicer and AGOs also in Chelicerata (whose common 
ancestors with Drosophila branched in the most distant past), Myriapoda, and Crustacea
(Palmer and Jiggins, 2015). However, it should be kept in mind that some variability could 
emerge during half a billion years of arthropod evolution. 

Since mechanistical principles of vertebrate miRNA and RNAi pathways were intro-
duced	in	the	fi	rst	review	of	this	series	(Svoboda,	2019)	and	in	further	detail	elsewhere	(Bar-
tel, 2018), I will focus here directly on features of these pathways discovered in Arthropods. 
The	formal	structure	of	the	report	will	be	as	in	other	animal	taxons	–	upon	miRNA	dna	
RNAi molecular features of key individual components of reviewed mechanisms, I will 
discuss the silencing mechanisms and their biological roles. Importantly, to provide an 
overview of miRNA and dsRNA mechanisms in arthropods, I will focus on description of 
molecular	mechanisms	identifi	ed	in	Drosophila	and	will	highlight	and	discuss	signifi	cant	
deviations observed elsewhere in arthropods, especially in more studied organisms, such as 
mosquitos,	fl	ower	beetle,	silk	moth,	and	shrimps.

The Microprocessor complex

Drosophila utilizes the same Microprocessor complex as the earlier discussed Metazoa, 
i.e. a complex of Drosha and DGCR8 homologs, the latter being named Pasha (partner of 

Figure 1 Simplifi ed division of Arthropoda used in the text
The scheme refl ects the Mandibulata model of arthropod phylogenetics described in (Regier et al., 2010)
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Drosha)	(Denli	et	al.,	2004;	Filippov	et	al.,	2000;	Landthaler	et	al.,	2004).	The	complex	
cleaves the pri-miRNA into pre-miRNA in the nucleus. Suppression of Pasha in Drosoph-
ila interferes with pri-miRNA processing, leading to an accumulation of pri-miRNAs and 
a reduction in mature miRNAs (Denli et al., 2004; Landthaler et al., 2004). Like in other 
animals, Pasha is essential for processing of canonical miRNAs but is dispensable for mir-
trons (Flynt et al., 2010; Martin et al., 2009; Smibert et al., 2011). Drosophila Pasha is pos-
sibly phosphorylated by ERK/MAPK, as suggested by phosphorylation of human DGCR8 
in insect cells; the phosphorylation appears to increase protein stability without altering 
miRNA processing activity (Herbert et al., 2013). miRNA biogenesis in Drosophila also 
involves SmD1, a component of the Drosophila small nuclear ribonucleoprotein particle 
(snRNP), which interacts with both the microprocessor component Pasha and pri-miRNAs, 
and is indispensable for optimal miRNA biogenesis (Xiong et al., 2015). 
Analysis	of	transcriptome	changes	upon	Drosha	knock-down	in	S2	cells	identified	137	

Drosha-regulated RNAs, including 11 relatively long (>10 kb) pri-miRNAs (Kadener et al., 
2009). Interestingly, >100 RNAs not annotated as miRNAs could be direct targets of Dros-
ha action (Kadener et al., 2009), which is consistent with other model systems where Dro-
sha is having roles beyond miRNA biogenesis. Drosha-regulated RNAs contain conserved 
hairpins similar to those recognized by the Drosha-Pasha/DGCR8 complex in pri-miRNAs, 
one of such hairpins is found also in Pasha suggesting a negative feedback loop regulating 
miRNA-biogenesis (Kadener et al., 2009). miRNA-independent roles of the Micropro-
cessor	complex	components	seem	to	be	reflected	in	phenotypes	of	some	of	their	mutants	
(Luhur et al., 2014).

In terms of evolutionary diversity of the Microprocessor complex in arthropods, the 
miRNA pathway seemed to expand in the pea aphid (insect, Hemiptera), whose genome 
carries four expressed copies of Pasha (Jaubert-Possamai et al., 2010). At the same time, 
the brown planthopper (insect, Hemiptera), the fall armyworm (insect, Lepidoptera) or the 
desert locust (insect, Orthoptera) all have a single Pasha (Ghosh et al., 2014; Wynant et al., 
2015; Xu et al., 2013), which appears the common case among arthropods when browsing 
available genome databases. Analysis of Pasha in Litopenaeus vannamei (shrimp) revealed 
high sequence conservation and nuclear localization, suggesting a well-conserved role in 
miRNA biogenesis (Chen et al., 2012). Conservation of miRNA pathway in shrimps is fur-
ther supported by requirement for Drosha, Dicer1 and Ago1 for production of viral RNAs 
in	infected	shrimps	(He	and	Zhang,	2012;	Huang	et	al.,	2012).

Dicer

Drosophila utilizes two Dicer proteins (Fig. 2), Dicer-1 (DCR-1) and Dicer-2 (DCR-2), 
which	are	dedicated	to	miRNA	and	RNAi	pathways,	respectively	(Lee	et	al.,	2004).	This	
makes Drosophila (and arthropods in general) unique among the reviewed metazoan model 
systems (Fig. 3), which employ a single Dicer protein producing multiple classes of small 
RNAs (miRNAs, endo-siRNAs, exo-siRNAs). Separation of miRNA and RNAi at Dicer 
level could have an advantage in terms of uncoupling antagonistic evolutionary forces act-
ing on Dicer, i.e. (i) selective pressure on conservation of the miRNA pathway machinery 
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and (ii) host-pathogen arms race where Dicer evolves to avoid viral proteins interfering 
with its function.
The	domain	organization	of	Drosophila Dicer proteins is generally the same as in other 

metazoan Dicer proteins – they are composed of domains ordered from the N- to the C-ter-
minus as follows: N-terminal helicase domains, a domain of unknown function DUF283, 
PAZ	domain,	RNase	IIIa	and	RNase	IIIb	domains,	and	the	C-terminal	dsRBD	(Fig.	2).	As	
for other metazoan Dicers, Drosophila Dicer proteins have not been crystallized yet but 
their structure can be inferred from biochemical studies of recombinant Dicer and individ-
ual	domains	(Tsutsumi	et	al.,	2011;	Ye	et	al.,	2007),	the	crystal	structure	of	Giardia intes-
tinalis Dicer (MacRae et al., 2007; MacRae et al., 2006), domain modelling or cryo-EM 
studies (Lau et al., 2012).

Dicer-1

Dicer-1	was	originally	identifi	ed	as	one	of	two	homologs	in	Drosophila, which was able 
to produce siRNAs in vitro and participated in RNAi (Bernstein et al., 2001). Subsequent 
analysis of Dicer mutants showed that mutation in dicer-1 blocked processing of miRNA 
precursors while dicer-2 mutants were defective for processing siRNA precursors (Lee 
et al., 2004). However, consistent with the initial study, Dicer-1 was also implicated in 
RNAi (Lee et al., 2004). Biochemical analysis of Dicer-1 showed that its functional core 
consists	of	a	DuF283	domain,	a	PAZ	domain,	and	two	RIII	domains	(Ye	et	al.,	2007).	
With respect to the size of cleavage products, Dicer-1 apparently does not differ from other 
metazoan Dicers, as the typical product size is 22 nt long (Fig. 4). DCR-1 also functions in 
biogenesis of mirtron class of miRNAs (Okamura et al., 2007).
Dicer-1	differs	from	Dicer-2	in	substrate	specifi	cities	and	ATP	requirements	(Jiang	et	al.,	

2005).	Like	human	Dicer,	Dicer-1	generates	small	RNAs	in	an	ATP-independent	manner	
(Jiang	et	al.,	2005),	whereas	Dicer-2	or	Dicer-2/R2D2	required	ATP	hydrolysis	for	effi	cient	
siRNA production (Liu et al., 2003). Dicer-1 shows a preference for pre-miRNAs (Jiang 
et	al.,	2005;	Tsutsumi	et	al.,	2011).	It	recognizes	the	single-stranded	terminal	loop	structure	
of pre-miRNAs through its N-terminal helicase domain, checks the loop size and measures 
the	distance	between	the	3′	overhang	and	the	terminal	loop	–	this	allows	Dicer-1	to	inspect	
the	authenticity	of	pre-miRNA	structures	(Tsutsumi	et	al.,	2011).

Figure 2 Comparison of C. elegans, human and Drosophila Dicer proteins
Domain composition was adopted from (Jaskiewicz and Filipowicz, 2008).
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In terms of evolutionary diversity of Dicer-1 in arthropods, as mentioned above, the 
miRNA pathway seemed to expand in pea aphid (insect, Hemiptera) which utilizes two 
active copies of Dicer 1 (Jaubert-Possamai et al., 2010; Ortiz-Rivas et al., 2012). However, 
this	duplication	is	a	relatively	recent	event	while	single	Dicer-1	was	also	identified	else-
where among arthropods (Jaubert-Possamai et al., 2010; Ortiz-Rivas et al., 2012), including 
shrimp (Su et al., 2008), mosquito (Bernhardt et al., 2012), cockroach (Gomez-Orte and 
Belles, 2009) or locust (Wynant et al., 2015) species.

Dicer-2

Dicer-2 in Drosophila is mainly producing siRNAs from long dsRNA and functions in 
RNAi and antiviral defense (Galiana-Arnoux et al., 2006; Kim et al., 2006). Dicer-2 has 
actually a dual role in antiviral defense – apart from RNAi, it has an RNAi-independent 
role	in	promoting	Toll	signalling	(Wang	et	al.,	2015b),	but	biological	aspects	of	Dicer-2	role	
will be covered later in the text.
unlike	mammalian	Dicer	or	Dicer-1	paralog,	Dicer-2	requires	ATP	for	processive	cleav-

age of dsRNA (Liu et al., 2003; Nykanen et al., 2001; Provost et al., 2002; Welker et al., 
2011;	Zhang	et	al.,	2002).	Remarkably,	analysis	of	shapes	of	a	mammalian	Dicer	and	Dic-
er-2 by cryo-EM yielded an L-shaped reconstruction with dimensions strikingly similar to 
those	of	the	human	enzyme	(Lau	et	al.,	2012).	Therefore,	despite	striking	functional	differ-
ences	in	ATP	requirement	and	substrate	preference,	the	overall	three-dimensional	architec-
ture of Dicer is well conserved (Lau et al., 2012).
Dicer-2	contains	an	N-terminal	helicase	motif	and	hydrolyzes	ATP;	ATP	hydrolysis	is	

required for Dicer-2 to process long dsRNA, but not pre-miRNA (Cenik et al., 2011). Dic-
er-2	works	as	a	dsRNA-stimulated	ATPase	that	hydrolyzes	ATP	to	ADP;	and	it	was	suggest-
ed	that	Dicer-2	helicase	domain	uses	ATP	to	generate	many	siRNAs	from	a	single	molecule	
of dsRNA before dissociating from its substrate. (Cenik et al., 2011).
The	helicase	domain	of	Dicer-2	also	governs	substrate	recognition	and	cleavage	effi-

ciency through discriminating among dsRNA ends. First, it was shown that the helicase 
domain is essential for cleaving dsRNA with blunt or 5’-overhanging termini, but not those 
with 3’ overhangs, as in pre-miRNAs (Welker et al., 2011). Subsequently, it was found that 
the discrimination of termini takes place during initial binding (Sinha et al., 2015). In the 
absence	of	ATP,	Dicer-2	binds	3′	overhanging	(pre-miRNA-like),	but	not	blunt	termini.	
in	the	presence	of	ATP,	Dicer-2	binds	both	types	of	termini,	with	highest-affinity	binding	
observed with blunt dsRNA (Sinha et al., 2015).

An important factor in substrate discrimination and processing is inorganic phosphate, 
which inhibits Dicer-2 cleavage of pre-miRNAs, but not long dsRNAs (Cenik et al., 2011). 
It	was	proposed	that	the	inorganic	phosphate	occupies	a	PAZ	domain	5’	phosphate	binding	
pocket required to bind the 5’ terminal phosphate of short substrates, blocking their use and 
restricting	pre-miRNA	processing	in	flies	to	Dicer-1	(Fukunaga	et	al.,	2014).	Binding	of	
long	dsRNA	is	not	inhibited	when	the	inorganic	phosphate	occupies	the	PAZ	domain	bind-
ing pocket because it also involves the helicase domain and/or the central dsRNA-binding 
domain, which might be combined with displacement of the inorganic phosphate from its 
binding pocket (Fukunaga et al., 2014)
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In terms of evolutionary diversity of Dicer-2 in arthropods, most species seem to use only 
one Dicer-2 but some underwent duplication, such as Daphnia (Crustacea, two Dicer-2 
paralogs) or Metaseiulus (Chelicerata,	five	Dicer-5	paralogs)	(Palmer	and	Jiggins,	2015).	
Among the experimentally approached species, one Dicer-2 was reported in experimental 
results from silk moth (Kolliopoulou and Swevers, 2013), mosquito (Leger et al., 2013), 
cockroach	(Lozano	et	al.,	2012),	Hessian	fly	(Kolliopoulou	and	Swevers,	2013),	planthop-
per	(Zhang	et	al.,	2013),	emerald	ash	borer	(Zhao	et	al.,	2015),	mite	(Hoy	et	al.,	2016),	
bumble bee (Niu et al., 2016), or shrimp (Niu et al., 2016).

dsRBPs in arthropods – R2D2 and LOQS homologs

Drosophila also utilizes Dicer partner dsRBPs with tandemly arranged dsRBDs – Loqua-
cious	(LOQS)	and	R2D2.	The	first	Dicer	partner	dsRBP	in	Drosophila is Loquacious, which 
was found to associate with Dicer-1, suggesting that the miRNA pathway in Drosophila 
employs a distinct dsRBP in substrate routing (Forstemann et al., 2005; Saito et al., 2005). 
However, it was also found that Dicer-2-generated siRNAs in the endogenous RNAi path-
way depend preferentially on Loquacious and not on R2D2, the canonical Dicer-2 partner 

 

 

 

Figure 3 Metazoan Dicer phylogeny
The unrooted tree shows phylogenetic relationships of Dicer proteins in Metazoa. The blue frame de-
picts Dicer2 homologs in arthropods. As the length of each branch indicates evolutionary distance (or 
sequence divergence), it is apparent that arthropod’s Dicer 2 proteins acting in RNAi are evolving at 
much faster pace than Dicer 1 protein, which function in the miRNA pathway. This is consistent with the 
above-mentioned notion of antagonistic evolutionary forces acting on Dicer where the miRNA pathway 
functionality is being conserved while the RNAi functionality is evolving during the host-pathogen arms 
race where Dicer evolves to avoid viral proteins interfering with its function.

Introduction_to_RNAi.indd   148Introduction_to_RNAi.indd   148 09.07.20   8:3409.07.20   8:34



ARTHROPODS

149

(Czech et al., 2008). it turned out that Loquacious gene actually produces three protein 
isoforms , which associate with Dicer-1 and miRNA pathway (LOQS-PA and LOQS-PB 
isoform) and Dicer-2 and RNAi (LOQS-PD isoform) (Fukunaga et al., 2012; Hartig et al., 
2009;	Miyoshi	et	al.,	2010a;	Zhou	et	al.,	2009).

LOQS-PB uses the second dsRNA-binding domain to bind pre-miRNA and the third 
dsRNA-binding domain to interact with Dcr-1. Both domains of LOQS-PB are required 
for	efficient	miRNA	production	by	enhancing	the	affinity	of	Dcr-1	for	pre-miRNA	(Ye	
et al., 2007).

LOQS-PD and R2D2 function sequentially and non-redundantly in the endogenous 
RNAi pathway. LOQS-PD stimulates DCR-2-mediated processing of dsRNA whereas 
R2D2 acts downstream during RISC loading (Hartig and Forstemann, 2011; Marques et al., 
2010;	Miyoshi	et	al.,	2010a).	Taken	together,	LOQS	and	R2D2	contribute	to	the	profound	
mechanistic separation of miRNA and RNAi pathways, which evolved in Drosophila (and 
presumably in arthropods in general).
R2D2	associates	with	Dicer-2	and	acts	in	RNAi;	it	was	co-purified	with	Dicer-2	during	

purifying siRNA-generating activity from Drosophila S2 cell lysates (Liu et al., 2003). 
Although R2D2 bears 33% similarity to RDE-4 (see the section Nematoda) its role is dif-
ferent.	R2D2	does	not	influence	DCR-2	enzymatic	activity	(Liu	et	al.,	2003)	but	restricts	
Dicer-2 function to processing of long dsRNAs (Cenik et al., 2011; Fukunaga et al., 2014). It 
also facilitates passing the cleavage product to AGO2 excluding miRNA-like duplexes with 
imperfect	base	pairing	(Tomari	et	al.,	2004a).	R2D2	has	two	roles	–	it	is	sensing	siRNA	ther-
modynamic asymmetry for strand selection and it is a licensing factor for entry of authentic 
siRNAs	into	the	RNAi	pathway	(Nishida	et	al.,	2013;	Tomari	et	al.,	2004b).

Unlike the Microprocessor complex, Dicer or Argonautes, dsRBPs seem undergo various 
functional	adaptations	between	different	taxons	(compare,	for	example	TARBP2,	RDE-4,	
R2D2	or	LOQS).	This	possibly	also	happens	among	arthropods.	An	example	is	the	lack	of	
the RNAi-associated LOQS-PD isoform outside Drosophila (Haac et al., 2015). Analysis of 
dsRBPs in the mosquito Aedes aegypti revealed absence of LOQS-PD isoform, conserved 
roles of R2D2 and LOQS-PB, and LOQS-PA role in biogenesis of both, miRNAs and 
endo-siRNAs (Haac et al., 2015). 

Argonaute proteins

AGO proteins of arthropods are conserved, i.e. their domain composition is the same as that 
of mammalian proteins, which was discussed in detail (Peters and Meister, 2007). Arthro-
pods have varying number of Argonaute proteins of the AGO and PIWI clade but it seems 
that their archetypal state is two AGO proteins, each being associated with one Dicer and 
one type of small RNA (Palmer and Jiggins, 2015).

AGO1 and its loading with miRNAs

AGO1 RISC loading is similar to that of human RISC assembly described earlier (Yoda 
et al., 2010). Dicer-1/LOQS-PB heterodimer functions in assembling AGO1 RISC, which 

Introduction_to_RNAi.indd   149Introduction_to_RNAi.indd   149 09.07.20   8:3409.07.20   8:34



ARTHROPODS

150

is preferentially loaded with miRNA/miRNA* duplexes while siRNAs are being excluded 
from	the	assembly	(Tomari	et	al.,	2007).
AGO1	requires	ATP	for	miRISC	loading,	presumably	to	trigger	the	dynamic	conforma-

tional opening of AGO proteins so that they can accept small-RNA duplexes (Kawamata 
et al., 2009). Unwinding of miRNA-miRNA* duplexes is a passive process that does not 
require	ATP	or	slicer	activity	of	Ago1	(Kawamata	et	al.,	2009).
Two	distinct	AGO	complexes	were	identified	(Miyoshi	et	al.,	2009):	(i)	AGO1-Dicer-1	

complex with pre-miRNA processing activity where the resultant mature RNA was loaded 
onto AGO1 within the complex – this complex corresponds to miRLC (miRISC loading 
complex) (ii) the AGO1-GW182 complex with excluded DCR-1, containing mature miR-
NA no pre-miRNA processing activity – this complex corresponds to miRISC. AGO1 load-
ing also involves R3D1-L, a dsRBP that functions as a cofactor interacting with Dicer-1 and 
AGO1 (Jiang et al., 2005).

AGO1 might also have miRNA-independent role in translational repression where AGO1 
is recruited to mRNA via an RNA-binding protein SMAUG and not through miRNA:mRNA 
interaction (Pinder and Smibert, 2013).

AGO2 and its loading with siRNAs

The	model	of	RNAi	RISC	loading	in	Drosophila suggests that RISC assembly occurs in 
several	steps,	which	involve	a	several	complexes	(Tomari	and	Zamore,	2005).	The	first	
complex is formed by siRNA, R2D2 and DCR-2, also known as R1 or R2/D2/DCR-2 ini-
tiator (RDI) complex (Kim et al., 2007; Pham et al., 2004), which develops into a mature 
form	of	the	RISC	loading	complex	RLC	(Tomari	and	Zamore,	2005).	The	RLC	determines	
strand selection and recruits AGO2 (and other proteins) to form pre-RISC (Kim et al., 
2007), which contains duplex siRNA. Finally, the release of the passenger strand from the 
duplex produces holo-RISC, which can base pair with complementary mRNA substrates. 
The	loading	is	assisted	by	Hsc70/Hsp90	chaperones	(Iwasaki	et	al.,	2015;	Miyoshi	et	al.,	
2010b).
The	coupling	of	dsRNA	cleavage	and	RISC	assembly	is	a	matter	of	debate.	It	was	sug-

gested that, after cleavage, small-RNA duplexes need to dissociate from Dicer and then 
rebind to a sensor of the thermodynamic asymmetry of the duplex, because the guide strand 
of	an	siRNA	will	be	at	random	orientation	(Tomari	et	al.,	2004b).
AGO2	requires	ATP	for	RISC	loading	(Kawamata	et	al.,	2009;	Pham	et	al.,	2004;	Tomari	

et	al.,	2004a).	ATP	is	presumably	used	to	trigger	the	dynamic	conformational	opening	of	
AGO proteins so that they can accept small-RNA duplexes (Kawamata et al., 2009). 
Strand	selection	in	fly	RLC	is	controlled	by	R2D2.	Analysis	of	the	interaction	of	DCR-

2/R2D2 complex with siRNA duplexes showed that R2D2 orients the complex according 
to thermodynamic stabilities of siRNA strands and binds the 5’ phosphate of the passen-
ger	strand	at	the	thermodynamically	more	stable	end	(Tomari	et	al.,	2004b).	Thus,	R2D2	
functions as a licensing factor for routing siRNAs into the RNAi pathway. Interestingly, 
a thorough analysis of AGO2 complexes revealed that, unlike mature miRNAs, which are 
loaded	on	AGO1,	complementary	strands	of	mature	miRNAs	(miRNA*)	are	efficiently	
loaded on AGO2 in DCR2/R2D2-dependent manner (Ghildiyal et al., 2010; Okamura et al., 
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2011).	Thus,	the	role	of	R2D2	in	sorting	small	RNAs	is	wider	and	extends	into	the	miRNA	
pathway.
The	final	step	in	assembly	of	an	active	RISC	is	the	release	of	the	passenger	strand	from	

the siRNA duplex. Drosophila is Armitage helicase is a candidate for a mechanism separat-
ing	the	two	siRNA	strands	while	the	guide	remains	bound	to	AGO2	(Tomari	et	al.,	2004a).	
However, experimental data support a simple solution where passenger strand cleavage by 
AGO2 slicer activity liberates the single-stranded guide siRNA strand from the pre-RISC 
complex (Kim et al., 2007; Matranga et al., 2005; Miyoshi et al., 2005). Removal of siR-
NA passenger strand cleavage products is assisted by C3PO endoribonuclease, which was 
identified	as	a	RISC-enhancing	factor	that	promotes	RISC	activation	(Liu	et	al.,	2009).	
The	cleavage-assisted	mechanism	is	typical	for	AGO2-loaded	fly	and	human	siRNAs	in	
the RNAi pathway while passenger strand cleavage is not important for loading miRNAs 
(Matranga et al., 2005).

Small RNA sorting and mRNA targeting by AGO1 and AGO2

Drosophila sorts Dicer-produced small RNAs onto functionally distinct AGO proteins 
where AGO1 is dedicated to the miRNA pathway while AGO2 served for RNAi. Small 
RNA sorting is initiated by substrate recognition and continues through sorted loading onto 
the AGO proteins. Small-RNA duplexes are actively sorted into AGO-containing com-
plexes	according	to	their	intrinsic	structures	(Forstemann	et	al.,	2007;	Tomari	et	al.,	2007).	
Importantly, separation of miRNA and RNAi at the level of small RNA sorting onto AGO1 
and	AGO2	is	not	completely	pre-determined	by	small	RNA	origins	(Tomari	et	al.,	2007).	It	
was found that miRNA*s are often loaded as functional species into AGO2 (Czech et al., 
2009; Ghildiyal et al., 2010; Okamura et al., 2009). Furthermore, miRNAs produced by 
Dicer-1 and LOQS can be loaded by Dicer-2 and R2D2 into an AGO2 RISC (Forstemann 
et al., 2007). Finally, siRNAs derived from long hairpin RNA genes (hpRNA) also show 
a hybrid biogenesis combining RNAi factors DIcer-2 and AGO2 and Loquacious isoform 
(Okamura et al., 2008c).

Subsequently, AGO2-RISC mediates RNAi while only AGO1 is able to repress mRNAs 
with central mismatches in miRNA-binding sites (Forstemann et al., 2007). At the same 
time,	AGO1	cannot	mediate	RNAi,	because	it	is	an	inefficient	nuclease	with	a	catalytic	
rate limited by the dissociation of reaction products (Forstemann et al., 2007). AGO1 and 
AGO2 RISCs also differ in mechanisms of translational repression – AGO1-RISC repress-
es	translation	primarily	by	ATP-dependent	deadenylation	while	Ago2-RISC	competitively	
blocks the interaction of eIF4E with eIF4G and inhibits the cap function (Fukaya et al., 
2014; Iwasaki et al., 2009). AGO1-mediated translational repression involves GW182 in 
the same manner as in mammals (GW182 is separately described further below). miR-
NA-mediated	 silencing	 involves	 recruitment	 of	 PABP,	CCR4-NOT	deadenylase	 and	
decapping complex to RISC (Behm-Ansmant et al., 2006; Chekulaeva et al., 2011; Eulalio 
et	al.,	2008;	Fukaya	and	Tomari,	2011;	Huntzinger	et	al.,	2010;	Huntzinger	et	al.,	2013;	
Moretti et al., 2012; Rehwinkel et al., 2005). miRNA-mediated repression occurs on ribo-
some complexes but is independent of ribosomal scanning(Antic et al., 2015; Kuzuo-
glu-Ozturk et al., 2016).
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Evolutionary perspective

As mentioned above, the archetypal state arthropod state is two AGO proteins, AGO1 
and AGO2. Apart from Drosophila, such a situation is found in Daphnia (Crustacea) 
and Metaseiulus (mite, Chelicerata) (Palmer and Jiggins, 2015). However, upon detailed 
inspection,	one	frequently	finds	variability	in	the	number	of	AGO	proteins	across	the	
phylum	or	even	across	smaller	taxonomic	units.	The	miRNA	pathway	seemed	to	expand	
in pea aphid (insect, Hemiptera), whose genome two expressed copies of ago1, one of 
which (ago1b) shows signs of positive selection (Jaubert-Possamai et al., 2010). At the 
same time, a single AGO1 but duplications of AGO2 were found Ixodes (tick, Cheli-
cerata, three AGO2 paralogs), Strigamia (centipede, Myriapoda, two AGO2 paralogs), 
Mesobuthus (scorpion, Chelicerata, six AGO2 paralogs) or Tetranychus (spider mite, 
Chelicerata, six AGO2 paralogs) (Palmer and Jiggins, 2015). Penaeus monodon (black 
tiger	shrimp)	has	four	functionally	diversified	AGO	paralogs	(Dechklar	et	al.,	2008;	Lee-
bonoi et al., 2015; Phetrungnapha et al., 2013; Yang et al., 2014b). Analysis of Argonaute 
genes across 86 Dipteran species showed that variation in copy number can occur rapidly, 
and	that	there	is	constant	flux	in	some	RNAi	mechanisms;	this	suggests	that	Argonautes	
undergo frequent evolutionary expansions that facilitate functional divergence (Lewis 
et al., 2016).

Additional miRNA and RNAi factors

There	is	a	large	number	of	accessory	factors	beyond	those	described	above.	For	example,	
a systematic screen of 40% of the genome for genes acting in the miRNA pathway yielded 
45 mutations in 24 genes and an estimate of ~100 genes are required to execute the miRNA 
program (Pressman et al., 2012). Here, we will describe several additional factors, which 
have been associated with miRNA or RNAi pathways.

Nibbler – Nibbler is a 3’-5; exoribonuclease involved in trimming 3’ ends of miRNAs 
and piRNAs (Feltzin et al., 2015; Han et al., 2011; Liu et al., 2011; Wang et al., 2016; Yang 
et al., 2014a). In the miRNA pathway, Nibbler shortens distinct longer miRNAs during 
RISC assembly, yielding miRNA isoforms that are compatible with the preferred length of 
AGO1-bound small RNAs (Han et al., 2011; Liu et al., 2011). It has been estimated that 
about a quarter of miRNAs undergoes such a trimming (Han et al., 2011). 

HEN1 – HEN1 (Pimet, Dmhen1)is an enzyme catalyzing addition of a 2’-O-methyl 
group at the 3’ end of small RNAs (Horwich et al., 2007; Saito et al., 2007). While this 
modification	is	predominantly	found	on	piRNAs	in	Drosophila, it was also found on siR-
NAs and miRNAs (Abe et al., 2014; Horwich et al., 2007; Yang et al., 2014a). Functionally, 
2’-O-methylation of siRNAs loaded on AGO2 prevents tailing and trimming of siRNAs 
(Ameres et al., 2010). Generally HEN1 and Nibbler thus have antagonistic activities at the 
3’ end of small RNAs where Nibbler promotes small RNA trimming while Hen1 prevents it 
(Ameres et al., 2010; Yang et al., 2014a). 2’-O-methylation is also found on select miRNA 
isoforms and appeared to increase with age while its reduction was associated with neuro-
degeneration and shorter life span (Abe et al., 2014).
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nucleotidyltransferases – tailing of short RNAs is mediated by terminal nucleotidyl-
transferases, which produce 3’ uridylation or adenylation. PAPD4	has	been	identified	as	
a primary miRNA adenylating enzyme in Drosophila, adenylation did not appear to affect 
miRNA stability on a genome-wide scale (Burroughs et al., 2010). Another non-canonical 
adenylase is Wispy, which is responsible for adenylation of miRNAs and biologically it 
may facilitate clearance of maternal miRNAs in the embryo (Lee et al., 2014). Uridylation 
is mediated by Tailor, which is a uridylyltransferase that is required for the majority of 3’ 
end	modifications	of	microRNAs	in	Drosophila and predominantly targets mirtron hairpins 
(Reimao-Pinto et al., 2015; Westholm et al., 2012).

GW182 – GW182 is the key co-factor of AGO1 in miRISC. Its role has been described 
in	detail	in	the	mammalian	section,	he	we	will	briefly	note	its	key	features	with	respect	
to arthropods. GW182 and its interaction with AGO1 were found to be required for miR-
NA-mediated repression in Drosophila cells (Behm-Ansmant et al., 2006; Eulalio et al., 
2008; Rehwinkel et al., 2005). miRNA-mediated repression also required the decapping 
complex	DCP1:DCP2	and	CCR4-NOT	deadenylase	(Behm-Ansmant	et	al.,	2006;	Reh-
winkel et al., 2005). Multiple domains of GW182 contribute to miRNA-mediated repres-
sion (Chekulaeva et al., 2009; Chekulaeva et al., 2011; Chekulaeva et al., 2010; Eulalio 
et al., 2009). Similarly to mammals, Drosophila GW182 directly interacts with PABP and 
CCR4-NOT	(Chekulaeva	et	al.,	2011;	Fukaya	and	Tomari,	2011;	Huntzinger	et	al.,	2010;	
Huntzinger et al., 2013; Moretti et al., 2012).

Armitage	–	RNA	helicase,	which	was	identified	as	a	maternal	effect	gene	required	for	
RNAi	(Tomari	et	al.,	2004a).	Armitage	is	probably	not	required	for	RISC	activity.	Instead,	
it	was	proposed	to	facilitate	removal	of	the	passenger	strand	during	RISC	formation	(Tom-
ari et al., 2004a). Armitage was also implicated in piRNA biogenesis (Huang et al., 2014; 
Murota et al., 2014; Nagao et al., 2010; Qi et al., 2011; Saito et al., 2010).

dFMR1 – Drosophila ortholog of human fragile X mental retardation protein (FMRP) 
was	identified	as	a	RISC	component	(Caudy	et	al.,	2002;	Ishizuka	et	al.,	2002;	Pham	et	al.,	
2004). dFMR1 is associated with ribosomes through interaction with ribosomal proteins 
L5 and L1 and with complexes containing miRNAs (Ishizuka et al., 2002). dFMR1 is not 
a conserved RISC component involved in RNAi as depletion of dFMR1 reduces RNAi 
efficiency	in	Drosophila S2 cells but not in mammals (Caudy et al., 2002). dFMR has been 
also implicated in the piRNA pathway (Bozzetti et al., 2015; Jiang et al., 2016).

VIG	–	Vasa	Intronic	Gene	(Caudy	et	al.,	2002;	Pham	et	al.,	2004).	VIG	is	a	conserved	
protein, which encodes a putative RNA binding protein, whose depletion reduces RNAi 
efficiency	(Caudy	et	al.,	2002).	Vig mutants are more susceptible to viral infections in 
Drosophila	(Zambon	et	al.,	2006).	Whether	this	role	of	VIG	is	coupled	with	its	presence	in	
the	RISC	complex	is	not	known.	There	is	no	evidence	that	SERBP1,	the	closest	mammalian	
VIG	homolog,	would	be	associated	with	RISC.	VIG	was	also	implicated	in	heterochromatin	
formation (Gracheva et al., 2009). 

Tudor-SN –	Tudor	Staphylococcal	Nuclease	is	a	protein	containing	five	staphylococ-
cal/micrococcal	nuclease	domains	and	a	Tudor	domain.	It	is	a	component	of	the	RISC	in	
C. elegans, Drosophila	and	mammals	(Caudy	et	al.,	2003;	Pham	et	al.,	2004).	The	role	
of	Tudor-SN	in	RISC	RNAi	remains	enigmatic.	TSN	is	not	the	„slicer“	(Schwarz	et	al.,	
2004)	and	its	knock-down	in	silk	moth	cells	had	not	effect	on	RNAi	efficiency	(Zhu	et	al.,	
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2012). In Drosophila,	Tudor-SN	has	also	been	linked	to	piRNA	pathway	regulation	(Ku	
et al., 2016).

DMP68 (RM62)	–	this	conserved	helicase	was	co-purified	with	AGO1	and	dFMR1	(Ishi-
zuka	et	al.,	2002).	This	helicase	seems	to	be	required	for	RNAi	in	S2	cells	where	depletion	
of DMP68 results in inhibition of RNAi (Ishizuka et al., 2002). Whether DMP68 is needed 
for RISC formation or for RISC activity/stability is not known. Later publications on RM62 
linked	it	to	antiviral	response	(Zambon	et	al.,	2006)	and	to	other	mechanisms	than	RNAi.

CRIF1 – the Drosophila homolog of the mammalian CR6-interacting factor 1 (CRIF1), 
was	identified	as	a	potential	new	regulator	of	the	RNAi	pathway	during	a	screen	for	genetic	
mutations in Drosophila	that	alter	the	efficiency	of	RNAi.	CRIF1	loss-of-function	mutant	
flies	are	deficient	in	exo-RNAi,	in	siRNA	biogenesis	and	in	antiviral	immunity.	(Lim	et	al.,	
2014)

RdRPs in arthropods

One of the less understood areas of RNA silencing in arthropods is utilization of RdRPs. 
A phylogenetic analysis suggests that RdRPs in RNA silencing pathways have a monophy-
letic origin, i.e. evolved from a single ancestral RdRP (Cerutti and Casas-Mollano, 2006; 
Murphy	et	al.,	2008).	A	simple	TBLASTN	search	with	C.	elegans	RRF-1	proteins	sequence	
reveals RdRPs in species across Metazoa, including Cnidaria (hydra), Nematoda (RdRPs 
in C. elegans will be discussed later), Mollusca (oyster), Hemichordata (acorn worm), 
or Urochordata (sea squirt). At the same time, RdRPs seem to be absent in other groups 
including Platyhelminthes, Annelida, and vertebrates. What this implies for arthropods is 
that the common ancestors of protostomes and deuterostomes still had RdRPs and that 
RdRPs	were	repeatedly	lost	in	different	taxons.	We	performed	a	diagnostic	TBLASTN	
search with C. elegans RRF-1 proteins sequence also for the major groups of arthropods 
and	we	have	identified	RdRP	homologs	in	diverse	representatives	of	the	subphylum	Chel-
icerata (spiders, horseshoe crab, ticks, mites) but none in the remaining subphyla – Myr-
iapoda, Crustacea, and Hexapoda.	This	would	suggest	that	RdRP	was	lost	early	in	the	
arthropod evolution, being retained only in Chelicerata.	Thus,	one	could	assume	that	except	
of Chelicerata, RNA silencing does not employ RdRP-generated secondary siRNAs like 
those found in C. elegans.

Whether RdRP activity completely disappeared from RNAi in Drosophila (and those 
arthropods lacking an RdRP ortholog) is not completely understood but available data sug-
gest that it is could the case. One should consider also the option that a missing RdRP 
ortholog in RNA silencing could be replaced by another RdRP, for example by horizon-
tal transfer of some viral RdRP. In fact, there is a report of RdRP activity in Drosophila 
(Lipardi et al., 2001) but, was contradicted by experiments demonstrating the absence of 
transitive RNAi generating secondary sequences upstream of the region targeted by siR-
NAs (Roignant et al., 2003; Schwarz et al., 2002), so the issue remained unresolved. Later, 
dELP1, a non-canonical RdRP conserved in all eukaryotes, was suggested to associate with 
Dicer-2 and function as an RdRP (Lipardi and Paterson, 2009). However, the article was 
later retracted because the measured biochemical activity did not seem to be an authentic 
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RdRP	(Lipardi	and	Paterson,	2011).	Taken	together,	as	of	now,	there	is	no	evidence	for	
RdRP activity yielding secondary siRNAs and transitive RNAi in arthropod species lacking 
orthologs of ancestral RNA silencing-related RdRPs.

miRNA-mediated control of gene expression

miRNAs play physiologically important roles in arthropods, as suggested by phenotypes of 
mutants	of	miRNA	pathway.	The	loss	of	Dicer-1	or	Ago1	causes	embryonic	lethality	(Lee	
et al., 2004; Pressman et al., 2012). Dicer-1 is also needed to maintain ovarian stem cells in 
Drosophila (Jin and Xie, 2007). Similarly, Ago1 is essential for oocyte formation and main-
tenance of germline stem cells in Drosophila (Azzam et al., 2012; Yang et al., 2007) and for 
locust	oogenesis	(Song	et	al.,	2013).	The	miRNA	pathway	can	also	participate	in	response	
to physiological cues (Dekanty et al., 2010) or in regulation of immunity in arthropods, as 
shown	for	the	Plasmodium	infection	mosquito	(Winter	et	al.,	2007).	The	miRNA	pathway	
apparently expanded in pea aphid (insect, Hemiptera), whose genome contains four pasha, 
two dcr-1 and two ago2 paralogs, all of which are expressed and where one of the ago1 
paralogs shows signs of positive selection (Jaubert-Possamai et al., 2010). Notably, these 
expansions occurred concomitantly within a brief evolutionary period. it has been specu-
lated that the miRNA pathway diversity could contribute to adapted phenotypes, which the 
pea aphid is able to produce from a single genotype (Jaubert-Possamai et al., 2010).

Drosophila’s	miRNA	annotation	in	mirBase	(Kozomara	and	Griffiths-Jones,	2014)	is	
likely the most thoroughly done; it includes meta-analysis of > 109 raw reads from 187 
RNA-seq	libraries	comprising	diverse	developmental	stages,	specific	tissue-	and	cell-types,	
mutant conditions, and/or Argonaute immunoprecipitations yielded a thorough annotation 
of	miRNA	loci,	including	definition	of	multiple	phased	by-products	of	cropping	and	dicing,	
abundant alternative 5’ termini of certain miRNAs, frequent 3’ untemplated additions, and 
potential editing events (Berezikov et al., 2011). Considering incomplete miRNA annota-
tions in other species, miRBase numbers indicate that arthropods might have about one order 
of magnitude less miRNAs than mammals suggesting somewhat less expanded miRNA-me-
diated control of gene expression. In addition, there are only a few miRNAs conserved 
between Drosophila and mammals (the best known is Let-7 (Pasquinelli et al., 2000)).
Arthropods	also	employ	non-canonical	miRNAs.	These	include	mirtrons	that	bypass	

Drosha processing (Martin et al., 2009; Okamura et al., 2007; Ruby et al., 2007). In addi-
tion,	specific	miRNA	loops	may	accumulate	as	non-canonical	miRNAs	on	AGO1	and	
mediate miRNA-type repression (Okamura et al., 2013). Another non-canonical miRNA 
was	identified	in	rDNA	arrays.	Its	processing	requires	Dicer-1	but	not	the	Microprocessor	
complex and it is conserved among Diptera (Chak et al., 2015). 

RNAi pathway in arthropods

Although Drosophila Dcr-2 or Ago-2 are nonessential and mutants can develop to adults 
with no strong phenotypes under standard laboratory conditions (Deshpande et al., 2005; 
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Lee et al., 2004; Li et al., 2013; Xu et al., 2004), some minor phenotypes appear and severe 
defects in embryonic development have been noted in these mutants upon exposure to 
temperature perturbations (Deshpande et al., 2005; Li et al., 2013; Lucchetta et al., 2009). 

RNAi is functional across other arthropods subphyla, including Chelicerata (ticks and 
mites (Hoy et al., 2016; Kurscheid et al., 2009; Schnettler et al., 2014)) and Crustacea
(shrimps	(Chen	et	al.,	2011;	Hoy	et	al.,	2016;	Huang	and	Zhang,	2013;	Jariyapong	et	al.,	
2015;	Maralit	et	al.,	2015;	Sabin	and	Cherry,	2013;	Yang	et	al.,	2014b).	We	did	not	fi	nd	
published functional RNAi data for Myriapoda but genomic analyses show that they have 
the necessary machinery (Palmer and Jiggins, 2015). In this section, we will discuss the role 
of antiviral RNAi and endo-siRNAs in Drosophila and arthropods in general.

Antiviral RNAi

RNAi plays a key role in innate immunity in arthropods and a large volume of the reviewed 
literature across the taxon dealt with antiviral role of RNAi. As it could be expected, most 
of the mechanistic data came from the Drosophila model. 
The	fi	rst	evidence	for	antiviral	RNAi	in	arthropods	emerged	in	2002	from	a	study	that	

used	fl	ock	house	virus	(FHV)	is	inducing	RNAi	(and	is	being	targeted	by	RNAi)	Drosophila
host cells (Li et al., 2002). Infection of 14 different Drosophila RNA silencing mutants with 
a	dsRNA	X	virus	(DXV)	showed	that	all	but	three	lines	were	signifi	cantly	more	susceptible	
to	viral	infection	(reduced	survival	and	elevated	viral	titers)	than	normal	fl	ies.	Moreover,	
replication	of	DXV	was	sequence-specifi	cally	inhibited	(but	not	absolutely	blocked)	by	
„immunizing“	Drosophila	S2	cells	with	dsRNA	from	the	coding	region	of	DXV	before	
infection	(Zambon	et	al.,	2006).	Remarkably,	increased	susceptibility	was	observed	not	
only for mutants of the RNAi pathway, such as r2d2, armi, or ago2, but also for mutants 
of the piRNA pathway (aubergine and piwi), suggesting that RNAi is not the only RNA 
silencing pathway in Drosophila that can respond to a viral infection (Morazzani et al., 
2012).	The	engagement	of	the	piRNA	pathway	also	extends	to	mosquitos	(Leger	et	al.,	

Figure 4 D. melanogaster miRNA lengths
The left graph depicts size distribution of all 466 miRNAs of a Drosophila melanogaster deposited in the 
miRBase (version 21). For comparison, the right graph shows size distribution of 721 high-confi dence 
murine miRNAs.
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2013;	Schnettler	et	al.,	2013a;	Vodovar	et	al.,	2012).	A	number	of	studies	provided	ample	
mechanistic evidence that RNAi plays an essential role in antiviral response in Drosophila 
(Galiana-Arnoux et al., 2006; Nayak et al., 2010; van Rij et al., 2006; Wang et al., 2006).
The	antiviral	role	of	RNAi	is	conserved	across	the	entire	phylum.	here,	we	will	just	list	

a few representative examples of taxons across arthropods with documented antiviral role 
of RNAi.

RNAi is an antiviral system in mosquitos, where RNAi also comes into contact also with 
viruses	that	infect	humans,	such	as	Dengue	Virus	Type	2	(Sanchez-Vargas	et	al.,	2009),	
O’nyong-nyong virus (Keene et al., 2004), Sindbis virus (Adelman et al., 2012; Campbell 
et	al.,	2008),	West	Nile	virus	(Paradkar	et	al.,	2012),	Rift	Valley	Fever	virus	(Leger	et	al.,	
2013), Arbovirus (Schnettler et al., 2013b; van Cleef et al., 2014), Mosinovirus (Schuster 
et al., 2014), Culex Y virus (van Cleef et al., 2014). Importantly, viruses facing RNAi-based 
innate immunity evolve different RNAi inhibitors, proteins, which interfere with various 
stages	of	siRNA	biogenesis.	Such	proteins	have	been	identified	in	most	of	the	aforemen-
tioned viruses. Needless to say that antiviral RNAi was reported also from other hexapods, 
such	as	silk	moth	(Liu	et	al.,	2015;	Zografidis	et	al.,	2015).	Antiviral	RNAi	was	also	report-
ed for Chelicerata (ticks and mites (Hoy et al., 2016; Schnettler et al., 2014)) or Crustacea 
(shrimps	(Hoy	et	al.,	2016;	Huang	and	Zhang,	2013;	Jariyapong	et	al.,	2015;	Maralit	et	al.,	
2015; Sabin and Cherry, 2013; Yang et al., 2014b).

Endogenous RNAi in the germline and soma

Severe defects in embryonic development have been noted in Drosophila mutants lack-
ing Dcr-2 or Ago2, exposed to temperature perturbations while these mutants otherwise 
develop	under	standard	laboratory	conditions	to	normal	adults	with	no	specific	phenotype	
(Lucchetta	et	al.,	2009).	This	indicated	that	one	of	the	functions	of	endo-siRNA	pathway	
is to stabilize embryonic development under environmental stress (Lucchetta et al., 2009). 
Subsequent analysis of the distinct phenotypes in RNAi-defective mutants (Deshpande 
et al., 2005; Li et al., 2013) and RNA-seq data lead to recognition of diversity of the endog-
enous RNAi pathway and various types of endo-siRNAs.

A substantial source of Drosophila endo-siRNAs comes from mobile elements (Chung 
et al., 2008; Czech et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008; Okamura 
et al., 2008a). Endo-siRNAs in somatic tissues and cultured cells thus complement piRNAs 
that are responsible for genome surveillance predominantly in the germline. Importantly, as 
endo-siRNAs and piRNAs were found that originate from the same loci, it is possible that 
piRNA and endo-siRNA pathways might be interdependent in repression of mobile elements 
in Drosophila	(Ghildiyal	et	al.,	2008).	The	notion	of	interdependence	in	mobile	element	
repression also resonates with above-mentioned piRNA contribution to antiviral defense.

Other endo-siRNAs map to protein-coding genes and potentially contribute to control of 
gene	expression.	Among	them	a	significant	portion	maps	to	protein-coding	regions	(Czech	
et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008; Okamura et al., 2008a; Okamura 
et al., 2008b). However, only endo-siRNAs derived from a small number of loci are produced 
in	sufficient	amount	to	reduce	target	mRNA	levels,	as	exemplified	by	the	esi-2 locus-derived 
endo-siRNAs targeting DNA damage-response gene Mus-308 (Czech et al., 2008).
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Another type of Drosophila endo-siRNAs arises from overlapping antisense transcripts 
observed in hundreds of protein-coding loci (Okamura et al., 2008a). Abundance of such 
endo-siRNAs is generally low. Potential mRNA targets of such endo-siRNAs are not upreg-
ulated in Ago2-deficient	flies,	suggesting	that	these	endo-siRNAs	are	not	involved	in	post-
transcriptional control of mRNA levels under physiological conditions (Czech et al., 2008). 
Interestingly, a dsRNA/endo-siRNA-binding protein Blanks, which associates with DCR-2 
and forms an alternative Argonaute-independent functional RISC complex, has a role in 
spermatogenesis (Gerbasi et al., 2011). As Blanks deletion does not affect transposon activ-
ity,	this	finding	suggests	a	role	for	endo-siRNAs	in	regulation	of	protein-coding	mRNAs	in	
Drosophila sperm development.

Yet another distinct type of endo-siRNAs are those derived from hairpin RNAs, whose 
biogenesis involves HEN1, canonical RNAi factors Dicer-2 and AGO2 plus miRNA factor 
Loquacious	(Okamura	et	al.,	2008c),	specifically	the	LOQS-PD	isoform(Zhou	et	al.,	2009).	
One of the roles of hairpin RNA-derived endo-siRNAs is regulation of gene expression 
(Wen et al., 2015).

Systemic RNAi

Some	insects,	such	as	red	flour	beetle	Tribalism,	have	efficient	systemic	RNAi	where	injec-
tion	of	adults	causes	RNAi	effects	in	the	progeny	(Bucher	et	al.,	2002;	Tomoyasu	et	al.,	
2008). One of the well-known systemic RNAi factors is SID-1, a transmembrane pro-
tein	transporting	dsRNA	across	cell	boundaries,	which	was	first	identified	in C. elegans 

Table 1 Numbers of annotated miRNAs in selected arthropods in miRBase 22.1. Note: only species  
with >100 annotated miRNA precursors are shown for Hexapoda

subphylum species miRNA  
precursors

mature  
miRNA

Chelicerata Ixodes scapularis  49  49

Rhipicephalus microplus  24  24

Tetranychus urticae  52  92

Myriapoda Strigamia maritima   3   4

Crustacea Daphnia pulex  44  45

Triops canciformis 148 160

Hexapoda Aedes aegypti 122 164

Apis mellifera 254 262

Acyrthosiphon pisum 123  97

Bombyx mori 487 563

Drosophila melanogaster 258 469

Drosophila simulans 148 213

Drosophila virilis 180 328

Plutella xylostella 133 127

Tribolium castaneum 342 590
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(Feinberg	and	Hunter,	2003).	Ectopic	expression	of	SID-1	is	sufficient	for	permitting	a	sys-
temic RNAi through dsRNA soaking in insect cells (Feinberg and Hunter, 2003; Mon et al., 
2013; Shih and Hunter, 2011).

Non-cell autonomous RNAi exists across arthropods where different taxa have different 
numbers of sid-1 homologs. Importantly, some taxons lack systemic RNAi, which is not 
necessarily accompanied with the absence of sid-1 homologs; systemic RNAi can also be 
developmentally	restricted	or	simply	inefficient	despite	the	expression	of	sid-1	homologs	
(Tomoyasu	et	al.,	2008).	Importantly,	SID-1	is	not	the	only	system	of	systemic	RNAi	as	
was	demonstrated	in	the	locust	model	(Luo	et	al.,	2012)	or	in	Tribalism	(Bucher	et	al.,	2002;	
Tomoyasu	et	al.,	2008).	
There	 is	a	number	of	 insect	species,	 in	which	was	found	systemic	RNAi	or	at	 least	

sid-1	homologs,	include	the	aforementioned	red	flour	beetle,	Colorado	potato	beetle	(Cap-
pelle et al., 2016), juvenile grasshopper (Dong and Friedrich, 2005), brown planthopper 
(Xu et al., 2013), oriental leaf worm moth (Gong et al., 2015), diamondback moth (Wang 
et	al.,	2014),	silk	moth	(Tomoyasu	et	al.,	2008),	honeybee	(Honeybee	Genome	Sequencing,	
2006), soybean aphid (Bansal and Michel, 2013), cotton/melon aphid (Xu and Han, 2008), 
grain aphid (Xu and Han, 2008). Beyond Hexapoda, there was also one report of sid-1 
homolog in Crustacea (shrimp) (Labreuche et al., 2010; Maralit et al., 2015).

Sid-like genes were not found in Drosophila	(Roignant	et	al.,	2003),	Hessian	fly	(Shreve	
et al., 2013), or mosquito Anopheles gambiae (Blandin et al., 2002). However, it should 
be kept in mind that this is not a conclusive evidence for absence of non-cell autonomous 
RNAi. For example, non-cell autonomous RNAi could be experimentally achieved also in 
Drosophila (Dzitoyeva et al., 2003) and it has been proposed that it would have a natural 
role	in	conjunction	with	antiviral	RNAi	in	adult	flies	(Saleh	et	al.,	2009).

Dicer-dependent nuclear silencing

Small RNAs in plants and fungi can mediate transcriptional silencing via chromatin remod-
elling/DNA methylation. A nuclear role and chromatin remodelling has been also attrib-
uted to the PIWI-loaded piRNA class of small RNAs protecting genome integrity in the 
germline.	The	role	of	Dicer-dependent	small	RNAs	in	transcriptional	silencing	in	Metazoa 
is poorly understood and, in some cases, controversial. In any case, studies in Drosophi-
la yielded some, albeit heterogeneous, evidence connecting Dicer-dependent small RNAs 
with transcriptional silencing and chromatin changes. 
The	best	known	small	RNA-dependent	transcriptional	silencing	mechanism	is	the	piR-

NA pathway, which controls transcriptional silencing of retrotransposons (reviewed in Fu 
and	Wang,	2014;	Haase,	2016;	Han	and	Zamore,	2014;	Sato	and	Siomi,	2013).	We	do	not	
cover the piRNA pathway as it is neither miRNA nor RNAi; piRNAs are not produced from 
a dsRNA but from complementary single-stranded transcripts through a concerted action 
of multiple factors. In any case, the piRNA pathway occasionally intersects with RNAi and 
miRNA pathways. For instance, it was shown that a functional miRNA pathway is required 
for the piRNA-mediated transcriptional silencing of mobile elements (Mugat et al., 2015). 
The	mechanistic	link	seems	to	be	provided	by	two	specific	miRNAs,	miR-14	and	miR-34	

Introduction_to_RNAi.indd   159Introduction_to_RNAi.indd   159 09.07.20   8:3409.07.20   8:34



ARTHROPODS

160

(Mugat	et	al.,	2015).	This	highlights	the	issue	of	discerning	miRNA-mediated	effects	on	
chromatin and direct chromatin regulation by small RNAs. 

A possible existence of transcriptional silencing mediated by Dicer-dependent small 
RNAs emerged from several analyses. First, it was found that AGO1 is found in the 
nucleus and cytosol in early embryos and that repeat induced silencing and transcrip-
tional	co-suppression	were	disrupted	by	Ago-1	mutation	(Pushpavalli	et	al.,	2012).	The	
effect	was	accompanied	by	 reduced	H3K9me2	and	H3K27me3	histone	modifications	
(Pushpavalli et al., 2012). However, it is not clear whether this phenomenon is caused by 
a direct endo-siRNA-mediated heterochromatin induction or an indirect effect of miR-
NAs (similarly to the situation mentioned in the previous paragraph). Another possible 
bridge	between	the	miRNA	pathway	and	transcriptional	regulation	is	Glioma	amplified	
sequence41 (Gas41), a chromatin remodeler, implicated in repeat-induced transgene 
silencing, which also interacts with Dicer-1 (Gandhi et al., 2015). Others proposed that 
AGO1 (and Dicer-2) interacts with RNA pol II and contribute to heterochromatin forma-
tion (Kavi and Birchler, 2009). 

AGO2 has been implicated in alternative splicing and transcriptional silencing, which 
included	 Polycomb	 group	 complex	 (associated	with	H3K27	methylation)	 (Taliaferro	
et al., 2013). Again, it is not clear how direct and indirect mechanism is responsible for 
the observed effects. RNAi machinery is not certainly an essential component of poly-
comb-mediated silencing as it was demonstrated that RNAi pathway is dispensable for the 
polycomb-mediated silencing of the homeotic Bithorax Complex (Cernilogar et al., 2013). 
AGO2 was also implicated in chromatin insulator function that would be independent of 
RNAi (Moshkovich et al., 2011). AGO2 was localized by chromatin immunoprecipitation 
to euchromatin but not heterochromatin and co-localized and physically interacted with 
CTCF/CP190	chromatin	insulators	(Moshkovich	et	al.,	2011).	AGO2,	together	with	Dicer-2	
and R2D2 was implicated in H3K9 methylation, suggesting that endo-siRNAs might reg-
ulate heterochromatin (Fagegaltier et al., 2009). A possible bridge between RNA silencing 
and	chromatin	could	be	VIG,	the	aforementioned	RISC	component	(Gracheva	et	al.,	2009).	
Chromatin-related factors also emerged from screens for RNAi and miRNA genes (Ghosh 
et al., 2014; Pressman et al., 2012).
Taken	together,	despite	a	relatively	large	volume	of	evidence,	there	is	still	not	a	consen-

sus and a validated model explaining how would miRNAs or endo-siRNAs guide chromatin 
remodelling in Drosophila (or in arthropods in general). 

Other dsRNA response pathways in arthropods

While RNAi is an important antiviral innate immunity mechanism in arthropods, it should 
be pointed out that it is not the only one and that the innate immunity of arthropods is 
much	more	complex.	A	study	of	five	chelicerates,	a	myriapod,	and	a	crustacean	revealed	
traces	of	an	ancient	origin	of	innate	immunity,	with	some	arthropods	having	Toll-like	
receptors and C3-complement factors that are more closely related in sequence or struc-
ture	to	vertebrates	than	other	arthropods	(Palmer	and	Jiggins,	2015).	Thus,	apart	from	
a	robust	and	sequence-specific	RNAi,	arthropods	also	have	a	largely	unexplored	potential	

Introduction_to_RNAi.indd   160Introduction_to_RNAi.indd   160 09.07.20   8:3409.07.20   8:34



ARTHROPODS

161

to mount a sequence-independent response to dsRNA (reviewed in Wang et al., 2015a). 
Such sequence-independent response would, for example, explain increased expression 
of apoptosis-related genes 24 hours upon exposing shrimps to encapsulated dsRNA (Jari-
yapong et al., 2015).In fact, shrimp has several interferon system-related genes such as 
dsRNA-dependent	protein	kinase	PKR	and	Toll-like	receptor	3,	which	are	induced	upon	
dsRNA exposure (Wang et al., 2013). Furthermore, Crustacea have many genes homol-
ogous to genes of the vertebrate interferon response suggesting that they might combine 
sequence-specific	and	sequence-independent	innate	immunity	response	to	nucleic	acids	
(Wang et al., 2013).

ADAR

Similarly to all previously discussed model systems, Drosophila (and presumably all 
arthropods) have A-to-I editing system. Drosophila has a single ADAR related to verte-
brate ADAR2 (Barraud et al., 2012). ADAR is developmentally regulated and essential 
gene (Palladino et al., 2000). Drosophila ADAR edits convergent transcripts (Peters et al., 
2003), antisense read-through transcripts of KP elements (Peters et al., 2003) as well as 
miRNAs (Chawla and Sokol, 2014). Drosophila ADAR edit primary microRNA (pri-miR-
NA) transcripts to alter the structural conformation of these precursors resulting in positive 
or negative modulation of miRNA expression or its activity (Chawla and Sokol, 2014; Cui 
et al., 2015). Despite its biochemical activity would imply it, there is no good evidence to 
show that ADAR antagonizes RNAi in Drosophila (Paro et al., 2012). 

Summary

Taken	together,	arthropods	are	an	extremely	large	and	diverse	taxon,	characterized	by	an	
extended	genetic	separation	of	miRNA	and	RNAi	pathways	(Fig.	5).	The	separation	is	not	
complete	and	structure	of	small	RNAs	appearing	in	the	system	strongly	influences	their	
sorting	onto	AGO	proteins.	The	main	arthropod	model	system	–	Drosophila	–	lost	the	RdRP	
component of RNA silencing, which seems to be also the case for Hexapoda, Crustacea 
and Myriapoda but not Chelicerata.
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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	In	metazoa,	there	are	two	mech-
anistically	closely	related	pathways:	RNA	interference	(RNAi)	and	microRNA	(miRNA)	pathway.	The	miRNA	
pathway regulates endogenous protein-coding gene expression and has been implicated in many biological 
processes.	RNAi	generally	serves	as	a	form	of	innate	immunity	targeting	viruses	and	mobile	elements.	This	
review is summarizing information about RNAi and miRNA pathways in protostome phyla: Annelida and Mol-
lusca.	The	molecular	mechanisms	of	dsRNA	and	miRNA	pathways	in	annelids	remain	largely	unexplored.	The	
available information points towards coexistence of miRNA and RNAi pathways, however, their integration or 
genetic separation remain unclear. Molluscs are an interesting taxon, which appears to have a unique setup of 
RNA silencing possibly employing a single Argonaute protein while it also employs interferon-like pathway 
elements.

Introduction

The	mechanistical	principles	of	vertebrate	miRNA	and	RNAi	pathways	were	introduced	
in	the	first	review	of	this	series	(Svoboda,	2019)	and	in	further	detail	elsewhere	(Bartel,	
2018), I will focus here directly on features of these pathways reported from Annelid and 
Molluscs taxons, which do not have common model species, which would be investigated 
in depth like C. elegans or Drosophila.	The	review	is	divided	into	Annelid	and	Molluscs	
parts. In each of them, I’ll review published data concerning components of miRNA and 
RNAi pathways and discuss biological roles of the two pathways.
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Annelids

Annelids are coelomate protostome worms whose body is organized into a series of ring-
shaped repetitive segments. ~15 000 annelid species are grouped into three classes: Poly-
chaeta (bristle worms, e.g. Platynereis), Oligochaeta (earthworms, e.g. Lumbricus), and 
Hirudinea (leeches, e.g. Hirudo). Literature on RNA silencing and dsRNA pathways is 
extremely	limited.	There	were	under	twenty	publications	dealing	with	small	RNAs,	most	
of which was related to detection of miRNAs.

Dicer

There	was	no	publication	concerning	Dicer	structure	or	function	in	annelids,	thus	all	infor-
mation provided here had to be extracted from genomic databases. Blast search of annelid 
entries in Genbank (query: murine Dicer protein, algorithm: tblastn, database: Nucleo-
tide collection nr/nt, results restricted to Annelida	(taxid:6340))	identified	a	single	mRNA	
XM_009031272 from the leech Helobdella robusta encoding a 1316 aa Dicer protein which 
lacked	~	400	aminoacids	at	the	N-terminus.	The	protein	contained	HELICc	domain	at	the	
N-terminus	but	lacked	the	N-terminal	DExD	domain.	Thus,	this	Dicer	is	structurally	rem-
iniscent of the N-terminally truncated Dicer capable of producing endo-siRNAs (Flemr 
et al., 2013). Importantly, analysis of Helobdella robusta	genomic	sequence	identified	a	sin-
gle Dicer gene on a contig ref|NW_008705401.1|, which also carried the entire N-terminus, 
which	was	lacking	in	the	identified	mRNA.	This	would	imply	a	similar	scenario	as	observed	
in mouse oocytes – Dicer encodes two protein isoforms, where the longer one is adapted 
for the production of miRNAs, while the shorter can produce both, miRNAs and siRNAs. 
However, this information would need to be validated experimentally and it needs to be 
also tested how common would be this scenario for annelids in general. Finally, annelid 
Dicer also produces miRNAs with median length of 22 nucleotides as estimated from the 
miRBase	data	(Kozomara	and	Griffiths-Jones,	2014)	(Fig.	1).

dsRBPs

There	is	no	literature	concerning	dsRBP	proteins	participating	in	RNA	silencing,	Rosani	
et	al.	suggest	that	annelids	employ	a	single	TARBP2	homolog	(Rosani	et	al.,	2016).

Argonaute proteins

Likewise, there is essentially no information regarding the AGO subfamily of Argonaute 
proteins.	There	is	a	study	of	protein	components	in	molluscs,	which	included	two	anne-
lid species and found that annelids have three (Capitella) and four (Helobdella) Argo-
naute	proteins	 from	both,	PIWI	and	AGO	clades	 (Rosani	et	al.,	2016).	There	are	five	
papers concerning Argonaute, however of the PIWI clade, which is functioning in the 
germline (Giani et al., 2011; Kozin and Kostyuchenko, 2015; Ozpolat and Bely, 2015; 
Sugio et al., 2008; Weigert et al., 2013). Blast search of Helobdella	genome	identified	two	
AGO paralogs (XM_009021176.1 and XM_009031816.1) and two possible PIWI proteins 
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(XM_009015681.1	and	XM_009021522.1).	The	two	paralogs	of	PIWI	proteins	would	be	
consistent with the aforementioned analysis of Myzostoma cirriferum PIWI proteins (Wei-
gert et al., 2013). Whether the two AGO paralogs are functionally dedicated to RNAi and 
miRNA pathways like AGO proteins in Drosophila is unknown. Furthermore, if annelids 
would have two PIWI proteins, it is possible that Capitella might have only one AGO pro-
tein serving in RNAi and miRNA pathways.

Other factors

No	other	proteins	factors	from	miRNA	or	RNAi	pathway	have	been	specifi	cally	reported.	
Data from Rosani et al. show that annelids employ microprocessor complex (Rosani et al., 
2016)

miRNA

There	is	one	annelid	species,	which	has	annotated	miRNAs	in	the	miRBase:	Capitella 
teleta -129 precursor miRNAs and 134 mature miRNAs. Literature search revealed sev-
en	publications	reporting	annelid	miRNA	identifi	cation	and	or	expression	(Christodoulou	
et al., 2010; Gong et al., 2010; Helm et al., 2012; Huang et al., 2012; Kenny et al., 2015; 
Sperling	et	al.,	2009;	Tessmar-Raible	et	al.,	2007).	As	shown	above,	annelid	miRNAs	have	
an average length 22 nucleotides like other animal miRNAs.

RNAi 

The	only	information	available	concerning	RNAi	is	that	it	is	functional	(Takeo	et	al.,	2010;	
Yoshida-Noro	and	Tochinai,	2010).	The	only	one	published	experimental	paper	reporting	
RNAi	employed	long	dsRNA	that	was	injected	into	the	coelom	(1	μg/μl,	100	nl	per	worm,	
i.e. 100 ng of dsRNA/worm).

Figure 1 Annelid miRNA lengths
The left graph depicts size distribution of all 134 miRNAs of a polychaete worm Capitella teleta de-
posited in the miRBase (version 21). For comparison, the right graph shows size distribution of 721 
high-confi dence murine miRNAs.
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Other dsRNA responding pathways

Only one reference mentioned another protein involved in dsRNA response – OAS (Kjaer 
et al., 2009). Blast search for murine PKR, RIG-I, and MDA5 (algorithm: tblastn, data-
base: Nucleotide collection nr/nt, results restricted to Annelida (taxid:6340)) revealed many 
sequences of Helobdella, and six of Platynereis, which were similar only to the second 
half	of	PKR,	suggesting	they	were	not	orthologs.	RIG-I	and	MDA5	searches	identifi	ed	two	
hypothetical proteins in Helobdella (ref|XM_009026626.1| and XM_009014668.1) with 
~35% identity and ~50% similarity, which could be orthologs.

Summary

In terms of the molecular mechanism of dsRNA and miRNA pathways, annelids remain 
largely unexplored. While, the available information points towards coexistence of miRNA 
and RNAi pathways, their integration or genetic separation remain unclear.

Molluscs

Molluscs are a large and extremely diverse group of coelomate protostomes, which have an 
unsegmented	soft	body,	internal	or	external	shell,	and	a	muscular	foot.	There	are	~	50	000	

Figure 2 Overview of annelid pathways 
dsRNA and miRNA pathways in annelids are poorly understood. Among the missing pieces of informa-
tion are: 1) degree of separation of miRNA and RNAi pathways (dedicated AGO proteins, co-existence 
of Dicer isoforms). Proteins from other dsRNA pathways related to innate immunity include OAS, most 
likely RIG-I and MDA5 homologs but probably not PKR.
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described species, which makes molluscs the second largest phylum after Arthropoda (third 
if Chelicerata and Hexapoda would be considered separate phyla). Apart from the complex 
classification	of	molluscs	into	7–10	classes,	three	groups	of	molluscs	are	commonly	recog-
nized: Cephalopoda (squid, octopus), Gastropoda (snails and slugs), and Bivalvia (clams, 
mussels, scallops, oysters). Literature on RNA silencing and dsRNA pathways is limited. 
There	were	92	publications	dealing	with	small	RNAs,	most	of	which	was	related	to	use	of	
RNAi as an experimental tool for suppressing gene expression.

Dicer

There	was	no	specific	functional	analysis	of	Dicer	in	molluscs.	There	is	one	study	from	
2016,	which	identified	and	bioinformatically	analyzed	Dicer	and	other	components	of	
miRNA and RNAi pathways in marine bivalves with a focus on a mussel Mytillus gallo-
provincialis and oyster Cassostrea gigas	(Rosani	et	al.,	2016).	Their	results	show	that	all	
examined molluscs (>30 species of cephalopods, gastropods, and bivalves) have a single 
Dicer protein, which participates in both, RNAi and miRNA pathways and that Dicer of 
Mytillus galloprovincialis and Cassostrea gigas has a common structure found in Metazoa.

Additional information regarding Dicer structure was extracted from genomic databas-
es. Blast search of molluscs entries in Genbank (query: murine Dicer protein, algorithm: 
tblastn, database: Nucleotide collection nr/nt, results restricted to molluscs (taxid:6447)) 
identified	transcripts	from	Mytilus, Crasostrea, Lottia, Aplysia, Miomphalaria, and Octopus 
that apparently encoded full-length Dicer orthologs. Molluscs Dicer also produces miRNAs 
with median length of 22 nucleotides as estimated from the miRBase data (Kozomara and 
Griffiths-Jones,	2014).	Interestingly,	the	incidence	of	23	nt	long	miRNAs	seems	to	be	high-
er in molluscs (Fig. 3). However, given the low number of miRNAs (64) and unexplored 
diversity	of	molluscs,	it	should	not	be	considered	a	significant	feature.

dsRBPs

There	is	no	literature	concerning	dsRBP	proteins	participating	in	RNA	silencing	in	mol-
luscs.	The	above-mentioned	analysis	of	miRNA	and	RNAi	pathway	components	identified	
only	a	single	dsRBP	(TARBP2)	homolog	(Rosani	et	al.,	2016).	

Argonaute proteins

Likewise, there is essentially no information regarding the AGO subfamily of Argonaute 
proteins.	The	above-mentioned	analysis	of	miRNA	and	RNAi	pathway	components	identi-
fied	one	to	four	Argonaute	proteins	from	both,	AGO	and	PIWI	clades	(Rosani	et	al.,	2016).	
However, general and derived roles of AGO proteins in molluscs remain unknown at the 
moment. Data from Mytillus galloprovincialis indicate presence of one AGO and two PIWI 
proteins	(Rosani	et	al.,	2016).	This	is	remarkable	because	this	AGO	protein	would	act	in	
both, RNAi and miRNA pathways like AGO2 in mammals.

In addition, there were two articles concerning the PIWI clade, which is acting in the 
piRNA pathway in the germline. In one of them, authors reported differential proteomic 
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responses to generic dsRNA (poly I:C and poly A:U) in two oyster species (Saccostrea 
glomerata and Crassostrea gigas), which have differential susceptibility to ostreid her-
pesvirus infection. Interestingly, Saccostrea glomerata, which is not susceptible, showed 
production	of	proteins	implicated	in	the	TLR	signalling	pathway	and	PIWI	protein	was	also	
found in Saccostrea glomerata but not in Crassostrea gigas when challenged with dsRNA 
(Masood et al., 2016). Although it is unclear whether PIWI could be mistaken for AGO, it 
is possible that piRNAs might have acquired additional roles in molluscs, perhaps includ-
ing	also	immunity.	This	notion	would	be	supported	by	the	second	report,	which	identifi	ed	
28nt piRNAs in brain (while piRNAs are generally restricted to gonads if not into germline 
cells	only).	These	piRNAs	had	unique	biogenesis	patterns,	nuclear	localization,	sensitivity	
to serotonin, and were implicated in stable long-term changes in neurons associated with 
memory (Rajasethupathy et al., 2012).

Other factors

According to the genome analysis of Mytillus galloprovincialis, Precambrian molluscs/
mammalian ancestors must have shared all ancestral proteins in the miRNA pathway, 
including	DROSHA,	DGCR8	and	GW182	(Rosani	et	al.,	2016).	There	are	no	published	
mechanistic data suggesting that there would be any difference in activity of any of these 
factors in molluscs.

Importantly, we examined if molluscs genomes also contain an RdRP, which is found 
in RNA silencing in plants and Nematodes but not in insects or mammals: query: C. ele-
gans RRF-1 NP_001250555, algorithm: tblastn, database: Nucleotide collection nr/nt, 
results	restricted	to	molluscs	(taxid:6447))	identifi	ed	transcripts	six	different	transcripts	
from Crassostrea gigas (XM_011450789, XM_011427600, XR_900019, XR_902698, 
XM_011450791, XR_900018) suggesting that molluscs might indeed employ RdRPs in 
RNAi.	This	would	be	a	signifi	cant	observation,	making	molluscs	RNA	silencing	an	inter-
mediate type between those found in nematodes, arthropods, and mammals.

Figure 3 Molluscs miRNA lengths
The left graph depicts size distribution of all 64 miRNAs of sea snail Lottia gigantea deposited in the 
miRBase (version 21). For comparison, the right graph shows size distribution of 721 high-confi dence 
murine miRNAs. 
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miRNA

There	is	three	molluscs	species,	which	have	annotated	miRNAs	in	the	miRBase	(Kozomara	
and	Griffiths-Jones,	2014):	Haliotis rufescens (red abalone sea snail), Lottia gigantean (owl 
limpet sea snai)l, and Melibe leonine (lion nudibranch sea slug). Unfortunately, there are 
no other representatives of other main mollusk groups such as Cephalopodes or Bivalves. 
Annelid	miRNAs	have	are	~	22	nt	long	like	other	animal	miRNAs	(Fig.	4).	There	is	a	small	
number	of	reports	concerning	miRNA	identification/annotation	and/or	analysis	of	expres-
sion/function in molluscs (Biggar et al., 2012; Bitel et al., 2012; Chen et al., 2014; Jiao 
et al., 2014; Jiao et al., 2015; Kenny et al., 2015; Martin-Gomez et al., 2014; Millan, 2011; 
Rajasethupathy	et	al.,	2009;	Tian	et	al.,	2015;	Xu	et	al.,	2014;	Zhao	et	al.,	2016;	Zheng	
et	al.,	2016a;	Zheng	et	al.,	2016b;	Zhou	et	al.,	2014).

RNAi 

RNAi is functional in molluscs as evidenced by 18 reports, which employed RNAi in 
different	molluscs	species	(see	the	table	below).	The	canonical	RNAi	(i.e.	using	long	dsR-
NA) has been observed in the following species upon various forms of delivery including 
larva soaking, animal injection (adductor muscle, gonad, brain, larva, post-renal sinus etc.), 
polyethyleneimin-mediated delivery, or cell injection. Collectively, these data imply that 
different molluscs have an intact machinery to execute RNAi. Effects of injection into body 
cavity would suggest that molluscs might have some cellular uptake mechanism for dsRNA 
or systemic RNAi but the direct evidence for any of that is lacking at the moment. Other 
dsRNA responding pathways

Molluscs seem to have a complex dsRNA response, which includes interferon-like 
response functioning in antiviral response (reviewed in Green et al., 2015a; Wang et al., 
2015b). 21 articles dealt with dsRNA-induced interferon-like response. Several studies 
in	Oyster	have	reported	that	dsRNA	mimic	poly(I:C)	can	strongly	induce	non-specific	
antiviral	immune	responses	(De	Zoysa	et	al.,	2007;	Green	and	Barnes,	2009;	Green	and	
Montagnani, 2013; Green et al., 2015b; Masood et al., 2016; Wang et al., 2016b; Wang 
et al., 2016c).

Molluscs have 2’5’- oligoadenylate synthetases (Kjaer et al., 2009; Pari et al., 2014), 
RIG-I-like	protein	(Zhang	et	al.,	2014),	MDA5	(Green	et	al.,	2014),	and	PKR	(Green	et	al.,	
2014; Green and Montagnani, 2013; Green et al., 2015b). Poly I:C can be also bound 
by Leucine-rich repeat (LRR)-only protein found in scallop Chlamys farreri (Wang et al., 
2016b; Wang et al., 2016c). Another gene, which is induced by poly I:C or sodium alginate 
is Myxovirus resistance (Mx) protein, which has been found in Abalone (Cheng et al., 2012; 
De	Zoysa	et	al.,	2007).	Mx	is	one	of	intensely	studied	antiviral	proteins,	which	is	induced	
by the type I interferon system (IFN alpha/beta).

However, it is important to recognize that molluscs are a heterogeneous group with dis-
tinct	antiviral	adaptations.	For	example,	proteomic	profiling	of	two	oyster	species	with	
differential susceptibility to ostreid herpesviruses showed that the resistant species has 
a stronger manifestation of the interferon-like response in the proteome upon induction 
with poly I:C (Masood et al., 2016).
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Summary

Taken	together,	molluscs	are	an	interesting	taxon,	which	appears	to	have	a	unique	setup	
of RNA silencing (Fig. 4) and its nexus with antiviral responses, which warrant further 
investigation. 
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Figure 4 Overview of mollusc pathways 
dsRNA and miRNA pathways in molluscs are poorly understood. Among the missing pieces of informa-
tion are: 1) degree of separation of miRNA and RNAi pathways (dedicated AGO proteins, co-existence 
of Dicer isoforms). 2) existence and functionality of RdRPs in molluscs, 3) derived roles of piRNAs in 
gene regulation and antiviral defense. Proteins from other dsRNA pathways related to innate immunity 
include PKR, OAS, RIG-I and MDA5 homolog, Mx protein and others.
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Table 1 RNAi in molluscs induced with short dsRNA molecules

species siRNA amount delivery method & effect reference
Chlamys farreri 1μg/g adductor muscle siRNA injection

70% KD at 72h
(Miao et al., 2016)

Biomphalaria 
glabrata

772	ng/250	μl polyethyleneimine-mediated delivery
>50–90% KD at 72h by ELISA

(Knight et al., 2011)

Lymnaea stagnalis 5	μl	of	200	ng/μl gonad injection, 27-mer
30–50% KD

(Fei et al., 2007)

Lymnaea stagnalis 2	μl	of	20	μM head injection above central ganglia, 27-mer, (Hui et al., 2007)

Table 2 RNAi in molluscs induced with long dsRNA molecules

species long dsRNA
delivery method reference

concentration length
Haliotis 
diversicolor

5	μg/ml 136–819 bp larva soaking (Wang et al., 2016a)

Haliotis 
diversicolor

5	μg/ml 136–819 bp larva soaking (Wang et al., 2015a)

Crassostrea 
gigas

150–750	μg/ml
10	μg/g

652 bp 2x	100	μl	injection
~50% KD at 48h

(Huvet et al., 2015)

Crassostrea 
gigas

50	μg/oyster 723 bp adductor muscle inject.
1–7 days, good effect

(Choi et al., 2013)

Crassostrea 
gigas

530	μg/ml
53	μg/oyster

425 bp gonad injection
77.52% KD

(Huvet et al., 2012)

Nipponacmea 
fuscoviridis

5	μg/ml 947 bp
667 bp

larva injection (Hashimoto  
et al., 2012)

Aplysia 500	ng/μl 316 bp sensory cell injection
protein not decreased

(Lyles et al., 2006)

Lymnaea 
stagnalis

500	ng/μl
2	μg/oyster

~300 bp central ring ganglia
60% KD at 24 h

(Guo et al., 2010)

Lymnaea 
stagnalis

5	μl	of	200	ng/μl 321 bp snail ganglia injection
30–50% KD

(Fei et al., 2007)

Crassostrea 
gigas.

20	or	100	μg/oyster 525 bp
877 bp

gonad injection
39% & 87% KD

(Fabioux et al., 2009)

Biomphalaria 
glabrata

0.1,	1.0	and	5.0	μg/snail 537 bp
541 bp

post-renal sinus inj.
70–80% KD

(Jiang et al., 2006)

Biomphalaria 
glabrata

120	ng/250	μl 397 bp polyethyleneimine-mediated 
delivery
>50% KD at 72h by ELISA.

(Knight et al., 2011)

Aplysia 500	ng/μl 316 bp sensory cell injection
protein not decreased

(Lyles et al., 2006)

Aplysia up	to	700	μg/mL N.A. ~20 giant neurons of the 
abdominal ganglion inj., 
80–95% KD

(Lee et al., 2001)

Aplysia 500	μg/mL 800 bp  sensory neuron injection
decrease by microscopy

(Ormond et al., 2004)
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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	In	metazoa,	there	are	two	mech-
anistically	closely	related	pathways:	RNA	interference	(RNAi)	and	microRNA	(miRNA)	pathway.	The	miRNA	
pathway regulates endogenous protein-coding gene expression and has been implicated in many biological pro-
cesses.	RNAi	generally	serves	as	a	form	of	innate	immunity	targeting	viruses	and	mobile	elements.	This	review	
is summarizing information about RNAi and miRNA pathways in the phylum Nematoda. Research on miRNA 
and RNAi pathways in the phylum Nematoda has been primarily using Caenorhabditis elegans model system 
and related species. In fact, miRNA and RNAi pathways were both discovered in this model system. Studies in 
Caenorhabditis elegans revealed highly complex organization of small RNA pathways despite there is just a single 
Dicer	gene.	The	complexity	of	small	RNA	pathways	in	Caenorhabditis elegans stems from a large number of 
Argonaute proteins and three RNA-dependent RNA polymerases, which establish an intricate system of primary 
and	secondary	small	RNAs	with	different	biological	functions	in	the	cytoplasm	and	nucleus.	This	review	focuses	
on	the	miRNA	pathway	and	pathways	initiated	by	long	dsRNA.	The	first	part	introduces	the	key	molecular	players	
of	RNA	silencing	in	nematodes.	The	second	summarizes	miRNA	and	dsRNA-induced	mechanisms,	in	this	case	
RNAi (exogenous = exo-RNAi and endogenous = endo-RNAi) and adenosine deamination (nematodes do not 
have the interferon system like vertebrate groups).

Introduction

Nematodes	are	free	 living	or	parasitic	unsegmented	pseudocoelomate	worms.	There	 is	
~80 000 described species, estimates of the total number of species are reaching 1 million 
(Margulis and Schwartz, 1998). Parasitic nematodes cause disease in animals and plants, 
thus	are	of	high	medical	and	economical	significance.	In	addition,	a	free-living	soil	nematode	
Caenorhabditis elegans (C. elegans) became a laboratory workhorse for the last half a centu-
ry that contributed to our understanding of every major molecular mechanism in multicellu-
lar	organisms.	In	fact,	miRNA	and	RNAi	pathways	were	both	first	discovered	in	C. elegans.
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RNA silencing in C. elegans	is	very	complex	despite	it	has	only	one	Dicer	gene.	The	
complexity is created by the extreme diversity of downstream pathways, which employ 
miRNAs as well as primary and secondary siRNA and other small RNAs that are loaded 
on 26 Argonaute proteins of three subfamilies, which have different biological functions in 
the cytoplasm and nucleus. For the purpose of the report, I focus on the miRNA pathway 
and	pathways	initiated	by	long	dsRNA.	This	part	of	the	report	is	organized	similarly	to	the	
other	taxon-oriented	reports	–	fi	rst	I	introduce	the	key	molecular	players	of	RNA	silencing	
in nematodes and then I summarize miRNA and dsRNA-induced mechanisms, in this case 
RNAi (exogenous = exo-RNAi and endogenous = endo-RNAi) and adenosine deamination 
(nematodes do not have the interferon system like vertebrate groups).

The Microprocessor complex

C. elegans utilizes the same Microprocessor complex as the earlier discussed Metazoa, i.e. 
a complex of Drosha (drsh-1) and DGCR8 homologs, the latter being named Pasha (partner 
of Drosha, pash-1)	(Denli	et	al.,	2004).	The	complex	cleaves	the	pri-miRNA	into	pre-miRNA	
in the nucleus. Suppression of Pasha expression in C. elegans interferes with pri-miRNA pro-
cessing, leading to an accumulation of pri-miRNAs and a reduction in mature miRNAs (Denli 
et al., 2004). Furthermore, pash-1 mutation relieves let-7-mediated repression and the pheno-
type overlaps with those observed in dcr-1 or drsh-1 mutants (Denli et al., 2004). NGS of small 
RNAs	showed	that	Drosha	cleavage	sites	were	enriched	with	specifi	c	nucleotides	(mainly	uri-
dine) and structural distortions resulting in reduced stability on the 5’ arm (Warf et al., 2011). 

Dicer

C. elegans genome contains a single Dicer gene (dcr-1), which was discovered as a miR-
NA and RNAi biogenesis factor in 2001 (Grishok et al., 2001; Ketting et al., 2001; Knight 

Figure 1 Nematode miRNA lengths
The left graph depicts size distribution of all 334 miRNAs of a C. elegans deposited in the miRBase 
(version 21). For comparison, the right graph shows size distribution of 721 high-confi dence murine 
miRNAs.

Introduction_to_RNAi.indd   192Introduction_to_RNAi.indd   192 09.07.20   8:3409.07.20   8:34



NEMATODES

193

and Bass, 2001). Dicer is the central component in biogenesis miRNAs, endo-siRNAs and 
exo-siRNA.	The	loss	of	Dicer	results	in	sterility,	abnormal	oocytes,	and	heterochronic	phe-
notypes (Grishok et al., 2001; Ketting et al., 2001; Knight and Bass, 2001). 

Most nematodes possessed only one Dicer gene (Gao et al., 2014). Dicer cleaves long 
dsRNA into 23 bp siRNAs in vitro	in	the	presence	of	ATP	(Ketting	et	al.,	2001).	However	
the length of the primary cleave product is retained only in miRNAs, where C. elegans 
miRNAs deposited in the miRBase are 22–23 nt long (Fig. 1) and in RDE-1-bound siRNAs 
in	the	exo-RNAi.	The	endogenous	siRNAs	are	longer	and	belong	to	the	class	of	26G	RNAs	
whose biogenesis requires additional factors beyond Dicer.
There	is	neither	crystal	structure	of	C. elegans Dicer nor a cryo-EM analysis of the shape 

of the molecule. However, the general domain composition of C. elegans Dicer is very sim-
ilar	to	that	of	human	Dicer	(Fig.	2).	Thus,	some	information	can	be	inferred	from	sequence	
comparison as well as from biochemical analyses of isolated domains. 
Analysis	of	the	PAZ	domain	showed	that	the	5’	and	3’	pockets	are	conserved	across	

members of the Dicer1 subfamily, with the exception of the 5’ pocket in nematode Bursap-
helenchus xylophilus.	The	helicase	domain	of	Dicer	is	not	necessary	for	miRNA	processing,	
or exo-RNAi. Comparisons of wild-type and helicase-defective strains showed that the hel-
icase domain is required by a subset of annotated endo-siRNAs, in particular, 26G RNAs 
(Welker et al., 2010). Consistently with these observations, the helicase domain is essential 
for cleaving dsRNA with blunt or 5’-overhangs but not with 3’ overhangs, such as miRNA 
precursors (Welker et al., 2011). Further, blunt termini, but not 3’ overhangs yield siRNAs 
from internal regions of dsRNA (Welker et al., 2011). RNAse IIIb and dsRNA binding 
domains contain two conserved phosphorylation sites, which are phosphorylated by ERK. 
The	phosphorylation	is	necessary	and	sufficient	to	trigger	Dicer’s	nuclear	translocation	
(Drake et al., 2014) and plays a role during oocyte-to-embryo transition (Drake et al., 2014).

C. elegans evolved a system where Dicer processes substrates for different pathways 
(endogenous	RNAi,	exogenous	RNAi,	antiviral	defense)	into	~22	nt	small	RNAs.	Thus,	
needs to DCR-1 function as a hub for several small RNA pathways where it contributes to 
sorting	of	small	RNAs	into	different	pathways.	This	contrasts	with	mammals,	where	there	is	
minimal, if any, sorting during loading of Dicer-produced small RNAs, and with Drosoph-
ila, which employs two dedicated Dicer proteins for RNAi and miRNA pathways. Sorting 
involves substrate structure and distinct protein factors (Jannot et al., 2008). Pre-miRNAs 
have unique structures that facilitate loading onto ALG-1/2 Argonaute proteins. Pre-miRNA 
analysis showed structural distortions adjacent to Dicer cleavage sites (Warf et al., 2011) 
and common internal bulges/mismatches. Remarkably, nucleotide changes in the pre-let-7 
miRNA precursor that create a perfectly complementary stem cause loading of resulting 
small RNAs on RDE-1, which is the Argonaute protein acting in the exogenous RNAi path-
way (Steiner et al., 2007). Reintroducing mismatches into the stem restores loading onto 
ALG-1	(Steiner	et	al.,	2007).	The	second	sorting	system	relies	of	proteins	recognizing	Dicer	
substrates and presenting it to Dicer, such as RDE-4 discussed in the next section, or Dicer 
associated proteins, which modify DCR-1 products and direct them on distinct Argonaute 
proteins (see further below).

DCR-1 also binds RNAs without generating small RNAs. Analysis of Dicer-associ-
ated RNAs in C. elegans by PAR-CLIP (Photoactivatable Ribonucleoside-Enhanced 
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Crosslinking and Immunoprecipitation) revealed ~2500 Dicer binding sites in the C. ele-
gans transcriptome (Rybak-Wolf et al., 2014). Apart from miRNA precursors, DCR-1 also 
binds a variety of RNA molecules (structural RNAs, promoter RNAs, and mitochondri-
al transcript). However, Dicer-binding sites beyond miRNAs mostly reside on mRNAs/
lncRNAs	that	are	not	signifi	cantly	processed	into	small	RNAs.	These	passive	binding	(i.e.	
without dicing) typically involves small, Dicer-bound hairpins within intact transcripts and 
generally stabilizes target expression (Rybak-Wolf et al., 2014). It was proposed that pas-
sive binding might be one of the mechanisms balancing siRNA/miRNA production since it 
was shown that passive binding sites can sequester Dicer and reduce microRNA expression 
(Rybak-Wolf et al., 2014). For example, a noncoding RNA rncs-1 is a non-cleaved Dicer 
substrate, which appears to reduce Dicer activity in hypodermis and intestine (Hellwig and 
Bass, 2008)

Remarkably, two distinct truncated Dicer isoforms produced by proteolytic cleavage 
were reported from C. elegans. While both isoforms are C-terminal fragments created by 
proteolytic	cleavage,	they	show	profound	functional	differences.	The	fi	rst	one	is	created	by	
cleavage	of	DCR-1	by	CED-3	caspase.	The	released	~43	kDa	C-terminal	fragment	changes	
its RNase activity into DNase, which fragments chromosomal DNA during apoptosis (Nak-
agawa et al., 2010). Subsequent molecular analysis proposed a model where the N-terminal 
helicase domain is suppressing DNase activity and release of the C-terminal part upon 
cleavage at Asp1472 (within the RNAse IIIa domain) by CED-3 activates a DNA-binding 
activity	and	enables	DNA	cleavage	(Ge	et	al.,	2014).	The	second	truncated	form	of	Dicer	
exists as a ~ 95 kDa C-terminal Dicer fragment generated by proteolytic cleavage upstream 
of RNase IIIa domain. It is abundant in adult C. elegans cells where it might enhance 
exogenous and antiviral RNAi while negatively regulating miRNA biogenesis (Sawh and 
Duchaine,	2013).	The	95	kDa	Dicer	fragment	does	not	interact	with	RDE-4	nor	with	the	
ERI complex but it was found to bind miRNA-associated AGO proteins ALG-1/2 suggest-
ing that it sequesters ALG-1/2 from the full-length DCR-1, thereby acting as a competitive 
inhibitor of miRNA processing (Sawh and Duchaine, 2013).
There	has	been	a	number	of	 identifi	ed	Dicer	binding	partners,	which	form	different	

complexes, which act in different types of RNAi pathways (Duchaine et al., 2006; Lee 
et al., 2006). One of them is the exo-RNAi Dicer complex composed of RDE-4 (dsRBP), 
DCR-1,	RDE-1	(Argonaute	protein),	and	DRH-1/2	(Dicer-related	helicases)	(Tabara	et	al.,	

Figure 2 Comparison of C. elegans, human and Drosophila Dicer proteins
Domain composition was adopted from (Jaskiewicz and Filipowicz, 2008).
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2002). Another complex is ERI/Dicer complex, which was reported for endo-RNAi dur-
ing sperm development (Pavelec et al., 2009). It is composed of ERI-1/3/5, DCR-1, and 
RRF-3 (RdRP) and produces 26G primary endo-siRNAs, which then drive production of 
secondary 22G RNAs (Duchaine et al., 2006; Gent et al., 2009; Han et al., 2009). ERI-1 is 
an exoribonuclease that degrades siRNAs in vitro (Kennedy et al., 2004) and acts in 26G 
biogenesis in vivo (Duchaine et al., 2006; Gent et al., 2009; Han et al., 2009), ERI-3 has no 
known domain (Duchaine et al., 2006), and ERI-5 is a tudor domain protein, which tethers 
the	RdRP	to	Dicer	(Thivierge	et	al.,	2012).	An	additional	genetic	screen	identified	ERI-9	as	
an additional component of ERI/DCR complex acting in the endo-RNAi pathway (Pavelec 
et	al.,	2009).	The	miRNA	pathway-dedicated	complex	involves	interaction	between	Dicer	
and	ALG-1/2	and,	eventually,	LIN-41	regulating	let-7	miRNA	(Duchaine	et	al.,	2006).	The	
list of Dicer-binding proteins in C. elegans is even longer and involves proteins with roles 
in different aspects of silencing or with yet undetermined functions (Beshore et al., 2009; 
Beshore et al., 2011; Duchaine et al., 2006; Racen et al., 2008).

dsRBPs – RDE-4 and homologs

RDE-4 is a dsRBP partner of Dicer in C. elegans. It is a 385-amino acid protein carrying 
two N-terminal dsRBDs and a third degenerate dsRBD at the C-terminus. A similar organ-
ization is found in other dsRBDs mentioned above – R2D2 and Loquacious in Drosoph-
ila	and	TRBP	and	PACT	in	mammals.	RDE-4	was	identified	by	a	systematic	screen	for	
C. elegans RNAi-deficient	mutants	(Tabara	et	al.,	1999).	The	rde-4 mutant was completely 
deficient	in	RNAi	but	failed	to	show	any	discernible	phenotype,	including	the	absence	of	
transposon activation, which was observed in some other rde mutants	(Tabara	et	al.,	1999).	
The	loss	of	RDE-4	function	can	be	compensated	with	injection	of	synthetic	siRNA	(Parrish	
and Fire, 2001) or with high amounts of dsRNA and siRNAs (Habig et al., 2008).

Mutants and biochemical analyses support a model where RDE-4 dimerizes through the 
C-terminal domain; dimers cooperatively bind long dsRNA, interacts with Dicer through 
the linker region, and forms a complex initiating the RNAi together with Dicer, RDE-1, 
and DRH-1/2 (Blanchard et al., 2011; Chiliveri and Deshmukh, 2014; Parker et al., 2006; 
Parker	et	al.,	2008;	Parrish	and	Fire,	2001;	Tabara	et	al.,	2002).	The	presence	of	an	Argo-
naute protein in the complex suggests that in exo-RNAi, dsRNA recognition, processing 
into siRNA and loading of the Argonaute-containing effector complex is integrated in a one 
complex. Importantly, while RDE-4 is involved in siRNA production from exogenous and 
endogenous dsRNAs, RDE4, Dicer, RDE-1 and DRH-1/2 act in the exo-RNAi (Lee et al., 
2006).	The	endogenous	RNAi	pathway	(endo-RNAi),	which	targets	endogenous	genes,	
employs a distinct mechanism of siRNA production involving DCR-1 and RDE-4 but not 
RDE-1 and DRH-1/2 (Gent et al., 2010; Lee et al., 2006). 
Importantly,	RDE-4	differs	from	TARBP2	role	in	RNAi.	While	RDE-4	is	involved	in	

siRNA production from dsRNA but is not essential for later steps of RNAi because RDE-
4	immunoprecipitates	with	trigger	dsRNA	but	not	siRNA	(Tabara	et	al.,	2002),	TARBP2	
functions during RISC formation and AGO loading. Binding properties in vitro correspond 
to different roles of the two proteins in vivo. RDE-4 preferentially binds long dsRNA, while 
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TRBP	binds	siRNA	with	an	affinity	that	is	independent	of	dsRNA	length	(Parker	et	al.,	
2008).	This	stems	from	the	fact	that	RDE-4	binds	cooperatively,	via	contributions	from	
multiple	domains,	while	TRBP	binds	non-cooperatively	(Parker	et	al.,	2008).	

Argonaute proteins

Caenorhabditis has the largest diversity of Argonaute proteins of all studied model sys-
tems	–	25–27	Argonaute	family	members	(Table	1)	were	described	to	carry	primary	and	
secondary small RNAs that act in soma and germline in multiple inter-related pathways 
(Buck and Blaxter, 2013; Yigit et al., 2006) (Arabidopsis, which has complex RNA silenc-
ing has 10 Argonaute proteins (reviewed in Buck and Blaxter, 2013). In addition to the 
above-described AGO and PIWI clades of the Argonaute family, nematodes utilize a unique 
Argonaute	subfamily	termed	WAGO,	which	are	“Worm-specific	AGO” proteins, which 
bind	secondary	22G	small	RNAs	(summarized	in	(Buck	and	Blaxter,	2013).	The	complete	
description of small RNA pathways in C. elegans is beyond the scope of this report. Here, 
I will mainly focus on Argonaute proteins acting as the primary recipients of Dicer-gener-
ated small RNAs and will include the downstream pathways when directly related to the 
miRNA pathway or dsRNA response.

ALG-1/2 – miRNA-binding Argonaute proteins

There	are	two	Argonaute	proteins	carrying	canonical	miRNAs	in	C. elegans: ALG-1 
and	ALG-2	(collectively	designated	ALG-1/2).	They	were	identified	as	RDE-1	homologs,	
which cause heterochronic phenotypes similar to lin-4 and let-7 mutations and which are 
(together with dcr-1) necessary for the maturation and activity of the lin-4 and let-7 miR-
NAs. (Grishok et al., 2001). ALG-1/2 are required for the miRNA function, but not for 
the siRNA-directed gene silencing (Jannot et al., 2008). Although ALG-1 and ALG-2 are 
almost identical and highly redundant (only loss of both genes leads to embryonic lethality), 
several non-redundant functions have been observed in processing pre-miRNA processing/
miRISC	formation	(Kuzuoglu-Oeztuerk	et	al.,	2012;	Steiner	et	al.,	2007;	Tops	et	al.,	2006;	
Vasquez-Rifo	et	al.,	2012).	Furthermore,	while	ALG-1/2	spatio-temporal	expression	pro-
files	overlap,	there	is	variability	in	dominating	ALG	expression	in	various	cells	and	differ-
ential	association	to	specific	miRNAs	(Vasquez-Rifo	et	al.,	2012).

Interestingly, ALG-1/2 have conserved key residues for the slicing activity suggesting 
that they might function as active slicers despite the general lack of miRNA-mediated 
site-specific	cleavage	of	cognate	mRNAs.	In	any	case,	the	slicing	activity	of	ALG-1/2	has	
been demonstrated in vitro and in vivo	(Bouasker	and	Simard,	2012).	The	loss	of	the	slicing	
activity results in the accumulation of truncated miRNA precursors and altered miRISC for-
mation suggesting that the slicing activity is necessary during miRISC formation (Bouasker 
and	Simard,	2012).	This	notion	is	further	supported	by	mutations	in	ALG-1,	which	separate	
miRISC	loading	and	repression	of	cognate	RNAs	(Zinovyeva	et	al.,	2014)

Canonical miRNA-mediated repression involves AIN-1 (ALG-1 INteracting protein), 
GW182 homolog, which interacts with miRISC and has been implicated in targeting 
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Table 1 Argonaute proteins in Caenorhabditis elegans
The table was compiled form the following literature (Batista et al., 2008; Buckley et al., 2012; Fischer 
et al., 2011; Fischer et al., 2013; Tijsterman et al., 2002a; Tijsterman et al., 2002b; Vasale et al., 2010; 
Wang and Reinke, 2008; Yigit et al., 2006). Slicer activity “+” indicates that a given Argonaute protein 
has potential to act as a slicer, not that slicing is its primary mode of action. In some case, slicing poten-
tial has been inferred from the sequence, i.e. it is not supported with experimental evidence

common name(s) subfamily slicer
associated small RNA

type length 5’ nt 5’ end 3’ end

ALG-1, F48F7.1 AGO + miRNA 22–23  mono-P -OH

ALG-2 AGO + miRNA 22–23  mono-P -OH

ALG-3, T22B3.2 AGO +? 26G siRNA 26 G mono-P -OH

ALG-4, ZK757.3 AGO +? 26G siRNA 26 G mono-P -OH

RDE-1, K08H10.7 AGO + primary siRNA 22–23  mono-P -OH

ERGO-1, R09A1.1 AGO + 26G siRNA 26 G mono-P 2’-O-met

CSR-1, F20D12.1 AGO + 22G siRNA 22 G tri-P -OH

C06A1.4 AGO? -      

H10D12.2, M03D4.6 AGO? -      

C14B1.7 PIWI? -

T23D8.7, HPO-24 PIWI? -

C04F12.1 PIWI? +?

PRG-1, D2030.6 PIWI + 21U piRNA 21 U mono-P 2’-O-met

PRG-2, C01G5.2 PIWI + 21U piRNA 21 U

WAGO-1, R06C7.1 WAGO branch1 - 22G siRNA 22 G tri-P -OH

WAGO-2, F55A12.1 WAGO branch1 - 22G siRNA 22 G tri-P -OH

PPW-2, WAGO-3,  
Y110A7A.18

WAGO branch1 - 22G siRNA 22 G tri-P -OH

WAGO-4, F58G1.1 WAGO branch1 - 22G siRNA 22 G tri-P -OH

WAGO-5, ZK1248.7 WAGO branch1 - 22G siRNA 22 G tri-P -OH

SAGO-2, WAGO-6/8,  
F56A6.1

WAGO branch2 - 22G siRNA 22 G tri-P -OH

PPW-1, WAGO-7,  
C18E3.7

WAGO branch2 - 22G siRNA 22 G tri-P -OH

SAGO-1, WAGO-8/6,  
K12B6.1

WAGO branch2 - 22G siRNA 22 G tri-P -OH

HRDE-1, WAGO-9,  
C16C10.3

WAGO branch 3 - 22G siRNA 22 G tri-P -OH

WAGO-10, T22H9.3 WAGO branch 3 - 22G siRNA 22 G tri-P -OH

WAGO-11, Y49F6A.1 WAGO branch 3 - 22G siRNA 22 G tri-P -OH

NRDE-3, WAGO-12,  
R04A9.2

WAGO branch 3 - 22G siRNA 22 G tri-P -OH
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ALG-1 to P-bodies (Ding et al., 2005; Ding and Grosshans, 2009). It was reported that has 
lin-4-mediated repression acts at the level of translation initiation and frequently but not 
always coincides with transcript degradation (Ding and Grosshans, 2009). Remarkably, 
despite	AIN-1/2	(two	redundant	GW182	homologs	(Zhang	et	al.,	2007))	lack	most	of	the	
domains found in vertebrate proteins, they still interact with ALG-1/2 (Kuzuoglu-Oeztuerk 
et	al.,	2012).	The	interaction	is	mediated	by	GW	repeats	in	the	central	part	of	AIN-1/2	but	
only	AIN-1	interacts	with	PABPC1,	PAN3,	NOT1	and	NOT2	(Kuzuoglu-Oeztuerk	et	al.,	
2012).This	implies	that	the	key	principle	of	miRNA	mediated	repression,	GW182-mediat-
ed tethering of PABPC1 and deadenylase complexes to AGO, is broadly conserved across 
metazoa.
The	key	determinant	of	target	recognition	is	the	seed	binding	as	described	in	the	mam-

malian section. Direct probing of the RNA backbone in isolated native C. elegans miRISC 
that the seed region is uniquely constrained, while the rest of the microRNA structure is 
conformationally	flexible.	Probing	the	Watson-Crick	edges	of	the	bases	shows	that	bases	
2–4	are	largely	inaccessible	to	solvent,	while	seed	region	bases	5–8	are	readily	modified	
(Lambert	et	al.,	2011).	These	data	are	consistent	with	structural	analyses	of	AGO	proteins	
in mammals and elsewhere.

RDE-1 – primary siRNA-binding Argonaute in exo-RNAi and antiviral RNAi 

RDE-1	has	the	central	role	in	RNAi.	It	was	identified	through	a	screen	for	RNA-deficient	
mutants	(Tabara	et	al.,	1999).	Rde-1 mutants are strongly resistant to RNAi but without 
obvious	defects	in	growth	or	development	(Tabara	et	al.,	1999).	As	mentioned	above,	
RDE-1 associates with RDE-4, Dicer and DRH1/2 acting in the exo-RNAi and antiviral 
RNAi	(Lu	et	al.,	2005;	Parrish	and	Fire,	2001;	Tabara	et	al.,	2002;	Wilkins	et	al.,	2005).	
As mentioned above, RDE-1 accommodates perfect siRNA duplexes, which includes arti-
ficially	modified	miRNA	precursors	(Steiner	et	al.,	2007).	It	was	proposed	that	RDE-1	
functions as a scavenger taking up small RNAs from different sources (unlike ALG-1/2), 
which exclusively bind miRNAs (Correa et al., 2010).

Interestingly, the bulk of the slicing activity in C. elegans extracts in vitro comes from 
CSR-1 loaded with secondary 22G RNAs and not from RDE-1 loaded with primary siR-
NA	(Aoki	et	al.,	2007).	While	RDE-1	is	a	“slicer”,	it	uses	its	endonucleolytic	activity	for	
removal of the passenger strand of the siRNA duplex and not for cleaving cognate RNAs, 
suggesting uncoupled roles of the RDE-1 slicer activity in siRNA maturation from and 
cognate RNA cleavage (Steiner et al., 2009). It was found that RDE-1 recruits RDE-
8	endoribonuclease	to	target	RNA	(Tsai	et	al.,	2015).	According	to	the	model,	RDE-8	
cleaves cognate RNAs and is needed for the production of 3’ uridylated fragments of target 
mRNA, which provide templates for RdRP-mediated production of secondary siRNAs 
(Tsai	et	al.,	2015).
Taken	 together,	RDE-1	 loaded	with	primary	 siRNAs	 stands	 at	 the	beginning	of	 an	

amplification	cascade,	while	other	Argonaute	proteins	 loaded	with	secondary	siRNAs	
mediate downstream silencing (Yigit et al., 2006). A remarkable feature of the down-
stream AGOs loaded with 22G siRNAs is the lack the slicer activity. RDE-1 does not ini-
tiate only post-transcriptional repression; it has also been implicated in initiation (but not 
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maintenance) of long-term silencing (>25 generations) induced by long dsRNA in neurons 
(Buckley et al., 2012).

26G Argonaute effectors in RNAi – ERGO-1 – primary 26G siRNA-binding 
Argonaute in endo-RNAi

ERGO-1 is a PIWI-clade effector that binds 26G RNAs generated in the endo-RNAi path-
way	in	female	germline	and	embryo	(Gent	et	al.,	2010;	Pavelec	et	al.,	2009;	Vasale	et	al.,	
2010). ERGO-1 targets exhibit a non-random distribution in the genome and appear to 
include many gene duplications, suggesting that this pathway may control overexpression 
resulting	from	gene	expansion	(Vasale	et	al.,	2010).	In	endo-RNAi	in	the	soma,	ERGO-1	
accommodates 26G small RNAs in a process involving the ERI/Dicer complex and leading 
to production of more abundant secondary 22G small RNAs (Duchaine et al., 2006; Gent 
et	al.,	2009;	Han	et	al.,	2009).	The	biogenesis	of	primary	26G	RNAs	involves	RdRP	RRF-3	
and RDE-4 while the biogenesis of secondary 22G siRNAs involves a second RdRP (RRF-
1 or EGO-1) and loading on WAGOs. Additional proteins implicated in ERGO-1-mediated 
repression include the helicase ERI-6/7 (Armitage helicase homolog) (Fischer et al., 2011), 
MuT-2,	MuT-7,	MuT-16	(Zhang	et	al.,	2011),	and	RDE10/RDE-11	complex	(Zhang	et	al.,	
2012), and RDE-12 (Shirayama et al., 2014).

CSR-1 – secondary 22G siRNA-binding Argonautes

The	“executive	arm”	of	RNAi	in	C. elegans are secondary 22G RNAs. One of the proteins 
binding	22G	RNAs	is	CSR-1,	which	was	identified	in	in vitro experiments with C. ele-
gans lysates as a dominant slicer activity. However, CSR-1 was shown to rather associate 
with chromatin to promote proper organization or assembly of targets within the holo-
centric chromosomes (Campbell and Updike, 2015; Cecere et al., 2014; Claycomb et al., 
2009;	Seth	et	al.,	2013;	Tu	et	al.,	2015;	Wedeles	et	al.,	2013a,	b).	CSR-1	22G	RNAs	are	
produced in the germline by a complex of DRH-3 (helicase), EKL-1 (tudor protein), and 
EGO-1 (RdRP) similarly to WAGO 22G RNAs, which utilize RRF-1 RdRP (Claycomb 
et al., 2009).

WAGO proteins – secondary 22G siRNA-binding Argonautes

WAGO	proteins	are	loaded	with	22G	RNAs,	which	were	produced	by	RdRPs.	They	repre-
sent secondary effectors, which execute silencing in slicer-independent fashion in the soma 
and/or	germline	in	the	cytoplasm	and	the	nucleus.	NRDE-3	and	HRDE-1	were	identified	
as WAGO proteins mediating nuclear silencing (Allo and Kornblihtt, 2010; Buckley et al., 
2012; Burton et al., 2011; Gent et al., 2010). HRDE-1 has been implicated in initiation and 
maintenance of long-term silencing (>25 generations) induced by long dsRNA in neurons 
(Buckley et al., 2012; Burton et al., 2011). For example, WAGO-1 silences genes, transpos-
ons, pseudogenes, and cryptic loci at the chromatin level by directing H3K27me3 through 
the NRDE pathway (Mao et al., 2015) and possibly in some association with components 
of the nonsense-mediated decay (NMD) (Gu et al., 2009). A C. elegans isolate from Hawaii 
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had	a	natural	defect	in	RNAi	that	was	specific	to	the	germline	and	was	a	result	of	multiple	
mutations	the	WAGO	protein	PPW-1	(Tijsterman	et	al.,	2002b).

RdRPs

C. elegans is the main animal model for studying RdRPs. While an earlier study of RdRP 
in C. elegans suggested that dsRNA synthesis can be primed by primary siRNAs (a mod-
el	of	“degradative	PCR”)	(Sijen	et	al.,	2001),	later	studies	demonstrated	that	RdRPs	do	
not require the priming by primary siRNAs and produce short RNAs using RISC-targeted 
mRNAs as templates (Pak and Fire, 2007; Sijen et al., 2007). Surprisingly, sequencing of 
small RNAs associated with ongoing RNAi in C. elegans showed that Dicer-independent 
secondary	siRNAs	constitute	the	majority	of	cloned	siRNAs	(Pak	and	Fire,	2007).	These	
secondary siRNAs are only antisense, carry 5’ di- or triphosphates, and are not bound by 
RDE-1 but by other Argonaute proteins (Pak and Fire, 2007; Sijen et al., 2007). C. elegans 
genome four putative RdRPs, three of which were implicated in RNA silencing (Duchaine 
et al., 2006; Lee et al., 2006; Sijen et al., 2001; Smardon et al., 2000). 

Of the three RdRPs, RRF-3 was implicated in the upstream part of RNAi, i.e. production 
of primary 26G siRNAs associated with ERGO-1 or ALG-3/4 Argonaute proteins (Conine 
et al., 2010; Conine et al., 2013; Duchaine et al., 2006; Gent et al., 2010; Gent et al., 2009; 
Han	et	al.,	2009;	Pavelec	et	al.,	2009;	Vasale	et	al.,	2010)	while	EGO-1	and	RRF-1	produce	
22G RNAs (Duchaine et al., 2006; Gent et al., 2010; Gent et al., 2009; Han et al., 2009; 
Jose	et	al.,	2011;	Pavelec	et	al.,	2009;	Vasale	et	al.,	2010).

miRNA pathway-specific features in nematodes

C. elegans	was	the	first	organism,	in	which	the	first	miRNA	(lin-4)	was	identified	(Lee	
et al., 1993) and which revealed that a conserved let-7 miRNA is conserved up to humans 
(Pasquinelli	et	al.,	2000;	Reinhart	et	al.,	2000).	The	first	two	miRNAs	were	identified	as	
regulators of developmental timing Remarkably, phenotype of dcr-1 mutants is similar to 
those of lin-4 and let-7 mutants (Grishok et al., 2001; Ketting et al., 2001; Knight and Bass, 
2001) suggesting that miRNAs are the main Dicer product in C. elegans and that lin-4 and 
let-7	are	functionally	among	the	most	significant	miRNAs	of	the	434	annotated	C. elegans 
mature miRNAs. C. elegans also produces non-canonical miRNAs, such as mirtrons (Ruby 
et al., 2007). High throughput analyses provided estimates of ~ 3500–5000 of binding sites 
bound by miRNAs in C. elegans	(Zhang	et	al.,	2007;	Zisoulis	et	al.,	2010).	

C. elegans miRNAs are exposed to different regulations, some of which are also found 
in other model systems – this includes regulation of let-7 by LIN-28 and sequence uridyl-
ation (Lehrbach et al., 2009; Morita and Han, 2006; Newman et al., 2008; Ouchi et al., 
2014;	Stefani	et	al.,	2015;	Vadla	et	al.,	2012;	Van	Wynsberghe	et	al.,	2011),	regulation	of	
let-7 by RACK1 (Chu et al., 2014), and miRNA turnover by XRN-2 (Chatterjee and Gross-
hans,	2009)	and	DCS-1-XRN-1	complex	(Bossé	et	al,	2013).	miRNA-mediated	repres-
sion	is	further	regulated	at	the	cellular	level	by	autophagy	(Zhang	and	Zhang,	2013)	and	
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other regulatory factors, such as the Golgi-associated retrograde protein (GARP) complex 
(Vasquez-Rifo	et	al.,	2013).	At	the	same	time,	specific	miRNAs	influence	other	RNA	silenc-
ing pathways – they may interfere with RNAi (Massirer and Pasquinelli, 2013) or direct 
siRNA biogenesis (Correa et al., 2010).

RNAi pathway-specific features in nematodes

As it could be expected from diversity of factors mentioned above, RNAi in C. elegans is 
complex – different variants of RNAi operate in the germline and soma, RNAi recognizes 
different substrates and has a sequential production of small RNAs, which are the main 
executors of RNAi. RNAi in C. elegans	has	two	“flavors”	–	endo-RNAi	and	exo-RNAi.

Endogenous RNAi in the germline and soma

The	role	of	endogenous	RNAi	in	shaping	the	transcriptomes	of	protein-coding	genes	during	
development	has	been	challenged	by	mutant	worms	and	flies	lacking	essential	components	
of the RNAi pathway, which were viable and produced healthy offspring (Lee et al., 2004; 
Okamura	et	al.,	2004;	Tabara	et	al.,	1999).	Because	of	that,	RNAi	had	been	viewed	as	
a defense mechanism against invasive nucleic acids. However, deep sequencing analyses 
revealed that endo-siRNAs with sequence complementarity to hundreds of protein-coding 
mRNAs are present in C. elegans (Ambros et al., 2003; Ruby et al., 2006). Endo-RNAi con-
tributes	to	control	of	gene	expression.	This	was	revealed	by	microarray	analysis	of	mutant	
worms lacking various RNAi-related factors, which found non-overlapping sets of differen-
tially expressed genes, supporting the idea of multiple functionally distinct RNAi pathways 
in nematodes (Lee et al., 2006). At the same time, the multiple functionality also brings 
competition between small RNA pathways, which are manifested in different mutants – e.g. 
endo-siRNA	mutants	have	increased	expression	of	miRNA-regulated	stage-specific	devel-
opmental	genes	(Zhuang	and	Hunter,	2012).

Endo-RNAi pathway is initiated by endogenous dsRNAs, which are processed into pri-
mary	siRNAs	(26G	RNAs	associated	with	ERGO-1).	Their	biogenesis	involves	RDE-4,	
ERI-1/3/5/9, and RdRP RRF-3. Primary 26G RNAs recognize their targets, leading to pro-
duction of secondary 22G RNAs, which will be antisense to the target and represent the 
main repressive force of endo-RNAi. 22G RNA biogenesis involves EGO-1 and RRF-1 
RdRPs, RNAs are loaded mainly on CSR-1 or WAGO proteins. Secondary siRNAs are 
generated	by	RdRPs	thus	serve	as	amplifiers	of	the	endogenous	RNAi	in	both	soma	and	
germline.
A	number	of	endo-siRNA	genes	were	identified	in	a	genetic	screen	for	factors	silencing	

a	multicopy	transgene.	They	included	genes	required	for	siRNA	biogenesis	or	stability	
in	the	oocyte-specific	ERGO-1	pathway,	including	eri-12, encoding an interactor of the 
RNAi-defective protein RDE-10, and ntl-9/CNOT9,	one	of	several	identified	CCR4-NOT	
complex genes, and a conserved ARF-like small Cell ARL-8 required for primary siRNA 
biogenesis	or	stability	in	the	sperm-specific	ALG-3/4	endogenous	RNAi	pathway	(Fischer	
et al., 2013). Additional studies revealed that mutations in RNAi-related genes, result in 
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defects in meiotic chromosome disjunction, spindle formation or microtubule organization 
during sperm development and ultimately lead to male sterility or embryonic lethality of 
the offspring (Gent et al., 2009; Han et al., 2009; Han et al., 2008; Pavelec et al., 2009).

In search for the cellular and developmental processes, which might be controlled by 
endo-siRNAs in C. elegans, spermatogenesis-associated genes were found enriched in the 
group of transcripts matching endo-siRNAs (Ruby et al., 2006). Analysis of endo-siRNA 
target suggested a difference between primary and secondary endo-siRNA targets as 18- 
to 22-mer siRNAs associated with genes required for embryonic development, 23-mers 
associated uniquely with post-embryonic development, and 24–26-mers associated with 
phosphorus	metabolism	or	protein	modification	(Asikainen	et	al.,	2008).	It	was	also	shown	
that in oocytes and embryos, ERGO-1-associated 26G siRNAs and NRDE-3-associated 
22G	siRNAs	silence	recently	duplicated	genes	(Fischer	et	al.,	2011;	Vasale	et	al.,	2010).

Exogenous RNAi – systemic and environmental

Exo-RNAi is triggered by exogenous dsRNA, which can come in many forms; RNAi in 
C. elegans can be triggered by injecting dsRNA essentially anywhere in the animal, soaking 
the	animal	in	dsRNA	solution	or	even	by	feeding	it	bacteria	expressing	long	dsRNA	(Tabara	
et	al.,	1998).	This	allows	not	only	experimental	manipulations	in	the	lab	but	also	target	par-
asitic nematodes by creating nematode resistant plants (Yang et al., 2013). However, there 
is a heterogeneity in the nature in the presence of non-cell autonomous RNAi. For exam-
ple, only one of eight tested Caenorhabditis	species	showed	efficient	environmental	RNAi	
(Winston et al., 2007). Remarkably, RNAi also operates in zero gravity in space (Etheridge 
et	al.,	2011).	It	has	zero	significance	for	the	report,	but	worth	of	mentioning.
The	spreading	of	the	silencing	signal	among	cells	is	controlled	by	dsRNA-transporting	

channels encoded by sid-1 and sid-2	genes,	which	were	identified	in	forward	genetic	screen	
to be responsible for systemic RNAi in C. elegans (Winston et al., 2002). SID-1 (system-
ic RNAi deficient-1)	is	a	conserved	transmembrane	protein	that	forms	a	dsRNA	channel	
(Feinberg and Hunter, 2003; Shih et al., 2009; Shih and Hunter, 2011). Sid-1 has homologs 
in a wide range of animals, including mammals. Sid-1 mutants have intact cell autonomous 
RNAi, but cannot perform neither systemic RNAi nor environmental RNAi in response to 
feeding, soaking, or injection of dsRNA (Winston et al., 2002). SID-2 is a transmembrane 
protein localized to an apical membrane of intestinal cells. It is necessary for the initial 
import of dsRNA from gut lumen, but not for the systemic spread of silencing signals 
among cells (McEwan et al., 2012). Sid-2	homologs	have	been	identified	only	in	two	oth-
er Caenorhabditis species (Winston et al., 2007). SID-3 is a conserved tyrosine kinase 
required	for	the	efficient	import	of	dsRNA.	Without	SID-3,	cells	perform	RNA	silencing	
well	but	import	dsRNA	poorly	(Jose	et	al.,	2012).	The	next	and	distinct	systemic	RNAi	SID	
factor is SID-5 (SID-4 does not exist), an endosome-associated protein, which promotes 
transport of RNA silencing signals between cells and act differently than SID1–3 (Hinas 
et al., 2012). Remarkably, SID-1 sensitizes Drosophila and silkworm cells to RNAi induced 
by soaking by enabling concentration-dependent cellular uptake of dsRNA (Feinberg and 
Hunter, 2003; Shih et al., 2009) (Mon et al., 2012; Mon et al., 2013; Shih and Hunter, 2011; 
Xu et al., 2013a; Xu et al., 2013b).
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In cells, exo-RNAi involves the above-mentioned RDE-4/Dicer/DRH-1 complex in 
processing dsRNA into primary siRNAs, which are loaded on RDE-1 Argonaute protein. 
RDE-1 itself does not cleave cognate RNAs. Instead, it recruits RDE-ribonuclease, which 
is involved in production of templates for RdRP-mediated production of secondary siRNAs 
(Tsai	et	al.,	2015).	In	addition,	genetic,	proteomic,	and	biochemical	data	suggested	that	
downstream of RDE-1 operates RDE-10/RDE-11 complex, which is recruited for degra-
dation	of	target	mRNA	and	RRF-1-dependent	secondary	siRNA	synthesis	(Zhang	et	al.,	
2012).	The	link	between	the	RDE-10/RDE-11	complex	and	the	aforementioned	RDE-8	
nuclease is unknown at the moment. Finally, several negative regulators of exo-RNAi were 
identified	in	genetic	screens,	including	the	ERI-1	nuclease	(Kennedy	et	al.,	2004),	the	ERI-
2/RRF-3 RdRP (Simmer et al., 2002), ERI-3 (Duchaine et al., 2006), ERI-9, and the Argo-
naute ERI-8/ERGO-1 (Pavelec et al., 2009).

Antiviral RNAi

RNAi functions as an antiviral defense in C. elegans.	This	role	of	RNAi	was	experimen-
tally addressed even though endogenous viral pathogens of C. elegans	were	unknown.	The	
problem of absenting endogenous C. elegans	viruses	was	bypassed	by	using	an	”artificial”	
infection with viruses, which had a broad host range and could infect C. elegans under lab-
oratory	conditions.	Model	viral	infections	were	based	on	the	(+)ssRNA	flock	house	virus	
(FHV)	(Lu	et	al.,	2005)	or	the	(-)ssRNA	vesicular	stomatitis	virus	(VSV)	(Schott	et	al.,	
2005;	Wilkins	et	al.,	2005).	Infection	with	the	recombinant	VSV	was	augmented	in	strong	
RNAi mutant animals (rde-1 and rde-4), which produced higher viral titers. Furthermore, 
VSV	infection	was	attenuated	in	rrf-3 and eri-1 mutants that are hypersensitive to RNAi 
(Wilkins et al., 2005). Similar results were obtained from infected cultured cells (Schott 
et	al.,	2005)	and	FHV	infection	of	rde-1 mutants (Lu et al., 2005). Not surprisingly, genes 
misregulated in C. elegans	deficient	in	Dicer,	RDE-4,	or	RDE-1	are	enriched	for	innate	
immunity genes (Welker et al., 2007). Antiviral RNAi involves also other genes, such as 
rsd-2 (RNAi spreading defective 2), which was implicated in secondary viral siRNA bio-
genesis in RDE-4 independent manner (Guo et al., 2013b).
The	antiviral	role	of	exo-RNAi	was	subsequently	confirmed	in	a	natural	viral	infection	of	

C. elegans and C. briggsae by Orsay virus (Felix et al., 2011). Analysis of gene expression 
in C. elegans infected with Orsay virus revealed competition of the antiviral response with 
endogenous small RNA pathways, which was manifested as redirection of RDE-1 from 
its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 
targets and reduction of miRNA levels and an up-regulation of their target genes (Sarkies 
et al., 2013). Interestingly, genome-wide association study in C. elegans wild populations 
identified	as	a	major	determinant	of	viral	sensitivity	DRH-1,	the	aforementioned	RIG-1	
homolog (Ashe et al., 2013). Similarly, a genetic analysis revealed an essential role for 
both DRH-1 and DRH-3 in antiviral RNAi (Guo et al., 2013a). DRH-3 is another Dic-
er-RIG-I family protein that is essential for RNA silencing and germline development 
(Nakamura et al., 2007). DRH-3 binds both single-stranded and double-stranded RNAs 
with	high	affinity.	However,	 the	ATPase	activity	of	DRH-3	is	stimulated	only	by	dou-
ble-stranded RNA (Matranga and Pyle, 2010). Analysis of DRH-1 and DRH-3 in infected 
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worms suggested distinct roles where DRH-1 was involved in production of viral primary 
siRNAs, whereas DRH-3 is involved in biogenesis of 22 nt secondary siRNAs (Fitzgerald 
et	al.,	2014;	Guo	et	al.,	2013a)	(Fig.	3).	Taken	together,	RIG-I	homologs	function	in	innate	
immunity	through	evolution	of	Metazoa	where	they	adapting	to	specifi	c	molecular	mech-
anisms – primary and secondary siRNA biogenesis in RNAi in nematodes and stimulation 
of the interferon response in mammals.

Importantly, innate immunity operates beyond viruses and RNAi; Bacillus thuringien-
sis strain DB27 is virulent bacterium for C. elegans but not another nematode species. 
An analysis of virulence factors revealed that dcr-1	mutant	alleles	defi	cient	in	microRNA	
(miRNA)	processing,	but	not	those	defi	cient	only	in	RNAi,	are	resistant	to	B. thuringiensis
DB27	(Iatsenko	et	al.,	2013).	This	suggests	that	Dicer	is	a	part	of	a	system	balancing	small	
RNA	pathways	and	antiviral	immunity.	This	model	is	further	extended	with	the	miR-35–
41	family,	regulates	the	effi	ciency	of	RNAi	(Massirer	and	Pasquinelli,	2013).	The	loss	of	
miR-35–41 results in enhanced exo-RNAi sensitivity and reduced endo-RNAi effectiveness 
suggesting that these miRNAs normally help balance the RNAi pathways (Massirer and 
Pasquinelli, 2013). 

Adenosine deamination

A connection between A-to-I editing and RNAi has been revealed in C. elegans. A tran-
scriptome-wide	analysis	of	A-to-I	editing	sites	identifi	ed	as	many	as	664	editing-enriched	
regions, which represent the core of A-to-I editing substrates in C. elegans. Among the 

Figure 3 Schematic overview of reviewed small RNA pathways in C. elegans 
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known	substrates	are	mRNAs	with	hairpin	structures	in	3’	uTRs;	editing	however	does	
not necessarily prevent nuclear export and presence on polysomes (Hundley et al., 2008; 
Morse et al., 2002; Morse and Bass, 1999). Approximately 1.7% of C. elegans mRNAs 
contained such editing-enriched regions (Whipple et al., 2015). A-to-I editing also affects 
small RNAs. 

In contrast to mice, where the loss of A-to-I editing is lethal, in Drosophila and C. ele-
gans Adar null phenotype causes only weak phenotypic alterations (Palladino et al., 2000; 
Tonkin	and	Bass,	2003;	Tonkin	et	al.,	2002).	Importantly,	adr-1 or adr-2 mutant worms 
exhibit a defective chemotaxis but the phenotype is reverted when worms lacking Adar are 
crossed	with	RNAi-defective	strains	(Tonkin	and	Bass,	2003).	Analysis	of	ADAR	mutants	
showed that A-to-I editing affects microRNAs as well as 26G endo-siRNAs (Warf et al., 
2012).	That	ADAR	and	RNAi	pathways	are	competing	for	common	targets	is	supported	by	
common loci from which originate edited transcripts and in which are found RNAi-depend-
ent short RNAs upregulated in ADAR mutants (Wu et al., 2011).

Summary

The	principles	of	primary	and	secondary	small	RNA	production	adopted	during	C. elegans 
evolution provide an explanation how such a complex of small RNA pathway can rely on 
a	single	Dicer	protein.	The	key	apparently	lies	in	structural	differences	among	Dicer	sub-
strates, Dicer co-factors facilitating loading onto correct Argonaute proteins, and cognate 
RNAs (targeted by primary small RNA), which serve as templates for secondary small 
RNAs. Given the complexity of the Nematode phylum, one could ask how representative 
is C. elegans	model	of	the	phylum.	There	has	been	a	survey	for	orthologs	of	77	C. ele-
gans RNAi pathway proteins in 13 nematode species, which revealed that while proteins 
responsible for uptake and spread of exogenously applied dsRNA are absent from parasitic 
species. Furthermore, Argonaute proteins regulating gene expression but not exo-RNAi 
Argonautes are broadly conserved; secondary Argonautes (SAGO/WAGO) are poorly con-
served,	and	the	nuclear	AGO	NRDE-3	was	not	identified	in	any	parasite	(Dalzell	et	al.,	
2011).	Taken	together,	Caenorhabditis possess an expanded RNAi effector repertoire rel-
ative to the parasitic nematodes while all nematode species displayed qualitatively similar 
coverage of functional protein groups (Dalzell et al., 2011). 
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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	It	includes	post-transcriptional	
silencing mechanisms such as RNA interference (RNAi) and microRNA (miRNA) pathway and transcriptional 
silencing. RNA silencing regulates endogenous protein-coding gene expression, serves as a form of innate im-
munity	targeting	viruses,	and	protects	genome	integrity	by	repression	of	retrotransposons.	This	review	provides	
overview	of	RNA	silencing	in	flowering	plants,	from	which	comes	the	bulk	of	published	data.	Plants	have	arguably	
the most complex RNA silencing system among eukaryots because of existence of many paralogs of key protein 
factors, which form an intricate network of primary and secondary small RNAs, which mediate transcriptional 
and	post-transcriptional	effects.	The	first	half	of	the	review	will	provide	a	detailed	catalogue	of	components	of	
RNA	silencing	in	plants	while	the	second	half	will	discuss	the	specific	silencing	mechanisms	themselves	and	their	
biological	roles,	with	a	particular	focus	on	the	miRNA	pathway,	PTGS/VIG	(plant’s	equivalent	of	RNAi),	and	
transcriptional	gene	silencing	(TGS),	which	is	a	unique	RNA	silencing	adaptation	existing	in	plants.

Introduction

Plants	are	extremely	large	and	diverse	group	of	multicellular	organisms.	Among	their	defin-
ing features are cell walls are made of cellulose, the ability to perform photosynthesis in 
chloroplasts, double membrane organelles containing chlorophyll a/b, and use of starch 
to	store	photosynthetic	products.	There	are	~500	000	described	species	(Margulis	and	
Schwartz,	1998),	which	are	classified	in	10–12	phyla	by	different	taxonomical	concepts.	In	
this review, I will focus on so-called angiosperms (phylum Magnoliophyta or Anthophyta), 
which is the most populous plant phylogenetic group (Palmer et al., 2004) and from which 
are most data concerning RNA silencing in plants.
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RNA silencing is extremely convoluted in plants. It is the most complex RNA silencing 
among the reviewed taxons thanks to existence of many Dicer, Argonaute, and RNA-de-
pendent RNA polymerase (RdRP) paralogs, which fucntion in an intricate network of pri-
mary and secondary small RNAs, which mediate transcriptional and post-transcriptional 
effects.	The	nomenclature	of	small	RNAs	in	plants	is	complex	and	arbitrary;	small	RNAs	
include miRNAs and various types of siRNAs produced from ds RNA, which are distin-
guished by their origin (viral siRNA), biogenesis (phased siRNAs) or their effect (het-
erochromatinizing siRNAs). RNA silencing in plants can be divided in three to four main 
systems:	miRNA,	RNAi/	post-transcriptional	gene	silencing	(PTGS),	antiviral	defense/
virus-induced	gene	silencing	(VIGS),	and	transcriptional	gene	silencing	(TGS)	(Bologna	
and	Voinnet,	2014;	Bonnet	et	al.,	2006;	Borges	and	Martienssen,	2015;	Carbonell	and	Car-
rington,	2015;	Chen,	2009;	Galun,	2005;	Mallory	et	al.,	2008;	Van	Ex	et	al.,	2011;	Vazquez,	
2006;	Zhang	et	al.,	2015).

Here, I will focus on data from Arabidopsis thaliana	and	first	review	the	molecular	fea-
tures of key individual components of RNA silencing related to the miRNA pathway and 
dsRNA response – Dicers, Argonautes, and RdRPs. In the second half of this review, I will 
discuss the reviewed mechanisms themselves and their biological roles, with a particular 
focus	on	the	miRNA	pathway,	PTGS/VIG	–	plant’s	equivalent	of	RNAi,	and	transcriptional	
gene	silencing	(TGS),	which	is	a	unique	adaptation	found	in	plants.	unless	specifically	
stated, presented information comes from the Arabidopsis thaliana model.

Dicer proteins – DCL1–4 and additional Dicer family members

Plants have specialized and compartmentalized Dicer (Dicer-like – DCL) proteins that act 
partially redundantly and hierarchically in small RNA production in different pathways – 
miRNA, antiviral defense, endo-RNAi pathways, or chromatin remodelling (Liu et al., 
2009b;	Moissiard	and	Voinnet,	2006;	Xie	et	al.,	2005).	The	“basal”	plant	state	found	in	
Arabidopsis (or, for example, cotton (Silva et al., 2011)) is four Dicers, which presumably 
evolved through duplications of an ancestral Dicer (Margis et al., 2006). Some plants (such 
as	monocots)	have	higher	counts	of	Dicer	homologs	–	there	are	five	in	poplar	and	eight	in	
rice;	the	additional	Dicers	evolved	through	duplications	of	one	of	the	four	“basic”	plant	
Dicers (Kapoor et al., 2008; Margis et al., 2006; Mukherjee et al., 2013).

Plant Dicer proteins are large multidomain proteins, which have essentially the same 
domain organization as animal Dicers (Fig. 1), i.e. they are composed of domains ordered 
from the N- to the C-terminus as follows: N-terminal DExD and helicase superfamily 
C-terminal domains, a domain of unknown function DUF283 (not annotated in DCL-3 of 
Arabidopsis thaliana	but	annotated	in	poplar	and	rice	DCL3),	a	PAZ	domain,	RNase	IIIa	
and	RNase	IIIb	domains,	and	the	C-terminal	dsRBD.	The	four	plant	Dicers	differ	in	size	
and the number of dsRBD domains – DCL1, DCL3, and DCL4 have an additional dsRBD 
(Fig. 1). Although none of the plant Dicers has been either crystallized or analyzed by 
cryo-EM, the conserved domain organization and available biochemical data suggest that 
plant Dicers operate under the same principles as animal Dicers despite their functional 
diversification.	In	general,	DCL1	is	mainly	functioning	in	the	miRNA	pathway	while	
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DCL2, 3, 4 produce siRNAs for silencing mobile elements or in antiviral defense where 
DCL3 represents the nuclear arm of the defense, which is distinguished by production of 
longer siRNAs (24 nt). Detailed review of individual DCL proteins is provided further 
below:

DCL1 – miRNA biogenesis & PTGS

DCL1 is the oldest known and possibly best characterized member of the DCL gene family 
in Arabidopsis. DCL1 was repeatedly recovered from mutation screens in plants since early 
90’s	and	it	has	been	given	several	names	(EMBRYO	DEFECTIVE76	(EMB76),	SHORT	
INTEGuMENTS1	(SIN1),	SuSPENSOR1	(SuS1)	and	CARPEL	FACTORY	(CAF))	pri-
or recognizing that it is a factor closely related to Dicer proteins acting in RNA silencing 
in	animals	(Schauer	et	al.,	2002).	DCL1	was	fi	rst	shown	to	be	required	for	biogenesis	of	
miRNAs	but	not	siRNAs	(Park	et	al.,	2002;	Reinhart	et	al.,	2002).	The	size	of	the	cleavage	
product is 21 nt, a nucleotide shorter than average length of animal miRNAs (Fig. 2).

DCL1 contains two putative nuclear localization signals and it localizes to the nucleus 
where it produces small RNAs (Papp et al., 2003). Furthermore, it was shown that DCL1 is 
also able to produce 21 nt from a transgenic inverted repeat (Papp et al., 2003).

DCL1 operates with a dsRBD binding partners DRB1 and DRB2 (Curtin et al., 2008; 
Reis et al., 2016; Reis et al., 2015b). Interestingly, DCL1 represses antiviral RNA silencing 
through negatively regulating the expression of DCL4 and DCL3 (Qu et al., 2008). DCL1 
is an essential gene in Nicotiana attenuata (Bozorov et al., 2012) and its miRNA function 
is conserved in tomato (Kravchik et al., 2014b).

DCL2

DCL2 functions in the antiviral response (Curtin et al., 2008; Donaire et al., 2008; Fusaro 
et	al.,	2006;	Ogwok	et	al.,	2016;	urayama	et	al.,	2010;	Zhang	et	al.,	2012)	where	it	produces	

Figure 1 Comparison Dicer protein domain composition among Dicer proteins in A. thaliana, and 
C. elegans
Domain composition was adopted from (Jaskiewicz and Filipowicz, 2008).
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viral siRNAs without requiring assistance from any dsRBP. (Curtin et al., 2008). DCL2 was 
also implicated in 21/22 nt siRNA production from longer intronic hairpins (sirtrons) (Chen 
et al., 2011). DCL2 acts hierarchically with DCL4 to produce 22- and 21-nt siRNAs in 
antiviral	resistance	and	amplifi	cation	of	silencing	mediated	by	RNA-dependent	RNA	poly-
merase RDR6 (Brosnan et al., 2007; Deleris et al., 2006; Di Serio et al., 2009; Garcia-Ruiz 
et al., 2010; Ogwok et al., 2016; Parent et al., 2015). DCL2 can substitute DCL4 and pro-
duce 22nt viral siRNAs even in the absence of DCL4, (Bouche et al., 2006; Moissiard et al., 
2007; Wang et al., 2011). Under some circumstances, DCL2 can antagonize production of 
miRNAs and siRNAs by DCL1 (Bouche et al., 2006).

DCL2 is required for transitive cell-autonomous post-transcriptional silencing of trans-
genes (Mlotshwa et al., 2008) and it was implicated in the transgenerational stress memory 
(Boyko and Kovalchuk, 2010; Migicovsky and Kovalchuk, 2014; Migicovsky and Koval-
chuk,	2015;	Migicovsky	et	al.,	2014).	Two	paralogs	of	DCL2	were	found	in	Medicago 
truncatula where are DCL genes differentially expressed during symbiosis with nitrogen 
fi	xing	bacteria	and	upon	pathogen	infection	(Tworak	et	al.,	2016).	Two	paralogs	of	DCL2	
were also found in soybean where DCL2 showed the strongest transcriptional response to 
stress (Curtin et al., 2012).

DCL3

DCL3 is producing longer siRNAs (24 nt) than the other three DCL proteins in Arabidopsis
and other plants, including tomato, rice, medick, or moss (Coruh et al., 2015; Kravchik 
et	al.,	2014a;	Tworak	et	al.,	2016;	Wei	et	al.,	2014).	DCL3	preferentially	cleaves	dsRNAs	
with 5’ phosphorylated adenosine or uridine and a 1 nt 3’ overhang (Nagano et al., 2014) 
and produces 24 nt RNA duplexes with 2 nt 3’ overhangs; inorganic phosphate, NaCl and 
KCl enhance DCL3 activity (Kravchik et al., 2014a).
DCL3	long	dsRNA	substrates	are	typically	generated	from	RNA	polymerase	IVa/IV	and	

IVb/V	(Pol	IV	and	Pol	V	hereafter)	transcripts	by	RDR2	(Daxinger	et	al.,	2009;	Zhang	

Figure 2 Arabidopsis miRNA size distribution
Distribution of Arabidopsis mature miRNA lengths according to miRNA annotations in miRBase (Kozo-
mara and Griffi ths-Jones, 2014).
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et	al.,	2007).	DCL3	co-localizes	with	RDR2,	AGO4,	NRPD1b	(the	largest	Pol	V	subunit)	
and siRNAs within the nucleolus (Pontes et al., 2006). 

DCL3 was implicated in 24 nt siRNA production from longer intronic hairpins (sirtrons), 
which were associated with AGO4 and could mediate RNA-dependent DNA methylation 
(RdDM) (Chen et al., 2011), and in production of viral 24 nt siRNAs (Akbergenov et al., 
2006; Curtin et al., 2008; Diaz-Pendon et al., 2007; Donaire et al., 2008; Fusaro et al., 
2006; Raja et al., 2014). DCL3 can produce viral siRNAs without requiring assistance from 
any dsRBP (Curtin et al., 2008) but, it was also shown that it can function with DRB3 and 
AGO4 in methylation-mediated antiviral defense (Raja et al., 2014). Interestingly, the loss 
of DCL3 is partially complemented by DCL4 and DCL2, which produce 21/22 nt small 
RNAs (Kravchik et al., 2014a) indicating partial functional redundancy of DCL2/3/4 in 
recognition of dsRNA and silencing. 

DCL3 and RDR2 were also implicated in production of a pseudogene-derived 24 nt 
siRNAs in rice (Guo et al., 2009). DCL3b paralog in rice functions in processing of 24 nt 
phased small RNAs in miRNA targeted loci suggesting functional divergence of DCL3 
paralogs in rice (Song et al., 2012). DCL3 was suggested to participate also in the transgen-
erational stress memory (Boyko and Kovalchuk, 2010; Migicovsky and Kovalchuk, 2014; 
Migicovsky and Kovalchuk, 2015; Migicovsky et al., 2014).
Finally,	DCL3,	RDR2	and	Pol	IV,	also	operate	in	production	of	24	nt	small	RNAs	from	

miRNA loci, which are loaded on AGO4 and mediate RdDM (Chellappan et al., 2010; Wu 
et al., 2010). DCL3 may be absent in conifers, which radiated from other seed-bearing 
plants	approximately	260	million	years	ago;	there	were	no	significant	amounts	of	24	nt	
siRNAs in growing shoot tissue while no evidence for DCL3 was found (Dolgosheina 
et al., 2008).

DCL4

DCL4 cleaves long dsRNAs with blunt ends or with a 1 or 2 nt 3’ overhang with similar 
efficiency;	inorganic	phosphate,	NaCl	and	KCl	inhibit	DCL4	activity	(Nagano	et	al.,	2014).	
DCL4 operates with DRB4 to produce 21 nt trans-acting siRNAs (tasiRNAs, they are 21 nt 
siRNAs	produced	from	discrete	loci	(TAS	genes).and	siRNAs	from	viral	RNA.	(Curtin	
et al., 2008; Fusaro et al., 2006; Nakazawa et al., 2007; Qu et al., 2008). DCL4 alone was 
sufficient	for	antiviral	silencing	in	leaves	inoculated	with	Turnip	mosaic	virus	(Garcia-Ruiz	
et al., 2010). While DCL4 is important for biogenesis of tasiRNA and antiviral response, it 
does not participate in the miRNA pathway (Xie et al., 2005).

DCL4 acts hierarchically with DCL2 to produce 21- and 22-nt siRNAs and in antiviral 
resistance	and	amplification	of	silencing	mediated	by	RDR6	(Brosnan	et	al.,	2007;	Deleris	
et al., 2006; Di Serio et al., 2009; Garcia-Ruiz et al., 2010; Howell et al., 2007; Liu et al., 
2007;	Ogwok	et	al.,	2016;	Parent	et	al.,	2015;	Qu	et	al.,	2008).	The	dcl4–2	mutants	lack	
each of three families of 21-nt tasiRNAs, have elevated levels of tasiRNA target tran-
scripts, and display heterochronic defects similar to RDR6 mutants (Xie et al., 2005). 
Furthermore, different double mutant phenotypes also suggested hierarchical redundancy 
among DCL activities leading to alternative tasiRNA biogenesis in the absence of DCL4 
(Xie et al., 2005).
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DCL4 also operates (again, hierarchically with DCL2) in biogenesis of secondary siRNAs 
in transitive RNAi (Mlotshwa et al., 2008; Moissiard et al., 2007) and it was implicated in 
21/22 nt siRNA production from longer intronic hairpins (sirtrons) (Chen et al., 2011)
Two	paralogs	of	DCL4	exist	in	Medicago truncatula where DCL genes are differential-

ly	expressed	during	symbiosis	with	nitrogen	fixing	bacteria	and	upon	pathogen	infection	
(Tworak	et	al.,	2016).

dsRBPs –DRB1–5

While DCLs act redundantly and hierarchically, there is little if any redundancy or hierar-
chy among DRBPs in their Dicer-associated functions. Arabidopsis	genome	encodes	five	
DRBs composed of two types of dsRBDs that form a distinct clade (Clavel et al., 2016). 
Two	additional	proteins	carrying	dsRBDs	(At1g80650	and	At4g00420,	renamed	AtDRB7.1	
and AtDRB7.2, respectively) were localized in the Arabidopsis	genome.	They	differ	from	
DRB1–5 in terms of dsRBD composition (Clavel et al., 2016). DRB1 and DRB2 associate 
with DCL1, DRB4 with DCL4, while DCL2 and DCL3 produce viral siRNAs without 
requiring assistance from any dsRBP. (Curtin et al., 2008).

DRB1/HYL1

DRB1 has two dsRBDs separated by a linker of ~ 20 amino acids (Clavel et al., 2016). 
DRB1 is a nuclear dsRBP exclusively functioning together with DCL1 and a small RNA 
methyltransferase	HEN1	in	miRNA	biogenesis	(Curtin	et	al.,	2008;	Vazquez	et	al.,	2004).	
This	 role	 seems	conserved	 across	plants;	 its	 homologs	were	 found	 in	 all	 tested	plant	
genomes (Clavel et al., 2016; You et al., 2014). In association with DCL1 it directs the 
guide strand selection for AGO loading (Eamens et al., 2009) and determines the slicing 
mode of action of the miRNA-loaded AGO1 (Reis et al., 2015b). It also interacts with 
a hairpin in short interspersed element SB1 RNA and facilitates DCL1-mediated produc-
tion of small RNAs from these repetitive elements (Pouch-Pelissier et al., 2008). DRB1 is 
phosphorylated by mitogen activated protein kinase MPK3 in both rice and Arabidopsis 
(Raghuram et al., 2015).

DRB2

DRB2 proteins possess two dsRBDs separated by a linker of 19 amino acids (Clavel et al., 
2016). DRB2 is involved in miRNA biogenesis (Eamens et al., 2012a) where it, in associ-
ation with DCL1, determines the translational repression of miRNA-loaded AGO1 (Reis 
et al., 2015b). DRB2 is involved in the processing stage of the biogenesis of non-canonical 
miRNA subsets while DRB3 and DRB5 are somehow required downstream to mediate 
RNA	silencing	of	DRB2-associated	miRNA	target	genes	(Eamens	et	al.,	2012b).	The	role	
of DRB2 in the miRNA pathway is distinct from that of DRB1 as shown by proteomic 
analysis of drb1 and drb2 mutants, which suggested that DRB2-associated translational 
inhibition	appears	to	be	less	ubiquitous	and	specifically	aimed	toward	responses	against	
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environmental stimuli (Reis et al., 2015c). DRB2 acts redundantly with DRB3 and DRB5 
during development and appears unnecessary for other types of plant small RNAs, such 
as miRNA, tasiRNA, viral siRNA, or heterochromatinising siRNA production (Curtin 
et	al.,	2008).	The	loss	of	DRB2	protein	in	Arabidopsis results in increased levels of Pol 
IV	dependent	siRNAs,	which	are	involved	in	RdDM.	It	was	proposed	that	DRB2	is	part	
of epigenetic regulation suppressing transcription of transposable elements (Clavel et al., 
2015; Pelissier et al., 2011).

DRB3

DRB3 proteins possess two dsRBDs separated by a linker of 19 amino acids (Clavel et al., 
2016). DRB3 participates to the RdDM defense against Geminiviruses (Raja et al., 2014). 
At the same time, it appears unnecessary for miRNA, tasiRNA, viral siRNA, or heterochro-
matinising siRNA production but acts redundantly DRB2 and DRB5 during development 
(Curtin et al., 2008). DRB3 is participates in RNA silencing of target genes of DRB2-asso-
ciated non-canonical miRNAs (Eamens et al., 2012b).

DRB4

DRB4	protein	and	its	relatives	carry	three	dsRBDs.	They	are	found	in	all	vascular	plants	
but were absent in the tested bryophyte and lycophyte genomes (Clavel et al., 2016). DRB4 
operates with DCL4 to produce 21 nt tasiRNAs and 21nt siRNAs from viral RNA (Cur-
tin et al., 2008; Jakubiec et al., 2012; Qu et al., 2008; Shivaprasad et al., 2008). DRB4 
expression is regulated by E3 ubiquitin ligase APC/C (Anaphase Promoting Complex or 
Cyclosome). APC10 interacts with DRB4 through the second dsRBD of DRB4, which is 
also required for its homodimerization and binding to DCL4 (Marrocco et al., 2012). In 
contrast to the loss of DRB2 protein in Arabidopsis, the loss of DRB4 results in reduced 
levels	of	Pol	IV	dependent	siRNAs,	which	are	involved	in	RdDM	(Pelissier	et	al.,	2011).

DRB5

DRB5 proteins possess two dsRBDs separated by a linker of 19 amino acids (Clavel et al., 
2016). DRB5 appears unnecessary for miRNA, tasiRNA, viral siRNA, or heterochromati-
nising siRNA production but acts redundantly with DRB2 and DRB3 during development 
(Curtin et al., 2008). DRB5 is somehow required downstream to mediate RNA silenc-
ing of target genes of DRB2-associated non-canonical miRNAs (Eamens et al., 2012b). 
DRB3 was shown to associate with DCL2 and AGO4 in the RdDM arm of antiviral defense 
against Geminiviruses (Raja et al., 2014).

DRB6

DRB6 proteins carry two dsRBDs and are present in all vascular plants except for bryo-
phytes, lycophytes and Brassicaceae	species	(Clavel	et	al.,	2016).	Their	biological	signif-
icance is unknown.
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DRB7

The	DRB7	family	has	a	single	dsRBD;	there	are	two	members	AtDRB7.1	and	AtDRB7.2.	
Their	role	is	largely	unknown	but	it	was	found	that	they	interact	with	DRB4	but	not	with	
DCL4 in Arabidopsis (Clavel et al., 2016).

Argonaute proteins

Plants show quite some variability in the AGO homolog pool. For example, Arabidopsis 
thaliana has	10	AGO	genes	(Table	1),	Oryza sativa has 19, Glycine max (soybean) has 
22	(Zhang	et	al.,	2015),	Solanum lycopersicum 15 (Bai et al., 2012). A dicot plant Sativa 
miltiorhiza (red sage) has 10 AGO genes of which AGO1, 2, 3, 7, and 10 were proposed 
to function similarly to their A. thaliana counterparts (Shao and Lu, 2013). A systematic 
survey of 32 plant genomes showed that plants have 6–24 AGO homologs per genome, 
most often more than 10 (Mirzaei et al., 2014). AGO proteins are phylogenetically divided 
into	three	clades,	which	also	reflect	different	classes	of	bound	small	RNAs	–	clades	I	and	II	
bind 21–22 nt small RNAs while the clade III accommodates longer (~24 nt small RNAs) 
(Zhang	et	al.,	2015).	The	phylogenetic	analysis	shows	that	the	varying	number	of	homologs	
in each species stems from multiple duplication events, which occurred during evolution 
of different taxons such that some species contain multiple paralogs of an ancestral AGO, 
which can be present in a single copy in another plant species. 

AGO proteins loaded with different types of small RNAs play diverse roles in terms of 
molecular mode of action mechanisms and biological function. Small RNAs are sorted onto 
specific	AGO	proteins	based	on	different	factors,	which	might	include	subcellular	locali-
zation or the DCL protein that is producing a particular small RNA. One of the key factors 
contributing to sorting of small RNAs onto AGO proteins is also the 5’ terminal nucleotide. 
For example, AGO1 favors miRNAs with a 5’ terminal uridine, AGO2 and AGO4 prefer 
small RNAs with a 5’ terminal adenosine, AGO5 with a 5’ terminal cytosine (Mi et al., 
2008;	Takeda	et	al.,	2008).

AGO1

Arabidopsis AGO1 gave the name to the entire Argonaute protein family because ago1 
mutants were having a phenotype reminiscent of the tentacles of an Argonauta squid 
(Bohmert et al., 1998). Arabidopsis has a single AGO1 gene, rice has four paralogs (Wu 
et	al.,	2009).	AGO1	preferentially	binds	miRNAs	and	small	RNAs	with	a	5′	uridine	(Bohmert	
et	al.,	1998;	Jeong	et	al.,	2013;	Mi	et	al.,	2008;	Rogers	and	Chen,	2013;	Vaucheret	et	al.,	2004;	
Wu et al., 2009). Analysis of miRNAs loaded onto AGO1 paralogs in rice suggested that 
a	subset	of	miRNAs	is	specifically	incorporated	into	or	excluded	from	one	of	these	paralogs	
suggesting they have both redundant and specialized roles in rice (Wu et al., 2009). AGO1 
also associates with tasiRNAs. In contrast to miRNAs, tasiRNAs involve RdRP-mediated 
conversion	of	cleaved	TAS	RNA	into	dsRNA	followed	by	production	of	phased	tasiRNAs	
(i.e.	secondary	small	RNAs)	by	DCL-4,	which	are	loaded	onto	AGO1	(Vaucheret,	2005).
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AGO2

AGO2 is a slicing AGO (Carbonell et al., 2012) but can also directly repress translation 
(Fatyol et al., 2016). It favors small RNAs with a 5’ terminal adenosine (Mi et al., 2008; 
Takeda	et	al.,	2008),	which	include	miR393*,	regulating	antibacterial	innate	immunity	
(Zhang	et	al.,	2011).	AGO2	plays	a	role	in	the	natural	cis-antisense	(natsiRNA)	pathway	
(Oliver et al., 2014). AGO2 also mediates antiviral defense (Jaubert et al., 2011; Odokonye-
ro	et	al.,	2015)	and	was	implicated	(together	with	a	plant-specific	GW	protein	NERD)	in	
nuclear silencing of a set of non-conserved genomic loci (Pontier et al., 2012). In addition, 
AGO2 was also associated with diRNAs, small RNAs emerging during double-stranded 
break repair (Oliver et al., 2014; Wei et al., 2012). 

AGO3

Drosophila AGO3 is a close paralog apparently emerging through a genome duplication of 
the	AGO2	locus	(Vaucheret,	2008).	Interestingly,	rice	and	maize	lack	the	AGO3	ortholog	
but	have	a	pair	of	AGO2	genes	instead	(Kapoor	et	al.,	2008;	Zhai	et	al.,	2014).

AGO4

AGO4 preferentially recruits 24 nt small RNAs with a 5’ terminal adenosine (Havecker 
et al., 2010; Mi et al., 2008) and mediates RNA-directed DNA methylation (Havecker 
et	al.,	2010;	He	et	al.,	2009;	Wu	et	al.,	2010;	Xie	and	Yu,	2015;	Zilberman	et	al.,	2004).	
AGO4-loaded small RNAs are often DCL-3 produced repeat and heterochromatin-associ-
ated siRNAs from introns and intergenic regions (Chen et al., 2011; He et al., 2009; Xie 

Table 1 Overview of Argonaute proteins in Arabidopsis thaliana.

common 
name subfamily slicer

associated small RNA

type length 5’ nt 5’ end 3’ end

AGO1 plant AGO clade I + miRNA 21 U mono-P 2’-O-met

AGO2 plant AGO clade II + miRNAs, tasiRNAs, 
rasiRNAs

21 A mono-P 2’-O-met

AGO3 plant AGO clade II + siRNAs 24 A mono-P 2’-O-met

AGO4 plant AGO clade III + intergentic siRNAs, 
rasiRNAs

23–24 A mono-P 2’-O-met

AGO5 plant AGO clade I + intergenic siRNA 21, 22, 24 C mono-P 2’-O-met

AGO6 plant AGO clade III + siRNAs 24 A mono-P 2’-O-met

AGO7 plant AGO clade II + miRNA (miR390), 
ta-siRNA 

21 A mono-P 2’-O-met

AGO8 plant AGO clade III (+) - - - - -

AGO9 plant AGO clade III (+) rasiRNAs 24 A mono-P 2’-O-met

AGO10 plant AGO clade I + miRNA (mir165/166) 21 U mono-P 2’-O-met
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and	Yu,	2015;	Zheng	et	al.,	2009;	Zilberman	et	al.,	2004)	but	can	also	be	DCL-4	produced	
tasiRNAs (Wu et al., 2012). In rice, it was even found that RNA-directed DNA methylation 
can	be	guided	by	a	specific	miRNA	class	produced	by	DCL3	(Wu	et	al.,	2010).	AGO4	is	
also	coupled	to	antibacterial	(Agorio	and	Vera,	2007)	and	antiviral	innate	immunity	(Jones	
et al., 2006; Ma et al., 2015; Minoia et al., 2014; Raja et al., 2014).

AGO5

AGO5 is highly enriched in the germline (Oliver et al., 2014). It binds preferentially 21 nt 
small siRNAs (phased small RNAs, phasiRNAs) with a 5’ terminal cytosine (Komiya 
et	al.,	2014;	Mi	et	al.,	2008;	Takeda	et	al.,	2008).	It	also	binds	miRNAs	and	mediates	miR-
NA-directed target cleavage (Oliver et al., 2014). Arabidopsis AGO5 has been implicated 
in	female	gametogenesis	(Tucker	et	al.,	2012)	and	in	antiviral	defense	(Brosseau	and	Mof-
fett,	2015).	MEL1,	AGO5	homolog	in	rice,	has	specific	functions	in	the	development	of	
pre-meiotic germ cells and the progression of meiosis (Komiya et al., 2014).

AGO6

AGO6 preferentially recruits 24 nt RNAs with a 5’ terminal adenosine (Havecker et al., 
2010). AGO6 mediates RNA-directed DNA methylation (Eun et al., 2011; Havecker et al., 
2010;	McCue	et	al.,	2015;	Zheng	et	al.,	2007).	AGO6	participates	in	RNA-directed	DNA	
methylation of transcriptionally active transposable elements through incorporation of 
fragments	of	PTGS-targeted	transcripts	of	transposable	elements	onto	AGO6	(McCue	
et al., 2015). AGO6 can also accommodate DCL4-produced produced tasiRNAs (Wu 
et al., 2012).

AGO7

AGO7	was	originally	named	ZIPPY	and	was	primarily	associated	with	the	regulation	of	
developmental	timing	and	did	not	have	a	significant	role	in	transgene	silencing	(Hunter	
et al., 2003). It was subsequently found that AGO7 is preferentially loaded with miR390 
and	triggers	production	of	tasiRNAs	from	the	TAS3	locus	(Garcia	et	al.,	2006;	Montgomery	
et	al.,	2008).	TAS3-derived	tasiRNA	target	AuXIN	RESPONSE	FACTORS	and	regulate	
leaf	patterning	and	lateral	organ	separation	(Montgomery	et	al.,	2008;	Zhou	et	al.,	2013).	
This	role	of	AGO7	appears	conserved	across	plants	as	it	has	been	also	reported	from	rice	
(Nagasaki et al., 2007; Shi et al., 2007) and maize (Douglas et al., 2010).

AGO8 – seems to be a pseudogene in A. thaliana (Zhang et al., 2015)

AGO9

AGO9 is involved in RNA-directed DNA methylation and is highly enriched in the 
germline (Oliver et al., 2014) where it controls female gamete formation by repressing 
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the	specification	of	germ	cell	fate	through	epigenetic	reprogramming	in	companion	somat-
ic	cells	(Olmedo-Monfil	et	al.,	2010).	Zea mays AGO2 homolog (originally designated 
ZmAGO104)	is	also	specifically	expressed	in	the	somatic	cells	surrounding	future	gam-
etes but it had an opposing function – it suppresses the somatic cell fate in germ cells 
(Singh et al., 2011).

AGO10

AGO10 is the closest homolog of AGO1 and its main role appears to be sequestration of 
miR156/166	miRNA	family	from	AGO1	(Zhou	et	al.,	2015;	Zhu	et	al.,	2011).	The	targets	
of	miR166/165	are	class	III	HOMEODOMAIN-LEuCINE	ZIPPER	transcription	factors,	
which determine the shoot apical meristem fate. According to the model, AGO10 uses its 
higher	binding	affinity	for	miR166/165	and	functions	as	a	decoy,	preventing	loading	of	
miR166/165 onto AGO1, hence preventing their suppression and allowing for proper reg-
ulation of the shoot apical meristem (Brandt et al., 2013; Ji et al., 2011; Liu et al., 2009a; 
Roodbarkelari	et	al.,	2015;	Tucker	et	al.,	2013;	Zhou	et	al.,	2015;	Zhu	et	al.,	2011).	

Additional relevant homologs

Monocot genomes encode for AGO18 homologs, which are not found in dicots, such as 
A. thaliana	(Zhang	et	al.,	2015).	In	rice,	AGO18	is	important	for	antiviral	defense	(Wu	
et al., 2015).

RdRPs

The	first	RdRP	homolog	found	in	plants	was	RdRP	from	tomato	(Schiebel	et	al.,	1993;	
Schiebel et al., 1998). Arabidopsis genome carries six RdRP genes: RDR1-RDR6 (Yu et al., 
2003).	There	are	five	RdRPs	in	Salvia miltiorrhiza (Shao and Lu, 2014) and six in potato 
Solanum lycopersicum (Lin et al., 2016). Plant RdRPs are homologs of RdRPs acting in 
RNA silencing in other kingdoms, such as QDE-3 in Neurospora (Salgado et al., 2006; 
Wassenegger and Krczal, 2006), suggesting that they evolved from a single ancestral RdRP 
acting in RNA silencing. RdRPs produce dsRNA that can enter the RNA silencing pathway. 
Hence,	they	either	initiate	RNA	silencing	or	function	as	an	amplifier	of	an	already	present	
dsRNA response.

RDR1

RDR1 (also known as SDE1/SGS2) in Arabidopsis and its homologs in other plant spe-
cies contribute to RNA silencing-based resistance to virus infection (Blevins et al., 2011; 
Cao et al., 2014; Diaz-Pendon et al., 2007; Garcia-Ruiz et al., 2010; Leibman et al., 2011; 
Muangsan	et	al.,	2004;	Vaistij	et	al.,	2002;	Yang	et	al.,	2004;	Yu	et	al.,	2003).	It	was	also	
implicated in biogenesis of tasiRNAs during juvenile development (Peragine et al., 2004).
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RDR2

RDR2	has	been	linked	with	transcriptional	silencing	in	the	nucleus	and	RdDM	of	specific	
loci (Chan et al., 2004; Xie et al., 2004). It participates in biogenesis of endogenous siRNAs 
(natsiRNAs) (Borges and Martienssen, 2015; Brosnan et al., 2007). RDR2 is not required 
for	production	of	viral	siRNAs	from	the	Cauliflower	mosaic	pararetrovirus	(Blevins	et	al.,	
2011),	Cabbage	leaf	curl	geminivirus	(Aregger	et	al.,	2012).	RDR3	converts	PolIV	tran-
scripts into dsRNA, which is processed by DCL3 into 24 nt siRNAs loaded onto AGO4 
(Pontes	et	al.,	2006;	Zhang	et	al.,	2007).	RDR2	and	DCL3	were	implicated	in	production	
of pseudogene-derived 24 nt siRNAs in rice (Guo et al., 2009).

RDR3 – no functional information available

RDR4

RDR4 has been linked to biogenesis of endogenous siRNAs (natsiRNAs) (Borges and 
Martienssen, 2015).

RDR5 – no functional information obtained

RDR6

RDR6 is necessary for sense-transgene mediated silencing and is important in antiviral 
defense against certain viruses (Beclin et al., 2002; Dalmay et al., 2000; Mourrain et al., 
2000). RDR6-dependent antiviral response includes the cucumber mosaic virus in Arabi-
dopsis (Wang et al., 2010) or tobacco mosaic virus in Nicotiana benthamina (Qu et al., 
2005)	but	not	the	cauliflower	mosaic	virus	in	Arabidopsis (Blevins et al., 2011). RDR6 was 
also implicated in the biogenesis of tasiRNAs and development (Li et al., 2005a; Peragine 
et	al.,	2004;	Vaucheret,	2005).	RDR6-generated	dsRNA	is	being	processed	by	DCL4	(How-
ell et al., 2007; Qu et al., 2008).

miRNA module

miRNA biogenesis

Biogenesis initiates with recognition and cleavage of a primary miRNA (pri-miRNA), 
which	is	transcribed	by	polymerase	II	(Xie	et	al.,	2010;	Zhao	et	al.,	2013).	A	plant	pri-miR-
NA is a single-stranded RNA carrying a local hairpin structure. Many miRNAs in plants 
apparently originate from longer inverted repeats carrying sequences of their targets, which 
were	generated	by	sequence	duplications	(Allen	et	al.,	2004).	These	long	inverted	repeats	
subsequently eroded during evolution and only a short stem in the pri-miRNA persists as 
a	functional	remnant	of	the	original	long	hairpin.	The	inverted	repeat	duplication	hypothesis	
provides an explanation for the evolution of perfectly pairing miRNAs in plants.
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Plant miRNAs differ from animal miRNAs in sev-
eral aspects. one of them is that they do not use a two-
step nuclear-cytoplasmic process employing the nuclear 
Microprocessor complex with Drosha and cytoplasmic 
Dicer. Instead, plant miRNAs are produced in the nucle-
us in a two-step process involving a single Dicer pro-
tein – DCL1 (Fig. 3).

DCL1 requires additional cofactors, including DRB1/
HYL1	(a	nuclear	dsRNA	binding	protein	(Vazquez	et	al.,	
2004)), HEN1 (HUA ENHANCER1, a small RNA meth-
yltransferase	(Yu	et	al.,	2005)),	SE	(SERRATE,	C2H2-
type	zinc	fi	nger,	(Lobbes	et	al.,	2006;	Yang	et	al.,	2006)).	
DCL1 resides in a complex, in which physically interacts 
with DRB1 and HEN1 (Baranauske et al., 2015). DCL1, 
DRB1 and SE co-localize in the nucleus in so-called 
dicing bodies (D-bodies) (Fang and Spector, 2007). 
D-body function and assembly is not fully understood 
and there is a number of additional components which 
need to be functionally analyzed to unravel the complex 
connections between the D-body, signalling cascades, 
and responses to the environment (Reis et al., 2015a).
In	the	fi	rst	step	of	miRNA	biogenesis,	DLC1	excis-

es the miRNA/miRNA* duplex processing pri-miRNA 
from the base of the hairpin toward the loop (base-to-
loop) (Park et al., 2002; Reinhart et al., 2002). Loop-
to-base	 processing	 occurs	 in	 specifi	c	 cases,	 such	 as	
miR159 and miR319 (Bologna et al., 2009). A unique 
case of bidirectional processing was observed for 
miR166,	where	it	seems	to	play	a	regulatory	role	(Zhu	
et al., 2013). Plants also have non-canonical miRNAs, 
such	as	mirtrons,	which	skip	the	fi	rst	cleavage	step	by	
DCL1 (Meng and Shao, 2012).
The	 stem	 loop	 structure	 of	 pri-miRNA	 is	 recognized	 and	processed	by	 the	DCL1-

DRB1-SE	complex	(Finnegan	et	al.,	2003;	Lobbes	et	al.,	2006;	Vazquez	et	al.,	2004;	Yang	
et al., 2006). Other DRB2 proteins (DRB2, 3, 5) also participate in biogenesis of miRNAs 
(Eamens et al., 2012a; Eamens et al., 2012b). Some pri-miRNA stems produce a single 
miRNA, some are longer and two or three additional ones on phase, i.e. require additional 
DCL1	cuts	(Bologna	et	al.,	2009;	Zhang	et	al.,	2010).	Long	hairpins	can	be	processed	by	
a	diversity	of	Dicers	to	generate	either	miRNAs	or	siRNAs	(Fig.	4).	The	subcellular	loca-
tion for dicing by DCL2 and DCL4, and subsequent AGO loading of the resulting siRNAs, 
is not completely understood (Axtell et al., 2011).
The	3’	 termini	 of	 the	miRNA/miRNA*	duplex	 are	modifi	ed	by	HEN1	which	 adds	

a	2′-O-methyl	group	to	the	miRNA	(Yu	et	al.,	2005).	This	modifi	cation	distinguishes	plant	
miRNAs from animal miRNAs, which are not methylated (perhaps except of some minor 

Figure 3 Plant miRNA pathway
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population	of	miRNAs	in	arthropods	(Horwich	et	al.,	2007)).	HEN1	was	first	identified	
genetically as a miRNA biogenesis co-factor, which was shown to localize into the nucleus 
(Park	et	al.,	2002;	Vaucheret	et	al.,	2004;	Vazquez	et	al.,	2004).	The	HEN1	ortholog	in	rice	
was	identified	as	WAF	(WAVY	LEAF),	a	crucial	developmental	factor	(Abe	et	al.,	2010).	
Structural analysis of HEN1 and its homologs showed that the catalytic domain of HEN1 is 
not closely related to any known RNA:2’-OH methyltransferases, but rather to small-mol-
ecule	methyltransferases	(Tkaczuk	et	al.,	2006).	One	of	the	functions	of	the	methylation	is	
that it protects miRNAs from uridylation by an AGO1-associated uridylase that uridylates 
5’ RNA fragments generated by AGO1 cleavage (Li et al., 2005b; Ren et al., 2014).
miRNAs	are	exported	from	the	nucleus	with	the	assistance	of	hasty	(HST),	a	plant	

homolog	of	Exportin	5	(Park	et	al.,	2005).	The	subcellular	location	for	dicing	by	DCL2	
and DCL4, and subsequent AGO loading of the resulting siRNAs, is not yet clear. Loading 
of AGO1 with DCL1 products is assumed to take place in the cytoplasm (Axtell et al., 
2011;	Park	et	al.,	2005).	This	loading	onto	AGO	proteins	involves	sorting	miRNAs	accord-
ing to the 5’ terminal nucleotide and other factors (Mi et al., 2008; Montgomery et al., 
2008;	Zhu	et	al.,	2011).	Analysis	of	strand	selection	suggest	that	the	strand	with	a	lower	
5′-end	thermostability	is	preferentially	loaded	into	AGO1	(Eamens	et	al.,	2009),	which	
shows	that	plants	employ	the	same	loading	asymmetry	rule	as	animals.	The	selective	
loading of miRNA guide strand is directed by DRB1 (Eamens et al., 2009). DRB1 needs to 
be	dephosphorylated	for	optimal	activity;	dephosphorylation	is	ensured	by	CPL1	(C-TER-
MINAL	DOMAIN	PHOSPHATASE-LIKE	1/FIERY2	(FRY2))	(Manavella	et	al.,	2012).	
AGO1	miRISC	loading	also	involves	cyclophilin40	and	HSP90;	ATP	hydrolysis	by	HSP	
helps to release the AGO1-miRNA complex (Earley and Poethig, 2011; Iki et al., 2012; 
Smith et al., 2009).

Plant miRNAs are mainly loaded onto AGO1, which has an endonuclease activity and 
is able to suppress gene expression through both target cleavage and translational inhibi-
tion (Baumberger and Baulcombe, 2005; Mourrain et al., 2000; Wu et al., 2009). AGO1 
shows a preferential loading for miRNAs carrying uridine at their 5’ end. A change in the 
5’ terminal nucleotide of an miRNA predictably redirects it into a different AGO complex 
and alters its biological activity (Mi et al., 2008). Remarkably, the DCL1 partnering with 
DRB1 or DRB2 will determine the mode of action of a loaded miRNA: DRB1 is associ-
ated with dicer cleavage while DRB2 with translational repression (Reis et al., 2015b). 
Interestingly, a subset of miRNAs is only 20 nt long – their length appears to be deter-
mined	by	asymmetric	bulges	and	mismatches	at	specific	positions	of	the	precursor	(Lee	
et al., 2015).

Modes of miRNA action in plant cells

Similarly to animals, miRNAs loaded on AGO proteins serve as a guide for sequence-spe-
cific	repression.	Similarly	to	mammalian	miRNAs,	plant	miRNAs	can	also	mediate	transla-
tional	repression	and	sequence-specific	cleavage	of	cognate	mRNAs	(e.g.	(Beauclair	et	al.,	
2010; Brodersen et al., 2008; Li et al., 2014; Mallory and Bouche, 2008; Rhoades et al., 
2002). At the same time, activities of plant mRNAs differ from their animal counterparts 
in several aspects. First, unlike animal miRNAs, many plant miRNAs frequently exhibit 
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perfect or nearly perfect complementarity to their substrates resulting in RNAi-like cleav-
age of their targets (e.g. (Allen et al., 2004; Bowman, 2004; German et al., 2008; Kidner 
and Martienssen, 2004; Liu et al., 2014; Llave et al., 2002; Mallory et al., 2004; McHale 
and	Koning,	2004;	Rhoades	et	al.,	2002;	Xie	et	al.,	2003).	The	high	complementarity	inter-
actions	are	also	easier	to	predict	and	this	predictive	value	is	being	used	for	identifi	cation	
of putative plant miRNA targets. (Bonnet et al., 2010; Kumar et al., 2014; Rhoades et al., 
2002; Shao et al., 2013). While animal miRNA binding sites are typically localized to 
3’uTRs,	plant	miRNA	recognition	sites	can	be	found	in	5’uTRs,	ORFs,	or	3’	uTRS	as	well	
as	in	non-coding	RNAs	(e.g.	TAS3	RNA	(Montgomery	et	al.,	2008)).	At	the	same	time,	
functional features of miRNA binding are still incompletely understood as showed analysis 
of miR159 sites in MYB33/MYB65 (Li et al., 2014). Importantly, as mentioned above, the 
mode	of	miRNA	action	can	be	also	infl	uenced	by	a	DRB	partner	during	its	biogenesis,	i.e.	
independently of the target binding site (Reis et al., 2015b). Finally, plant miRNAs can also 
mediate	transcriptional	repression	through	RNA-dependent	DNA	methylation.	This	section	
will review all three types of miRNA-mediated repression.

miRNA-mediated target cleavage

miRNA-mediated target cleavage by AGO1 is a functionally important silencing mode as 
evidenced by the requirement of catalytically active AGO1 in ago1 mutant complemen-
tation experiments (Carbonell et al., 2012). AGO1, guided by a miRNA, cleaves in the 
middle of the base paired sequence (German et al., 2008; Llave et al., 2002). Similarly to 
other eukaryotes, exposing a free 5’ fragment with a 3’ hydroxyl and a 3’ fragment with 

Figure 4 Overview of miRNA biogenesis and AGO loading
The scheme summarizes the main and alternative miRNA biogenesis routes in plants; the alternative 
DCL2/3/4 processing routes are derived from (Axtell et al., 2011).
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a 5’ phosphate from a cleaved mRNA leads to decay, which involves a 5’-3’ exonuclease 
(AtXrN4 in Arabidopsis),	which	attacks	the	3’	cleaved	fragments	(Souret	et	al.,	2004).	The	
5’ fragments are uridylated at 3’ ends by HESO1 terminal uridylase; uridylation seem to be 
coupled	with	their	final	demise	(Ren	et	al.,	2014).

miRNA-mediated translational inhibition

Some plant miRNA:mRNA target base pairing could have central mismatches, preventing 
AGO-mediated cleavage. Other observations also suggest that plant miRNA-target inter-
action does not always result in AGO-catalyzed slicing but leads to translational repres-
sion	(Axtell	et	al.,	2006;	Brodersen	et	al.,	2008;	Franco-Zorrilla	et	al.,	2007;	Li	et	al.,	
2013;	Schwab	et	al.,	2005).	The	molecular	mechanism	of	miRNA-mediated	translational	
repression in plants is less well understood than in animals. In any case, some similarities 
emerged. For example, AGO1 localizes to P-bodies, dynamic cytoplasmic foci contain-
ing many proteins involved in translational repression and mRNA degradation (Brodersen 
et al., 2008; Yang et al., 2012). 

Another interesting factor, resembling GW182 bridging of target recognition and 
recruitment	of	mRNA	degrading	mechanisms,	 is	SuO,	which	was	 identified	 through	
a mutation screen for factors contributing to miRNA-mediated repression (Yang et al., 
2012). SUO encodes a large protein with N-terminal bromo-adjacent homology and tran-
scription elongation factor S-II domains and, importantly, two C-terminal GW repeats 
(Yang	et	al.,	2012).	The	SuO	loss-of-function	phenotype	is	a	consequence	of	a	defect	in	
miRNA-mediated translational repression and it is reminiscent of plant phenotypes with 
reduced AGO1 activity (Yang et al., 2012). SUO is present in the nucleus, and co-localizes 
with DCP1 in the cytoplasm (Yang et al., 2012). An independent study of miRNA-me-
diated repression showed a functionally important link to decapping through the decap-
ping	component	VARICOSE	(VCS)	(Ge-1	homolog),	further	suggesting	that	mechanisms	
underlying miRNA-mediated translational repression in animals and plants are related 
(Brodersen et al., 2008). 

Another line of evidence linking AGO1 and GW-mediated recruitment of downstream 
repressing factors came from the analysis of viral inhibitors encoded by plant viruses – 
the P1 protein from the Sweet potato mild mottle virus targets AGO1 and inhibits RISC 
activity through the N-terminal half containing region three WG/GW motifs (Giner et al., 
2010).

miRNA-mediated transcriptional silencing/DNA methylation

In addition to the two usual post-transcriptional modes of action, plant miRNAs can be 
also plugged into the RNA-dependent DNA methylation mechanism. In this case, miRNA 
precursors would be processed by DCL3 into longer (24 nt) species and would be loaded 
onto	AGO4/6/9	system	(Axtell	et	al.,	2011).	A	specific	example	of	such	miRNA	has	been	
discovered in rice where a class of miRNAs (denoted long miRNA, lmiRNAs) is processed 
by DCL3, loaded onto AGO4, and directs DNA methylation (Wu et al., 2010) (the molec-
ular mechanism of RNA-dependent DNA methylation is described later).
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Physiological roles of plant miRNAs

Plant	miRNAs	have	much	more	“focused”	roles	than	animal	miRNAs,	in	particular	mam-
malian	ones.	This	likely	reflects	their	evolutionary	origin,	which	is	connected	with	their	tar-
get genes, and the common slicing mode of action (discussed for example in (Svoboda and 
Cara,	2006)).	Briefly,	many	plant	miRNAs	seem	to	originate	from	inverted	repeats,	which	
formed from sequences of their target genes, e.g. through duplication or recombination 
involving genes and pseudogenes. An interesting aspect of plant miRNA-mediated regula-
tions is the targeting of various transcription factor families, which is translated phenotypic 
alterations. For example, during miRNA target prediction, of the 49 predicted targets, 34 
were members of these transcription factor gene families involved in developmental pat-
terning	or	cell	differentiation	(Rhoades	et	al.,	2002).	Validated	miRNA-targeted	transcrip-
tion	factor	include	the	Class	III	HD-Zip	gene	family	(Bowman,	2004),	GRF	transcription	
factors (Debernardi et al., 2014), Scarecrow-like (SCL) family of putative transcription 
factors (Llave et al., 2002) or MYB33/MYB65 (Li et al., 2014).

Mutants of miRNA factors yielded a whole array of phenotypes suggesting a number of 
different roles of miRNAs in cell proliferation (Debernardi et al., 2014; Debernardi et al., 
2012; Rodriguez et al., 2010), plant development (Abe et al., 2010; Datta and Paul, 2015; 
Jover-Gil et al., 2012; Schauer et al., 2002), or in response to various physiological con-
ditions,	including	environmental	stress	(Huang	et	al.,	2009;	Sunkar	and	Zhu,	2004).	One	
of the notable features of plant miRNAs, which is analogous but distinct from circulating 
miRNAs in mammals, is that some plant miRNAs can cross cellular boundaries through 
plasmodesmata to adjacent cells (Marin-Gonzalez and Suarez-Lopez, 2012).

Interestingly, miRNA pathways in Arabidopsis are regulated by a negative feedback loop 
targeting DCL1 by miR162-guided mRNA cleavage (Xie et al., 2003). An analogous neg-
ative feedback loop was observed in Arabidopsis for AGO1, which is targeted by miR168 
during	development	(Vaucheret	et	al.,	2004).

dsRNA-induced post-transcriptional silencing in PTGS & VIG pathways

The	complexity	of	RNA	silencing	in	plants	comes	from	multiple	layers,	which	are	inte-
grated	to	provide	specific	functions	of	specific	small	RNA	pathway.	These	layers	are	
(I) structural – e.g. processing of different types of substrates, sorting of small RNAs onto 
AGO proteins, and molecular effects – endonucleolytic cleavage, translational repression 
etc. (II) functional/conceptual – e.g. distinguishing between defensive mechanisms and 
physiological gene regulations, (III) spatiotemporal at multiple levels – including cellular 
compartmentalization, distinct genomic loci, parts of a plant or its life-cycle, differentiat-
ing	between	somatic	and	germ	cells,	leafs,	flowering	etc.	This	explains	that	despite	four	
Dicer proteins, which produce two main classes of small RNAs (21/22 and 24 nt), there 
is over ten different names for AGO-bound small RNAs (Axtell, 2013; Borges and Mar-
tienssen, 2015), some of which were already mentioned: miRNA, lmiRNA, hp-siRNA, 
natsiRNA, cis-natsiRNA, trans-natsiRNA, tasiRNA, phasiRNA, easiRNA, hetsiRNA, 
diRNAs … (Fig. 4).
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However, while there is aseemingly unpenetrable thicket of substrates, DCLs, AGOs, 
RDRs, small RNAs, and biological effects, RNA silencing in plants is built from three main 
mechanistic	modules.	The	three	modules	are	(I)	the miRNA module reviewed above, (II) the 
“RNAi” module, into which can be included dsRNA-induced post-transcriptional silencing 
in	PTGS	&	VIG	pathways,	and	the	(III)	the transcriptional silencing RdDM module, 
which encompasses 24 nt small RNA-driven de novo DNA methylation and associated chro-
matin	changes	and	which	will	be	discussed	in	the	next	section.	This	module	will	thus	focus	
on long dsRNA processing into small RNAs, which is the key step in the dsRNA response.

Many different substrates give a rise to primary and secondary small RNAs that are 21/22 
or 24 nt long. Deep sequencing showed that plants have relative to other eukaryotes extraor-
dinarily large and complex populations of small RNAs (Henderson et al., 2006; Howell 
et al., 2007; Kasschau et al., 2007; Lu et al., 2005; Rajagopalan et al., 2006). More than the 
half	of	the	small	RNAs	are	24	nt	long	“heterochromatic”	siRNAs,	which	map	to	intergenic	
regions, particularly to the proximal and distal pericentromeric regions (Rajagopalan et al., 
2006). Notably, plant small RNAs are typically methylated at the 2’-hydroxyl group of the 
3’ terminal nucleotide by the methylase HEN1 (Li et al., 2005b; Yu et al., 2005).

Structurally, the three main types of primary substrates for DCL proteins are short, 
miRNA-like hairpins, long dsRNA hairpins, and long dsRNA (e.g. formed during viral 

Figure 5 Complexity of small RNAs in plants. The scheme was adapted from (Borges and Martienssen, 
2015)
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replication). In addition, activity of RDRs generates long dsRNA to produce either primary 
siRNAs (i.e. long dsRNA origin is more or less independent of AGO proteins activity) or 
secondary siRNAs, where an RDR converts an AGO-targeted transcript into dsRNA. In 
terms of silencing effects, AGO-loaded small RNAs can induce mRNA cleavage, transla-
tional repression, and de novo DNA methylation (RdDM). Biogenesis of small RNAs and 
the	first	two	modes	of	action	were	described	above,	RdDM	will	be	described	in	the	next	
section.	Thus,	the	rest	of	this	section	will	provide	an	overview	of	the	main	routes	of	dsRNA	
synthesis and degradation involved in silencing (Fig. 4).
The	main	Dicer	proteins	producing	small	RNAs	in	the	RNAi-like	module	are	DCL2/3/4.	

All of them participate in antiviral response and in processing various other substrates, 
which were described above. Importantly, there is a hierarchical and functional separation 
of the three DCL proteins, such that small RNAs produced by DCL3 can be channelled into 
the RdDM module. DCL4 and DCL2 act hierarchically on viral and endogenous substrates. 
DCL4 seems to act earlier while DCL2 later. Both act in a loop involving DRD6, which 
amplifies	the	effect	(Brosnan	et	al.,	2007;	Chen	et	al.,	2011;	Deleris	et	al.,	2006;	Di	Serio	
et al., 2009; Garcia-Ruiz et al., 2010; Howell et al., 2007; Liu et al., 2007; Mlotshwa et al., 
2008; Moissiard et al., 2007; Ogwok et al., 2016; Parent et al., 2015; Qu et al., 2008; Xie 
et al., 2005).

Small RNAs produced by DCL2/3/4 are sorted onto different AGO proteins, which exe-
cute	the	silencing	and,	eventually,	mark	cognate	RNAs	for	RDR6	for	amplification.	Some	
of the sorting rules were described above. AGO4/6 accommodate longer 24 nt small RNAs 
produced by DCL3 and can induce RdDM. Smaller RNAs are loaded onto other AGO 
proteins depending on the sorting rules and AGO availability – please, refer to the AGO 
section for more details.

Systemic silencing

RNAi in higher plants can be non-autonomous (Dunoyer et al., 2005; Himber et al., 2003). 
It was found that exogenous and endogenous DCL4-dependent 21 nt siRNAs can act as 
mobile silencing signals between plant cells in a process which likely involves siRNA 
duplexes rather than loaded AGO1 proteins (Dunoyer et al., 2010). Follow up studies con-
firmed	the	core	conclusions:	graft	transmission	of	endogenous	siRNAs	inducing	silencing	
(Ali	et	al.,	2013;	Liang	et	al.,	2012).	The	molecular	mechanism	of	systemic	RNAi	through	
the vasculature is not completely understood. It seems that small RNAs are transported 
from cell to cell via plasmodesmata rather than diffusing from their source in the phloem 
(Liang et al., 2012).

Transcriptional Gene Silencing

RdDM	was	actually	the	first	discovered	small	RNA-controlled	epigenetic	mechanism.	It	
was originally found in tobacco plants where viroid cDNA, integrated into the genome, 
became	specifically	methylated	in	the	presence	of	autonomous	viroid	RNA-RNA	replica-
tion (Wassenegger et al., 1994). It was subsequently shown that as little as 30bp of targeted 
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DNA	is	suffi	cient	for	RdDM	and	that	dsRNA	complementary	to	promoter	region	can	induce	
promoter methylation and transcriptional silencing (Jones et al., 2001; Mette et al., 2000; 
Pelissier	et	al.,	1999;	Pelissier	and	Wassenegger,	2000;	Thomas	et	al.,	2001).

RdDM not only affects cytosine residues within canonical, symmetrical CpG dinucle-
otides, but also CpNpG and other non-CpG asymmetric targets (Aufsatz et al., 2002a; 
Pelissier et al., 1999). Since 21–24 nt small RNAs were produced from the original trigger 
(Mette et al., 2000), RdDM was recognized as one of RNA silencing pathways in plants.
The	canonical	RdDM	pathway	(Fig.	7)	is	initiated	by	plant-specifi	c	RNA	polymerase	

Pol	IV	that	produces	single-stranded	RNA	transcripts	from	genomic	loci	to	be	silenced	
(Herr et al., 2005; Onodera et al., 2005). RNA transcripts are transported into the nucleolus 
where they are converted into dsRNA by RNA-dependent RNA polymerase RDR2 and pro-
cessed by DCL3 into siRNAs, which are then methylated by the methylase HEN1. AGO4, 
DCL3, RDR2 and 24-nt siRNAs complementary to the heterochromatin regions co-localize 
in nucleolar processing centers (Li et al., 2006; Pontes et al., 2006). Importantly, AGO4 is 

Figure 6 “RNAi module” of RNA silencing in Arabidopsis.
The key step in the RNAi module is conversion of dsRNA into small RNAs by one of the DCL proteins, 
among which dominate DCL2/3/4. However, DCL1 is also able to produce 21 nt siRNAs from a trans-
genic inverted repeat (Papp et al., 2003). Various dsRNA substrates can enter the RNAi module. Some 
of them are produced by RDR6 either as the initial trigger or as an amplifi cation step where AGO-tar-
geted RNAs are converted to dsRNA, which is processed into secondary siRNAs. If the targeting by 
AGO is precisely defi ned (e.g. by miRNA), the secondary siRNAs would be phased. DCL3-generated 
24 nt siRNAs can induce RdDM.
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not the only AGO mediating RdDM, RdDM can be induced by AGO4, 6, and 9, which are 
functionally diverged, largely due to their differential expression (Havecker et al., 2010)
Processing	centers	are	located	at	a	distance	from	source/target	loci	and	siRNAs	traffick-

ing between processing bodies and target regions has to take place. However, mechanisms 
regulating this process remains unknown at present. Nucleolus-associated so-called Cajal 
bodies are also centers for AGO1- and DCL1-dependent miRNA processing and are the 
sites of nonsense-mediated decay indicating closer relationship between RNAi-dependent 
and other RNA regulating pathways.
Methylated	siRNAs	associate	with	AGO4,	which	interacts	with	Pol	V	subunit	NRPD1b	

and the complex moves into the nucleoplasm where it associates with NRPD2a and forms 
functional	Pol	V	complex.	In	co-operation	with	de novo DNA methyltransferase DRM2, 
and	SNF2-like	chromatin	remodelling	protein	DEFECTIVE	IN	RNA-DIRECTED	DNA	
METHYLATION	1	(DRD1),	the	Pol	V	complex	facilitates	de novo DNA methylation of 
cytosines in all sequence contexts at the targeted locus (Kanno et al., 2005a; Kanno et al., 
2005b; Kanno et al., 2004; Li et al., 2006; Pontes et al., 2006).

CpG methylation in the targeted locus is subsequently maintained during the replication 
by	complexes	containing	DECREASE	IN	DNA	METHYLATION	1	(DDM1)	(Vongs	et	al.,	
1993),	a	maintenance	DNA	methyltransferase	MET1	and	histone	deacetylase	HDA6	(Auf-
satz et al., 2004; Aufsatz et al., 2002b; Jones et al., 2001). Methylation at non-CpG nucle-
otides	depends	on	DNA	methyltransferase	CHROMOMEHTYLASE3	(CMT3),	de novo 
cytosine	methyltransferases	DRM1	and	DRM2	(DOMAINS	REARRANGED	METHYL-
TRANSFERASE),	Arabidopsis thaliana	homologs	of	mammalian	DNMT3,	and	a	lysine	9	
on	histone	3	(H3K9)	methyltransferase	SuVH4/KRYPTONITE	(Bartee	et	al.,	2001;	Cao	
and Jacobsen, 2002; Chan et al., 2004; Jackson et al., 2002; Lindroth et al., 2001). Notably, 
SuVH4	is	dispensable	for	de novo DNA methylation and silencing (Jackson et al., 2002; 
Malagnac et al., 2002) suggesting that H3K9 methylation in plants does not precede DNA 
methylation. It has been speculated that the difference in mechanistic relationships between 
H3K9 methylation and DNA methylation in plants and other model organisms may perhaps 
reflect	dependence	and	independence	of	RNA	silencing	and	histone	modifications	in	these	
models (Matzke and Birchler, 2005).

RdDM is induced by different types of sequences and has a number of targets. RdDM 
was studied using two types of dsRNA as inducers of methylation (a) transgenic hairpin 
constructs (Aufsatz et al., 2002a; Pelissier et al., 1999), and (b) dsRNA viruses (Hall et al., 
2002;	Vaistij	et	al.,	2002).	Notably,	these	two	triggers	elicit	somewhat	different	responses.	
In contrast to the RdDM silencing induced by hairpin constructs, silencing induced by 
homologous viral transgenes can spread from the region of homology both upstream and 
downstream	(Vaistij	et	al.,	2002).	This	process	depends	on	RNA-dependent	RNA	poly-
merase	RDR6,	a	maintenance	methyltransferase	MET1,	and	AGO1	(Jones	et	al.,	2001;	
Morel	et	al.,	2002).	Although	histone	modifications	were	not	examined	in	the	original	
paper	of	Vaistij	et	al.,	spreading	of	silencing	resembles	RNAi-dependent	heterochromatin	
formation in Schizosaccharomyces pombe	(Vaistij	et	al.,	2002).	In	addition	to	these	exoge-
nous triggers, analysis of endogenous small RNAs and DNA methylation studies revealed 
that major targets of RdDM are transposons and repeats in constitutive and facultative 
heterochromatin but not all transposons are repressed by RdDM; only a limited number 
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of targets of RdDM are endogenous genes (Borges and Martienssen, 2015). As RdDM can 
be reversed by demethylation (Penterman et al., 2007), a picture emerges in which RdDM 
is not only a repressive mechanism controlling repetitive and viral sequences but also 
a part of regulatory networks controlling gene expression, which includes other chromatin 
modifications.
In	addition,	there	is	a	second	RdDM	pathway	in	flowering	plants,	designated	non-ca-

nonical RdDM (Matzke et al., 2015), which is initiated by pol II transcripts, which are 
channeled	through	DCL3	and	AGO4/6	in	the	“RNAi	module”	into	RdDM	(Fig.	8).	

Figure 7 Schematic model of canonical RdDM in A. thaliana
Core components of RNA silencing are colored. Target locus is transcribed by RNA polymerase Pol IV 
into RNA, which is relocated into a nucleolar processing center where it is converted into dsRNA by 
RNA-dependent RNA polymerase RDR2 and further processed. Priming of RDR2 may involve cleav-
age of pol IV transcripts by an AGO protein (AGO4?). dsRNA is cleaved by DCL3 into siRNAs, which 
are methylated by the methylase HEN1. siRNAs are then loaded onto AGO4, which interacts with Pol 
V subunit NRPD1b. The complex moves into the nucleoplasm and forms functional Pol V complex, 
which, in co-operation with de novo DNA methyltransferase DRM2, and SNF2-like chromatin remod-
elling protein DRD1, facilitates in a sequence-specific manner de novo DNA methylation of cytosines 
(black circles on a stalk) in all sequence contexts at homologous loci. Recognition of a target locus 
probably occurs via binding to an RNA from the silenced locus. CpG methylation is maintained during 
the replication by complexes containing DDM1, a maintenance DNA methyltransferase MET1, and 
histone deacetylase HDA6. Methylation at non-CpG nucleotides is dependent on DNA methyltrans-
ferase CMT3, de novo cytosine methyltransferases DRM1 and DRM2, and a H3K9 methyltransferase 
SUVH4/KRYPTONITE.
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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	Plants	have	arguably	the	most	
complex RNA silencing among eukaryots because of existence of many paralogs of key protein factors, which 
form in an intricate network of primary and secondary small RNAs, which mediate transcriptional and post-tran-
scriptional effects, which target endogenous protein-coding gene expression, serve as a form of innate immunity 
targeting	viruses,	and	protect	genome	integrity	by	repressing	retrotransposons.	The	complexity	of	RNA	silencing	
was introduced in an accompanying review. Here, I will focus on mobility of small RNAs in plants, which allows 
for silencing effects occurring at a different place than where the silencing was initiated. I will discuss different 
types of mobility of different classes of small RNAs across plant tissues and their biological implications. 

Introduction

RNA silencing in plants is highly complex thanks to existence of many Dicer, Argonaute, and 
RNA-dependent RNA polymerase (RdRP) paralogs, which fucntion in a network of primary 
and secondary small RNAs, which mediate transcriptional and post-transcriptional effects 
(Fig.	1).	The	nomenclature	of	small	RNAs	in	plants	is	complex	and	arbitrary;	small	RNAs	
include miRNAs and various types of siRNAs produced from dsRNA, which are distin-
guished by their origin (viral siRNA), biogenesis (phased siRNAs) or their effect (heterochro-
matinizing siRNAs). RNA silencing in plants can be divided in three to four main systems: 
miRNA,	RNAi/	post-transcriptional	gene	silencing	(PTGS),	antiviral	defense/virus-induced	
gene	silencing	(VIGS),	and	transcriptional	gene	silencing	(TGS)	(Bologna	and	Voinnet,	
2014; Bonnet et al., 2006; Borges and Martienssen, 2015; Carbonell and Carrington, 2015; 
Chen,	2009;	Galun,	2005;	Mallory	et	al.,	2008;	Van	Ex	et	al.,	2011;	Vazquez,	2006;	Zhang	
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et	al.,	2015).	The	complexity	of	small	RNA	biology	was	reviewed	in	the	fi	rst	plant	RNA	
silencing review (Svoboda, 2019). Here, I will focus on mobility of small RNAs in plants.

Plant anatomy and features relevant for movement of molecules

Plants are unique in several aspects when compared to cells of other eukaryotic organisms. 
Plant cell features important for intercellular exchange of molecules include a polysaccha-
ride	cell	wall	and	plasmodesmata.	The	latter	are	microscopic	channels	traversing	cell	walls	
of plant cells allowing for movement (symplastic movement or symplast) of molecules 
between adjacent cells (reviewed in Maule, 2008; Maule et al., 2011). An alternative to the 
symplastic movement, which involves cell cytoplasm, is apoplastic movement (apoplast) 
where molecules move through cell walls and intercellular space.
A	fl	owering	plant	(Fig.	2)	consists	of	three	anatomical	systems	–	root,	shoot,	and	infl	o-

rescence. It is anchored by a root, absorbs water and minerals from the grounds and trans-
ports them through the xylem vasculature through the plant and into leaves, which are the 
main photosynthetic organs. Sugars produced in leaves are transported around through the 
phloem vasculature. 

Figure 1 Complexity of small RNAs in plants. The scheme was adapted from (Borges and Martienssen, 
2015)
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Structurally, plant tissues are divided into meristems (containing actively dividing cells, 
thus	being	the	primary	place	of	plant	growth)	and	permanent	tissues	classified	according	to	
their shapes and intercellular space.

Long distance movement of molecules occurs through the aforementioned vascular sys-
tem, which transports water, mineral, signaling molecules, nutrients, and other molecules. 
In particular, phloem is the main avenue for transporting organic molecules (discussed in 
(Atkins	et	al.,	2011;	De	Schepper	et	al.,	2013;	Turgeon	and	Wolf,	2009)).	There	is	a	large	
number of mobile macromolecules in plants. In an effort to provide a systematic catalogue 
of mobile macromolecules, a database PlaMoM was compiled, which provides convenient 
and interactive search tools allowing users to retrieve, to analyze and also to predict mobile 
RNAs/proteins	(Guan	et	al.,	2017).	The	current	version	compiles	a	total	of	17,991	mobile	
macromolecules from 14 plant species/ecotypes and is available at: http://www.systembi-
oinfo.org/plamom/.

Distribution of RNA silencing pathways across plant tissues

Plants expressed multiple AGOs, DCLs and RDRs, which support different types of RNA 
silencing pathways employing different types of small RNAs (Fig. 1). Plant small RNAs are 
typically methylated at the 3’ end, which protects them from degradation (Li et al., 2005). 
Plant RNA silencing pathways can be divided into miRNA and siRNA pathways, which use 
distinct small RNA substrates. From the perspective of small RNA populations originating 
from different substrates, two distinct types of small RNAs can be recognized when consid-
ering	their	sequence	prediction	(Fig.	3):	The	first	type,	exemplified	by	miRNAs,	comprises	
small RNAs, which occur in cells in many identical copies (i.e. with the same sequence). 
The	second	type,	exemplified	by	siRNAs	derived	from	dsRNA,	is	characterized	by	exist-
ence of populations of small RNAs with variable sequences, which originate from a longer 
sequence. Although their sequences could be determined, their individual annotation is 
pointless. One kilobase of dsRNA theoretically produces nearly thousand small RNAs dif-
fering at their 5’ ends where each one of them could regulate a different set of genes (there 
is	4096	possible	of	a	hexamer	sequence).	These	small	RNAs	usually	function	as	a	defense	
system operating on the basis (nearly) perfect complementarity.

miRNA (Fig. 4) and related pathways function post-transcriptionally and include the 
canonical miRNA pathway with 21nt miRNAs (utilizing DCL1 and AGO1) and its alterna-
tives employing other DCL and AGO proteins and longer hairpin substrates.

siRNA pathways use either exogenous substrates (antiviral defense and transgene silenc-
ing,	Fig.	5)	or	various	dsRNAs	derived	from	genomic	sequences.	Various	biogenesis	path-
ways produce primary and secondary siRNAs of various types and lengths (21, 22, or 
24 nt), which mediate post-transcriptional or transcriptional silencing. siRNA lengths are 
determined by the processing Dicer paralogue. 21nt siRNAs can be produced by DCL4 or 
DCL1, 22nt siRNAs by DCL2, and 24 nt by DCL3.
There	is	a	large	volume	of	literature	concerning	NGS	analysis	of	small	RNA	popula-

tions from different tissues in different plant species. A large volume of NGS data can be 
accessed through Plant MPSS (massively parallel signature sequencing) databases website 
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(https://mpss.danforthcenter.org/), which was introduced in 2005 (Nakano et al., 2006) and 
has been continuously updated and expanded. It currently contains small RNA data from 19 
plant species. Most datasets in the database (six) come from analysis of small RNAs in rice. 
These	rice	datasets	combine	the	expression	atlas	of	rice	mRNAs	and	small	RNAs	(Nobuta	
et al., 2007), with analysis of small RNAs during development where different pools of 
phasiRNAs	were	identifi	ed	(Fei	et	al.,	2016),	a	comprehensive	analysis	of	small	RNAs	in	
different tissues under normal conditions and stress (Jeong et al., 2011) and unpublished 
NGS data from different rice tissues and AGO immunoprecipitates.
These	and	other	data	from	rice	(e.g.	(Heisel	et	al.,	2008))	reveal	common	and	tissue-spe-

cifi	c	populations	of	small	RNAs.	The	existence	of	tissue-specifi	c	small	RNAs	shows	that	
systemic	RNA	silencing	co-exists	with	RNA	silencing	mechanisms	restricted	to	specifi	c	tis-
sues.	Several	factors	may	underlie	tissue	specifi	city	of	particular	small	RNA	mechanisms.	
These	include	(i)	tissue-restricted	expression	of	proteins	involved	in	biogenesis	and	activity	
of particular small RNA class, (ii) tissue-restricted presence of substrates for biogenesis of 
small RNAs, and (iii) restriction of mobility/spreading of small RNAs, which could differ 
between	different	cell	types.	Next,	I	will	briefl	y	discuss	selected	specifi	c	examples,	which	
provide an insight into the complexity of the issue:

Figure 2 A schematic overview of plant body organization.
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Tissue-restricted expression of protein factors involved 
in small RNA biogenesis and activity

While many genes encoding factors involved in small RNA biogenesis (e.g. Dicers, RDRs) 
and function (e.g. Argonautes) of small RNAs are ubiquitously expressed, some exhib-
it preferential or tissue restricted expression. For example, a systematic analysis of gene 
expression was done in Arabidopsis and rice (Kapoor et al., 2008), where microarray pro-
fi	ling	identifi	ed	several	differentially	expressed	factors	during	development	and	in	different	
tissues.	Similar	data	could	also	be	extracted	from	available	NGS	profi	ling	of	mRNAs	at	
the aforementioned website (https://mpss.danforthcenter.org/). In general, these expression 
data	have	predictive	value	mainly	for	specifi	c	Argonaute	paralogs,	which	host	unique	small	
RNA pools and have highly restricted expression patterns.

Tissue-restricted presence of substrates for biogenesis of small RNAs

This	factor	involves	localization	of	exogenous	small	RNA	substrates	to	different	tissues	
(i.e. viral infections and transgene expression) or expression of endogenous small RNA 
substrates.	This	allows,	for	example	to	differentiate	expression	of	subpopulations	of	small	
RNAs	in	time	and	space.	A	classic	example	is	tissue-specifi	c	expression	miRNAs,	whose	
precursors are transcribed by polII polymerase and thus can exhibit tissue-restricted expres-
sion as mRNAs. As there is a large volume of the literature on miRNA expression in plants, 
which is beyond the scope of this report, I only select illustrative examples of analyses of 
tissue-specifi	c	expression	of	miRNAs	in	rice	.(Mittal	et	al.,	2013;	Zhu	et	al.,	2008),	Nico-
tiana	(Valoczi	et	al.,	2006),	and	Arabidopsis	(Grant-Downton	et	al.,	2009;	Valoczi	et	al.,	

Figure 3 Distinct types of small RNAs differing in occurrence of RNAs with identical sequences
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2006).	Tissue-specific	expression	of	small	RNAs	can	be	observed	for	tasiRNAs,	which	
originate	from	specific	loci	(Marin	et	al.,	2010;	Zabala	et	al.,	2012)	or	phasiRNA,	where	
a	specific	miRNA	initiates	production	of	phasiRNAs	(Fei	et	al.,	2016).

Restriction of mobility/spreading of small RNAs.

Restriction	of	mobility	assures	that	tissue/cell-specific	expression	will	remain	contained.	
There	are	several	cell	types,	from	which	small	RNAs	do	not	seem	to	be	spreading	around.	
These	include	guard	cells	of	stomata	(Voinnet	et	al.,	1998),	endosperm	(energy	storage	of	
the	seed)	(Hournard	et	al.,	2007)	or	the	seed	coat	(Tuteja	et	al.,	2009).

Movement of small RNAs between cells and tissues – miRNA mobility

miRNAs can also be transported over long distances but this is not a universal rule for 
all miRNAs (Buhtz et al., 2008; de Felippes et al., 2011; Knauer et al., 2013; Lin et al., 
2008). Analysis of the phloem sap of oilseed rape Brassica napus	identified	32	annotated	
microRNAs (miRNAs) from 18 different families (Buhtz et al., 2008). In addition, the 
levels of three mature miRNAs known to respond to nutrient deprivation in non-vascular 
tissue, MIR395 (sulphate), MIR398 (copper) and MIR399 (phosphate), were increased in 
phloem sap during the growth of plants under the respective nutrient deprivation (Buhtz 
et al., 2008). Other known mobile miRNAs in Arabidopsis are MIR394, which is produced 
by the surface cell layer and contributes to shoot meristem formation (Knauer et al., 2013), 
and MIR165, which regulates differentiation (Miyashima et al., 2011).

MIR395 and MIR399 mobility through phloem was demonstrated in grafting experi-
ments while MIR171 was not transported (Buhtz et al., 2010; Pant et al., 2008). Consistent 
with phloem movement, another analysis of miR399 movement using reciprocal grafting in 
Arabidopsis suggested that it moves from shoots to roots (Lin et al., 2008).
The	basis	of	selectivity	underlying	miRNA	mobility	in	plants	remains	unclear.	It	was	

shown	22nt	artificial	miRNAs	derived	from	asymmetric	duplexes	mediate	widespread	
silencing	of	their	cognate	gene	more	efficiently	than	21nt	siRNAs	from	symmetric	duplex-
es (McHale et al., 2013).

Movement of small RNAs between cells  
and tissues – systemic RNAi in plants

RNAi can either act in a cell autonomous manner, i.e. affecting only cells directly exposed 
to dsRNA, or can propagate across cell boundaries. Early observations of co-suppression 
in petunia (Jorgensen, 1995; Napoli et al., 1990) and antiviral resistance in Nicotiana ben-
thamiana (Ratcliff et al., 1997) suggested that RNA silencing in plants includes a mobile 
silencing	signal.	Several	studies	subsequently	confirmed	that	transgene-induced	silenc-
ing	is	mobile	(Palauqui	et	al.,	1997;	Voinnet	and	Baulcombe,	1997;	Voinnet	et	al.,	1998,	
2016).	These	experiments	used	grafting	and	agroinfiltration	strategies	to	show	that	silencing	
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spreads from the lower silenced leaves to the upper non-silenced leaves (Palauqui et al., 
1997;	Voinnet	and	Baulcombe,	1997).	Based	on	the	distance	of	silencing	spread,	short	range	
and long range/systemic spread can be distinguished (Fig. 6).

Short range silencing

Short	range	silencing	manifests	as	RNA	silencing	in	a	defined	area.	It	was	shown	that 
a short-distance spreading of RNA silencing, once initiated from a small group of cells, 
can spread over 10–15 cells independently of the presence of cognate transcripts (Himber 
et al., 2003). Short range silencing was observed for both transgenes and endogenous genes 
(Dunoyer et al., 2007; Kalantidis et al., 2006; Ryabov et al., 2004; Schwach et al., 2005; 
Smith et al., 2007).

Regarding the nature of the short-range mobile signal, it is still a matter of debate. Ini-
tially, it was proposed that short range spreading involves DCL3-dependent 24nt siRNAs 
(Hamilton et al., 2002; Molnar et al., 2010). Subsequently, DCL4-dependent 21 nt siRNA 
were also implicated in short-range spreading (Dunoyer et al., 2007; Dunoyer et al., 2005; 
Himber	et	al.,	2003;	Smith	et	al.,	2007).	It	was	shown	that	they	are	sufficient	for	the	limited	
moving of the silencing and that the short range silencing is independent of an RdRP SDE1 
and helicase SDE3 (Himber et al., 2003). Furthermore, it was suggested that the mobile 
signal is are siRNAs themselves ant not their longer precursors and AGO-bound single 
strand molecules but this evidence came in one of the recently retracted papers (discussed 
in Addendum at the end of the review).

Besides 21 siRNAs, several other types of plant small RNAs can spread cell-to-cell. 
These	include	miRNAs	(discussed	separately	further	below),	tasiRNAs	of	the	TAS3	locus	
(Chitwood et al., 2009; de Felippes et al., 2011; Marin et al., 2010; Schwab et al., 2009). 

In terms of the mechanism of cell-to-cell silencing movement, early studies implied 
that post-transcriptional silencing spreads through plasmodesmata (Palauqui et al., 1997; 
Voinnet	et	al.,	1998).	However,	the	amount	of	evidence	for	cell-to-cell	silencing	movement	
through plasmodesmata is rather moderate. Support for the symplastic movement through 
plasmodesmata comes from an observation that symplastically isolated guard cells of sto-
mata	escape	short-range	spreading	(Himber	et	al.,	2003;	Kalantidis	et	al.,	2006;	Voinnet	
et al., 1998). Furthermore, analysis of short-range spreading in Arabidopsis embryos, sug-
gested that the spread is affected by and positively correlates with plasmodesma aperture 
(Kobayashi	and	Zambryski,	2007).	While	these	results	are	in	agreement	with	the	assump-
tion that short-range spreading of silencing occurs through diffusion and plasmodesmata, 
alternative routes, such as secretory vesicles should still not be excluded.

In addition, genetic analysis revealed several factors involved for cell-to-cell silencing 
movement	(summarized	in	Table	1).	Some	of	these	factors	were	already	mentioned	above.	
Interestingly, among the factors whose mutations reduce cell-to-cell silencing movements 
were also RDR2 CLSY1, and NRPD1a, which are required for 24nt siRNA-mediated 
transcriptional silencing (Dunoyer et al., 2007; Smith et al., 2007). It was suggested 
that these factors might function in reception and/or downstream functional integration 
of	mobile	siRNAs	in	recipient	cells	(Brosnan	and	Voinnet,	2011).	Another	nuclear	fac-
tor whose mutation affects cell-to-cell silencing movement is JMJ14, a H3K4 histone 
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demethylase implicated in non-CpG DNA methylation 
(Searle et al., 2010). However, short-range movement 
of tasiRNAs does not seem to require RDR2, CLSY1, 
NRPD1a, and JMJ14. 
Taken	 together,	 while	 there	 is	 evidence	 that	

DCL4-dependent 21 nt siRNAs are the mobile signal 
in cell-to-cell movement, cell-to-cell silencing mobili-
ty might also concern DCL3-dependent 24-nt siRNAs 
and other RNA molecules.

Extended short-range silencing

In addition to short-range spreading of RNA silencing, 
a long-range cell-to-cell movement process was also 
reported	that	occurs	as	a	relay	amplifi	cation,	involv-
ing the combined activity of an RdRP SDE1 and hel-
icase	SDE3	(Himber	et	al.,	2003).	This	is	essentially	
an extended version of short-range silencing described 
above	where	the	mobile	signal	is	amplifi	ed	along	the	
way through production of secondary small RNAs 
(Fig.	6).	This	amplifi	cation	process,	is	known	as	“tran-
sitivity”	(Melnyk	et	al.,	2011b).	Thus,	extensive	and	
limited cell-to-cell movements of silencing are trig-
gered by the same molecules, occur within the same 
tissues and likely recruit the same plasmodesmata 
channels (Himber et al., 2003).

Long range/systemic silencing

Plants exhibit systemic RNA silencing, which can 
move	over	long	distance.	This	implies	that	a	mobile	

silencing signal from the source tissue enters the vascular system, it is transported and then 
enters the recipient tissue or cells (Fig. 7). Early studies implied that post-transcriptional 
silencing	spreads	over	long	distance	through	phloem	(Palauqui	et	al.,	1997;	Voinnet	et	al.,	
1998) (of note is that xylem sap, which transports water and ions, does not carry RNA 
(Buhtz et al., 2008)). 
It	was	shown	that	transgene-specifi	c	post-transcriptional	silencing	is	transmitted	by	graft-

ing	from	silenced	stocks	to	non-silenced	scions	(Palauqui	et	al.,	1997).	The	transmission	
of co-suppression occurs when silenced stocks and non-silenced target scions are physi-
cally	separated	by	up	to	30	cm	of	stem	lacking	cognate	RNAs	(Palauqui	et	al.,	1997).	The	
systemic movement of the silencing signal takes days and typically moves from leaves 
(photosynthetic	source)	to	roots	and	growing	points	(sucrose	sinks)	(Voinnet	et	al.,	1998);	
this	fl	ow	is	characteristic	of	phloem	(discussed	in	(De	Schepper	et	al.,	2013;	Turgeon	and	
Wolf, 2009)). Furthermore, phloem transport block by cadmium inhibits systemic silencing 

Figure 4 Plant miRNA pathway
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spread (Beclin et al., 1998; Ghoshroy et al., 1998). Later, it was also shown that phloem 
fl	ow	strongly	infl	uences	the	systemic	spread	of	silencing	in	Nicotiana benthamiana and that 
the direction of systemic spread of silencing from inducer to sensor can be manipulated by 
altering	sink/source	relations	in	the	plant	(Tournier	et	al.,	2006).	Thus,	systemic	silencing	
is	not	an	accidental	stochastic	process,	but	can	be	predicted	according	to	the	phloem	fl	ow	
direction	(Tournier	et	al.,	2006).
The	systemic	mobile	signal	could	be	various	forms	of	RNA	–	small	RNAs	or	their	pre-

cursors.	Identifi	cation	of	the	systemic	RNA	silencing	signal	included	analyses	of	the	phlo-
em sap and RNA behaviour upon various grafting experiments 

Analysis of phloem sap found presence of siRNAs and miRNAs (Buhtz et al., 2008; Yoo 
et al., 2004). Subsequent grafting experiments suggested that all classes of small RNAs 
could be mobile while the systemic silencing signal was proposed to be the 24nt siRNA 
species (Himber et al., 2003; Melnyk et al., 2011a; Molnar et al., 2010). However, grafting 

Figure 5 “RNAi module” of RNA silencing in Arabidopsis.
The key step in the RNAi module is conversion of different dsRNA into small RNAs by one of the DCL 
proteins, among which dominate DCL2/3/4. Some dsRNA is produced by RDR6 either as the initial trig-
ger or as an amplifi cation step where AGO-targeted RNAs are converted to dsRNA, which is processed 
into secondary siRNAs. If the targeting by AGO is precisely defi ned (e.g. by miRNA), the secondary 
siRNAs would be phased. DCL3-generated 24 nt siRNAs can induce RdDM.
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experiment with rootstocks lacking DCL2, 3, and 4 showed that such rootstocks still trans-
mit	the	systemic	silencing	signal	(Brosnan	et	al.,	2007).	This	suggests	that	the	silencing	
signal could be either long dsRNA precursor or siRNAs generated by DCL1, which nor-
mally generates miRNAs. Mobility of small RNAs was supported by NGS analysis of 
tissues lacking DCL2, 3, and 4, which could identify long dsRNA-derived 21, 22, and 
24nt siRNAs (Molnar et al., 2010). Furthermore, the situation is complicated by secondary 
siRNAs, which emerge in the systemically silenced scion and degrade the target mRNA 
(Shimamura et al., 2007).

In any case, it is generally accepted that 24nt siRNA species are associated with systemic 
RNA silencing in plants but little is known concerning the exact form of systematically 
moving silencing RNAs. Since phloem transportation can accommodate relatively large 
molecules including mRNAs (reviewed in (Atkins et al., 2011; Hannapel et al., 2013)) 
mobility of small RNA precursors should not be excluded.

Protein factors involved in systemic RNA silencing

Consistent with involvement of 24nt siRNAs, four genes involved in a chromatin silencing 
pathway;NRPD1a, RDR2, and DCL3, are required for reception of long-distance mRNA 
silencing and an AGO4 mutant is also partially compromised in the reception of silencing 
(Brosnan	et	al.,	2007).	These	data	were	corroborated	by	another	study,	which	linked	CLSY1,	
AGO4, RDR2, and NRPD1a to silencing spread (Smith et al., 2007). DCL3 appears to be the 

Figure 6 Movement of RNA silencing in plants.
In short-distance cell-to-cell movement, small RNAs move from the source cells where silencing was 
initiated (explosion pictogram) through plasmodesmata (symplastic route). Plasmodesmata are sche-
matically depicted as tunnels in cell walls. Mobility is limited to 10–15 cells. In long-range cell–cell move-
ment, small RNA move again via plasmodesmata. Amplifi cation (cycling arrow) of small RNAs by tran-
sitive small RNA production utilizing an RdRP activity extends the range of mobility far beyond the fi rst 
10–15 cells. In systemic movement, small RNAs enter the phloem and are transported to distant tissues 
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only DCL protein essential for systemic silencing (Melnyk et al., 2011a). In addition, RDR6 
was implicated in systemic silencing where it seems to be involved in the perception of the 
silencing	signal	(Schwach	et	al.,	2005)	and	its	maintenance	(Himber	et	al.,	2003;	Vaistij	
et al., 2002). RDR6 is amplifying decapped mRNAs cleaved by 24nt siRNAs. Subsequent-
ly. DCL4 and DCL2 act hierarchically to produce 21- and 22-nt siRNAs guiding mRNA 
cleavage	mRNA	degradation	(Brosnan	et	al.,	2007).	Taken	together,	it	appears	that	the	sys-
temic silencing employs both, post-transcriptional and transcriptional RNA silencing mecha-
nisms. However, their integration in the systemic silencing process is still a matter of debate.

Interestingly, biochemical analysis of pumpkin (Cucurbita maxima)	identified	CmPSRP1	
(PHLOEM	SMALL	RNA	BINDING	PROTEIN	1),	which	binds	25nt	single-strand	small	
RNAs	in	pumpkin	and	is	a	candidate	protein	for	trafficking	small	single-strand	RNA	mol-
ecules (Yoo et al., 2004). Although there is additional supporting biochemical evidence for 
the role of CmPSRP1 in systemic silencing, there is no genetic support and its homologues 
across	the	plant	kingdom	are	yet	to	be	identified	(Ham	et	al.,	2014).

Directionality of systemic RNA silencing

Systemic	silencing	frequently	flows	in	the	common	source-to-sink	direction.	This,	however,	
does not preclude spreading in the opposite direction, which has also been observed. Below, 
I will discuss directionality of spreading between main plant parts.

Shoot-to-root

Depletion of shoot small RNAs corresponded to reduction of 24-nt small RNAs in wild-
type roots, indicating that shoot-derived small RNAs contribute to the total root small RNA 
population as small RNAs in these grafted plants move predominantly from shoot to root 
following	source–sink	gradients	(Molnar	et	al.,	2010).	This	is	was	corroborated	by	a	later	
study, which showed in Arabidopsis thaliana that 24-nt small RNAs are mobile from shoot 
to	root	(Melnyk	et	al.,	2011b).	This	was	further	extended	by	showing	that	RNA-dependent	
DNA methylation in root tissues (occurring predominantly in non-CpG contexts) depends 
on mobile small RNAs from the shoot (Lewsey et al., 2016).

Root-to-shoot:

Upward (root-to-shoot) systemic silencing has also been reported from both, Nicotiana 
and Arabidopsis (Kasai et al., 2011; Kasai et al., 2013; Liang et al., 2012). For example, 
post-transcriptional silencing of an endogenous gene in the shoot was observed in Nicotiana 
when a wild-type scion was grafted on a rootstock synthesizing a siRNA signal (Kasai et al., 
2011).	The	signal	can	spread	from	a	rootstock	can	travel	quite	far	as	demonstrated	in	cherry,	
where	siRNAs	were	detected	1.2	m	from	the	graft	union	(Zhao	and	Song,	2014).
To	what	extent	this	type	of	spreading	employs	phloem	is	not	clear.	As	mentioned	above,	

while	phloem	flow	the	direction	of	systemic	spread,	it	can	be	manipulated	(Tournier	et	al.,	
2006). However, a study in Arabidopsis suggested that root-to-shoot signal movement 
might occur through plasmodesmata and not through the phloem (Liang et al., 2012). 
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Importantly, root-to-shoot spreading of RNA silencing is not a universal plant mech-
anism in vivo. It was shown that by RNA-mediated gene silencing signals are not graft 
transmissible from the rootstock to the scion in greenhouse-grown apple plants Malus
sp. (Flachowsky et al., 2012). Further research is needed to reveal the molecular mecha-
nisms and biological role(s) of the root-to-shoot (rootstock-scion) transmission of RNA 
silencing.

Flower/seed concerning silencing spreading

Some of the references addressed spreading of silencing in reproductive organs and seeds. It 
was shown that gamete formation requires AGO9, which controls female gamete formation 
in	a	non-cell	autonomous	manner	(Olmedo-Monfi	l	et	al.,	2010).	In	grafted	Arabidopsis	and	
Nicotiana the systemic silencing penetrated male sporogenic tissues suggesting that plants 
harbour an endogenous long-distance small RNA transport pathway facilitating siRNA sig-
nalling	into	meiotically	active	cells.	(Zhang	et	al.,	2014).	Regarding	seeds,	an	experiment	
targeting RNAi to the endosperm showed that RNAi was restricted to the endosperm tis-
sue and that transitive RNAi did not occur (Hournard et al., 2007). Similarly, RNAi was 
observed to remain contained in the seed coat and did not spread to cotyledons and vegeta-
tive	tissues	(Tuteja	et	al.,	2009).

Figure 7 Systemic silencing mobility
Systemic silencing is initiated in the source tissue. The mobile silencing signal enters phloem and 
moves to the target tissue. Systemic silencing can occur in both directions, i.e. shoot-to-root and root-
to-shoot. The shoot-to-root direction is following the common path of sugars to “sink” tissues. However, 
there is also evidence that systemic silencing can propagate in root-to-shoot direction.
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Summary

Taken	together,	it	seems	that	there	is	no	an	exclusive	mobile	small	RNA	species.	Rather,	
there	may	be	more	forms	of	small	mobile	RNAs.	At	the	moment,	there	is	no	definite	con-
sensus	on	specific	mechanism(s)	regulating	sorting	of	small	RNAs	into	mobile	and	cell-au-
tonomous small RNAs.

Addendum

I	feel	obliged	to	mention	an	incident	which	stirred	the	RNA	silencing	field	and	affected	the	
literature on systemic RNA silencing in plants. In January 2015, a number of publications 

Table 1 Mutations that affect the cell-to-cell RNA silencing spreading phenotype in Arabidopsis adopted 
from (Melnyk et al., 2011b)

Mutations that affect the cell-to-cell RNA silencing spreading phenotype in Arabidopsis
Mutations that reduce RNA silencing spread
mutation type gene note reference
ago1 inhib. AGO1 Argonaute, 21 nt siRNA pathway (Dunoyer et al., 2007)
clsy1 inhib. CLSY1 SNF2-domain-containing protein (Smith et al., 2007)
dcl1 inhib. DCL1 Dicer, miRNA & 21 nt siRNA 

pathway
(Dunoyer et al., 2007)

dcl4 inhib. DCL4 Dicer, 21 nt siRNA pathway (Dunoyer et al., 2005; Smith et al., 2007)
fca inhib. FCA (Baurle et al., 2007)
fpa inhib. FPA (Baurle et al., 2007)
fy inhib. FY (Manzano et al., 2009)
jmj14 inhib. JMJ14 histone H3K4 demethylase 

linked to non-CpG methylation
(Searle et al., 2010)

hen1 inhib. HEN1 small RNA methylase (Dunoyer et al., 2007)
hpr1 inhib. HPR1 RNA	trafficking	protein (Jauvion et al., 2010)
nrpd1/
smd1

inhib. NPRD1 plant	RNA	pol-IV	component (Brosnan et al., 2007; Dunoyer et al., 
2007; Dunoyer et al., 2005; Smith et al., 
2007)

nrpd2a inhib. NRPDA2  (Smith et al., 2007)
rdr2/smd2 inhib. RDR2 plant	RNA	pol-IV	component (Brosnan et al., 2007; Dunoyer et al., 

2007; Dunoyer et al., 2005; Smith et al., 
2007)

smd3 inhib. SMD3 silencing	movement	deficient (Dunoyer et al., 2005)
tex1 stim TEX1 mRNA export complex (Yelina et al., 2010)
ago4 stim AGO4 Argonaute, (Searle et al., 2010; Smith et al., 2007)

inhib partially compromised reception 
of silencin

(Brosnan et al., 2007)

dcl3b stim DCL3 (Smith et al., 2007)
inhib (Brosnan et al., 2007)
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authored	by	Olivier	Voinnet	was	brought	up	as	potentially	containing	manipulated	images	
at a server PubPeer.com. Among these were highly cited publications that laid foundations 
of RNA silencing research in plants. A subsequent ethical committee investigation conclud-
ed	that	publications	indeed	contained	manipulated	figures.	the	following	Voinnet’s	publica-
tions had to be corrected or retracted:

Retractions:
1. Brigneti G.et al.,EMBO J (1998)
2.	Voinnet,	O.et	al.,	Plant	J.	33:	949–56	(2003)
3. Dunoyer P.et al., Plant Cell 16: 1235–50 (2004)
4.	Moissiard	G.	and	Voinnet	O.,	Proc.	Nat.	Acad.	Sci.uSA	103	(51):	19593	(2006)
5. Dunoyer P.et al., EMBO J (2010)
6. Dunoyer P. et al., Science 328 (5980), 912 (2010)
7. Ciaudo C.et al., PLoS Genetics 9(11): e1003791 (2013)
8. Sansregret R.et al., PLoS Pathogens 1(9): e1005207 (2013)

Corrections:
1.	Ruiz	MT	et	al,	Plant	Cell10:	937–946	(1998)
2.	Voinnet	O,	et	al.,	Nat.l	Acad.	Sci.uSA	96:14147–14152;	(1999)
 4. Dunoyer P.et al., Plant J. 29: 555–67 (2002)
 3. Hamilton A.et al., EMBO J (2002)
 5. Parizotto E.A.et al., Genes & Development 18: 2237–42 (2004) – 2nd 

Correction: 
 8. Deleris A. et al, Science 313(5783): 68–71 (2006)
 6. Dunoyer P.et al., Nature Genetics 38: 258–63 (2006) 
 7. Navarro L. et al., Science 312(5772): 436–439 (2006)
 9. Moissiard et al, RNA 13: 1268–1278 (2007)
10. Haas G. et al, EMBO J 27, 2102–2112 (2008)
11. Ciaudo C.et al., PLoS Genetics 5(8): e1000620 (2009) 
12. Bennasser Y et al., Nat. Struct. Mol. Biol. 18, 323–327 (2011)
13. Jay F, et al. (2011) PLoS Pathog 7(5): e1002035
14. Brodersen P.et al., Proc. Nat.l Acad. Sci. USA 109: 1778–83 (2012) 
15. Gibbings D. et al, Nature Cell Biology 14, 1314–1321 (2012)
16. Schott G. et al, EMBO J 31, 2553–2565 (2012) 
17. Boccara M.,et al., PLoS Pathogens 10(1): e1003883 (2014)

Further details about the affair can be found, for example, here:
 http://retractionwatch.com/category/by-author/olivier-voinnet/
 http://labtimes.org/editorial/e_594.lasso
 http://labtimes.org/editorial/e_600.lasso
 http://labtimes.org/editorial/e_623.lasso
 http://labtimes.org/editorial/e_624.lasso
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ABSTRACT

This	review	systematically	covers	sequence-specific	gene	regulation	by	miRNAs	and	dsRNA-derived	siRNAs	in	
animals and plants from the perspective of target RNA recognition, potential for non-target (off-target) effects, 
and reliable determination of biological effects of small RNAs in animals and plants. I will review sequence 
complementarity between target RNA and small RNA (siRNA or miRNA), including tolerance to mismatches, 
parameters	influencing	sequence	complementarity	(and	target	recognition	and	repression)	and	discuss	specificity	
of	targeting	by	miRNAs	and	off-targeting	by	siRNAs.	In	addition,	I	will	discuss	reliable	identification	of	target	
RNAs (and, eventually, biological effects). Accordingly, the text is divided into the following four sections: (I) 
Small	RNA:target	RNA	base	pairing,	(II)	Other	key	factors	influencing	target	recognition	and	repression,	(III)	
Off-targeting	–	causes	and	remedies,	(III)	Smal	RNA	target	identification.	

Introduction

Within the complex world of RNA silencing, two related yet distinct pathways exist in 
animals and plants: RNA interference (RNAi) and microRNA (miRNA) pathways (Fig. 1). 
Both	pathways	employ	small	RNAs	loaded	on	Argonaute	proteins	as	sequence-specific	
guides	for	post-transcriptional	repression.	The	elementary	difference	between	these	two	
pathways	is	that	miRNA	pathways	employ	genome-encoded	small	RNAs	with	defined	
sequences (i.e. miRNAs can be annotated) while RNAi is initiated by processing long dou-
ble-stranded	RNA	(dsRNA)	into	a	mixture	of	short	interfering	RNAs	(siRNAs).	Thus,	the	
miRNA pathway in a cell employs a population of miRNA molecules that can be clustered 
based	on	unique	sequences,	corresponding	to	specific	positions	in	miRNA	precursors.	In	
other words, the major distinction between RNAi and miRNA pathways is the origin of 
small RNAs and their information content. In terms of their mode of action, siRNAs and 
miRNAs can be in some cases indistinguishable.

https://doi.org/10.14712/9788024643724.12 275
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Figure 1 miRNA and RNAi pathways in animals and plants
The schemes depict key components of miRNA and RNAi pathways in the main eukaryotic model 
systems

In animals, the miRNA pathway, which is primarily a gene-regulating pathway, is highly 
conserved.	The	canonical	miRNA	biogenesis	is	a	spatially	separated	into	two-steps.	The	
fi	rst	step	takes	place	in	the	nucleus	where	RNase	III	Drosha,	a	component	of	the	Micro-
processor complex, releases a precursor miRNA (pre-miRNA) from a primary miRNA 
transcript (pri-miRNA). Next, a pre-miRNA is transported to the cytoplasm where it is 
cleaved by a second RNase III Dicer. Dicer releases a miRNA duplex of which one strand 
will	be	loaded	on	an	Argonaute	protein.	The	miRNA	pathway	in	plants	operates	similarly	
but employs only a single nuclear Dicer-like 1 (DCL1) RNase III to produce pre-miRNAs 
and	miRNAs.	The	second	important	difference	is	the	methylation	of	plant	miRNAs	at	their	
3’ end mediated by HEN1 methyltransferase.
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The	RNAi	pathway	is	much	more	diverse	across	animals	and	plants.	It	is	conceivable	
given the antiviral role of RNAi where the parasite:host interactions can accelerate evo-
lution of RNAi pathways in different taxons. Despite the differences, RNAi and miRNA 
pathways share common features, which include biogenesis of small RNAs involving Dicer 
and effector complexes containing an Argonaute protein carrying a small RNA. Argonaute 
proteins	are	composed	of	four	main	domains:	the	central	PAZ	domain,	the	C-terminal	PIWI	
(P-element induced wimpy testis), the N-terminal domain, and the MID domain between 
PAZ	and	PIWI	domains	(Fig.	2).	The	PIWI	domain	has	an	RNase	H-like	fold	and	carries	
a	“slicer”	activity	(Ma	et	al.,	2005;	Parker	et	al.,	2004;	Song	et	al.,	2004;	Yuan	et	al.,	2005).	
Argonaute	proteins	fall	into	three	distinct	groups	(reviewed	in	Faehnle	and	Joshua-Tor,	
2007): (1) AGO proteins, found in all kingdoms, (2) PIWI proteins found in animals, and 
(3) WAGO proteins found only in nematodes. 

From the mechanistic perspective, post-transcriptional repression by small RNAs 
employs two distinct yet related (and often overlapping) modes of action:

Direct endonucleolytic RNA cleavage mediated	by	the	so-called	“slicer”	activity	of	an	
Argonaute	protein.	This	mode	of	action	needs	two	conditions	to	be	met:	(i)	the	Argonaute	
protein has the slicer activity (not all family members have it) and (ii) there needs to be 
extensive base pairing between the Argonaute-bound small RNA and the cognate RNA. 
Extensive base pairing positions the cognate RNA such that it can be sliced in the position 
corresponding	the	middle	of	the	guiding	small	RNA.	This	mode	of	action	has	been	tradi-
tionally	associated	with	RNAi	and	will	be	refered	to	as	“RNAi-like”	targeting.	However,	it	
should be pointed out that the two conditions for RNA-like targeting do not exclude miR-
NAs and, in fact, it is well established that miRNAs loaded on a slicing Argonaute would 
guide slicing of perfectly complementary cognate RNAs.

Indirect mRNA destabilization, which is found when an Argonaute protein lacks the 
slicing activity or the base pairing is incomplete and prevents positioning of the cognate 
RNA (typically lack of base pairing in the middle of the small RNA:target RNA duplex. In 
these	cases,	Argonaute-bound	small	RNAs	provide	suffi	ciently	stable	interaction	for	target	
recognition while the repression is mediated by Argonaute-interacting partners. While the 
precise mode of action is still debated and may vary between different cell types and model 
systems, it seems to be coupled with common mechanisms of mRNA destabilization, i.e. 
deadenylation and decapping.

At least four types of RNAi & miRNA pathway combinations can be recognized in ani-
mals and plants (Fig. 1):
(I) overlapping miRNA and RNAi pathways with a single-set of Dicer and Argonaute 

proteins and without an RNA-dependent RNA polymerase (RdRP) – typical for 
vertebrates	especially	mammals.	The	molecular	machinery	in	the	cell	primarily	pro-
duces miRNAs but it can also support canonical RNAi, which can be observed under 
rare	circumstances.	The	term	RNAi	in	mammals	is	commonly	used	for	RNAi-like	
cleavage mediated by a siRNA loaded on AGO2. However, siRNAs are being loaded 
on all four mammalian AGO protein (Meister et al., 2004), and once loaded, their 
behavior	is	indistinguishable	from	miRNAs.	This	functional	overlap	at	the	level	of	
the	effector	complex	is	the	major	source	of	the	so-called	“off-targeting”	phenome-
non where siRNAs target also other mRNAs through miRNA-like mode of action.
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(II) separated miRNA and RNAi pathways with dedicated Dicer and Argonaute pro-
teins (no	RdRPs).	This	arrangement	is	observed	in	Arthropods	(Drosophila).

(III) distinct miRNA pathway and a complex RNAi system employing RdRp(s) shar-
ing a single Dicer.	This	arrangement	is	observed	in	nematodes	where	expansion	of	
Argonaute proteins created a highly complex RNA silencing system

(IV) separated miRNA pathway and a complex RNAi system employing RdRp(s) with 
multiple Dicer and Argonaute proteins.	This	arrangement	is	observed	in	plants.

Mechanistical	aspects	of	target	recognition	and	its	specifi	city	will	be	discussed	next.

Small RNA:target RNA base pairing

A small RNA loaded on an Argonaute protein functions as a guide selectively recognizing 
cognate RNAs through sequence complementarity. Sequence complementarity can be high 
(full or almost full) or partial. High sequence complementarity operates in RNAi-mediated 
innate immunity and genome defense where it is desirable to degrade all nucleic acids with 
highly similar sequences. High sequence complementarity is also observed for many plant 
miRNAs, which could be, at least in part, a consequence of their evolution (Allen et al., 
2004; Llave et al., 2002). Animal miRNAs and some plant miRNAs have typically partial 
sequence complementarity, which seems to be non-randomly distributed along a small RNA 
(reviewed, for example in Bartel, 2009). Partial complementarity could be seen as a min-
imal requirement for functional target recognition formed by natural selection. However, 

Figure 2 Argonaute protein structure
Schematic domain organization of an Argonaute protein. The scheme shows how a siRNA-loaded Ar-
gonaute cleaves a perfectly complementary RNA, which becomes accessible by the catalytical center 
in the PIWI domain upon base pairing with a small RNA. Nucleotides 2–8 of the small RNA initiate the 
interaction with the cognate RNA and form the so-called “seed”, which has a highly predictive value for 
miRNA binding sites and siRNA off-targeting. The cognate mRNA is cleaved in the middle of the base 
paired sequence by the slicer activity depicted as a red pac-man.
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before addressing small RNA:target RNA complementarity, I will review the structure of 
Argonaute	proteins	and	its	implications	for	base	pairing	and	target	recognition.	The	reason	
is that structural analyses of Argonaute proteins provided important insights into the mech-
anism of how an Argonaute-loaded small RNA recognizes and binds its target.

Structural insights into target recognition by Argonaute-bound small RNAs

The	one	of	the	fundamental	steps	in	deciphering	rules	governing	target	recognition	and	
repression in RNA silencing is understanding the structure of a cognate RNA bound to 
a	guide	RNA	loaded	on	an	Argonaute	protein.	The	pioneering	structural	analysis	of	full-
length Argonaute proteins has been carried out on crystalized archaeal proteins from Pyro-
coccus furiosus (Song et al., 2004), Aquifex aeolicus (Yuan et al., 2005), Archaeglobus 
fulgidus (Ma et al., 2005; Parker et al., 2005), and Thermus thermophiles (Wang et al., 
2008; Wang et al., 2009) and, subsequently on human AGO1 and AGO2 proteins (Elkayam 
et al., 2012; Faehnle et al., 2013; Nakanishi et al., 2013; Schirle et al., 2016; Schirle and 
MacRae, 2012; Schirle et al., 2015; Schirle et al., 2014).

Structural analysis of archaeal proteins revealed that Argonaute proteins are composed of 
four	main	domains:	the	central	PAZ	domain,	the	C-terminal	PIWI,	the	N-terminal	domain,	
and	the	MID	domain	between	PAZ	and	PIWI	domains.	A	small	RNA	is	anchored	with	its	
3’	end	in	the	PAZ	domain	and	the	5’	end	in	a	binding	pocket	between	the	MID	domain	and	
the PIWI domain (Fig. 2). Human AGO1 and AGO2 proteins also show this organization 
(Elkayam et al., 2012; Faehnle et al., 2013; Nakanishi et al., 2013; Schirle et al., 2016; 
Schirle and MacRae, 2012; Schirle et al., 2015; Schirle et al., 2014). While both proteins 
accommodate siRNAs and miRNAs, only AGO2 has the slicer activity (Liu et al., 2004; 
Meister	et	al.,	2004).	The	crystal	structure	of	human	AGO2	revealed	a	bilobed	molecule	
with a central cleft for binding guide and target RNAs (Elkayam et al., 2012; Schirle and 
MacRae,	2012;	Schirle	et	al.,	2015;	Schirle	et	al.,	2014).	The	crystal	structures	of	human	
AGO1	bound	to	endogenous	co-purified	RNAs	or	loaded	with	miRNA	(let-7)	are	very	sim-
ilar to the structures of AGO2 despite the fact that AGO1 lacks the slicer activity (Faehnle 
et al., 2013; Nakanishi et al., 2013).
The	key	observation	coming	from	the	structural	analysis	is	that	nucleotides	2	to	6	of	

a guide RNA are positioned in an A-form conformation for base pairing with target mes-
senger RNAs (Elkayam et al., 2012; Faehnle et al., 2013; Nakanishi et al., 2013; Schirle 
et al., 2016; Schirle and MacRae, 2012; Schirle et al., 2015; Schirle et al., 2014) (Fig. 3). 
An RNA molecule can occur in many three dimensional conformations because there are 
multiple angles along which it can rotate its parts. Accordingly, initiation of base pairing 
requires proper conformation of two RNA molecules in order to initiate formation of hydro-
gen bonds between two complementary molecules. An Argonaute protein facilitates base 
pairing between a small RNA and a complementary RNA (= target recognition) by exposing 
nucleotides 2–6 arranged in a conformation needed for proper base pairing. 

Between nucleotides 6 and 7, there is a kink that may function in miRNA target recog-
nition or release of sliced RNA products. (Schirle and MacRae, 2012). Crystallization of 
loaded human AGO2 in the presence of target RNA sequences suggested a stepwise mech-
anism for interaction with cognate RNAs. First, AGO2 exposes guide nucleotides (nt) 2 to 
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5 for initial target pairing, which then promotes conformational changes that expose nt 2 
to 8 and 13 to 16 for further target recognition (Schirle et al., 2014). miRNA binding 
seem	to	lock	the	otherwise	fl	exible	AGO2	enzyme	in	a	stable	conformation	(Elkayam	
et	al.,	2012).	The	structure	of	human	Ago2	bound	to	miR-20a	implies	that	the	miRNA	is	
anchored	at	both	ends	by	the	MID	and	PAZ	domains	with	several	kinks	and	turns	along	
the binding groove (Elkayam et al., 2012). Spurious slicing of miRNA targets is avoided 
through an inhibitory coordination of one catalytic magnesium ion (Schirle et al., 2014). 
Evolutionary changes that rendered hAGO1 inactive included a mutation of a catalytic 
tetrad residue and mutations on a loop near the actives site (Faehnle et al., 2013; Nakanishi 
et al., 2013). Importantly, the PIWI domain contains tandem tryptophan-binding pockets, 
that function in recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich 
cofactors (Schirle and MacRae, 2012). Computer simulation of the structural and func-
tional dynamics of human AGO2	and	the	interaction	mechanism	with	siRNAs	confi	rmed	
that AGO2	adopts	two	conformations	such	as	“open”	and	“close”	and	the	PAZ	is	a	highly	
fl	exible	region.	(Bhandare	and	Ramaswamy,	2016).	Models	of	miRNA-loaded	Argonautes	
imply that Argonautes adopt variable conformations at distinct target sites that generate 
distorted, imperfect miRNA-target duplexes where structural distortions are better toler-
ated in solvent-exposed seed and 3’-end regions than in the central duplex region (Gan 
and Gunsalus, 2015).
Structural	analysis	also	clarifi	ed	the	effect	of	the	fi	rst	nucleotide	in	the	cognate	site,	

which	does	not	base	pair	with	the	loaded	small	RNA	because	the	fi	rst	nucleotide	of	the	
small RNA (frequently U) is buried in the 5’ end-binding pocket. Yet, it was observed that 
interaction with the cognate site is enhanced by adenosine in the position 1 of a miRNA 
binding site; the structural analysis revealed that the adenosine in the mRNA is recognized 
indirectly by AGO2 through a hydrogen-bonding network of water molecules that preferen-
tially interacts with the N6 amine on the adenine base (Schirle et al., 2015). Importantly, N6 
adenosine	methylation	blocks	recognition	of	the	adenosine,	which	might	refl	ect	a	possible	
mechanism	for	regulating	of	miRNA	binding	through	covalent	modifi	cation	of	miRNA	
binding sites (Schirle et al., 2015).

Figure 3 Crystal structures of Argonautes with bound RNAs
(A) A schematic depiction of AGO2 domain organization. (B) AGO2 with bound small RNA (in red), 
visible is the seed in A conformation (Schirle et al., 2014). (C) AGO2 loaded with a small RNA (in red) 
interacting with a target RNA (in black) (Schirle et al., 2014). Data for visualization were obtained from 
wwPDB and displayed in UCSF Chimera.
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These	data	provide	structural	foundations	of	many	features	of	target	recognition	and	can	
be used for computer simulations of miRNA-target interaction in the context of the loaded 
Argonaute structure. In fact, an algorithm MiREN, which builds and scores three-dimen-
sional models of the ternary complex formed by AGO, a miRNA and 22 nt of a target 
mRNA, can be used to assess the likelihood that an RNA molecule is the target of a given 
miRNA	(Leoni	and	Tramontano,	2016).

Importantly, they also explain features associated with different regions of miRNA and 
siRNA	sequences	that	were	identifi	ed	in	kinetic	and	bioinformatics	studies.	Taken	together,	
crystal structures of AGO2 explain the nucleotide-pairing patterns that emerged during pre-
vious studies of miRNA sequences, namely analyses of conservations of miRNA binding 
sites and biochemical analyses of target recognition, which are discussed later.

small RNA:target RNA base pairing

Sequence complementarity between a small RNA and its target RNA can be full (or almost 
full) or partial. Full complementarity is typically associated with siRNAs while partial with 
miRNAs although imperfect base pairing of siRNAs and perfect base pairing of miRNAs 
also	occur.	To	provide	a	framework	for	this	section,	I	fi	rst	review	the	full-complementarity,	
then the partial complementarity involving base pairing of 5’ small RNA nucleotides (the 
seed, Fig. 4) and then seedless (non-canonical, non-seed) interactions and their implications 
on target recognition, prediction and effective repression. Importantly, target mRNAs are as 
effi	ciently	repressed	by	microRNA-binding	sites	in	the	5	‘	uTR	as	in	the	3	‘	uTR	as	shown	
in experiments in cultured human cells (Lytle et al., 2007).

siRNA complementarity and sequence features 

RNAi	effi	ciency	correlates	well	with	the	binding	energy	of	a	siRNA	to	its	mRNA	tar-
get (Muckstein et al., 2006). While full complementarity yields a perfect duplex in which 
all	nucleotides	participate	seemingly	equally,	some	positive	correlations	were	identifi	ed	
between	positions	of	specifi	c	nucleotides	and	siRNA	suppressing	effi	ciency.	These	features	
may	refl	ect	positive	effects	on	Argonaute	loading	(strand	selection)	as	well	as	on	target	
recognition.	Analysis	of	the	effi	ciency	of	~600	siRNAs	suggested	higher	siRNA	effi	ciency	
with A/U at positions 10 and 19, a G/C at position 1, and more than three A/Us between 
positions 13 and 19, in the sense strand of the siRNA sequence (Jagla et al., 2005). Fur-
thermore,	specifi	c	residues	at	every	third	position	of	an	siRNA	infl	uence	its	effi	cient	RNAi	

Figure 4 Small RNA domains.
Small RNAs loaded onto AGO proteins can be divided into modules including the 5’ the anchor, seed 
sequence, central part, 3’ supplementary sequence, and tail (Wee et al., 2012).
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activity,	which	might	reflect	interaction	with	TARBP2	during	formation	of	the	RNA-in-
duced silencing complex (RISC) (Katoh and Suzuki, 2007). 
Target	 recognition	by	siRNAs	 is	highly	specific.	However,	discrimination	of	RNAi	

between two sequences differing by a single nucleotide varies according to the position of 
the mismatch. A systematic analysis of single-nucleotide mutations in target sites of a func-
tionally validated siRNA showed that the position of the mismatched base pair and the 
identity of the nucleotides forming the mismatch matter for effective silencing (Du et al., 
2005). A:C mismatches were, in addition to the G:U wobble base pairs, surprisingly well 
tolerated	and	target	sites	containing	such	mismatches	were	silenced	almost	as	efficiently	
as with full complementarity (Du et al., 2005). G:U wobble base pairing in the central part 
of the antisense strand caused a pronounced decrease in activity, while mutations at the 5’ 
and 3’ends were well-tolerated (Holen et al., 2005). Interestingly, analysis of siRNA selec-
tivity suggested that siRNAs with G:U wobble base pairs or a mismatches located in the 
“seed”	are	discriminating	less	between	perfect	and	mismatched	target	than	those	in	which	
the mismatch was located 3’ to the seed (nucleotides 9–14); this region is critical for target 
cleavage but not siRNA binding (Schwarz et al., 2006).

miRNAs with extensive base pairing

Target	recognition	by	miRNAs	in	plants	is	commonly	thought	to	involve	extensive	base	
pairing and RNAi-like cleavage of the target (reviewed in Axtell, 2013; Wang et al., 2015). 
This	notion	stems	from	the	perfect	complementarity	between	miR171	and	its	SCARE-
CROW-LIKE	(SCL)	mRNA	target,	which	was	the	first	identified	miRNA:mRNA	inter-
action in plants (Llave et al., 2002). However, the perfect complementarity is rather an 
exception	as	most	of	the	identified	miRNA	targets	in	plant	cells	have	some	imperfect	base	
pairing (summarized in (Jones-Rhoades and Bartel, 2004; Jones-Rhoades et al., 2006)). 
Extensive base pairing and microRNA-directed RNAi-like cleavage exists also in animals 
but it is rare; one of the exceptional cases is HOXB8 mRNA cleavage by miR-196 (Yekta 
et al., 2004)

Mismatches to the miRNA 5’ regions strongly reduce repression but are found in several 
natural miRNA-binding sites while miRNA binding with a few mismatches to the miRNA 
3’ regions are common in plants and are often equally (or even more) effective as perfect-
ly matched sites (Liu et al., 2014b). Central mismatches interfere with repression (Liu 
et al., 2014b). However, miR398 in Arabidopsis	binds	5’uTR	of	the	blue	copper-binding	
protein mRNA with a bulge of six nucleotides opposite to the 5’ region of the miRNA 
(Brousse	et	al.,	2014).	These	and	other	studies	led	to	consensus	base	pairing	rules	for	
a functional plant miRNA-target interaction: little tolerance for mismatches at positions 
2–13, with especially little tolerance of mismatches at positions 9–11, and more tolerance 
of	mismatches	at	positions	1,	and	14–21	(Wang	et	al.,	2015).	This	is	in	contrast	with	ani-
mal	miRNAs	where	pairing	at	positions	2–7	can	be	sufficient	for	a	functional	interaction	
(Bartel, 2009).
High	sequence	complementarity	in	mammals	may	be	coupled	with	Argonaute	“unload-

ing”.	It	was	found	that	highly	complementary	target	RNAs	significantly	accelerate	release	
of the guide RNA from Ago2. Unloading can be enhanced by mismatches between the 
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target and miRNA’s 5’ end and attenuated by mismatches to miRNA’s 3’ end (De et al., 
2013).

Imperfect base pairing of miRNAs

Animal	miRNAs	typically	base	pair	 imperfectly	with	 their	 targets.	Target	sites	can	be	
grouped	into	two	broad	categories.	5’	dominant	sites	have	sufficient	complementarity	to	
the miRNA 5’ end to function with little or no support from pairing to the miRNA 3’ end. 
Indeed, sites with 3’ pairing below the random noise level are functional given a strong 
5’	end.	In	contrast,	3’	compensatory	sites	have	insufficient	5’	pairing	and	require	strong	
3’ pairing for function (Brennecke et al., 2005). Accordingly, I will separately discuss the 
canonical base pairing involving miRNA’s 5’ end (the seed) and the non-canonical (seed-
less) interactions. I will start with the canonical interaction involving base pairing of the 
seed because it is the most studied and integrates knowledge from structural studies as well 
as sequence analyses. 

Seed-involving interactions

The	seed	sequence	concept	emerged	already	during	pioneering	work	on	miRNA	annotation	
where it became apparent that miRNAs form families sharing 5’ sequences (Lagos-Quintana 
et	al.,	2001;	Lau	et	al.,	2001;	Lee	and	Ambros,	2001).	Then	it	became	clear	that	the	seed	
sequence is a strong predictor for miRNA targets (Lewis et al., 2005; Sood et al., 2006) as 
well as for siRNA off-targeting (Jackson et al., 2006b). An analysis of more than 18,000 
high-confidence	miRNA-mRNA	 interactions	 suggested	 that	 binding	 of	most	miRNAs	
includes the 5’ seed region, while around 60% of seed interactions contained bulged or 
mismatched	nucleotides	(Helwak	et	al.,	2013).	The	molecular	mechanism	of	miRNA	and	
target	recognition	(reviewed	in	Bartel,	2009)	provides	an	explanation	for	the	significance	of	
the seed sequence and, while there are also small RNA:target mRNA interactions that do not 
involve	the	seed	sequence,	the	concept	of	the	seed	is	sufficient	to	explain	that	any	AGO-load-
ed small RNA in any cell type has the potential to interact with hundreds and thousands of 
different mRNAs. In fact the estimates for human mRNAs targeted by miRNAs are between 
30 and >60% (Friedman et al., 2009; Lewis et al., 2005).
The	seed	region	is	generally	defined	as	a	7nt	region	mapping	to	positions	2–8	and	it	

strongly	confers	specificities	of	animal	miRNAs	to	their	mRNA	targets.	There	is	a	high	
functional cost of even single nucleotide changes within seed regions, which is consistent 
with their high sequence conservation among miRNA families both within and between 
species and suggests processes that may underlie the evolution of miRNA regulatory con-
trol	(Hill	et	al.,	2014).	The	target	specificity	determined	by	the	seed	has	evolutionary	and	
biological implications because single nucleotide polymorphisms in canonical miRNA 
binding sites would affect miRNA-mediated regulations, a notion supported also by exper-
imental	data	(Afonso-Grunz	and	Muller,	2015;	Vosa	et	al.,	2015).
The	canonical	7nt	seed	can	be	divided	into	several	types	(Ellwanger	et	al.,	2011).	More	

specifically,	the	core	seeds	have	been	described	as	a	6-mer	(bases	2–7),	7-mer	(“7-mer-A1”	
being	bases	1–7,	and	“7-mer-m8”	being	bases	2–8),	and	8-mer	(bases	1–8);	sometimes	the	
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7-mer-A1	and	8-mer	seeds	are	required	to	have	an	adenine,	‘A’,	as	the	first	nucleotide	types	
(Bartel, 2009; Ellwanger et al., 2011). 

Longer seeds, i.e. seeds of 7 or 8 nucleotides in length are more evolutionarily con-
served	than	shorter	ones	(Ellwanger	et	al.,	2011).	Longer	seeds	confer	higher	specificity	and	
repression. It was reported that the extent of the seed match has a strong impact on resulting 
target repression: single 8 mer seed match mediates down-regulation comparable to two 
7 mer seed matches (Nielsen et al., 2007). However, others did not observe a linear relation-
ship between seed length and miRNA expression dysregulation, which does not support the 
hypothesis	the	seed	region	length	alone	influences	mRNA	repression.	(Mullany	et	al.,	2016)
In	any	case,	the	majority	of	functional	target	sites	seems	formed	by	less	specific	seeds	

of only 6 nt indicating a crucial biological role of this type (Ellwanger et al., 2011). In fact, 
pairing	at	positions	2–7	is	sufficient	for	a	functional	interaction	of	animal	miRNAs	with	
their targets (Bartel, 2009). In contrast, seed pairing does not appear to be critical for land 
plant miRNAs (Liu et al., 2014b). 
The	minimal	requirement	for	miRNA:mRNA	interactions	in	animals	explains	the	large	

numbers of targets of animal miRNAs and the fact that, the majority of functional sites is 
poorly detected by common prediction methods (Ellwanger et al., 2011). While the initial 
studies suggested that average miRNAs have approximately 100 target sites (Brennecke 
et	al.,	2005),	subsequent	bioinformatics	and	experimental	identification	of	miRNA	targets	
suggest even higher number of target sites.
There	are	several	targeting	determinants	that	enhance	seed	match-associated	mRNA	

repression, including the presence of adenosine opposite miRNA base 1 (this function-
ality is explained by Argonaute protein structure (Schirle et al., 2015)) and of adenosine 
or uridine opposite miRNA base 9, independent of complementarity to the siRNA/miR-
NA (Lewis et al., 2005; Nielsen et al., 2007). Furthermore, seed-based canonical target 
recognition was dependent on the GC content of the miRNA seed – low GC content in 
the seed was coupled with non-canonical target recognition. (Wang, 2014). Additional 
reported determinants beyond seed pairing include: AU-rich nucleotide composition near 
the site, proximity to sites for co-expressed miRNAs (which leads to cooperative action), 
proximity	to	residues	pairing	to	miRNA	nucleotides	13–16,	positioning	within	the	3’uTR	
at	least	15	nt	from	the	stop	codon,	and	positioning	away	from	the	center	of	long	uTRs	
(Grimson et al., 2007).

Non-canonical – non-seed interactions

There	is	large	variety	of	miRNA-target	duplex	structures,	which	include	seedless	interac-
tions	(reviewed	in	Cipolla,	2014;	Seok	et	al.,	2016a).	The	existence	of	seedless	interactions	
explains reports that perfect seed pairing is not a generally reliable predictor for miRNA-tar-
get interactions (Didiano and Hobert, 2006). Despite attempts to classify non-canonical 
interactions (Xu et al., 2014b) and tertiary structure-based modelling of miRNA interac-
tions (Gan and Gunsalus, 2015), bioinformatic prediction of non-canonical interactions is 
far from ideal. A solution is integration of bioinformatic target prediction with biochemi-
cally	identified	miRNA	binding	sites.	Such	analyses	suggested	that	most	miRNA	targets	
were of a non-canonical type, i.e. not involving perfect complementarity in the seed region 
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(Khorshid et al., 2013; Wang, 2014). Importantly, analysis of AGO-associated mRNAs that 
lack seed complementarity with miRNAs suggested that AGO might have its own binding 
preference within target mRNAs, independent of guide miRNAs (Li et al., 2014). A structur-
ally accessible and evolutionarily conserved region (~10 nucleotides in length) was identi-
fied	that	alone	can	accurately	predict	AGO-mRNA	associations,	independent	of	the	presence	
of miRNA binding sites (Li et al., 2014). In any case, the impact of non-canonical targeting 
regarding target downregulation is not fully resolved (Khorshid et al., 2013; Martin et al., 
2014; Wang, 2014).

Other important factors influencing target recognition and repression

It is important to recognize that sequence complementarity between a small RNA and its 
putative	target	is	not	sufficient	to	make	any	prediction	about	silencing	of	the	target	because	
there	are	other	important	factors	at	play.	The	two	most	important	are	discussed	in	the	next	
two sections are (I) the binding site accessibility and (II) stoichiometry between a small 
RNA ant its target (or binding kinetics). Other factors, which might contribute to silencing 
in a context-dependent manner are, for example, alternative polyadenylation and arrange-
ment	of	miRNA	binding	sites	in	3’uTRs	might	cause	different	effects	in	different	cells	
(Hon	and	Zhang,	2007;	Majoros	and	Ohler,	2007;	Nam	et	al.,	2014a).	In	particular,	there	
was a strong preference reported for targets to be located in close vicinity of the stop codon 
and the polyadenylation sites. (Majoros and Ohler, 2007).

Binding site accessibility

Mere	sequence	complementarity	is	not	a	sufficient	predictor	whether	base	pairing	will	
occur in vivo. RNA molecules always form secondary structures and, in the cellular context, 
a number of proteins interacts with RNA molecules. Accordingly, secondary structures or 
RNA	binding	proteins	may	prevent	base	pairing	of	two	complementary	sequences.	The	
issue of sequence accessibility was recognized during early RNAi experiments with sto-
chastic	knockdown	efficiency.	When	searching	for	factors	influencing	knock-down	efficien-
cy, attention turned to the local RNA structure at siRNA target sites and it was demonstrated 
that	local	RNA	target	structure	is	an	important	factor	for	siRNA	efficacy	(Schubert	et	al.,	
2005). Accordingly, siRNA design tools started to accommodate not only properties of 
siRNAs	but	also	properties	of	the	target	site	because	it	strongly	increased	efficiency	of	
designed	siRNAs	(Heale	et	al.,	2005,	2006;	Shao	et	al.,	2007;	Tafer	et	al.,	2008).

Systematic investigation of siRNA:target RNA interactions and the effect of local sec-
ondary structures provided also insights into the molecular mechanism of target recognition. 
It was shown in vitro and in vivo, that the accessibility of the target site correlates directly 
with	the	efficiency	of	cleavage,	demonstrating	that	RISC	is	not	unfolding	structured	RNA	
(Ameres et al., 2007). During target recognition, RISC transiently contacts single-stranded 
RNA	nonspecifically	and	promotes	siRNA-target	RNA	annealing	(Ameres	et	al.,	2007).The	
seed of Argonaute-associated siRNA creates a thermodynamic threshold that determines the 
stable association of RISC and the target RNA (Ameres et al., 2007). 
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The	same	principles	apparently	apply	for	miRNA-mediated	repression	(Long	et	al.,	
2007; Xu et al., 2014b). Mutations diminishing target accessibility substantially reduce 
microRNA-mediated translational repression, with effects comparable to those of mutations 
that disrupt sequence complementarity (Kertesz et al., 2007).

small RNA:target RNA stoichiometry and binding kinetics

The	second	critical	factor	for	target	repression	is	stoichiometry	between	a	small	RNA	ant	
its	target.	This	is	especially	important	for	the	miRNA-like	type	of	target	repression	because	
a miRNA must remain associated with its target RNA in order to induce its translational 
repression	and	degradation.	Thus,	suppression	of	a	specific	mRNA	by	a	miRNA	requires	
enough miRNA molecules that would assure enough interactions with binding sites in that 
particular RNA while these binding sites essentially compete with all binding sites for that 
miRNA in the transcriptome.

Biochemical analyses of stoichiometry and kinetics 

Kinetic data should be taken as a biochemical range for any hypotheses concerning target 
recognition and biological effects of small RNAs in the context of loaded RISC. Among 
these is a detailed kinetic study of Drosophila and mouse AGO2 RISCs (Wee et al., 2012).

It was shown that siRNA-programmed RISC is a classical Michaelis-Menten enzyme in 
the	presence	of	ATP	(Haley	and	Zamore,	2004).	In	the	absence	of	ATP,	the	rate	of	multiple	
rounds	of	catalysis	is	limited	by	release	of	the	cleaved	products	(Haley	and	Zamore,	2004).	
Kinetic analysis suggests that different regions of the siRNA play distinct roles in the cycle 
of	target	recognition,	cleavage,	and	product	release	(Haley	and	Zamore,	2004).	Later,	it	
was shown that Argonaute divides its RNA guide into domains with distinct functions 
and RNA-binding properties. (Wee et al., 2012) According to this analysis, small RNAs 
loaded	onto	AGO	proteins	are	actually	composed	of	five	distinct	modules	the	anchor,	seed,	
central, 3’ supplementary, and tail (Fig. 4) (Wee et al., 2012). Bases near the siRNA 5’ end 
disproportionately contribute to target RNA-binding energy, whereas base pairs formed by 
the central and 3’ regions of the siRNA provide a helical geometry required for catalysis 
(Haley	and	Zamore,	2004).	Mouse	AGO2,	which	mainly	mediates	miRNA-directed	repres-
sion in vivo, dissociates rapidly and with similar rates for fully paired and seed-matched 
targets (Wee et al., 2012). An important conclusion from this study is that low-abundant 
miRNAs are unlikely to contribute much biologically meaningful regulation because they 
are present at a concentration less than their KD for seed-matching targets, which are in 
a picomolar range (Wee et al., 2012). Another study characterized siRNA binding, target 
RNA	recognition,	sequence-specific	cleavage	and	product	release	by	recombinant	human	
Ago	2	(hAgo2).	This	yielded	a	minimal	mechanistic	model	describing	fundamental	steps	
during	RNAi,	which	is	consistent	with	a	“two-state”	model	of	RISC	action	(Deerberg	et	al.,	
2013).	Finally,	it	was	found	that	Mg2+	concentration,	influences	AGO2	structural	flexibility	
and	is	important	for	its	catalytic/functional	activity,	with	low	[Mg2+]	favoring	greater	Ago2	
flexibility	(e.g.,	greater	entropy)	and	less	miRNA/mRNA	duplex	stability,	thus	favoring	
slicing(Nam et al., 2014b).
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Importantly, it seems that miRNA:mRNA stoichiometry cannot be simply determined by 
quantifying	RNAs.	Quantification	of	Argonaute-associated	endogenous	miRNAs	or	exoge-
nous siRNAs in cultured cells suggested that only a small proportion (even <10%) of such 
small RNAs is loaded on Argonautes (Janas et al., 2012; Stalder et al., 2013). Furthermore, 
a substantial percentage of the miRNA pool associated with mRNAs without Argonautes 
(Janas et al., 2012; Stalder et al., 2013). It was also found that endogenous human miRNAs 
vary widely, by >100-fold, in their level of RISC association and show that the level of Ago 
binding is a better indicator of inhibitory potential than is the total level of miRNA expres-
sion	(Flores	et	al.,	2014).	Together,	these	data	indicate	that	the	level	of	RISC	association	
of a given endogenous miRNA is regulated by the available RNA targetome and predicts 
miRNA function. (Flores et al., 2014).

Small RNA:target RNA binding single-molecule analysis

Recent advances in single-molecule analysis brought also single- molecule data about 
RISC:target interaction, which is consistent with other biochemical data and the two state 
model	for	Argonaute	action	(Li	and	Zhang,	2012;	Zander	et	al.,	2014).
Loaded	AGO2	utilizes	short	RNAs	as	specificity	determinants	with	thermodynamic	and	

kinetic properties more typical of RNA-binding proteins. A small RNA loaded on Argo-
naute	does	not	follows	rules	by	which	free	oligonucleotides	find,	bind,	and	dissociate	from	
complementary nucleic acid sequences (Salomon	et	al.,	2015).	This	is	conceivable	given	
the	fixed	“A”	conformation	of	the	seed	of	a	small	RNA	loaded	on	an	Argonaute	protein.
Single-molecule	fluorescence	experiments	using	a	minimal	RISC	(a	small	RNA	and	

AGO2) showed that target binding starts at the seed region of the guide RNA (Chandra-
doss et al., 2015; Jo et al., 2015a; Jo et al., 2015b). AGO2 initially scans for target sites 
with	complementarity	to	nucleotides	2–4	of	the	miRNA.	This	initial	transient	interaction	
propagates into a stable association when target complementarity extends to nucleotides 
2–8.	This	stepwise	recognition	process	is	coupled	to	lateral	diffusion	of	AGO2	along	the	
target RNA, which promotes the target search by enhancing the retention of AGO2 on the 
RNA	(Chandradoss	et	al.,	2015).	Stable	RISC	binding	is	thus	efficiently	established	with	
the seed match only, providing a potential explanation for the seed-match rule of miRNA 
target selection (Chandradoss et al., 2015; Jo et al., 2015a; Jo et al., 2015b). Mouse AGO2 
binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved 
product contains more base pairs (Salomon et al., 2015). Annealing between miRNA and 
its target with poor seed match proceeds in a stepwise way, which is in accordance with the 
increase in the number of conformational states of miRNA-target duplex accommodated 
by the miRISC, suggesting the structural plasticity of human miRISC to conciliate the mis-
matches	in	seed	region	(Li	and	Zhang,	2012)
Target	cleavage	required	extensive	sequence	complementarity	and	accelerated	core-

RISC dissociation for recycling (Jo et al., 2015a) and sensitively depended on the sequence 
(Jo et al., 2015b). While RISC generally releases the 5’ cleavage fragment from the guide 
3’	supplementary	region	first	and	then	the	3’	fragment	from	the	seed	region.	This	order	can	
be reversed by extreme stabilization of the 3’ supplementary region or mismatches in the 
seed	region.	Therefore,	the	release	order	of	the	two	cleavage	fragments	is	influenced	by	the	
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stability in each region, in contrast to the unidirectional base pairing propagation from the 
seed to the 3’ supplementary region upon target recognition.(Yao et al., 2015).

Off-targeting – causes and remedies

Off-targeting effects surfaced as a major issue in RNAi experiments when the effects of 
RNAi treatment were systematically analyzed (Fedorov et al., 2006; Jackson et al., 2003; 
Lin et al., 2005; Scacheri et al., 2004; Snove and Holen, 2004). One of the most revealing 
data came from mammalian cells transfected with different siRNAs targeting the same gene, 
which were systematically analyzed using microarrays (Jackson et al., 2003). Using 16 dif-
ferent siRNAs against IGF1R and 8 different siRNAs against MAPK14, strong siRNA-spe-
cific	expression	changes	were	found	in	transfected	cells	with	only	a	few	genes	regulated	
in common by siRNAs targeting the same gene. Off-targeting effects were also found also 
in other animal models (Ma et al., 2006) and plants (Xu et al., 2006). In fact, off-targeting 
causes	a	significant	bias	in	high-throughput	RNAi	screens	(Ma	et	al.,	2006)

Off-targeting is concentration dependent, it could be attributed to both siRNA strands, 
and a portion of off-targeting appears to be caused by partial complementarity between 
a siRNA and its target, reminiscent of the 5’ seed regions of miRNAs (Aleman et al., 2007; 
Birmingham et al., 2006; Jackson et al., 2003; Jackson et al., 2006b; Qiu et al., 2007). In 
some cases of off-targeting, no correlation between predicted and actual off-target effects 
was	reported	(Hanning	et	al.,	2013).	However,	this	probably	reflects	problems	of	accurate	
miRNA target prediction rather than the absence of miRNA-like off-targeting. In any case, 
a	recent	systematic	analysis	of	off-targeting	effects	confirmed	that	strength	of	base	pairing	
in	the	siRNA	seed	region	is	the	primary	factor	determining	the	efficiency	of	off-target	
silencing (Kamola et al., 2015)
The	main	cause	of	off-targeting	is	miRNA-like	behavior	of	siRNAs.	It	was	experimen-

tally demonstrated in mammalian cells that siRNAs can function as miRNAs (Doench 
et al., 2003) and that siRNAs imperfectly matching endogenous mRNAs repress transla-
tion (Martin and Caplen, 2006; Saxena et al., 2003) suggesting that miRNAs and siRNAs 
use	similar	if	not	identical,	mechanisms	for	target	repression	(Zeng	et	al.,	2003).	The	
current view of mammalian RNAi is that experimental RNAi induced with a siRNA or 
shRNA hijacks the molecular machinery dedicated to the miRNA pathway (reviewed in 
Svoboda, 2014). Consequently, some degree of off-targeting likely occurs in every RNAi 
experiment.

Importantly, experimental RNAi can also cause artifacts through saturation of the  
miRNA pathway, which essentially suppresses normal miRNA function (Khan et al., 2009). 
Exportin 5 seems to be a bottleneck for an effective RNA silencing (Lu and Cullen, 2004; Yi 
et	al.,	2005).	Indeed,	lethal	non-specific	effects	observed	with	type	I	shRNAs	delivered	to	
the mouse liver by a viral vector were linked to the saturation of Exportin 5 (Grimm et al., 
2006). Inhibition of Exportin 5 could also provide an explanation to early lethality defects 
observed during generation transgenic mice carrying class I shRNA expression cassette 
(Cao et al., 2005).
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Suppression and by-passing off-targeting

Off-targeting has been a recurring problem with RNAi experiments, especially in RNAi 
screens searching for novel regulators. Off-targeting was frequently causing false-positive 
results in such screens although this issue has been partially remedied (reviewed in Mohr 
et al., 2014; Petri and Meister, 2013). Below, I list options for dealing with off-targeting, 
which emerged from the literature review.

Appropriate experimental design

This	is	actually	a	simple	solution,	which	emerged	from	initial	experiments	detecting	off-tar-
geting (reviewed in(Svoboda, 2007), which suggested that off-targeting operates through 
miRNA-like	behavior	of	siRNAs	and	is	concentration-dependent.	Thus,	a	proper	practice	
is to use the minimal effective siRNA concentration. Importantly, this step strongly reduces 
off-targeting but it does not eliminate it as the targeting siRNA is still present and functions 
as a miRNA (Jackson et al., 2003; Jackson et al., 2006b).

Pools of siRNA

An extension of a strategy to lower siRNA concentration to the point that off-targeting 
effects in the model system become very low or even undetectable. If a pool of 10 siRNAs 
is used at the same total siRNA concentration, a single siRNA is having ten times lower 
concentration and causes lower off-targeting effects. One can produce an siRNA pool by 
an enzymatic digest of long dsRNA with Dicer or simply purchase a number of siRNAs 
targeting a single mRNA. In fact, some companies offer pre-made siRNA pools. A unique 
type of siRNA pools are siPools, which are produced by in vitro transcription of tandemly 
arrayed siRNA sequences (Hannus et al., 2014)

Bioinformatics filtering

Since the siRNA seed region is strongly associated with off-target silencing (Jackson et al., 
2006b;	Kamola	et	al.,	2015),	it	could	be	used	to	filter	RNAi	screening	data	to	reduce	of	
off-target	rates	(Yilmazel	et	al.,	2014;	Zhong	et	al.,	2014).	In	fact,	revised	analysis	of	RNAi	
screens could identify functionally relevant genes suppressed by off-targeting (Adams 
et al., 2015; Lin et al., 2007; Singh et al., 2015).

Better small RNA design

understanding	of	the	molecular	mechanism	of	RNAi	is	also	reflected	in	constantly	improv-
ing	siRNA	design	which	aims	at	providing	siRNAs	specifically	silencing	a	gene	of	interest	
with little or no off-target effects and no cell toxicity (reviewed in Ahmed et al., 2015; 
Tafer,	2014).	Improved	siRNA	design	can	reduce	off-targeting	in	several	ways.	First,	siR-
NAs	designed	for	efficient	strand	selection	would	have	reduced	off-targeting	caused	by	
AGO-loaded passenger strand. It was also found that increased siRNA duplex stability 
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correlates	with	reduced	off-target	and	elevated	on-target	effects	(Petri	et	al.,	2011).	This	
can	be,	for	example,	influenced	by	the	seed	binding	energy	and	seed	composition,	which	
would determine the pool of potential binding sites in the transcriptome and the difference 
between on-target and off-target RNAs (Das et al., 2013a; Das et al., 2013b). Adaptations 
of siRNA/shRNA design to reduce off-target effects include weak base pairing in both seed 
and 3 ‘ regions (Gu et al., 2014) and evaluation of potential cross-hybridization candidates 
(Anderson et al., 2008; Yamada and Morishita, 2005). Reduced off-targeting features were 
subsequently	integrated	into	siRNA	design	tools	such	as	siDirect	(Naito	and	ui-Tei,	2013;	
Naito et al., 2009).

Mismatch introduction

Mismatch introduction into siRNA at the positions 2 of the base pairing also weakens 
off-targeting (Dua et al., 2011; Li et al., 2015)

Chemical modifications of small RNAs

The	discovery	 that	 off-targeting	 involves	miRNA-like	behavior	 of	 siRNAs	prompted	
research	on	chemical	modifications	that	would	reduce	miRNA-like	behavior	while	not	
interfering with desired RNAi effects (Chiu and Rana, 2003). A thorough review of the 
chemical	modifications	 is	beyond	the	scope	of	 this	report	but	can	be	found	elsewhere	
(Engels,	2013;	Nolte	et	al.,	2013;	Peacock	et	al.,	2011;	Snove	and	Rossi,	2006).	There	are	
two	common	strategies,	to	reduce	off-targeting	–	(I)	Chemical	modifications	on	the	passen-
ger strand preventing its loading, hence eliminating off-targeting caused by the passenger 
strand	(Chen	et	al.,	2008;	Snead	et	al.,	2013)	and	(II)	Chemical	modifications	in	the	seed	
region,	which	interfere	with	miRNA-like	target	recognition	but	do	not	prevent	specific	
RNAi	targeting.	Different	chemistry	was	used	for	chemical	modification	of	siRNAs	with	
reduced	off-targeting	effects	including	unlocked	nucleic	acid	(uNA)	modification	(Snead	
et	al.,	2013),	locked	nucleic	acid	(LNA)	modification	(Fluiter	et	al.,	2009),	2’-O-methyl	
ribosyl (Chen et al., 2008; Jackson et al., 2006a), or abasic nucleotides (Seok et al., 2016b).
Position	of	the	modification	on	the	guiding	strand	is	important	for	reduced	off-target-

ing.	While	it	is	usually	involving	seed,	the	modified	nucleotide	may	vary.	For	example,	
2’-O-methyl ribosyl substitution at position 2 in the guide strand reduces most off-target 
effects caused by complementarity to the seed region of the siRNA guide strand (Jackson 
et al., 2006a). At the same time, an abasic nucleotide at the position 6 in the guide strand 
also eliminates miRNA-like off-target repression but preserves near-perfect on-target activ-
ity (80–100%) (Seok et al., 2016b).

Discerning specific RNAi phenotypes from off-targeting effects 

While strategies for suppressing off-targeting effects clearly reduce experimental artifacts, 
off-targeting should be seen as a type of noise in RNAi experiments that cannot be com-
pletely eliminated. Assuming that some off-targeting occurs in every RNAi experiment, 
one can focus on a more important issue: how to identify biologically relevant effects 
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of	off-targeting	(phenotype)	and	separate	them	from	the	specific	RNAi	effect	caused	by	
knock-down	of	the	desired	gene.	The	idea	is	simple	–	while	one	can	try	to	minimize	off-tar-
geting	effects,	the	risk	cannot	be	completely	eliminated.	Thus,	it	is	equally	important	to	use	
an appropriate experimental design, which allows to distinguish between off-targeting and 
specific	RNAi	effects.	The	two	possible	strategies	were	proposed	a	decade	ago	and	were	
named	“the	two	R’s”:	rescue	and	redundancy	(Echeverri	et	al.,	2006).
The	principle	of	the	rescue	strategy	is	expressing	an	RNAi-resistant	version	of	the	targeted	

gene. If a phenotype is caused by the gene knock-down, it should be rescued. It can be either 
mutated such that the base pairing with a short RNA is eliminated. One can, for example 
target	3’uTR	and	use	a	different	one	in	the	rescue	construct	or	mutate/degenerate	appropriate	
codon	positions	if	targeting	CDS.	This	strategy	is	powerful	because	it	accepts	all	effects	in	
an	RNAi	experiment	and	tests	the	contribution	of	the	specific	gene	knock-down.	For	recent	
information on design of the rescue system see, for example, (Kumar, 2015)
The	second	strategy	is	based	on	phenotype	redundancy.	Two	or	more	RNAi	triggers	

with	different	sequences	(i.e.	specific	siRNAs	or	shRNAs)	producing	the	same	phenotype	
decrease the probability that a phenotype would be caused by off-targeting. However, some 
common phenotypes (e.g. slower growth, apoptosis, and developmental arrest) may be 
a frequent off-targeting phenotype induced by different RNAi triggers, so the redundancy 
strategy would be less powerful than the rescue strategy described above. However, for 
some purposes (e.g. high-throughput RNAi screening), it might be easier to implement the 
redundancy strategy as a control for off-targeting than the rescue strategy.
Importantly,	“non-targeting”	controls	(e.g.	siRNAs	with	a	random	sequence	or	targeting	

non-expressed genes such as EGFP or luciferase) cannot be used controls for off-targeting 
for reasons mentioned above. It is a frequent misconception ignoring the fact that off-tar-
geting	is	individual	to	each	RNAi	trigger	because	it	is	sequence-specific.	“Non-targeting”	
siRNAs or shRNAs RNAs may serve as controls for the sequence-independent effects, such 
as interferon response and saturation of RNA silencing with an excess of exogenous short 
RNAs. If a small RNA is needed as a control for off-targeting, one may only use a pool of 
scrambled small RNAs, which would have highly diluted off-targeting effects.

Target identification – in silico & experimental approaches

Target	identification	is	a	common	issue	in	the	small	RNA	field	(reviewed	for	example	in	
Pasquinelli,	2012;	Tarang	and	Weston,	2014).	Target	identification	can	utilize	bioinformatic	
analysis,	experimental	analysis	or	their	combination.	Briefly,	bioinformatic	analysis	primar-
ily implements the canonical seed-match model, evolutionary conservation, and binding 
energy, which are often complemented by neural networks trained on sets of experimen-
tal	data	in	order	to	optimize	filtering	parameters.	Some	bioinformatics	tools	also	consid-
er non-canonical binding sites. Importantly, a mere presence of a miRNA binding site is 
insufficient	for	predicting	target	regulation	as	additional	factors	influence	the	regulation,	
including the above-mentioned accessibility of a binding site and stoichiometry between 
a	miRNA	and	its	targets.	In	the	end,	experimental	verification	of	microRNA	targets	is	essen-
tial,	prediction	alone	is	insufficient	(Law	et	al.,	2013).
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Target prediction in silico

Identification	of	many	miRNAs	in	model	organisms	prompted	development	of	bioinfor-
matics tools for prediction of targeted mRNAs (Enright et al., 2003; Grun et al., 2005; 
John et al., 2004; Kiriakidou et al., 2004; Krek et al., 2005; Lewis et al., 2003; Stark et al., 
2003). A number of bioinformatics tools emerged for miRNA analysis and target prediction 
(a comprehensive overview of all miRNA analysis tools is provided at https://tools4mirs 
.org/, for recent reviews on bioinformatic target prediction see, for example, (Elton and 
Yalowich,	2015;	Lagana,	2015;	Li	and	Zhang,	2015;	Ristevski,	2015).	A	searchable	data-
base of systematically annotated miRNA tools can be found here: https://tools4mirs.org 
/software/target_prediction/.

Importantly, accurate bioinformatic prediction of miRNA-mediated repression is still 
problematic.	This	was	shown,	for	example,	during	experiments	with	systematically	gen-
erated	artificial	miRNAs	targeting	a	desired	gene	(Arroyo	et	al.,	2014).	It	turned	out	that	
seed-based	artificial	miRNA	design	was	highly	inefficient,	as	the	majority	of	miRNAs	
with even perfect seed matches did not repress either target. Moreover, commonly used 
target	prediction	programs	had	problems	to	discriminate	effective	artificial	miRNAs	from	
ineffective ones, indicating that current algorithms do not fully accommodate important 
miRNA	features	allowing	for	designing	artificial	miRNAs	(Arroyo	et	al.,	2014).	Another	
unresolved issue is reliable prediction of non-canonical (non-seed) miRNA binding sites as 
most algorithms are based on detection of seed-based miRNA binding sites.

Common target prediction tools for animal miRNAs

Among	the	prediction	tools,	several	can	be	highlighted.	These	include	Targetscan,	miRan-
da,	DIANA-microT,	PicTAR,	whose	predictions	were	integrated	into	the	miRBase,	the	
central	annotation	database	for	miRNAs	(Kozomara	and	Griffiths-Jones,	2014)	and	were	
also repeatedly evaluated in benchmark studies (Alexiou et al., 2009; Ding et al., 2012; 
Majoros	et	al.,	2013;	Peterson	et	al.,	2014;	Xu	et	al.,	2014a).	I	add	to	these	also	MIRZA	as	
it is one of the most recent algorithms, which in many aspects outperforms the other ones 
(Gumienny	and	Zavolan,	2015).

Targetscan (http://www.targetscan.org/vert_71/)

Targetscan	is	one	of	the	most	popular	miRNA	target	prediction	tools	and	its	predictions	
are	integrated	in	the	miRBase	(Kozomara	and	Griffiths-Jones,	2014).	It	is	being	devel-
oped in David Bartel’s laboratory as a tool for miRNA target prediction for over a dec-
ade (Lewis et al., 2005; Lewis et al., 2003). It predicts biological targets of miRNAs by 
searching for the presence of conserved 8mer, 7mer, and 6mer sites that match the seed 
region of each miRNA but there is also an optional search for poorly conserved sites. Its 
development included also scoring for binding sites with mismatches in the seed region 
that are compensated by 3’ end pairing (Friedman et al., 2009) an improved quantitative 
model	of	canonical	targeting	(Agarwal	et	al.,	2015)	and	addition	other	features.	The	cur-
rent version considers a site type and fourteen other features and, according to authors, 
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it outperforms other tools and matches high-throughput in vivo crosslinking approaches 
(Agarwal et al., 2015).

DIANA-MicroT (http://diana.imis.athena-innovation.gr/DianaTools/index.php)

DIANA-MicroT	target	prediction	tools	are	another	popular	source	for	miRNA	target	predic-
tion	whose	predictions	are	integrated	with	miRBase	(Kozomara	and	Griffiths-Jones,	2014).	
DIANA-MicroT	tools	are	being	developed	in	Artemis	Hatzigeorgiou’s	laboratory	for	over	
a decade (Alexiou et al., 2010; Kiriakidou et al., 2004; Maragkakis et al., 2009; Maragkakis 
et al., 2011; Megraw et al., 2007; Paraskevopoulou et al., 2013a; Paraskevopoulou et al., 
2013b;	Paraskevopoulou	et	al.,	2016;	Reczko	et	al.,	2011;	Sethupathy	et	al.,	2006;	Vergoulis	
et	al.,	2012;	Vlachos	et	al.,	2012).	MicroT	is	specifically	trained	on	a	positive	and	a	negative	
set	of	miRNA	binding	sites	located	in	3’-uTR	and	CDS	regions.	DIANA	Tools	offer	target	
prediction	algorithms	(microT	v4	and	microT-CDS),	databases	of	experimentally	verified	
miRNA	targets	on	coding	and	non-coding	RNAs	(TarBase	v7.0	and	LncBase),	and	tools	for	
assessment of biological impacts of miRNAs (mirPath). In addition, the Web Server (v5.0) 
supports	workflows	enabling	to	perform	complex	functional	miRNA	analyses.

Pictar (http://www.pictar.org/)

Pictar	is	an	algorithm	for	the	identification	of	microRNA	targets	from	Nikolaus	Rajew-
sky’s laboratory (Grun et al., 2005; Krek et al., 2005). Its predictions are also integrated 
with	miRBase	(Kozomara	and	Griffiths-Jones,	2014).	Pictar	offers	for	searching	of	targets	
of annotated miRNAs or mRNAs. Pictar predicts targets based on complementarity in a 7nt 
seed region, takes into account conservation and uses hidden Markov model approach to 
produce	the	final	score.	In	contrast	to	Targetscan	and	DIANA-MicroT,	Pictar	has	not	been	
intensely developed. While it represents one of the older and simpler target prediction algo-
rithms it is quite accurate prediction tool (Alexiou et al., 2009).

miRanda at microRNA.org – Targets and Expression (http://www.microrna.org/)

miRanda belongs among the pioneering target prediction algorithms (Enright et al., 2003; 
John	et	al.,	2004).	Its	latest	version	miRanda-miRSVR	(Betel	et	al.,	2010;	Betel	et	al.,	
2008) is integrated into target predictions at http://www.microrna.org where one can search 
predictions	for	annotated	miRNAs	in	the	main	experimental	model	organisms.	These	pre-
dictions	are	also	integrated	with	miRBase	(Kozomara	and	Griffiths-Jones,	2014).	miRanda	
analyses	miRNA	sequence	complementarity	with	3’uTRs	and	evaluates	binding	energy,	
conservation	and	binding	site	position	in	the	3’uTR.	miRanda-miRSVR	also	identifies	
non-canonical and non-conserved sites (Betel et al., 2010; Betel et al., 2008).

MIRZA & MIRZA-G (http://www.sib.swiss/zavolan-mihaela/services)

These	tools	are	being	developed	in	Mihaela	Zavolan’s	lab	and	can	be	used	for	the	prediction	
of	miRNA	targets	and	siRNA	off-targets	on	a	genome-wide	scale.	MIRZA	is	biophysical	
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model	of	microRNA-target	interaction	that	enables	accurate	identification	of	microRNA	
targets,	particularly	from	Argonaute-CLIP	data	(Khorshid	et	al.,	2013).	MIRZA-G	employs	
both	the	MIRZA	biophysical	model	as	well	as	other	features	to	predict	microRNA	tar-
get	sites	genome-wide	(Gumienny	and	Zavolan,	2015).	MIRZA-G	performed	better	on	
a	benchmark	test	than	Targetscan	Context+	and	DIANA-microT-v3	(Gumienny	and	Zavol-
an, 2015) making it a good choice for predicting canonical and non-canonical miRNA target 
sites as well as siRNA off-target sites. 

Target prediction for plant miRNAs

Target	prediction	for	plant	miRNAs	differs	from	prediction	of	miRNA	targets	in	animals	
because of frequent highly complementary targets of plant miRNAs. A pioneering study 
of miRNA-mediated repression in plants revealed near-perfect complementarity between 
Arabidopsis miRNAs and their targets suggests suggesting that many plant miRNAs act 
similarly to siRNAs and direct mRNA cleavage (Rhoades et al., 2002). Consequently, miR-
NA target prediction in plants (for a recent review, see, for example, (Mishra et al., 2015)) 
is routinely performed as a relatively simple search for highly complementary mRNA 
sequences without a specialized target prediction algorithm. For example, Singh et al. (Sin-
gh et al., 2016) used for miRNA target prediction in ginger (Zingiber officinale) the follow-
ing three simple criteria, which could be written into a simple search script: 

1) not more than four mismatches allowed between predicted mRNAs and target gene.
2) no mismatches allowed for 10th and 11th positions of complementary site (a cleavage 

site).
3) maximum 4 GU pair was allowed in the complimentary alignment.

Some authors even use for searching sequence similarity between a plant miRNA and 
mRNAs	the	Basic	Local	Alignment	Search	Tool	algorithm	(Huang	et	al.,	2014a).	A	specif-
ic	plant-miRNA-target	analysis	server	is	psRNATarget:	a	plant	small	RNA	target	analysis	
server	(Dai	and	Zhao,	2011),	which	can	be	used	not	only	for	miRNAs	but	also	for	other	plant	
small RNA analysis (Guzman et al., 2013; Huang et al., 2014b; Kumar et al., 2014). Other 
authors use general target prediction algorithms such as Miranda or RNAhybrid either alone 
(Shweta and Khan, 2014) or in more complex arrangements (Kurubanjerdjit et al., 2013).

A systematic evaluation of tools to predict targets of miRNAs and siRNAs in plants was 
provided by Srivastava et al. who compared 11 computational tools in identifying genome-
wide targets in Arabidopsis	and	other	plants.	Among	them,	Targetfinder	was	the	most	effi-
cient in predicting ‘true-positive’ targets in Arabidopsis miRNA-mRNA interactions but 
performed much worse when analyzing data from non-Arabidopsis species. (Srivastava 
et	al.,	2014).	Furthermore,	combination	of	Targetfinder	and	psRNATarget	provides	high	true	
positive	coverage,	whereas	the	intersection	of	psRNATarget	and	Tapirhybrid	outputs	deliver	
highly ‘precise’ predictions. All evaluated tools yielded a large number of ‘false negative’ 
predictions in non-Arabidopsis datasets (Srivastava et al., 2014).
Targets	of	plant	miRNAs,	that	induce	sequence-specific	RNAi-like	cleavage,	can	be	fur-

ther	identified	by	employing	degradome	sequencing,	a	method	determining	RNA	termini.	
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Thus,	in	mRNAs	cleaved	by	a	miRNA	after	its	10th nucleotide, one would observe align-
ment	of	RNA	termini	matching	the	predicted	miRNA	binding	site.	This	strategy	comple-
menting bioinformatics description is further described in the following section.

Common experimental approaches for identification of targets  
of small RNAs

Bioinformatic target prediction is probabilistic. In other words, bioinformatics predic-
tions	identifies	a	set	of	putative	small	RNA	targets,	which	fit	certain	set	of	criteria	and	are	
assigned	a	certain	probability	of	being	targeted	by	a	specific	small	RNA.	At	the	same	time,	
each prediction yields positive and false negative results. A common problem in bioinfor-
matic prediction is reliable prediction of non-canonical targets, whose recognition does 
not involve a complete seed match and, to a lesser extent, prediction of targets recognized 
through non-conserved binding sites. It is common that researchers aiming at target identi-
fication	start	with	bioinformatics	prediction	and	become	entangled	in	the	net	of	prediction	
tools	and	generate	partially	overlapping	lists	of	predicted	targets.	This	strategy	is	inherently	
biased towards canonical conserved miRNA binding sites and the highest scoring targets 
will	have	more	than	one	such	a	site.	However,	this	strategy	is	problematic	for	identification	
of the full set of targets.
Accordingly,	more	reliable	identification	of	small	RNA	targets	usually	combines	bio-

informatics	and	experimental	approaches.	(Chen	et	al.,	2015;	Tarang	and	Weston,	2014;	
Thomson	et	al.,	2011).

High throughput expression analysis

High throughput analysis (expression arrays, RNA sequencing or high-throughput proteom-
ics) can complement target prediction in different ways. One can manipulate the miRNA 
pathway by various means (reviewed, for example in Svoboda, 2015), such as miRNA over-
expression, knock-out or inhibition by complementary oligonucleotides (so-called antag-
omirs) and then identify correlations between target prediction and their actual behavior 
(e.g. Krutzfeldt et al., 2005; Lim et al., 2005; Sood et al., 2006). However, these strategies 
yield only correlative results, i.e. do not directly detect smallRNA:targetRNA interaction.

Small RNA capture strategies

These	strategies	can	be	used	to	identify	either	mRNAs	bound	by	a	small	RNA	or	small	
RNAs	bound	to	a	selected	mRNA.	Identification	of	targets	of	a	small	RNA	employs	deliv-
ery	of	a	tagged	small	RNA	(e.g.	biotinylated	miRNA)	followed	by	an	affinity	capture	to	
co-purify	targets	(Baigude	et	al.,	2012;	Orom	and	Lund,	2007;	Tan	and	Lieberman,	2016).	
These	strategies	are	prone	to	artifacts	because	delivery	of	biotinylated	small	RNAs	can	cre-
ate	nonphysiological	conditions	and	affinity	purification	could	be	influenced	by	the	binding	
site context. 
Identification	of	small	RNAs	bound	to	a	selected	mRNA	(e.g.	miR-CATCH	or	miRIP	meth-

ods) employs capture of a selected RNA with associated small RNA using a complementary 
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oligonucleotide,	which	can	be	used	for	affinity	capture	(e.g.	a	biotinylated	complementary	
oligonucleotide or a complementary oligonucleotide covalently bound to a magnetic bead) 
(Su	et	al.,	2015;	Vencken	et	al.,	2015).	This	strategy	is	suitable	for	detailed	analysis	of	
miRNA-mediated	regulation	of	a	specific	mRNA	but	not	for	a	transcriptome-wide	target	
assessment. One variant employs a tested mRNA fused with a common sequence (EGFP) 
allowing for using the same set of biotinylated DNA anti-sense oligonucleotides for analyz-
ing different mRNAs allowing for increasing the throughput (Wei et al., 2014).

miRNA extension

This	strategy	employs	miRNA	extension	with	a	reverse	transcriptase	on	endogenous	target	
mRNAs.	Purified	hybrid	3’-cDNA-miRNA-5’	molecules	are	used	in	a	second	round	of	
reverse	transcription	and	sequenced	(Vatolin	et	al.,	2006).	However,	this	method	is	prone	to	
artifacts stemming from the variability of miRNA:target mRNA base pairing, which would 
result	in	highly	variable	efficiency	of	reverse	transcription	priming.

Immunoprecipitation of small RNA:target RNA complexes

There	is	a	large	number	of	immunoprecipitation	strategies	aimed	at	purifying	small	RNA:tar-
get RNA complexes, usually by immunoprecipitating them through an Argonaute protein. 
Initial experiments immunoprecipitated native Argonaute complexes without including 
a	cross-linking	step;	immunopurified	RNAs	were	analyzed	on	microarrays	(Easow	et	al.,	
2007; Hendrickson et al., 2008; Karginov et al., 2007). An adaptation of Argonaute immu-
noprecipitation	for	detection	of	specific	miRNA	targets	is	a	RIP	competition	assay	wherein	
anti-miR is titrated into cytosolic extracts prior to Argonaute immunoprecipitation. Direct 
target	transcripts	displaced	by	anti-miR	are	then	identified	based	on	their	depletion	from	IP	
fraction (Androsavich and Chau, 2014)
The	immunoprecipitation	strategy	was	further	developed	into	a	number	of	methods	for	

isolation of small RNAs bound to their targets, which include high throughput sequencing 
of	crosslinking	immunoprecipitation	(HITS-CLIP)	and	crosslinking	ligation	and	sequenc-
ing of hybrids (CLASH) methods (reviewed more detail in Broughton and Pasquinelli, 
2016; Jaskiewicz et al., 2012). 
There	are	several	modifications	of	the	basic	HITS-CLIP.	An	improvement	of	the	basic	

HITS-CLIP	approach	(Chi	et	al.,	2009;	Zisoulis	et	al.,	2010)	came	with	crosslinking	based	
on	photoactivatable	nucleosides	such	as	4-thiouridine,	a	CLIP	modification	known	as	pho-
toactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) 
(Hafner	et	al.,	2010;	Hafner	et	al.,	2012).	PAR-CLIP	offers	more	efficient	crosslinking,	
hence	up	to	three	orders	of	magnitude	better	RNA	recovery	than	HITS-CLIP	(Hafner	et	al.,	
2010). Furthermore, PAR-CLIP also allows for precise localization of miRNA binding site 
as cross-linked 4-thiouridine marks the cross-linked site with frequent thymidine to cytidine 
change, which is revealed by deep sequencing (Hafner et al., 2010).
Another	modified	strategy	is	covalent	ligation	of	endogenous	Argonaute-bound	RNAs	

crosslinking immunoprecipitation (CLEAR-CLIP) which enriches miRNAs ligated to their 
endogenous mRNA targets (Moore et al., 2015). CLEAR-CLIP approach is in principle 
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the	same	as	the	above-mentioned	CLASH	(Helwak	et	al.,	2013;	Helwak	and	Tollervey,	
2014). Adding ligation of miRNAs to their mRNA targets yields chimeric reads allowing 
for robust detection miRNA:target RNA interactions occurring in vivo. 

Data mining of CLIP data provides not only a comprehensive list of miRNA:target 
mRNA interactions but also provides insights into the principles governing these inter-
actions, which in turn facilitate further improvement of target prediction algorithms. For 
example, an in vivo C. elegans data set and reanalysis of published mammalian AGO-CLIP 
data	yielded	approximately	17,000	miRNA:target	site	interactions.	This	strategy	identified	
canonical, noncanonical, and nonconserved miRNA:targets with about 80% of miRNA 
interactions having perfect or partial seed complementarity (Grosswendt et al., 2014). 
Another	comprehensive	analysis	of	34	Argonaute	HITS-CLIP	datasets	from	human	and	
mouse	cells	revealed	that	many	heteroduplexes	are	“non-canonical”	i.e.	their	seed	region	
comprises G:U and bulge combinations (Clark et al., 2014).

CLIP strategies are nowadays popular for high-throughput analysis of physiological miR-
NA targets (Chi et al., 2012; Chi et al., 2009; Clark et al., 2014; Grosswendt et al., 2014; 
Haecker and Renne, 2014; Hafner et al., 2010; Imig et al., 2015; Leung et al., 2011; Liu 
et	al.,	2014a;	Marin	et	al.,	2012;	Zisoulis	et	al.,	2010)	and	it	is	accompanied	with	a	number	
of	algorithms	and	databases	facilitating	identification	of	miRNA	targets	in	high-throughput	
CLIP data (Balaga et al., 2012; Bandyopadhyay et al., 2015; Chou et al., 2013; Erhard et al., 
2013; Guo et al., 2015; Hsieh and Wang, 2011; Hsu et al., 2015; Liu et al., 2013; Paraskev-
opoulou et al., 2013a; Rennie et al., 2014; Wang et al., 2013; Wang et al., 2014; Xie et al., 
2014; Yang et al., 2011).

Degradome analysis

It was mentioned above in the section discussing target prediction for plant miRNAs that 
when	small	RNA-target	RNA	interaction	results	in	RNAi-like	cleavage,	identification	of	
targets	can	be	experimentally	augmented	by	degradome	sequencing.	This	sequencing	allows	
for	identification	of	RNA	termini,	including	those	created	by	RNAi-like	cleavage.	Thus,	if	
there are mRNAs cleaved by a miRNA after its 10th nucleotide, one would observe align-
ment of RNA termini matching the predicted miRNA binding site. Degradome analysis 
usually	defines	a	category	of	transcripts	predicted	to	be	endonucleolytically	cleaved	and	then	
are cleavage positions compared to predicted miRNA binding sites (Ding et al., 2016; Fan 
et al., 2016; Li and Sunkar, 2013; Shao et al., 2013; Wang et al., 2016; Xing et al., 2014). 
Degradome analysis and target prediction has been integrated in to a web resource com-
PARE for plant miRNA target analysis (Kakrana et al., 2014). Degradome analysis can be 
also used in animals to identify rare miRNA targets suppressed by slicing (Park et al., 2013).

Conclusions

Given the nature of the interaction between small RNAs and their target RNAs, target pre-
diction will always yield putative targets with partial complementary. For seed-mediated 
interactions, there can easily be hundreds of targets predicted for any small RNA acting 
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as	a	miRNA.	This	is	due	to	the	combination	of	the	following	facts:	a)	a	specific	hexam-
er sequence occurs in a random sequence with a theoretical frequency of 1/4096 and b) 
exons of protein-coding genes constitute 70–80 megabases of well-annotated mammalian 
genomes (and exome size of eukaryotic genomes might not be dramatically smaller than 
that).	Therefore,	a	hexamer	would	occur	in	a	mammalian	exonic	sequence	on	average	~20	
000x	and	if	1%	of	these	hexamers	would	fit	other	target	site	prediction	criteria,	that	would	
leave on average 200 potential binding sites.
The	bottom	line	is	that	applying	a	minimal	base	pairing	criterion	for	miRNA-like	inter-

action will identify a number of potential targets in any eukaryotic organism. At the same 
time,	sequence	based	target	prediction	is	insufficient	to	assess	whether	there	will	be	target	
repression	induced	by	a	specific	small	RNA	when	introduced	into	an	animal	or	mammal	
because	there	is	a	number	of	other	critical	parameters,	which	must	be	considered.	Two	of	
them	stand	out	above	anything	else:	1)	the	amount	of	the	specific	small	RNA	loaded	on	
Argonaute	proteins,	and	2)	target	site	accessibility.	Thus,	target	assessment	of	small	RNAs	
needs to address these two parameters. While target accessibility can be considered a rela-
tively common feature for all organisms since the same rules would apply for RNA folding 
and interference caused by RNA binding proteins (translation machinery etc.), loading of 
a small RNA onto Argonaute proteins depends on factors which may dramatically differ 
between different organisms. For example, organisms that exhibit environmental RNAi 
would be much more prone to the uptake of small RNAs. Factors such as length, chemical 
modifications,	or	terminal	nucleotides	of	a	small	RNA,	could	underlie	differences	in	sort-
ing	and	loading	to	the	various	Argonaute	proteins.	Thus,	possible	fates	of	a	specific	small	
RNA	in	a	specific	organism	are	difficult	to	predict	and	should	be	tested	experimentally.	The	
most informative parameter is the amount (number of molecules) of a small RNA in ques-
tion, which would be loaded on an Argonaute protein (e.g. AGO1 and AGO2 in animals), 
because it could be compared with known kinetic data to assess the strength of potential 
repressive effects it could achieve in vivo.
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ABSTRACT

RNA silencing is a common term for mechanisms where small RNAs guide repression of other RNAs (mRNAs, 
retrotransposon	RNAs,	viral	RNAs)	in	a	sequence-specific	manner.	RNA	silencing	exists	among	eukaryotic	or-
ganisms	where	the	core	mechanisms	evolved	into	many	variants	with	different	biological	functions.	The	two	
most common RNA silencing pathways are microRNA (miRNA) and RNA interference (RNAi). While the miR-
NA pathway serves for negative regulation of endogenous genes, RNAi pathway usually functions as a form of 
protection against parasitic sequences although it also targets endogenous genes in some cases. Notably, RNA 
silencing does not often operate in a cell-autonomous manner. In a number of cases, small RNAs were detected in 
extracellular environment and were observed to pass through cells and even to be transferred between organisms. 
This	review	provides	an	overview	of	“mobile”	small	RNAs,	with	a	particular	focus	on	miRNAs	and	short	interfer-
ing RNAs (siRNA) of the RNAi pathways, which exert their effects in different species than they originate from.

Introduction

RNA	silencing	utilizes	small	RNAs	as	sequence-specific	guides	for	repression	of	cognate	
RNAs.	The	two	most	common	small	RNA	pathways	are	microRNA	(miRNA)	and	RNA	
interference (RNAi) pathways (Fig. 1). miRNA and RNAi are typically presented in a cell 
autonomous manner, i.e. repression remains restricted to cells directly exposed to dsRNA. 
However,	small	RNA-mediated	repression	can	propagate	across	cell	boundaries.	There	are	
two distinct modes of non-cell autonomous RNAi (Fig. 2, (Whangbo and Hunter, 2008)): (1) 
systemic RNAi includes processes where a silencing signal spreads from a cell across cellular 
boundaries into other cells and (2) environmental RNAi, which involves processes where 
dsRNA is taken up by a cell from the environment. Both modes can be combined in different 
ways. For example, gene silencing by soaking C. elegans in dsRNA solution is a combination 
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of	environmental	and	systemic	RNAi	(Tabara	et	al.,	1998).	Non-cell	autonomous	RNAi	has	
been discovered also in parasitic nematodes (Geldhof et al., 2007), hydra (Chera et al., 2006), 
planaria	(Newmark	et	al.,	2003;	Orii	et	al.,	2003),	insects	(Tomoyasu	et	al.,	2008;	Xu	and	
Han, 2008), or plants (Himber et al., 2003). An extreme case would be trans-species (or even 
trans-kingdom) effect where dsRNA or small RNAs (miRNA or siRNA) produced in one 
organism (e.g. plant) would induce silencing in another organism (e.g. insect pest).

Horizontal transfer of small RNAs and its possible consequences

Plant-pathogen transfer & artifi cial plant resistance to pathogens

RNA silencing can spread out of a plant as demonstrated by RNAi-inducing transgenes, 
which can extend their effects into nematodes (Huang et al., 2006), insects (Baum et al., 

Figure 1 Schematic overview of miRNA and RNAi pathways. miRNA pathway is shown from the 
moment of miRNA precursor (pre-miRNA) processing by Dicer. miRNAs are genome-encoded and 
pre-miRNAs are produced from long primary transcripts with local small hairpin structures, which are 
processed to give rise to pre-miRNA. While both pathways show distinct modes of repression, miR-
NAs cully complementary to cognate mRNAs, which are common in plants but rare in mammals, can 
also induce RNAi-like cleavage. At the same time, siRNAs with partial complementarity can induce 
miRNA-like translational repression in mammalian cells. RdRP component of RNAi is present in some 
taxons (plants, nematodes) but some species execute RNAi without it (vertebrates, insects).
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2007; Mao et al., 2007), parasitic fungi (Nowara et al., 2010) or another plant through 
a	parasitic	plant	intermediate	(Melnyk	et	al.,	2011).	Thus,	trans-kingdom	RNAi	combining	
systemic & environmental RNAi has biotechnological implications as it allows for pro-
ducing	a	genetically	engineered	plant,	which	can	be	resistant	to	a	specifi	c	virus	or	even	
induce	an	RNAi	effect	in	a	selected	recipient	(Mansoor	et	al.,	2006).	This	can	be	explored,	
for example, for producing plants expressing dsRNA and selectively targeting RNAi-sen-
sitive pests with an outcome of choice, e.g. repelling the pest, immobilizing it, steriliz-
ing it (Bhatia et al., 2012), or killing it (Baum et al., 2007; Kola et al., 2016). Given the 
genome	sequence	diversity	and	relatively	high	sequence-specifi	city	of	RNAi,	RNAi	offers	
an adjustable selectivity for pest control. At the same time, this new technology might 
raise safety concerns. If the small RNAs can spread, could an RNAi-inducing transgene in 
a plant affect also non-targeted organisms?
The	issue	is	essentially	equivalent	to	off-targeting	effects	of	RNAi	brought	to	a	spe-

cies level. RNAi-off-targeting is a manifestation of the fact that partial base pairing can 
also induce RNA silencing. Consequently, some level of off-targeting in RNA silencing is 
inevitable. However, off-target effects can be suppressed to the point that they are not phe-
notypically	manifested.	The	key	factors	reducing	RNAi	off-targeting	effects	in	trans-king-
dom RNAi are (i) the composition of the small RNA population (Fig. 3) and (ii) amount 

Figure 2 Cell autonomous and cell non-autonomous RNAi
RNAi can either act in a cell autonomous manner, i.e. affecting only cells where RNA silencing was 
initiated. Cell non-autonomous RNA silencing types include systemic, where the RNAi effects propa-
gates across cellular boundaries (e.g. mediated by transport of small RNAs) or environmental where 
the silencing RNA (e.g. dsRNA substrate) can be absorbed from the environment. Systemic and envi-
ronmental RNAi can coexist and contribute to trans-species silencing where, for example, small RNAs 
produced in one species induce silencing in another one.
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of small RNAs loaded on effector complexes, which would exhibit miRNA-like reduced 
sequence-specificity	(i.e.	seed	match).	It	can	be	inferred	directly	from	the	molecular	mech-
anism of RNAi and miRNA pathways that a homogeneous small RNA population where all 
small	RNAs	have	the	same	sequence	(e.g.	represented	by	a	single	specific	siRNA	delivery)	
has a higher off-target risk than a mixture of small RNAs with different sequences (e.g. 
produced from a long dsRNA). 

In transmission of RNA silencing from one species to another, the amount of small RNAs 
loaded	on	effector	complexes	in	the	recipient	species	will	be	influenced	by	(i)	the	nature	of	
the	transferred	silencing	molecule	(small	RNA,	long	dsRNA),	(ii)	efficiency	of	the	transfer,	
and	(iii)	efficiency	of	effector	complex	formation	in	the	recipient	species.	Thus,	species,	
which can absorb long dsRNA and have systemic RNAi like C. elegans	(Tabara	et	al.,	
1998)	are	more	prone	to	exhibit	specific	silencing	effects	as	well	as	off-target	effects.	At	the	
same	time,	significant	off-target	effects	require	specific	conditions	in	terms	of	stoichiometry	
between small RNAs and their targets, which are unlikely to be met upon RNAi induction 
with long dsRNA. 

Extracellular miRNAs in mammals and their transfer

Release of miRNAs from mammalian cells is a well-known phenomenon. Here, I will high-
light features of circulating miRNAs, which are important in the context of this review.

Extracellular circulating mammalian miRNAs were reported in 2008 when they were 
found in serum of lymphoma patients; they were immediately recognized as potential 
non-invasive biomarkers for cancer diagnostics and treatment (Lawrie et al., 2008). In fact, 
the bulk of the circulating RNA literature concerns biomarker potential of circulating miR-
NAs, which is of high clinical relevance but outside the scope of this report. Extracellular 
miRNAs	were	identified	in	a	broad	range	of	biological	fluids	(Baglio	et	al.,	2015;	Dismuke	
et al., 2015; Huang et al., 2013; Izumi et al., 2015; Kropp et al., 2014; Pegtel et al., 2011; 
Wu et al., 2015). Apart from plasma, circulating miRNAs in milk are also intensely studied 
(Alsaweed et al., 2016a, b, c; Benmoussa et al., 2016; Izumi et al., 2012; Izumi et al., 2015; 
Kuruppath et al., 2013; Sun et al., 2013; Xi et al., 2016).
miRNAs	were	identified	in	the	cargo	of	exosomes,	membranous	vesicles	40	to	100	nm	

in diameter, which are constitutively released by almost all cell types and are found essen-
tially	in	every	biological	fluid	(reviewed,	for	example,	in	Rak,	2013;	Yoon	et	al.,	2014).	
Exosomal vesicles can carry miRNAs as well as siRNAs (reviewed in Lasser, 2012) – in 
the latter case, exosomes were adapted as a delivery tool for siRNAs (reviewed in Kumar 
et al., 2015). However, most individual exosomes in standard preparations do not seem to 
contain	biologically	significant	numbers	of	miRNAs	(Chevillet	et	al.,	2014)	and	95–99%	
of circulating miRNA were reported to be associated with AGO proteins and not in extra-
cellular	vesicles	(Arroyo	et	al.,	2011;	Turchinovich	et	al.,	2011).
The	molecular	mechanism	of	miRNA	release,	whether	as	a	cargo	in	a	vesicle	or	not,	is	

unclear	and	so	is	the	function	of	circulating	miRNAs,	if	there	is	any.	Two	distinct	hypoth-
eses were formulated concerning existence of circulating miRNAs (for a detailed review, 
see	(Turchinovich	et	al.,	2016)):
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Cell-to-cell communication hypothesis: According to this hypothesis, miRNAs can 
mediate cell-to-cell signalling. While the hypothesis is supported by circumstantial and cor-
relative	evidence	(reviewed	in	Turchinovich	et	al.,	2016),	a	mechanism	for	sorting,	mobili-
ty, and targeting by mobile miRNAs and their function in vivo	are	unclear.	This	hypothesis	
has to face existing kinetic data (Wee et al., 2012) either by providing reliable evidence that 
suffi	cient	quantities	of	miRNAs	reach	recipient	cells	or	by	identifying	some	non-canonical	
signaling function.

Cellular by-product hypothesis:	This	hypothesis	states	that	circulating	miRNAs	are	
a	non-specifi	c	noise	resulting	from	cell	physiology	and	turnover	of	biological	material	in	
the	organism.	As	such,	circulating	miRNAs	do	not	have	a	specifi	c	cell-to-cell	communica-
tion function and their role in regulating gene expression in other cells is negligible or even 
non-existent. While this hypothesis might be consistent with the kinetic data (Wee et al., 
2012),	one	cannot	exclude	a	possibility	that	the	“noise”	of	circulating	miRNAs	could	yield	
specifi	c	biological	roles	during	evolution.	In	fact,	emergence	of	such	an	adaptation	could	
be expected.
The	scenario	where	the	bulk	of	circulating	miRNAs	would	represent	a	consequence	

of cell physiology while a limited number of circulating miRNAs would represent func-
tionally	relevant	adaptations	might	refl	ect	the	real	situation.	In	any	case,	extensive	and	

Figure 3 Different structures of small RNA populations from different precursors.
Two distinct types of small RNA populations exist: Highly homogeneous small RNAs, exemplifi ed by 
miRNAs, which are present in cells in many (e.g. 103–104) identical copies, i.e. having the same se-
quence, which is “annotateable”. Their biological effect on gene expression is partially predictable even 
if there is only a partial sequence complementarity (typically 6–7 nucleotides at the 5’ end). The second 
type, exemplifi ed by siRNAs derived from various dsRNA, is characterized by existence of populations 
of small RNAs with many different sequences, which originate from a longer dsRNA. Although such 
a population can be sequenced to identify individual sequences, their individual annotation is pointless 
and target prediction is restricted to high complementarity of the substrate dsRNA sequence.
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rigorous	research	is	needed	to	address	the	problem.	This	means	in	particular	designing	
experiments aimed at proving either hypothesis wrong by deciphering underlying molec-
ular mechanisms.

Finally, extracellular mammalian miRNAs can be transmitted from one animal to another 
or even between species. For example, placental miRNAs were found circulating in mater-
nal plasma (Chim et al., 2008). It has also been reported that food-borne plant miRNAs are 
able	to	regulate	gene	expression	in	the	liver	(Zhang	et	al.,	2012a)	or	miRNAs	from	con-
sumed milk might contribute to circulating miRNAs in plasma (Baier et al., 2014) or that 
exosomes secreted by nematode parasites transfer small RNAs to mammalian cells (Buck 
et	al.,	2014).	The	issue	of	xenogenic	miRNAs	is	addressed	in	detail	next.

Exogenic (nutritional, xenogenic) miRNAs in mammals

In	2012,	the	article	by	Zhang	et	al.	proposed	that	miRNAs	from	ingested	plants	could	trav-
erse	into	the	bloodstream	and	suppress	genes	in	the	liver	(Zhang	et	al.,	2012a).	The	report	
sparked an ongoing debate because of potential implications these data could have. 

It should be pointed out that, while the article reported unexpected and surprising results, 
it	was	not	breaking	any	conceptual	dogma.	The	idea	that	information	could	be	transmitted	
from food in a form of a large organic molecule that would traverse into the human organ-
ism has been an integral part of the prion hypothesis, which brought a concept of food-
borne infectious particles made only of proteins (prions, reviewed, for example in Peggion 
et	al.,	2016)).	The	prion	hypothesis,	for	which	Stanley	Prusiner	received	a	Nobel	Prize	in	
1997, is nowadays a biology textbook knowledge. Furthermore, cross-kingdom regulation 
by	small	RNAs	was	discovered	in	RNA	silencing	field	already	in	its	early	years	–	long	
dsRNA expressed in bacteria could induce repression of worm genes with complementary 
sequences	when	worms	were	fed	with	such	bacteria	(Timmons	and	Fire,	1998).	Further-
more, it was already well known in 2012 that feeding on a plant carrying an RNAi-inducing 
transgene can induce RNAi in nematodes, insects, or fungi (Baum et al., 2007; Huang et al., 
2006;	Mao	et	al.,	2007;	Nowara	et	al.,	2010).	Thus,	the	article	by	Zhang	et	al.	was	not	bring-
ing a major shift in existing paradigms but was rather extending knowledge by reporting an 
example of a miRNA activity transferred from plants to mammals through feeding.

The critical issues

The	main	controversy	of	the	field	of	mammalian	nutritional	miRNAs	is	that	its	claims	are	
inconsistent with the molecular mechanism of the mammalian miRNA pathway. Namely, 
there are three areas, which need to be further investigated and receive solid experimental 
support:
(i) Mechanism of the transport. It is unknown how plant miRNAs would be transported 

from the intestinal lumen into liver cells across cell membranes. Mammals have no 
systemic RNAi. miRNA pathway mobility is also limited. It is known that miRNAs 
can be released from cells and be detected in blood plasma (discussed above). While 
circulating	miRNAs	offer	interesting	biomarkers,	their	functional	significance	is	still	
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unclear and the mechanism of their sorting and release is also not understood. What is 
missing is the molecular mechanism transporting miRNAs from the intestinal lumen 
into the blood and into target cells. 

(ii) Effector complex structure. It is unknown how plant miRNAs could regulate mam-
malian genes in mammalian cells. miRNA-mediated repression requires miRNAs to 
be	loaded	on	AGO	proteins.	Thus,	a	plant	miRNA	operating	in	mammalian	cells	must	
either remain with its plant AGO protein, which would have to be compatible with 
mammalian components required for miRNA function, or be unloaded and reloaded 
onto a mammalian Argonaute protein. Importantly, plant miRNAs are methylated at 
their	3’	end	while	mammalian	miRNAs	are	not.	Data	by	Zhang	et	al.	suggest	that	plant	
miRNAs	detected	in	mammalian	serum	are	indeed	methylated	(Figure	1	in	(Zhang	
et al., 2012a)). However, mammalian 3’ small RNA methylation concerns only piR-
NAs, a distinct class of small RNAs produced from sense and antisense RNAs. piR-
NAs are longer (24–30 nt) than siRNAs or miRNAs and are loaded onto a distinct 
subfamily of Argonaute proteins named PIWI (reviewed in Peters and Meister, 2007). 
PIWI proteins are expressed in the germline but not in mammalian somatic cells. In 
contrast, miRNA and siRNA-binding Argonaute proteins (AGO subfamily) do not 
bind	small	RNAs	methylated	at	the	3’	end.	(Tian	et	al.,	2011).	Yet,	it	has	been	reported	
that MIR168 is bound by murine AGO2. 

(iii) Targeting stoichiometry.	The	canonical	miRNA-mediated	post-transcriptional	regu-
lation requires appropriate stoichiometry between miRNAs and their targets. However, 
the evidence that plant miRNAs would reach such physiologically active levels in liver 
cells is questionable. Plant miRNAs were detected in the serum at femtomolar concen-
trations (~3–16 fM), which was one order of magnitude less than the serum level of 
endogenous	miRNAs	(Zhang	et	al.,	2012a).	Total	circulating	miRNA	concentration	in	
human plasma ranges were estimated to be 68–250 fM (Williams et al., 2013). At this 
concentration, human circulating miRNAs are considered unlikely to regulate gene 
expression by canonical miRNA activity as miRNAs are thought to require intracellu-
lar levels greater than 1000 copies per cell to exert measurable activity (Brown et al., 
2007; Hafner et al., 2011). In fact, miR-122, a highly abundant miRNA regulating 
gene expression in the liver, has been estimated to be expressed at 120,000 molecules/
hepatocyte (one of the highest miRNA amounts/cell) while less expressed miR-33 and 
miR-16 were estimated to be expressed at 1,200 and 11,000 copies/hepatocyte, respec-
tively	(Bissels	et	al.,	2009;	Denzler	et	al.,	2014).	These	numbers	contrasts	with	esti-
mates for xenogenic miRNAs. As 10 femtomoles of miRNAs are approximately 6x109 
molecules, an extracellular concentration of 10 fM corresponds to 6 molecules per 
nanoliter	of	serum.	A	somatic	cell	volume	is	up	to	several	picoliters.	Thus,	unless	there	
is a yet unknown active transport of circulating miRNAs into hepatocytes, xenogenic 
miRNAs entering the circulatory system have no capacity to regulate gene expression 
by	canonical	miRNA	activity	in	the	liver.	However,	Zhang	et	al.	argue	that	MIR168a	
abundance	in	the	liver	tissue	is	equivalent	to	853	copies	per	cell.	The	ongoing	debate	on	
stoichiometry, which is discussed later, has been inconclusive. Furthermore, a critical 
review of the results is compromised by the fact that some of the critical NGS datasets 
were not publicly released; hence, their analysis cannot be independently validated.
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Exogenic miRNA transfer literature

As of December 2016 when the EFSA report was being written (Paces et al., 2017), there 
were 227 citations of the original article, which I were reviewed. Among the 227, 51 origi-
nal	research	articles	were	identified,	which	were	related	to	xenogenic	and	circulating	miR-
NAs. From these, I focus here on those directly relevant to the concept of plant-mammal 
miRNA transmission. Literature concerning the existence and function of xenogenic miR-
NAs includes:
•	 The	original	study	(Zhang	et	al.,	2012a).	using	NGS,	they	identified	plant	miRNAs	in	
mammalian	sera.	unfortunately,	the	information	provided	was	only	partial.	The	entire	
data normalization was described as: For normalization, the sequencing frequency of 
each plant miRNA was normalized to the total amount of mammalian miRNAs.	(Zhang	
et al., 2012a) while the availability of original sequencing data in a public repository 
was not indicated, thus not allowing for an independent assessment of sequence anal-
ysis	and	quantification.	Different	quantification	strategy	could	be	a	potential	source	of	
discordance with other published data, which emerged in the literature (Chen et al., 
2013).

•	 The	patent:	WO	2012135820A2	Edible	transgenic	plants	as	oral	delivery	vehicles	for	
RNA-based	therapeutics	filled	by	Eric	Lam,	Rutgers	university.	The	claim	is	based	on	
an experiment where feeding rabbits or mice with transgenic tomato producing siRNA 
against	HCV	yielded	detectable	HCV	siRNAs	and	tomato	RNAs	in	mammalian	blood	
and	tissues.	This	work	was	not	published	in	a	peer	review	journal,	the	patent	documenta-
tion	contains	a	small	RNA	northern	blot	with	a	faint	signal,	RT-PCR	detection	of	tomato	
RNAs in mammalian samples and analysis of RNAi-mediated repression in cultured 
HepG2 cells.

• A survey of human plasma for microRNA biomarkers in NGS datasets from human plas-
ma revealed circulating RNAs appearing to originate from exogenous species including 
bacteria, fungi, and other species (Wang et al., 2012). Interestingly, authors could detect 
RNA fragments from common food where American samples exhibited higher abun-
dance of corn over rice sequences while a control Chinese sample (SRR332232) showed 
a reversed trend (Wang et al., 2012). Authors also report detection of minuscule amounts 
of plant miRNAs in human samples 6–16 reads of MIR168 per sample were observed 
at total sequencing depths of 18–28 million reads; public availability of raw data was 
not indicated. Notably, authors also indicate low fraction of mapable sequences – they 
observed less than 1.5% of processed reads mapping to human miRNAs (Wang et al., 
2012).	Thus,	calculating	miRNA	RPM	values	(reads	per	million)	from	the	mapped	reads	
or miRNA reads could yield two orders of magnitude differences.

•	 The	same	group,	which	published	the	original	xenomiR	study,	recently	published	another	
article proposing that a plant miRNA MIR2911 from honeysuckle (Lonicera japonica), 
a	traditional	Chinese	medicine	herb,	can	traverse	into	mouse	lungs	and	inhibit	Influenza	
A	(Zhou	et	al.,	2015).	In	this	case,	MIR2911	concentration	was	estimated	to	reach	1	pM	
in plasma after feeding mice honeysuckle decoction, which is the range of endogenous 
circulating miRNAs. MIR2911 was detected in the mouse by NGS (acc. no. GSE55268), 
qPCR,	and	in	situ	hybridization.	The	estimated	amount	of	MIR2911	in	lung	cell	was	
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300–400, suggesting that MIR2911 operates within the physiological range of the canon-
ical	miRNA	pathway	(Zhou	et	al.,	2015).

•	 Vicki	Vance’s	group	reported	that	oral	administration	of	2’-O-methylated	mammalian	
miRNAs, which have tumor suppressor properties (miR-34a, miR-143, and miR145) 
results	in	reduced	intestinal	tumor	burden	in	mice	(Mlotshwa	et	al.,	2015).	This	work	is	
also	linked	to	two	issues	patents	and	one	pending	patent	application,	all	entitled	“Com-
positions and Methods for the Modulation of Gene Expression in Plants”: US patent 
application no. 13/282,680, Canadian patent no. 2,276,233 and Australian patent no. AU 
2003/254052 B2.

• A third report of xenogenic miRNA regulation suggests that plant miRNA MIR159 is 
present in human plasma and its level inversely correlates with breast cancer incidence. 
MIR159	was	identified	in	the	serum	by	NGS	(GSE55268).	A	synthetic	mimic	of	MIR159	
was capable of inhibiting cell proliferation in breast cancer cells but not non-cancerous 
mammary	epithelial	cells	(Chin	et	al.,	2016).	Authors	claim,	“These	results	demonstrate	
for	the	first	time	that	a	plant	miRNA	can	inhibit	cancer	growth	in	mammals.”

•	 Work	by	Zhang	et	al.	used	miRNA	target	prediction	in	Arabidopsis and humans to assem-
ble	a	hypothetical	cross-species	regulatory	network,	which	they	further	analyzed.	They	
proposed that the cross-species regulatory network contains three core module function-
ally	linked	to	ion	transport,	metabolic	process	and	stress	response	(Zhang	et	al.,	2016).	
However, this study provides a strategy to explore possible cross-species miRNA regu-
lations rather than providing evidence that such regulations exist.
Against these publications stands a number of reports, which question the idea of func-

tional xenogenic miRNAs. For example:
•	 Analysis	of	83	NGS	datasets	(identified	in	the	report)	revealed	presence	of	plant-derived	

MIRNAs among which dominated MIR168 from monocot plants. However, the highest 
observed ratio of plant miRNAs/animal miRNAs is 0.456%, which is 10 times lower 
than	a	figure	of	~5%	reported	by	Zhang	et	al.	(Zhang	et	al.,	2012a).	These	data	suggests	
that the observed plant miRNAs in animal small RNA datasets can originate in the pro-
cess of sequencing, and that accumulation of plant miRNAs via dietary exposure is not 
universal	in	animals	(Zhang	et	al.,	2012b).

• Snow et al. analyzed miRNA content in diets of humans, mice, and honeybees and exam-
ined transfer of several different miRNAs into the recipient organism: conserved and 
highly-expressed plant miRNAs (MIR156a, MIR159a and MIR169a) and conserved, 
abundant, and ubiquitous animal miRNA miR-21. Healthy human subjects routinely 
eating fruits replete in MIR156a, MIR159a and MIR169a had undetectable levels of 
plant-derived miRNAs in their plasma (as measured by qPCR). Similarly, miR-21 levels 
were negligible in plasma or tissues of miR-21-/- mice after oral diets containing miR-21. 
The	same	was	observed	for	MIR156a,	MIR159a	and	MIR169a	in	mice	and	honeybee	
tissues.	This	study	concludes	that:	“	horizontal delivery of microRNAs via typical dietary 
ingestion is neither a robust nor a frequent mechanism to maintain steady-state microR-
NA levels in a variety of model animal organisms, thus defining the biological limits of 
these molecules in vivo.” (Snow et al., 2013)

• Importantly, an attempt to replicate the claims in the original xenogenic miRNA paper 
failed	(Dickinson	et	al.,	2013).	This	article	prompted	a	comment	by	authors	of	the	original	
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xenogenic paper pointing out several discrepancies in data and that experimental design 
used by Dickinson et al. for NGS analysis was suboptimal and could produce artifacts 
(Chen et al., 2013). Unfortunately, one cannot reanalyze both datasets because only the 
one from Dickinson et al. was made available (SRP028401).

• A feeding study on Macaca nemestrina failed to provide support for xenogenic miRNAs 
in blood plasma in response to dietary intake of a plant miRNA-rich food source. Puta-
tive xenogenic miRNAs were detected real-time quantitative PCR and droplet digital 
PCR	(Witwer	et	al.,	2013).	Detected	levels	of	miRNAs	were	minimal	and/or	amplifi	-
cation	was	non-specifi	c.	Detection	was	largely	unreliable	for	plant	miRNAs	156,	160,	
166, 167, 168 and 172 despite the relative abundance of all but miR172 in a soy- and 
fruit-substance that was administered to the macaque subjects (Witwer et al., 2013).

• Bioinformatic analysis of NGS data for diet-derived miRNAs in deep-sequencing librar-
ies	also	did	not	provide	a	support	for	the	“xenomiR	hypothesis”.	Authors	provide	evi-
dence that cross-contamination during library preparation can be a source of exoge-
nous	RNAs	and	that	such	a	cross-contamination	could	be	identifi	ed	in	an	NGS	study	of	
Amphioxus	performed	by	the	group,	which	published	the	fi	rst	xenogenic	miRNA	article	

Figure 4 Mobile RNA silencing 
The scheme depicts confi rmed trans-species/trans-kingdom silencing where silencing of parasitic nem-
atodes or insect pests can be induced by RNA produced in plants. Transmission of miRNAs and induc-
tion of silencing into other species remains controversial although existence of circulating miRNAs in 
humans and mice is well documented.
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in	2012	(Tosar	et	al.,	2014).	The	original	data	from	the	Zhang	et	al.	2012	article	could	
not	be	examined	for	cross-contamination.	Tossar	et	al.	conclude	that	cross-contamination	
between samples from the same organism can go completely unnoticed, possibly affect-
ing	conclusions	derived	from	NGS	transcriptomics	(Tosar	et	al.,	2014).
Taken	together,	the	field	remains	split	since	the	original	report	(Zhang	et	al.,	2012a).	The	

essential questions concerning the existence of the proposed mechanism emerged already 
in 2012. Further research is necessary to clarify the basis of the aforementioned contradic-
tory	observations.	At	the	moment,	there	is	no	consensus	regarding	specific	aspects	of	the	
xenomiR hypothesis, i.e.:
• the mechanism of transport of a plant miRNAs from food into the blood.
• amounts of plant miRNAs reaching the mammalian circulation system and tissues
• the nature of the ribonucleoprotein complexes, in which they exist in the plasma
• the mechanism of entrance (accumulation?) of xenomiRs into cells
• the nature of the ribonucleoprotein complexes, in which xenomiRs exist in the cell

Remarkably, the simplicity of the xenomiR hypothesis where an oral uptake of miRNAs 
in food results in post-transcriptional repression in tissues contrasts with more than a dec-
ade	of	development	of	small	RNA-based	therapeutics,	which	still	struggles	with	efficiency	
of uptake, distribution, and targeting. However, the current stage of (incomplete) knowl-
edge precludes strong conclusions regarding the future of the xenomiR hypothesis.

Conclusions

Mobile RNA silencing exists in plants and some animals (Fig. 4). RNA silencing, and RNAi 
in particular, operates with unique (though not absolute) selectivity and is being explored 
in many different ways in biomedicine and biotechnology. In some cases, RNA silencing 
can spread across cellular boundaries, which can extend into systemic silencing. Systemic 
silencing	is	restricted	to	specific	taxons	and	RNA	silencing	pathways.	While	the	framework	
for understanding the molecular basis of systemic silencing in different model systems was 
established, the knowledge is still fragmented and far from complete. Even less clear is the 
horizontal transmission of RNA silencing, especially into species, where primarily cell-au-
tonomous silencing is expected.
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