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SUMMARY 

 

Colorectal cancer (CRC) is a major public health problem worldwide. Despite 

improvements in the diagnostic process and advancement in the treatment methods, the 

prognosis remains poor. To improve survival rates, it is important to identify people 

with the predisposition for CRC and to detect the potentially curable early stage of the 

disease. Furthermore, identifying those who would have an adverse clinical outcome 

associated with a particular chemotherapy would help to avoid redundant chemotherapy 

burden in patients and contribute to enhanced therapeutic efficacy, while minimizing 

treatment-related toxicity.  

The aim of the Thesis was to search for novel promising diagnostic, prognostic and 

predictive DNA-based biomarkers of sporadic form of CRC. As each patient is 

genetically unique, these biomarkers would aid clinicians in better diagnosis and/or in 

the selection of an optimal type of therapy for an individual CRC patient based on their 

molecular profile. In order to explore this issue, we investigated several candidate ge nes 

in healthy individuals as well as in newly diagnosed cancer patients.  

The major outcomes of this PhD study, which were fully reported in seven 

publications included in the present Thesis, are 1) The observation of several candidate 

single nucleotide polymorphisms in microRNA target regions (miRSNPs) of double 

strand break repair genes, genes important for CRC etiology and mucin genes to be 

related either to CRC risk or to clinical outcome, 2) Evidence that miRSNPs in target 

genes modulate the efficiency of corresponding protein expression, 3) The revelation of 

genetic variants in NOD-like receptor (NLR) genes contribution to CRC onset and 

progression of the disease, 4) The identification of the association of several potential 

functional genetic variants in DNA repair genes with CRC. 

Taken together, these studies suggested several novel potential biomarkers for clinical 

use. However, further studies in independent populations are needed to confirm their 

clinical significance and to decipher the biologic mechanisms underlying the 

associations. 

 

Keywords: Colorectal cancer, biomarker, SNP, miRSNP, prognosis, chemotherapy 

response, DNA repair, CRC pathogenesis, mucin genes, NLR genes  
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SOUHRN 

 

Rakovina tlustého střeva a konečníku (kolorektální karcinom, KRK) představuje 

celosvětově závažný zdravotní problém. I přes pokroky v diagnostice a v léčebných 

metodách zůstává prognóza onemocnění špatná. Pro zlepšení celkové míry přežívání je 

důležité umět rozpoznat jedince s vyšším rizikem vzniku KRK a odhalit onemocně ní v 

rané potenciálně léčitelné fázi. Současně identifikace pacientů, kteří budou reagovat 

negativně na konkrétní léčbu, by přispěla ke snížení nadbytečné chemoterapie a k 

minimalizaci toxicity související s léčbou. 

Cílem této práce bylo hledání nových diagnostických, prognostických a prediktivních 

DNA-biomarkerů pro sporadickou formu KRK. Každý člověk je geneticky jedinečný a 

nalezení těchto biomarkerů by lékařům usnadnilo diagnózu a výběr optimální terapie 

pro každého pacienta s KRK na základě jejich molekulárního profilu. Pro dosažení 

tohoto cíle jsme zkoumali několik kandidátních genů u zdravých jedinců i u nově 

diagnostikovaných pacientů se sporadickou formou KRK.  

Výsledky této PhD práce byly shrnuty v sedmi impaktovaných publikacích. Hlavními 

závěry jsou: 1) Genetické varianty v cílových oblastech pro vazbu microRNA 

(miRSNPs) v genech opravy dvouřetězcových zlomů, genech důležitých pro etiologii 

KRK a mucinových genech souvisí buď s rizikem KRK nebo s odpovědí na léčbu, 2) 

miRSNPs v cílových genech ovlivňují účinnost exprese odpovídajícího proteinu, 3) 

Genetické varianty NOD-like receptorů (NLR) přispívají ke vzniku a progresi 

onemocnění KRK, 4) Funkční genetické varianty v DNA opravných genech jsou 

asociovány s KRK. 

Závěrem, tato disertační práce navrhuje několik nových biomarkerů pro klinické 

využití. Pro potvrzení klinického významu těchto biomarkerů jsou však nezbytné další 

studie na nezávislých populacích a porozumění s nimi spojených biologických 

mechanizmů. 

 

Klíčová slova: rakovina tlustého střeva a konečníku, biomarker, genetické varianty, 

miRSNP, prognóza, odpověď na léčbu, DNA reparace, patogeneze KRK, mucinové 

geny, NLR geny 
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1. INTRODUCTION 

 

1.1  Colorectal cancer 

 

1.1.1 Incidence and mortality 

Colorectal cancer (CRC) is the third most common malignancy and the second leading 

cause of cancer-related death worldwide with an estimated 1.8 million new cases 

diagnosed and approximately 881,000 deaths every year (Figure 1) (Bray et al. 2018b). 

The average lifetime risk for CRC is in the range of 3–5%, meaning that 1 out of 20 

persons will develop the disease during their life (Ferlay et al. 2015). It represents a 

common cancer in both men (3rd most common cancer) and woman (2nd most common 

cancer) accounting for approximately 10.9% of all cancers in men and 9.5% in women 

worldwide (Bray et al. 2018b).  

 

 

Figure 1: Pie charts represent the incidence and mortality in both sexes of the 10 most common cancers 

in 2018 (Bray et al. 2018a). 
 

Significant international variations have been observed in CRC distribution with the 

highest incidence rates in Australia/New Zealand and lowest in Western Africa (Figure 

2) (Ferlay et al. 2015; Kuipers et al. 2015). In Europe, estimated CRC incidence rates 

are highest in Eastern and Central Europe with Czech Republic at the leading ranks 

(Center et al. 2009; Ferlay et al. 2013). 

In the last decades, overall CRC incidence has been stabilizing or declining in western 

(highly developed) countries: USA, Australia, New Zealand and several European 

countries (Karim-Kos et al. 2008; Center et al. 2009; Jemal et al. 2010). However, CRC 
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incidence is still rising in many less developed and economically transitioning 

countries (low-income and middle- income countries). Increased prevalence may be 

due to an adoption of a western lifestyle meaning an increased exposure to certain 

environmental and lifestyle factors such as increased consumption of food rich in sugar 

and red meat, low physical exercise, obesity and smoking (Center et al. 2009; Arnold et 

al. 2017; Murphy et al. 2019). 

Despite rising incidence in several countries, stabilized or declining trends in CRC 

mortality have been observed in European countries, North America, and Japan during 

the last two decades. In Europe, the most favourable trends in mortality were observed 

in western and northern countries, but there are also declines in mortality in other 

countries including the Czech Republic (La Vecchia et al. 2010; Bosetti et al. 2011; 

Hashim et al. 2016; Siegel et al. 2017). Improvement in survival rates are most likely 

associated with the risk factor reduction (such as smoking, improvements in dietary and 

lifetime habits), introduction of screening programmes (early diagnosis) and therapeutic 

improvements (general improvement in surgical techniques for localized tumors as well 

as new treatment protocols and adjuvant therapies) (Edwards et al. 2010; Fidler et al. 

2017). 

 

 
 

 

Figure 2: Incidence and mortality rates in males (m) and females (f) (per 100.000 people) across 

geographic zones (Kuipers et al. 2015). 
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1.1.2 Risk factors & CRC classification 

CRC is a multifactorial disease and the risk of its development could be associated with 

several factors (lifestyle, socioeconomic, environmental and genetic) (Table 1) (Murphy 

et al. 2019). 

Hereditary conditions account for only a small percentage of all CRCs (about 6% of 

cases). Highly penetrant germline mutations in known genes, including APC in familial 

adenomatous polyposis (FAP) and DNA mismatch repair genes in hereditary non-

polyposis colorectal cancer (HNPCC, Lynch syndrome) are associated with a lifetime 

risk up to 70-90% (Lynch and de la Chapelle 2003; de la Chapelle 2004). 

Familial CRC accounts for up to 20% of cases and comprises patients without an 

identifiable genetic syndrome but with a family history of CRC (Jasperson et al. 2010; 

Valle et al. 2019). These cases exhibit common familial risk, likely related to a 

combination of inherited factors and environment. For individuals with a first degree 

relative diagnosed at 50–70 years of age the risk of CRC almost doubles. Similarly, if 

the first degree relative was <50 years of age at diagnosis the risk is three- fold higher 

than an average risk of the disease. In individuals who have two or more affected family 

members the risk further increases (Butterworth et al. 2006; Johnson et al. 2013; 

Kuipers et al. 2015; Samadder et al. 2015). 

The majority of CRC cases arise sporadically (up to 80%) with no specific cause for 

disease development (Figure 3). However, there are several independent risk factors 

involved such as age, male sex, diabetes mellitus, previous colonic polyps and intestinal 

inflammation, dietary and environmental factors (red meat, high-fat diet, obesity, 

smoking, alcohol consumption, and physical inactivity) and also common low-penetrant 

genetic variants (Abuli et al. 2010). Independently, these low-penetrant alleles have 

only a weak effect on the risk of CRC, but in combination they can contribute to a 

substantial increase in CRC risk, especially when exposed to certain environmental, 

dietary and lifestyle factors (Goodman et al. 2006; Peters et al. 2015). 

 

Table 1: Summary of the most frequent risk factors associated with a CRC incidence. 
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Figure 3: Frequency of sporadic, familial and hereditary forms of co lorectal cancer [modi fied from 

Tan 2018]. 

 

1.1.3 Screening 

CRC has a long preclinical stage of the disease which offers a large window of 

opportunity for screening. In individuals with sporadic CRC, the progression from 

adenomatous polyps to carcinoma takes at least 5–10 years (Fearon 1995; Brenner et al. 

2013). Screening can therefore reduce CRC mortality due to the identification of 

premalignant adenomas (polyps) or detecting potentially curable early stage cancers 

and thereby preventing the development of the disease by performing a n endoscopic 

removal or surgery (Baxter et al. 2009; Cunningham et al. 2010; Lieberman et al. 2012). 

Furthermore, the prognosis for patients with CRC is heavily dependent on the stage at 

diagnosis: 5-year survival is over 90% for patients with early stage cancer, compared 

with only 5-10% for patients diagnosed with an advanced stage of disease (de la 

Chapelle 2004; Kuipers et al. 2015). 

In most countries, including the Czech Republic, screening is aimed at men and women 

aged 50–75 years (Suchanek et al. 2018; Schreuders et al. 2015). There are several 

screening techniques differing in its advantages and limitations (e.g. accuracy, degree of 

invasiveness, test preparation, required screening interval, and cost) (Table 2) however 

there is no clear evidence of the superiority of one screening strategy over the others  

(Stracci et al. 2014; Simon 2016). Patient preference is also an important consideration 

in the decision-making, however there must be access to follow-up colonoscopy if the 

clinician recommends it (Wolf et al. 2018). 
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Table 2: Summary of different screening tests for CRC. 

 

Test Description Screening 
Interval 

Advantages Limitations 

Colonoscopy A procedure allows 
doctor to look inside 

the entire colon and 
rectum with a thin 
tube with a camera 
attached to it. 

Every      
10 years 

● High sensitivity (95%) ○ Performed at hospital 

● Examines entire colon ○ Invasive 

● Detection of polyps   ○ Cleansing of the colon with laxative 

● Removal of polyps at time 
of detection 

○ Risk of complications 

Sigmoidoscopy Lower part of the 
colon and rectum are 
viewed by the doctor 
with a sigmoidoscope. 

Every         
5 years 
combined 
with FOBT 

● High sensitivity (95%) ○ Requires special facilities  

● Examines entire rectum 
and 1/2 of the colon 

○ Semi-invasive 

○ Cleansing of the colon with laxative 

● Removal of polyps at time 
of detection 

○ Screens only distal colon 

○ Safety concerns 

CT 
colonography 

Uses CT to create 2D 
and 3D views of the 
inside of the 
colon/rectum to 
detect polyps. 

Every          
5 years 

● High sensitivity (90%) ○ Requires special facilities  

● Visualization of entire colon ○ Semi-invasive 

● Detection of polyps   ○ Cleansing of the colon with laxative 

 ○ Cannot remove lesions at time of 
detection 

  ○ Radiological safety concerns 

FOBT / FIT Designed to detect 
occult blood in the 
stool, which may 
indicate colon cancer. 

Annually ● Done at home ○ Sensitivity FOBT 33%-75% & FIT 
60%-80% 

● Noninvasive ○ Poor detection of precancerous 
lesions 

● Safe & available ○ Possible false positive test result 

 ○ Cannot remove lesions at time of 
detection 

  ○ When the test is positive 
colonoscopy is required 

 

CRC, co lorectal cancer; CT, computed tomography; 2D, two-d imensional; 3D, three-dimensional; FOBT, 

fecal occult b lood test; FIT, fecal immunochemical test 

 

1.1.4 Diagnosis & Treatment  

CRC diagnosis results either from screening or as a result of an assessment of a patient 

presenting symptoms such as blood in stool, change in bowel habits, abdominal pain or 

even a weight loss and fatigue. In symptomatic patients, colonoscopy is the preferred 

diagnostic method. 

Once the disease is diagnosed, current practice to choose and implement the therapy for 

CRC patients is primarily based on the results of tumor histopathological examination 

(biopsy) and tumor-node-metastasis (TNM) staging. Treatment regimen substantially 

differs for colon and rectal cancer patients. 

For colon cancer, the cornerstone of treatment is surgical resection and for early stage 

cancers (I and II), surgery alone may cure the disease. Unfortunately, more than 50% of 

cases are diagnosed at the higher stage of CRC (III and IV) and the only improvement 

of the prognosis can be achieved by appropriate 5-fluorouracil (5-FU) based adjuvant 

therapy (deGramont, XELODA, FOLFOX and FOLFIRI regimes) (Andre et al. 2004; 
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Twelves et al. 2005; Kuipers et al. 2015). Treatment of rectal cancer is more complex. 

Patients with stages II and III first undergo radiation therapy (usually simultaneously 

with 5-FU based chemotherapy) to improve local control of the disease and subsequent 

surgery is applied (Figure 4) (Hoffe et al. 2010). For stage IV in both, colon and rectum 

cancer patients, targeted agents are used for treatment alongside 5-FU-based 

chemotherapy (e.g. cetuximab, panitumumab, bevacizumab, and regorafenib). 

 

 

 

 

 

Figure 4: Simplified summary of treatment options for colon and rectal cancer patients [modified from 

Aran et al. 2016]. 

 

MSI, microsatellite instable; MSS, microsatellite stable; EGFR, epidermal growth factor receptor 
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1.2 Biomarkers 

 

A molecular marker (biomarker) is defined as a biological molecule which can be 

objectively measured and evaluated in blood, and other body fluids, or tissues. Several 

molecular classes have been studied for their potential use as biomarkers: DNA, cell-

free DNA (cfDNA), RNA, microRNA (miRNA), circulating tumor cells (CTC), 

proteins etc. (Lech et al. 2016; Nikolouzakis et al. 2018). They can be used as an 

indicator of particular physiological or pathological processes, or pharmacological 

response to a specified therapeutic intervention (Lee and Chan 2011).  

 

1.2.1 Classification of biomarkers 

According to their application, we can categorize biomarkers into three main types as 

diagnostic, prognostic and predictive (Figure 5) (Gonzalez-Pons and Cruz-Correa 2015; 

Das et al. 2017; Nikolouzakis et al. 2018). 

Diagnostic markers are used to estimate the predisposition for the disease. Therefore 

according to the risk stratification people at a higher risk of cancer might be 

recommended for earlier and more intensive screening. Diagnostic markers might be 

also used for detection of an early stage of the disease. In the case of CRC it means a 

timely revelation of premalignant polyps.  

Prognostic markers give an indication of the clinical outcome (life expectancy) at the 

time of diagnosis, independent of therapy. They provide information on aggressiveness 

and the likely progression of the disease including the likelihood of the local recurrence 

of cancer and/or chance for metastasis.  

Predictive markers provide information about the likelihood of the treatment response 

(benefit of treatment) and outcome parameters such as overall survival (OS) and event-

free survival (EFS). As patients exhibit different responses to a certain therapy, markers 

might help with the choice of the most suitable therapeutic regimen for each patient. 

 

 
 

Figure 5: Major types of biomarkers in cancer detection [modified from 

https://www.provistadx.com/blog/6-types-of-biomarkers-in-cancer-detection]. 

https://www.provistadx.com/blog/6-types-of-biomarkers-in-cancer-detection
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1.2.2 CRC biomarkers in clinical practice 

Interestingly, in spite of many published findings on molecular biomarkers in CRC, 

only a few are nowadays used in daily clinical practice, such as KRAS, BRAF, and 

microsatellite instability (MSI).  

KRAS mutation status in tumor DNA is analysed in CRC metastatic patients before 

receiving epidermal growth factor receptor (EGFR) targeted therapy (cetuximab and 

panitumumab) as only RAS wild-type patients benefit from these agents (Kuipers et al. 

2015; Vacante et al. 2018). The principle of the therapy is to block the binding of EGF 

to the EGFR with monoclonal antibodies, which results in blocking the subsequent 

activation of RAS (Figure 6). RAS plays a role in a number of intracellular signaling 

pathways and its dysregulation may ultimately lead to deceased cellular apoptosis, 

increased cellular proliferation, angiogenesis, and disease metastasis. Mutation in the 

RAS gene causes its constitutively activated GTPase function independent of the 

binding of EGF to the receptor therefore the targeted therapy does not have any effect.  

Mutated RAS is found in about half of all CRC cases (Coppede et al. 2014; Kocarnik et 

al. 2015). 

BRAF, involved in the same pathway as KRAS, is used as a prognostic marker. Mutated 

BRAF is evident in approximately 5-15% of CRC tumors and is associated with a worse 

survival (Therkildsen et al. 2014; Kocarnik et al. 2015). 

MSI status has been shown to be a significant prognostic marker for a better survival 

and a predictive marker for a worse outcome in terms of response to a standard 5-FU-

based chemotherapy, with a trend toward a decreased OS (Bhushan et al. 2009; 

Coppede et al. 2014; Kocarnik et al. 2015). However, the value of MSI status as a 

predictive marker for combination chemotherapy regimens (FOLFOX and FOLFIRI) 

remains uncertain (Kocarnik et al. 2015; Tougeron et al. 2016). MSI is recognized by 

the presence of increased or decreased number of tandem repeats in microsatellite 

DNA. High frequency of genetic alterations is caused by mutated or hypermethylated 

mismatch repair (MMR) genes which results in the inability to correct DNA replication 

errors. This subsequently leads to a genetic instability and accumulation of DNA errors, 

both of which may trigger carcinogenesis (Kocarnik et al. 2015). The tumor phenotype 

associated with this MMR deficiency is reported in approximately 15% of patients with 

sporadic CRC (Bhushan et al. 2009).  
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Figure 6 : MAPK signaling pathway and anti-EGFR therapy principle  [modified from 

http://www.apmggroup.net/innovation/molecular_testing/Colon_Pathways/colon.html ]. 

 

1.2.3 Novel CRC biomarkers 

Despite improvements in our knowledge of the molecular basis of CRC and 

advancement in the treatment methods, the prognosis remains poor (Figure 7).  

CRC is largely asymptomatic until the advanced stage of disease, therefore further 

progress in diagnostic process is essential to reduce cancer incidence and mortality 

rates. There are several screening techniques, but they either require a skilled examiner, 

are invasive to the patient, and involve greater cost (e.g. colonoscopy) or are easy to 

perform and at reduced cost but less sensitive (fecal occult blood tests) (Schreuders et 

al. 2015). Since screening is expected to have further impact on CRC management, 

development of sensitive and specific biomarkers associated with the risk of CRC are 

being investigated for decades. Little invasive and inexpensive DNA-based tests of 

blood would be an ideal future possibility.  

Furthermore, although advancements in CRC treatment have been made, relapse is still 

a major factor for the unsatisfactory outcome of the disease. Relapse of CRC after 

surgical resection with subsequent aduvant chemotherapy, including local recurrence 

and/or developing metastatic disease, occur in a considerable proportion of these 

patients (40-50%) within 3 years (Sargent et al. 2007; Gustavsson et al. 2015). 

Moreover, many CRC patients undergo the systemic chemotherapy without any benefit 

and even suffer from severe side effects (Longley et al. 2003; Kuipers et al. 2015). 

http://www.apmggroup.net/innovation/molecular_testing/Colon_Pathways/colon.html
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This has provoked a debate over CRC patients at stage II fo r whom the indication for 

treatment remains unclear. Chemotherapy based on 5-FU was proved to be beneficial 

for patients in stage III CRC but the same is not valid for all patients with stage II of the 

disease (Benson et al. 2004; Quasar Collaborative et al. 2007; Andre et al. 2009; 

Gangadhar and Schilsky 2010). Chemotherapy can reduce the risk of relapse (20% of 

patients at stage II CRC will experience recurrence within 5 years) however it can also 

cause toxicities and impair the quality of patient`s life. Therefore, identification of stage 

II CRC patients at higher risk of recurrence by molecular markers would help to define 

those who are likely to benefit from adjuvant therapy and at the same time help to avoid 

redundant chemotherapy burden in patients at lower risk of recurrence (Lech et al. 

2016). 

In addition, understanding of different responses to a particular chemotherapeutic agent 

in patients also remains insufficient. Consequently, as each patient is genetically unique, 

there is a growing need for novel prognostic and predictive biomarkers. These would 

aid oncologists in selection of optimal type, combination and dose of drugs for an 

individual patient to improve the outcome based on their molecular profile. The 

ultimate goal of a precision medicine approach is to identify patients who would more 

or less likely benefit from therapy, in other words to contribute to enhanced therapeutic 

efficacy, while minimizing treatment-related toxicity.  

The aim of the current research of biomarkers is to identify and develop highly 

accurate, non- invasive, rapid and cost-effective biomarkers which could be easily 

translated into clinical practice. Although prognostic or predictive value of an individual 

biomarker may be significant, it is likely that a combination of several biomarkers may 

be utilized into a panel to provide greater information. Many genetic and epigenetic 

biomarkers have been studied, but still none have been validated for clinical use.  

 

 

 

Figure 7: The 5-year survival rates for CRC patients according to a stage of the disease (Lansdorp-

Vogelaar et al. 2009). 
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1.2.3.1 DNA-based biomarkers  

DNA, RNA, proteins, metabolites, or processes such as apoptosis, angiogenesis or 

proliferation have been associated with every type of cancer and therefore might be 

used as biomarkers. According to the type of molecule used as a biomarker, we can 

categorize molecular markers in several classes: DNA-based, RNA-based (mRNA, 

miRNA, piwi- interacting RNA, small interfering RNA, long non-coding RNA etc.), 

proteins and others. 

DNA-based biomarkers include deletions, insertions, loss-of-heterozygosity, MSI, 

DNA hypermethylation, single nucleotide polymorphisms (SNPs) and other variations 

on the DNA sequence level (Sidransky 2002). 

SNPs are the most frequently studied type of DNA variation. They refer to a 

substitution of a single nucleotide that occurs at a specific position in the genome, 

where each variation is presented in > 1% within a population. They are reproducible 

and can be measured at any point in time (may be used in both prospective and 

retrospective studies). In most applications SNPs are diallelic, resulting in three possible 

genotypes (wild type homozygote, heterozygote and variant homozygote). 

Genetic variants may be distinguished according to their position in the genome: SNPs 

may fall within coding sequences of genes, non-coding regions of genes, or regions 

between genes (intergenic regions) (Figure 8). Polymorphisms within a coding region 

may be further categorized as synonymous and nonsynonymous genetic variants. 

Synonymous SNPs do not change the amino acid sequence of the final protein due 

to degeneracy of the genetic code. In the case of nonsynonymous SNPs the amino acid 

sequence of the protein is changed and the change is classified either as missense 

variant (single change in the base results in change in amino acid of protein) 

or nonsense variant (resulting in a premature stop codon).  

Non-coding SNPs are located within the gene's regulatory sequences (promoters, 

enhancers, silencers, and other regulatory regions) and may affect gene splicing, the 

sequence of non-coding RNA, or timing, location, or level of gene expression.  miRNAs 

binding SNPs also called miRSNPs, located in the 3′-untranslated regions (3′UTR) of 

genes, are an example of non-coding genetic variants. miRSNPs are able to alter the 

strength of miRNAs binding to the target mRNA. miRNAs, small non-coding 

regulatory RNAs, base pair to a complementary motif of the target mRNA. Thus 

modulating existing binding sites or creating novel binding sites by miRSNPs are 

https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/Genome
https://en.wikipedia.org/wiki/Noncoding_DNA
https://en.wikipedia.org/wiki/Intergenic_region
https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Genetic_code#Degeneracy
https://en.wikipedia.org/wiki/Missense_mutation
https://en.wikipedia.org/wiki/Nonsense_mutation
https://en.wikipedia.org/wiki/Stop_codon
https://en.wikipedia.org/wiki/Gene_splicing
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suggested to affect miRNA function and consequently change the expression of target 

genes (Hammond 2015; Crocco et al. 2016; Slaby 2016; Abba et al. 2017).  

Understanding the effects of genetic variants is a difficult process and alteration in the 

final protein caused by a base change may be indicated as benign, pathogenic, or of 

unknown significance. Lately, genome-wide association studies (GWAS) have enabled 

a rapid discovery of SNPs contributing to both disease susceptibility and treatment  

response by comparing regions of genome between cohorts of patients and healthy 

controls (Ziegler et al. 2012; Fernandez-Rozadilla et al. 2013a). Regarding CRC, 

GWAS have been successful in identification of a number of low penetrance SNPs 

involved in CRC susceptibility however none have still been validated as biomarkers 

for clinical use (Tomlinson et al. 2011; Dunlop et al. 2012; Fernandez-Rozadilla et al. 

2013b; Peters et al. 2013; Huyghe et al. 2019). 

 

 

 

Figure 8: Genetic variants distinguished due to their position in the genome [modified from Shafee 2017 

and https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism]. 
 

SNP, single nucleotide polymorphis m; UTR, untranslated region; miRNA, microRNA; miRSNP, 

microRNA binding SNP 

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
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1.3 Candidate genes for CRC biomarkers 

 

Understanding the genetic basis of the disease has become an important target for 

research as a better comprehension may lead to an improved prevention or treatment.  

There are two main approaches designed to detect associations between genetic factors 

and the disease course in samples from populations. One is based on a study of 

candidate genes and the other on testing the entire genome (GWAS) (Amos et al. 2011). 

Both approaches comprise a combination of benefits and drawbacks.  

A candidate gene study is a hypothesis-based approach where the success depends upon 

the correct choice of genes/pathways to examine, which is exposed to the risk of 

arbitrariness. However, these studies tend to have higher statistical power than GWA 

studies that use large numbers of SNPs (Amos et al. 2011). 

GWAS is a hypothesis- free approach which can detect genes regardless of whether their 

function was known before (Cooke et al. 2008). For example, DNA regions important 

for diabetes or Crohn’s disease development have been recognized by GWAS (Sladek 

et al. 2007; Barrett et al. 2009; Sharp et al. 2015). However, the list of thousands SNPs 

associated with the susceptibility to complex diseases, identified by GWAS, poses a 

problem in form of costly validation studies on a large number of individuals.  

No conclusion has been reached about which of these two approaches is more 

effective/convenient. Studies included in this Thesis are of a candidate gene approach 

and the investigated genes were selected according to published studies on CRC, 

providing a tremendous amount of information on genes, pathways, and chromosomal 

regions that appear to be linked to disease. Genes involved in CRC mutagenesis were 

naturally prime candidates. 

 
1.3.1 DNA repair genes 

The human genome is constantly attacked by a plethora of mutagens that impact its 

stability important for preventing carcinogenesis. A continuous surveillance by DNA 

repair systems is therefore essential for the maintenance of genome integrity.  

Variety of DNA lesions arises from environmental (e.g. ultraviolet component of 

sunlight, ionizing radiation and numerous genotoxic chemicals including a cigarette 

smoke) or endogenous (e.g. products of normal cellular metabolism such as reactive 

oxygen) genotoxic agents. These lesions might interfere with DNA replication, block 

transcription or in case of double strand breaks (DSBs) are particularly relevant for the 
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recombination machinery. Unrepaired damages may affect cell metabolism, trigger cell-

cycle arrest or contribute to oncogenesis. When damage is too significant, a cell may 

opt for initiating the apoptosis. 

DNA repair mechanisms have evolved in a set of sophisticated, interwoven pathways 

that recognize and remove different types of DNA lesions in an error-free, or in some 

cases, error-prone way (Figure 9). The repair machinery operating in mammals has 

arbitrarily been divided into several pathways including nucleotide excision repair 

(NER), base excision repair (BER), DSB repair, MMR and direct repair. To allow the 

cells to repair the DNA damage, different pathways are active throughout different 

stages of the cell cycle. NER removes helix-distorting adducts on DNA that interfere 

with base pairing and generally obstruct transcription and normal replication. Most of 

these lesions arise from exogenous sources. BER is responsible for removing small 

chemical alterations of bases (deamination, oxidation or alkylation) that may impede 

transcription and replication. BER is mostly concerned with damage arising 

spontaneously within the cell. Two main pathways are involved in DSB repair: error-

free homologous recombination (HR) dominates in S and G2 phase when the DNA is 

replicated and error-prone non-homologous end-joining (NHEJ) is most relevant in the 

G1 phase of the cell cycle. DSBs may arise from ionizing radiation or X-rays, free 

radicals, chemicals and during replication. As both strands are affected, DSBs are 

generally considered to be the most deleterious type of DNA damage. MMR is 

responsible for removal of mismatched bases erroneously incorporated during 

replication and deletion/insertion loops within repetitive DNA sequences that have 

arised from strand slippage during replication or during recombination. Direct repair is 

the simplest form of DNA repair with a direct reversal of the lesion as O6-alkylguanine 

methyltransferase removes non-native alkyl groups from the guanine residue. These 

lesions might be induced by dietary nitrosamines or chemotherapy agents. Each of these 

pathways has been reviewed in depth elsewhere (Hoeijmakers 2001; Christmann et al. 

2003; Curtin 2012). 

Dysregulation of repair genes is associated with significant health problems and 

research over the past years show evidence that inherited or acquired deficiencies in 

DNA repair systems contribute significantly to an increased risk of cancer onset and 

progression of carcinogenesis, including CRC (Vineis et al. 2009; Curtin 2012). 

The importance of proper DNA repair may be also illustrated by the fact that mutations 

in a number of DNA repair genes are known to be associated with several hereditary 
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syndromes which are characterised by increased incidence of multiple cancers, 

immunodeficiency and multiple metabolic alterations (e.g. NER associated Xeroderma 

pigmentosum and Cockayne’s syndrome, DSB associated  Bloom syndrome and 

Fanconi anemia) (Christmann et al. 2003). Concerning the MMR pathway, defects in 

the genes result in Lynch syndrome, which represents a familial susceptibility to CRC 

and to a variety of sporadic cancers such as CRC with MSI-H phenotype (Peltomaki 

2001; Grady and Markowitz 2015). 

 

 

Figure 9: DNA repair pathways (Hoeijmakers 2001). 

 

At least 150 genes have been identified to be associated with DNA repair machinery in 

humans, many of them being polymorphic in the human population (Friedberg 2003; 

Roos et al. 2016). As carcinogenesis generally depends on the acquisition of mutations  

in the cellular DNA, inter- individual differences in DNA repair systems caused by 

common SNPs in corresponding genes may be expected to play a role in modulating the 

individual risk of developing cancer or sensitivity of tumor cells to survive DNA 

damage induced by chemotherapeutic agents. Some SNPs have already been reported as 

associated with cancer susceptibility in a number of malignancies, including CRC 

(Naccarati et al. 2007; Pardini et al. 2008; Pardini et al. 2019). However, the 
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consequences of the majority of SNPs in DNA repair genes have not been fully 

explored thus far (Xi et al. 2004; Vodicka et al. 2007; Slyskova et al. 2014).  

 

1.3.2 Genes involved in CRC pathogenesis  

In 1990, Fearon and Vogelstein described the development of sporadic CRC as a 

multistep process of accumulation of activating mutations in oncogenes and 

deactivating mutations in tumor-suppressor genes (Figure 10) (Fearon and Vogelstein 

1990; Carethers and Jung 2015). As the intestinal epithelium has a high turnover rate, 

the constant proliferation in the normal mucosa has to be maintained by the equilibrium 

between growth promoting oncogenes and growth limiting tumor suppressor genes 

(Raskov et al. 2014). Thus each of genetic events in these genes confers a selective 

growth advantage to an affected colon/rectal epithelial cell and may ultimately result in 

uninhibited cell growth, proliferation, and clonal tumor development (Calvert and 

Frucht 2002). This adenoma-carcinoma sequence model, which can proceed for more 

than 10 years, observes a slow development from aberrant crypt proliferation to 

adenomatous polyps, then to carcinomas in situ and finally to malignant tumors (de la 

Chapelle 2004). 

In this model, the inactivation of tumor suppressor gene APC by mutations counts as the 

early step in CRC tumorigenesis and is associated with the initiation of adenoma 

formation. Larger adenomas and early carcinomas are further promoted in frank 

carcinoma by acquiring mutations in the KRAS oncogene, followed by loss of 

chromosome 18q with the tumor suppressor gene SMAD4, which is downstream of 

transforming growth factor-β, and mutations in another tumor suppressor gene TP53 

(Brenner et al. 2014). Although cumulative effect of these genetic alterations, rather 

than their order, determines the biological behavior of the tumor. Nevertheless, APC 

mutations usually occur early in the process and mutations of the TP53 usually occur 

late in the process (Calvert and Frucht 2002). 

Given that the majority (55–70%) of CRC tumors arises via this pathway, a large 

number of previous studies focused on the above mentioned genes (Kocarnik et al. 

2015). Furthermore, according to this model of CRC carcinogenesis, subtle effects 

caused by SNPs in genes involved in the CRC pathogenesis may contribute to the 

disease onset and patient’s prognosis.  
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Figure 10: Adenoma-carcinoma sequence model for sporadic CRC (Walther et al. 2009). 

 

1.3.3 Mucin genes 

As the cells in contact with the external environment are constantly exposed to ingested 

toxins, pollutants, luminal contents (that include proteases) and a number of micro-

organisms, defense mechanisms, such as the secretion of mucus by mucin genes, have 

been developed during the evolution. 

Mucins are high molecular weight, heavily glycosylated extracellular proteins produced 

by epithelial cells (Hollingsworth and Swanson 2004; Andrianifahanana et al. 2006). 

The human mucin family, consisting of members designated MUC1-MUC21, includes 

proteins containing tandem repeat structures with a high proportion of prolines, 

threonines, and serines. According to the structure and function we may divide mucins 

in two distinct classes: secreted gel- forming mucins and transmembrane mucins. 

Together they constitute a mucous barrier (Byrd and Bresalier 2004). 

Under physiological conditions, mucins play an important role in the maintenance of 

homeostasis by covering epithelial surfaces, including human colorectal epithelium, by 

gel mucus layer (Figure 11) (Gupta et al. 2012). Their function lies in limiting the 

activation of inflammatory responses at the interface with the environment, therefore 

deregulation of mucin production is an important link between inflammation and cancer 

(Kufe 2009). 

Aberrant expression of mucins was found in diverse human adenocarcinomas (in 

gastric, esophageal, breast, endometrial and lung cancer), while increased levels of 

mucin production have been associated with higher risk of cancer as well as with worse 

patient prognosis (Yonezawa et al. 2008a; Yonezawa et al. 2008b; Yonezawa et al. 
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2011; Zheng et al. 2019). Concerning CRC, an overexpression of MUC1 and MUC5AC 

and a downregulation of MUC2 have been described to be involved in the development 

and progression of the disease (Nikolouzakis et al. 2018) and the upregulation of 

MUC20 have been observed as a predictor of poor prognosis (Xiao et al. 2013; Lu et al. 

2019).  

As miRNAs have emerged as important regulators responsible for an altered mucin 

expression (Macha et al. 2015) miRSNPs located in mucin genes may play a role in 

cancer susceptibility, efficacy of chemotherapy, and survival. 

 

 

Figure 11: Functions of transmembrane mucins in the human colon (van Putten and Strijbis 2017). 

 

1.3.4 NOD-like receptor genes 

Highly conserved nucleotide-binding and oligomerization domain (NOD)- like receptors 

(NLRs) are cytosolic pattern recognition receptors that play a crucial role in mucosal 

immune defense (Claes et al. 2015).  

As the intestinal tract is continuously interacting with pathogenic or endogenous 

microorganisms as well as to commensal bacteria, proper immune response and  

homeostasis between immunity and tolerance has to be strictly controlled. NLRs are 

activated by recognizing a wide range of pathogens or damage-associated molecular 

patterns and trigger sequential activation of intracellular signalling pathways that 

initiate the innate response and the subsequent adaptive immune response (Kim et al. 

2016). Therefore a dysregulated expression of NLR genes, due to functional or genetic 

defects, may lead to an excessive or uncontrolled signalling of underlying regulatory 
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pathways. Consequently, this may result in the development of local and chronic 

inflammation, inflammatory bowel disease (such as ulcerative colitis and Crohn’s 

disease) and/or CRC (Belkaid and Hand 2014; Claes et al. 2015).  

NLR family comprises of 22 genes in humans and their abnormalities are linked to 

various diseases (Table 3) (Fukata et al. 2009; Zhong et al. 2013; Kim et al. 2016). A 

significant association of Nod2 mutations with a risk of Crohn’s disease and SNPs in 

Nod1 with the inflammatory bowel disease onset has been already identified by GWAS 

(Fukata et al. 2009). As the inflammation affects all stages of tumorigenesis, SNPs 

located in NLRs genes may also play a role in cancer susceptibility.  

 

Table 3: Genetic associations of NLR to inflammatory d isorders [modified from Fukata et al. 2009]. 

NLR Inflammatory disorder 

NOD1 Asthma, atopic eczema, increased serum IgE 

NOD2 
Asthma, atopic eczema, increased serum IgE, Crohn's disease and 

Ulcerative colitis 
 

IgE, Immunoglobulin E 
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2. AIMS 

 

The main goal of the thesis was to identify potential novel biomarkers for sporadic 

CRC. For this purpose, we studied the association of genetic variants with CRC 

susceptibility and patient’s clinical outcome. We were particularly interested in DNA 

repair genes, genes involved in CRC pathogenesis (irrespectively of MSI status), mucin 

genes and cancer-related immunity genes.  

 

We stated the following aims: 

 

 To test whether SNPs in miRNA target regions of selected genes affect cancer 

susceptibility, survival and response to therapy in CRC patients.  

 

 To examine whether miRSNPs modulate the efficiency of corresponding proteins 

translation. 

 

 To investigate whether coding SNPs in NLR genes contribute to human CRC 

development or progression. 

 

 To search whether SNPs causing amino acid substitution in DNA repair genes 

influence the risk of CRC and modulate the clinical outcome after CRC diagnosis. 
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3. MATERIAL & METHODS 

 

3.1. Study populations 

 

Manuscript I: Study was conducted on 1126 histologically confirmed CRC patients 

and 1469 healthy controls from the Czech Republic. All 2595 individuals were 

interviewed for their lifestyle habits, body mass index (BMI), diabetes, and 

family/personal history of cancer with a structured questionnaire. Patient’s clinical data 

at the time of diagnosis were collected (location of the tumor, TNM stage and grade) 

along with information about adjuvant chemotherapy treatment, distant metastasis, 

relapse and date of death. All subjects were sampled for peripheral blood.  

Manuscript II: Study was performed on the same cohort of patients and healthy 

controls as described in Manuscript I. In this case, 1111 CRC patients and 1469 

healthy controls, that provided peripheral blood samples, were tested in the study.  

Manuscript III: Study was carried out on the same group of patients and healthy 

controls as in Manuscript I and II. Blood samples were collected from 1111 patients 

and 1469 healthy controls. 

Manuscript IV: In this association study, a discovery cohort from the Czech Republic 

(1237 CRC cases and 787 healthy controls) and replication cohorts from Germany 

(1798 CRC cases and 1810 healthy controls) and Scotland (2210 CRC cases and 9350 

healthy controls) were included. All subjects provided necessary information requested 

in the questionnaire. Clinical data were collected in collaboration with attending 

patient’s physicians. Blood samples were collected from all study participants.  

Manuscript V: In this case-control study, 1424 newly diagnosed patients with sporadic 

CRC were compared to 1114 age-matched healthy individuals. All study participants 

were of Czech origin and provided blood samples. 

Manuscript VI: A hospital-based study involved 589 incident patients from the Czech 

Republic diagnosed for sporadic CRC. Clinico-pathological data and information about 

recurrence, distant metastasis, or date of death were provided. All subjects were 

sampled for peripheral blood. For expression analyses, patients providing biopsy 

material and healthy controls providing buffy coats or whole blood were recruited at the 

University Hospital TuÈbingen. 
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Manuscript VII: The association study was carried out on a discovery cohort from the 

Czech Republic (1832 CRC cases and 1172 healthy controls) and replication cohort 

from Austria (950 CRC cases and 820 healthy controls). Characteristics of both cohort 

participants were collected. Blood samples were collected from healthy controls. 

Patients were sampled for nonmalignant colon/rectal tissue or peripheral blood. 

All individuals included in the above studies provided informed consent and the 

particular studies have obtained appropriate approval from Ethic committees.  

 

3.2. Selection of candidate SNPs 

 

To select the candidate SNPs, several in silico prediction software programs were 

implemented (Manuscript I – MicroSNiper, Mirnsnpscore and Polymirt; Manuscript II - 

MicroSNiPer, miRSNP, Mirnsnpscore, Polymirt, RNAcofold, miRanda, TargetScan, 

GTEx and SCAN database; Manuscript III - MicroSNiper, Mirnsnpscore and Polymirt; 

Manuscript IV – SIFT, PolyPhen2, GERP, PhastCons and PhyloP; Manuscript V – 

Regulome DB, Gtex Portal, MicroSNiper, PERFECTOS-APE and s-TRAP; Manuscript 

VI - Ensembl, Regulome DB, Gtex Portal, MicroSNiPer and Transcription factor 

Affinity Prediction; Manuscript VII - F-SNP, GERP, SiPhy, ELASPIC and DUET). 

The SNPs were filtered for their minor allele frequency (MAF > 1-10% depending on 

the Manuscript) in Caucasian populations to reach an appropriate representation of all 

genotypes in our set of cases and controls (Source: 1000Genomes, dbSNP, HapMap). 

SNPs with the required MAF were tested for the possibility to be in linkage 

disequilibrium (LD) (Source: HaploView and HapMap).  

Detailed workflow for the SNPs selection is described in the Manuscripts. 
 

3.3. Genotyping analysis 

 

Genomic DNA was isolated from peripheral blood lymphocytes using standard 

procedures. When blood was not available, nonmalignant colon/rectal tissue was used 

to obtain DNA by using the DNeasy Blood and Tissue Kit (Qiagen).  

SNPs were determined by TaqMan SNP Genotyping Assays (Thermo Fisher Scientific), 

KASP Genotyping Assays (LGC genomics), the Illumina HumanCytoSNP or Illumina 

HumanOmniExpress Platform (Peters et al. 2013), the Infinium Human Exome 
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BeadChip (Illumina), OmniExpressExome BeadChip (Illumina) and Axiom Genome-

Wide CEU 1 Array (Affymetrix). In manuscript IV, imputation was performed for 

autosomal SNPs to the CEU population in HapMap and in manuscript VII, genotype 

assignment was performed as described in (Hofer et al. 2017).  

The genotypes with unclear results were excluded from the studies.  

 

3.4. Gene expression analysis 

 

In Manuscript I, a Dual-Luciferase reporter assay was used to investigate whether the 

MRE11A rs2155209 alleles were associated with a differential gene expression. The 

assays were carried out using the Dual-Luciferase Reporter Assay Kit (Promega) and 

three replicates of all experimental points were performed in each experiment. 

Luminescence intensity was evaluated by a luminometer (Optima FluoStar) and 

luciferase activities were averaged from four measurements.  

In Manuscipt IV, gene expression analysis was carried out using single-gene 

TaqMan1Gene Expression Assays (Applied Biosystems). mRNA was isolated from 

samples of two donors or cell lines (THP-1, HCT116, DLD-1 or CaCo2) by RNeasy 

Mini Kit (Qiagen). Commercially available RNA samples for human ovary, duodenum, 

ileum, rectal and colon adenocarcinoma were also used (Agilent). RNA from ileum or 

colon biopsies was isolated using TRIzol Reagent (Life Technologies) according to 

standard protocols. The samples were analyzed in triplicate using the 7500fast Real-

Time System (Applied Biosystems).  

 

3.5. Statistical analysis 

 

Genotype frequencies in healthy controls were tested for Hardy-Weinberg equilibrium 

(HWE; Pearson's goodness-of- fit χ2 test). Odds ratios (ORs) and 95% confidence 

intervals (CIs) for associations between genotypes and risk of CRC were estimated by 

logistic regression. 

The outcome variables measured were OS (time from diagnosis until death or 

censorship), and EFS (time from surgery or end of chemotherapy until date of relapse, 

death or censorship whichever came first). The relative risk of death was estimated as 
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hazard ratio (HR) using Cox regression. The survival curves for OS and EFS were 

derived by the Kaplan–Meier method.  

In Manuscript I, the multifactor analysis of variance with interactions (MANOVA) was 

performed in the in vitro assays to compare the ratios of the measurements of 

luminescence between genotypes. In Manuscript V, additive influence of the risk alleles 

on CRC risk and patient’s survival was estimated. In Manuscript VII, a multivariate 

analysis, referred to as a classification and regression tree (CART), was used to assess 

the prognostic value of interactions between the standard clinico-pathological variables 

and the genetic variants in relation to their impact on five-year survival in CRC patients.  

Multiple testing corrections were performed using the Bonferroni test or the Benjamini-

Hochberg false discovery rate. 

 

Detailed information about individual patients, methods of sample processing and 

methods of individual analyses are reported in the enclosed publications.  
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4. RESULTS & DISCUSSION 

 

The subject of this Thesis was to investigate the genetic variability in patients with 

sporadic form of CRC in association with the risk of disease development, as well as 

with survival prognosis and different treatments response prediction.  

The working hypotheses and the experimental work were driven by several major 

assumptions: (1) Genetics plays a key role in predisposition to CRC, its initiation, and 

progression. SNPs in candidate genes (DNA repair genes – Manuscript I and VII, 

genes involved in CRC pathogenesis – Manuscript II, mucin genes – Manuscript III 

and cancer-related immunity genes – Manuscript IV, V and VI) may alter the final 

protein function and/or efficiency and thus induce genetic instability and unregulated 

cell growth therefore further influence CRC susceptibility, patient’s survival and 

efficacy of chemotherapy. (2) Genetic variants within miRNA binding sites of targeted 

genes may cause an altered binding of specific miRNAs to the 3′UTR and thus might be 

responsible for an aberrant gene expression ultimately affecting CRC risk and modulate 

the clinical outcome after cancer diagnosis. (3) Understanding the SNPs effect on the 

CRC risk, survival and treatment response might result in low-cost and low-invasive 

prognostic and predictive biomarkers with a potential in helping to define individual 

CRC risk and tailor disease management based on the unique molecular profile of each 

patient. Individualized therapy would eventually help to improve therapeutic efficacy 

and minimize toxicities. (4) The association studies are conducted on a considerable 

number of cases and controls, homogeneous for their ancestry, and clinically well-

defined, thus minimizing any possible population stratifications.  

In this section, the major findings from each publication representing the PhD study are 

discussed. 
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Manuscript I: 

The study “Double-strand break repair and colorectal cancer: gene variants within 3′ 

UTRs and microRNAs binding as modulators of cancer risk and clinical outcome” 

explored the association of 21 polymorphisms in 3ʹUTRs in relevant DNA repair genes 

(RAD51, RAD52, BRCA1, MRE11A, NBN, GEN1, XRCC2, XRCC4, XRCC5, LIG4, and 

NHEJ1) of DSB repair pathway with CRC susceptibility and prognosis.  

The major finding of the study comprising 1126 cases and 1469 controls identifies the 

carriers of the variant CC genotype in MRE11A rs2155209 as strongly associated with a 

decreased risk of CRC (p = 0.0004). Further, a potential SNP-SNP interaction in 

modulating CRC susceptibility revealed a tendency for the under-representation of 

cases in comparison with controls among carriers of the variant rs2155209 genotype CC 

in MRE11A in combinations with other SNPs (rs3218547 and rs1051669). In the 

survival analyses among CRC patients, and specifically among those with colon cancer, 

carriers of the variant CC genotype in MRE11A rs2155209 showed a worse survival 

when compared with the most frequent TT genotype (p = 0.03) (Figure 12). As the SNP 

rs2155209 in MRE11A gene appeared as important in both, the risk and survival 

analysis, its role in modulating MRE11A expression was further investigated by a Dual-

Luciferase Reporter Assay. Between the two constructs carrying the different alleles of 

the SNP a statistically significant difference was observed (p = 0.007) and the C-allele 

was related to a reduced activity of the reporter gene by 14% of the average luciferase 

activity in comparison with the values obtained for the construct with the T-allele 

(Figure 13).  

Since miRNAs have been recognized as pivotal players in diverse biologic processes 

(including DNA repair and DNA damage response (Chowdhury et al. 2013; Sharma and 

Misteli 2013)), the presence of SNPs within the 3′UTRs of target DNA repair genes 

might cause an altered binding of specific miRNAs, and thus modulate gene expression 

and ultimately affect cancer susceptibility (Naccarati et al. 2012; Slaby et al. 2012; 

Cipollini et al. 2014), therapy outcomes (Teo et al. 2012) and survival (Pardini et al. 

2013). For example, SNP in miRNA binding site within the DNA repair gene RAD51 

has been reported associated with bladder cancer risk and radiotherapy outcomes (Teo 

et al. 2012). 

MRE11A as part of MRE11-RAD50-NBS1 (MRN) complex is involved in several 

important processes including a DSB repair (Williams et al. 2010). Mutations in the 



- 37 - 
 

complex components have been reported in acute lymphoblastic leukemia, head and 

neck, prostate, breast and colorectal cancers (Mosor et al. 2006; Dzikiewicz-Krawczyk 

2008; Ziolkowska-Suchanek et al. 2013). Several genetic variants in MRE11 (not in 

linkage with rs2155209) have also been associated with various cancers including 

breast, bladder and ovarium (Bartkova et al. 2008; Dzikiewicz-Krawczyk 2008; 

Chowdhury et al. 2013; Teo et al. 2014). Regarding the studied miRSNP rs2155209 in 

MRE11A gene, the association has been previously reported with an increased risk of 

myocardial infarction, breast and bladder cancer (Choudhury et al. 2008; Verschuren et 

al. 2013; Wu et al. 2015).  

Protein expression levels of MRE11 have also been measured in previous studies. An 

overexpression was commonly observed among CRC patients, therefore it has been 

postulated as a mechanism responsible for increasing cancer risk  (Cancer Genome Atlas 

2012). This hypothesis is also supported by RNA sequencing data of CRC patients in 

The Cancer Genome Atlas (TCGA) database where a general overexpression of all 

available MRE11A transcripts was observed in the tumor tissues when compared with 

their nonmalignant tissue counterparts (Cancer Genome Atlas 2012).  

Since the low-risk allele (C) is associated with a lower expression of MRE11A as 

suggested by the results of our functional study, our outcomes are in accordance with 

the abovementioned data. Therefore, we may hypothesize that a miRNA post-

transcriptional regulation of MRE11A may be finely modulated by the presence of the 

identified miRSNP, with the CC genotype contributing to a reduced risk of developing 

CRC. 

Furthermore, carriers of the MRE11A rs2155209 variant CC genotype showed a shorter 

survival. Notably, MRE11 protein deficiency has been observed to be associated with 

improved survival of stage III colon cancer patients, independently of treatment 

(Pavelitz et al. 2014). This study supports our finding where CC genotype of MRE11A 

rs2155209 is associated with shorter survival. We can theorize that the modulatory ro le 

by the observed miRSNP on the expression of MRE11 protein may also influence the 

prognosis of cancer. 

In this study, we have reported a significant role of SNP rs2155209 in miRNA target 

site of DSB repair gene MRE11A in CRC risk and clinical outcome, and our results 

support the idea of miRNAs and miRSNPs contribution to CRC (Vishnubalaji et al. 

2015). Since the interest on miRNAs has lately increased for the possibility to use them 

as diagnostic, prognostic and predictive clinical biomarkers (Iorio and Croce 2012), a 
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similar study design was applied in Manuscript II and III to explore miRSNPs in 

genes frequently mutated in CRC pathogenesis and in mucin genes.  

 

 

 

Figure 12: Kaplan-Meier OS curves for MRE11A rs2155209 in co lon cancer patients.  

 

MST, median survival time. 

 

 

 

Figure 13: Data show mean values of luminescence activity. MRE11A expression shows a statistically 

significant (p = 0.007) decrease of about 14% in presence of the rs2155209 C-variant, compared to the 

expression obtained with the T-variant. 

 

Manuscript II: 

The study “MicroRNA-binding site polymorphisms in genes involved in colorectal 

cancer etiopathogenesis and their impact on disease prognosis” was performed to test 8 

genetic variants in the 3ʹUTRs of 5 highly penetrant genes (APC, ATM, KRAS, PARP1 
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and SMAD7) known to be frequently mutated in CRC pathogenesis in association with 

CRC risk and clinical outcome. 

Selected miRSNPs were tested in the same cohort of patients and controls as described 

in Manuscript I. In a case-control study, the polymorphism rs8679 in PARP1 gene was 

associated with a risk of CRC. In particular, the carriers of at least one C allele were at a 

decreased risk of cancer (p = 0.05). The CC genotype in PARP1 rs8679 was also 

associated with patient’s survival when patients undergoing 5-FU-based chemotherapy 

were at increased risk of recurrence/progression (p = 0.03) (Figure 14). 

As already mentioned in the previous Manuscript I, the ability of miRNAs to locate 

and bind a target mRNA has been found to be critical for regulating transcripts level 

and protein expression necessary for a proper DNA repair and DNA damage response  

(Preskill and Weidhaas 2013). Thus inherited genetic variants in miRNA target sites are 

suggested to affect miRNA function and may have an important role in human disease 

susceptibility and progression (Sethupathy and Collins 2008; Teo et al. 2012; Ryan et 

al. 2015). 

For example, regarding PARP1 rs8679, a miR-145-3p is predicted to bind to the 3′UTR 

region where the polymorphism is located. To evaluate whether the studied genetic 

variant in miRNA target region could potentially alter the binding with specific 

miRNA, the RNAcofold software was used to predict the difference of binding energy 

according to the allele (Landi et al. 2012; Naccarati et al. 2012). The result suggests a 

less efficient binding of miR-145-3p in the presence of the less common C allele and 

implicates a potentially decreased post-transcriptional repression of PARP1 by this 

miRNA. We may therefore hypothesize that a decreased CRC risk is associated with a 

variant C allele because of a less efficient binding of the miR-145-3p causing an 

increased level of PARP1. This may be supported by a study on CRC cell lines where 

overexpression of miR-145 was observed as associated with inhibition of cell 

proliferation, motility and invasion and a stable overexpression of miR-145 suppressed 

tumor growth and pulmonary metastasis also in vivo (Feng et al. 2014). Furthermore, 

several studies previously reported this miRNAs downregulation of expression in CRC 

thus adding emphasis to our hypothesis (Feng et al. 2014; Gattolliat et al. 2015; Ramzy 

et al. 2015). 

However, when we utilize a MicroSniper software and focus on miRNAs predicted to 

bind in the same position in presence of both alleles for PARP1 rs8679, only one (miR-

3074-5p) out of six exhibited the highest binding energy necessary for binding to the 
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region in the presence of the rare C allele. Thus it might be globally more favorable for 

miRNAs to bind the rs8679 3′UTR target region when the C allele is present, which 

might result in a more stringent repression of translation (i.e. decreased target gene 

expression). Concerning these specific miRSNPs, our findings observing that carriers of 

at least one C allele are at a decreased risk of CRC are in disagreement with this 

computational prediction. Nevertheless, it supports once again our initial hypothesis of 

different allele specificity on miRNA-binding target sites that may be reflected in 

miRNA regulation. 

The CC genotype in rs8679 was further associated with an increased risk of recurrence 

or progression in patients that received 5-FU-based chemotherapy. We may hypothesize 

that SNPs within the PARP1 gene might lead to a decrease in its activity eventually 

impacting in the failure of apoptosis. Thus the effectiveness of apoptotic activity after 5-

FU treatment could be lower, leading to a worse prognosis. This might be supported by 

a study by Lu et al. when increased expression levels of miR-335, predicted in silico to 

bind to C allele of rs8679, were markedly associated with CRC tumor size and 

differentiation (Lu et al. 2016). In the study by Cheng and colleagues, a close 

association between PARP1 gene and 5-FU-based chemotherapy was also described 

(Cheng et al. 2012). 

Understanding the modulating effect of miRNAs on PARP1 protein levels in CRC 

tumors is particularly important because of the current interest in the use of PARP1 

inhibitors as a single agent or as a chemo- or radiosensitizer in cancer treatment 

(Megnin-Chanet et al. 2010). In the present study, we provide evidence that variations 

in potential miRNA-binding target sites in the 3ʹ UTR of PARP1 gene may modulate 

CRC risk and prognosis after therapy.  

 

 

Figure 14: Kaplan–Meier EFS curves in CRC patients undergoing 5-FU-based chemotherapy stratified 

for rs8679 in PARP1 gene. 
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Manuscript III: 

The study “Polymorphisms in microRNA binding sites of mucin genes as predictors of 

clinical outcome in colorectal cancer patients” describes the association of 13 

miRSNPs of 9 mucin genes (MUC6, MUC7, MUC13, MUC14, MUC15, MUC17, 

MUC20, MUC21 and MUC24) with CRC risk and clinical outcome. 

Selected miRSNPs were assessed in the same cohort of patients and controls as in 

Manuscript I and II. Overall, no strongly significant associations were observed in the 

case-control study. Borderline significant p-values for decreased risk of CRC were 

found for 4 miRSNPs (MUC13 rs1532602, MUC14 rs4071, EMCN/MUC14 

rs17552409 and MUC24 rs974034) either in the entire group of CRC patients or after 

stratification according to the tumor site. Among the strongest associations with 

patient’s survival, the carriers of the CC genotype in MUC21 rs886403 were associated 

with a worse survival and a higher recurrence risk in CRC patients (OS: p = 0.01 and 

EFS: p = 0.0002), which was even more pronounced in colon cancer cases (OS: p < 

0.0001 and EFS: p < 0.0001) (Figure 15A). In contrast, rectal cancer patients carrying 

the variant CC genotype in MUC17 rs4729655 displayed a better survival (p = 0.0002) 

(Figure 15B). Finally, CRC and colon cancer patients carrying the variant GG genotype 

of in MUC20 rs6782006 showed a worse OS (p = 0.02). 

Mucins are glycoproteins predominantly expressed at the epithelial part of tissues and 

provide a protection for colon surface. Under physiological conditions, mucins maintain 

a homeostasis by covering human colon surface by gel mucous layer (Gupta et al. 

2012). During the malignant development, miRNAs have emerged as important 

regulators responsible for an altered mucin expression (Macha et al. 2015). Therefore, 

miRSNPs located in mucin genes may play a role in cancer susceptibility, efficacy of 

chemotherapy and survival.  

Several mucin genes, such as MUC21, MUC17, and MUC20, appeared to be 

significantly associated with patient’s survival in our study. Unfortunately only scarce 

information is available for mucin genes in the published articles. Concerning MUC21, 

the study by Yi et al. showed significantly less adherent cells to each other and to 

extracellular matrix components in cells transfected by MUC21 (Yi et al. 2010), 

suggesting a role of MUC21 in cell adhesion. The appropriate cell adhesion is necessary 

for numerous physiological processes (cellular organization, differentiation, 

proliferation and survival). It also plays vital roles in many later steps in cancer 
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progression (entry of cancer cells into the bloodstream and their establishment at distant 

organs) (Labelle and Hynes 2012). Another mucin MUC17 is normally highly 

expressed on the surface epithelium of colon/rectal mucosa but its expression becomes 

altered in colorectal neoplasia. Li et al. observed an increased expression of MUC17 

associated with a longer OS in patients with stage III and IV of colorectal 

adenocarcinomas (Li 2011) which points to its possible role in cancer progression and 

prognosis. In the study by Kitamoto et al. several miRNAs were proposed as potential 

regulators of MUC17 expression, but none of them has been validated in vivo (Kitamoto 

et al. 2011). Lastly, MUC20 gene is highly expressed in kidney and colon tissues. Xiao 

et al. observed a significantly upregulated MUC20 in CRC patients with poor prognosis 

(Xiao et al. 2013) and a relationship between overexpression and poor survival was also 

found in other human malignancies (ovarian cancer, non-small cell lung cancer, 

endometrial cancer and gastric cancer) (Vlad et al. 2006; Woenckhaus et al. 2008; 

Marin et al. 2012; Chen et al. 2013). 

In the present study, plausible candidate miRSNPs potentially affecting miRNA binding 

to mucin genes were identified as related to either CRC susceptibility or patient´s 

survival. Our results support the idea that a ‘miRNA network’ may contribute to CRC 

pathogenesis. Expanding our knowledge on mucins may help us to better understand the 

etiopathogenesis of CRC and thereby contribute to the development of new treatment 

strategies. 

 

 

 

Figure 15: Kaplan–Meier curves (A) EFS for rs886403 in MUC21 gene in colon cancer patients (B) OS 

for rs4729655 in MUC17 gene in rectal cancer patients. 
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Manuscript IV: 

The study “Coding variants in NOD-like receptors: An association study on risk and 

survival of colorectal cancer” was aimed at evaluating 41 non-synonymous SNPs in 21 

NLR genes (NLRP1-14, NLRC4 and 5, NOD1 and 2, NAIP, RIPK2 and ASC) for their 

association with CRC risk and clinical outcome.  

In this study, a discovery cohort from the Czech Republic (1237 cases and 787 controls) 

and two large GWAS data sets for a replication analysis were included (Germany: 1798 

cases and 1810 controls and Scotland: 2210 cases and 9350 controls). The major 

findings in a discovery set describe five SNPs to be significantly associated with CRC 

risk (rs1043673, rs35829419, rs6421985, rs306457 and rs303997) and eight with 

patient´s survival (rs12150220, rs1043673, rs10409555, rs12462795, rs16986899, 

rs34436714, rs289723 and rs74439742), however the associations were not confirmed 

in a replication analysis. To assess the expression of NLRs found in the Czech 

discovery set in the gut or immune cells, mRNA levels were measured in primary tissue 

samples and cell lines and divergent expression patterns of NLRP2, 5, 6 and 13 were 

found in hematopoietic and non-hematopoietic cells (Figure 16). 

NLRs are important innate pattern recognition receptors and regulators of inflammation 

and play an important part in the homeostasis of the immune system (Wilmanski et al. 

2008; Oviedo-Boyso et al. 2014). A different expression of NLR genes may lead to a 

disruption of the underlying regulatory pathways and result in the development of local 

and chronic inflammation, inflammatory bowel disease and/or CRC (Abreu 2010; 

Carvalho et al. 2012). 

In spite of the in silico predictions about the functionality of studied SNPs the 

promising results from the Czech cohort could not be confirmed in the two GWAS data 

sets. However, our expression analysis showed the NLRs associated with CRC risk or 

survival in the discovery set as expressed in primary human colon or rectum cells, CRC 

tissue and cell lines, providing preliminary evidence for a potential involvement of 

NLRs in CRC development and progression. Furthermore, the expression of 

development-related NLRP5 was undetectable in nonmalignant colon tissue but was 

upregulated in colon cancer tissue and cell lines, suggesting a potential novel role 

beyond developmental control for this NLR in humans (Lupfer and Kanneganti 2013). 

Induced expression of NLRC5 in HCT116 cells may have a functional outcome by 

modulating major histocompatibility complex (MHC) class I expression (Neerincx et al. 
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2013) which correlates with survival due to its effect on CD8 cytotoxic T-cell and 

natural killer cell immuno-surveillance (Watson et al. 2006). 

To further uncover the poorly understood role of NLRs in CRC development and 

survival, the effect of regulatory variants of NLRC5 on CRC susceptibility and clinical 

outcome were explored in Manuscript V and VI. 

 

 

Figure 16: Expression of selected CRC-associated NLRs in immune cells, primary tissue samples or 

CRC cell lines.  
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Manuscript V: 

The study “Investigation of single and synergic effects of NLRC5 and PD-L1 variants 

on the risk of colorectal cancer” reports the influence of 16 potential regulatory variants 

in the NLRC5 and Programmed death- ligand 1 (PD-L1) genes selected by several in 

silico tools on CRC susceptibility. 

This case-control study comprising 1424 cases and 1114 healthy controls from the 

Czech Republic reports a moderate association between rectal cancer risk and two 

NLRC5 SNPs (rs1684575 and rs3751710). Given that the evaluated SNPs did not show 

any strong individual association with CRC risk and that a combination of genetic 

variants, rather than a single polymorphism, may explain better the genetic etiology of 

CRC, we further focused on the interplay between the variants. Eighteen pair-wise 

interactions within and between the NLRC5 ad PD-L1 genes were obtained. Six more 

interactions appeared when the previously genotyped IFNGR1 and IFNGR2 variants 

were added to the analysis (Lu et al. 2014). The main interactions included three 

NLRC5 SNPs (rs289747, rs289748, rs56315364) located in the upstream and promoter 

region with the same PD-L1 promoter SNP rs2890657 (Figure 17). 

NLRC5 gene, a member of a NLR family, plays a prominent role in antitumor immunity 

while PD-L1 acts as a physiological feedback mechanism necessary for terminating the 

immune responses and for maintaining self-tolerance (Riella et al. 2012). Changes in 

these genes expression may lead to a disrupted anti-tumor immune response, which in 

turn may influence CRC susceptibility (Lynch and Murphy 2016; Yoshihama et al. 

2016; Passardi et al. 2017). SNPs located in regulatory regions of NLRC5 and PD-L1 

may thus be actively involved in the regulation of gene expression and have an impact 

on CRC development (Khurana et al. 2016). 

As NLRC5 has been reported to be a MHC class I transactivator, its upregulated 

expression could lead to a strong CD8+ activation necessary for generating an effective 

immune defense against invading harmful pathogens (Pandiyan et al. 2007). On the 

other hand, a downregulated expression of NLRC5 has been reported to lead to an 

impaired ability to elicit CD8+ T-cell activation, which represents a way used by the 

tumor cells to escape the host immune system (Yoshihama et al. 2016). Promoted PD-

L1 expression may however negatively regulate primed CD8+ T cell expansion 

therefore an aberrant PD-L1 expression might allow cancer cells to escape the antitumor 

immune response by suppressing the CD8+ T cell expansion (Karwacz et al. 2011; 
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Riella et al. 2012; Kataoka et al. 2016). Additionally, the data from the study by Van et 

al. suggest that 5-FU, a chemotherapeutic frequently used in CRC treatment, has an 

impact on PD-L1 expression (Van Der Kraak et al. 2016). 

Our data suggest that the interaction between the inherited genetic variants within genes 

involved in immune surveillance contributes to signaling defects, which in turn may 

lead to alteration in the anti-tumor immune response and further play an important role 

in the onset of CRC. Expanding our knowledge on regulatory variants in the NLRC5 

and PD-L1 genes could eventually improve CRC risk management but also PD-L1-

based immunotherapy in CRC. The association of NLRC5 with regard to a therapy 

response as well as survival of the CRC patients is further explored in Manuscript VI. 

 

 

 

Figure 17: NLRC5-PD-L1-IFNGR1/2 pair-wise interactions. The color indicates the SNPs' location 

displayed by UCSC Genome Browser on lymphoblastoid cell lines (GM12878).  
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Manuscript VI: 

The study “Influence of regulatory NLRC5 variants on colorectal cancer survival and 

5-fluorouracil-based chemotherapy” was preformed to evaluate the effect of 11 

potential regulatory polymorphisms in NLRC5 selected by several in silico tools on 

overall and event- free survival of patients with sporadic form of CRC. 

The case-only study was carried out on 589 CRC cases from the Czech Republic (232 

patients received 5-FU-based therapy). Minor alleles of two SNPs (rs27194 and 

rs289747) were significantly associated with a decreased survival in all patients and 

metastasis-free patients at the time of diagnosis (pM0). Among CRC patients receiving 

a 5-FU-based adjuvant therapy, rs12445252 was associated according to the dosage of 

the minor allele T with OS and EFS (Figure 18). 

As previously mentioned NLRC5 is a transactivator of MHC class I molecules 

(Meissner et al. 2010) and plays a pivotal role in immune-surveillance with a potential 

influence on cancer patient’s survival. It is an interferon gamma (IFNγ)–inducible 

nuclear protein and due to the link with the IFNγ system, NLRC5 might also play a role 

in the 5-FU-based therapy. 

The SNP rs27194, associated with a decreased survival in our study, is located in a 

3’UTR region and therefore by affecting miRNA binding sites might be responsible for 

aberrant NLRC5 expression in CRC. This hypothesis may be supported by results of 

Microsniper software, when miR-942 (predicted as possibly affected by miRSNP 

rs27194) is known to be constitutively activated in many cancers, including CRC (Zhan 

et al. 2017). Furthermore, the same miRSNP is predicted to affect the binding site 

affinity of PRRX2 and TCF4, both strongly deregulated in CRC (Xu and Pasche 2007; 

Zhan et al. 2017). The second SNP rs289747 associated with the survival is an intronic 

variant which is presumed to affect an OCT1 binding site by increasing its binding 

affinity. Also OCT1 overexpression has been described in many cancers, including 

CRC (Wang et al. 2016). Lastly the rs12445252 polymorphism, found to be associated 

with 5-FU treatment survival, is an intronic eQTL variant negatively influencing the 

expression of NLRC5 and a decreased expression of NLRC5 could further affect 

chemotherapeutic efficacy of 5-FU. 

Unfortunately, studies on expression levels of NLRC5 in CRC and normal tissue are 

sparse and contradictory (Liu et al. 2015; Yoshihama et al. 2016). Only a few studies 

have addressed the role of NLRC5 gene expression and survival of cancer patients while 
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results have indicated high expression of NLRC5 as a good prognostic marker 

(including CRC) (Watson et al. 2006; Simpson et al. 2010). 

Our results indicate that polymorphisms in immune surveillance genes, such as NLRC5, 

may be used as prognostic markers for clinical outcome in CRC, as well as for survival 

of CRC patients in response to 5-FU-treatment. Our study also adds a new layer on the 

complex function of NLRC5 in the innate immune system. 

 

 

 
 

Figure 18: Kaplan–Meier analysis of survival according to genotypes of rs27194 and rs289747 in the 

whole study population and rs12445252 in 5-fluorouracil-treated. 
 

HR, Hazard rat io; CI, confidence interval 
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Manuscript VII: 

The study “Functional polymorphisms in DNA repair genes are associated with 

sporadic colorectal cancer susceptibility and clinical outcome” evaluated the relevance 

of 16 functional genetic variants in 12 DNA repair genes (EME1, FAAP24, FANCI, 

MUS81, NEIL3, POLE, POLN, POLQ, RAD51D, REV1, REV3L and RPA1) on the risk 

of CRC development and modulation of the clinical outcome after cancer diagnosis.  

In the discovery set of 1832 patients and 1172 controls from the Czech Republic, the 

carriers of the variant AA genotype in REV3L rs3204953 (Val2986Ile) were observed as 

associated with an increased risk of CRC (p = 0.006). The valine to isoleucine 

substitution has been recognized via in silico approach, performed by F-SNP database, 

to have a high probability of being functionally significant (Lee and Shatkay 2008) and 

in the area of a molecular epidemiology, there is evidence that polymorphisms in 

REV3L are associated with different malignancies. For example, an association of 

rs3204953 was observed with a higher risk of breast cancer in a Swedish cohort (Varadi 

et al. 2011) and other genetic variants in REV3L have been found to be associated with 

breast cancer, stomach cancer, and CRC (Hussain et al. 2009; Varadi et al. 2011; Pan et 

al. 2012). In addition to the prediction of the deleterious nature of the protein function, 

the amino acid change REV3L Val2986Ile was predicted to decrease the protein stability 

by a web-server ELASPIC (Witvliet et al. 2016). The importance of the accurate level 

of the functional protein in cells was demonstrated on disrupted REV3L in cancer cell 

lines, when its inhibition induced a growth arrest in cancer cells, whereas 

overexpression led to increased spontaneous mutation rates (Knobel and Marti 2011). A 

decreased expression levels have also been reported in tumor compared with the 

adjacent nonmalignant tissue in colon cancer (Brondello et al. 2008; Stallons and 

McGregor 2010). Unfortunately, despite the promising results in the Czech population, 

an association of REV3L SNP with CRC risk could not be confirmed in the Austrian 

replication set comprising 950 patients and 820 controls. However, since REV3L was 

observed as significant in the Austrian survival analyses and according to all of the 

available data, we suggest that the REV3L gene may impact CRC susceptibility, 

survival, and therapy outcomes and warrants further investigation.  

The CART analysis, investigating the interactive effects of genotypes and clinico-

pathological parameters in association with five-year OS and EFS, showed a prognostic 

utility of several investigated DNA repair gene polymorphisms. Only a few of these 
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were shown as significant more than once in the final structure of the tree, suggesting 

their potentially greater relevance on patient’s survival. POLQ gene polymorphisms 

appeared four times as the optimal split factor in the Czech CART analyses (rs1381057, 

rs3218649 twice, and rs3218651) and four times in the Austrian CART analyses 

(rs1381057 twice and rs3218651 twice) (Figure 19). At least nine out of 23 known 

POLQ gene polymorphisms in the human are predicted to alter protein function 

(Beagan and McVey 2016) and several SNPs have also been associated with a risk of 

different tumors (breast cancer, esophageal cancer, and Non-Hodgkin`s Lymphoma) 

(Varadi et al. 2011; Li et al. 2013; Brandalize et al. 2014; Rendleman et al. 2014; 

Family et al. 2015). Apart from the deleterious nature of the protein function of all 

studied POLQ SNPs predicted by F-SNP database, ELASPIC estimated the substitution 

of glutamine to arginine of POLQ SNP rs1381057 to decrease the final protein stability. 

The accurate level of the functional protein in cells has been reported as important in a 

complementary body of literature. An upregulation of POLQ was found in different 

tumor tissues (breast cancer, non-small cell lung cancer, oral squamous cell carcinoma, 

stomach cancer, and CRC), and this overexpression was associated with the disease 

prognosis (Kawamura et al. 2004; Lemee et al. 2010; Pillaire et al. 2010; Allera-Moreau 

et al. 2012). Based on the information from published studies we consider the 

significance of adequate POLQ functioning and regulation for tumor suppression. 

In the five-year EFS CART analysis NEIL3 gene SNP rs7689099 emerged twice as the 

optimal split factor in the Czech cohort (Figure 20). Different NEIL3 gene 

polymorphisms were associated with the risk of several malignancies such as glioma, 

prostate, and thyroid cancer (Bethke et al. 2008; Barry et al. 2011; Cipollini et al. 2016), 

with rs7689099 being associated with a reduced risk of differentiated thyroid carcinoma 

and prostate cancer (Barry et al. 2011; Cipollini et al. 2016). Likewise in previously 

mentioned REV3L and POLQ, significantly elevated expression levels of NEIL3 were 

reported in tumors of 20 cancer sites, including CRC (Hildrestrand et al. 2009; 

Shinmura et al. 2016). In case of melanoma, the overexpression was further observed in 

association with the progression to distant metastasis  (Kauffmann et al. 2008). The 

association of NEIL3 SNP with the survival of CRC patients was not replicated in the 

Austrian sample set. However, considering the available data, we suggest that the 

variation of the NEIL3 gene also has relevance for CRC susceptibility, survival, and 

therapy outcome. 
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In this study, we evaluated the association of genetic variants in DNA repair genes 

selected by likely functional relevance with CRC. Our data suggest that even subtle 

alterations in the specific proteins that function in DNA repair pathways may lead to 

inaccurate DNA repair and thus play a role in CRC pathogenesis. 

 

(A) 

 

 

(B) 

 

 

Figure 19: OS classification and regression tree analysis of colorectal cancer patients from the Czech 

Republic (A) and Austria (B). Numbers under each node indicate the total number o f cases in the 

subcategory/number of events and percentage of patients with five-year OS. 
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Figure 20: EFS classification and regression tree analysis of colorectal cancer patients from the Czech 

Republic (A) and Austria (B). Numbers under each node indicate the total number o f cases in the 

subcategory/number of events and percentage of patients with five-year EFS. 
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5. CONCLUSIONS 

 

The main results which were obtained during the work on this thesis are summarized in 

the following paragraphs: 

 

 We have observed several candidate SNPs in miRNA target regions related either to 

CRC risk or to clinical outcome. In DSB repair genes, we identified a miRSNP  

MRE11A rs2155209 as strongly associated with a decreased risk of CRC and worse 

survival (Manucript I). In genes important for CRC etiology, an association between 

PARP1 rs8679 and either a decreased risk of CRC or an increased risk of recurrence 

or progression in patients that received 5-FU-based chemotherapy was observed 

(Manuscript II). In mucin genes, MUC21 rs886403 was associated with a worse 

survival and a higher recurrence risk in CRC patients, MUC20 rs6782006 showed a 

worse OS in CRC patients and MUC17 rs4729655 displayed a better OS in rectal 

cancer patients (Manuscript III). 

 

 We have found that genetic variations in the 3′ UTR of target genes modulate the 

efficiency of corresponding protein expressions. We investigated a role of miRSNP 

MRE11A rs2155209 in modulating MRE11A expression by a Dual-Luciferase 

Reporter Assay and a statistically significant difference was observed between two 

constructs carrying the different alleles of the SNP. One allele was related to a 

reduced activity of the reporter gene by 14% (Manuscript I).  

 

 We have demonstrated that genetic variants in NLR genes contribute to CRC onset 

and progression of the disease. In Manuscript IV, 5 SNPs were described to be 

associated with CRC risk, and eight with CRC survival in the Czech population. 

Also an additive effect on CRC risk and survival was detected, resulting in a 2-fold 

increased risk and a 3-fold worse survival for carriers of 6 and 8 risk alleles, 

respectively. However, the results could not be confirmed in the German and 

Scottish GWAS data sets and future studies are needed to validate the results.  

In manuscript V and VI, role of SNPs within NLRC5 gene in CRC risk and clinical 

outcome was reported. The results suggest that genetic variants in immune 
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surveillance genes, such as NLRC5, may serve as candidate prognostic and 

predictive markers of CRC. 

 

 We have identified the association of several potential functional SNPs in DNA 

repair genes with CRC. REV3L rs3204953 was observed to be associated with an 

increased risk of CRC and several other SNPs were shown to be associated with OS 

and EFS in the CART analyses (Manuscript VII). Our data suggest that even subtle 

alterations of the final protein caused by amino acid substitution may lead to 

inaccurate DNA repair, and thus contribute to carcinogenesis.  

 

This thesis suggested several potential candidate biomarkers for clinical use. However, 

further studies are needed to replicate our findings and assess the SNPs in independent 

populations, to functionally characterize the significant genetic variants and to find the 

biologic mechanisms underlying the associations. 
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