
BACHELOR THESIS

Hana Nekvindová

MetaRMS – information systems
building platform

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D.

Study programme: Computer Science

Study branch: Programming and Software systems

Prague 2019

I declare that I carried out this bachelor thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact
that the Charles University has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

In date signature of the author

i

ii

Title: MetaRMS – information systems building platform

Author: Hana Nekvindová

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and
Dependable Systems

Abstract: Data are an essential element of the present world. The problem
of storing data concerns everybody, from a large company with information
about their clients to individual users with their shopping lists. Options
vary between a simple Excel sheet and expensive custom solution. A general
software solution to cover these cases is needed. However, the requirements
on the structure of the data differ for every use-case.

This thesis aims to solve this problem by creating an application generating
software. The software generates a custom application when provided with
the description of the data structure. For that, we define the format of
the description of the data structure and analyze various approaches to the
implementation of the application generating software.

Our solution contains an ASP.NET Core server application and an example
web client application communicating over the public JSON API. The server
accepts the description and creates an application accordingly. The solution
also contains a library, that is used by the example web client and is reusable
by other client front-ends.

Keywords: ASP.NET Core multiplatform API client-server generate
application

iii

iv

I would like to express my gratitude to Mgr. Pavel Ježek, Ph.D., the
supervisor of this thesis for his time, guidance, feedback and all the advice
he has provided. Also, a special thanks go to my family and Pavel.

v

vi

Contents

1 Introduction 3
1.1 Basic requirements and limitations 4
1.2 Naming conventions . 7
1.3 Requirements . 8
1.4 Existing tools . 10
1.5 Goals . 13

2 Workflow and application descriptor 15
2.1 Basic application information 16
2.2 Datasets . 16
2.3 Attributes . 19

2.3.1 Complete list of available attribute properties 21
2.4 Application descriptor structure 31
2.5 Application descriptor validation 31

2.5.1 Necessary validations 32
2.6 Summary and next steps . 34

3 Implementation analysis 35
3.1 Software architecture . 35
3.2 Language and environment . 38
3.3 References . 40
3.4 Authentication . 42
3.5 Authorization . 45
3.6 Messages handling . 47
3.7 Application descriptor format 48

3.7.1 Application descriptor validation 50
3.7.2 Default values setting 51
3.7.3 Final application descriptor structure in JSON 51

3.8 Data layer . 53
3.8.1 Database schema . 53
3.8.2 Data storage choice . 58
3.8.3 Accessing the database from the code 59

3.9 Hosting . 60

4 Implementation 63
4.1 Basic workflow and requirements 63
4.2 MetaRMS processes . 64

4.2.1 Application initialization 65

1

4.2.2 Authentication . 66
4.2.3 Operations . 67
4.2.4 Settings . 73

4.3 Solution structure . 74
4.3.1 Core . 74
4.3.2 SharedLibrary . 77

4.4 Issues . 79
4.4.1 HTTPS support . 79
4.4.2 Sending emails . 80
4.4.3 Cultural info . 81
4.4.4 Login length on production 81

5 User guide 83
5.1 Client application developer’s guide 83
5.2 System administrator’s guide 84
5.3 Application administrator’s guide 87
5.4 End-user’s guide . 95

6 Conclusion 99
6.1 Future work . 101

Attachments 107

2

1. Introduction

Nowadays people are living in a world in which the data are more important
than ever. Whether you are a small startup or a corporate company, you need
to store your data somewhere safe and easy to access. But not only that, even
regular people need to store some data, be it a ToDo list, phone numbers
or friends’ birthdays. The most popular and most commonly used storages
these days are relational databases. Relational databases and their inner
representations might differ, but in most cases, the main principle is always
the same—large interconnected tables containing data of various types.

End users need not only to store the data, but they also need to retrieve
the data in an easy way, preferably without using SQL queries. Common
users will probably require a user-friendly interface, that allows them to (1.)
create, (2.) read, (3.) update and (4.) delete the data—this is known as
performing CRUD (abbreviation for operations 1. – 4.) operations on the
data.

If a person or a company wants to use a database as data storage and
retrieve the data via CRUD operations a problem emerges because everybody
needs at least slightly different database model to suit their exact needs. For
example, we can have an e-shop. An e-shop needs to store information about
its clients as well as employees, their products, all the orders, their statuses
and much more other crucial information for their business. Compared to
that if a regular person wants to store a ToDo list, there will be a name of
the task to be done and an indicator if the task is done. Apart from that,
one person would like to store a priority with each of the tasks, another one
would like to add deadlines and the next one a person responsible for the
task. As we can see, even with storing two ToDo lists, the data structures
can be very different, which means we can not even have templates for most
frequently used cases to fit all the users and their requirements.

As demonstrated, needs for data storage differ significantly for each use
case. For a company, a typical scenario is to have the database tailored to the
needs of the company as well as the user interface by a team of developers.
This way the company gets exactly what it is looking for. However, getting
a custom solution may not be accessible for small companies with a tight
budget or even for individual users who just want to store their shopping list
for the next week.

3

Original idea

One of such small companies has reached us with a request for custom
software for their business. Their goal was to have an application for
administration of everyday business tasks. This is a great example of a
company that needs to represent their inner structure in software but have
not found such one fitting their needs and budget.

The requested solution should:

• Be able to store past, current and future orders with custom fields and
additional information about their customers.

• Have a user administration managed by the authorized person.

• Keep the data save not only against hackers from the outside, but also
make sure that no one from the inside could access data that the person
was not allowed to see.

This is where the original idea for this thesis comes from. After market
research, we have found that there might be many such companies or
individuals looking for a custom made software for data administration. We
have thus come with a more generalized idea to create a system to satisfy
the needs of this whole target group.

1.1 Basic requirements and limitations

In the introduction, the main problem of data storing and retrieving based on
company structure was explained with an idea to create a universal software,
that will be general enough to store data and provide CRUD operations on
them for any data structure and so to suit any company’s or individual’s
needs, defined by the administrator. In the following subsection, we are
going to describe some representative scenarios in more detail.

Representative scenarios

Before listing all of the requirements on the software, we present several
carefully chosen usage examples to show how can various structures of data
differ. The structures are divided into three groups by the structure size and
complexity.

1. Department of a larger company:

4

(a) An applicant tracking system (ATS). It is a software
application that enables the electronic handling of recruitment
needs (cited from Wikipedia [App19]). Such application stores
jobs in the company with all the necessary information such
as name, requirements or salary. It also stores candidates
for positions with their name, education, and other important
details. Finally, there are hiring processes that connect jobs
with individual candidates. Such application has users divided
into user groups such as recruiters, hiring managers or system
administrators. Advanced ATS systems allow integration with
job portal advertising, career pages or other company systems.

(b) Inventory management software. It is a software system
for tracking inventory levels, orders, sales, and deliveries (cited
from Wikipedia [Inv19]). In this type of software, the key
items are products. They are stored with their barcode,
description, location, the amount left and other information.
Also, old and new orders, manufacturers and for companies with
more warehouses, also individual warehouses are stored. There
are users with different authorizations, that need to use such
system—from warehouseman to warehouse manager. Advance
inventory management software can send emails with orders, offer
integration with barcode scanners and functions for inventory
optimization.

2. Small company:

(a) A municipal library. Software for storing books and authors
data, readers with access to the library and their borrowings. If
the library is using a single system for all internal processes, then
also for example payrolls needs to be stored here. This creates a
diverse group of the software users, be it librarians, library support
members, accountants and library managers. Advanced systems
offer barcode scanner integration and email sending service to
inform readers about a book return date.

(b) Package delivery company, that needs to keep a system in their
branches, transport facilities and keep order in the packages—its
statuses, delivery dates, current locations, and target addresses.
Employees with different competencies can access different data
within the application. More advanced systems can track the GPS
location of individual packages or send SMS about delivery times
to the customers.

5

3. Individual user:

(a) A ToDo list with custom fields. As mentioned at the beginning
of this chapter, requirements for ToDo lists can differ between
users—some of them prefer to store deadlines, others want to store
links to more information. Because of that, no ToDo application
can fit all users and this is where custom made applications can
excel. The main advantage of ToDo applications with predefined
fields is, that they can perform data analytics over the data and
show for example graphs with numbers of tasks done per week.

(b) Sports tracker. It is an application where users can record their
performance in sports, for example, how many kilometers they
ran, how much weight they lifted or how many pushups they did.
They can record their weight, what did they eat during the day or
how did they feel after the workout. In case of a personal trainer as
a second user of the application, the trainer can provide feedback
to the user. Advanced sports trackers include integration with
smartwatches or some other health applications.

From these examples, it follows that the key requirement for fulfilling
all of the above-mentioned scenarios is the ability to describe an arbitrary
data structure, based on the company structure or personal needs. In this
description, only the basic structure was presented. Each of the example
applications can be divided into database tables and columns with defined
value types, be it basic data types (text, number, date, etc.) or references to
other data.

On the other hand, each of the application descriptions contains also part
describing an advanced version of the application. That section contains
features highly dependent on the application structure and other company
or individual’s software and hardware. It is important to state, that the goal
of this thesis is not to fulfill such specific requirements, as:

• integration with other systems (job portal advertising, career pages or
other company systems, GPS tracking systems, health applications,
calendar, etc.);

• send email or SMS;

• integration with hardware (barcode scanners, smartwatches, etc.);

• data processing functions (generating graphs, data analytics, etc.).

6

Common solution approach

If we want to satisfy the basic needs of all the companies/users from the
examples above—to have an application with custom fields based on own
structure—we need to have a software that can, based on some description,
generate a custom application and allow access to it to users with different
competencies. The application descriptor has to provide a way to describe
the application structure in the form of database tables with columns of basic
data types or references within the application.

1.2 Naming conventions

At the end of the previous section, some not yet defined terms appeared.
Before going any deeper into the problem, it is time to define them and
some other frequently used terms, that will be used in the following text
consistently:

Application A piece of individual software, that can be described by some
kind of application descriptor. Users can log in and perform CRUD
operations with data they have rights to access.

Business application An application, that reflects company structure
and which targets company employees. Specifically, it means that
applications for customers (such as e-shops, informative web pages or
mobile applications with information for customers, such as opening
times) do not meet this definition.

Application descriptor A text/file containing
all the necessary information for an application generating software
to generate an application.

Application generating software A type of software that can generate
an application. The ability to generate means that for creating a new
application no programming skills are required and after providing a
description of what the result should be, the application is created.

Dataset A collection of data, that can correspond to a database table.
Such a dataset can contain an arbitrary number of dataset attributes,
described in more details in the following bullet.

Dataset attribute A single one item of the dataset, which corresponds to
a database column. Attributes can have many properties, which are
described in the following bullet.

7

Attribute properties An individual piece of information about dataset’s
attribute, such as its name, description, type or if it is required. An
attribute can have various properties and it is up to a discussion which
of them are crucial and it will be elaborated in more detail in subsection
2.3.1.

1.3 Requirements

Since we have described a problem and defined a terminology, this section
will get deeper into the problem by listing and discussing requirements on
the application generating software in more details. For each requirement,
we will first describe reasons for its establishment and after that, we will
name it.

Back at the end of section 1.1, we have marked the most important feature
of an application generating software as the ability to take a description of
an application and create a real application based on it. This requirement is
crucial and the following text will refer to it as the requirement:

R1 Application generating software is required to be able to take
a definition of various structures and thus create different
applications.

As seen from the market shares on [Ope18], the reason for targeting multiple
platforms is obvious. This requirement can be divided into two subsections
since mobile devices cannot be overlooked. Obvious from the market shares,
mentioned above, the Windows operating system is mostly used on desktops
and laptops, followed by Apple’s macOS. On mobile devices, there are two
main platform choices—Android and iOS. To reach the largest amount of
users, it is important to target all of the above-listed platforms. This gives
us the requirement:

R2 Application generating software is required to be
multiplatform.

Targeting multiple platforms is useless if the generated result application
is too difficult to use by regular users. As we have explained in the
Representative scenarios subsubsection of section 1.1, the application end
users can be at different computer knowledge levels, thus:

R3 Applications generated by the application generating software
must be easy to use for end users.

8

On the other hand, the process of creating a new application is not targeted
at the regular users, so this part might contain some advanced knowledge
from the IT world, even though it should still remain easy and quick, so:

R4 Application generating software should provide an easy way
to create a new application.

After providing the description of the application, companies or individuals
should not wait too long for the final application. The time between
description providing and the start of using the application should be
minimized. Because of this:

R5 Time delta between creating a new application and its using
by the end-users should be minimized for applications created
by the application generating software.

As mentioned in the Original idea subsubsection in chapter 1, for the
company, that has reached us, one of the key requirements is the safety of
their data. This results in two requirements. First of them is authentication,
to ensure no one can access data without first logging into the application as
an authenticated user:

R6 Applications generated by the application generating software
must contain authentication.

The second one is a requirement for authorization. Without this requirement,
administrators could not divide users into groups according to their rights.
That would disrupt company structure because users would be able to access
data beyond their rights:

R7 Applications generated by the application generating software
must contain authorization.

To make application usage convenient for non-English speaking users, it is
important to include a possibility to switch the user interface to various
languages, thus:

R8 Applications generated by the application generating software
should have multilingual support.

There are also some properties of the application generating software that
do not directly affect a regular user. The software may not support all the
major platforms mentioned in requirement R2 (1.3), but there would be
an easy solution via public API. This way anybody could create their own

9

client application connected to the original one. A similar requirement is
an easily extendable source code. This feature will allow programmers to
extend existing software to other platforms. This together gives us two more
requirements:

R9 Application generating software should have an API so anyone
can use it as an endpoint.

R10 Application generating software should have an easily
extendable source code.

With this complete list of requirements, we also need to note some points
that are not required by the application generating software.

• Work offline – applications generated by the application generating
software are not required to work offline. This feature is not required,
because business applications are mostly used in office environments
with a stable internet connection or in the field in the cities.
The requirement for the internet connection also allows data to be
synchronized all the time instantly.

• Target everyone – as already mentioned in chapter 1 rather than
targeting huge international commercial businesses, we want to focus
on smaller companies and individuals.

• Offer features highly dependant on the application structure – as stated
in the Representative scenarios subsubsection of section 1.1 the goal is
not to offer features, that depend on company or individual’s hardware
and software gear. We will rather focus on a general solution.

1.4 Existing tools

With the specific list of requirements from section 1.3, we have done market
research. The research was made with a goal to map the market of the
already existing application generating software.

The g2.com website proved to be a great source of information about
various application generating software. We were interested in two of the
categories, Low-Code Development Platforms Software [G2l] and No-Code
Development Platforms Software [G2n]. In the following subsections, we will
briefly go through both of these categories and we will highlight key features
of software belonging into them.

10

https://www.g2.com/

Low-Code Development Platforms Software

As defined by G2 on [G2l]: Low-code development platforms provide
development environments that allow businesses to develop software quickly
with minimal coding, minimizing the need for extensive coding experience.
The platforms provide base-level code, scripts, and integrations so companies
can prototype, build, or scale applications without developing complex
infrastructures. Both developers and non-developers can use these tools
to practice rapid application development with customized workflows and
functionality.

From their highest rated software, we will briefly introduce the two most
popular.

OutSystems This Low-code Development Platform offers drag-and-drop
editor, that users download and then can assemble their mobile
and web applications in it. This editor allows to define a data
model, business logic, workflow processes, and user interfaces and
also allows to enhance some of the parts with code. The main
advantage this platform offers it the possibility of integrating existing
systems and real-time performance monitoring. On the other hand,
mobile application generated by OutSystems must be placed to mobile
application stores by the user, which adds additional costs. A free
edition is suited to learn how to build and deploy applications and
is suitable for small applications. For larger companies, OutSystems
offers paid subscriptions. Additional information can be found on
www.outsystems.com.

FileMaker This development platform lies between Low-code and No-code
platforms and is more suitable for companies that are already storing
data another way, for example in Excel files. FileMaker allows users
to import their data and then create different views over them. The
disadvantage of FileMaker is, that free demo is only for 45 days and
after that, a paid license needs to be bought. More information can be
found on www.filemaker.com.

No-Code Development Platforms Software

By G2 definition on [G2n]: No-code development platforms provide drag-and-
drop tools that enable businesses to develop software quickly without coding.
The platforms provide WYSIWYG editors and drag-and-drop components to
quickly assemble and design applications. Both developers and non-developers

11

https://www.outsystems.com/
https://www.filemaker.com/

can use these tools to practice rapid application development with customized
workflows and functionality.

From all the existing tools we will briefly mention just the most popular.

AppSheet This No-code Development Platform uses already existing
spreadsheet data stored online on services like Google Sheets, Microsoft
Excel on Office 365, Microsoft Excel on Dropbox, etc. These
spreadsheets are accessed to display data in generated mobile or web
application. Any changes in the data are synchronized and written
back to the spreadsheet. An important feature is that all the data are
owned by the application creator and not by the AppSheet company.
This platform is free for personal use with a single user and offers
paid subscriptions for businesses. More information can be found on
www.appsheet.com.

FileMaker Already mentioned in the Low-Code Development Platforms
Software subsubsection of this subsection 1.4.

Airtable This No-code Development Platform uses advantages of both
spreadsheets and databases to store data and allow different views
over it. A new application can be created from scratch or use one
of their templates. When the application is created it can be shared
between application users and the data can be embedded to a webpage
or accessed via API. Airtable is free to use for teams of any size and
also offers paid subscriptions. More about Airtable can be found on
airtable.com.

Summary

While doing the market research, we have noticed that the application’s logic
is mostly based on a spreadsheets logic. The advantage of this approach
is that users already know how spreadsheets work. All of the elaborated
platforms provide an API to access the data and on top of that when using
AppSheet the data are actually stored on the creator’s online storage, which
makes accessing them even easier. An interesting part of the platforms is the
drag-and-drop interface, which provides an easy way to define the application
for non-programmers.

Even though some of the elaborated platforms were close to what we
expect from the software based on the requirements from section 1.3, there
will be some significant differences in our approach. The most important is,
that we will provide means to have both the software and the data under the
control of the administrator. Also if we stick to the requirement R10 (1.3)

12

https://www.appsheet.com/
https://airtable.com/

the source code of the software would be easily extendable and will provide
more flexibility in case of modifications in the future.

1.5 Goals

With all the information we found out so far and equipped with the right
terminology from section 1.2, the thesis topic can be now defined. The goal
of this thesis is to develop an own application generating software, that will
satisfy all groups from Representative scenarios subsubsection of section 1.1
and fulfill the requirements from section 1.3.

13

14

2. Workflow and application
descriptor

Since this chapter will contain terms application, application generating
software, application descriptor and other from naming conventions defined
in section 1.2 we will strictly write these special terms in italics, just like at
the beginning of this sentence.

With the knowledge of our goal, we need to think about the workflow of
the creation of a new application by a user. Since we want the application
to have a custom structure, we need to describe this structure somehow.
This description must have a specific format, because application generating
software (defined in section 1.2) needs to understand it. The description of
a new application is called application descriptor (as defined in section 1.2).
With application descriptor an application generating software can create the
application for end users. This workflow is displayed in the following figure
2.1.

Figure 2.1: Application creation workflow.

There are two arrows in the firure 2.1, except of the above mentioned
application descriptor, application generating software and the final
generated applications. Arrow A, connecting application descriptor and
application generating software expresses the process of providing the
application descriptor to the application generating software. Because of it
the application generating software can create the application based on the
application descriptor provided. The arow B from the application generating
software to the final generated applications shows the process of application
generation.

15

As we can see, the application descriptor is the main component on
which all the functionality of the application generating software depends.
The application descriptor is required to be able to describe an arbitrary
application as stated in the requirement R1 (1.3). By the requirement R4
(1.3) it must provide an easy way to define the application so users with basic
IT knowledge are able to define their application.

In the following sections we will elaborate individual parts of the
application descriptor and reasons for including them.

2.1 Basic application information

Since the application generating software needs to hold many application
descriptors, it is crucial that we are able to always find the correct application
descriptor and generate the right application for each user. Because of this,
each application needs to have a unique identifier, that will distinguish the
application from others. On the other hand, each application should have
a name, that will be displayed so logged users know what application are
they logged in. This name does not have to be unique since for example
several users may like to call their application My ToDo list. As stated
in the requirement R8 (1.3) we want the application generating software
to support various languages. With this in mind, we have incorporated a
default application language into the application descriptor, even though
only English will be supported in the release due to limited resources. Each
application also needs to contain datasets elaborated in more details in the
following section 2.2.

2.2 Datasets

As stated in the previous section 2.1 every application needs to contain
datasets. Definition of the application dataset can be found in the section
1.2. Even though the structure of the applications will differ, all of them are
required to have users, who will sign into and perform the CRUD operations
on the application data. The information about application users can be
represented in a dataset. Because of this, there will be two types of datasets
in every application.

User-defined datasets Arbitrary datasets defined by the creator of the
application descriptor. Since there is no use of application without
a dataset—from its definition in section 1.2 it can be compared to
a database without any tables, at least one User-defined dataset is

16

required. These datasets will be application specific—for representative
scenarios mentioned in the Representative scenarios subsubsection of
section 1.1 we can have following datasets :

• ATS (applicant tracking system) from scenario 1a – candidates,
jobs, interviews, etc.

• Municipal library from scenario 2a – books, readers, borrowings,
etc.

• Sports tracker from scenario 3b – types of sports, activities, etc.

System datasets System datasets are datasets used for the aplication
configuration. They contain required as well as optional dataset
attributes. The only currently supported System dataset is the System
users dataset :

System users dataset System dataset containing the information
about users of the application. This dataset will be required
to be present in every application descriptor and it will hold an
application specific configuration of the application users data.
This dataset will contain settings of username and password and
it will also additionaly describe the structure of the users. Any
additional information, such as the position within the company,
number of kids or user’s boss can be set in this dataset in a form
of dataset attributes as defined in section 1.2. Due to the presence
of the settings and additional information about users, creator of
the application is required to specify this dataset in the application
descriptor as it can not be generated automatically.

With this in mind we have to choose the representation of datasets in the
application descriptor. We have thought of the following approaches:

1. Treat the System datasets the same way as the User-defined datasets.
This way all the datasets would be equal and we would need to think
about a way how to distinguish them and find the System datasets if
necessary. With this approach users would need to understand only one
way of defining a dataset and would not need to distinguish between
writing the System datasets and the User-defined datasets.

2. Separate System datasets and User-defined datasets. With this
approach the System datasets could have a slightly different structure
from the User-defined datasets. For example, in the System users
dataset, the password and the username can be expressed in a more

17

clear way. It would also be more straightforward for the author of the
application descriptor to distinguish between the System datasets and
the User-defined datasets.

From the approaches listed above, we have opted for the approach 2. The
System users dataset will contain both the username and the password,
which need to be treated in a different way than the rest of the attributes.
Because of this and the fact, that the System users dataset is required in
every application descriptor, we want to treat the dataset in a different way
than the User-defined datasets and this separation allows us to do so.

Both the User-defined datasets and the System datasets need to have a
unique name within the application to distinguish between the datasets
of the same application. The datasets may contain a description so users
can easily understand what is the content of the dataset. Also every dataset
needs to contain attributes elaborated in more detail in the following section
2.3. Moreover, the System users dataset also needs to contain the attributes
for the username and the password, as mentioned at the beginning of this
section.

The following figure 2.2 shows the relation between the datasets and the
database tables to which they were likened in section 1.2.

Figure 2.2: Relation between datasets and database tables.

As we can see from the figure 2.2, the database tables and the datasets
share some elements—for example, a dataset name, which corresponds to a
database table name (as shows arrow A) and the attributes, which correpond
to the database table columns (as shows arrow B). In addition to this,
the datasets also contain description. In the example database table, both
columns also have additional properties, such as char(50), NOT NULL or
datetime. These properties will be elaborated in the following section 2.3,
especially in the subsection 2.3.1.

18

2.3 Attributes

Every dataset needs to have at least one attribute (defined in section 1.2).
A dataset without any attributes makes no sense—it can be compared to
a database table without any columns. In the previous section 2.2, we
have decided to distinguish between the definition of the System datasets
and the User-defined datasets. The System users dataset needs to contain
two significant attributes in order to be able to authenticate the user—the
username and the password (more on this topic can be found in the Login
credentials subsubsection of section 3.4). These two attributes need to be
present in every application descriptor and thus need to be distinguishable
from the other attributes. Without the username and the password attributes
users would not be able to log into the application. This results in 3 categories
of attributes :

Password attribute Attribute containing application specific settings of
passwords for application users, values such as minimal and maximal
length and additional security requirements need to be describable here.
This attribute is valid only in the System users dataset and since the
values are application specific, this attribute is required to be present.

Username attribute Attribute containing application specific settings of
usernames for application users, values such as minimal and maximal
length need to be describable here. This attribute is valid only in the
System users dataset and since the values are application specific, this
attribute is required to be present. It is also required that the username
is always filled, because every user of the application needs a username
to log in with.

Basic attributes Basic attributes are up to the creator of the application,
all basic attributes are treated the same way and do not have any
specific values. Basic attributes are valid for both User-defined and
System users dataset.

With the knowledge of the attributes categories, we have to decide on
their structure within the datasets. Solution for User-defined datasets
is obvious since these datasets cannot contain Password and Username
attributes. Because of this each User-defined dataset will contain a list of
Basic attributes. The situation is different though for the System users
dataset, because the Password attribute and the Username attribute need
to be present. As a solution for this we have following options:

19

1. The Username and the Password attributes will be in the same list
as Basic attributes. This will be possible only if there are some
identifiers for both the Username and the Password attributes. With
this approach, we will be able to easily find these two attributes and
perform some operations on them if necessary.

2. The Username and the Password attributes will be separated from the
Basic attributes. With this approach, it would be easy to distinguish
these special attributes from the Basic ones just by the structure of
the application descriptor. It would also be simpler for us to decide,
whether we want to send to the client application values stored in these
special attributes.

3. The last option is the middle way between the options 1 and 2. With
this approach the Password attribute would be separated from the Basic
attributes but the Username attribute would be on the same level as
the Basic attributes. This idea is based on the fact, that we have not
found a good reason for sending the password to the client applications,
but the username could be a desired piece of information for the client.
With this approach, the Password attribute would not get mixed with
the Basic attributes. The Username attribute would be on the other
hand a part of the Basic attributes. We suppose it would be sent to
the client with the other information about the user. This also means
that the Username attribute would need to have a special identifier to
distinguish it from the Basic attributes.

From the provided ideas we have decided to select the approach 3. As
described, this approach provides us the possibility to have the Username
attribute together with the Basic attributes and at the same time to have the
Password attribute separated from them.

The following figure 2.3 shows the approach 3 in a graphical form.

20

Figure 2.3: The application descriptor structure in a graphical form.

As we can see the application descriptor is divided into the System
datasets and the User-defined datasets as explained in section 2.2. The
System datasets contain the Users dataset, that implements the approach
3 to its attributes structure. On the other hand the User-defined datasets
contain just the Basic attributes.

2.3.1 Complete list of available attribute properties

Attribute properties—defined in section 1.2—are used to define characteristics
of an attribute. This list contains properties that we have found either crucial
for the generated application to work or useful for the end users. Inspiration
for these properties was taken from database columns and their basic data
types as well as database constraints such as NOT NULL, FOREIGN KEY
and UNIQUE. Also following the requirement R10 (1.3), we want the source
code to be extendable, thus if this requirement is fulfilled, any missing
attribute properties can be implemented later. For each attribute property,
we will also demonstrate an example usage on one of the scenarios from the
Representative scenarios subsubsection of section 1.1.

1. Name This string property will be required for every attribute and it
is required that the name of the attribute is unique within the dataset.
This allows us to distinguish each attribute within the dataset. For
example, we can have in the dataset named Books an attribute with
the name property set to Name of the book, as in the library application
scenario from 2a.

21

2. Description This string property will be valid for every attribute and
it will be optional. If filled it provides additional information about
what should the value of the attribute contain to help the end users.
For example it can describe the format of the string expected to be filled
in. In the library application scenario from 2a a description property of
the attribute named Authors of the book can be Please fill 1–5 authors
of the book.

3. Type This property from enumeration of available types discussed later
in this bullet will be required for each attribute and its value will depend
on the category of the attribute. For example we can have a dataset
named My Dataset with attribute named My Attribute. When creating
a record into My Dataset, the type property of My Attribute restricts
what values can be in My Attribute stored. More specific examples can
be found for each type:

• For the Password attribute (as defined in section 2.3) we have
decided that the only valid value will be password since the
Password attribute is a special type of attribute.

• For the Username attribute (as defined in section 2.3) the only
valid value will be username. This way we will be able to
differentiate the Username attribute from the other attributes,
since they will be in a single list as decided at the beginning of
section 2.3 by approach 3.

• Basic attributes can be likened to the user defined database
columns (the relation to database column was mentioned in
section 1.2 and the fact, that they are user defined is based on
section 2.3). Database columns contain either data from a set
of predefined types (numbers, strings, dates, etc.) or references
to other database tables. Inspired by this parallel, the Basic
attributes can also be either a Basic type or a Reference type:

Basic type The same way database columns must have data
types, each attribute must have its type. This value
determines the type of data the attribute accepts. An
inspiration for the supported types was taken from the
HTML5 input types (listed for example in article [HTM19]).
Even though HTML5 offers a wide range of different
types when creating application some types may not be
implemented. Responsibility for solving this problem though
depends on the final implementation, which is required to

22

have an easily extendable source code by the requirement
R10 (1.3), thus provide an easy way to add support for the
new types. The following enumeration contains types adopted
from HTML5, that we have found useful to be supported.
Each type also contains general examples of valid input values
and a specific example related to the library representative
scenario 2a.

color represents a hexadecimal color, for example#ff00e6. A
specific example is a dataset with book statuses (present,
borrowed, lost, etc.). Each of the statuses can have a
color assigned, to visually distinguish between the book
statuses. The dataset will thus contain an attribute called
Status color with a type attribute property set to “color”.

date represents a date in the yyyy-MM-dd format, e.g. 2019-
02-21. For example, the dataset with books may contain
an attribute with a date when the book was added to the
library.

datetime represents a date and a time in the yyyy-MM-
ddThh:mm format, e.g. 2019-02-11T20:57. For example,
the dataset with borrowings can contain an attribute with
a date and a time of the borrowing.

email represents an email address in the x@y.z format, e.g.
example@email.com. The dataset with readers could
contain an attribute with an email address of the reader.

month represents a month in the yyyy-MM format, e.g.
2019-02. For example, the dataset with payrolls can
contain an attribute with the month the payroll belongs
to.

int represents a signed or unsigned integer, e.g. -1234. The
dataset with books can contain an attribute with an
age restriction—number meaning the minimal age of the
reader to be allowed to borrow the book.

float represents a signed or unsigned floating point number,
e.g. -12.34. The dataset with books can contain an
attribute with the original price of the book.

year represents any at most four-digit positive or negative
number, e.g. -42. The dataset with books can contain an
attribute with the year when the book was published.

phone represents any phone number with legal characters
(numbers and symbols “+”, “(”, “)”, “.”, “-”, “ ” and

23

“,”), e.g. +123 (456)-789. In HTML5 this type is named
tel, but we have found the name phone more suitable.
The dataset with readers could contain an attribute with
a phone number of the reader.

string represents any preferably short string, e.g. Hello
world!. The dataset with books will probably contain an
attribute with the name of the book, that will have its
type set to “string”.

time represents a time in the hh:mm format, e.g. 14:19. The
dataset with library employees could contain an attribute
with the start or end time of the employee’s shift.

url represents an absloute or
relative url, e.g. www.example.com. The dataset with
books can contain an attribute with a link to a store to
buy the book.

bool represents a boolean value, e.g. 0 or 1. Instead of 0 and
1, this value can be seen as true or false. For example,
the dataset with readers can contain an attribute with the
information whether the reader has paid the library fee.

text represents any preferably longer (multiline) string, e.g.
Hello,\r\nI am multiline text.\r\nLorem Ipsum This
type can be useful for example in the dataset with books
in an attribute with the book description.

Reference type References can be likened to the FOREIGN
KEY constraints in a database—value for the attribute is
taken from any dataset in the same application. The crucial
requirement for the reference is to point to a dataset in the
same application in order to be valid, because only data within
the same application are accessible to the end user. Because
the name of each dataset is unique (this requirement was
explained in section 2.2) this name will be used as the value
of the type property.

Figure 2.4: Example of references between dataset A (authors) and dataset
B (books).

24

We will illustrate an example on the library representative
scenario from 2a shown in the figure 2.4. We have a dataset
with books—named B—and a dataset with book authors—
named A. Each book can have one or more authors and two
books can have the same author. Bacause of this the dataset
B will contain an attribute named BA, which will contain a list
of authors of the book. This attribute will be of type Reference
type attribute and will point to the dataset A, which means
its type will be “A”—as the unique name of the dataset the
reference is pointing to.
References can be also used to create enumerations. For
this we need a dataset containing all valid values of the
enumeration. This dataset can then be referenced in other
datasets in attributes that should contain the value from the
enumeration.

4. Required This boolean property will be valid for every attribute and
states whether the attribute needs to have a value filled when creating
or updating a record of a dataset that the attribute belongs to. The
name nullable was also considered for this property, but was rejected
at the end, because the meaning of the word “required” seemed more
clear even for people without the knowledge of the meaning of the
word NULL in the database environment. Specifically, the Username
and the Password attributes must have the required property set to
true, since no application user could be created without the username
and the password. For the Basic attributes, this property is up to the
creator of the application. For example, a dataset with books from
a library representative scenario described in 2a will probably have an
attribute name of the book with required property set to true since every
book needs to have a name. On the other hand, the attribute with age
restriction does not need to be filled for example for fairytales, thus
this attribute would have the required property set to false.

5. Unique This boolean attribute will be valid only for the Username
attribute and will be required to be set to true. It ensures that
usernames within each application are unique. In the future, support
for this property can be extended also to the Basic attributes, but this
extention will not be part of this thesis.

6. Min/Max Validity and meaning of these integer properties will depend
on the value of the type property of the attribute, already defined
in this enumeration in the bullet 3. Meaning for each of the valid

25

type property values is explained in the following enumeration with an
example usage for the ATS (applicant tracking system) representative
scenario described in 1a.

• Basic types defining text values—text, string, username,
password. For attributes with the type property set to one of
these values the meaning is a minimal/maximal length of the
input string. If the value of the min property is set to 5, then
the valid inputs are for example “abcde” or “abcdefgh”, but not
“ab” or “abcd”, because they are too short. The min property
is useful for example for setting the minimal required length of a
password. This can be done by setting the min property to the
Password attribute. If a value of the max property is set to 5, then
valid inputs are for example “a” or “abcde”, but not “abcdef” or
“abcdefgh”, because they are too long. This property is useful for
example for setting the maximal valid length of the description of
candidate hobbies and interests.

• Basic types defining numeric values—int, float, year. For
attributes with the type property set to one of these values, the
meaning is minimum/maximum value of the number. If the value
of the min property is set to -3, then the valid input is -3 or any
greater value. If the value of the max property is set to 5, then
the valid input is 5 or any smaller value. For example, if we store
a candidate, we can require their age to be at least 15 years or if
we store a salary with a job, we can set its maximum value. Or
if we want to store the latitude and the longitude, we can restrict
the values to -90–90 and -180–180 respectively.

• For any Reference type attribute the number set to the min
property means the minimum number of references that must be
selected in the attribute value. If the value of the min property is
set to 5, then a valid number of references is 5, 6, or more and
invalid is 4, 3, and less. The number set to the max property
means the maximum of references that can be selected in the
attribute value. If the value of the max property is set to 5,
then a valid number of references is 5, 4, or less and invalid is
6, 7, and more. For example, we can have a dataset containing
specializations, such as engineering, IT, pharmacy, legal, etc. Each
candidate can have several specializations assigned—these values
will be references to the dataset with specializations and we can
limit, that each candidate must have at least 2 and at most 5
specializations.

26

• Other Basic types—color, date, datetime, email, month, phone,
time, url, bool). For these types the min/max property is not
supported. The reason is, that these values require different
validations and it is not clear what the minimum/maximum value
should mean.

The other approach contained properties minNumber/maxNumber,
minChar/maxChar and minReference/maxReference valid based on
attribute type property, but since each attribute can have only one type
property, we have decided to merge them into the min/max properties
respectively.

7. OnDeleteAction This property with valid values enumerated later in
this bullet is required for every Reference type attribute (defined in the
bullet 3) and it will indicate what should happen if a record referenced
in this attribute is deleted. For the Basic type attributes (defined in
the bullet 3) the property need not to be set and if it is set, only the
none value is valid. We will introduce a simple example, on which we
will demonstrate different action results in the following enumeration.

The example is illustrated in figure 2.5, which was already shown when
elaboration the Type property of the Reference type attributes in the
bullet 3. In this example there is a dataset with book authors called A
and a dataset with books called B. The dataset A has only one attribute
containing a name of the author with the name property set to AN and
the type property set to string. The dataset B contains two attributes—
attribute with a name of the book, with the name property set to BN
and the type property set to string and an attribute with authors of
the book with the name property set to BA and the type property set
to A—meaning a reference to the dataset A as defined in the bullet 3.
The other properties as well as other attributes and datasets are not
important in this example. There are two records in the dataset A, as
well as in the dataset B and each of them has a unique identifier used
when the value is referenced and we will also use this identifier when
talking about the record..

Figure 2.5: Example containing dataset A (authors) and dataset B (books).

27

As we can see in dataset B, a record 20 references records 10 and 11
from the dataset A and a record 21 references a record 10 from the
dataset A. If we want to delete a record from dataset B, there is no
problem, since no record from the dataset B is referenced anywhere
else. On the other hand, if we want to delete a record from dataset A,
we encounter a problem—record 10 is referenced twice in dataset B and
record 11 once. To solve this problem, we have decided to implement
the onDeleteAction property with following available actions:

none Represents unidefined onDeleteAction. This value is for every
attribute of Basic type, because for Basic type attributes, transitive
deletion makes no sense. On the other hand this value is forbidden
for the attributes of Reference type, because the deletion action
must be defined.

cascade When a record referenced in attribute with onDeleteAction
set to cascade is deleted, the record having it as attribute value
will be deleted as well. Cascade cannot be used for Basic
type attributes. Also, it cannot be used in attributes of type
System users dataset reference to ensure that the last user of the
application cannot be accidentally deleted.

From the example, when the attribute BA in the dataset B has
onDeleteAction set to cascade, if we delete the record 10 in the
dataset A, both records 20 and 21 in the dataset B will be deleted,
because the record 10 was referenced in both of them. The result
after deleting the record 10 can be seen in the figure 2.6. If we
delete the record 11 in the dataset A, then only the record 20 in
the dataset B will be deleted since the record 21 is not referencing
the record 11. The result after deleting the record 11 is displayed
in the figure 2.7.

Figure 2.6: Result after deleting the record with identifier 10 when BA has
the onDeleteAction set to cascade.

28

Figure 2.7: Result after deleting the record with identifier 11 when BA has
the onDeleteAction set to cascade.

An example of the cascade onDeleteAction usage is in the ATS
(applicant tracking system) scenario from 1a. If a candidate in
the European Union wants to be deleted from the database, it is
important to remove all records linked to them as well, by the
rules of GDPR (meaning General Data Protection Regulation,
with more detail on the official site [Eug]).

setEmpty When a record referenced in the attribute with
onDeleteAction set to setEmpty is deleted, the to-be-deleted
reference value in the record will be replaced with an empty
value—in other words removed. The only exception is in a
situation when setting an empty value would break the minimal
amount required by the min property (defined in the bullet 6) or
if it would remove the last value when the required property is
set to true (defined in the bullet 4). In both of these cases no
record can be deleted. SetEmpty cannot be used for the Basic
type attributes.

From the example, if we want to delete a record 10 when the
onDeleteAction of the attribute BA is set to setEmpty, we need
to consider the values set to min and required properties as
mentioned in the previous paragraph. If the min property is set
to 1 or the required property is set to true, then no deletion can
be performed, since deleting the record 10 would remove the last
reference in the attribute BA for the record 21 and thus violate the
min and/or required property. If the min and required properties
are not set, the record 10 can be deleted and its references removed
from the records 20 and 21. The result after the deletion of
the record 10 is in the figure 2.8. Since the record 21 contains
just 1 reference, the min property of the attribute BA cannot be
greater than 1, thus settings for the min or required properties
does not matter when deleting the record 11—in all the cases
both records 20 and 21 will still contain a reference to the record
10. Deleting the record 11 when onDeleteAction of attribute BA

29

is set to setEmpty will result in the deletion of the record 11 and
a removal of its reference from the record 20. Result of this action
is in the figure 2.9.

Figure 2.8: Result after deleting the record with an identifier 10 when BA has
the onDeleteAction set to setEmpty and both min and required properties
are not set.

Figure 2.9: Result after deleting the record with an identifier 10 when BA
has the onDeleteAction set to setEmpty.

An example of setEmpty onDeleteAction is in the ATS (applicant
tracking system) example from the section 1a. If we have a table
with interviews and jobs and a job gets deleted, we want the job
to be removed from the interview, but we do not want to remove
the whole interview, because it may contain other important
information.

protect When there is an attempt to delete record referenced in
an attribute with onDeleteAction set to protect, the deletion is
stopped due to this protection and none of the records is deleted.
Protect cannot be used for Basic type attributes. The result after
the attempt to delete the record 10 or 11 with the onDeleteAction
of the attribute BA set to protect is the same as before the
attempt. This means, that the figure 2.5 does not change.

An example of the protect onDeleteAction is in the library
example in 2a. If we have a dataset with authors and books and
we delete an author, we do not necessarily want to delete all the
books as well. Instead, we should prevent the deletion.

30

8. Safer This optional boolean property will be valid only for the Password
attribute. If set to true, additional requirements for password safety are
enforced. If this property is not set for the Password attribute, false is
automatically set and no additional safety for the password is required.
The other approach would be to have a minNumber, maxNumber,
minLowerCase, maxLowerCase, minUpperCase, and maxUpperCase
properties, but at the end, we have decided to merge them all into
the safer property for easier creation and clearness of the application
descriptor. More information about password security can be found in
the Password policy subsubsection of section 3.4.

2.4 Application descriptor structure

As a result of analysis from the sections 2.1, 2.2 and 2.3, we have a basic
structure of the application descriptor. This structure contains all the
necessary information that we need to generate an application.

Application descriptor

Unique application identifier

Application name

Default application language

System datasets

Users dataset

Name

Description

Password attribute

Attribute properties

List of other attributes

Attribute properties

List of User-defined datasets

Dataset name

Description

List of dataset attributes

Attribute properties

2.5 Application descriptor validation

It is is important to ensure, that only valid application descritors are accepted
by the application generating software. Because of that we need to be able to
validate the application descriptor. This section contains list of validations,

31

that need to be performed, before the application descritor can be marked
as correct.

2.5.1 Necessary validations

• Application descriptor structure – required fields and their types, no
other than avaliable fields (as defined in section 2.4)

• At least one User-defined dataset (as explained in section 2.2)

• A uniqueness of the application identifier (as explained in section 2.1)

• A uniqueness of the dataset names within the application (as explained
in section 2.2)

• The names of the datasets cannot be the same as names of the Basic
types (defined in the bullet 3 of subsection 2.3.1). Without this
constraint we would not be able to correctly determine whether the
attribute is of the Basic type or of the Reference type to a dataset
named as the Basic type.

• At least one required attribute in each dataset. As stated in section 2.3
we need at least one attribute in each dataset. On top of that we need
the attribute to have the required property set to true, thus users of the
application would not be able to create a completely empty record in
a dataset.

• The attributes within the dataset must have unique values in the name
properties—meaning unique names (as explained in the bullet 1 of
subsection 2.3.1)

• The application descriptor cannot contain invalid references to the
datasets that do not exist (as explained in the bullet 3 of subsection
2.3.1)

• Reference type attributes must have the onDeleteAction property
specified (as explained in the bullet 7 of subsection 2.3.1). If the
reference is to a System users dataset, then the onDeleteAction property
cannot be set to cascade (as explained in the bullet 7 of subsection 2.3.1)

• Password attribute must have its type property set to “password” and
the required property to true (as explained in the bullet 3 of subsection
2.3.1)

32

• No other than Password attribute can have its type property set to
“password” (as explained in the bullet 3 of subsection 2.3.1)

• No attribute in the User-defined datasets can have the type property
set to “username” (as explained in the bullet 3 of subsection 2.3.1)

• There must be exactly one attribute with the type property set to
“username” in the System users dataset (as explained in the bullet
3 of subsection 2.3.1)

• The Username attribute must have the required property set to true
(as explained in section 2.3) and the unique property set to true (as
explained in the bullet 5 of subsection 2.3.1)

• The Basic type attributes cannot have the onDeleteAction property
value set to anything but none (as explained in the bullet 7 of subsection
2.3.1)

• The safer property can be set only for the Password attribute (as
explained in the bullet 8 of subsection 2.3.1)

• The min and max properties cannot be set for the attributes with the
type property set to “color”, “date”, “datetime”, “email”, “month”,
“phone”, “time”, “url” or “bool” (as exaplined in the bullet 6 of
subsection 2.3.1)

• Value of the min property must be less than or equal to the value of
the max property if both are set (this results from the logical meaning
of the properties defined in the bullet 6 of subsection 2.3.1)

• Values of the min and max properties must be greater than 0 for
attributes with the type property set to “text”, “string”, “username”,
“password” and for the Reference type attributes, because length of
a string and a number of references cannot be a negative number
(the meaning of min and max properties was defined in the bullet 6
of subsection 2.3.1)

• If the min property is set, the required property cannot be set to false for
the Reference type attributes since having a required minimum number
of records implies that the attribute must be filled. Setting the required
property to true implies that the attribute must have at least 1 reference
filled and thus set the min property to at least 1.

33

2.6 Summary and next steps

In this chapter, we have designed the structure and the necessary parts of the
application descriptor. This design will be used to select a suitable format
of the application descriptor. Then we use it to describe an application and
generate it with the application generating software.

34

3. Implementation analysis

Before analyzing various approaches of how to implement a software
described in section 1.5, it would be a good idea to assign this software
a name. Since this software will be creating a meta (with the meaning about
the thing itself, in this case, a software about applications) applications,
first part of the name will be Meta and since the company mentioned in
the Original idea subsubsection in chapter 1, that has reached us wanted
a request management system, the second part of the name will be an
abbreviation of it—RMS. This together gives the name—MetaRMS.

This chapter analyses various approaches to MetaRMS implementation.
In each subsection, we will consider solutions for individual problems, that
need to be solved before the software implementation.

3.1 Software architecture

As the first implementation analysis point, we had to design and decide about
the software architecture. As stated in section 1.3 MetaRMS is not required
to work offline. Also, it is expected, that multiple users will connect to the
same application at the same moment from different devices. Because of this,
we need to have a central endpoint with data storage to which the users will
connect. This results in a client-server architectural pattern, which is well
described in article [Cli19]—this pattern consists of two parties, one server
(our central endpoint) and multiple clients, communication over a computer
network.

The following figure 3.1 shows the key parts of client-server architecture.
Description of each part with more details will follow the figure.

Figure 3.1: Basic client-server architecture suitable for MetaRMS.

Server We have decided to divide server part to the following subparts:

Data storage This storage will be implemented as a relational
database. It needs to be able to store login credentials for

35

application users, information about generated applications and
their data. This data storage will be elaborated in more detail in
section 3.8.

Application server This component will be an application running
on a server accessible on the Internet so the client applications
can connect to it. It will provide authentication for users logging
from any of the client applications and will also be responsible for
the input data validations and authorization checks.

The reason for separating the data storage and the application server
is based on requirement R10 (1.3), in which we want MetaRMS to
have an easily extendable source code. Thus if we want to switch to
another database system, allowing us, for example, additional options
for data handling, it will be easier to have the database separated from
the application.

Clients We expect, that MetaRMS users will connect to the server from
various devices because of the multiplatform support, required in
requirement R2 (1.3). Due to that, we have divided client applications
into the following groups:

Web client This client will be accessible from both desktop and
mobile devices via a web browser and will provide a user-friendly
way to create a new application, log into it and perform CRUD
operations on the data.

Desktop clients This client applications will run on PCs and laptops
with different operating systems. Requirement R9 (1.3) ensures,
that these applications can be created and can connect to the
MetaRMS server.

Mobile clients This client applications will run on mobile devices
with different operating systems. Requirement R9 (1.3) ensures,
that these applications can be created and can connect to the
MetaRMS server.

Since our resources are limited, we have decided, that only the
implementation of the Web client application will be a part of this
thesis. This client will test the connection to MetaRMS and will be
the main access point to it. The Web client was selected because it
allows connecting from different devices, independent of their type and
operating system. Because of requirement R9 (1.3), additional client
applications mentioned in the enumeration above can be created later.

36

Communication between clients and server This is another important
part of the architecture. At first, we need to define a coupling between
the clients and the server. Coupling is closely related to the selection
of an API style, which is one of our requirements—requirement R9
(1.3). As a great source of information about API styles has proven
the following article [Nal18].

Tightly coupled The term tight coupling generally means, that one
software is dependant on the other one extensively. If the
communication happens via the Internet, it can be realized for
example by a Remote Procedure Call (RPC) over HTTP(S). The
tightly coupled client-server communication would be suitable if
we develop and maintain the server and all the client applications,
but this is in conflict with requirement R9 (1.3) since we want
to allow other developers to use it as an endpoint for their own
client applications. Also in tightly coupled systems, it is more
difficult to change or update the code, which may cause problems
to requirement R10 (1.3).

Loosely coupled The term loosely coupled is the opposite of the
previously mentioned tightly coupled. In this case, one software
is on the other one dependant as least as possible. This approach
allows easier code modifications for the future bug fixes and adding
new features. This is what is required by requirement R10 (1.3).
Also when the client applications are not dependant on the server
and the server interface is publicly accessible, anyone is able to
create an own, platform independent, client application, just like
in requirement R9 (1.3) and supporting requirement R2 (1.3).

From the approaches to the client-server communication we have opted
for a loosely coupled communication which supports requirement R10
(1.3). Since we want to provide a public web API as in requirement R9
(1.3), based on recommendations in the article [Nal18] we have decided
to implement it as HTTP(S)/JSON API. JSON as the data format is
platform independent, thus supports requirement R2 (1.3). We would
also like to support communication over HTTPS to protect it against
attackers as mentioned in the article [Kay19].

In the final solution, we have decided to merge the Web client and the
Application server into one project running always simultaneously. This
was because since no other client application yet exists, running only the
Application server part makes no sense. Also thanks to this merge, we have

37

to deploy the project only once and also only one server is required for it
to run. Even though both of the applications run on the same machine, the
Web client still connects to the Application server API endpoints to keep it
as an illustration of how to implement such a connection in other clients.
Figure 3.2 illustrates the final state of the MetaRMS architecture.

Figure 3.2: Final MetaRMS architecture.

3.2 Language and environment

With software layout in mind, it is time to pick the right language for
developing a web application with most of the code running on the server.
Since we want easy code extensibility as stated in requirement R10 (1.3), we
are looking for a widely used and popular language with a great community.
Not many of server-side programming languages have a perceptible market
share as seen from W3Tech’s technology overview [W3r] and thus we are
picking from:

1. PHP as a scripting language with a possibility of using one of the PHP
frameworks – this is the most popular option between developers, it is
free for use, has a large community, many tutorials, is cross-platform
and open source.

2. ASP.NET framework with a possibility of using any .NET language.
Unfortunately, only supported server operating system is Windows,
which breaks requirement R2 (1.3). While searching for information
about ASP.NET framework, we have discovered ASP.NET Core
framework, which will be elaborated in the next bullet.

3. ASP.NET Core framework with a possibility of using any .NET
language. Although this framework was not present in the list of the
most frequently used server-side languages/frameworks it is probably

38

included in the ASP.NET framework in general since they have a lot
of things in common. We will though focus on their differences, the
main one is, that ASP.NET Core needs just .NET Core framework and
because of this is ASP.NET Core multiplatform. In addition to this, it
is also open source and free, thus accessible to anyone.

The possibility of using C# as a programming language was crucial when
picking ASP.NET Core over PHP because the author of the thesis has more
experience with it. Moreover, with the existence of ASP.NET Core and its
ability to run multiplatform, the requirement R2 (1.3) for MetaRMS to be
multiplatform will not be violated as well as the possibility of using Unix type
system for developing the software. With the knowledge of the framework
and the programming language, we can go through the software architecture
once again and determine some platform-specific details.

Application server described in section 3.1 can be divided into several
layers. Each of these layers is responsible for specific tasks and thus can be
implemented differently. The following enumeration lists technologies we will
use for these different layers.

Service layer This layer is responsible for providing the JSON web API as
selected in section 3.1 when elaborating coupleness of the server and
the clients. This layer will be written in C# on the ASP.NET Core
platform and will contain controllers accepting requests from the client
applications.

Business logic layer This layer is responsible for the business logic on the
server and will be as well written in C# on the ASP.NET Core platform.
Business logic consists of function for the authorization of users, data
validations, etc.

Data access layer This layer is responsible for the communication between
the application server and the database. Selection of this layer is based
on the selection of the database and will be in detail elaborated in
section 3.8.

As decided in section 3.1 we will implement the Web client application.
As the name suggests, this client application will be accessible through a
web browser. With the use of the JSON web API, we are not limited to a
specific framework. Since ASP.NET Core provides a page-focused framework
for building dynamic web sites called Razor pages, we have decided to choose
it as our front-end framework. Also the Microsoft website [Ric19] provides
tutorials on how to implement the Razor pages front-end.

The Web client application will consist of the following layers:

39

Presentation layer The function of this layer is to display the application
data in the web browser to the end users. Data to this layer will be
provided through the JSON web API calls to the MetaRMS server.
As selected at the beginning of this enumeration this layer will be
implemented in Razor pages framework with the help of the front-
end libraries Bootstrap and Bootstrap-select. This presentation layer
should be flexible enough to satisfy both desktop and mobile users.

Business logic layer This layer can contain some parts of the business logic
such as validations. These validations can be therefore performed on
the client side before the data are sent to the server.

Since we want this web client to be displayed well on both desktop
and mobile devices, we have decided to take advantage of the front-end
library Bootstrap (getbootstrap.com) with the bootstrap-select plugin
(developer.snapappointments.com/bootstrap-select/). Bootstrap is
currently one of the most popular front-end component libraries. It is open
source, easy to use and well documented with a lot of tutorials available
online. Bootstrap-select is a plugin that enhances select elements with
multiselection and searching. Bootstrap with the bootstrap-select plugin was
selected not only because of its popularity and a wide selection of tutorials
but also because the author of the thesis has experience with using them.

3.3 References

When creating an application descriptor, each attribute needs to have its
type set, as stated in the bullet 3 of subsection 2.3.1. If the attribute is of
Basic type, it is clear that when storing a record of that dataset, we will store
the actual value of the attribute. This is not so obvious for Reference type
attributes. We need to always remember where the reference is pointing so
we need to know the id of the referenced record.

When displaying a record with reference we also need to know the value
of the reference, because users will not be interested in seeing an id, they
will expect the real value. To save additional requests to the server we have
decided to return deep copies of the data—an id accompanied with the value
to be displayed. Without this, it would be necessary to make another request
to the server for every reference received to load the value of the reference so
that the client application can display it.

For storing references we thought of two approaches:

1. Store both id and its value with the record containing the reference.
This approach makes it easy to get the value of the reference, thus

40

https://getbootstrap.com/
https://developer.snapappointments.com/bootstrap-select/

the get operation will be performed quickly and we will not need to
trace the referenced value by its id. On the other hand, if the value of
the referenced record is changed, we will need to find all places where
the value is referenced and repair the value. Because of it, the patch
operation will take a longer time.

2. Store only id of the reference in the record. By storing just the id
we save not only time to update the referenced values but also space
in the database, because the value will not be duplicated. The only
disadvantage of this approach is the need to trace the referenced id to
get its value.

From the above-mentioned approaches, we have decided to implement
approach 2 because tracing an id only when users ask for it will be less
demanding on the database.

Displayed references depth

With references, a problem emerges. We have to decide how will the displayed
value of one record from any dataset look. From section 2.3 we know that
a dataset can have an arbitrary number of attributes. Because we expect
that the important information will be between the first attributes we have
decided to display values of the first at most 3 attributes. From our point
of view, the first 3 attributes should be enough to distinguish between the
records of one dataset.

In case when one of the first 3 attributes is of Reference type, we will build
the value of the reference the same way—by combining values of the first 3
attributes of the referenced value. By applying this approach recursively,
we could build an extremely long text representation of the reference. To
prevent that we have decided that the maximal depth of this recursion will
be 3. We have found this depth to be enough and show it on the ATS
(applicant tracking system) 1a from our representative scenarios.

The ATS will probably contain a table with candidates, jobs, interviews,
and specializations. Candidates will have a string name, string surname, and
specialization referenced from the table with specializations. Jobs will have a
string name and specialization referenced from the table with specializations.
Interviews will have candidate referenced from the table with candidates and
job referenced from the table with jobs. When displaying a record from
the table with interviews we find the name and surname of the candidate
and name of the job as the most important information. All of the values
can be loaded from the references and since they are just plain strings, it
will be displayed. Both the specialization of the candidate and job are

41

additional information that are not crucial when distinguishing between
different candidates or jobs and this information can be seen at the detail of
the record. Still, this value will be displayed at the reference value. From
this, we can see that the deeper we go in the references, the less important
the information is.

We have came to the same conclusion for other representative scenarios
from the Representative scenarios subsubsection of section 1.1 as well.

3.4 Authentication

By our requirement R6 (1.3) the applications generated by MetaRMS must
contain authentication to ensure that only users registered in the application
can access the data. In the following subsubsections, we will elaborate on
some details important for the authentication implementation.

Login credentials

MetaRMS will host many different applications into which users can log.
During the login process, it is important to identify the user attempting to
log in to be able to check if the inserted password is correct. Because of this,
we have found two approaches on how to identify the user:

1. Using username and password only. This approach will cause that
there could not be two users with the same username even if they are
in different applications. Especially it would, for example, mean, that
each generated application would need to have an administrator with
a different username.

2. Using username, password and unique application identifier, from
application descriptor (defined as required in section 2.3 and in section
2.1). Using both username and the application identifier would mean
that usernames must be unique only within one generated application
and that users in later generated applications would have the same
amount of usernames to choose from as users in former generated
applications.

From these two options, we have chosen using the application identifier
together with the username as the unique user identifier. The option 2 was
selected because of the possibility to have more users with the same username
if they are in different applications since users of later created applications
would otherwise have a limited selection of available usernames.

42

Authentication method

With login credentials selected we have to decide about the process of sending
them to the server. Without this, the user cannot be authenticated and thus
we cannot identify them. Examples of these methods are mentioned in the
article [Ger15].

1. HTTP Basic authentication is the simplest possible approach to enforce
authentication of users. In this method the login credentials are sent
with every request in Authorization header with the Basic keyword
and are base64-encoded. The main disadvantages are that the login
credentials might get exposed by sending them with every request, the
credentials cannot expire and the password would need to be stored in
the client application, which is another security issue.

2. In Cookies/Session-based authentication the server creates a session
after the user logs in. The session id is sent to the client, which stores
it in a cookie and sends it back to the server with every request. Thanks
to the session id the server can find the state of the logged user. The
disadvantage is, that cookies might be vulnerable to the CSRF (Cross-
site Request Forgery) attacks, described in detail in article [Wika].

3. In Token-based authentication the server creates a signed token and
sends it to the client. The client stores the token and sends it to
the server with every request. Since the token is signed, it can be
validated on the server side. The token can also contain additional
information—claims. These claims can specify the expiration time or
can identify the user. The biggest difference over the Cookies/Session-
based authentication is, that the server does not have to store any
information, thus is stateless. The disadvantage is, that tokens stored in
the Web Storage might be vulnerable to the XSS (Cross-site Scripting),
described in detail in article [Wikb].

4. One-Time Passwords is an approach which relays on another medium to
authenticate the user. After submitting the login credentials, the user
receives a code to an email address or a mobile phone. This code is then
submitted to the client application and verified on the server. In this
approach, the user’s identity is ensured by the communication medium
(email, mobile phone) since it is owned by the user. An example of
this authentication approach is logging into a bank account, where you
receive an SMS code.

When selecting the authentication method, we have been deciding between
the Cookies/Session-based and the Token-based approaches. These

43

two approaches seemed secure enough while they did not require the
implementation of additional services, such as sending SMS. We have found
the article [Adn16] helpful for this decision. It mentions that the Token-based
approach is more scalable, stateless, performant and mobile-ready, which is
important for the future mobile client applications. Because of that, we have
decided to implement approach 3. Also the article [Pro16] recommends using
the HTTPS/SSL to prevent the man-in-the-middle attacks.

As recommended in the articles we have decided to implement the Token-
based authentication in the form of a JWT (JSON web token). The format
of the token was already described in the article and the detail description
can be found on its homepage jwt.io. The advantage of using JWT is
its support by ASP.NET Core because a middleware for JWT exists in the
Microsoft.AspNetCore.Authentication.JwtBearer package.

The final selected authentication method thus is the JWT token. After
receiving valid login credentials the MetaRMS server application will send
this JWT token to the client application. Then with each request from the
client application the token will be added to the Authorization header of
the request with the Bearer keyword.

Password policy

In this subsection, we will make use of the safer property defined in the bullet
8 of subsection 2.3.1. It was already mentioned, that this optional property
for the Password attribute will contain boolean value and if set to true,
additional requirements for the password security will be enforced. As the
additional properties, we can choose from a minimal length of the password or
enforcing some characters to be present in each password. We have decided,
that the default minimal length of the password with the safer property set
to true will be 8 characters. This value can be overwritten but only to a
higher value by the min property defined in the bullet 6 of subsection 2.3.1.
Because of that the password with the safer property set to true must be 8 or
more characters long. As regards enforcing some characters, we have decided
to require at least 1 lower-case and 1 upper-case letter and either 1 number
or 1 special non-word character to be present. Setting these policies makes
the passwords harder to guess by the potential attacker. These properties
were selected based on the article [Wil16] as well as their values.

Password storing

As mentioned in section 3.1 a relational database data storage will be present
on the server side of MetaRMS. In this database, we need to store user

44

https://jwt.io/

credentials mentioned in the Login credentials subsubsection of section 3.4 to
be able to authenticate the user. The username and the application identifier
can be stored in a plain text, but it does not apply for the passwords. If an
attacker gets access to the database with passwords stored as a plain text,
they would get access to all the applications. Because of that, we have
decided to store the passwords in a hashed form together with a random
string—a salt. This way lookup tables and rainbow tables could not be used
for the decryption of passwords as described in the article [Sal]. This random
string is prepended to the password and together they are hashed. The final
hash is then stored into the database and used for the user authentication.
Using salt ensures that even if two users would have the same passwords,
their hashes would be different.

3.5 Authorization

As in one of our safety requirements, the requirement R7 (1.3), it is
necessary that the generated applications contain authorization. Thanks to
the authorization users of the generated applications will be able to perform
CRUD operations only on the data they are allowed to. Since MetaRMS
is designed with the goal to be able to generate business applications we
have decided to implement the authorization as role-based. Because of this
individual users will be assigned with a set of named rights—a role—which
will be used to authorize the user. This provides the administrator with an
option to divide users into groups authorized to the same tasks (for example
multiple recruiters in example 1a or multiple librarians in example 2a). On
the other hand, this approach does not limit administrators from assigning
each user different rights by assigning them a different set of rights.

Granularity

Since we have decided, that users will be assigned with a set of rights we have
to set the granularity of the rights and by the granularity we mean what will
be the smallest unit, that can have the rights assigned. With the knowledge
of application structure from section 2.4 there are several options:

1. Rights for the whole dataset. This way administrators will not be
able to assign rights for individual attributes but only to the whole
datasets. On the other hand, the creation and editing of rights will be
much easier.

2. Rights for individual dataset attributes. This approach will provide a
greater granularity to express the rights.

45

From the options we have decided to implement approach 1. The main reason
was, that creating a set of rights with rights for each individual attribute in
each dataset would be a tedious work for the administrator. Also, we expect,
that values of attributes in the dataset are somehow related, thus the access
should be granted to the dataset as a whole. For example, a librarian from
our representative scenario 2a should have access to a dataset with books
and should be able to read all information about the book as well as edit all
the information in case of changes. The same applies to a recruiter in the
ATS (applicant tracking system) representative scenario 1a—they should be
able to fill all information about a new candidate as well as edit it all.

Representation

For each dataset, we have to create a representation of the rights. This
representation must express all of the CRUD operations and state whether
the operation is on the dataset allowed or not. For this we came up with the
following approaches:

1. Represent each of the CRUD operations individually. By this, we mean
that for each dataset the rights will contain information whether each
of the CRUD operations is allowed or not. The approach can be of
course simplified and contain only allowed operations. This might get
difficult to validate because for example allowing delete operation and
forbidding read operation on the same dataset does not make sense.

2. Create a hierarchy of CRUD operations. With a logical hierarchy of
CRUD operations, we will be able to assign each operation minimum
required value that the user’s rights need to have to allow them to
perform the operation. This approach will simplify the authorization
process and will also require fewer data to be stored within the rights.

We have decided to implement approach 2 because it is easier to check that
the rights are valid, which results in easier usage when creating and modifying
the rights. This way only one value needs to be associated with each dataset.
This approach requires that we define the hierarchy of the CRUD operations.
We have chosen the following order:

1. None – User with None rights to a dataset is not allowed to access
the dataset at all. This means none of the CRUD operations can be
performed on that dataset.

2. R – Dataset with rights set to R can be only read. The Create,
Update and Delete operations are forbidden for a user with this rights.

46

Selecting Read as the first allowed operation is obvious since without
read users will not be able to see the data.

3. CR – Dataset with rights set to CR allows creating new records and
reading existing ones. The Update and Delete operations are forbidden
for a user with this rights. Create as the second allowed operation was
selected because updating an already existing record seemed as more
invasive operation since it can damage already existing data.

4. CRU – Records in a dataset with rights set to CRU can be read,
updated and created. The Delete operation is forbidden for a user
with this rights. Update was selected as the third allowed operation
since it is less destructive than the Delete operation, thus safer to use.

5. CRUD – When rights are set to CRUD, all of the CRUD operations can
be performed with the data in the dataset. Delete is the last allowed
operation since it allows complete removal of stored data, which we
consider as the most dangerous operation.

Rights validation

Even though we have opted for the approach 2 in the previous subsubsection
there is still one validation we need to perform when the rights are created or
modified. In the application descriptor, the attributes can be of a Reference
type, pointing to another dataset within the same application as already
mentioned in the bullet 3 of subsection 2.3.1. Imagine a situation with two
datasets, Dataset A and Dataset B. Dataset A contains an attribute of type
reference to Dataset B. If we set rights R, RU, CRU or CRUD to the Dataset
A we also need to set at least rights R to the Dataset B within one rights
set. Otherwise, we would read values from the Dataset B referenced in the
Dataset A, which we do not have rights to read. This gives us the following
necessary validation:

• Within one rights set for every dataset A with rights R, RU, CRU or
CRUD, every dataset referenced in A needs to have at least R rights.

3.6 Messages handling

When end users are using the application, it is important to inform them
whether their operations were successful or not. This makes the application
more user-friendly as we need by the requirement R3 (1.3). To inform users
about the results of their actions we need to think over the representation of

47

such messages. It is important to think about the crucial parts every message
should contain and it is its type (such as an Info message, a Warning message
or an Error message), text of the message and its code. Since these messages
will be also used to inform the user if the input was invalid, we have decided
to include an optional name of the attribute that the message regards to.

Since every application will have a different structure, the messages for
each application will differ as well. Because of that, some parts of the
messages will contain placeholders, that will be replaced by a value based on
the application. These values are for example names of datasets or attributes
or required length of the input. Because of that every message also needs a
list of values, that will be replacing the placeholders. To specify the location
of the placeholders we have decided to mark them by {number of a value
from the list of placeholders}—number in curly braces.

For example, if we have a dataset A with attribute A1 of type int and the
user inserts string, an error message would have its type set to Error, text to
“Attribute {0} in dataset {1} must be of {2} type.”, error code to 001 and
list of placeholders will contain A1 (name of the attribute), A (name of the
dataset) and int (the type of the attribute) in this order. The final text of
the message with replaced placeholders will be “Attribute A1 in dataset A
must be of int type.”.

Because of the placeholders, we had to add two validations to application
descriptor already listed in section 2.5.

1. Dataset name cannot contain {number}—number in curly braces.

2. Value of the name property of an attribute cannot contain {number}—
number in curly braces.

Without these validations, some parts of names of datasets or attributes
could be replaced during replacements of the message placeholders.

One of our requirements was also multilingual support—requirement R8
(1.3). Because of limited resources, we have decided to prepare all necessary
parts for later implementation, but as part of this thesis implement only
support for the English language.

3.7 Application descriptor format

The structure of the application descriptor was already in detail elaborated
in chapter 2. In this subsection, we will focus on selecting the format of
the application descriptor. Since the application descriptor will be stored in
the data storage of the application generating software or sent to the client

48

applications, so they know the structure of the application, the size of the
application descriptor should be minimized.

The format of the application descriptor must be displayable on various
platforms and also support for this format must be widespread between
different programming languages. Both of these are required so developers for
various platforms can work with the descriptor and create MetaRMS client
applications. Because of this, the requirement R2 (1.3) for MetaRMS to be
multiplatform would not be broken. It is also important, that the format is
human-readable since one of our requirements—requirement R4 (1.3) was to
provide an easy way how to define the application.

By the requirements mentioned above, we are looking for a data
serialization format. Because there is a large number of such formats, we
have focused only on the most frequently used ones, since these popular
formats are widely supported in different programming languages.

XML XML is a verbose serialization format. It uses tags—markup
constructs—to structure the data. For XML validation XML Schema
can be used and also since XML creates a tree structure tree-traversal
API DOM can be used for document traversing.

JSON JSON is a serialization format, that uses name-value pairs. It
supports basic types, such as numbers, strings, booleans, null and also
arrays and objects. JSON Schema (json-schema.org) can be used for
validation.

YAML YAML is human-readable serialization format. This format uses
whitespace indentation and leading hyphens for easier readability.
The advantage over JSON is support for comments, extensible data
types and mapping types preserving key order. On YAML homepage
(yaml.org) Rx and Kwalify are recommended for schema validations,
but none of them have support for C# language, which we have selected
in section 3.2.

All of the above-mentioned formats are supported by many programming
languages. If ordered by verbosity, XML is the most verbose, followed by
JSON and YAML as the least verbose. YAML supports some features over
JSON, though we have not found these features applicable for application
descriptor definition. Even though YAML would save us the most space in
the database as well as the bandwidth, we have opted for JSON. The first
reason is that it provides an easy schema for validation and the second is,
that we are already using API in JSON format as defined in section 3.1, and
opting for JSON would not add requirements to another support libraries.

49

https://json-schema.org/
https://yaml.org/

3.7.1 Application descriptor validation

As mentioned in section 2.5, when selecting an application descriptor format,
it is important to be able to perform validations, preferably against a schema.
Selected format JSON provides such with the JSON Schema, but even this
validation against schema cannot perform all the necessary validations of the
application descriptor mentioned in the section 2.5. Because of this some of
the validations will have to be performed in the code before the application
creation. In this subsection, we will provide a list of validations necessary to
be performed on the application descriptor, divided to validations performed
with the JSON Schema and in the code.

Validations available with JSON Schema

Since JSON provides some validations using JSON Schema, we have decided
to use it for validation of the application descriptor structure. Via the JSON
Schema, the following validations are performed:

1. Descriptor structure and its required fields (ApplicationName,
LoginApplicationName, DefaultLanguage, SystemDatasets, Datasets)

2. Validation that no other than valid fields are present in the descriptor

3. Types of properties values, such as

(a) ApplicationName, LoginApplicationName, etc. are strings

(b) Min, Max, etc. are numbers

(c) Required, Safer, etc. are booleans

(d) DefaultLanguage, OnDeleteAction are values from enumerations

4. That there is at least 1 User-defined dataset

Validations that need to be done in the code

All the validations from section 2.5 not mentioned already in validations
available with the JSON Schema, as well as two additional validations from
section 3.6 will be performed in the code. These validations either cannot
be performed via the JSON Schema at all or their expression would be too
complicated, which would cause worse readability of the schema.

50

3.7.2 Default values setting

At the complete list of attribute properties in subsection 2.3.1, we have
marked some of the attributes properties as optional and some as required.
Because of this, some properties may be missing from the application
descriptor. These missing properties will have in JSON a null value assigned
automatically. This is not always what we want since the null values
should be present only for properties not valid for the actual attribute. To
prevent this situation from happening, we have to assign some of the values
programmatically. This includes setting:

• the required property to true if the min property is set,

• the min property to 1 if the required property is set to true,

• the required property to false if it is not set,

• the unique property to false if it is not set,

• the safer property of the Password attribute to false if it is not set.

On top of that, we have decided to assign each dataset a unique number
within the application that will be used for storing data of user rights sets
defined in section 3.5.

• -1 for System users dataset

• Unique number starting from 1 to each User-defined dataset

Because of this rights can now be stored as key-value pairs with dataset id
as key and level of the rights, defined in the Representation subsubsection of
section 3.5, as value.

3.7.3 Final application descriptor structure in JSON

This subsection contains the final structure of the application descriptor
in JSON format with an explanation of each field and examples of valid
values. This structure is based on the structure elaborated in chapter 2 and
is written in JSON format selected previously in this section. Examples of
real application descriptors can be found in section 5.3.

1 // This is a basic structure of application descriptor

2 {
3 "ApplicationName": "name of the application displayed after login",

4 "LoginApplicationName": "name of the application used for login, this name

must be unique between all applications",

5 "DefaultLanguage": "default language - currently only en is supported",

6 "SystemDatasets": {

51

7 "UsersDatasetDescriptor": {
8 "Name": "name of System users dataset",

9 "Description": "optional description of System users dataset",

10 "PasswordAttribute": {
11 "Name": "name of password attribute",

12 "Description": "optional password description - useful especially if

safer is set to true",

13 "Type": "password",

14 "Required": true,

15 "Safer": "optional boolean value, true means that the password must

be at leats 8 characters long, must contain lower - and upper -

case character and number, if this value is not present false is

filled automatically",

16 "Min": "optional positive integer number value of minimal password

length",

17 "Max": "optional positive integer number value of maximal password

length"

18 },
19 "Attributes": [

20 {
21 "Name": "name of the username attribute",

22 "Description": "optional description of the username attribute",

23 "Type": "username",

24 "Required": true,

25 "Unique": true,

26 "Min": "optional positive integer number value of minimal username

length",

27 "Max": "optional positive integer number value of maximal username

length"

28 }
29 // Other System users dataset attributes ... - the structure is the

same as for attributes in the User -defined datasets described

below

30]

31 }
32 },
33 // User -defined datasets

34 "Datasets": [

35 {
36 "Name": "dataset name - this must be unique between application

datasets",

37 "Description": "optional dataset description",

38 "Attributes": [

39 {
40 // Example of basic data attribute

41 "Name": "name of the attribute - this must be unique within

dataset attributes",

42 "Description": "optional attribute description",

43 "Type": "type of attribute data, available values for basic type

are color, date, datetime, email, month, int, float, year,

phone, string, time, url, bool, text",

44 "Required": "optional boolean value, if set to true, the attribute

is required to be filled, if this value is not present false

is filled automatically",

45 "Min": "optional integer number value that means for numeric types

(int, float, year) minimum value and for text types (text,

string, username, password) means minimal string length",

46 "Max": "optional integer number value that means for numeric types

(int, float, year) maximum value and for text types (text,

string, username, password) means maximal string length"

47 },
48 {

52

49 // Example of attribute of type reference

50 "Name": "name of the attribute - this must be unique within

dataset attributes",

51 "Description": "optional attribute description",

52 "Type": "type of reference attribute must be SystemDatasets.

UsersDatasetDescriptor.Name or correspond to a name of any

User -defined dataset in the application descriptor",

53 "Required": "optional boolean value, if set to true, the attribute

is required to be filled, if this value is not present false

is filled automatically",

54 "Min": "optional positive integer number value that means minimum

of references that the attribute must contain",

55 "Max": "optional positive integer number value that means maximum

of references that the attribute can contain",

56 "OnDeleteAction": "possible values are cascade, setEmpty, protect"

57 }
58 // Other dataset attributes ...

59]

60 }
61 // Other User -defined datasets ...

62]

63 }

3.8 Data layer

The data storage located on the server side of MetaRMS (briefly introduced
in section 3.1) is an important part of the software architecture. It was
also already mentioned, that this storage will be implemented as a relational
database, that has to be able to store login credentials, information about
generated applications and applications’ data. In this section we will
elaborate the whole data layer in more detail, focussing on the approach
of storing the data into the database, selection of the database itself and also
on a way of accessing the database from the code.

3.8.1 Database schema

Before the actual selection of the database, we need to design a database
schema. MetaRMS will need to hold data for multiple applications and the
structure of the data will be based on the structure defined in the application
descriptors. Because of that, we will not know the structure of stored data
when developing and deploying MetaRMS. For storing the data of unknown
structure, we have thought of the following approaches:

1. When creating a new application based on the application descriptor
we will create a database table for each dataset from the descriptor.
The columns of the table will correspond to the dataset attributes.
With this approach, the database would be modified on every creation
of a new application and it will soon become overwhelmed by tables.

53

2. Store data of all datasets in a single table. This table will contain
a column for an application identifier, dataset identifier, attribute
identifier, record identifier, and type identifier and columns for each
Basic type and one column for a Reference type. One row in this table
will represent value stored in one attribute so one record will be spread
through multiple rows. With this approach, every row will have only
one of the type columns filled, based on the value in the column of
type identifier. This results in many null values in the table and we
have also found this concept to be too complicated. This approach was
inspired by Single table strategy for solving inheritance, explained in
the article [Pra14], but it was strongly modified to suit our needs.

3. Store data in a serialized form. This approach provides us with the
possibility to store data of all datasets in a single table by serializing
them into one column. For this approach, each row will contain an
identifier of application and dataset and a column with serialized data
of the record. The format of the serialization can be for example XML
or JSON since there are databases with support for columns of these
types. From our point of view, we have found storing data in JSON as
the most suitable option, because JSON is already used for representing
application descriptor as selected in section 3.7.

From the above-mentioned ideas, we have opted for approach 3 since this
approach makes the database well-arranged. This approach does not require
the database to be changed programmatically—we will not need to add more
tables—and it also does not leave any empty columns. This selected approach
will be adopted for storing application data, such as records of individual
User-defined datasets and System users dataset. Also storing rights sets will
be implemented this way since the datasets of each application will differ.

When storing data of records of the User-defined datasets and the System
users dataset, each attribute can have one or more values. For every attribute
with the type property set to the Basic type, only one value would be valid—
be it one number, one string or one date. However, for the Reference type
attributes, the number of values depends on the min and max properties
of the attribute—each value represents one reference. In order to keep
the serialized structure uniform, it needs to contain a dictionary with the
attribute being the key and list of values being the value—this way values of
both Basic and Reference type attributes can be stored. In C# this structure
can be represented by Dictionary<string, List<object>>. An example
of such JSON structure is: "A1": [1, 2], "A2": ["hello"]—A1 is a
Reference type attribute with references to records with identifiers 1 and 2
and A2 is a Basic type attribute (string or text for example).

54

There are four main components that need to be stored in the database:

• Generated applications

• Rights sets

• Users

• Application data

This structure is in the figure 3.3 and description of each component with
more details will follow.

Figure 3.3: MetaRMS database schema.

Now let us elaborate each component of the schema in figure 3.3
separately in more detail:

Applications It is obvious, that we need to save the applications
somewhere. For each application we need to store its application
descriptor, which contains the application structure as described in
chapter 2 and can be used to create the application.

• Application descriptor – in JSON format as decided in section 3.7
and validated as stated in subsection 3.7.1.

• Login application name – in the Login credentials subsubsection
of section 3.4 we have decided to use a unique application

55

name together with username and password to authenticate
a user. Because of this for every attempt to log in we
would need to find the correct application descriptor and get
the LoginApplicationName from it. The more applications
will be within MetaRMS, the more demanding will this task
became. Because of this, we have decided to duplicate the
LoginApplicationName and store it both in the application
descriptor and as additional information about the application for
easier querying. Even though this creates duplicities within the
database, since the LoginApplicationName cannot be changed,
this duplicity is not a problem.

Rights sets As mentioned at the beginning of section 3.5 users will have
a set of rights assigned. These sets need to be stored in the database
so users can have them assigned. As mentioned in the Granularity
subsubsection of section 3.5 rights for each dataset need to be stored
and for each dataset it will be one value, defined in the Representation
subsubsection of section 3.5. For each set of rights we need to store:

• Name (of the rights set) – As briefly mentioned in section 3.5 each
rights set will have a name assigned. This way when selecting
a rights set for a user it could be easily found by its name. For
example in a library from our representative scenarios 2a we could
have a rights set named “librarian” and when creating a new user
on a librarian position it will be easy to find the correct rights set
to assign.

• Data (of the rights set) – As already defined in subsection
3.7.2 each dataset is assigned a unique number. These numbers
together with the rights values, elaborated in the Representation
subsubsection of section 3.5, create a key–value pair—the key is
unique dataset id and the value is the level of the rights. A
single rights set then contains exactly one pair for each User-
defined dataset, one pair for System users dataset (with key -1,
as decided in subsection 3.7.2) and one pair for rights sets. Even
though rights sets are not called a dataset, in some cases, they
behave similarly and because of that, each user needs to have
rights to them assigned. Because of that rights sets will also have
a unique number (the key) assigned—since System users dataset
has number -1, we have decided that rights sets will have number
-2 assigned.

• Application identifier – Each rights set belongs to exactly one

56

application. We need to be able to link the rights to an application
and because of it, we need to store the reference to the application.
This value is a reference to the Applications table, previously
mentioned in this subsection 3.8.1.

Users Users table will contain all users of the MetaRMS applications. This
table will be used for authentication of the users and because of that
it needs to contain the login credentials as mentioned in the Login
credentials subsubsection of section 3.4. Also based on the application
descriptor each user can have additional information, that will also be
stored within this table. The following enumeration lists all columns
within the table.

• Data (about the user) – Every user needs to have at least
username, but can also have another information filled. The
structure of these pieces of information is based on the application
descriptor, more specifically on the attributes in the System users
dataset, as defined in section 2.2. As decided at the beginning
of this subsection, these pieces of information will be stored as a
serialized JSON dictionary.

• Password hash – As defined in the Password storing subsubsection
of section 3.4 we have decided to store the password in a hashed
form.

• Password salt – As mentioned in the Password storing
subsubsection of section 3.4 to enhance security we have decided
to use salt together with the password and for successful check of
the password correctness, the salt needs to be stored as well.

• Rights set identifier – As defined in section 3.5 every user will
have a set of rights assigned. Because of this, we need to store
the identifier of the rights set belonging to the user. This value is
a reference to the Rights sets table, previously mentioned in this
subsection 3.8.1.

• Application identifier – Each user belongs to exactly one
application. We need to be able to link the user to an application
and because of it, we need to store the reference to the application.
This value is a reference to the Applications table, previously
mentioned in this subsection 3.8.1.

• Language – To support multiple languages—as required by the
requirement R8 (1.3)—every user has a language assigned. This
language can be used for the user interface language and for

57

the language of messages received from the server. As already
mentioned in section 2.1 because of the limited resources only
English will be supported.

Data (of the generated applications) Data table will contain data from
all datasets of all applications. Because of that, each record needs to
have an identifier of the application and the dataset it belongs to. Since
datasets can have different structures, storing the data as serialized
objects was selected at the beginning of this section. All of the stored
information are listed in the following enumeration.

• Data – This column will contain data of one record for a dataset.
As decided at the beginning of this section, these pieces of
information will be stored as a serialized JSON dictionary.

• Dataset identifier – Identifier of the dataset the record belongs
to. As mentioned in subsection 3.7.2 each dataset has a unique id
within the application assigned and this column will contain this
id.

• Application identifier – Each data belongs to exactly one
application. We need to be able to link the data to the application
and because of it, we need to store the reference to the application.
This value is a reference to the Applications table, previously
mentioned in this subsection 3.8.1.

3.8.2 Data storage choice

The database schema from figure 3.3 is quite simple, thus it does not limit
us in selecting the database. Our main requirement is support in .NET Core
(selected as the development platform in section 3.2) and the requirement R2
(1.3) for MetaRMS to be multiplatofrm. The interesting part is storing JSON
formatted data as defined in subsection 3.8.1. Because of these columns we
were also considering databases with JSON columns support. From our
requirements we were deciding between:

• PostgreSQL – this is an advanced relational database with a wide
variety of supported data types, including JSON. PostgreSQL database
is great for complex operations and larger projects.

• MySQL – this is a very popular open-source database that offers
support for JSON column type. This database needs a MySQL server
to run and is suitable for distributed web applications.

58

• SQLite – this is a simple free and open-source database, that runs
directly on the filesystem. Because it does not need a server to
run, no configuration is needed to start using it. Even though the
default supported types do not include the JSON data type, after
additional research we have found that a JSON1 extension pack
exists, which adds JSON support to the SQLite database. More
information about this extension pack can be found on the official site
www.sqlite.org/json1.html.

As a helpful source of information about different databases has proven the
article [Mar19]. Even though both PostgreSQL and MySQL support JSON
queries by default, we have decided to benefit from the SQLite database
and its option to run directly on the filesystem. This option creates fewer
requirements on the hosting, that will be selected in section 3.9. Also even
though JSON querying will not be a part of this thesis, later when extending
the code with this functionality, developers can benefit from the possibility
of using the above-mentioned extension. When SQLite will not be enough
to handle requests, MySQL would make a great replacement.

3.8.3 Accessing the database from the code

The above selected SQLite database will be accessed from the C# code of the
Server application mentioned in section 3.1. To make this access easier for
us we have decided to implement it using an Object-Relational mapping—
so-called ORM. For .NET Core we were selecting from the following options:

• Entity Framework Core is an open-source cross-platform version
of Entity Framework, an ORM framework from Microsoft. This
framework allows Code-First and Database-First approaches and
removes the need for writing raw SQL queries into the code by
supporting LINQ.

• Dapper is a so-called micro ORM framework, that was created with
performance in mind. Because of that developers write queries in raw
SQL and thus can fully influence how the query looks.

When selecting between the ORM frameworks we have considered
experiences from the [Cin17] bachelor thesis. In this thesis in section 4.7.2 on
page 37, the author evaluates the selection of Dapper as a not good choice.
The main reason is, that raw SQL queries in the code are not flexible to
debug and edit. Because of that, we have opted for Entity Framework Core.

With Entity Framework Core selected as an ORM framework, we can
choose between the Code-First and the Database-First approach of Data

59

https://www.sqlite.org/json1.html

Modeling. For this we have found the article [Rya18] helpful. To mention
the important differences between each of the approaches:

• In Code-First approach, the developer can define data model objects
using standard classes and the ORM framework then generates the
database base on them.

• Database-First approach is suitable in situations where a database
is already created and it needs to be mapped to classes. This way
the ORM framework takes the database and generates model classes
automatically.

The Code-First approach has been selected to be implemented since we would
like to avoid the automatic generation of the code. This approach allows us
to have full control over the code and perform changes in the database by
changing the code first and then make a database migration.

3.9 Hosting

To test MetaRMS in the production environment, we have decided to deploy
it to the server accessible in the Internet. For this deploment to be available
to anybody, we have decided to prefer a free hosting. Since we have already
made the decision about the language and platform in section 3.2 used for
MetaRMS development, we can list requirements on the server which we will
deploy to.

SR1 free hosting

Selection of ASP.NET Core as a platform makes the second requirement
to be the support of this platform and since we are developing MetaRMS
on ASP.NET Core 2.0 this is the exact required version. It would be
also preferred that the server will have a support of the future versions of
ASP.NET Core for future migration to the newer versions.

SR2 support of ASP.NET Core 2.0

SR3 support of future versions of ASP.NET Core

We have also already decided about the database used as a data storage.
Since the choice was in subsection 3.8.2 SQLite database, that does not
require any database server and it is just a single file, we have no requirement
on the database server.

60

All of the above-mentioned requirements were satisfied by
www.aspify.com and their free web hosting. The advantage of this web
hosting is that in the future, we can change the plan to the paid one with
additional features.

61

https://www.aspify.com/en/

62

4. Implementation

This chapter contains a description of MetaRMS implementation. The
implementation is based on observations and decisions from chapter 3. With
information from this chapter a person with a programming background
should understand what are the individual parts of the project and in case
of implementing a new feature, the developer should be able to find the part
of the code that needs to be changed.

The structure is based on the software architecture elaborated in section
3.1. Before describing the individual parts of the MetaRMS solution in detail,
we will introduce basic workflow and requirements, as well as individual
processes available within MetaRMS.

4.1 Basic workflow and requirements

The figure 4.1 contains a simplified workflow of MetaRMS. It also denotes
that MetaRMS is divided into two projects—Core and SharedLibrary. The
following list contains an explanation of the individual parts of the workflow.

Administrators/Users End users interacting with the Web client selected
in section 3.1. This can be either administrator creating a new
application or a regular user logging into an application and performing
authorized CRUD operations on the data.

1 The interaction between end-user and Web client is performed via a web
browser available on both desktop and mobile devices.

Razor web client Web client is implemented in ASP.NET Core 2.0 with
the help of Razor Pages selected in section 3.2. This client provides
web pages accessible via web browser and connects to the MetaRMS
server JSON API endpoints.

2 Both the Web client and MetaRMS server are using methods from the
SharedLibrary. These methods are invoked by C# method calls.

SharedLibrary The SharedLibrary is implemented in C# as .NET
Standard 2.0 library. This library is used by both Web client and
MetaRMS server.

3 JSON web API is used by the client applications to connect to the
MetaRMS server. This API was selected in section 3.1. When a

63

user is signed, JWT authentication token is sent to the server with
every request as decided in the Authentication method subsubsection
of section 3.4.

Controllers Controllers contain API endpoints to which the client
applications are connecting. Controllers are part of the Core project,
which is implemented in ASP.NET Core 2.0.

Repositories Repositories are the access points to the database.
Repositories are part of the Core project, which is implemented in
ASP.NET Core 2.0.

4 Entity Framework Core 2.0 picked in subsection 3.8.3 is implemented as on
object-relational mapper between MetaRMS server and the database.

SQLite database SQLite database was selected as data storage in
subsection 3.8.2. This database is located within the Core project.

Figure 4.1: Basic workflow of MetaRMS solution.

In the following section 4.2 this workflow will be elaborated for individual
processes within MetaRMS in more detail.

4.2 MetaRMS processes

Before explaining individual parts of MetaRMS solution it is important to
elaborate processes available within. By process, we mean a sequence of steps
leading to a certain result. Each of the processes represents an action that
a user can perform in the application. In each of the following subsections,
one of the processes will be explained in detail. Every figure in the following
subsections is also described in detail and labels from the figures are written
in italics to be easily distinguishable from the other text. Web paths in
this section are relative to the location of the Web client application home
address.

64

4.2.1 Application initialization

The process of application initialization or in other words the process
of creating a new application is described in the figure 4.2. In this
process administrator provides an application descriptor as defined in
the chapter 2 and section 3.7 and an email address to the application
initialization page accessible via a web browser on path /AppInit.
This page in the code corresponds with the AppInit/Index.cshtml and
AppInit/Index.cshtml.cs files in the Pages folder of the Core project. The
application descriptor together with the email address is then sent via the
JSON web API (in the figure represented as 1) to the AppInitController

on the server side. This controller performs validations—both against the
JSON schema and in-code—mentioned in subsection 3.7.1. In case of an
invalid application descriptor or email address, error messages (described in
section 3.6) are sent back to the client application (represented by 8 in the
figure).

If no errors were found, a new application based on the application
descriptor is created by calling the ApplicationRepository functions
(represented by 2). This new application is stored to the Database using
Entity Framework Core 2.0 (represented by 3). After the application
is created an administrator account needs to be set up. Before that,
administrator rights set needs to be made. This is performed by calling the
RightsRepository functions (represented by 4) that store the rights set into
the Database again using Entity Framework Core (represented by 5). Rights
for the administrator are set to full CRUD for all User-defined datasets,
System users dataset and rights sets—allowing the administrator to perform
all operations (explained in the Representation subsubsection of section
3.5). The administrator user account is created using the UserRepository

(represented by 6) with the rights set to the newly created rights and the
username set to “admin”. The new user entity is stored into the Database
by Entity Framework Core (represented by 7).

After the application, administrator rights set and account are created,
an email with administrator login credentials is sent to the provided email
address. If everything is successful a message about the success is returned
back to the web client application (represented by 8). The client then
performs redirect to the login page (represented by 9) located on the /

path. This page is in the code represented by the Index.cshtml and
Index.cshtml.cs files in the Pages folder of the Core project. After the
email is received administrator can log into the new application.

65

Figure 4.2: Application initialization process.

4.2.2 Authentication

This subsection contains process of logging into and out of the application
described in more detail.

Login

The login process starts on the login page and is described in the figure 4.3.
This page is located on the / path and is represented by the Index.cshtml

and Index.cshtml.cs files in the Pages folder of the Core project. User
needs to provide the unique application name, username and password as
authentication credentials, as decided in the Login credentials subsubsection
of section 3.4. These credentials are sent via the JSON web API (represented
by 1) to the LoginController on the MetaRMS server. In this controller,
the credentials are checked with the help of the UserRepository (represented
by 2) against the Database via Entity Framework Core 2.0 (represented by
3). If credentials are not valid an error message (described in section 3.6) is
returned back to the client (represented by 4) and displayed on the page.

Figure 4.3: Login process.

In case of successful login the LoginController creates a JWT
authentication token (described in the Authentication method subsubsection
of section 3.4) that is returned back to the client application (represented by
4). The client application than performs redirect from the login page to the
dataset data page containing data of the first dataset that the logged user
has rights to see or, in case no such dataset exists, to a page with no data

66

(represented by 5). The dataset data page is on the /Data/Get/<dataset

name> path and is represented in the code by the Data/Get.cshtml and
Data/Get.cshtml.cs files in the Pages folder of the Core project.

Logout

The logout process is displayed in the figure 4.4. The logout page is
accessible via Logout button displayed on the pages visible for logged users.
This page is on the path /Account/Logout and is in code represented by
the /Account/Logout.cshtml and /Account/Logout.cshtml.cs files in the
Pages folder of the Core project. When user is redirected to the logout page
the LogoutController is called via the JSON web API (represented by 1).
The current version of the controller only returns HTTP 200—OK—response
(represented by 2). After that the logout page deletes cookies and preforms
redirect to the login page (represented by 3).

This simple implementation of logout on the server in the
LogoutController was selected due to limited resources. In the future, the
logout process on the server side should be reimplemented. For example, we
could have a database of no longer active tokens that still have not expired.
Then with every authorized request, we would query the provided token
against this database and allow access only to valid tokens not contained in
this database.

Figure 4.4: Logout process.

4.2.3 Operations

Figure 4.5 contains processes of read, create, edit and delete operations
that are common for System users dataset, all User-defined datasets, and
rights sets. In the figure, there is a * symbol, used as a placeholder for
words User, Data and Rights representing System users dataset, User-defined
datasets, and rights sets respectively. For each of them, the implementation
of individual operations will be elaborated in more detail under the figure.
System users dataset also contains one additional operation—resetting a
password—which will be in more detail elaborated in the System users
dataset subsubsection.

67

Before listing all the operations it is important to mention some parts of
the processes that are common to all.

• All of these operations can be performed only by a user who is logged in
and owns a valid JWT authentication token (process of receiving the
token was described in the Login subsubsection of subsection 4.2.2).
This token is sent with every request from the client application to the
server, where the token is validated.

• Before every operation, the logged user is checked whether they are
authorized for the operation. The result of the authorization is based
on the user’s rights set as described in section 3.5.

• All communication between repositories and the Database is done with
Entity Framework Core 2.0 selected in subsection 3.8.3 (represented in
the figure by 18 and 19).

• All the page files—the .cshtml and .cshtml.cs files—are located in
the Core project in the Pages/* subfolder. For example files regarding
System users dataset are located in the Pages/User folder.

• All controllers are located in the Core.Controllers.* namespace. For
example controllers regarding System users dataset are located in the
Core.Controllers.User namespace.

Figure 4.5: Process of CRUD operations on User-defined datasets, System
users dataset and rights sets.

68

System users dataset

System users dataset was with all the details elaborated in the section 2.2.
MetaRMS provides 5 operations on this dataset and the processes of these
operations will be explained in the following enumeration. As mentioned at
the beginning of this section, for the System users dataset the * in the figure
4.5 stands for User.

Get all users of the application This operation starts when a user sends
GET request to the get users page located on the /User/Get

path. The page is in the code represented by the /Get.cshtml and
/Get.cshtml.cs files. From this page request to the GetController

is sent by JSON web API (represented by 1). The GetController

calls the UserRepository (represented by 2) and the application users
are loaded from the Database. When users are loaded the data is sent
back to the client application (represented by 3) and finally displayed.

Create a new user The user create page contains the empty structure of a
new user—all fields defined in the descriptor of the current application
and a select box with the available rights sets for the user. These
application descriptor-based fields are taken from the attributes of the
System users dataset descriptor. Their type, the fill requirement and
the valid values are based on the properties of each attribute. The
valid rights sets and valid references for the reference type attributes
are loaded from the server with the GET request to the user create
page. This page is located on the /User/Create path and is in code
represented by the /Create.cshtml and /Create.cshtml.cs files.

After the logged user fills all the necessary information about a new user
and clicks on the Save button all the input values are serialized and sent
via the JSON web API (represented by 4) to the CreateController

on the server. This controller is responsible for input validations based
on the application descriptor. In case of errors, the error messages are
returned back to the client (represented by 6). If the input was correct
using methods from the UserRepository (represented by 5) the new
user is serialized and stored in the Database.

After the successful creation, a message is sent to the client application
(represented by 6) and the user is redirected to the get users page
mentioned in the previous bullet (represented by 7). The new user
account is ready immediately. The password for every new user is
set to “MetaRMS123” and this default value can be changed in the
SharedLibrary in file with constants.

69

Edit an existing user All information about application user—except
password—can be edited on the user edit page. This page is similar to
the user create page mentioned in the previous bullet. The difference
is that the user edit page contains already filled information about a
user to edit. Also the edit page is located on the /User/Edit/<id of

the user to be edited> path and is in the code represented by the
/Edit.cshtml and /Edit.cshtml.cs files.

The rest of the process is very similar as well. Modified values are sent
to the EditController (represented by 8), validated and stored in
the Database using the UserRepository (represented by 9). Messages
handling is identical to the one in creation of a new user and is
represented by 10. In case of successful edit, the user is redirected
to the get users page mentioned in the first bullet (represented by 11).

Delete an existing user The delete operation is invoked by clicking on the
Delete button associated with a specific record on the get users page
mentioned in the first bullet. The request is sent via the JSON web
API to the DeleteController on the server (represented by 12). If
the Database restrictions would not be violated by the delete operation,
the delete is performed by methods from the UserRepository and
DataRepository (represented by 13). The delete operation might
delete other records as well based on the application descriptor settings
of the onDeleteActions defined in the bullet 7 of subsection 2.3.1.
The message about the result is sent back to the client application
(represented by 14).

Reset password of an existing user The reset password operation is
invoked from the get users page mentioned in the first bullet by clicking
on the Reset password button. Its goal is to reset the password of
the selected user back to the default value—“MetaRMS123”. The
reset request is sent via the JSON web API (represented by 15)
to the ResetPasswordController. The new password is stored in
the Database using the UserRepository methods (represented by
16). Message about the action result is then sent back to the client
application (represented by 17) and displayed.

User-defined datasets

When performing operations on the User-defined datasets it is important
to know what dataset are we dealing with. Because of that, each of the
processes listed below needs to know the dataset identifier. As mentioned

70

at the beginning of this section, for User-defined datasets the * in the figure
4.5 stands for Data. Also, some parts of the processes are very similar to
the processes already mentioned in the System users dataset subsubsection
mentioned above and because of that, we will use it as a reference.

Get all records from one dataset This operation is very similar to the
get all operation in the System users dataset described in the previous
subsubsection. The difference is that it starts by sending the
GET request to the data get page on the /Data/Get/<name of the

dataset to get> path. On the server, the data are loaded using the
DataRepository.

Create a new record in a dataset The create operation on the User-
defined datasets is similar to the create operation on the System users
dataset. The data create page contains an empty structure for a dataset
record and is located on the /Data/Create/<name of the dataset

to create the data to> path. The structure and the input types
are based on the application descriptor and attribute properties of the
dataset to which the record belongs. In case of the reference type
attributes, the valid references are loaded from the server with the
GET request to the data create page.

After the user fills the necessary information about the new record and
clicks on the Save button, the input values are serialized and sent via
the JSON web API (represented by 4) to the CreateController on
the server. This controller is—as well as in the case of the System users
dataset—responsible for input validations. In case of errors, the error
messages are sent back to the client (represented by 6). Otherwise the
data are stored in the Database with the help of the DataRepository

(represented by 5) and a message about success is sent back to the
client application (represented by 6). Client application redirects the
user to the data get page mentioned in the previous bullet (represented
by 7) and displays the message.

Edit existing record in a dataset The data edit page
contains information about single already created record. The page
is located on the /Data/Get/<name of the dataset the record is

from>/<id of the record to edit> path. All the values displayed
on this page, as well as valid references for reference type attributes,
are loaded from the server with the GET request to the data edit page.
When the user clicks the Save button, the edited structure is serialized
and sent via the JSON web API to the EditController on the client

71

side (represented by 8). The controller performs validations against
the application descriptor and, in case of errors, returns error messages
(represented by 10).

If no errors are found the record is stored in the Database with the
help of the DataRepository (represented by 9). Then message about
success is sent back to the client application (represented by 10). The
client redirects the user to the data get page, mentioned in the first
bullet, and displays the message (represented by 11).

Delete an existing record in a dataset The delete operation is almost
the same as for the System users dataset mentioned in the previous
subsubsection. The only difference is that the Delete button is located
on the data get page. Again it is important to remember that other
records might be deleted as well based on application descriptor settings
of the onDeleteActions defined in the bullet 7 of subsection 2.3.1.

Rights sets

Rights sets were in detail described in section 3.5 and in this section, we will
elaborate available operations that can be performed with rights sets. As
mentioned at the beginning of this section, for rights sets the * in the figure
4.5 stands for Rights.

Get all rights sets of the application This operation is similar to the
get all operations on the User-defined and the System users datasets.
It starts by sending the GET request to the rights get page located
on the /Rights/Get path. The page then sends a request to the
GetController (represented by 1). This controller returns all available
rights for the application the user is logged in from the Database to
the client (represented by 3), with the help of RightsRepository

(represented by 2). The client then displays all the received rights
sets.

Create a new rights set The creation of a new rights set starts on the
rights create page located on the /Rights/Create path. This page
contains a text input field for the rights set name and a select box
with available rights values—None, R, CR, CRU and CRUD (defined
in the Representation subsubsection of section 3.5) for each dataset of
the application. When the values of the new rights set are filled and
the user clicks on the Save button, the input data are serialized and
sent to the CreateController via the JSON web API.

72

The controller performs validations mentioned in the Rights validation
subsubsection of section 3.5 and in case of errors returns error messages
to the client (represented by 6). If the rights are correct, they are stored
in the Database with the help of the RightsRepository (represented by
5). Information about success is sent to the client (represented by 6).
The client then performs a redirect to the rights get page, mentioned
in the previous bullet, and displays the message.

Edit an existing rights set The structure of the rights edit page is the
same as the structure of the rights create page mentioned in the
previous bullet with the exception that the values are already filled
and ready to be modified. Also the edit page is located on the
/Rights/Edit/<id of the rights set to be edited> path. After
the user clicks the Save button to save the modifications, the data are
serialized and sent via the JSON web API (represented by 8) to the
EditController on the server. The rest of the process is the same as
for the new rights set creation mentioned in the previous bullet.

Delete an existing rights set The delete operation is invoked by clicking
on the Delete button associated with a specific rights set on the
rights get page. The request is sent via the JSON web API to the
DeleteController on the server (represented by 12). If no user has the
given rights assigned, the method in the RightsRepository is called
(represented by 13), the rights are deleted from the Database and a
success message is sent back to the client application. Otherwise, an
error message is sent back to the client (represented by 14).

4.2.4 Settings

This subsection contains a process regarding account settings for a currently
logged user. The implemented process is changing the user password, which
will be in more detail described in the following subsubsection.

Password

This process relates to the password of the currently logged user and is
depicted in the figure 4.6. Each user can change their own password
in the settings of the application after login. The settings page is
on the /Account/Settings path and is in code represented by the
/Account/Settings.cshtml and /Account/Settings.cshtml.cs files in
the Pages folder of the Core project. On the settings page, the user fills
the current password and the new password. The new password needs to

73

be entered twice to prevent possible typing errors. All these information are
sent via the JSON web API (represented by 1) to the PasswordController.

This controller performs password validations based on the password
attribute properties of the application descriptor (explained in section 2.3). If
an error is found, the error message is returned back to the client application
(represented by 4). Otherwise new password is hashed with salt (explained in
the Password storing subsubsection of section 3.4) and stored to the Database
via the UserRepository (represented by 2) using Entity Framework Core
2.0 (represented by 3). After that, a success message is returned back to the
client application (represented by 4).

Figure 4.6: Process of changing password of the logged user.

4.3 Solution structure

As already mentioned in section 4.1 MetaRMS solution consists of two
projects—Core and SharedLibrary. In the following section, we will
annotate the structure of both of the projects to explain the contents of
individual parts.

• Core project containing server part of MetaRMS—application server
and data storage selected in subsection 3.8.2—and Web client since
they were merged together as mentioned at the end of section 3.1.

• SharedLibrary, a library that provides functions, structures and
other helper files shared between the server application and client
applications.

Both of these projects will be elaborated in more detail in the following
subsections.

4.3.1 Core

As decided in section 3.1 the Core project contains both the Application
server and the Web client application. The structure of this project is divided
into folders with common content and the following enumeration describes
all the folders of the Core project in more detail and when necessary the files
are also described.

74

Cache This folder contains class responsible for creating the text
representation of the references and stores them in the cache to reduce
the number of queries to the database.

Controllers This folder contains API controllers. These controllers are
expecting HTTP requests on the /api/<file without Controller

name within Controllers

folder> route — for example Controllers/Data/GetController is
on the route /api/data/get. Controllers in this folder are divided
into Data, Rights and User subfolders contain controllers for getting,
creating, updating and deleting entities from corresponding database
tables. The User folder also contains controller for resetting a password
of an arbitrary user. The Account folder contains controllers regarding
the account of the currently logged user with methods for login,
logout, getting user’s rights set and descriptor of application the user
is logged in. The Settings subfolder contains controller for changing
the user’s password. The only controller without its own folder is the
AppInitController, that serves to create a new application.

The general workflow of controllers contains authentication (except
controller for login and initialization of a new application),
authorization of the user, input data validation (for controllers that
create or update the data) and return of the JSON response back to
the client application.

In case of creating new API endpoints or updating the existing ones,
general changes should be performed within this folder. In case of more
specific changes, such as changes in data validations, corresponding
helpers should be edited.

Helpers This folder contains helper classes for both the Server application
and the Web client application. Since every helper serves a special
purpose, we will elaborate on each of them individually.

• AccessHelper.cs – This helper contains methods necessary for
the Web client, used for getting access to the page content.
Methods for getting the authentication token, logged user’s
application descriptor and rights and preparation of the page data
can be found here.

• AppInitHelper.cs – This helper is used by the Server application
and contains methods necessary during the initialization of a new
application, such as preparation of administrator’s account and
sending a confirmation email of successfully created application.

75

• CacheHelper.cs – This helper contains methods for getting
application descriptor and rights set of the currently logged user
from the cache provided by the Web client application.

• ControllerHelper.cs – This helper is used on the server side by
the Server application in the controllers. It contains methods, that
are used within more controllers or are too large to be part of the
controller. This includes methods for authentication, validation
of references and deletion of data or users.

• DataHelper.cs – This helper serves controllers when preparing
data for the clients—it enhances the references with their text
representations.

• HTMLSelectHelper.cs – This helper is used by the Web client
application and it prepares values for HTML selects—it loads all
the valid values that can be selected for each select element.

• PasswordHelper.cs – This helper contains methods for working
with passwords, such as its hashing and validation necessary for
the Server application.

• ValidationHelper.cs – This helper is used by the Web client
application and it validates the structure of the data before
sending it to the server.

Pages This folder contains all the source codes of the Web client web pages.
Every page consists of two files—.cshtml and .cshtml.cs file with
the same name. The .cshtml.cs file serves as the code-behind file for
the corresponding .cshtml file. It loads data from the server via API,
creates the model of the page—a structure of data, that is available in
the .cshtml file—and can perform some validations, such as whether
the user has authentication token from the server, is authorized or some
data validations before sending the data to the server. The .cshtml

file contains HTML tags enhanced with Razor syntax that provides C#
functions and variables within the file.

In the root of the Pages folder, files for About and Login pages are
located as well as the main Error landing page. The structure of
the subfolders corresponds to the database structure—User, Rights
and Data folders contain pages for getting, creating and editing
corresponding database entities. The Account folder contains pages
regarding logged user’s account and AppInit folder contains a page
for a new application initialization. Shared folder contains partials—
parts of HTML and Razor code—that can be used by the other pages.

76

Partials for menus and displaying of messages are located here. Also
GetBuilderPartial.cshtml and InputBuilderPartial.cshtml

partials are in this folder. The GetBuilderPartial.cshtml is used
for displaying values for the attributes for individual dataset records.
The InputBuilderPartial.cshtml, on the other hand, creates input
fields based on attribute properties.

If the web pages should be modified, changes will be performed within
this folder.

Repositories This folder contains database repositories. Repositories are
the only entry point to the database. The BaseRepository.cs contains
methods for all the other repositories that inherits from this base
repository. Each of the rest of the repositories corresponds to one
database table and contains methods for accessing the table.

Classes in this folder should be modified in case of adding new methods
and filters for getting data from the database.

Structures This folder contains structures used within the pages in the
Pages folder.

wwwroot This folder contains CSS and JavaScript files for the Web client and
its icon. The css folder contains custom styles and the js folder can
in the future contain custom JavaScript functions. In case of making
changes to the style of the pages, only files in css and js folders should
be changed. Folder lib contains Bootstrap and JQuery libraries and
should not be modified.

Model.cs This file contains the database context used within the application
to connect to the database.

Program.cs This file is the start point of the application.

Startup.cs This is the configuration file in which all the services are added.

database.db This is the SQLite database file used for storing all the
application and user’s data.

4.3.2 SharedLibrary

Within this thesis, the SharedLibrary project is used by both the Server
application and the Web client application. In the future, this library should
be used by other client applications as well, since methods that might be
useful for both server and all the clients are included within it.

77

The structure of this library is divided into folders with common content.
In the following enumeration, we will elaborate on each of the folders in more
detail.

Descriptors This folder contains individual parts of application descriptor
divided into C# classes and is used whenever any of server or client
applications need to work with deserialized application descriptor.

Enums This folder contains enumerations of valid values for different
elements, such as supported languages, types of messages mentioned
in section 3.6, onDeleteActions elaborated in the bullet 7 of subsection
2.3.1, rights elaborated in the Representation subsubsection of
section 3.5 and identifiers of system datasets. It also contains
AttributeTypeEnum.cs file which is not an enum, but a List with
all the basic attribute types listed in the bullet 3 of subsection 2.3.1
together with the password and the username type. This can be used
for validation whether is an attribute of basic or reference type.

Files This folder contains files unnecessary to the functionality of the
SharedLibrary. These files include JSON schema (in a text file)
against which the application descriptor is validated, when a new
application is created. Also, some examples of application descriptors
can be found in the ApplicationDescriptorExamples folder.

Helpers This folder contains helpers that are useful in different scenarios
and because of this, we will elaborate on each of them individually.

• AuthorizationHelper.cs – this helper contains methods for
authorization that can be used by client applications to verify
that a user has access to the data.

• Logger.cs – this helper contains loggers. In the future loggers to
files could be added into this file.

• MessageHelper.cs – this helper contains methods for creating
frequently used messages. At the moment only server error
message is present in this helper.

• SharedAppInitHelper.cs – this helper is used for performing
application descriptor validation defined in subsection 3.7.1.

• SharedValidationHelper.cs – this helper contains methods for
various validations, be it a validation of rights or input data of a
dataset.

78

• TokenHelper.cs – this helper is used for accessing data contained
in the JWT token received from the Server application.

Models This folder contains the mapping of database tables to the C#
classes. Based on these models the database can be created. If the
database needs to be altered, changes in these models and a migration
of the database needs to be made.

Services This folder contains classes with methods for accessing the
API endpoints of the Server application. The services inherit from
BaseService class that defines the base address of the API endpoints.
In case of changes on the API, these services need to be changed as
well accordingly.

StaticFiles This folder contains classes with constants and plain texts. In
the future contents of this classes should be moved into plain text files
and configuration files.

Structures This folder contains structures that are useful for both the
Server and the Web client application or other client applications.
These structures include a structure of JWT token, structure for login
credentials, messages and a structure used when a password is changed.

Content of all of the folder within the SharedLibrary project was introduced
in the previous enumeration. For readers interested in more details about
individual classes we recommend looking through the SharedLibrary project
itself since documentation comments might be helpful in understanding the
full details of each class.

4.4 Issues

During development we have encountered some issues worth mentioning.

4.4.1 HTTPS support

As mentioned in section 3.1 we would like to use an HTTPS connection when
a client application connects to the MetaRMS API. During development, we
have encountered some problems with achieving this and we will describe
them in the following subsection.

To allow HTTPS connection on localhost, we had to create a self-
signed certificate. Because our development platform was macOS, we have
generated the certificate on this platform. For this, we have found the

79

article [Car17] helpful. This article also mentions how to generate self-signed
certificates for other platforms.

To enable HTTPS connection it is important to set variable UseHttps

in Constants class in the SharedLibrary project to true. Also path to
the certificate must be assigned to the HttpsCertificatePath variable and
password to the certificate to the HttpsCertificatePassword variable.

The HTTPS communication was tested from Postman (an API testing
tool—www.getpostman.com). In figure 4.7 we can see a successful login to
the secured page.

Figure 4.7: Testing HTTPS secured API with Postman.

When testing the HTTPS communication from the Web client application
we have encountered a System.PlatformNotSupportedException exception
caused by an incorrect libcurl version. As we have understood from discussion
[Git] this problem should be solved after upgrading to the higher version of
.NET Core, which is one of our future goals as mentioned in section 6.1.

Because of the problems with client application we have decided to turn
HTTPS connection off by default. This feature is for now just experimental
and can be turned on only with the debug configuration.

Unfortunately, the free version of the hosting www.aspify.com, that
we are using, does not have SSL support. Because of this the HTTPS
communication was not tested in the production environment. This is one
of the goals in the Future work mentioned in section 6.1.

4.4.2 Sending emails

For automatic sending of emails we have used a Gmail account. To be able
to send emails from the production server, we had to allow access to less
secure applications. This can be done in the settings of the Google account.
Go to Google Account →Security →Less secure app access →Turn on access

80

https://www.getpostman.com/
https://www.aspify.com/en/

(not recommended) →and here turn the switch to blue. Figure 4.8 shows (a)
error message received when sending the email with Less secure app access
turned off and (b) how the Less secure app access settings should look so
that the emails can be sent.

(a) Gmail sign-in attempt warning. (b) Less secure app access switch.

Figure 4.8: Gmail settings to allow sending emails from MetaRMS.

4.4.3 Cultural info

In the production environment we have received System.FormatException

when converting strings to floats. This was caused by a different
culture of the production server. Setting the CultureInfo to
CultureInfo.InvariantCulture when parsing has solved this problem.

4.4.4 Login length on production

After deploying and testing the deployed version of MetaRMS on the
production server, we have found that after login the user is logged out
after 1-3 minutes. We have not found what this time depends on nor have
we found what is this log out caused by. Changing of the expiry time of the
JWT issued on the server also did not produce any changes.

Because this problem is not present when running MetaRMS locally, we
suppose, that this problem is caused by the hosting. We have discussed the
problem with hosting helpdesk. Their advice was to check the Application
Pool restarts in the Log Manager, but those restart times did not match the
logout times. Unfortunately, we have not managed to solve this issue.

81

82

5. User guide

This chapter will contain guides for different users of MetaRMS. The
following enumeration divides these users into groups:

1. Developers of the client applications interacting with the open JSON
API. With this API, anyone can create a client application for an
arbitrary platform and connect it to the MetaRMS. This will be
elaborated in more detail in section 5.1 of this chapter.

2. System administrators who can edit the source code of MetaRMS server
and web client application. These administrators need to be able to
run and debug the application locally and deploy the final version to
the production server. Section 5.2 will contain a guide for this group
of users.

3. Application administrators who create an application based on an
application descriptor and then administrate it for their clients, set user
accounts and authorization levels. These administrators will create the
application on an already running instance of MetaRMS. This will be
elaborated in more detail in section 5.3 of this chapter.

4. Application users, who log in to an already generated and prepared
application and manipulate with the data within ther authorization
level. This group of end-users will be elaborated in more detail in
section 5.4 of this chapter.

It is expected, that these groups are not disjunct and that for example,
an application administrator can at the same time be an application user
(especially for personal-use applications).

5.1 Client application developer’s guide

This section targets developers, who want to create a client application for
MetaRMS. Their main concern will be the JSON web API and the Shared
library mentioned in subsection 4.3.2.

To create a client application it is important to understand the
processes within MetaRMS. These processes are in detail described in
the section 4.2. The Swagger documentation of the API can be found
online on sapoi.aspifyhost.com/api/swagger. For local instance of
MetaRMS, the documentation is on http://localhost/api/swagger or

83

http://sapoi.aspifyhost.com/api/swagger/index.html
http://localhost/api/swagger

on https://localhost/api/swagger if HTTPS is enabled. How to run
MetaRMS locally is described in the following section 5.2.

It is recommended to use the SharedLibrary when developing client
applications, since it contains functions for validations based on the
application descriptor, functions for user authorization, etc. It is a .NET
Standard 2.0 library written in C# and it is in detail described in subsection
4.3.2.

5.2 System administrator’s guide

As a system administrator, we consider a person who mainly deploys an
instance of MetaRMS on their server. This process may include performing
changes in the MetaRMS code, testing and debugging. In this section, local
testing of MetaRMS will be explained in Step 1 and the actual deployment
to the server in Step 2. In Step 3 the database will be created and added to
the server.

In case that the administrators want to first try the generated
applications, the option is on the already running instence of MetaRMS
located on sapoi.aspifyhost.com. The applications mentioned in this
section in Step 1 in substep 4 are with the same login credentials present
also on this instance.

Step 1 – Local testing

To test the funcionality of MetaRMS first locally, it is important to support
.Net Core 2.0. It takes the following steps to run MetaRMS on a local system.

1. Download the latest source files from github.com/sapoi/MetaRMS. It
is also possible to use MetaRMS source codes attached to this thesis.

2. Set your own values in the StaticFiles/Constants.cs file in the
SharedLibrary project. The values that will need to be changed are
in the Application initialization email settings region. When
experimenting with the HTTPS connection, variables in the Security
settings region might also be changed.

3. After that the application is ready to be executed and debugged.

macOS The project already contains .vscode folder with the
configuration for Visual Studio Code. When the project is opened
in the Visual Studio Code for the first time, all the dependencies

84

https://localhost/api/swagger
http://sapoi.aspifyhost.com/
https://github.com/sapoi/MetaRMS

must be restored, as shown in the figure 5.1. Then the project can
be debugged or ran.

Figure 5.1: Restoring dependencies in Visual Studio Code.

Windows In Visual Studio select Core as the startup project and then
select Core again. This selection is depicted in the figure 5.2.

Figure 5.2: Settings in Visual Studio.

4. The attached database already contains 6 examples of generated
applications. These applications corresponed to our representative
scenarios mentioned in the Representative scenarios subsubsection
of section 1.1. Each of these applications contains an account to
which the administrator can log in and explore the application.
The login application names are respectivelly “ats”, “inventory”,
“kenmore municipal library”, “package delivery”, “sports tracker” and
“todo list”. For these examples, the username is always
“admin” and the password is “MetaRMS123”. On top of that
the “kenmore municipal library” contains additional accounts with
different rights sets. The password to these accounts is always
“MetaRMS123” and the usernames are “Joseph”, “Anna”, “Elisabeth”,
“Peter”, “Mike” and “Julia”. Details about the individual descriptors
will be elaborated in section 5.3.

Step 2 – Deployment to the server

If we want to deploy MetaRMS to our own server, we need an ASP.NET Core
server with ASP.NET Core 2.0 and Entity Framework Core 2.0 support. For
this we used a free hosting server aspify.com selected in section 3.9.

85

https://aspify.com/

This step builds on the Step 1 and starts with a working version of
MetaRMS, that is able to run locally. This tutorial expects, that the
administrator has at least minor experience with terminal.

1. Set location of the server into the ReleaseServerBaseAddress variable
in in the StaticFiles/Constants.cs file in the SharedLibrary

project.

2. Go to the Core folder in terminal

cd Core/

3. Deploy MetaRMS with Release build configuration

dotnet publish -c Release

4. Copy all the
contents of the folder Core/bin/Release/netcoreapp2.0/publish/

to the www folder of the hosting server

Step 3 – Database creation

The source codes already contain a prepared database in
the Core/database.db file. This database contains prepared applications
as mentioned at the end of the Step 1 in this guide.

If we want to create our own empty database the following steps should
be followed. Otherwise, the already prepared database can be used as well
so only the substep 5 from the following list needs to be done.

1. Delete the Core/database.db file and Core/Migrations folder

2. Go to the Core folder in the terminal

cd Core/

3. Scaffold a migration to create the initial set of tables for the model

dotnet ef migrations add <name of the migration>

4. Create a database and apply the new migration to it

dotnet ef database update

5. Copy the new Core/database.db file to the www folder of the hosting
server

86

Step 4 – Test the connection

This is the last step of the system administrator’s tutorial. At the moment
MetaRMS should be running on the server.

5.3 Application administrator’s guide

This section contains a guide for the application administrators. By
application administrator, we mean a user who writes an application
descriptor and generates the application via already running instance of
MetaRMS. This means that the administrator must understand the format
of the application descriptor and the process of creation of new application
users and setup of their rights.

Step 1 – Create an application descriptor

Chapter 2 describes all the necessary parts of the application descriptor and
the reasons for their inclusion in the final solution. Section 3.7 then contains
a selection of the format of the application descriptor together with the basic
structure. Finally, the result structure of the application descriptor can be
found in subsection 3.7.3.

The following subsubsection contains advice for writing an application
descriptor. Inspiration can be found in the already existing application
descriptors and in the Examples subsubsection at the end of this guide.
Also, it is recommended to read Best practices mentioned later in this
subsubsection, before writing an application descriptor.

As mentioned in the previous paragraph, complete examples of
application descriptors can be found as a part of the SharedLibrary

project in the Files/ApplicationDescriptorExamples folder and this
folder also contains a basic application descriptor structure with comments—
file application descriptor basic structure explanation.json. JSON
schema against which the descriptor is validated, can be found in the
SharedLibrary project in the Files folder, in the file jsonschema.json.
The following enumeration contains a brief description of each of the
application descriptor from examples.

ats.json This application descriptor contains an example of how to create
a chain of records. The Interviews dataset can contain references to
Previous and Following interviews.

inventory.json

This application descriptor contains examples of enumerations, such

87

as categories, employees positions, and currencies.

kenmore municipal library.json This descriptor contains an application,
where different levels of rights are necessary. The reason is, that the
Payroll dataset should not be visible to every employee of the library,
but only to accountants. Creation of the rights sets and the user
accounts is elaborated in Steps 3 and 4 of this guide.

package delivery cz.json Even though the language settings in descriptor
has to be set to English, which results in English button descriptions
and messages, this example shows some parts of the descriptor written
in the Czech language. These values are names of datasets, their
attributes, and descriptions. The language different from English was
selected on purpose to show, that these values can be in an arbitrary
language.

sports tracker.json This simple application descriptor creates a template
for general sports trackers and it shows support of emojis in the
descriptions.

todo list.json This easily extendable application descriptor can be used
as an inspiration for simple ToDo applications. Also it uses all types
of onDeleteActions mentioned in bullet 7 of subsection 2.3.1.

Best practices for writing the application descriptor:

• Write the most frequently used datasets first because the datasets in
the application menu will be displayed in the order in which they are
in the application descriptor.

• Write attributes with the important or distinctive information first
in a dataset. The first 3 attributes are displayed when a record of
the dataset is referenced and the records in one dataset should be
distinguishable by the values of the first 3 attributes. More information
about this can be found in section 3.3.

Step 2 – Create the application

In this step, the application descriptor is submitted to the MetaRMS server
and validated. If the descriptor is correct the application is created and the
administrator can log in.

1. Upload the application descriptor and email address to MetaRMS. The
screenshots in the figure 5.3 come from the provided web client. Figure

88

(a) shows the initialization page on a desktop device and figure (b) on
a mobile device.

(a) Desktop device (b) Mobile device

Figure 5.3: Application initialization page on various devices.

2. After submitting, the application descriptor is validated on the server
side. If there are any errors found, they are displayed on the application
initialization page and the application is not created. Example of the
page with errors is in the figure 5.4.

Figure 5.4: Example of displayed errors after submitting invalid application
descriptor.

3. After a valid application descriptor is submitted, wait for an email with
login credentials. Example of such email is in figure 5.5.

89

Figure 5.5: Exmple of email with login credentials.

4. Log into the newly generated application with received credentials. The
login page displayed after application initialization is in figure 5.6.

Figure 5.6: Login page after application initialization.

Step 3 – Setting user rights

Section 3.5 contains a detail description of the system of user rights. When
creating a set of rights, it is important to understand the meaning of each of
the rights levels.

None No rights at all

R Only right to read the data.

CR Right to read existing and create new data.

CRU Right to read and update existing and create new data.

CRUD Full rights—read, create, update and delete the data.

New rights set can be created on the /Rights/Create address or after
clicking the Create button (the green one) on the Rights page—Rights page
is in figure (a) of figure 5.7. On the create page—displayed in the figure (b) of
figure 5.7—the name of the new rights set and the level of the rights for each
dataset must be filled. An important thing to keep in mind, mentioned in
the Rights validation subsubsection of section 3.5, is that datasets referenced

90

in a dataset with a read right must also have the read right. The valid rights
set is saved by clicking the Save button.

The rights set can be modified by clicking the Edit button (the blue one)
or deleted by clicking the Delete button (the red one).

(a) Page with all rights sets.

(b) Page for creating a new rignts set.

Figure 5.7: Pages for creating new rights sets in the application.

Step 4 – Setting user accounts

When the application was generated at the Step 2 of this guide, only the
administrator account was created and the login credentials were sent to the
email address provided. To allow other users access this application we need
to create their accounts first.

Creation of a new user account is done on the /User/Create page
displayed in the figure (b) of the figure 5.8. This page can be accessed
by clicking the Create button (the green one) on the Users page displayed

91

in the figure (a) of the figure 5.8. The structure of this page depends on
the structure of the application descriptor. Every user must have a unique
username and must have a rights set assigned. The other fields and their
valid values are application-specific. If all the filled data are correct, a new
user is created by clicking the Save button. The password of the new user
is set to “MetaRMS123” and it is strongly advised to change it as soon as
possible.

The user can be modified by clicking to the Edit button (the blue one)
or deleted by clicking the Delete button (the red one). The Reset password
button (the orange one) resets user’s password to the default “MetaRMS123”
value.

(a) Page with all users.

(b) Page for creating a new user.

Figure 5.8: Pages for creating new users in the application.

Examples

The following subsubsection contains some examples from the application
descriptor. Each paragraph describes one example followed with the code

92

representation.
The example of the main structure is shown in the following code. The

name of the application is “My application” and the application name used
when logging into the application is “my application login name”. The
default language is set to the English language since it is the only currently
supported language. The users dataset in system datasets and user-defined
datasets will we elaborated in the following examples.

1 {
2 "ApplicationName":"My application",

3 "LoginApplicationName":"my_application_login_name",

4 "DefaultLanguage":"en",

5 "SystemDatasets":{
6 "UsersDatasetDescriptor":{
7 ...

8 }
9 }

10 "Datasets":[...]

11 }

The system users dataset example shows dataset with application users
named “Application users”. This name can be used when referencing this
dataset. This dataset contains password attribute and other attributes,
described in more detail in the following examples.

1 "UsersDatasetDescriptor":{
2 "Name":"Application users",

3 "Description":"This dataset contains all users of my application .",

4 "PasswordAttribute":{...},
5 "Attributes":[...]

6 }

User-defined datasets are represented as a list of datasets. This example
shows the structure of one such dataset with the name “Books”. Each dataset
must contain some attributes, which will be elaborated in the following
examples.

1 {
2 "Name":"Books",

3 "Description":"This dataset contains books ."

4 "Attributes":[...]

5 }

This example shows how to create a Basic type attribute. This attribute
is named “Book name” and has a description “This attribute contains the
name of the book.”, which will be displayed next to the attribute to help users
understand the content. Type of the attribute is “string”, which is one of the
Basic types mentioned in the bullet 3 of subsection 2.3.1. This attribute is
required and the content of it must be between 5 and 50 characters long. For
more details about the settings of minimum and maximum, read the bullet
6 of subsection 2.3.1.

1 {
2 "Name":"Book name",

3 "Description":"This attribute contains name of the book.",

4 "Type":"string",

5 "Required":true,

6 "Min":5,

93

7 "Max":50

8 }

The following is an example of a Reference type attribute. For this,
we expect that the descriptor contains dataset named “Authors”. It is not
important whether the “Authors” dataset is defined before or after it is used
as a type. The OnDeleteAction of this attribute is set to “protect”, which
means that an Author cannot be deleted if it is referenced within any of the
Book records. More information about OnDeleteActions can be found in the
bullet 7 of a subsection 2.3.1.

1 {
2 "Name":"Authors of the book",

3 "Description":"This attribute contains authors of the book.",

4 "Type":"Authors",

5 "Required":true,

6 "Min":1,

7 "OnDeleteAction":"protect"

8 }

One of the special attributes is the Username attribute described in
section 2.3. This attribute must be located only in the System users dataset
within the list of attributes. The type of the Username attribute must be
“username” and it must be required and unique. The setting of a minimal
and a maximal length of the username is optional.

1 {
2 "Name":"User ’s username",

3 "Description":"This attribute contains a username. The username us used

for login.",

4 "Type":"username",

5 "Required":true,

6 "Unique":true,

7 "Min":3,

8 "Max":20

9 }

Another special attribute is the Password attribute defined in section 2.3.
This attribute is within the System users dataset, but it is not in the list with
other attributes. The type of Password attribute must be “password” and
it must be required. When the safer property of the password attribute is
set to true, special requirements are enforced as mentioned in the Password
policy subsubsection of section 3.4.

1 "PasswordAttribute":{
2 "Name":"User ’s pasword",

3 "Description":"User ’s password. It is required that the password

contains lower - and upper -case letter and number .",

4 "Type":"password",

5 "Required":true,

6 "Safer":true,

7 "Min":10,

8 "Max":20

9 }

94

5.4 End-user’s guide

This guide targets end-users of the applications generated by MetaRMS.
These users do not need to understand the structure of the application
descriptor. They can simply log into the application and manipulate the
data, based on their autohrization level.

Since every application will have a different structure, this guide will use
a library application from representative scenario 2a to show the general
functionality of the generated applications.

Login

The login form is located on the main page of MetaRMS. This address should
be provided by the application administrator. The figure 5.9 shows login on
a desktop (a) and a mobile (b) device. It is necessary to fill the application
name, username, and password. The application name and username should
be provided by the application administrator. For the first log in, the
password is “MetaRMS123” and it is important to change this password
as soon as possible. The process of changing the password will be described
later in this guide.

(a) Desktop device (b) Mobile device

Figure 5.9: Login page on various devices.

User interface

The figure 5.10 shows the user interface on a page with a dataset content, on
(a) a desktop device and (b) a mobile device. On the desktop devices, there
is a dark grey panel on the left with all the read-accessible datasets to the
logged user. The panel also contains Settings and a Logout button. On the
mobile devices, this panel is hidden under the three-lined button (also called
a “hamburger” button). The main area of the application is for displaying

95

the data. Based on the rights for the dataset, the Create (green), Edit (blue)
and Delete (red) buttons may be displayed.

(a) Desktop device (b) Mobile device

Figure 5.10: Page with content of a dataset on various devices.

Creating new data

A new record in a dataset can be created after clicking on the Create button
(the green one) on the page with the dataset—this page is displayed in figure
5.10. After that, a page with empty fields based on the dataset structure is
displayed. This create page is shown on (a) a desktop device and (b) a mobile
device in figure 5.11. Based on the type of an attribute the field can accept
a string, number, date and time, etc. In the example figure, the calendar
input is shown. After the data are filled they are saved by clicking the Save
button.

96

(a) Desktop device (b) Mobile device

Figure 5.11: Page for creating a new record in a dataset on various devices
with the calendar input displayed.

Updating existing data

Already existing record in a dataset can be modified after clicking on the Edit
button (the blue one) on the page with the dataset—this page is displayed
in figure 5.10. After that, a page with filled editable fields of the record is
opened. This edit page is displayed on (a) a desktop device and (b) a mobile
device in figure 5.12. Changes can be saved by clicking the Save button.

(a) Desktop device (b) Mobile device

Figure 5.12: Page for editting an already existing record in a dataset on
various devices.

97

Deleting data

Deletion of data is performed by clicking the Delete button (the red one) as
displayed in the figure 5.10.

Settings

In the settings section of the application, displayed in figure 5.13, the
logged user can change their own password. As mentioned in the Login
subsubsection it is important to change the password after the first login. To
change the password fill the old one and twice the new one.

(a) Desktop device (b) Mobile device

Figure 5.13: Page for changing password of the logged user on various devices.

98

6. Conclusion

The goal of this thesis was to develop an own application generating software,
that will satisfy all groups from the Representative scenarios subsubsection
of section 1.1 and fulfill the requirements from section 1.3. In this chapter,
we will revisit each of the requirements again and review if the requirement
was achieved.

R1 Application generating software is required to be able to take
a definition of various structures and thus create different
applications.

As mentioned in subsection 4.3.2 and section 5.3
the folder SharedLibrary/Files/ApplicationDescriptorExamples

contains application descriptors for all our representative scenarios
mentioned in the Representative scenarios subsubsection of section 1.1.
These scenarios were selected, because they represent various structures
for both individuals and companies of various sizes. Since we were able
to create all of the descriptors, we can consider this requirement as
met.

R2 Application generating software is required to be
multiplatform.

By selecting .NET Core as platform in section 3.2 we have ensured
that MetaRMS can run on various platforms. We have tried to
run MetaRMS on macOS Mojave 10.14.4 (where the system was
developed), and Windows 10 Version 1809.

R3 Applications generated by the application generating software
must be easy to use for end users.

The decision about this requirement is based on personal preferences
of each user, since we have not made any public research nor have
we questioned any end-users. However, we have made the web client
application with standard web elements (buttons, tables, descriptions)
to make it look familiar for the end-users.

R4 Application generating software should provide an easy way
to create a new application.

A new application is generated based on the application descriptor
provided. The whole structure of the descriptor was elaborated in

99

chapter 2. For huge systems, this structure might get a bit complicated,
but for regular systems, we find it reasonable.

R5 Time delta between creating a new application and its using
by the end-users should be minimized for applications created
by the application generating software.

As mentioned in section 5.3 after a valid application descriptor is
submitted, an email with the administrator’s login credentials is sent
and the application is ready to use. To prepare it for end-users the
administrator must create user accounts and appropriate rights sets as
described in the same section.

R6 Applications generated by the application generating software
must contain authentication.

Authentication was elaborated in section 3.4 and in this way it was also
implemented.

R7 Applications generated by the application generating software
must contain authorization.

Authorization was elaborated in section 3.5 and in this way it was also
implemented.

R8 Applications generated by the application generating software
should have multilingual support.

As decided in section 2.1 due to limited resources we support only
the English language. Still, MetaRMS was implemented with this
requirement in mind so the software is ready for this feature to be
implemented in the future.

R9 Application generating software should have an API so anyone
can use it as an endpoint.

As described in section 5.1 MetaRMS contains public JSON web
API with Swagger documentation. This API can be used by other
developers to create client applications.

R10 Application generating software should have an easily
extendable source code.

We believe, that by implementing our design analyzed in chapter 3, the
code is reasonably structured and well designed.

100

After summarizing all the requirements, we consider the the golas of this
thesis to be fulfilled. Even though we have found possible improvements,
that could be implemented in the future to make MetaRMS better. These
ideas will be introduced in the following section 6.1.

6.1 Future work

• Extend time the user is signed on the production server – As mentioned
in subsection 4.4.4 we have encountered a problem when a user logs in
on the production server. In the future, this will be the first issue to
solve.

• HTTPS support on production server – Solving this issue would mean
migrate MetaRMS to a paid server and get an SSL certificate. After
that users would not need to worry about the transfer of their data.

• Data filtering and searching – With the increasing amount of stored
data in individual applications users will need to search and filter
their data. To satisfy them both of these two features will need to
be implemented.

• Add pages with data and user detail – At the moment details are
displayed on the edit page, thus inaccessible to users without sufficient
rights. In the future, separate pages for data and user details should
be created.

• Visual creator for application descriptors – As mentioned in section 1.4
some of the low-code and no-code platforms contained visual creator
of the application. To make the process of creating a new application
more user-friendly this will be a great component.

• Improve the logout process on the server – As mentioned in the Logout
subsubsection of subsection 4.2.2 the process of logout on the server
side was simplified. In a further development, this process should be
implemented in the way described in subsection 4.2.2.

• Migrate to higher version of .NET Core – MetaRMS runs on .NET
Core version 2.0, which is no longer supported. Because of this, it
should be migrated to a newer version. As recommended at the date
of writing the thesis on website [Dot] .NET Core version 2.2 would be
preferred.

101

• Finish the support for different languages As already mentioned in this
chapter the support for multiple languages was not implemented due
to limited resources. In the future, this feature should be finished.

• Allow later modifications of application descriptor – In the future the
administrators might want to change some parts of the application
descriptor. It would be important to decide what parts of the descriptor
could be changed and what would not.

102

Bibliography

[Cin17] Jindřich Cincibuch. “Qubit - systém pro správu a tvorbu
překlad̊u”. Bachelor Thesis. Charles University, 2017.

[Dot] Download .NET Core. url: https://dotnet.microsoft.com/
download/dotnet-core.

[Eug] 2018 reform of EU data protection rules. 2018. url: https :

/ / ec . europa . eu / commission / priorities / justice - and -

fundamental- rights/data- protection/2018- reform- eu-

data-protection-rules_en.

[G2l] Best Low-Code Development Platforms Software. 2019. url:
https://www.g2.com/categories/low-code-development-

platforms.

[G2n] Best No-Code Development Platforms Software. 2019. url:
https://www.g2.com/categories/no-code-development-

platforms.

[Git] The handler does not support client authentication certificates
with this combination of libcurl (7.54.0) and its SSL backend
(LibreSSL/2.0.20). 2018. url: https://github.com/dotnet/
corefx/issues/27000.

[Nal18] Martin Nally. REST vs. RPC: what problems are you trying to
solve with your APIs? 2018. url: https://cloud.google.com/
blog/products/application- development/rest- vs- rpc-

what-problems-are-you-trying-to-solve-with-your-apis.

[Sal] Salted Password Hashing - Doing it Right. 2018. url: https:
//crackstation.net/hashing-security.htm#salt.

[W3r] Usage of server-side programming languages for website. 2019.
url: https : / / w3techs . com / technologies / overview /

programming_language/all.

[Wika] Cross-site request forgery — Wikipedia, The Free Encyclopedia.
2019. url: https://en.wikipedia.org/wiki/Cross-site_
request_forgery.

[Wikb] Cross-site scripting — Wikipedia, The Free Encyclopedia. 2019.
url: https : / / en . wikipedia . org / wiki / Cross - site _

scripting.

103

https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://www.g2.com/categories/low-code-development-platforms
https://www.g2.com/categories/low-code-development-platforms
https://www.g2.com/categories/no-code-development-platforms
https://www.g2.com/categories/no-code-development-platforms
https://github.com/dotnet/corefx/issues/27000
https://github.com/dotnet/corefx/issues/27000
https://cloud.google.com/blog/products/application-development/rest-vs-rpc-what-problems-are-you-trying-to-solve-with-your-apis
https://cloud.google.com/blog/products/application-development/rest-vs-rpc-what-problems-are-you-trying-to-solve-with-your-apis
https://cloud.google.com/blog/products/application-development/rest-vs-rpc-what-problems-are-you-trying-to-solve-with-your-apis
https://crackstation.net/hashing-security.htm#salt
https://crackstation.net/hashing-security.htm#salt
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting

[Adn16] Adnan Kukic. Cookies vs. Tokens: The Definitive Guide. 2016.
url: https://dzone.com/articles/cookies-vs-tokens-the-
definitive-guide.

[App19] Applicant tracking system. Applicant tracking system —
Wikipedia, The Free Encyclopedia. 2019. url: https : / / en .

wikipedia.org/wiki/Applicant_tracking_system.

[Car17] Carlo van Wyk. Develop Locally with HTTPS, Self-Signed
Certificates and ASP.NET Core. 2017. url: https : / / www .

humankode . com / asp - net - core / develop - locally - with -

https-self-signed-certificates-and-asp-net-core.

[Cli19] Client–server model. Client–server model — Wikipedia, The Free
Encyclopedia. 2019. url: https://en.wikipedia.org/wiki/
Client%E2%80%93server_model.

[Ger15] Gergely Nemeth. Web Authentication Methods Explained. 2015.
url: https://blog.risingstack.com/web-authentication-
methods-explained/.

[HTM19] HTML Input Types. HTML Input Types. 2019. url: https://
www.w3schools.com/html/html_form_input_types.asp.

[Inv19] Inventory management software. Inventory management software
— Wikipedia, The Free Encyclopedia. 2019. url: https://en.
wikipedia.org/wiki/Inventory_management_software.

[Kay19] Kayce Basques. Why HTTPS Matters. 2019. url: https : / /

developers . google . com / web / fundamentals / security /

encrypt-in-transit/why-https.

[Mar19] Mark Drake, ostezer. SQLite vs MySQL vs PostgreSQL: A
Comparison Of Relational Database Management Systems. 2019.
url: https://www.digitalocean.com/community/tutorials/
sqlite - vs - mysql - vs - postgresql - a - comparison - of -

relational-database-management-systems.

[Ope18] Operating System Market Share. Operating System Market Share.
2018. url: https://netmarketshare.com/operating-system-
market - share . aspx ? options = %7B % 22filter % 22 % 3A % 7B %

22 % 24and % 22 % 3A % 5B % 7B % 22deviceType % 22 % 3A % 7B % 22 %

24in % 22 % 3A % 5B % 22Desktop % 2Flaptop % 22 % 2C % 22Mobile %

22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%

22%2C%22attributes%22%3A%22share%22%2C%22group%22%

3A % 22platform % 22 % 2C % 22sort % 22 % 3A % 7B % 22share % 22 %

3A - 1 % 7D % 2C % 22id % 22 % 3A % 22platformsDesktop % 22 % 2C %

104

https://dzone.com/articles/cookies-vs-tokens-the-definitive-guide
https://dzone.com/articles/cookies-vs-tokens-the-definitive-guide
https://en.wikipedia.org/wiki/Applicant_tracking_system
https://en.wikipedia.org/wiki/Applicant_tracking_system
https://www.humankode.com/asp-net-core/develop-locally-with-https-self-signed-certificates-and-asp-net-core
https://www.humankode.com/asp-net-core/develop-locally-with-https-self-signed-certificates-and-asp-net-core
https://www.humankode.com/asp-net-core/develop-locally-with-https-self-signed-certificates-and-asp-net-core
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://blog.risingstack.com/web-authentication-methods-explained/
https://blog.risingstack.com/web-authentication-methods-explained/
https://www.w3schools.com/html/html_form_input_types.asp
https://www.w3schools.com/html/html_form_input_types.asp
https://en.wikipedia.org/wiki/Inventory_management_software
https://en.wikipedia.org/wiki/Inventory_management_software
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D

22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%

3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%

22segments%22%3A%22-1000%22%7D.

[Pra14] Prasad Kharkar. JPA Single Table Inheritance Example. 2014.
url: http://www.thejavageek.com/2014/05/14/jpa-single-
table-inheritance-example/.

[Pro16] Prosper Otemuyiwa. JSON Web Tokens vs. Session Cookies: In
Practice. 2016. url: https://ponyfoo.com/articles/json-
web-tokens-vs-session-cookies.

[Ric19] Rick Anderson, Ryan Nowak. Introduction to Razor Pages in
ASP.NET Core. 2019. url: https://docs.microsoft.com/en-
us/aspnet/core/razor-pages/?view=aspnetcore-2.0&tabs=

visual-studio.

[Rya18] Ryan. Code-First vs Model-First vs Database-First: Pros and
Cons. 2018. url: https://www.ryadel.com/en/code-first-
model-first-database-first-vs-comparison-orm-asp-net-

core-entity-framework-ef-data/.

[Wil16] William R. Stanek. Best Practices for Enforcing Password
Policies. 2016. url: https://docs.microsoft.com/en- us/
previous- versions/technet- magazine/ff741764(v=msdn.

10).

The validity of all the links was checked on 13-May-2019.

105

https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%2C%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-01%22%2C%22dateEnd%22%3A%222018-12%22%2C%22segments%22%3A%22-1000%22%7D
http://www.thejavageek.com/2014/05/14/jpa-single-table-inheritance-example/
http://www.thejavageek.com/2014/05/14/jpa-single-table-inheritance-example/
https://ponyfoo.com/articles/json-web-tokens-vs-session-cookies
https://ponyfoo.com/articles/json-web-tokens-vs-session-cookies
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-2.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-2.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-2.0&tabs=visual-studio
https://www.ryadel.com/en/code-first-model-first-database-first-vs-comparison-orm-asp-net-core-entity-framework-ef-data/
https://www.ryadel.com/en/code-first-model-first-database-first-vs-comparison-orm-asp-net-core-entity-framework-ef-data/
https://www.ryadel.com/en/code-first-model-first-database-first-vs-comparison-orm-asp-net-core-entity-framework-ef-data/
https://docs.microsoft.com/en-us/previous-versions/technet-magazine/ff741764(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/technet-magazine/ff741764(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/technet-magazine/ff741764(v=msdn.10)

106

Attachments

Attachment A — the Enclosed CD

Contents of the attached CD

src - folder with source codes

.vscode - folder with the configuration for Visual

Studio Code

Core - the Core project described in subsection 4.3.1

SharedLibrary - the SharedLibrary project described in

subsection 4.3.2

MetaRMS.sln - information about the MetaRMS solution

thesis.pdf - file containing this thesis

README.txt - file describing the contents of this CD

LICENSE.txt - file containing licensing information

107

108

	Introduction
	Basic requirements and limitations
	Naming conventions
	Requirements
	Existing tools
	Goals

	Workflow and application descriptor
	Basic application information
	Datasets
	Attributes
	Complete list of available attribute properties

	Application descriptor structure
	Application descriptor validation
	Necessary validations

	Summary and next steps

	Implementation analysis
	Software architecture
	Language and environment
	References
	Authentication
	Authorization
	Messages handling
	Application descriptor format
	Application descriptor validation
	Default values setting
	Final application descriptor structure in JSON

	Data layer
	Database schema
	Data storage choice
	Accessing the database from the code

	Hosting

	Implementation
	Basic workflow and requirements
	MetaRMS processes
	Application initialization
	Authentication
	Operations
	Settings

	Solution structure
	Core
	SharedLibrary

	Issues
	HTTPS support
	Sending emails
	Cultural info
	Login length on production

	User guide
	Client application developer's guide
	System administrator's guide
	Application administrator's guide
	End-user's guide

	Conclusion
	Future work

	Attachments

