
MASTER THESIS

Altynbek Orumbayev

Decentralized Web-based Data Storage
for LinkedPipes Applications using Solid

Department of Software Engineering

Supervisor of the master thesis: RNDr. Jakub Kĺımek, Ph.D.
Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I want to dedicate this thesis to my family and their support and motivation.
This work wouldn’t have been possible without them.

I am also grateful to my friends from the Faculty of Mathematics and Physics
at Charles University. Esteban, Memduh, Abishek, Yigit, and Vinit, with whom
we had a great two years of fruitful discussions.

Finally, I would like to thank my supervisor RNDr. Jakub Kĺımek, for his
insightful guidance, support, and reviews.

ii

Title: Decentralized Web-based Data Storage for LinkedPipes Applications using
Solid

Author: Altynbek Orumbayev

Department: Department of Software Engineering

Supervisor: RNDr. Jakub Kĺımek, Ph.D., department

Abstract: The following thesis work is focused on developing a decentralized web-
based storage solution based on Solid project for the LinkedPipes Applications
platform and demonstrate the full benefits of decentralized storage and the Solid
technology. The Solid project, started by Sir Tim Berners-Lee, is focused on
decentralizing the World Wide Web and decoupling data from applications on
the Internet. The results of the practical work satisfy all defined functional and
non-functional requirements stated by the LinkedPipes Applications project. The
results of the work are integrated into LinkedPipes Applications platform as a
set of several software libraries allowing interaction with Solid Servers.

Keywords: solid, linked data, client, server, storage, web

iii

Contents

1 Preliminaries 7
1.1 Semantic Web . 7

1.1.1 RDF . 7
1.1.2 SPARQL . 8

1.2 Solid . 9
1.3 LPA . 11

1.3.1 Platform description . 11
1.3.2 Components overview . 12
1.3.3 LinkedPipes Services . 15

2 Related work 16
2.1 Diaspora . 16
2.2 WebBox . 16
2.3 OwnCloud . 16
2.4 Mastodon . 17
2.5 Hubzilla . 17
2.6 Centralized cloud storage solutions 17

2.6.1 Pitfals of centralized cloud storages 18
2.7 Comparison of technologies . 18

3 Analysis 20
3.1 Functional requirements . 20

3.1.1 User authentication . 21
3.1.2 Create, Store and Publish Application 21
3.1.3 Managing storage and sharing published applications . . . 23

3.2 Non-functional requirements . 24
3.2.1 Compatibility with latest tools 24
3.2.2 Clean APIs and libraries 24
3.2.3 Continuous Integration and Delivery 24
3.2.4 Easy integration with LPA 24
3.2.5 Decentralized storage . 25

3.3 Solid development toolset . 25
3.3.1 The Solid servers . 25
3.3.2 The Solid React development stack 26

3.4 Why Solid? . 27

4 Architecture 29
4.1 High-Level Overview . 29
4.2 Storage . 30

4.2.1 Authentication Manager 30
4.2.2 File Manager . 32
4.2.3 Access Control Manager 37

4.3 LinkedPipes Applications Ontology 38
4.3.1 Using Web Ontology Language 39

4.4 Storage Component Design . 41

1

4.4.1 Designing React Components 42
4.4.2 Authentication View . 42
4.4.3 Storage Dashboard . 44
4.4.4 Storage Control Panel . 45

5 Implementation 46
5.1 Storage Package . 46

5.1.1 Preliminaries . 47
5.1.2 Authentication Manager 48
5.1.3 File Manager . 50
5.1.4 Access Control Manager 55

5.2 Hosting Storage Ontology . 58
5.2.1 Preliminaries . 59
5.2.2 Using Protégé . 59
5.2.3 Using Ontoology . 60

5.3 Storage Frontend . 61
5.3.1 Preliminaries . 61
5.3.2 Storage folder structure 63
5.3.3 Authentication View . 64
5.3.4 Storage Dashboard . 66
5.3.5 Storage Control Panel . 68

5.4 Implemented functional requirements 68
5.4.1 User Authentication . 69
5.4.2 Create, Store and Publish Application 70
5.4.3 Configuring Application 74
5.4.4 Storage Management . 78
5.4.5 Visualizer Access Control 79

5.5 Implemented non-functional requirements 82
5.5.1 Compatibility with latest tools 82
5.5.2 Clean APIs and libraries 83
5.5.3 Continuous Integration and Delivery 83
5.5.4 Easy integration with LPA 83
5.5.5 Decentralized storage . 83

6 Evaluation 84
6.1 Benefits of Solid . 84

6.1.1 ACL managed applications 84
6.1.2 Everything is an RDF resource 84
6.1.3 Provider agnostic storage 84

6.2 Results and achievements . 85
6.2.1 Recognition on official Solid website 85
6.2.2 Comments from Sir Tim Berners-Lee 85
6.2.3 User traction on LPA platform 86

7 Testing 88
7.1 Technologies used . 88
7.2 Unit testing . 89
7.3 Continious Integration and Delivery 90

7.3.1 Using Travis CI . 90

2

7.3.2 Integration testing in LPA 90

8 Documentation 92
8.1 User documentation . 92

8.1.1 Creating Account . 92
8.1.2 Creating Application . 93
8.1.3 Publishing application . 95
8.1.4 Sharing the Application 95
8.1.5 LPA platform guide . 96

8.2 Developer documentation . 97
8.2.1 Installation . 97
8.2.2 LPS package . 99
8.2.3 Storage Components . 100

Conclusion 102
8.3 Future work . 103

Bibliography 105

List of Figures 107

List of Tables 110

Acronyms 111

A Online sources 112

3

Introduction
The World Wide Web as we know it started on March 12, 1989, by Sir Tim
Berners-Lee. What began as a proposal, eventually ended up being one of the
most important technological achievements of a century. Nowadays, the ability
to access information online is often an effortless process. People can easily use a
search engine to look up articles, connect with anyone in a matter of seconds using
social network platforms, consume gigabytes of media [1]. Furthermore, they can
upload, store, and share any data online. When it comes to storing data online,
an average Internet user will most probably rely on companies providing their
storage solutions in the Cloud. The majority of popular cloud storage providers
like Google, Dropbox or Microsoft OneDrive are centralized. Centralization is in
no means a matter of a concern for an average Internet user.

On the contrary, it usually provides a better user experience when the user has
all of his relevant data stored in a centralized data silo. The term data silo often
describes a fixed repository of data entirely under control of a single department
while being isolated from the rest of the organization. On the other hand, it raises
a lot of privacy concerns when it comes to explaining who owns the data stored
under such cloud storage. With the growth of large software corporations and
an increase in the dominance of their services and technologies where billions of
users upload, store and share data under their centralized silos, a lot of examples
of disadvantages of centralization were demonstrated for the past several years.
For example, an infamous Facebook–Cambridge Analytica data scandal in early
2018 1, demonstrated how millions of Facebook profiles were analyzed without
any consent and later targeted for political advertising. In a certain sense, the
fact that data was under control of a single organization and stored in centralized
fashion played an important role in raising privacy concerns and making people
more cautious about relying on centralized providers to own their data.

On August 10, 2016, another ambitious project was launched by Sir Tim
Berners-Lee called Solid 2. The goal of the project is to make World Wide Web
decentralized, improve data ownership on the Internet, and give the full control
over the data back to the users by providing an alternative to dominating storage
technologies relying on centralized data silos. Even though the idea might be ap-
pealed as too ambitious, over the years, the project has grown from several proof-
of-concept proposals to a large community of developers actively contributing
and expanding the project every day. The Solid project, by definition, represents
multiple things at once. In formal terms, it is a set of specifications, principles,
conventions, and tools for building decentralized social applications while relying
on principles of Linked Data. The term Solid by itself stands for Social Linked
Data, where the term Linked Data stands for yet another concept that will be
heavily utilized in this thesis project. Linked Data is a method for publishing
structured data in a way that preserves the semantics of the data. This semantic
description is implemented by the use of vocabularies 3, which are usually spec-

1https://en.wikipedia.org/wiki/Facebook\OT1\textendashCambridge_Analytica_
data_scandal

2https://solidproject.org
3https://www.w3.org/standards/semanticweb/ontology

4

https://en.wikipedia.org/wiki/Facebook\OT1\textendash Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook\OT1\textendash Cambridge_Analytica_data_scandal
https://solidproject.org
https://www.w3.org/standards/semanticweb/ontology

ified by the W3C as web standards. However, anyone can create and register
their vocabulary, for example, in an open catalog like Linked Open Vocabularies
(LOV) 4. Linked data is usually dispersed across many sites on the Internet. Each
site usually contains only a part of the entire data available. Thus a machine or
a person trying to interpret the data as a whole needs to link this incomplete
information together using unique entity identifiers shared across the data stores.
Another common term usually associated with Linked Data is Linked Open Data,
in contrast with Linked Data, it follows the five star Linked Open Data model 5.
It represents Linked Data that is publicly accessible to everyone.

In November 2018, a group of five Master students, including the myself, at
Faculty of Mathematics and Physics at Charles Univesity in Prague, started a
university software project called LinkedPipes Applications (LPA). The project
was focused around development of a web app that would simplify the interactions
with Linked Data and other concepts of Semantic Web 6 for average lay users and
provide an intuitive and straightforward way to visualize Linked Data expressed
in RDF format for various needs. The initial goals of that project did not involve
any plans to rely on any decentralized storages, such as ones represented by
Solid. However, over time the set of functional and non-functional requirements
related to dealing with massive amounts of Linked Data expressed in RDF format,
ability to share the applications created with the platform while maintaining the
control over them, and most importantly storing and sharing the LPA platform
data became specific enough to become a perfect fit to use Solid as a primary
technology for storing the data.

Goal of the thesis
The main goal of the following thesis is to provide a decentralized web-based
storage solution based on Solid project for the LPA platform and demonstrate
the full benefits of decentralized storage and the Solid technology. The results
of the practical work must satisfy all defined functional and non-functional re-
quirements stated by LPA project. The complete implementation of the solution
implementing the requirements must be provided and described in detail as a
part of this thesis. It is important to note that the Solid project is still in the
early stages of development, and its specifications are being updated regularly.
Therefore, aside from fitting the needs of LPA requirements, the implemented
toolset must be generic enough for the possibility to be extended for usage in any
application using Solid. Further mentions of the practical part of this thesis are
going to be called as LinkedPipes Storage (LPS).

Structure
The structure consist of nine main chapters that can be described as follows:

1. Preliminaries, Basic introduction to core concepts of Semantic Web and
Solid that will be appearing throughout the rest of the thesis. The remain-

4https://lov.linkeddata.es/dataset/lov/
5https://www.w3.org/community/webize/2014/01/17/what-is-5-star-linked-data/
6https://www.w3.org/standards/semanticweb/

5

https://lov.linkeddata.es/dataset/lov/
https://www.w3.org/community/webize/2014/01/17/what-is-5-star-linked-data/
https://www.w3.org/standards/semanticweb/

ing sections of the chapter are dedicated to general description and main
concepts of LPA. That project defines the core requirements for this the-
sis, therefore it is important to make sure that all LPA specific terms and
definitions are explained before proceeding to further chapters.

2. Overview of decentralized web-based storage technologies, the chapter pro-
vides an overview of decentralized software technologies that are alternative
or opposed to concepts of Solid. Additionally, the chapter also provides the
core ideas on why Solid turned out to be a perfect fit for LPA.

3. Analysis, chapter is an overview of all functional and non-functional re-
quirements stated by LPA as they are the main users of the LPS.

4. Architecture, chapter continues the Analysis chapter by describing the ar-
chitecture of the solution. Additionally, the first section of the chapter
provides a review of technologies, frameworks, and libraries that were un-
der assumption during the design of the architecture and that later used in
Implementation chapter.

5. Implementation, chapter continues the Architecture chapter by diving into
implementation details and how both specifications and architecture from
the previous chapters were implemented into an actual project.

6. Evaluation, chapter demonstrates the benefits of choosing Solid as a main
technology for decentralized storage in LPA project. The results, recogni-
tion, and notable achievements are also described in detail in this chapter.

7. Testing, chapter describes everything related to testing in LPS starting from
generic conventions and finalizing on specific implementation details.

8. Documentation, the chapter describes the various documentation resources
written during the implementation of LPA and provides references to access
them.

9. Future work chapter provides an overview of how the project planned to be
improved in future.

The summary of results achieved is provided in Conclusion chapter, briefly
covering the significant points from the leading nine chapters as well as the main
challenges met during the implementation.

6

1. Preliminaries
The chapter is going to provide the introduction to the core concepts of Semantic
Web, Solid and LPA platform. As the concepts explained here will be often
referred to in further chapters, it is important to get familiar with them for a
complete understanding of every consecutive chapter.

1.1 Semantic Web
The Semantic Web represents the next significant iteration in connecting data
and information over World Wide Web. It adds an ability for a data to be
linked from any source to any other source allowing computers to understand
the semantics of it and perform increasingly complex computational operation
on them. The major idea that makes Semantic Web technology and other data
related technologies such as relational databases, is that it focused on preserving
the meaning of the data rather than structuring it in efficient manner.

There are three main technical specifications defining the Semantic Web tech-
nologies:

• Resource Description Framework (RDF), is a data modelling language de-
signed for Semantic Web. Every information in Semantic Web is represented
in the RDF.

• SPARQL Protocol and RDF Query Language (SPARQL), is a query lan-
guage for Semantic Web. It is mainly designed for querying data across
different data sets represented in RDF [2].

• Web Ontology Language (OWL) is a knowledge representation language for
Semantic Web. It allows defining entities and concepts in a way that enables
high reusability for many different applications and purposes. Additionally,
it also can be represented in a corresponded Multipurpose Internet Mail
Extensions (MIME) type, also known as a OWL file [3].

In other words, the usage of the technology stack mentioned above is what de-
fines a Semantic Web application and differentiates it from any other technologies
related to data.

1.1.1 RDF
The Resource Description Framework is a language for representing resources in
World Wide Web [4][5]. Every element of information in RDF is expressed as
relation between entities. The entity in RDF is usually referred to as resource
and identified by Uniform Resource Identifier (URI), in other terms anything
identified by Uniform Resource Identifier (URI) is a resource. The relation itself
is expressed using triple notation. A triple notation is a statement written as
follows, subject predicate object.

Consider the following example on Listing 1. A subject is a person identified
by a URI, a predicate identified by a URI describes the kind of relationship

7

and lastly the object is a resource similar to subject and identified by a URI. In
other words, the example demonstrating a sentence Person A knows Person B
expressed in RDF triple notation. A typical RDF document consists of many
triple statements, together they can be represented as a directed graph, where
relation is presented as a directed edge between two vertices. The term graph
will be often referred in Chapter 4 and Chapter 5.

http://example.name#Altynbek http://xmlns.com/foaf/0.1/knows
http://example.name#Tim↪→

Listing 1: An example of an RDF expressed in triple notation.

Common RDF serialization formats

RDF has many commonly used serialization formats. The formats heavily utilized
in this project can be described as follows:

• Turtle (syntax) (TTL), a commonly used textual syntax for RDF. It allows
an RDF graph to be written in a compact and easily understandable text
form. It supports abbreviations for common usage patterns and datatypes.

• JavaScript Object Notation for Linked Data (syntax) (JSON-LD), a textual
syntax for RDF that adds the benefits of JSON. It is a perfect serialization
format for development environments due to the minimal effort needed to
transform any JSON objects into JSON-LD.

RDF ontologies

Referring back to example in Listing 1, the resources starting with example.name
URIs are chosen at random only for the sake of demonstrating a triple notation.
However, the predicate URI is not a random identifier. On the contrary, this
URI belongs to a so-called RDF Vocabulary. The term usually stands for a
grouping of resource identifiers that represent well-knows entities and resources
for various domains. The predicate from example belongs to an RDF Vocabulary
called Friend of a Friend (FOAF). This vocabulary, also usually referred to as
ontology, provides a set of resource identifiers describing persons, their activities
and the relations to other persons [6]. The term ontology and vocabulary will be
often used in Chapter 4 and Chapter 5, when describing a process of design and
implementation of a custom ontology for expressing configurations of applications
published with LPA platform.

1.1.2 SPARQL
As mentioned at the beginning of Section 1.1, SPARQL is yet another important
part of Semantic Web technology stack. SPARQL can be used to express queries
across diverse data sources, whether the data is stored natively as RDF or viewed

8

as RDF via middleware [2][7]. SPARQL allows a query to consist of triple pat-
terns, conjunctions, disjunctions and optional patterns. Another important term
related to SPARQL is a SPARQL endpoint. It is a web service at which two or
more different devices build a connection with each other on an HTTP network
that is capable of receiving and processing SPARQL requests.

An example of Listing 2 demonstrates a sample SPARQL query that retrieves
the name and email of the person. The first line on the example is a declaration
of prefixes for abbreviating URIs, and it uses the FOAF vocabulary that we
already demonstrated earlier on Listing 1. A SELECT keyword is a form of a
query used to extract raw values from a SPARQL endpoint. The WHERE clause
provides a generic graph pattern to match against the data graph. The variable
name ?person representing the subject is chosen to improve readability. On the
contrary, the variable name can be any arbitrary string. The result of the query
is rows with raw values representing name and email of the person. Assuming
that a person has multiple email addresses, the response of the query can contain
multiple rows representing unique names per each of the email addresses.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name

?email
WHERE

{
?person a foaf:Person .
?person foaf:name ?name .
?person foaf:mbox ?email .

}

Listing 2: An example of a SPARQL query to retrieve the name and email values
from a person resource.

Other notable query forms of SPARQL syntax can be described as follows:
• CONSTRUCT, used to extract and transform data from SPARQL end-

point and construct valid RDF results.

• ASK, used to provide a boolean answer for a query on a SPARQL endpoint.

• DESCRIBE, used to extract a whole RDF graph from the SPARQL end-
point.

Multiple section in Chapter 4 and Chapter 5 will refer to SPARQL as it is a
technology actively used and utilized by Solid.

1.2 Solid
To start with, one of many definitions of SOLID project, for developers, it can be
referred to as a set of conventions and building tools for decentralized social ap-
plications based on Linked Data concepts. The open-source community actively

9

maintains the project, and at the moment of writing this thesis project, the latest
iteration of the specification 1 is equal to version v0.7.0. On the other hand,
for an average Internet user, the term Solid is intended to be associated with a
whole ecosystem of personal private storages where data is stored in a secure and
decentralized fashion. The essential concepts of Solid are defined as follows:

• Solid Personal Online Dataspace (POD), is a personal website that serves
as an online storage per individual user. The user has full control over
his POD and can upload and store any data inside it. The data is either
expressed as an RDF, if possible or has a generated RDF metadata attached
to a file to preserve the semantics of it. In other words, one of the distinct
features states in Solid specification is the requirement to have all data in
PODs to be represented in RDF. PODs created and hosted by instances of
a Solid servers.

• Solid Server, is an instance of a web server that is compliant to a Solid
specification. It is responsible for managing users and creating, updating,
or deleting instances of PODs belonging to users.

• WebID is a way to uniquely identify a person, organization, or any other
entity using a URI. The URI leads to a WebID Profile Document, which
is an RDF document expressed in TTL format and contains information
describing the agent attached to that WebID. Solid servers manage the
creation of such WebID Profile Documents and provide URIs to them that
are commonly referred to as Solid WebID because it is a WebID with a URI
that is hosted inside a POD inside an instance of a Solid server.

• Solid Provider, is essentially any organization or entity that hosts a public
instance of a Solid server. Everyone, whether it is an individual person or
an organization, can either create and host their instance of a Solid provider
by the following documentation on the official website of Inrupt 2. Inrupt
is a startup company founded in 2017 by Sir Berners-Lee that is focused
on further improvement and enrichment of Solid project ecosystem. They
also serve as one of the most popular public Solid providers where everyone
can create a WebID and have a POD hosted in Solid servers managed by
Inrupt.

• Access-Control List (ACL), a list of permissions attached to an object in the
filesystem. Solid project is using a specification called Web Access Control
(WAC) [8]. It applies the generic concepts of ACL to decentralized cross-
domain access control systems and describes the management of so-called
ACL resources in Solid PODs. The term ACL, in consecutive chapters, is
going to be referred to as an RDF resource in Solid conforming to WAC
specification, and controlling the control privileges of resources in POD.

The core terms and concepts summarized above will be actively mentioned,
and references in the following chapters and will provide a more in-depth technical
overview and definitions of Solid specification.

1https://github.com/solid/solid-spec/blob/master/CHANGELOG.md
2https://inrupt.com

10

https://github.com/solid/solid-spec/blob/master/CHANGELOG.md
https://inrupt.com

1.3 LPA
As mentioned in Introduction, the LPA project is a web platform that aims to
provide a comfortable and intuitive user experience to generate interactive Linked
Data based visualizations by Domain Experts. It is also important to recap that
the LPA was developed as a software project at Charles University in Prague and
is a separate contribution made by an author. The visualization is referred to as
an application after being published, and it can then be embedded in an online
article or on another web page or perhaps accessed as a standalone page.

Figure 1.1: Official LPA logo designed by author as a part of separate contribution
into the software project.

There are two main user groups targeted by LPA platform:

• Domain experts, is a special set of users identified as Semantic Web enthu-
siasts and people familiar with basic concepts of Linked Data. They have
some basic understanding of terms such as RDF, and are able to provide
data sources to LPA platform for creating visualizations.

• Lay users, represents an set of average Internet users with no particular
knowledge of Semantic Web and Linked Data. They can access and interact
with applications created with LPA platform by domain experts.

1.3.1 Platform description
The following subsection provides a better formal understanding of the platform
and expands the definition demonstrating a simple user story on Figure 1.2. As
mentioned earlier, the platform serves as a web-app that allows Domain experts
to provide Linked Data sources and visualize the data on a set of visualizers
supported by the platform. At the moment of writing this work, LPA supports:

• Maps visualizer is a generic maps visualization with markers and markers
clustering.

• Chord visualizer is a diagram representing inter-relationships between data
in a matrix.

11

• TreeMap visualizer is a generic visual representation of a data tree.

• Timeline visualizer is a generic diagram that allows displaying usage of
resources over time.

A simple user story demonstrate on Figure 1.2 describes the platform as fol-
lows:

1. John creates an application. Assume a Data Journalist user named John
that has some Linked Data that he wants to visualize and publish on his
website. He uses the LPA and creates his application by following the
platform instructions and providing the Linked Data sources to visualize.

2. LPA extracts and visualizes data. After inputs from John are provided, the
platform is extracting and parsing his data into a format convenient for a
visualize that the user selected.

3. Application is published on website. After the application is created and
published, John uses the generated published application and embeds it
into his website.

4. Bob observes the visualized application. Bob browses through the website
and explores the published visualization without being required to log in or
have an account in LPA.

This user story represents the most generic interaction flow with LPA platform
from the standpoint of its target users. The consecutive sections will dive into
more technical details, components, and functional aspects of this platform.

Figure 1.2: A sample user story describing usage of LPA platform

It is important to note that the creation and publishing aspects of the LPA
are one of the requirements for LPS that will be described in detail in Chapter 3.

1.3.2 Components overview
At the lower level, the LPA is a bundle of various complex services and database
solutions communicating actively communicating between each other.

Generally, we can categorize it into three main parts:

12

Figure 1.3: High-level overview of LPA platform

• LinkedPipes Applications - the main platform from LinkedPipes bun-
dle that defines the functional and non-functional requirements for for LPS
project. Combines multiple database solutions for Linked Data, conven-
tional SQL for storing user related records and implementation of a backend
and frontend for creating applications.

• LinkedPipes Services - a set of external services provided from Linked-
Pipes bundle that LPA heavily utilizes. Provides a toolset for identifying
how linked data can be discovered, extracted, transformed and loaded into
an RDF file for further processing.

Frontend

As mentioned at the beginning of the chapter, the frontend provides a way for
the user to interact with the LPA. The Redux 3 and React 4 are the leading
technologies to be used during implementation. The main terms related to LPA
frontend that are commonly reffered to in Chapter 4 and Chapter 5 are described
as follows:

• React Component - a JavaScript class or function that optionally accepts
inputs, i.e., properties(props), and returns a React element that describes
how a section of the UI (User Interface) should appear.

• Redux - represents a container that stores various states of the web appli-
cation per individual webpage.

3https://redux.js.org
4https://reactjs.org

13

https://redux.js.org
https://reactjs.org

State - refers to the single state value that is managed by the store and
returned by getState(). It represents the entire state of a Redux application,
which is often a deeply nested object.

Reducer - specifies how the application’s state changes in response to
actions sent to the store.

Actions - are payloads of information that send data from your appli-
cation to your store. They are the only source of information for the store.
You send them to the store using store.dispatch().

Selector - is simply any function that accepts the Redux store state
(or part of the state) as an argument, and returns data that is based on
that state.

Additionally, the LPA frontend is the main component that is going to be
improved by LPS. This is due to specifics of a Solid toolset where most of the
open-source libraries are implemented in JavaScript programming language and
are intended for usage in web based projects.

Backend

The function of the backend component is to provide a RESTful Application
Programming Interface (API) that is used by the frontend component to execute
user-requested actions and can also be used by other developers to create their
user applications. The backend then implements the communication protocols
with external services from LinkedPipes Services bundle.

PostgreSQL

The LPA platform is storing all information related to users of the platform in
an instance of a PostgreSQL database 5.

PostgreSQL, often Postgres, is an object-relational database management sys-
tem (ORDBMS) with an emphasis on extensibility and standards compliance. It
can handle workloads ranging from small single-machine applications to large
Internet-facing applications with many concurrent users.

The entities stored in the database are described as follows:

• User accounts.

• Running instances of LinkedPipes discovery processes. The LinkedPipes
Discovery component is described in detail Subsection 1.3.3.

• Running LinkedPipes ETL pipelines. The LinkedPipes ETL component is
described in detail in Subsection 1.3.3.

• Custom templates of data sources generated by users.
5https://www.postgresql.org

14

https://www.postgresql.org

Virtuoso DB

Aside from PostgreSQL, another important database technology is OpenLink Vir-
tuoso6 which is used for storing all Linked Data sources processed by LinkedPipes
ETL pipelines, and that is later used by LPA visualizers. The important note to
mention is that in contrast with PostgreSQL that is only used for all user-related
information that needs to be stored, Virtuoso is only used for storing Linked
Data.

In general, Virtuoso is a middleware and database engine hybrid that com-
bines the functionality of a traditional Relational database management system
(RDBMS), Object-relational database management system (ORDBMS), virtual
database, RDF, XML, free-text, web application server and file server function-
ality in a single system. Rather than having dedicated servers for each of the
functionality mentioned above, Virtuoso serves as a universal server instance.

1.3.3 LinkedPipes Services
The LinkedPipes Services bundle demonstrated on Figure 1.3 consists of two
open-source software solutions developed under the Faculty of Mathematics and
Physics at Charles University in Prague. They serve as the providers of core
Linked Data processing functionality for LPA platform. Since a significant tech-
nical knowledge in Semantic Web is required to use the tools independently, the
LPA platform provides a layer on top of them to simplify interactions with those
components and make it available for any generic lay user.

ETL

LinkedPipes ETL is an RDF-based, lightweight Extract, Transform and Load
(ETL) tool for Linked Data [9]. It is not only a stand-alone application, but it
also exposes an API through which third-parties can execute the ETL process.
In formal terms, a service performs the core computational work by querying the
graphs of data sources provided by a user and attempting to transform that data
into a format that can be later converted into an input for visualizations.

Discovery

LinkedPipes Discovery is a service used by LPA platform to discover whether
provided Linked Data sources can be processed and visualized by the platform
[10]. After a successful request sent to the Discovery service, it executes a session
called Discovery session. Upon successful completion of a Discovery session, the
service generates specific files in JSON-LD format. Those files are called pipelines.
A pipeline describes how LinkedPipes ETL needs to extract the whole Linked
Data set and store the data into a Virtuoso database, which is a component used
by the LinkedPipes Applications platform described earlier.

6https://virtuoso.openlinksw.com

15

https://virtuoso.openlinksw.com

2. Related work
This chapter provides an overview of currently available alternatives to Solid
project, as well as research projects that share similarities with the core concepts
of decentralized social platforms. The first set of sections provides a general
description of alternative technologies, the last Section 2.7 provides a comparison
between the alternative software solutions and Solid.

2.1 Diaspora
Out of all currently available solutions, the conceptually closest software platform
to Solid is Diaspora [11][12]. In general, it is a decentralized social network plat-
form that enables users to choose the server where their data is hosted and even
run their own data hosting server. In that sense, it is similar to Solid. However,
the main focus in Diaspora is to act as a social network, where social data is
shared between users using specific APIs, and not running diverse applications
on stored data. Unfortunately, it does not offer a well-defined way to use the
same data with different applications. Note that Diaspora uses the term pod to
refer to a data hosting server. A Diaspora POD is what Solid would refer to as
a Solid server.

2.2 WebBox
WebBox is a decentralized social network platform that decouples data from
applications [13]. As Solid, it stores user’s data as Linked Data in a decentralized
way. Also similar to Solid, system rely on WebID for decentralized identity,
authentication, and access control. In WebBox, each data storage service exposes
a SPARQL endpoint, and applications manipulate the data via SPARQL queries
and updates, or via HTTP GET requests. In contrast, Solid offers the full power
of LDP for simple data interactions (e.g., hierarchical data organization, fine-
grained manipulation) and additionally allows the use of link-following SPARQL
for complex data retrieval. It also works as a generic storage platform upon
which a significantly larger number of applications can be built. As a last remark,
WebBox was mainly mentioned due to the similarities in functionality with Solid
project, however, the platform was never released out of the bounds of a research
prototype.

2.3 OwnCloud
OwnCloud 1 is a self-hosted open source file sync and share server. In regards
to previously defined requirements, this solution is somewhat too generic to the
goals of the project, but due to certain features such as decentralization of the
storage using manually setup instances, and various scalability features, building
a platform based on the provided API is possible. Similar to Dropbox, Google

1https://owncloud.org

16

https://owncloud.org

Drive, Box, and others, ownCloud lets you access your files, calendar, contacts,
and other data. You can synchronize everything between your devices and share
files with others. In contrast with Solid, the solution is still a generic cloud
storage. It does not support Linked Data out of the box and does not provide a
trivial way to decouple data from applications using the data.

2.4 Mastodon
Mastodon is an online, self-hosted social media, and social networking service [14].
It allows anyone to host their own server node in the network, and its various
separately operated user bases are federated across many different sites (called
instances). These instances are connected as a federated social network, allowing
users from different instances to interact with each other seamlessly. Mastodon
is a part of the wider Fediverse, allowing its users to also interact with users
on other platforms that support the same protocol, such as PeerTube, Misskey,
Friendica and Pleroma.

Mastodon has microblogging features similar to Twitter, or Weibo, although
it is distinct from them, and unlike a typical software as a service platform, it is
not centrally hosted. Each user is a member of a specific, independently operated
instance. Users post short messages called ”toots” for others to see, and can
adjust each of their post’s privacy settings. The specific privacy options may
vary between sites, but typically include direct messaging, followers only, public
but not listed in the public feed, and public and posted to the public feed. The
Mastodon mascot is a brown or grey woolly mammoth, sometimes depicted using
a tablet or smartphone.

Because there is no central server for Mastodon, each instance has its own
code of conduct, terms of service, and moderation policies. This differs from
traditional social networks by allowing users to choose an instance which has
policies they agree with, or to leave an instance that has policies they disagree
with, without losing access to Mastodon’s social network.

2.5 Hubzilla
Hubzilla 2 is a modular webserver based operating system which includes tech-
nologies for publishing, social media, file sharing, photo sharing, chat and more
(including the ability to develop custom modules). These services are accessed
and connected across server and administrative boundaries through the commu-
nication protocol Zot which provides a high level of privacy and security cus-
tomization and a nomadic identity for the users. A webserver running Hubzilla
is called a ”hub”.

2.6 Centralized cloud storage solutions
Modern commercial and enterprise cloud storage solutions provide a great set of
features as platforms for any generic use cases when reliable file storage is needed.

2https://fediverse.party/en/hubzilla/

17

https://fediverse.party/en/hubzilla/

For instance, Google Cloud Storage 3 and Amazon AWS Storage 4. However, in
contrast with Solid, this approach is the most distant from the main concepts
of LinkedPipes Applications project’s requirements. As a main disadvantage of
the approach is the fact that even though the developer is offered a great set of
flexibility within the platform, the data storing aspects are not fully decentral-
ized. It also means that the end-user is uploading his data into a centralized
data silo where commercial terms of services policies regulate ownership of his
data. Another issue is platform dependency meaning that migrating, sharing,
and interchanging the data between platforms is not trivial since all interactions
with data within storage are defined by a set of APIs and SDKs specific to the
selected platform.

2.6.1 Pitfals of centralized cloud storages
In the past, having control over content or information people store and access
online was a common case for many technologies on the Web. However, during
the past 20 years, that situation changed significantly. Various tech giants and
media platforms like Facebook and Google gain control over the personal data of
millions of users using their services. The data that is under the control of the
fixed authority separated from the rest of the organization or community is often
referred to as data silos. From the standpoint of the company, having centralized
control over the data of all users of their platforms brings many benefits. It
simplifies the development of services within the organization, allows to perform
various analytics processes and understand the users better. However, from the
users perspective, it significantly reduces the control of their data stored within
centralized platforms.

2.7 Comparison of technologies
A significant difference between Solid and services mentioned below is that Solid
sets a standard way of operating through a data model (RDF) and does not
dictate how instances should behave as part of a ”federation”. In addition to that,
Solid is not just a software technology, and it represents specifications built on top
of open web standards, an extensive set of guidelines for developers, a community
of active researchers and contributors. When it comes to direct comparison, Solid
could be defined as a lower-level abstraction than federated services like Diaspora
and Mastodon in the sense that Solid can serve as an infrastructure for building
those platforms. For instance, Diaspora and Mastodon could be integrated into
Solid by allowing their users to sign in using their WebID, and then allow users
to store the data produced by them on the services on their POD.

The Table 2.1 provides a detailed comparison between Solid and technologies
alternative to it. The columns indicate questions representing main features re-
quired from a technology to be able to use the benefits of Semantic Web, Linked
Data, and RDF at full scale while preserving security and decentralized stor-
ing aspects. Both Diaspora and WebBox come very close to Solid in terms of

3https://cloud.google.com/storage/
4https://aws.amazon.com/products/storage/

18

https://cloud.google.com/storage/
https://aws.amazon.com/products/storage/

Technology Provides Personal
Data Store?

Is stored data
easily reusable?

Has decentralized
infrastructure?

Has Linked Data
support?

Is Open
Source?

Is used in
production?

Solid Yes Yes Yes Yes Yes No
Diaspora Yes No Yes Yes Yes Yes
WebBox Yes Yes Yes Yes No No

OwnCloud No No No No Yes Yes
Mastodon No Yes Yes No Yes Yes
HubZilla Yes Yes Yes No Yes Yes

Popular centralized cloud
storages No No No No No Yes

Table 2.1: A comparison table between Solid and alternative technologies with
similar concepts.

provided functionality. However, as mentioned in their descriptions, Diaspora
does not focus actively on storage and data decoupling aspects, and WebBox is
a proof of concept project that is not available in production or has an open-
source community. Similar to Diaspora, Mastodon and Hubzilla position them-
selves as platforms providing various social networking features to users. And
finally, solutions like OwnCloud or popular centralized cloud storage solutions
from Google, Microsoft, or Amazon provide convenient developer APIs for using
their technologies. However, the technology itself does not preserve the ideas
of decentralization and privacy-oriented data management. In contrast, as men-
tioned before, it provides an opposite functionality where data gets aggregated
inside centralized silos under control of the organization providing the storage.
To sum up, this section provided a brief comparison overview of alternatives to
Solid. The following Chapter 3 will give detailed reasoning for choosing Solid as
a core technology for providing storage capabilities for LPA and what makes it a
better fit than its alternatives.

19

3. Analysis
The following chapter will start by providing a detailed set of functional and
non-functional requirements from LPA in regards to LPS. Afterward, an analysis
of the currently available development tools within the Solid ecosystem will be
demonstrated. Additionally, as a continuation of comparison in Section 2.7, a
reasoning for choosing Solid as a core technology for implementing LPA require-
ments will be explained. The majority of the functionality of LPA and LPS were
implemented by the author while working in parallel as a part of LPA and as an
individual contribution to the thesis. Therefore, to simplify the understanding of
work on both projects and the difference between both contributions, the whole
chapter is structured under the assumption that LPA is a stakeholder with a work-
ing solution and LPS is a technology yet to be implemented and integrated into
LPA. The consecutive chapter on architecture in Chapter 4 and the implementa-
tion in Chapter 5, will guide the reader through established software development
cycles where the result will be provided as a summary of implementation details
in regards to requirements defined in this chapter.

Aside from definitions of specific requirements, it is important to note that
there are three main actors involved in statements of requirements. An actor is
an individual entity interacting with the software components in requirements.
Specific types are defined as follows:

• Data journalists, this category of actors are one of main target users of
LPA platform. They are defined as people familiar with, at least, basics of
Semantic Web. They can provide Linked Data sources to LPA for further
visualization and publishing of apps. They are also assumed to have an
actual account in the LPA platform.

• Lay users, this is a second target category of users of LPA platform. They
do not have any prior experience with Semantic Web and in most cases,
browse the published visualizers created by Data journalists. They are not
obliged to have an actual account in the LPA platform.

• LinkedPipes Applications (LPA) Developers, a developers implementing on
LPA platform codebase and main users of LPS features, APIs and func-
tionality to be developed. The majority of details in Chapter 5 are focused
on developing a developer-friendly software for this category of users.

3.1 Functional requirements
In general, every functional requirement is defined as a description of services or
features that software must offer. In this case LPA defines a set of features ex-
pected to be handled properly by the LPS project. The requirements are provided
as a set of UML use-case 1 diagrams as well as formal textual descriptions.

1https://www.uml-diagrams.org/use-case-diagrams.html

20

https://www.uml-diagrams.org/use-case-diagrams.html

3.1.1 User authentication
The user of the platform should be able to register an account in the application,
log in, and log out. The requirement might seem unfitting to the purposes of
LPS. However, if Solid is considered to be used, it provides the fully functional
authentication mechanisms based on WebID that can be used for generic platform
authorization.

Figure 3.1: A UML use-case diagram describing user authentication requirement.

The UML diagram on Figure 3.1 is described as follows:

• Authenticate, a platform must provide a way for Data Journalists (Platform
Users) to authenticate via LPA platform. This assumes that LPA platform
has an ability to communicate with the storage solution either integrated
into LPA codebase or presented as entirely separate service and perform
WebID authentication.

• Track changes in session state, a platform must provide an API or a de-
veloper library for tracking any changes in the state of the authenticated
platform user session. This assumes that the storage solution can inform
the LPA platform about such changes.

• Manage authentication state, the platform must provide an API or a de-
veloper library for managing the authentication state of the users. This
assumes that the core functionality is provided by the storage solution that
exposes an API or a developer library toolset for developers to perform such
interactions.

3.1.2 Create, Store and Publish Application
Creation, storing, and publishing of the application are the core features provided
by the LPA itself. However, the storage aspects are involved a lot when it comes
to storing the created app. Consequently, publishing also consists of interacting
with storage since an end-user expects the storage solution to have an identifier
for his stored application.

21

Creating and storing application

User should be able to create an application within the LPA platform and store
it in his personal space in an authenticated storage. The storage solution can
either implement a solution that stores entire application including the visual-
izer or generates a metadata configuration file that allows to re-create the entire
application within LPA platform from scratch.

Publishing an application

Another important requirement is an ability to publish the application and make
it publically available for sharing the visualization to anyone via the permanent
link. Furthermore, when a third party accesses this permalink, the browser should
open the LPA website with the respective application opened, as configured by the
publisher. The tool will also need to provide the ability to embed the published
view into a data journalist’s web page, for example, using an HTML iframe 2.

A diagram overview

The Chapter 5 describes the specific of creation, storing and publishing applica-
tion requirements from perspectives of different actors involved.

Figure 3.2: A UML use-case diagram describing creation, storing and publishing
application requirements.

The diagram is described as follows:

• Create application, the platform provides an ability for Data Journalists
to create an application. The process of creation of an application within
LPA also assumes that it is consequently Stored and Published via a set of
interactions with storage. The publishing process is extended from storing
an application because to publish an application, a configuration needs to
be saved, and a URI for a stored resource in a Solid POD is extracted.

2https://html.com/tags/iframe

22

https://html.com/tags/iframe

• Upload application to storage, a platform provides an API or a library for
LPA Developers to perform uploading of an application into the storage
solution.

• Browse published application, a platform provides a way for any Lay User
to browse the published application created by Data Journalists. This is
included as a part of the requirement since publishing is directly interacting
with storage, and implementation of the requirement applies to both LPS
and LPA platform.

3.1.3 Managing storage and sharing published applica-
tions

The last set of requirements is related to storage management and the sharing
of published applications. The storage management requires a functionality that
allows platform users to move, copy and create data in their authenticated spaces
in storage. The sharing requirement describes the functionality to allow users to
share the applications they have published and control the access control settings
to them. Since published applications require to be publically accessible to any-
one, the platform needs to have a functionality to persist the configurations of
the applications in a secure way. Moreover, the configurations for most of the
published applications are represented as Linked Data. Therefore the persistent
storage tooling needs to be optimized for files in RDF format.

Figure 3.3: A UML use-case diagram describing requirements on storage man-
agement and sharing of published application.

As demonstrated on Figure 3.3, the main elements are described as follows:

• Manage storage, the functionality of the platform to allow Data Journalists
(Platform Users) to interact and manipulate data in their storage. In the
case of LPA, it is limited to visualizer application-related data only.

• Share published applications, an ability for Data Journalists to share the
application with other users of the LPA platform and set access control to
the published applications.

23

• Invoke API to manipulate data in storage assumes that LPA provides tool-
ing for their developers to interact with storage solution and invoke its APIs
or libraries for manipulating data.

• Set data access control, assumes that LPA provides tooling for their devel-
opers to interact with storage solution and invoke its APIs or libraries for
editing access control privileges to data.

3.2 Non-functional requirements
In general, every non-functional requirement is described as the quality attributes
of a software system, which contrasts with functional requirements that are spe-
cific to the exact behavior of the system. Within the scope of LPA platform,
the stated non-functional are rather an informal set of terms mainly related to
reusability, testability quality attributes.

3.2.1 Compatibility with latest tools
This general non-functional requirement states that an implemented software
solution should be compatible with the latest tools of its technological ecosystem.
For instance, if the designed software is a library using third-party packages, it
needs to be generic enough to be compatible or have mechanisms to be resilient
to any significant changes in third-party packages that it relies on.

3.2.2 Clean APIs and libraries
The solution needs to be implemented with code readability and reusability in
mind. The primary users of the solution are developers of LPA platform. There-
fore it is essential to have an implementation based on a design that minds the
established best practices and patterns of software engineering.

3.2.3 Continuous Integration and Delivery
The implemented solution needs to maintain an optimized and fully automated
Continuous Integration and Delivery pipelines. This ensures better possibilities in
gaining contributors and planning future work and improvements on the solution
as well as an infrastructure to debug and fix errors more effectively.

3.2.4 Easy integration with LPA
The final solution needs to be able to integrate with the LPA easily. Another
important aspect is the solution to be integrated should not be entirely tied to
the specified LPA platform and should have the potential to be reused in other
Linked Data based applications.

24

3.2.5 Decentralized storage
The Data Journalists, one of the primary target users of LPA platform, should
be able to choose any storage that is compliant with the technology stack of the
solution. In other words, the platform should be able to support storing data in
any personal space of such storage instances that are created, hosted, or owned
by users directly or by the third-party providers.

3.3 Solid development toolset
Now, as the main requirements of the LPA platform are defined, let us dive into
the analysis of the Solid technology and tooling that it provides to understand
better how it can be used to cover all stated requirements.

At the core Solid is a set of open specifications. At the current state of the
project implementation, the community is most concerned about the persistence
and representation of resources. However, such aspects as identity, authentica-
tion, and authorization are also vital parts of Solid.

A set of these standards are undergoing active implementation stage. Main
contributors consisting of the core Solid development team, as well as the open-
source community, develop the standards into various servers and tools. For
instance, a node-solid-server library that implements a Solid server in Node
and rdflib.js that allows you to manipulate RDF programmatically.

In addition to this, there is work done on supporting tools, such as Solid React
SDK, that is created to allow developers to more easily get into developing apps
with Solid. As part of this is the style guide that can be reused by others, not
wanting to use the React parts.

3.3.1 The Solid servers
Solid itself represents a tech stack of complementary standards and data format
vocabularies that are currently only available in centralized social media services.
It also represents a Specification Document, serving as the main guideline for
developers building their own apps and services. However, aside from that Solid
also refers to a set of servers that implement its specification.

gold

gold is a reference Linked Data Platform server for the Solid platform. The
implementation is written in Go, based on initial work done by William Waites
[15].

node-solid-server

Following solution is an implementation of a server based on Solid specifications
in Node.js [16]. One of the main advantages is that it could be launched as a Solid
server on top of the local file-system. Interaction with server can be performed
as follows:

• Command line tool.

25

• Via node-solid-server library.

The provided server implementation was used as a main Solid server for the
project due to compliance with main requirements for choosing the server. Those
can be described as follows:

• Easy integration with current LPA project, specifically the frontend
web project. This allows usage of provided ‘node-solid-server.js‘ library.

• Active maintenance by open-source community. Aside from that,
this server implementation is considered to be a default option suggested
by creators of Solid.

• Support of WebID-TLS and WebID-OIDC . This implies majority of
WebID communications protocols, crucial to the user authentication and
security aspects of the storage within LPA. The WebID-TLS stands for a
WebID authentication method over Transport Layer Security (TLS), pro-
viding an efficient and user friendly authentication on the Web [17]. The
WebID-OIDC is an authentication delegation protocol suitable for WebID-
based decentralized systems such as Solid [18].

3.3.2 The Solid React development stack
The main frontend library used in LinkedPipes Applications is React. In order
to incorporate easier integration of aspects of Solid into the project, an analysis
of React related Solid frameworks and libraries was performed. Even though,
Solid community is yet to grow become stable and mature, it already provides
a convenient set of libraries for React that were used as a main tools during
implementation of the thesis project.

solid/react

The main purpose of this library is to provide the following functionality:

• Provide React developers with components to develop Solid apps.

• Enable React developers to build their own components for Solid.

@inrupt/solid-react-components

This libray is an official SDK provided by Inrupt for developing React Web ap-
plications for Solid. The package include various dependencies allowing:

• Provide React developers with a set of easily customizable components in-
teracting with Solid specifications.

• Provide a standardized visual design conventions based on Atomic Style.

• A set of cli commands for generating a template Solid projects.

26

solid-auth-client

The main purpose of this low level library is to provide ability to easily perform
Authentication operations while interacting with Solid pods and servers.

At its core it is a browser library that allows your apps to securely log in to
Solid data pods and read and write data from them.

solid-file-client

This library provides a simple interface for logging in and out of a Solid data
store, maintaining a persistent session, and for managing files and folders. It may
be used either directly in the browser or with node/require. The library is based
on solid-auth-client and solid-cli, providing an error-handling interface and some
convenience shortcuts on top of their methods and providing a common interface
to the two modules.

rdflib

JavaScript RDF library for browsers and Node.js. One of the main contributors
is Sir Tim Berners-Lee himself. The library is going to be used and described in
detail in Chapter 5.

@solid/query-ldflex

The following library adds support of the LDflex language to Solid by:

• Providing a JSON-LD context for Solid.

• Binding a query engine (Comunica).

• Exposing useful data paths.

• LDflex expressions occur for example on Solid React components, where
they make it easy for developers to specify what data they want to show.
They can also be used as an expression language in any other Solid project
or framework.

3.4 Why Solid?
Even though it is presented as a flawless dominating technology in Table 2.1, it
is, in fact, far from being perfect. Some of the disadvantages include:

• Still under active research and development, the project itself started back in
2016. Still, the real active traction and improvements had happened only
within the past two years after community grew bigger, and the project
gained popularity in the open-source community. It also means that there
are still major changes in specifications introduces in every new iteration.

27

• Lack of actively maintained community libraries, even though Solid orga-
nization on GitHub 3 actively updates and maintains its libraries for in-
teracting with Solid. There is a large number of libraries developed by
the community with tools that, in some cases, are more useful and popu-
lar. However, due to the Solid project still being actively developed, a lot
of libraries outside of the scope of the organization become obsolete and
outdated quickly.

• Still a lot of room for improving infrastructure for developers. The project
does not provide intuitive and user-friendly documentation. An average de-
veloper is required to have basic knowledge in Semantic Web, Linked Data,
and working with RDF and SPARQL. However, the improvements were
made in 2019, and eventually, the onboarding process into the technology
will become easier for any developer.

Despite the disadvantaged mentioned above, the main reason for choosing
Solid as a core for providing storage capabilities to LPA was the fact that it is a
very flexible and low-level technology. Firstly, as mentioned earlier, Solid repre-
sents multiple things at once. It is both a toolset with libraries for developers, a
set of specifications, and an ambitious idea to a better World Wide Web where
people own their data, and all information is linked together, preserving the se-
mantic meaning. Of course, many attempts on decentralization were made before,
but Solid differs from the others in the way that it does not target individuals in
specific fields or domains of the Internet, it attempts to change the Internet itself,
making it a better online space for everyone. And lastly, it demonstrated itself
as a perfect fit for any application that requires any social aspects and involves
dealing with any form of Linked Data, where LPA platform and its requirements
are compliant to all of the statements mentioned earlier.

3https://github.com

28

https://github.com

4. Architecture
The following chapter provides an overview of the architecture of LPS. Explains
the main components of the Storage as well as how it is being integrated into the
LinkedPipes Applications platform.

4.1 High-Level Overview
While the majority of components were described in detail in Chapter 1, the
overview architecture provided in this section shows more specific details on how
all the external and internal components of the system are interacting. One
of the essential details represented on the Figure 4.1 is the separation between
codebases of LPA and LPS. The LPA Frontend imports the LPS as an npm 1

package and performs all interactions with Solid using the provided functionality
of the package. In some sense, LPS is being treated as an additional rudimentary
backend and database layer on top of existing internal components inside LPA.
This is due to several functional requirements that LPS package implements, such
as user authentication, operations to manipulate resources inside storage and etc.

Figure 4.1: High level overview of LPA and LPS interactions

As additionally demonstrated, the Figure 4.1 also has Docker icons displayed
under some modules. The icons indicate where the production-ready service is
hosted. For instance, in the case of the LPS, the end goal is the npm registry,
while LinkedPipes Services and LPA are all hosted in the Docker registry where
each internal component is a Docker container. The generic interaction flow usu-
ally involves direct communication between the LPA frontend and LPS package.
The internal frontend component has various React components implemented us-
ing the LPS package that provides navigation and interaction with Solid Pods.
While the package is designed under the assumption that the LPA is the only

1https://www.npmjs.com

29

user of the package, some abstractions are generic enough and have the potential
to be used outside of the scope of the main functional requirements. The imple-
mentation chapter will also cover a generic use-case on how quick start quickly
with application development based on Solid.

The evolution of solid specifications

At the moment of writing this chapter, the official Solid specification reached
version 0.7.0 2. Introducing many changes and improvements, it also adds
an extra layer of complexity with every release, changing some of the conven-
tions, or updating some fundamental paradigms. As a result, when LPA was
initially implemented, it was based on an older specification and older versions of
node-solid-server, that had a simpler and more extensive ability to manipulate
ACL files. The work within this project, however, was focused around putting
efforts into making it generic enough so that people could use it as a guideline for
any started Solid apps, while the implementation will fit all LPA requirements.

The main note to mention for the further section in this chapter is that the
architecture design was derived from relying on the official specification of Solid
while also referring to the provided functionality of NSS that does not always
strictly follow the guidelines in the specification.

4.2 Storage
The initial architecture and implementation draft of LPS were different from
what is presented in this chapter. Solid related logic was firstly a part of the LPA
codebase. Therefore, significantly complicating unit testing and making it hard
to define the scopes of the LPA and LPS projects implementation. Later on, a
decision was made to separate the logic of the LPS and move it in the separate
codebase. The majority of abstractions that were initially designed to be inside
the LPA codebase, consisted of various wrappers and Create Read Update Delete
(CRUD) functions to interact with Solid servers. Their design was refined and
aggregated into specific abstractions, each responsible for covering the functional
requirements from LPA project.

Let us start by describing the main abstractions providing the functionality
of LPS.

4.2.1 Authentication Manager
The Authentication Manager is responsible for wrapping Solid WebID based au-
thentication logic into a simple and developer-friendly abstraction At the moment
of writing this, the official Solid specification states to support the following pro-
tocols:

• WebID-TLS - is one of the primary authentication protocols that rely on
WebIDs instead of usernames. The passwords are replaced with certain
cryptographic certificates as bearer tokens and are stored within the user’s
browser.

2https://github.com/solid/solid-spec/blob/master/CHANGELOG.md

30

https://github.com/solid/solid-spec/blob/master/CHANGELOG.md

Figure 4.2: Main abstractions of LPS.

• WebID-OIDC - alternative authentication protocol based on OAuth2 and
OpenID Connect protocols and adjusted to support the concept of We-
bID. This is, in fact, the first authentication option provided by LPS, later
chapters will provide the reasoning behind why this ended up being a more
intuitive option to cover the authentication requirement for LPA.

As already mentioned in Chapter 3, the usage of WebID protocols is one of
many benefits of Solid, in contrast with popular authentication protocols used in
centralized silos, it is completely agnostic to specific authentication mechanisms,
allowing our single abstraction to support any arbitrary WebID-OIDC compliant
Solid provider.

Interacting with frontend

Sequence diagram on Figure 4.3 demonstrate an example on how the Authenti-
cation Manager will be used within the LPA Frontend and how it will interact
with Solid Providers. The user agent entity represents a typical lay LPA user
interacting with the platform through the frontend component. The sequence
flow consists of the following steps:

1. The user clicks on the ’Authenticate’ button. This is the starting point of
this sequence diagram that serves as a trigger for LPA to invoke the LPA
package.

2. The frontend component calls the Authentication Manager and awaits for
a callback. As the main input, it supplies the information about the Solid
provider that the user would like to use.

3. The Authentication Manager contacts the Solid provider and requests the
provider authentication web page. Each provider conforming to Solid spec-
ification should contain that page.

31

4. Depending on the browser environment of the user, he gets redirected to
the provider’s authentication web page either in a new browser tab or a
popup dialog.

5. The user selects the preferred authentication and inputs the credentials.
At the moment of writing this thesis, popular Solid server implementations
like node-solid-server support both WebID+TLS and WebID-OIDC speci-
fications.

6. The Authentication Manager receives the callback from the provider and
sets the authenticated user session token.

7. Frontend component receives the callback from the Authentication Man-
ager, indicating that the user is authenticated.

8. As the last step, the frontend redirects the user into the homepage dash-
board of LPA platform.

Figure 4.3: Sequence diagram for authenticate operation invoked from LPA fron-
tend.

4.2.2 File Manager
The File Manager is responsible for implementing the CRUD operations for the
Solid providers that are compliant with Linked Data Platform specification. The
Linked Data Platform (LDP) is a specification that is reused and extended in the
Solid specification to describe the REST API for interacting with LDP Resources
and LDP Containers [19]. LDP Resources and LDP Containers are, in some sense,

32

the basic building blocks of any Solid POD, since they allow users to create any
files and folders.

As mentioned earlier, the Solid specification is re-using the LDP specification
to provide a RESTful set of operations to interact with any compliant implemen-
tation of that specification.

The LDP has an extensive set of resource types that are suited for defining the
folders and files. However, the architecture provided is relying on two common
resource terminologies that were simple enough to cover the requirements without
complicating the design of the architecture. Those resources are defined as follows:

• Linked Data Platform Resource (LDPR) is an HTTP resource whose state
is represented in any way that conforms to the simple lifecycle patterns
and conventions, in other words any resource that can be created, updated,
deleted and red. The LDP servers process the CRUD operations to manip-
ulate the lifecycle of LDPRs.

• Linked Data Platform Basic Container (LDP-BC) is a Linked Data Platform
Basic Container. An LDP-RS representing a collection of linked documents
that respond to client requests for creation, modification, and enumeration
of its linked members and documents, and that conforms to the simple
lifecycle patterns and conventions.

Creating resources

The essential operation that is at the core of most functional requirements defined
earlier is the ability to create a resource in a POD. Using the NSS server as a
basis, the general convention for creating LDP resources is a POST HTTP request
providing a link to the POD using the path where resource needs to be created.
As demonstrated on Figure 4.4 the creation consist of the following steps:

1. LPA frontend invokes the FileManager abstraction with a request specified
in ResourceConfig abstraction. The configuration provided contains infor-
mation on the type of resource, whether it is a folder or a file. Additionally,
it describes the required information to identify the resource within the
POD.

2. LPS constructs an HTTP POST request to create the resource in POD in
Solid server, the response is forwarded asynchronously.

Reading resources

Reading the resources demonstrated on Figure 4.5 is a straightforward set of
interactions with an Solid specification compliant server, and it can be described
as follows:

1. LPA frontend invokes the FileManager abstraction with a request specified
in ResourceConfig abstraction. The configuration provided contains infor-
mation on the type of the resource, whether it is a folder or a file, as well
as all required information to identify the resource within the POD.

33

Figure 4.4: Sequence diagram for POST resource operation invoked from Stor-
ageFileManager.

2. LPS constructs an HTTP GET request to obtain the information from Solid
server from the provider, the response is forwarded asynchronously.

As demonstrated in the steps above, the LDP specification provides advan-
tages by narrowing down the amount of resource lifecycle related calls as a set
of elementary CRUD operations. Another important detail is that every single
resource created by LPS is an RDF file. We will cover more information and
demonstrate why it is implemented in that way in the proceeding chapter.

Figure 4.5: Sequence diagram for GET resource operation invoked from Storage-
FileManager.

Renaming resources

The rename operation covers one of the functional requirements on the LPA
platform. It is based on a simpler CRUD operations such as create and read
resource described in earlier sections. The goal of this function is to provide the
ability for a LPA developer to implement a functionality to let LPA platform
users to choose and manipulate their storage configuration folders.

The flow in the sequence diagram displayed in Figure 4.6 consists of the fol-
lowing steps:

34

1. LPA frontend invokes the FileManager abstraction with a request specified
in the ResourceConfig abstraction, which is similar to the input steps in
the previous sequence diagrams.

2. LPS has a conditional check to see whether the new provided resource
configuration is not accidentally the resource under the same title. This
step is followed if the new path and title for a configuration are not equal
to an old configuration.

(a) Invoke the copy method that will, depending on the resource, either
copy it directly as a file, or copy it recursively if it is a folder. For
the sake of reducing the unnecessary details, the internals of the copy
resource call is not displayed on this diagram.

(b) After copying the content of configuration into a new destination, the
old resource is removed using the delete operation.

3. LPS returns a successful promise since no renaming is invoked in that case.

Figure 4.6: Sequence diagram for a complex operation to rename a particular
resource in StorageFileManager.

Deleting resources

The deletion of resources is slightly more complicated in comparison with the
trivial GET, POST, PUT, and PATCH operations described in earlier sections.
The main goal here is to differentiate the type of the resource, and depending on
whether it is an LDP Basic Container or generic LDP Resource, act accordingly

35

to delete all files under that resource. The flow from Figure 4.7 can be described
as follows:

1. Similar to the previous sequence flows, the action is triggered by an input
request from LPA frontend

2. If the resource is and LDP Resource, FileManager trivially sends a single
DELETE request to the server and returns the response

3. If the resource is an LDP Basic Container:

(a) Invokes a method for recursively deleting the contents of a folder.
(b) Within that method, it performs a call that fetches the raw RDF

describing the LDP Basic Container and parses the resources contained
within using.

(c) Iterate over files, remove them individually as in the first step.
(d) Iterate over folders, remove them individually as in the first step

One of the assumptions made in this recursive operation is the interactions
with ACL files when a recursive delete is performed. As mentioned in the in-
troduction to this chapter, Solid community is still at its beginnings, and there
are many significant improvements yet to introduce. In order to make the delete
operation more generic, the DELETE interactions with ACL files had to be re-
moved due to a more strict access policy established between providers of the
server and Solid apps. The following section will dive deeper into Access Control
Managements and related functionality.

Classes overview

File manager is the biggest of all three abstractions displayed on the Figure 4.2.
Therefore, in order to better describe the architecture of it, a more detail class
diagram is provided on Figure 4.8.

• The core class available to LPA developers is the StorageFileManager. All
of the functions inside are intended to be public, static and asynchronous.

• ResourceConfiguration is a wrapper for LDP Containers and LDP Re-
sources. It allows a developer to specify title, path and type of a resource.
Most of the operations within the StorageFileManager are operated with
the resources encapsulated into ResourceConfiguration classes. It also pro-
vides a few helper getters that allow to generate an absolute path to a
resource within a pod.

• The AccessControlConfig is a subclass of ResourceConfig. It allows to spec-
ify the access control modes to individual resources. Additionally, it intro-
duces a few extra functions to generate the absolute path that includes the
ACL file extension.

• The SolidResource is a simple interface that includes various details spe-
cific to the resource. Some of the fields provided are also directly used by
StorageFileManager abstraction during construction of CRUD calls to Solid
providers.

36

Figure 4.7: Sequence diagram for a complex operation to delete a particular
resource in StorageFileManager.

4.2.3 Access Control Manager
The primary responsibility of the Access Control Manager is a subset under File
Manager abstraction. It is designed to support the File Manager entities and
provide an ability to wrap them with Web Access Control compliant settings.
In other words, this allows a developer of LPA to programmatically control the
Read and Write access to any resource inside an arbitrary Solid POD by uti-
lizing the developer-friendly interfaces and classes defined within the scope of
this abstraction. Essentially, every ACL file is nothing more than yet another
RDF resource with few extra features. Hence, the abstraction was placed under
the File Manager since the core logic is concerned with similar resource lifecycle
manipulations.

It is yet another wrapper on top of the functionality provided by any Solid
compliant servers. In this case, being Solid compliant also assumes conforming
to Web Access Control or WAC specification. It defines the so-called Access
Control Resources, which are entities serving as the declaration of access control

37

Figure 4.8: A higher level class diagram of classes contained within StorageFile-
Manager abstraction.

privileges for a specific resource. Within the context of Solid specification this
means managing access rights to resources in Solid PODS for various WebIDs.

The main function provided by the abstraction is an ACL file generator. The
flow on the Figure 4.9 demonstrated the process of generation, parsing, and seri-
alization of ACL files:

1. Create Access Control triples for specified input resource configuration files.

2. Create individual triples defining ACL configuration for a resource owner.

3. Create individual triples for public access if the resource itself is marked as
public.

4. Gather and parse those triples into a rdflib abstraction representing an RDF
Graph.

5. Serialize this graph instance into a string representing a TTL file.

6. Finally performs an HTTP call, that uses PUT to create an ACL file at-
tached to a specified resource.

This concludes the section demonstrating the essential abstractions within the
LPS package. The consecutive chapters dedicated to Documentation will cover
and provide more details regarding less significant classes and utilities available
inside the package.

4.3 LinkedPipes Applications Ontology
Relying on LDP specification extended by Solid was not the only goal while
designing an architecture to satisfy the requirements of LPA. It was also essential
to use the advantages of Linked Data in general. As stated in introductory
chapters, as well as the original paper, one of the significant benefits of any Solid
compliant server is that everything is either an RDF file or has the metadata
expressed as an RDF file [20][21].

38

Figure 4.9: A higher level class diagram of classes contained within StorageFile-
Manager abstraction.

The first task was to identify and analyze the kind of data LPA is storing. The
initial implementation on LPA codebase was a simple application configuration
JavaScript object that assembles all required configuration information for an
application by the time a user of LPA hits the Publish button. In other words,
we were given a JavaScript object to operate. Let us describe how this input
requirement was taken into consideration while designing a solution that is both
optimized for Solid and satisfies the requirement.

4.3.1 Using Web Ontology Language
The Web Ontology Language or OWL, is a commonly used knowledge represen-
tation language used for:

• Designing ontologies.

• Formalizing domains.

• Defining domain specific classes and properties.

39

As a first step, the JavaScript object that was used to represent LPA con-
figurations was formalized into a JSON Schema 3. Based on that Schema, the
initial OWL ontology was designed using Stanford’s Protégé 4, which is a con-
venient open-source ontology editing tool. The class hierarchy on Figure 4.10
demonstrates the draft of the ontology created based on that Schema.

Figure 4.10: A class hierarchy visualization of LPA vocabulary.

foaf:Person

The foaf:Person node on Figure 4.10 refers to a WebID profile of an author of
this configuration. Due to the generality of the WebID, there was no need to
make a specific subclass from the foaf:Person class for that use-case.

Configuration

The Configuration class is the main generic abstraction for all LPA configurations.
Class hold the generic object properties that can be described as follows:

• author, this refers to the foaf:Person class stated before, and identifies the
person with his WebID as an author of this LPA configuration.

• published, a date timestamp used to identify when configuration was created
and published.

• title, represents the title given to that LPA visualizer.

The class is also a parent class for two subclasses titled VisualizerConfiguration
and FilterConfiguration. More details on them provided in the implementation
chapter. However, at this point, it is sufficient to understand that there are two
main configuration types. One of them tied to the visualization, and the other is
to filters that allow filtering information displayed on visualizers.

FilterGroup

The FilterGroup class is closely related to Filter and FilterConfiguration and
is used to reference the aggregation of visualizer specific filters. Since it does
not necessarily need to inherit the object properties of FilterConfiguration, it is
inheriting from generic owl:Thing class.

3https://json-schema.org
4https://protege.stanford.edu

40

https://json-schema.org
https://protege.stanford.edu

Figure 4.11: A formal representation of LPA configurations expressed as RDF
files using the LPS vocabulary.

In order to simplify adoption of this ontology in LPA frontend, the resulting
ontology was converted into a JSON-LD Schema 5, as shown on Figure 4.11.
However, due to some limitations in NSS, the individual jsonld configurations
had to be converted into TTL files when stored in Solid. For more details on
adoption and implementation of this ontology refer to Chapter 5.

4.4 Storage Component Design
It is important to note that the LPS is not just the external package completely
isolated from the LPA frontend, it is also a set of React components that attempt
to blend in into the user interface guidelines of the frontend. Now when the major
components of the LPS package as well as the LPS vocabulary are described, let
us dive deeper into the design considerations done on the frontend side inside the
LPA codebase.

The LPA frontend codebase was implemented using React6 and was utilising
a modern stack of frontend development tools, all of those had to be taken into
consideration to design React Component responsible for interactions with the
storage. This section will cover the design conventions inherited from LPA as
well as a detailed overview of User Interfaces conforming to Material Design7

conventions that were strongly utilized in LPA frontend. In addition to that, it
5https://json-ld.org
6https://reactjs.org
7https://material.io/design

41

https://json-ld.org
https://reactjs.org
https://material.io/design

will also revisit the functional requirements and provide UI design proposals that
are later implemented in the implementation section.

4.4.1 Designing React Components
At the root, LPA frontend identifies two main types of components that are
logically separated into folders titled as follows:

• Components folder, these usually contain elements that are used in more
than one webpage throughout the project, such as buttons, switches, image
wrappers and etc.

• Containers folder, represent complex react components that are basically
rendering individual webpages or sub-elements of webpages that deal with
complex user interaction scenarios.

Simple components

Whenever an individual component needs to be implemented and it will be used
in multiple webpages throughout the project, it is being placed into Components
folder.

There are two main types of components that can be placed into Components
folder and have different design conventions:

• Simple stateless component responsible for plain rendering.

• A complex component that needs to aggregate multiple sub-components,
manage external state, internal states and etc.

This is not a strict guideline defined by LPA developers. However, if a compo-
nent becomes too complex, as demonstrated on Figure 4.12 the intent is to split
component into separate component responsible for rendering and component
that manages states of the stateless component. This allows easier navigation
within frontend codebase as well as faster code debugging.

Therefore, the logical decomposition of components by their complexity is the
concludes the only major design convention that was required by LPA frontend.
Let us go over the details of each individual component in the following sections.

4.4.2 Authentication View
Authentication is the entry for the LPA platform, and LPS covers the design and
implementation of that view since LPA relies on Solid to perform the WebID
authentication.

As previously demonstrated in Subsection 4.2.1, the LPS package handles the
authentication by redirecting the requests and responses between the browser of
the user and the Solid provider server. The mock user interface on Figure 4.13
demonstrates a basic mock for a authentication webpage. There are several ways
to authentication available to a LPA user with a WebID profile in any Solid-
provider:

42

Figure 4.12: React container abstraction decomposition following LPS design
conventions.

• Provider authentication, user clicks on a dropdown pane and selects the
name of the default providers. The default providers supported by LPS
are inrupt.net 8 , solid.community 9 and a self-hosted LinkedPipes server
available at lpapps.co:8443 10.

• WebID authentication, similar to previous option but instead user is able
to provide his WebID and be redirected right into the login page of his
provider.

Figure 4.13: Mock UI for Authentication webpage in LPA Frontend.

The additional user interface elements are defined as follows:
8https://inrupt.net
9https://solid.community

10https://lpapps.co:8443

43

https://inrupt.net
https://solid.community
https://lpapps.co:8443

• Authenticate button executes the authentication sequence depending on the
options that users have chosen, which are either Provider or direct WebID
authentication.

• Lean more about Solid redirects users not familiar with concepts of Solid
directly into the home page of the inrupt project.

4.4.3 Storage Dashboard
Referring back to the functional requirements stated in the first chapters, the
ability to interact with the LPS is an essential feature allowing users of LPA
platform to manipulate their Applications. The mock displayed on 4.14 is a
webpage accessible via the home dashboard. There are two main display modes:

• The My apps tab, is a React component that fetches all RDF resources in
root LPS folder containing applications created by a user.

• The Shared tab is a React component fetching all RDF resources in a shared
LPS folder containing applications created and shared by a particular user
with other users of LPS platform.

Figure 4.14: Mock UI for Storage Dashboard webpage in LPA Frontend.

The idea behind the dashboard is that each card is a visual representation of
LPA configuration. As mentioned earlier in Subsection 4.3.1, each configuration
is expressed using the LPS ontology and stored as an RDF file inside Solid. The
card collection view pulls each of the configurations from the container, storing
them in Solid and populates the content.

The user of LPA has a set of straightforward interactions that can be per-
formed on card:

• Clicking on card, redirects the user to the webpage displaying the visualizer.

• Clicking on sub-menu icon, reveals a popup where users can choose to delete,
rename, or share the visualizer.

44

4.4.4 Storage Control Panel
An ability to authenticate, create, and publish an application using Solid are es-
sential requirements stated by LPA. However, users also need to have basic func-
tionality to manipulate the data stored by the LPS within their PODs. Therefore
a mock design demonstrated on Figure 4.15 provides the basic functionality de-
scribed as follows:

• Update folder, allows users to switch their root folder into any other folder
within their POD.

• Copy folder allows users to copy all content from the current root configu-
rations folder into a new or existing folder.

• Move folder allows users to move all content from the current root configu-
rations folder into a new or existing folder.

Figure 4.15: Mock UI for Storage Dashboard webpage in LPA Frontend.

The diagrams in Section 4.2 demonstrate the exact sequence of interactions
between LPA, LPS and Solid providers when operations like move or copy folder
are invoked.

To sum up, this chapter provided an overview of three major aspects of LPS:

• The npm package contains the core abstractions architectured to be sepa-
rated from the LPA with the intent to improve Solid related code maintain-
ability and testing. The sequence diagrams of all main CRUD operations
performed on RDF resources in Solid PODs.

• The LPS ontology, an RDF vocabulary designed specifically for LPA con-
figurations, taking full advantage of Solid. In other words, giving an ability
not simply to store the LPA configurations, but also perform any complex
querying on them using SPARQL.

• The frontend React components, the UI mocks of components inside LPA
frontend, conforming to conventions of the LPA.

In the next chapter, a detailed review of the implementation of the architecture
will be provided.

45

5. Implementation
The following chapter is going to cover the implementation of LPS package, the
frontend components as well as the ontology. The first part of the chapter ded-
icated to the implementation of the package will provide a detailed overview
of the decisions made on the development stack, the main challenges invoked in
refactoring the original LPA codebase, and making the Solid related functionality
more generic. The frontend components section will dive deeper into the imple-
mentation of the mocks provided in Chapter 4, main decisions, and challenges
while developing under React. The ontology Section 5.2 will describe how the
designed LPS vocabulary was converted into a OWL file, converted into JSON-
LD Schema and later integrated into the LPA frontend. Lastly, an overview of
the implementation results will be presented by reiterating over the defined LPA
requirements and how they were satisfied by the implementation.

5.1 Storage Package
The initial implementation of LPA frontend was written in JavaScript ES6 1

and React framework. The development stack also included tools such as Babel
2 compiler and Webpack 3 package bundler.

Figure 5.1: Official LPS package logo designed by author.

As the number of features and functionality to cover was increasing, the deci-
sion was made to separate the Solid storage-related functionality into a separate
npm package and call it LPS package. This section will provide an overview
of preliminaries chosen for the implementation of LPS package as well as the
specifics of implementations of each abstraction defined in Section 4.2.

1http://es6-features.org
2https://babeljs.io
3https://webpack.js.org

46

http://es6-features.org
https://babeljs.io
https://webpack.js.org

5.1.1 Preliminaries
As briefly mentioned earlier, there are several main libraries used inside the LPS
package:

• rdflib is a low-level RDF library, that mainly provides the functionality
to Read and Write RDF in many popular formats, a querying store and an
ability to use SPARQL queries.

• solid-auth-client, a browser library that implements Solid specifications
for providing authentication. This is the main library used to enable the
authentication into LPA platform.

Due to the complexity of the usage of the stated libraries, specifically rdflib,
having an environment and a language that provides a fully-featured object-
oriented programming and static type-checking would directly affect the code
maintainability and usage. Hence, the codebase of LPS was implemented using
TypeScript 4. TypeScript is a strict syntactical superset of JavaScript that pro-
vides optional static typing and better object-oriented programming capabilities.
When referred to files containing TypeScript code, the consecutive sections and
chapters will refer to as TS files.

Figure 5.2: A diagram demonstrating the process of transpilation of LPS package
and bundling LPA frontend with Webpack

As demonstrated on Figure 5.2, integrating the package into the LPA code-
base was done using the TypeScript compiler that allows transpilation into ES6
compatible JavaScript syntax. The package, as well as the rest of the LPA code-
base, is later bundled into a set of static assets using Webpack. The assets mainly
consist of a set of media files such as PNG and SVG files and a large JS file that
contains the whole LPA frontend. One of a few disadvantages with that approach
is that the initial loading of the frontend might take a few seconds to load in the
browser. Afterward, the interaction with the platform is seamless and does not
involve any additional loading.

4https://www.typescriptlang.org

47

https://www.typescriptlang.org

Project structure

The structure of the LPS package is simple and straightforward and can be
demonstrated as follows:

- build # Transpiled JavaScript code
- markdown # Markdown assets
- src # Root project folder

- lib # Main library codebase
- common # Utilities and helper functions

- ... # TypeScript tests and core abstractions
- types # Custom user-defined type definitions

- docs # Static html with library documentation
_ ... # Readme and various configuration files

Listing 3: LPS package folder structure description.

The proceeding sections will describe the individual abstractions mentioned
in Section 4.2.

5.1.2 Authentication Manager
This section will continue the architectural description of the Authentication man-
ager described in Subsection 4.2.1, describe the implementation and provide ex-
amples of how the abstraction is used inside LPA.

The AuthenticationManager is a Singleton class, instantiated only once and
utilized both in the package itself as well as being invoked from LPA frontend
codebase. The reason for the class being implemented as a singleton is due to
the fact that it wraps the functionality of solid-auth-client library, and it
provides a singleton instance as well. Aside from providing the WebID authenti-
cation, solid-auth-client implements a WebID OIDC specific fetch function-
ality. The FETCH API is originally a JavaScript API that provides an ability to
send asynchronous HTTP calls. The implementation in solid-auth-client, is
based on isomorpic-fetch, which is a third-party framework that implements
the Fetch API both for browsers and Node.js. Hence, the abstraction is used for:

• Authentication, and ability to track the user session with callbacks.

• Sending HTTP calls to Solid server.

In other words, once the client is logged in the Solid app, consecutive in-
teractions are performed via fetch function that is conveniently wrapped in the
AuthenticationManager abstraction.

As demonstrated on Figure 5.3, the class consist of a set of public methods
described as follows:

• getInstance(), this public method returns a singleton instance to an Au-
thenticationManager.

48

Figure 5.3: A class diagram generated directly from a TypeScript file, demon-
strating an implemented AuthenticationManager abstraction

• fetch(), a wrapper redirecting the call to solid-auth-client fetch method.

• login(), a wrapper redirecting the call to solid-auth-client login method.

• trackSession(), a method with asynchronous callback notifying the listener
when a logout or login operation is performed.

• currentSession(), a method returning the instance of a solid-auth-client
Session object that contains relevant information about the authenticated
user and his WebID.

Referring back to Figure 4.3, there are several places in LPA codebase where
the AuthenticationManager is invoked directly. The implementation of React
components will be covered in the proceeding section, but the invocation of the
abstraction itself can be described as follows:

• Component layouts are special high-level react containers that wrap every
other container inside LPA frontend. They are differentiated by public and
private. The private components reactively monitor the authenticated ses-
sion of a user and redirect them back to the authentication screen whenever
the value of the session becomes undefined. It is important to note that
the session object from AuthenticationManger is duplicated in LPA fron-
tend as a Redux state. Therefore, any changes in the original session object
are reflected on that state and triggers re-rendering of layout components.

• Authentication component functions, are the functions being invoked when
user attempts to perform the authentication. In other words, this is the
input that triggers the flow demonstrated earlier on Figure 4.3.

• The App router, the main class in LPA that serves as an entry point and
utilizing the react-router 5 package, contains a function that invokes the
trackSession() method in AuthenticationManager. This directly links to
the session object and updates the changes from original session to internal
Redux state.

The usage of both currentSession() and login() methods from Authentication-
Manager can be observed below:

5https://www.npmjs.com/package/react-router

49

https://www.npmjs.com/package/react-router

login = async (idp, callbackUri) => {
const session = await

AuthenticationManager.currentSession();↪→

if (!session)
await AuthenticationManager.login(idp, {

storage: localStorage
});

else {
Log.info(`Logged in as ${session.webId}`);
return session;

}
};

Listing 4: An implementation of login() wrapper.

To sum up, the AuthenticationManager is a simple and straightforward sin-
gleton abstraction that wraps the solid-auth-client library and only necessary
functions from the wrapped library to be used inside LPS package. The exam-
ples of invocation from within the LPS package are limited to directly calling
the fetch() method whenever an HTTP request is assembled and needs to be
executed, more details on that will be described in a section dedicated to FileM-
anager abstraction.

5.1.3 File Manager
In this subsection, we will continue on the FileManager abstraction described in
Subsection 4.2.2, provide the specifics on implementation as well as a detailed
overview of each method inside the abstraction.

Figure 5.4: A class diagram generated directly from a TypeScript file, demon-
strating an implemented FileManager abstraction

50

Similar to the AuthenticationManager, the FileManager abstraction is im-
plemented as a TypeScript class providing a set of public static methods. It
is responsible for all core CRUD operations with Solid resources. It is impor-
tant to note that all HTTP requests to Solid server are made using the fetch()
method invoked via AuthenticationManager. In other words FileManager relies
on AuthenticationManager when performing HTTP requests. To follow up a class
representation on Figure 5.4, the methods can be described as follows:

• createResource(), a function is responsible for creating new Solid resources.

• deleteFolderContents(), a function is mainly used for cleaning up the con-
tent of a particular folder. It iterates the contents and recursively deletes
underlying folders and files.

• deleteResource(), a function responsible for deleting individual resources
from a Solid POD. Following the sequence flow presented on Figure 4.6,
depending on the type of the resource it will either remove it directly or
attempt to clean it recursively if the resource is an LDP-BC.

• getResource(), a basic function executing a GET call to obtain a resource
content from a Solid server.

• copyFile(), a basic function performing a copy operation on an LDPR.

• copyResource(), a generic method performing a copy operation on a re-
source. Depending on the type of the resource it either invokes the copy-
File() directly or, if resource is an LDP-BC, it performs a recursive copying.

• renameResource(), a method responsible for changing the title of the re-
source inside the Solid POD. In that case it simply means changing the
absolute path to resource, where the name is the last element in the path.
This function is described in detail on Section 4.2.2. The operation involves
invocation of several simpler methods from the FileManager abstraction.

• updateResource(), a generic function executing an HTTP PUT request for
a particular resource.

• createOrUpdateResource(), a method used in cases when a resource needs to
be updated even if a different resource exists under that path. If a nothing
exists under supplied path, resource will be created, if an object exists under
particular path then it will be removed first.

• resourceExists(), a method that executes the HTTP GET call to check if
anything exits under specified path. The response is a simple boolean value.

• getFolder(), a method that parses the contents of a particular folder and
returns it as an array of underlying files and folders wrapped into a sim-
ple configuration abstraction. This is mainly used a part of any recursive
operations involving folders.

• deleteFolderRecursively(), a method used to execute recursive deletion of
a particular folder. This is demonstrated in detail on Figure 4.7 under a
conditional block that is executed when resource is a folder.

51

• createAccessControlStatement(), createAccessControlList, updateACL(),
createACL(), following methods can be found described in Subsection 5.1.4,
as they relate to interacting with ACL resources.

It is important to note that the class is not a singleton in contrast with
AuthenticationManager. This is because all classes are exposed as public and
static. The design makes the abstraction generic for many use cases within and
outside the bounds of requirements of LPA.

The Solid resource within the LPS package is represented by ResourceCon-
figuration abstraction that is a basic required input for most of the operations
in FileManager that involve execution of HTTP requests. The proceeding Sec-
tion 5.1.3 will provide more details on implementation of this class and the relation
to FileManager.

Resource Configuration

One of the challenges when LPA frontend initially contained the code for Solid
interaction inside was the lack of any abstraction representing a particular Solid
resource. There were several refactoring attempts to add basic ES6 classes, but
maintaining the codebase was not trivial at all. Therefore, after introducing the
LPS package, the implementation of abstractions to represent the Solid resources
was one of the first challenges. The Figure 5.5 consist of two main entities:

1. ResourceConfig, a main class representing ResourceConfiguration abstrac-
tion.

2. SolidResource, an interface required for each object representing the Solid
resource to be conforming to.

enum SolidResourceType {
Folder = '<http://www.w3.org/ns/ldp#BasicContainer>;

rel="type"',↪→

File = '<http://www.w3.org/ns/ldp#Resource>; rel="type"'
}

Listing 5: Definition of SolidResourceType enumerator.

The SolidResource interface consist of the following:

• type, an enumerator property represented on Listing 5. Type is either a
Folder or a File.

• path, a string property representing a full absolute path excluding the
filename itself. The reason why filename is excluded is to simplify the
interactions within FileManager class and provide more flexibility when
operating with resources.

52

• title, a string property representing the tile of the resource. The extension
of the resource is not included.

• contentType, an optional string property representing the content type
header to be passed when constructing and HTTP request to manipulate
this resource. If value is not provided, a TTL extension is used by default.

• body, an optional string property holding a content of the resource. The
property is marked optional because there are cases when an empty folder
resource need to be created, from an LPA developer point, he does not need
to provide any content to create an empty folder resource.

• isPublic, an optional boolean indicating whether the file is controlled only
by the creator, owner or can have public read access. This is closely related
to AccessControlManager abstraction described in Subsection 4.2.3. The
proceeding section will describe the implementation of that abstraction in
detail.

The fact that SolidResource is represented as the interface allows the objects
conforming to eat to be constructed effortlessly and straightforwardly, similar to
simply creating a dictionary object. The ResourceConfig, on the other hand,
wraps the object by providing additional information and functionality on top of
the original resource object. The ResourceConfig class consist of the following:

• webID, is a string property. The value should be assigned to the creator or
owner of the resource. Within LPA frontend, this value is usually holding
the WebID of the authenticated platform user.

• resource, is an object property conforming to SolidResource interface.

• fullPath, a method returning a concatenated string, representing an abso-
lute path to a resource.

• fullPathWithAppendix(), a method returning a concatenated string, repre-
senting an absolute path to a resource with a ’/’ symbol. This is required
in cases when an operation needs to be performed on a resource a developer
wants to be sure that the absolute path will be constructed correctly for the
underlying type. The folder resource requires the symbol to be appended
when dealing with the construction of ACL files. This will be described in
more detail in the proceeding section dedicated to AccessControlManager
abstraction.

The FileManager class is extensively used throughout the whole LPA frontend
codebase. The examples below demonstrated various examples of invocations
of the FileManager abstraction from within the LPA frontend codebase. It is
important to note that the provided examples are generic enough to be applied
to the development of any Solid application supporting the current iteration of
node-solid-server.

53

Figure 5.5: A class diagram generated directly from a TypeScript file, demon-
strating implemented ResourceConfig class and SolidResource interface

An example on creating a resource

The example below demonstrated a simple use case on how LPS package can be
used to create a Solid resource using the FileManager abstraction.

const folderConfig: ResourceConfig = new ResourceConfig(
{

path: rootResourceConfig.fullPath(),
title: 'configurations',
type: SolidResourceType.Folder

},
webId

);

const response = await
StorageFileManager.createResource(folderConfig)↪→

Listing 6: An example usage of FileManager abstraction to create a folder in
Solid pod.

In this particular case, a folder resource ResourceConfig class instance is being
created named configurationsFolderConfig. Afterwards it is being passed to a
public static createResource() method that creates the resource as described on
Figure 4.4. This concludes the description of the implementation of FileManager
abstraction. The proceeding section is dedicated to an AccessControlManager
abstraction, following up the first introduction in the Subsection 4.2.3.

54

5.1.4 Access Control Manager
This subsection provides details on implementation of the AccessControlManager
abstraction from Subsection 4.2.3 section. Despite being called a separate ab-
straction, it is in fact implemented as a set of additional public static methods
inside the FileManager abstraction as seen on Figure 5.4 diagram. Essentially ev-
ery ACL resource is yet another resource represented as LDPR in Solid. However
the functional implication of those resource are more specific and require extra
information and functionality to operate with them. That is why it is separated
conceptually as a different abstraction but is implemented inside the same class
called FileManager.

Referring back to Figure 5.4, the main methods related to the abstraction are
described as follows:

• updateACL(), a method constructing the array of RDF triples that is later
serialized into a TTL and send as a body in HTTP PUT request to Solid
server, replacing the previous resource under that path.

• createACL(), a method constructing the array of RDF triples that is later
serialized into a TTL and send as a body in HTTP PUT request to Solid
server.

• createAccessControlStatement(), a method constructing the array of RDF
triples expressing access control for a particular WebID.

• createAccessControlList(), a method assembling an array of access control
statements for multiple requested WebIDs using createAccessControlState-
ment(), and as result serializes the array of statements into a raw TTL
string using rdflib.

The functionality implemented by AccessControlManager is not conforming to
entire Web Access Control specification, since it was not needed and not required
to satisfy the LPA requirements. Therefore, methods described earlier such as
updateACL() and createACL() as seen on Figure 4.9, were based on the default
ACL files that NSS generates. At the moment of writing this thesis, the default
ACL files generated by NSS v5.2.0 looks as follows:

55

@prefix : <#>.
@prefix n0: <http://xmlns.com/foaf/0.1/>.
@prefix n1: <http://www.w3.org/ns/auth/acl#>.
@prefix test: <./>.
@prefix c: </profile/card#>.

:owner
n1:accessTo test:;
n1:agent c:me;
n1:default test:;
n1:mode n1:Control, n1:Read, n1:Write.

:public
n1:accessTo test:; n1:agentClass n0:Agent; n1:default test:;

n1:mode n1:Read.↪→

Listing 7: An example ACL resource in TTL describing access control for a folder

As seen on Listing 7, the example describes access control privileges to a folder
named test. The first semantic triple contains a subject named :owner, and this
refers to the WebID of the owner of this Solid POD. The predicates of the Owner
subject can be described as follows:

• accessTo, the information resource to which the access is being granted. In
this case, we are granting access to a folder named test

• agent, a person or an entity to whom the rights are being given. Since this
is an owner of the Solid pod, the reference is given to himself.

• default, this is a special predicate that behaves as follows. If the underlying
resources have no ACL files specified, they will keep referring to parent
resources until it will reach the resource containing the ACL file with default
predicate. In this case, the statement says that the underlying resources
without explicitly set ACL files will have the same access control rights as
the test folder.

• mode, a predicate describing the access control modes. In this case, the
object is defined as follows:

Control, a semantic object describing full read and write access to an
ACL of the resource.

Read, a semantic object, is giving full read access to a resource.
Write, a semantic object is giving full write access to a resource.

On the other hand, the subject named public only has an ability to Read the
folder and its content. The public subject is just a generic simplification for cases
when there is no need to set specific WebIDs explicitly. However, using ACL
easily allows listing particular users as well, giving a lot of flexibility to have a

56

very sophisticated access control privileges setup per any resource in a Solid POD.
As mentioned earlier, the ability to manipulate access control to any resource and
own your data is one of the core benefits proposed by Solid project.

Access Control Configuration

Aside from the main AccessControlManager abstraction, as demonstrated on
Chapter 1, the original ResourceConfig class from FileManager required to be
extended by introducing several subclasses called:

• AccessControlConfig, a subclass of ResourceConfig that adds a property
listing available control modes to a resource for specified WebID, and adds
methods to construct the proper absolute path to a resource. The only dif-
ference between those methods and methods described in Section 5.1.3 such
as fullPath() and fullPathWithAppending(), is that the hardcoded keyword
ACL for files and hardcoded keyword /.acl for folder are being appended.

• AccessControlStatementConfig, a subclass of AccessControlConfig, contains
additional references to rdflib nodes to simplify construction of ACL
triples in AccessControlManager abstraction.

Figure 5.6: A class diagram generated directly from a TypeScript file, demonstrat-
ing implemented AccessControlConfig and AccessControlStatementConfig extend-
ing ResourceConfig

An example on creating an ACL file for a Solid resource

The example below demonstrated a simple use case on how LPS package can be
used to create an ACL file for a Solid resource using the FileManager abstraction.

57

const configurationsAclResourceConfig: AccessControlConfig = new
AccessControlConfig(↪→

{
...configurationsFolderConfig.resource,
isPublic: true

},
[AccessControlNamespace.Read, AccessControlNamespace.Write],
webId

);

const response = await StorageFileManager.updateACL(
configurationsAclResourceConfig

);

Listing 8: An example ES6 code on creating ACL files for Solid resource in LPA
frontend

In this case, a folder resource is expressed as a ResourceConfig class in-
stance under configurationsFolderConfig constant and configurationsAclResource-
Config constant is created based on it to express and ACL file. Using the ES6
spread operator we populate the description of the folder resource as follows
’...configurationsFolderConfig.resource’. Afterwards, the access control
modes are supplied in an array giving the ability to Read and Write to that re-
source to anyone by default. In the last step the specify the webId of the owner
of the resource and the ACL file to be created and supply the constructed Access-
ControlConfig into updateACL() method that is demonstrated in detail on this
sequence Figure 4.9.

To sum up, the section provided an overview of three main abstractions inside
LPS package. The AuthenticationManager used as a main class to deal with
WebID based authentications for LPA platform. The FileManager, responsible
for managing all HTTP requests to manipulate resources in a Solid resource.
AccessControlManager abstraction that significantly simplified the interactions
with Solid inside LPA frontend significantly and gave an ability to implement
more advanced access control related features to configure the published LPA
visualizers. This will be demonstrated in detail in Section 5.3. The consequitive
section will describe the LPS Ontology originally described in Figure 4.9, its
implementation and hosting.

5.2 Hosting Storage Ontology
This section is going to continue the details on implementation of the LPS on-
tology, firstly described in Section 4.3. As mentioned earlier, the intent to design
the ontology was to utilize the benefits of Solid better and the ways in which
every entity is represented as an RDF resource.

The ontology itself was implemented using a set of open-source tools that will
be described in the first part of this section.

58

Figure 5.7: Official LPS Ontology logo designed by author.

5.2.1 Preliminaries
Two open-source frameworks were used to implement and publish the LPS on-
tology:

• Protégé is an open-source ontology editing framework developed at Stan-
ford University and written in Java programming language [22]. It provides
an intuitive graphical user interface for defining and developing ontologies.
The version of the software used at the moment of implementing the ontol-
ogy is v5.5.0.

• Ontoology, is an open-source software solution for collaborative develop-
ment of ontologies on GitHub [23]. However, in the scope of implementing
LPS ontology, it was mainly chosen for its additional features, such as an
ability to publish ontologies under permanent w3id.org URL, an ability to
host the ontology as a static HTML webpage under GitHub Pages.

5.2.2 Using Protégé
After defining the main entities and designing the hierarchical structure of the
ontology in Section 4.3, the ontology was implemented using Protégé ontology
editor. The editor allows defining the ontology entities by specifying them under:

• Classes, tab represents the asserted and inferred class hierarchies as a tree,
where each node represents a particular class. The asserted class view is
a default and primary navigation device for browsing class hierarchies in
Protégé, the inferred classes view on the other hand differs from asserted
by requiring a reasoner to be setup to render the complete hierarchy view.
If no reasoner is provided the inferred classes view will be empty.

• Object properties tab, represents the graphical user interface to create and
define relations between instances of the classes. The view under that tab
is similar to the Classes tab, the properties are represented as a tree with
nodes identifying individual object property. For instance, each Visualizer-
Configuration can be filtered by a FilteredConfiguration, this relation can
be expressed by defining an object property calls filteredBy.

59

Figure 5.8: Example UI of Protégé ontology editor at Active Ontology tab.

• Data properties tab, represents the graphical user to create and define re-
lations between instances of classes and RDF literals or datatypes. For
instance, a VisualizerConfiguration class has a backgroundColor data prop-
erty which is a String datatype.

The resulting ontology created in Protégé was represented as an OWL, which
is a format for Web Ontology Language described earlier in Subsection 4.3.1. The
following subsection will explain the process of publishing the ontology using the
Ontoology software.

5.2.3 Using Ontoology
The Ontoology itself is an open-source project that can be instantiated and con-
figured manually. It is, however, also available as a standalone running instance
6. The publishing of the LPS Ontology was done using the available instance
instead of manually configuring one, this significantly reduced the development
time needed to publish and host the vocabulary to be used in LPA frontend.

The initial configuration or startup guide to Ontoology consist of the following
steps:

1. Setup a GitHub repository, an exported OWL file from Protégé was hosted
on a regular public GitHub repository 7 and placed at the root.

2. Add repository to Ontoology, add the repository by name into Ontology, and
press Watch this repo button. This is pretty much the last step involving

6http://ontoology.linkeddata.es
7https://github.com/aorumbayev/linkedpipes_applications_ontology

60

http://ontoology.linkeddata.es
https://github.com/aorumbayev/linkedpipes_applications_ontology

any manual work. The following steps are all invoked in an automated
fashion, demonstrating the full list of benefits provided by this software.

3. Merge initial PR from Ontoology, once the repository is connected, an au-
tomated PR will be opened that will contain a following list of elements:

(a) Diagrams, a folder with pre-generated class hierarchy visualizations of
the ontology.

(b) Documentation, an automatically generated ontology documentation
hosted on GitHub Pages on the same repository, and available at
w3id.org permanent Uniform Resource Locator (URL) redirecting users
to GitHub Pages.

(c) Evaluation report, Ontoology generates a report that checks various
aspects of the implementation of the ontology, providing hints when,
for instance, some parts in the description of an entity is missing.

(d) JSON-LD, an original OWL, the file is automatically converted into a
JSON-LD file.

Figure 5.9: UI of Ontoology displaying the processed repository with LPS Ontol-
ogy.

To sum up, the LPS ontology was implemented using two open-source frame-
works called Protégé and Ontoology. The first tool was used as an editor to
implement the ontology designed in Section 4.3. The second tool was used to
publish and host applications. The detailed documentation will be mentioned in
Chapter 8 and is also available online as hosted documentation.

5.3 Storage Frontend
The following section will continue the Section 4.4 by providing the details on
implementation of individual components interacting with Solid POD.

5.3.1 Preliminaries
To simplify the understanding of this section, it is important to recap the conven-
tions and specifics of LPA frontend implementation by providing some extended

61

http://w3id.org/def/lpapps

details, as they were strictly taken into consideration while developing LPS com-
ponents inside the LPA frontend codebase.

As mentioned earlier in Subsection 1.3.2, the frontend provides a way for the
user to interact with the LPA. As demonstrated on the Figure 5.10, the frontend
uses Redux and React as a primary framework for building the components and
managing states.

Figure 5.10: General architecture of Redux store and React components within
frontend

The main entities displayed on 5.10 can be described as follows:

• React Component, as described in Section 1.3.2, it represents a JavaScript
class or function that accepts optional inputs and returns a React element
that describes how a section of the User Interface should appear.

• Redux as described in Section 1.3.2, it represents an internal state manage-
ment framework for frontend web frameworks like React.

Frontend code structure

The implementation of the LPA frontend is located at the src/frontend path
at official LPA repository 8 and structured as follows:

• constants - contains all constants used throughout the frontend component
implementation.

• utils - contains various handy utility classes, variables, and methods.
8https://github.com/linkedpipes/applications

62

https://github.com/linkedpipes/applications

• ducks - contains all Redux reducers, actions and selectors. The title duck
comes from a convention proposed by Erik Rasmussen in [24], it suggests
a way to bundle Redux entities into folders that are easier to manage and
maintain as they contain reducers, actions, and selectors.

• layouts - contains a global setup for various components as well as the
specification for the MaterialDesign theme used in the project.

• components - contains all components with JSX file type, visualizers and
various UI elements implementations not related to interactions with Solid.
The JSX is a syntactic extension for JavaScript that adds the ability to
combine ES6 syntax with HTML tags.

• containers - contains complex layouts for specific web-pages of the web
app not related to interactions with Solid. Each folder is named after the
individual webpage.

• storage - contains all contributions and implementations made within the
scope of LPS project. It has a substructure mimicking the global folder
structure to improve code maintainability and signify the difference between
implementations of LPA and LPS.

• configuration files and entry points, contains a set of configuration files at
the root, such as linter configurations, the file with global Redux store and
a file called AppRouter, which is the main controller of the whole frontend
since it manages the user sessions and establishes the socket connections
with LPA backend.

5.3.2 Storage folder structure
As mentioned in Section 5.3.1, let us describe the internals of storage folder inside
LPA frontend codebase.

• utils - contains various handy utility classes, variables, and methods for
storage specific React Components.

• ducks - contains all Redux reducers, actions and selectors for storage specific
React Components.

• models - contains classes representing VisualizerConfiguration and other
LPA specific classes that did not have to be split into the LPS package.

• components - contains all components, visualizers and various UI elements
implementations not related to interactions with Solid.

• containers - contains complex layouts for storage specific web-pages. Each
folder is named after individual webpage.

• StorageBackend - represents a class wrapping various utilities on top of
basic LPS storage abstractions. The logic related to fetching the LPA con-
figurations is implemented in this file.

63

• StorageToolbox - represents a class wrapping the StorageBackend utilities
into simple methods to be invoked directly from internal methods of Storage
React Components. In other words, it serves as a middleware layer between
React Components and low level and generic functionality of LPS package
abstractions.

• StorageSparqlClient - a class containing a single generic method that utilises
the fetch() function from AuthenticationManager to submit SPARQL requests
modifying certain parameters of LPA configuration RDF files.

5.3.3 Authentication View
This section continues the architecture and mocks provided in Section 4.4, and
describes the implementation of the React Component in detail. To comply with
conventions of LPA frontend, the webpage is represented by two separate React
Components, one of which is stateful and the other is stateless and manages
the views only. The implementation is located at src/frontend/containers-
/AuthenticationPage path on LPA repository. The folder is named after the
webpage and consist of:

• AuthenticationContainer, a file containing the stateful React Component.
In other words, it manages local views specific states as well as global states
related to Redux.

• AuthenticationComponent, a file containing implementation of stateless Re-
act Component. In other words, it is only responsible for passing the React
props and rendering simple views.

• SolidProviderComponent, a file located in a sub-folder called children. The
component renders the drop-down menu that allows users to pick specific
provider from a list of supported Solid providers.

const mapStateToProps = state => {
return {

webId: state.user.webId
};

};

export const AuthorizationContainer =
connect(mapStateToProps)(Authorization);↪→

Listing 9: An example of mapping Redux state to a props of React Container

Following that pattern, the render() function of AuthenticationContainer ex-
pects an instance of AuthenticationComponent while passing both internal and
Redux state as props to it. The global structure of all Redux states in LPA is

64

too specific to be described within the scope of the LPS project. However, ex-
amples of states relevant to Authentication View are going to be provided. For
instance, the code example at Listing 9 demonstrates a typical example of an
operation that maps the Redux states to props of a React Component, in this
case, we are mapping the global webID value that is used by React Router to
identify whether user is authenticated and can render the dashboard or should
be redirected back to the screen. As it was mentioned earlier in Section 5.3.1 and
Subsection 5.1.2, the AppRouter is one of the main entry points to the frontend
web app, and it directly utilizes both AuthenticationManager abstraction from
Authentication React component. An example code on Listing 10 demonstrates a
code snippet from AppRouter that is invoked every time the user session is being
authenticated, or user is logging out.

AuthenticationManager.trackSession(session => {
if (session) {

handleSetUserWebId(session.webId);

self.startSocketListeners();
...

}
})

Listing 10: An example of trackSession() callback listening for changes in au-
thentication state

The User Interface strictly follows initial mock design demonstrated at Fig-
ure 4.13. User has an ability to perform authentication either by choosing an
individual Solid provider or use a supply his WebID directly if his Solid provider
is not available in the list of default providers. At the moment of writing this
part, the project provides support for inrupt.net 9, solid.community 10 and
self-hosted provider made specifically for LinkedPipes available at lpapps.co 11.
After performing the authentication use is redirected into the Dashboard webpage
of LPA frontend.

Overview of states and methods

As general details on the structure of the implementation are defined now, let us
dive deeper into the description of main states and functions of Authentication
View components. As AuthenticationComponent is a stateless React component,
it is sufficient to provide definitions for states and methods in Authentication-
Container as this represents the main functionality of the whole webpage. The
states can be described as follows:

9https://inrupt.net
10https://solid.community
11https://lpapps.co:8443

65

https://inrupt.net
https://solid.community
https://lpapps.co:8443

• webIdFieldValue, a string value holding input at the textfield for supplying
WebID value.

• withWebIdStatus, a boolean value representing the current input state and
whether is chosen to use available providers or entered his WebID manually.

• session, an object representing current session returned from Authentica-
tionManager abstraction.

• providerTitle, a string value holding the title of selected provider. This
is needed to be supplied into login() method of AuthenticationManager ab-
straction that invokes the solid-auth-client library.

The set of methods inside the AuthenticationComponent class can be described
as follows:

• handleProviderChange() a methods that is passed as a prop to Authentica-
tionComponent, and invoked every time user selects or update his selection
of default providers.

• handleSignIn a method that is invoked when is pressing the Authenticate
button, this redirects a call to AuthenticationManager abstraction that ini-
tiates the sequence flow described at Figure 4.3.

• handleWebIdFieldChange a method invoked when user inputs or modifies
the input at the textfield used for WebID.

• isWebIdValid a method that uses regex to validate whether provided WebID
is in valid format.

• onSetWithWebId a method invoked when the withWebIdStatus status is
being changed.

The final rendered UI of this implementation will be provided in the of this
chapter under Section 5.4, where a detailed overview of a final implementation
satisfying each of the original LPA requirements are provided.

5.3.4 Storage Dashboard
The Storage Dashboard webpage described at Subsection 4.4.3 was a challenging
component to implement. To simplify the understanding of the structure in
which components and containers are invoked, the Figure 5.11 is provided. The
components demonstrated on diagram follow the usual pattern of splitting React
Components into stateful and stateless and can be described as follows:

• StoragePageController is a root React component that wraps both indi-
vidual and shared application views. It stores states representing the tab
index and depending on the selected index it switches the components to
be rendered in render() function.

• StorageAppsBrowser*, both container and component represent a view that
fetches and displays LPA configurations. The stateless part relies on the
Grid layout system from MaterialUI framework.

66

• StorageSharedAppsBrowser*, both container and component represent a
view that fetches and displays LPA configurations that were shared with the
User. The stateless part relies on the Grid layout system from MaterialUI
framework.

• StorageAppsBrowserCardComponent is a child component that represents
a reusable card representing an individual LPA configuration in a grid of
cards.

The user interface is inspired by the mock at Figure 4.14. However, it is
more refined and optimized to fit the general style of LPA frontend. Similar to
the Authentication view, the final rendered UI of this implementation will be
provided at the end of this chapter under Section 5.4.

Figure 5.11: Diagram representing the chain of render() method invocations
among components representing Storage Dashboard.

Overview of main functionality

In contrast with Authentication View, the structure of sub-components is rather
complex to describe in detail. Therefore a set of primary states and methods
responsible for the core functionality of the webpage will be described instead.

In general both StorageAppsBrowser* and StorageSharedAppsBrowser* com-
ponents and containers share similar states and functions the only difference is
the way stored LPA configurations are fetched. The fetching itself is done by
invoking the corresponding methods called getAppConfigurationsMetadata() and
getSharedApplicationsMetadata() methods from StorageToolbox class. In general,
the StorageToolbox invokes lower-level wrappers in StorageBackend that utilize
the rdflib library from LPS package and converts the RDF resource representing
the LPA configuration into a JavaScript object that is processed by StorageApps-
BrowserCardComponent view.

67

5.3.5 Storage Control Panel
The Storage Control Panel is rather a simple set of React Components that
heavily rely on FileManager abstraction from LPS package. As initially described
in Subsection 4.4.4, the functionality should provide user options to perform basic
operations with the root folder for all LPA configurations in his Solid POD. Those
operations include changing the title of the root folder, moving within the pod,
or copying within the pod. The implementation consist of the following classes:

• StorageAccessControlDialog is a stateful React Component based on Dialog
Component from Material UI framework. Due to simplicity of the ele-
ments to be rendered, it did not require splitting into stateful and stateless
components.

• SettingsPageComponent is a stateless React Component that renders the
simple label with the current path to the root storage folder in Solid and a
simple button to change it by invoking the StorageAccessControlDialog.

• SettingsPageContainer is a stateful React Component that serves to con-
nect the StorageAccessControlDialog and SettingsPageComponent.

Overview of main functionality

In general, the main functionality is located in the StorageAccessControlDialog
class, it strictly follows the mock at Figure 4.15 and can be described as follows:

• handleFolderConfirm() a method invoked when user clicks on Update but-
ton. The component then invokes the StorageToolbox class that commu-
nicates with FileManager abstraction in LPS package. For more detailed
description of how LPS package performs the CRUD operations on resources
in Solid PODs refer back to Chapter 4.

• handleFolderCopy() a method invoked when user clicks on Copy button.
The rest is similar to handleFolderConfirm() where StorageToolbox is in-
voked and it communicates with FileManager abstraction in LPS package.

• handleFolderMove() a method invoked when user clicks on Move button.
The proceeding invocation chain is identical to methods before.

The final rendered UI of this implementation will be provided in Section 5.4,
demonstrating the StorageAccessControlDialog, SettingsPageComponent and Set-
tingsPageContainer.

5.4 Implemented functional requirements
This section will iterate over the requirements from LPA stated in Chapter 3, and
demonstrate how each of the functional requirement was implemented by classes
and abstractions described in previous sections of this chapter. For requirements
that directly involved the implementation of React components, detailed renders
of final User Interfaces will be provided. It is important to note that this section
offers the implementation overview of all stated functional requirements defined
in Section 3.1.

68

5.4.1 User Authentication
To recap the User Authentication functional requirement, the user of the platform
should be able to register an account in the application, log in, and log out. To
fulfill the requirement, the Authentication View component described at Chap-
ter 1 was implemented. The final render on Figure 5.12 provides an intuitive
User Interface that allows authentication by selecting a default Solid provider,
as demonstrated on Figure 5.13 or by specifying the WebID for authentication
directly. The Learn more about WebID, and SOLID button serves as a guide for
users new to Solid, clicking the button will get them redirected to the official
inrupt website.

Figure 5.12: The final render of an Au-
thentication View webpage

Figure 5.13: And example of the
providers dropdown in expanded state.

After user provides the authentication inputs and clicks on Authenticate but-
ton, the default Solid server authentication popup will appear as demonstrated
on Figure 5.14 and Figure 5.15. Depending on whether user has a WebID and a
Solid POD or if user selected the authentication option using default providers
he will be given an option to either Login or Register on specified Solid server.

The logout functionality is available under several components in LPA. Those
can be described as follows:

• User Profile Page, this page is located under settings tab in LPA platform.
The intent is to provide the information about the current user name and
his WebID under which the authentication was performed. It also provides
buttons to either Reset Password or Logout from the platform.

• Logout toolbar item, this is a toolbar element always available in the top
right corner of the platform. Clicking on the button invokes the logout, and
the user is redirected back to the Authentication View webpage.

69

Figure 5.14: Example of a login popup provided
by Solid server.

Figure 5.15: Example
of a register popup pro-
vided by Solid server

Figure 5.16: The User Profile webpage
with options to reset or logout from Solid
provider.

Figure 5.17: The global control
toolbar of LPA platform. The
logout button allows to quickly
logout from authenticated Solid
provider.

5.4.2 Create, Store and Publish Application
The Create and Publish Application requirements are one of the core requirements
that are both applicable to LPS and LPA frontend itself. The separation of
code contributions to both LPA and LPS was a challenging task. From the
standpoint of LPS, an application is created when its configuration is stored as
an RDF resource inside Solid POD. Having a stored configuration also implies
that the application described by this configuration is published because the URI
to configuration inside the POD is publicly available by default. In other words,
storing creation and publishing of the application are closely related requirements
that are easier to cover at once. The section will also focus on the parts of these
functional requirements that directly related to interactions with Solid server.
Additionally, It is important to mention that there is no actual application being
stored in the Solid pod, the app itself is a React Component that is re-rendered
from scratch based on the LPA configuration that is loaded from the storage.

The LPA platform has a process called Application data preparation workflow.
It consists of four steps during which a user of the platform provides data sources
to visualize, and if successful, the LPA redirects him to a Create Application

70

webpage. At this point, the platform assembles a visualizer configuration object
in memory until the user provides a title for his application and decides to publish
it. The diagram on Chapter 1 demonstrates the user interface component on
Create Application that consist of a text field and two buttons:

• Publish a button that invokes a chain of methods that parse the prepared
visualizer object into TTL and uploads the file into his Solid POD.

• Embed a button invoking the same process of storing and publishing an
application but additionally displays a dialog popup to quickly generate
the HTML iframe to incorporate the visualizer into a webpage.

Figure 5.18: A part of Create Application page that invokes creation and pub-
lishing of an application.

A method source code demonstrated on Listing 11 is invoked by CreateVisu-
alizerPage and its underlying sub components. As the first step, it simply checks
whether the webId is provided. Afterwards, the applicationConfiguration-
Object is assembled which is a JavaScript object with fields corresponding to
LPS Ontology. When passed into StorageBackend the object is parsed into an
rdflib graph, serialized into TTL and uploaded into Solid using LPS package.

71

async saveAppToSolid(
applicationConfiguration,
filtersConfiguration,
webId,
appFolder

): Promise<ApplicationMetadata> {
if (!webId) {

Log.error('No webID available', 'StorageToolbox');
return;

}

const applicationConfigurationObject =
ApplicationConfiguration.fromRawParameters(↪→

applicationConfiguration,
filtersConfiguration,
webId

);

return StorageBackend.uploadApplicationConfiguration(
applicationConfigurationObject,
appFolder,
webId

);
}

Listing 11: A method from StorageToolbox class inLPA frontend, that assembles
configuration object and saves it to Solid

The resulting LPA configuration uploaded to solid with the method from
Listing 11 is demonstrated on Listing 12. The fields with unique identifiers were
replaced by sample text to improve readability of the example.

72

@prefix : <#>.
@prefix lp: <https://w3id.org/def/lpapps#>.
@prefix c: </profile/card#>.

<>
a lp:VisualizerConfiguration;
lp:applicationData "undefined";
lp:author c:me;
lp:backgroundColor "#106368";
lp:configurationId "sample id";
lp:endpoint "chord";
lp:etlExecutionIri "sample etl iri";
lp:filteredBy

[
a lp:FilterConfiguration;
lp:enabled "true";
lp:filterGroups [];
lp:visible "true"

];
lp:graphIri "sample graph iri";
lp:published "2019-12-05T13:11:37.788Z";
lp:title "My cool visualizer";
lp:visualizerType "CHORD".

Listing 12: An example of stored LPA configuration for CHORD visualizer in
TTL

As the last step of creating and publishing the LPA application, the popup at
Figure 5.19 is presented, indicating the successful publishing of the application.

Figure 5.19: A popup presented after configuration is stored and a published
URL is ready to be shared.

This concludes the demonstration of components and functionality of both

73

LPA and LPS package that implement the functional requirements on storing,
publishing and creating LPA configurations.

5.4.3 Configuring Application
The ability to configure the published applications had a clear and straightforward
set of terms to implement. After publishing an application LPA users to rename,
delete the configuration as well as configure and modify the filters available for
the visualiser.

Renaming application

Renaming the published application is performed by executing a simple SPARQL
query. The fetch() method available in AuthenticationManager abstraction from
LPS package is used to send the constructed request.

const sparqlQuery = `
@prefix lpa: <https://w3id.org/def/lpapps#> .

DELETE
{ ?configuration lpa:title ?titleValue . }
INSERT
{ ?configuration lpa:title "${newTitle}" .}
WHERE
{ ?configuration lpa:title ?titleValue . }

`;

Listing 13: An example of SPARQL query to update the application title in con-
figuration stored in Solid.

Example on Listing 13 demonstrate the SPARQL query used for renaming the
title of LPA configuration. The source code on Listing 14 demonstrate how the
query is constructed and submitted to Solid using a class called StorageSparql-
Client.

74

patchFileWithQuery = async (url, query) => {
try {

await StorageAuthenticationManager.fetch(url, {
method: 'PATCH',
body: query,
headers: {

'Content-Type': 'application/sparql-update'
}

});
return true;

} catch (error) {
if (error instanceof Response && error.status === 404)

return false;↪→

throw error;
}

};

Listing 14: The patchFileWithQuery method in StorageSparqlClient class is used
for executing the PATCH requests to Solid servers.

Figure 5.20: A popup presented after user pressed Rename button.

On the frontend side, the rename is invoked by pressing the Rename button
from the Application Control and Setup webpage. The user is presented with a
simple popup dialog demonstrated on Figure 5.20, where he gets an option to
choose the new title of his application. This invokes the execution of the SPARQL
query mentioned earlier.

Deleting application

Deleting an application that was previously published is a trivial task from the
standpoint of LPS. When user wants to delete the application he simply invokes
the Delete button either from individual application card in Storage Dashboard
webpage or inside the Application Control and Setup webpage. Executing the

75

deletion invokes the StorageToolbox class that uses the deleteResource() function
from FileManager abstraction in LPS package described in Subsection 5.1.3.

Figure 5.21: Option
to invoke the deletion
confirmation popup on
Application Control and
Setup web page

Figure 5.22: Popup displayed before removing
published application configuration.

The popups that appear to user when he presses the Delete button on Fig-
ure 5.21 is presented on Figure 5.22.

Updating filters

The ability to modify the filters on a published visualizer is another important
part of the Configure Application functional requirement. The process of updating
filters on published applications is invoked when a user modifies available node
or scheme filters. For example, the UI elements on Chapter 1 demonstrate a
CHORD visualizer containing multiple node filters. User has an option to control
state of the filter, visibility to the end user and interactivity or the ability for
public viewers to interact with the visualizer using the individual filters.

Figure 5.23: A user interface components to interact with filters available for a
visualizer.

The implementation of methods processing these operations are done in Stor-
ageToolbox, StorageBackend and StorageSparqlClient classes, and similar to Re-

76

naming Application procedure, the core logic simply constructs the required
SPARQL queries and executes them using HTTP PATCH request. Example on
Listing 15 demonstrates the construction of SPARQL query that processes multi-
ple filter selections in a single PATCH call.

let sparqlQuery = '@prefix lpa: <https://w3id.org/def/lpapps#>
.';↪→

const deleteStatements = [];
const insertStatements = [];
const whereStatements = [];

for (const node of nodes) {
deleteStatements.push(`?selectedOption${cnt} lpa:uri

"${node.uri}" .↪→

?selectedOption${cnt} lpa:selected ?selected${cnt} .
?selectedOption${cnt} lpa:visible ?visible${cnt} .
?selectedOption${cnt} lpa:enabled ?enabled${cnt} .`);

insertStatements.push(`?selectedOption${cnt} lpa:uri
"${node.uri}" .↪→

?selectedOption${cnt} lpa:selected "${node.selected}" .
?selectedOption${cnt} lpa:visible "${node.visible}" .
?selectedOption${cnt} lpa:enabled "${node.enabled}" .`);

whereStatements.push(`?selectedOption${cnt} lpa:uri
"${node.uri}" .↪→

?selectedOption${cnt} lpa:selected ?selected${cnt} .
?selectedOption${cnt} lpa:visible ?visible${cnt} .
?selectedOption${cnt} lpa:enabled ?enabled${cnt} . `);

}

sparqlQuery += `
DELETE { ${deleteStatements.join('\n')} }
INSERT { ${insertStatements.join('\n')} }
WHERE { ${whereStatements.join('\n')} }

`;

Listing 15: An example of SPARQL query to update the state of multiple node
filters selected by user.

One of the additional features implemented within the bounds of that require-
ment is the ability to reflect the applied changes in any field of the application
configuration RDF file using socket listeners. In other words, if a user is edit-
ing filters on his visualizer and some other user is looking at his visualizer on
some webpage where it is published, he will see the changes being applied in
real-time. This is implemented using the rdflib.js library that is accessed via

77

LPS package. The Listing 16 demonstrates a simple utility function available at
StorageBackend and it is invoked when application configuration is being fetched
for the first time.

registerChanges(url: string, callbackOnRefresh: Function =
undefined) {↪→

if (this.alreadyAddedDownstreamListeners.indexOf(url) === -1)
{↪→

const doc = $rdf.sym(url).doc();
this.updater.addDownstreamChangeListener(doc,

callbackOnRefresh);↪→

this.alreadyAddedDownstreamListeners.push(url);
}

}

Listing 16: Implementation of helper utility that uses feature of rdflib to invoke
any callback when a change in a specified RDF resource is detected.

5.4.4 Storage Management
The Storage Management functional requirement defines an implementation re-
quest to have an ability to move, rename or copy the root folder with all configu-
rations inside the storage. From the perspective of LPS it implies controlling the
root LDP Basic Container that stores all configurations.

Figure 5.24: A final render of Storage Control Panel component.

Since the description in Subsection 5.3.5 already provided all details on im-
plementing this requirement, this section will demonstrate the final renders of
implemented components to perform the operations stated in the requirement.
The user interface demonstrated on Figure 5.24, performs the functionality as
requested in the definition of the requirement. It is invoked via Settings webpage
under Application Storage tab when user clicks on Change folder tab.

78

5.4.5 Visualizer Access Control
The Visualizer, Access Control requirement, defines how the creator of an appli-
cation can control public access to visualizer or share it with only a specified set
of contacts. From the LPS standpoint, this implies controlling the ACL files of
individual LPA configurations expressed in RDF.

Figure 5.25: Access control configuration popup for published application.

The implementation of AccessControlManager abstraction in Subsection 5.1.4
is the essential building block that was used to implement a set of React Compo-
nents to allow modifying access control privileges of published visualizers. The
Figure 5.25 demonstrate an final render of a React Component that is presented
to user when he clicks on Access Control drop down item on Application Control
and Setup webpage. The component is implemented in StorageAccessControlDia-
log file which is a simple stateful React Component. The main elements of that
popup can be described as follows:

• Public access switch, this element controls the default public access to a
published application. By default, LPA sets the READ public access so
that anyone can access the published application by default. However, the
user has an option to toggle the control element and disable default public
visibility.

• List of collaborators, this element lists the contacts knows to user’s WebID.
The querying of knows contacts is performed using rdflib library accessed
via LPS package.

• Friends and Contacts dropdown, this element is a selector for sending invi-
tations to share the published visualizer with other users of the platform.
The next subsection will provide more details on the collaborative shar-
ing feature implemented as an additional functionality on top of the initial
functional requirement. Collaborative sharing features implementation is

79

inspired by Linked Data Notifications (LDN) [25] and uses the ActivityS-
treams vocabulary [26]. However, due to the specificity of LPA, it does not
strictly follow all requirements of that specification.

Collaborative sharing

Collaborative sharing allows users of LPA platform to share their visualizers with
other users of the platform. The sharing process implementation is inspired by
Linked Data Notifications specification and involves the generation of an invi-
tation file that send to the recipients inbox. The Figure 5.26 demonstrates the
process of submitting an invitation in detail.

Figure 5.26: A sequence diagram of implemented sharing functionality for col-
laborative editing.

The steps can be described as follows:

1. Firstly, the sendInvitation() function is invoked from StorageAccessCon-
trolDialog React Component, specifically when users chooses his available
list of contacts and presses submit invitation button.

2. As a next step, StorageToolbox redirects the request to lower-level Storage-
Backend class.

3. The StorageBackend class generates the invitation RDF in JSON-LD format
using rdflib library from LPS package.

4. The StorageBackend class sends the invitation file to recepients inbox folder
using FileManager abstraction from LPS package. The exact inbox path is
known by parsing the recipient’s profile card associated with his WebID.

5. Asyncronous response is returned of the operations is propagated back to
StorageAccessControlDialog for further processing.

It is important to note that the recipient is assumed to be a user of LPA
platform. Once invitation is send, whenever recipient opens the platform, the

80

Figure 5.27: An inbox dialog popup with two new invitations to collaborate on
application.

listener inside AppRouter class will check the inbox for new invitations and display
new invitations in inbox popup demonstrated on Figure 5.27. If user Accepts the
invitation, the invitation JSON-LD file is transformed into a shared configuration
file by extracting URI to an application and placing it under a folder named
sharedApplications in the root storage folder and a response notification is sent
back to the sender. Once sender receives the Accept notification, it sets the
READ and WRITE access to the application configuration for the recipient. If
user Declines the invitation, the invitation is deleted from the inbox without any
further processing.

Figure 5.28: A shared visualizer card displayed to recipient in his Storage Dash-
board after he accepts the invitation.

The Chapter 1 demonstrates the shared application appearing in the shared
applications storage dashboard of the recipient. In addition to that, the code on
Listing 17 demonstrates the example of the generated invitation being send to

81

recipient in JSON-LD format using ActivityStreams vocabulary.

{
"@context": "https://www.w3.org/ns/activitystreams",
"type": "Invite",
"actor": "https://sender.lpapps.co:8443/profile/card#me",
"name": "lpapps_invite",
"object": {

"type": "Link",
"href": "https://sender.lpapps.co:8443/
linkedpipes/configurations/1575551497789.473.ttl"

},
"published": "2019-12-06T20:04:02Z",
"target": "https://recipient.lpapps.co:8443/profile/card#me"

}

Listing 17: An example invitation to collaborate on a published application.

The collaborative aspect is basic and only allows the recipient to rename the
title of the application and modify and persist the selection of available filters.
The changes are reflected in real-time using socket connection to Solid server as
initially described in Section 5.4.3.

To sum up, the following section iterated over each functional requirement
stated by LPA and demonstrated the detailed description of implementation to
comply with those requirements. The section also continued the storage-related
React Components implementation details provided in Section 5.3 and demon-
strated finalized renders of those components that closely follow the initial mocks
designed in Chapter 4.

5.5 Implemented non-functional requirements
The section provides a general overview of implementation of non-functional re-
quirements stated in Section 3.2. Due to the majority of requirements being
covered simply by the core functionality of the Solid project itself, the implemen-
tation details of individual requirements are less descriptive than descriptions in
Section 5.4. It is also important to note that this section provides the implemen-
tation overview of all stated functional requirements defined in Section 3.2.

5.5.1 Compatibility with latest tools
The implemented solution consists of three parts:

• The LPS package, an npm package containing the generic abstractions
performing low-level interactions with instances of Solid servers. Relies
on rdflib, solid-auth-client and solid-auth-cli libraries. All third

82

party packages are pinned, stable and indirectly unit tested, more details
on testing is provided in Chapter 7.

• The Storage React components, a set of frontend components written in ES6
inside the LPA package. No additional third party packages are introduces
to LPA with these components, except for LPS package.

• The LPS ontology, a vocabulary designed with Protégé and published with
Ontoology. Used in LPA by accessing its public hosted instance, therefore
no additional third party packages are introduced.

5.5.2 Clean APIs and libraries
The whole intent of creating the LPS package was to refactor and redesign the
abstractions interacting with solid inside LPA frontend codebase. Therefore, the
final refactored implementation is easier to maintain and use by LPA developers
due to usage of TypeScript, extensive automated testing coverage covered in
Chapter 7, and documentation included in Chapter 8.

5.5.3 Continuous Integration and Delivery
The LPS package is located in a separate GitHub repository, has an automated
continuous delivery pipeline invoking unit test, code formatting, and linting. The
continuous delivery aspect publishes new npm versions in is semi-automated man-
ner. The frontend storage components in LPA are incorporated into frontend
codebase. Hence they are validated using the LPA CI and CD pipelines. Some
improvements into LPA testing pipelines were introduced, and they are described
in detail in Chapter 7.

5.5.4 Easy integration with LPA
The LPS package is distributed via npm, and seamlessly integrated into LPA
using the package management software. The frontend storage components are
implemented inside the frontend codebase. However, they also maintain a con-
sisted structure that improves code readability and defines the logical separation
between functionalities of LPA and LPS.

5.5.5 Decentralized storage
The solution for this non-functional requirement is covered by Solid specification.
Since Solid servers are decentralized by design, it means that the Authentication-
Manager from LPS package allows the users of LPA to authenticate with any
arbitrary instance of their private Solid server instances or instances from third-
party Solid providers. The FileManager abstraction also allows users to move the
created LPA configurations between Solid PODs within a Solid server instance
or between different instances of compatible Solid servers.

83

6. Evaluation
This chapter briefly describes and evaluates the results, recognition, and notable
achievements obtained after evaluating final LPS solution inside the production
instance of LPA platform 1.

6.1 Benefits of Solid
Usage of Solid technology significantly enhanced the initial functionality of LPA,
allowing to utilize the full benefits of Semantic Web and Linked Data manage-
ment. The section describes the individual advantages and their influence on the
improvement of LPA platform.

6.1.1 ACL managed applications
Access Control Management is one of the core features provided by Solid. The
implementation and integration of AccessControManager abstraction from LPS
package, ability for LPA developers to easily create, and edit the ACL files. From
the perspective of LPA platform users, this provided the ability to have full control
and management over the data created by the LPA but stored in LPS package.

6.1.2 Everything is an RDF resource
Storing LPA applications in Solid means storing their configuration files expressed
in TTL RDF format. Therefore, adding more value to the date as it can be
queried, filtered, or transformed in any way possible using SPARQL querying
language. Consider a use case where an experienced data journalist and devel-
oper who created and owns a set of multiple visualizers displaying markers on a
map, he recently discovered a new dataset that consists of smaller datasets for
applications he created previously. He can use SPARQL to analyze his configura-
tions stored in his Solid POD and create a new configuration by aggregating the
filters from smaller application configurations and LPA platform will attempt to
re-create the application for a new configuration. Storing data as RDF also pro-
vides possibilities for future enhancements of LPS. For instance, consider a case
when several LPA applications are embedded in a service similar to Wikipedia.
One could easily create a SPARQL query to extract URIs to those visualizations
and query any of the components of that configuration.

6.1.3 Provider agnostic storage
By design, Solid servers are decentralized, a single Solid POD can host multiple
Solid POD, and user own the data inside each of the PODs. When an LPA
platform users creates his first WebID and a Solid POD, all of LPA configurations
are created inside the Solid POD in authenticated Solid server. However, it is not
bound to any specific implementation of Solid servers, it is completely agnostic
and supports any implementation of a server that complies to Solid specification.

1https://applications.linkedpipes.com

84

https://applications.linkedpipes.com

In addition to that, user has an ability to use the Storage Control Panel to move
the created configurations within their PODs. The Solid POD webpage also
allows users to move any data between different instances of Solid servers.

6.2 Results and achievements
The sections provide a brief overview of notable achievements and recognitions
of LPA platform that was directly and indirectly influenced by usage of Solid
technology.

6.2.1 Recognition on official Solid website
In July 2019, after the first production release of LPA platform with a partial
implementation of LPS, the project was approved and added into the official list
of Solid applications on the repository of Solid organization in GitHub. The
screenshot of Figure 6.1 demonstrates the listing of the project on the official
website.

Figure 6.1: Listing of LPA platform on official Solid project website.

6.2.2 Comments from Sir Tim Berners-Lee
During the whole development lifecycle of the LPS project, active communica-
tion with the community helped to clarify many intricated nuances in the rapidly
changing development ecosystem of Solid project. The creator of the Solid project
is an active participant on Gitter 2 channels related to the project. During the
implementation of FileManager abstraction, multiple questions asked on Solid
channels on Gitter were answered by Sir Tim Berners-Lee, providing useful in-
sights and motivation to contribute into the development of Solid as a web stan-
dard for decoupling and decentralizing the web. One of several interactions is
demonstrated on a screenshot of a conversation of Figure 6.2.

2https://gitter.im

85

https://gitter.im

Figure 6.2: One of multiple interactions with creator of Solid on Solid community
chat.

6.2.3 User traction on LPA platform
Evaluation of final release of LPA platform with finalized LPS solution received a
feedback from multiple Solid community members. Additionally one of the mem-
bers of Basel Register of Thesauri, Ontologies and Classifications (BARTOC)
organization evaluated the application, provided a positive feedback and pub-
lished an application stored in Solid using LPS on official website of organization
3. It is important to note that the evaluators from BARTOC were using a beta
staging version of the LPA platform. Therefore the live instance available on
their website may not be available due to database updates after the final release
of the platform in July 2019.

Figure 6.3: Google Analytics
traction of users of test LPA
platform instance over a period
of six months.

Figure 6.4: Feedback, views and comments on for
LPA launch on official Solid community forum.

Additionally, screenshots on Figure 6.3 and Figure 6.4 demonstrate the trac-
tion of Solid community users. Release of the LPA platform with LPS storage was
posted on official Solid community forum, where a notable positive commentary
was left by one of the founders of Virtuoso Universal Server Kingsley Uyi Idehen

3https://new.bartoc.org/node/332

86

https://new.bartoc.org/node/332

4. Over the period of six month starting July and ending on December 2019, over
300 users interacted with test instance of LPA as demonstrated on Figure 6.3.

4http://dbpedia.org/page/Kingsley_Uyi_Idehen

87

http://dbpedia.org/page/Kingsley_Uyi_Idehen

7. Testing
The following section will provide an overview of testing practices followed during
the implementation described in Chapter 5. The chapter will start by describing
the preliminary technologies used for implementing automated testing, integra-
tion, and delivery pipelines as well as libraries used for unit testing of TypeScript
base LPS package.

7.1 Technologies used
The main development stack consisted of the following technologies:

• ava.js 1 is a Node.js unit testing library. It provides a clean and minimalis-
tic syntax for writing tests, concurrent tests execution, includes TypeScript
definitions and supports asyncronous functions. All of the aforementioned
factors were considered when choosing this package as main unit testing
library for LPS package.

• tslint 2 is an extensible static analysis tool that checks TypeScript code
for readability, maintainability, and functionality errors. It is widely sup-
ported across modern editors and build systems and can be customized with
your own lint rules, configurations, and formatters.

• istanbul.js 3 is a code coverage analyzer. It checks ES2015+ JavaScript
code with line counters providing a very extensive overview of all classes
and their coverage.

• Travis CI 4 is a hosted, distributed continuous integration service used to
build and test software projects hosted at GitHub. Travis CI is used to check
that newly committed code does not break the build and, consequently, the
system. This ensures that developers are not disrupted and that the system
remains stable. It is also able to run available automated tests to check
further that the system is working correctly, even if the build isn’t broken.

• Renovate 5 is an automated dependency updater. Multi-platform and multi-
language. Due to various dependencies used in the frontend web component,
it is crucial to keep the project up to date with the latest stable software
releases. Renovate is set up and being triggered using Github Webhooks
each weekend to check for updates in package.json and make a pull request
to master and develop branches if any available.

• Codecov 6 is an automated code review tool that allows developers to im-
prove code quality and monitor technical debt. Codecov automates code

1https://github.com/avajs/ava
2https://palantir.github.io/tslint/
3https://istanbul.js.org/
4https://travis-ci.org/
5https://docs.renovatebot.com/
6https://codecov.io/

88

https://github.com/avajs/ava
https://palantir.github.io/tslint/
https://istanbul.js.org/
https://travis-ci.org/
https://docs.renovatebot.com/
https://codecov.io/

reviews and monitors code quality on every commit and pull request. It
reports back the impact of every commit or pull request in new issues con-
cerning code style, best practices, security, and many others. It monitors
changes in code coverage, code duplication, and code complexity. It allows
developers to save time in code reviews, tackle issues efficiently, and overall
makes the system maintainability much easier.

• Slack 7 a cloud-based proprietary instant messaging platform developed by
Slack Technologies. The platform was used for automated notifications from
GitHub and Travis-CI to report the states of executed CI and CD pipelines
and for communication with the LPA developers.

7.2 Unit testing
Every class in LPS package was unit tested using the ava.js library. The conven-
tion used required in-place creation of a file with ava.js tests definitions named
identical to a TS file to be tested but with .spec. prefix appended before the
file extension. The code on Listing 18 demonstrates the example serial ava.js test
executed in order. The asynchronous createResource can be reused in multiple
ava.js tests improving code reusability while writing new tests.

async function createResource(t: any, input: any, expected:
any): Promise<any> {↪→

const result = await StorageFileManager.createResource(input);
logger.info(result.text());
t.is(result.status, expected);

}

test.serial(
'createFolderResource',
createResource,
folderConfigurationResource,
201

);

Listing 18: An example of a reusable asynchronous test chunk and single serial
ava.js test for createResource() method from FileManager abstraction in LPS
package.

The istanbul.js JavaScript coverage library has integration with ava.js. The
official command-line interface of istanbul.js, called nyc is used to invoke the unit
tests to both run the tests and visualize the test results in the terminal in a
convenient format.

7https://slack.com/

89

https://slack.com/

Unit tests are automatically executed on every push to any remote branch on
LPS package repository. More details on executing the unit tests in automated
pipelines are provided in next section.

7.3 Continious Integration and Delivery
The section will provide details on implementing automated integration and de-
livery pipelines using Travis CI. The terms Continuous Integration stands for a
development practice that requires a developer to integrate his latest commits to
a shared repository regularly. On the other hand, the name Continuous Delivery
stands for an ability to deliver code changes of any type to production in a quick,
safe, and automated way. Both of the practices were taken into consideration
while implementing the LPS package.

7.3.1 Using Travis CI
Travis CI was used in pairs with the GitHub platform. As the first step, the
service was connected with LPS package GitHub repository using Webhooks 8.
Secondly, a special YAML configuration file was added to all branches of LPS
repository. The configuration file defined the integration and delivery pipelines
to be executed inside Travis CI. Using a special feature called build matrix, the
LPS was set to be unit tested automatically in concurrent manner on both Node.js
v10.x and Node.js v12.x.

The branch protection rules were also applied to dev and master branches on
LPS repository. The additional step in Travis CI pipeline configuration was added
for master branch. Every push on remote master on LPS repository also involves
deployment to npm. Failed build states are propagated into a special slack channel
in LPA Slack workspace, channel is dedicated specifically for reporting CI and
CD pipeline execution statuses for all branches on LPS repo.

7.3.2 Integration testing in LPA
The diagram on Figure 7.1 is a detail demonstration of how LPA and LPA package
are integration tested in automated and semi-automated manner. It is important
to note that the example on diagram considers a case when LPS developer merges
changes into master branch of LPS package.

The operational flow can be described as follows:

1. LPS developer pushes code to master branch, the code is pushed to a remote
GitHub repository. This triggers the Travis CI and Codecov reviews via
Webhooks.

2. Travis CI evaluates the results of pipeline. If result is successfull it automat-
icall pushes the new version into npm and updates the static documentation
for TypeScript classes. If failed, then the LPS developer is notified on Slack
channel with a report on why the pipeline is failed.

8https://en.wikipedia.org/wiki/Webhook

90

https://en.wikipedia.org/wiki/Webhook

Figure 7.1: A detailed overview of CI and CD pipeline interaction for LPA and
LPS.

3. Renovate bot polls for new LPS releases, the Renovate bot instance at-
tached to LPA platform repository periodaclly polls npm and opens a
Pull Request with new LPS package to LPA platform on a branch called
dependency-updates.

4. The LPA developer is notified via Slack. When a Pull Request into LPA
codebase is opened by Renovate, it notifies the LPA developer via Slack to
review the Pull Request and merge new release of LPS package.

91

8. Documentation
The following chapter provides the information on available documentation re-
sources implemented for both LPS package and LPA Storage Components. Se-
lected code snippets demonstrate the core usage and provide detailed references
for hosted documentations. The first section will start with user documentation
covering a generic interaction flow with LPA platform using LPS package and
React Storage Components. The remaining sections will dive deeper into the de-
veloper documentation. Starting from the installation guide and documentation
of LPA package hosted on GitHub Pages and finalizing at an overview of how
LPA Storage Components were integrated into documentation resources of LPA
platform.

8.1 User documentation
This section is intended for non-developers who want to evaluate and try out the
latest release of LPA platform with integrated LPS package and LPA Storage
Components implemented. The documentation will serve as a tutorial expanding
a generic user story first introduced in Figure 1.2. To recap, we have two tar-
get platform users named John and Bob. John attempts to use LPA platform,
create and publish the application. On the other hand, Bob wants to see the
resulting application created and shared by John. The documentation will cover
interactions with a live instance of the latest LPA release, hosted at the Soft-
ware Engineering department at Faculty of Mathematics and Physics in Charles
University. The user-story based guideline will focus mainly on LPS and Solid
related aspects, therefore for more specific information regarding other LPA plat-
form features refer to the official user documentation 1 of the platform.

8.1.1 Creating Account
The first step for John is to create his first Solid POD and associated WebID
profile. Referring back to Subsection 5.4.1 and Figure 5.12, after selecting a
provider, for instance LinkedPipes PODs, he will be redirected to a Solid server
login webpage demonstrated at Figure 5.14, where a Create an account button
needs to be clicked. After that he will be redirected to a Solid server signup
webpage demonstrated at Figure 5.14. Lastly after creating a Solid account he
will be redirected to a his POD webpage. Performing the login at LPA instance
website will now be possible with John’s new WebID and Solid POD created
under selected provider.

After successfull authentication an LPA Dashboard page demonstrated on
Figure 8.1 will be presented.

Notes for providers using the latest NSS versions

One distinct difference in NSS releases starting from the fifth version, and higher
is more strict access control settings when authenticating a Solid application

1https://docs.applications.linkedpipes.com

92

https://applications.linkedpipes.com
https://docs.applications.linkedpipes.com

Figure 8.1: The Dashboard page displayed after successfull authentication into
LPA platform.

with a Solid POD. Since the majority of stable features of LPS were developed
before under fourth release iteration of NSS, it was impossible to simplify the
authentication flow for the newer version due to constant changes and updates
in both NSS releases and Solid specifications. Therefore, for LPA users that are
intended to use the providers that supply Solid servers based on the latest NSS
version, there is one additional manual step required during initial signup. As
demonstrated on Figure 8.2, this popup will be displayed during the initial login
to LPA platform after creating a Solid account, it is crucial to enable the Give
other people, and apps access to the Pod, or revoke their (and your) access option.
This will ensure that the Solid app will have enough privileges to create and edit
the ACL files associated with visualizer configurations inside the POD.

Figure 8.2: An access control popup displayed on latest NSS instances.

8.1.2 Creating Application
To create an application, John must either provide the necessary data source
information or select one of the data sample templates provided at the Dashboard
page.

To use one of the data samples provided by LPA, on the Dashboard page,
John needs to click the Choose button on the desired data sample template.
This will redirect him the Create Application page, as displayed on Figure 8.4,

93

where the data source fields will already be pre-filled, and he can proceed to click
Start Discovery immediately. In this guide, it is assumed that John started the
application creation process using templates. For more details on other ways to
provide data sources, refer to the official LPA platform documentation.

Figure 8.3: Template data sources provided by LPA platform.

Figure 8.4: Create Application page.

After the discovery process finishes, the user will be prompted to pick one
of the recommended visualizers, as displayed on Figure 8.5. If only one pos-
sible visualizer is available, this step will be skipped as that visualizer will be
automatically picked by LPA.

Clicking on the desired visualizer will trigger the data transformation process,
as displayed on Figure 8.6. In other words, the pipeline transformations will be
applied to the whole RDF data based on the data sources given. If more than one
applicable pipeline is found, John will be asked to choose one before this process
begins.

The resulting data will then be in the format required to be visualized using
the selected visualizer.

Once this step is complete, as presented on Figure 8.7, John can click on
’Create App’ to visualize the data and customize the visualization on a separate
webpage called Application Control and Setup.

94

Figure 8.5: Create Application page - Choose Visualizer.

Figure 8.6: Create Application page - Executing pipeline.

8.1.3 Publishing application
As presented on Figure 8.8, the Application Control and Setup page consists of
the preview of the visualizer to be published, a set of controls to configure the fil-
ters (if available) and a header component with elements to publish or embed the
application. To publish an application by storing the visualizer configuration in
Solid POD, John needs to input the title for his application and click on the Pub-
lish button. Alternatively he can click on Embed application an will be presented
with a simple popup to generate the HTML iframe. For more specific details
on publishing and storing in Solid refer to the description in Subsection 5.4.2.
For more specific details on configuring the post published application refer to
Subsection 5.4.3.

The screenshot on Figure 8.9 represents a webpage for the stored application
configuration inside the Solid POD. Every published application configuration
have their own URI that is used during the generation of a URL to share the
visualization.

8.1.4 Sharing the Application
As the final step of this user-story based interaction flow, John either embeds
the application into his website or shares the link to his application with Bob.
The screenshot on Figure 8.10 demonstrates the resulting published application
assembled from visualizer configuration stored in John’s Solid POD as an RDF

95

Figure 8.7: Create Application page - Finished pipeline execution.

Figure 8.8: Application Control and Setup webpage.

TTL resource. Additionally, Bob can access the webpage without creating an
official profile inside the LPA platform since it is publically available.

To sum up, this section concludes the user-oriented documentation demon-
strating the most basic interaction flow with LPA platform using LPS package
and React Storage Components.

8.1.5 LPA platform guide
The user-story based guide demonstrated in the previous subsection only covered
the essential functionality of LPA made possible with the use of LPS and Solid.
Another important non-developer documentation resource is the LPA platform
documentation. That documentation was expanded with additional sections cov-
ering functionality, directly and indirectly, involving the interactions with Solid
servers. Each section of the documentation is presented as a detailed video tuto-
rial hosted on YouTube and can be described as follows:

• Create, publish and embed your application 2 a video tutorial guiding users
from start of application visualization creation to the finishing step where
it is stored inside Solid POD, and a published URL is generated using the
URI of the resource from the POD.

2https://docs.applications.linkedpipes.com/tutorials/3.creating_
applications/

96

https://docs.applications.linkedpipes.com/tutorials/3.creating_applications/
https://docs.applications.linkedpipes.com/tutorials/3.creating_applications/

Figure 8.9: Published application configuration inside Solid POD.

• Configuring application and filters 3 a video tutorial demonstrating the con-
figuration of published applications and editing of filter settings as described
in Subsection 5.4.3.

• Adding SOLID contacts, collaborative editing 4 a video tutorial demon-
strated a process of adding new SOLID contacts in an instance of node-
solid-server, and then demonstrates the process of sharing a published app
with other user of the platform user as described in Section 5.4.5.

• Managing platform and user settings 5 a video tutorial demonstrating how
to interact with the storage configuration and the Solid user profile settings
popups.

More detailed and developer-oriented documentation is provided in consecu-
tive chapters.

8.2 Developer documentation
The following section is intended for developers interested in a more in-depth
overview of both LPS package and React Storage Components implemented inside
LPA frontend codebase.

8.2.1 Installation
The following section will provide a set of guidelines covering various use-cases on
trying out the LPS package on a local machine. The installation process depends

3https://docs.applications.linkedpipes.com/tutorials/4.configuring_
published_applications/

4https://docs.applications.linkedpipes.com/tutorials/5.adding_solid_
contacts_sharing/

5https://docs.applications.linkedpipes.com/tutorials/6.misc/

97

https://docs.applications.linkedpipes.com/tutorials/4.configuring_published_applications/
https://docs.applications.linkedpipes.com/tutorials/4.configuring_published_applications/
https://docs.applications.linkedpipes.com/tutorials/5.adding_solid_contacts_sharing/
https://docs.applications.linkedpipes.com/tutorials/5.adding_solid_contacts_sharing/
https://docs.applications.linkedpipes.com/tutorials/6.misc/

Figure 8.10: Published and publicly accessible application accessed via Share
URL.

on two separate use-cases. First, it relies on simply trying to use the LPS npm
package. Second, relies on installing the whole LPA platform to interact with
Solid.

LPS package

It is important to note that this installation guide is not entirely generic for
any Solid application. However, the AuthenticationManager and FileManager
abstractions provide a generic functionality to be utilized in majority of Solid app
development use-cases that involve authentication and interaction with resources
inside the POD. The following prerequisites are required in order to install the
LPS package on a local machine:

• Node.js v10.15.x and higher 6. The LPS is distributed via npm, therefore
a proper version of Node.js and a corresponding package manager are a
required prerequisite.

• yarn v1.19.1 7. Yarn is an alternative package manager similar to npm. Due
to extensive usage of this package manager during development of LPS, the
author recommends it to be used as an alternative to npm.

$ yarn add linkedpipes-storage # if using yarn package manager
or
$ npm install linkedpipes-storage # if using npm

Listing 19: Installing the LPS package locally via yarn or npm.
6https://nodejs.org/en/
7https://yarnpkg.com/en/

98

https://nodejs.org/en/

The code on Listing 19 demonstrates the installation of the package at the
folder from which the command is invoked. In other words, it is assumed that
the package is being installed into a Solid based web app project.

LPA platform

Installation of entire LPA platform is even more straightforward process in con-
trast with LPS package. However, due to the complexity of components inside
the platform, the recommended way to install it is by using Docker. Therefore,
the only required prerequisite is the latest stable version of Docker and Docker
Compose 8.

$ curl https://git.io/fjXIB -o lpa-cli.sh && chmod +x lpa-cli.sh
&& ./lpa-cli.sh --production-no-cloning↪→

Listing 20: Installing the LPA platform locally using docker-compose.

The code snippet on Listing 20 demonstrates the local installation of entire
LPA platform using docker-compose, whose invocation is conveniently wrapped
into a command line interface by LPA developers.

8.2.2 LPS package
The package is source codes are available at public GitHub repository 9 and cor-
responding page on npm 10. The generic documentation on repository README,
as well as on a webpage at npm, includes the installation guide and a quick start
on creating, editing, and deleting resources using a folder as an example.

More detailed and developer oriented documentation is available on repository
GitHub Page 11. The website is generated and published as a part of automated
CI and CD pipeline demonstrated at Figure 7.1. The documentation is gener-
ated using typedoc 12, a documentation generator for TypeScript project. The
codebase is annotated using tsdoc 13, an official TypeScript comment standard
developed by Microsoft.

The typedoc documentation provides the overview of entire LPS project code-
base in the following order:

1. Enumerations description of all enumeration types in codebase.

2. Classes description of all class types in codebase.

3. Interfaces description of all interface types in codebase.
8https://docs.docker.com
9https://github.com/aorumbayev/linkedpipes-storage

10https://www.npmjs.com/package/linkedpipes-storage
11https://aorumbayev.github.io/linkedpipes-storage
12https://github.com/TypeStrong/typedoc
13https://github.com/microsoft/tsdoc

99

https://docs.docker.com
https://github.com/aorumbayev/linkedpipes-storage
https://www.npmjs.com/package/linkedpipes-storage
https://aorumbayev.github.io/linkedpipes-storage
https://github.com/TypeStrong/typedoc
https://github.com/microsoft/tsdoc

4. Variables description of all variable types in codebase.

5. Functions description of all function types in codebase.
Every individual type is expanded into a detailed description of its sub-

elements. For instance, every class type documentation is structured as follows:
1. Constructors description of all class constructors, input parameters and

return values.

2. Properties description of all properties of the class, their types and inheri-
tance hierarchy.

3. Constructors description of all class method, input parameters and return
values.

For more details, refer to the package documentation website listed in the
footnote at the beginning of this section.

8.2.3 Storage Components
The Storage Components documentation is a part of LPA documentation. There-
fore the section will firstly provide a brief description of how the LPA platform
is documented and finally how the Storage Components documentation was in-
tegrated.

There are three main documentation sources provided by LPA platform de-
scribed as follows:

• The platform documentation 14, as mentioned and demonstrated earlier in
Section 8.1, it contains non-developer oriented tutorials, introduces core
concepts of the platform, and provides a detailed set of video tutorials
demonstrating the available feature. This documentation was expanded by
including interactions with storage components. The corresponding video
tutorials were recorded to illustrate and guide users to use and interact with
storage. The static webpage was generated using hugo framework 15.

• The frontend documentation 16 contains developer-oriented guideline over
frontend components of the platform generated using docz 17. Provide the
main installation, quick start, and interactive documentation of selected
components of the platform. Each of the interactive components can be
immediately forked into codesandbox environment 18 and tested in an on-
line web IDE environment.

• The backend documentation 19 contains developer-oriented guideline over
backend components of the platform generated using orchid 20. No ad-
ditional documentation for LPS related code was added since no changes
were required on the backend component side.

14https://docs.applications.linkedpipes.com
15https://gohugo.io
16https://docs.frontend.applications.linkedpipes.com
17https://www.docz.site
18https://codesandbox.io
19https://docs.backend.applications.linkedpipes.com
20https://orchid.run

100

https://docs.applications.linkedpipes.com
https://gohugo.io
https://docs.frontend.applications.linkedpipes.com
https://www.docz.site
https://codesandbox.io
https://docs.backend.applications.linkedpipes.com
https://orchid.run

For references to a so-called Admin documentation and information on hosting
the LPA instance using LPS refer to project GitHub repository 21.

Expanding frontend documentation

As mentioned earlier in the section, the frontend documentation was created us-
ing docz framework, which relies on a special markdown syntax called MDX 22. It
allows for combining the advantages of generic markdown syntax and JavaScript
code snippets. Therefore, inside the frontend codebase, each component repre-
senting the individual platform webpage had an MDX file added, having the same
name as the JSX component file. Later on, the docz framework automatically
assembles the static HTML pages based on the declared MDX files describing
components.

The following Storage Components were added into general frontend docu-
mentation by implementing the corresponding MDX files:

• StoragePage represents a set of components rendered into a Storage Dash-
board. The documentation includes the structure of stateful and stateless
components that are associated with the webpage. The main properties
passed to the components are also described. Lastly, a live instance of that
webpage is rendered inside the documentation webpage, allowing developers
to interact with the component.

• SettingsPage represents both user profile and storage control settings pages.
The documentation includes the structure of stateful and stateless compo-
nents that are associated with the webpage and main properties used by
those components.

The frontend documentation also contains the dedicated section describing the
Storage Components in general and provides several references to Solid toolset
that was used as well as the LPS package. For more details, refer to the package
documentation website listed in the footnote at the beginning of this section.

21https://github.com/linkedpipes/applications
22https://mdxjs.com

101

https://github.com/linkedpipes/applications
https://mdxjs.com

Conclusion
To summarize, in the following work implements a multipart decentralized storage
solution for LPA platform based on Solid project. The term multipart reffers to
implementation of the LPS npm package, the LPS Ontology used to represent
LPA visualizer configurations as RDF files and lastly, a set of Storage Components
implemented in LPA frontend.

An overview of related tools in Chapter 2 provided a set of software technolo-
gies alternative to Solid. The chapter also provided a comparison table described
in Subsection 1.3.2 that demonstrated benefits of choosing Solid as a core storage
technology for LPA platform.

An analysis and description of LPA requirements and Solid development
toolset in Chapter 3 defined the main practical tasks to be achieved by LPS
as well as to which Solid libraries and frameworks to utilize in implementatioin.
The final reasoning expanding the conclusion from Chapter 2 on choosing solid
was provided at the end of the chapter in Section 3.4.

Based on the performed analysis on Solid and requirements stated by LPA,
Chapter 4 described a detailed overview of a designed architecture of LPS. The
architecture consisted of three main parts. Firstly, the Section 4.2, provided the
design of abstractions for a LPS npm package providing functionality for authen-
ticating (Subsection 4.2.1), operating the resources inside Solid PODs (Subsec-
tion 4.2.2) and managing ACL files (Subsection 4.2.3). Afterwards, the Section 4.3
provided an overview of designed OWL Ontology for representing the LPA vi-
sualizer configurations as RDF resources inside Solid POD as well as describing
the benefits of such approach to storing visualizer data. And lastly, Section 4.4
provided a set of designed user interface mocks complying to stated LPA require-
ments as well as a detailed overview of the functioinality provided by those user
interface components.

Continuing the architecture overview, Chapter 5 described the entire imple-
mentation of the storage functionality and structured similar to the previous
chapter as it implements the designed elements in order with their design and
architecture. The Section 5.1 provided detailed overview of the LPS package
implementation using TypeScript programming language. The Section 5.2 de-
scribed the process of implementing and hosting the designed LPS Ontology
using Protégé and Ontology open-source tools. The Section 5.3 described the
implementation of Storage React components inside the LPA frontend codebase.
The final renders of components were demonstrated in Section 5.4 by iterating
of functional requirements. Lastly, in Section 5.5 an overview of implemented
non-functional requirements was provided. Chapter also clearly demonstrated
that all defined functional and non-functional requirements of LPA were covered
and implemented, thus fulfilling the practical goals of the thesis.

The Chapter 6 demonstrated the improvements introduces to LPA after eval-
uating the platform with fully integrated LPS solution. The chapter also provided
the main results and achievements obtained as a part of the implementation stage
and evaluation process, such as:

• Recognition on official website of the Solid project (Subsection 6.2.1).

102

• Comments and short conversations with Sir Tim Berners-Lee in regards to
questions on Solid specifications asked by author (Subsection 6.2.2).

• Demonstration of user traction over a six month period of continious deliv-
ery of the LPS solution. Positive feedback and recognition by Solid com-
munity members and member of BARTOC organization (Subsection 6.2.3).

A detailed overview of the testing of LPS solution was provided in Chapter 7.
In Section 7.2 a demonstration of how the LPS package itself was unit tested
and automated with Continious Integration and Delivery pipelines using Travis
CI. And lastly, in Section 7.3 an overview of improvements introduced into LPA
automated build pipelines and integration testing of both LPA and LPS solutions
was provided.

The whole LPS solution was thoroughly documented both on the npm pack-
age side as well as by expanding the LPA documentation to include Storage
Components as described in Chapter 8.

8.3 Future work
The Solid ecosystem is constantly expanding in its specifications, community, and
available technological toolset. Throughout fulfilling the goals of the thesis, many
challenges were faced due to the aforementioned constant changes in the Solid
project. Over time once, Solid technology will mature for more advanced produc-
tion level use cases, and the ecosystem of decentralized social applications will
grow. The dependencies such as node-solid-server and solid-auth-client used in
LPS package might require significant updates and refactor. Additionally, by the
time of finishing the practical part of this thesis, several libraries were introduced
by official Solid contributors, including a brand new Solid server implementation
in TypeScript called pod-server 23 aimed to eventually replace the node-solid-
server. Aside from that a library called tripledoc 24 was introduced, aiming
to potentially become the standard library to interact and manage resources in
Solid PODs.

Therefore, potential improvements and future work in LPS package and stor-
age components include the following:

• Gradual refactoring and replacement of node-solid-server. Replacing the
node-solid-server implementation with more stable and actively supported
pod-server implementation could introduce more user-friendly experience
while performing authentication and manipulation of resources inside Solid
PODs.

• Gradual integration of tripledoc into LPS package. As tripledoc potentially
offers the same functionality as the LPS package, the potential future work
includes replacing certain low-level interactions with rdflib and using triple-
doc instead. This can simplify the maintainability of LPS package, simplify
unit-testing, and can potentially make it a generic utility for storing and
managing any configuration ontologies in Solid.

23https://github.com/inrupt/pod-server
24https://vincenttunru.gitlab.io/tripledoc/

103

https://github.com/inrupt/pod-server
https://vincenttunru.gitlab.io/tripledoc/

• Improving collaborative editing. One of the extra features implemented
within the scope of LPS was the ability to share published applications
within users of LPA platform and let them configure the published appli-
cation collaboratively. An improved version of that can include real-time
editing of the resources more robustly, while the current version discards
any simultaneous real-time changes submitted by collaborating users.

• General support of the project. This, of course, assumes the long term
general support of the solution and parts of LPA platform covering the
Storage functionality to keep it up to date with all the latest improvements
and changes introduces in Solid specification.

The ambitious goal of decentralizing the World Wide Web set by Sir Tim
Berners-Lee is yet to demonstrate its benefits and receive a more comprehensive
recognition across non-developer oriented domains and average Internet users.
However, we believe that the fundamental specifications of Solid project that
improves upon established Web Standards, an active and passionate community,
and a developer-friendly environment and tools to builds decentralized social
applications will define the next generation of Internet technologies and make it
more secure and privacy-oriented.

104

Bibliography
[1] Sebastian Ismael Garrido Simon. 30 years on, what’s next #fortheweb?,

2019.

[2] World Wide Web Consortium (W3C). SPARQL 1.1 Query Language, 2013.

[3] W3C. Web Ontology Language (OWL), Nov 2009.

[4] W3C RDF Core Working Group. RDF - Semantic Web Standards, Feb 2014.

[5] Eric Miller and Frank Manola. RDF primer. W3C recommendation, W3C,
February 2004. http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[6] Dan Brickley and Libby Miller. FOAF Vocabulary Specification, 2000.

[7] Andy Seaborne and Eric Prud’hommeaux. SPARQL query lan-
guage for RDF. W3C recommendation, W3C, January 2008.
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[8] Solid. Web Access Control (WAC). Accessed: 2018-10-13.

[9] Jakub Kĺımek, Petr Skoda, and Martin Necaský. LinkedPipes ETL: Evolved
Linked Data Preparation. In The Semantic Web - ESWC 2016 Satellite
Events, Heraklion, Crete, Greece, May 29 - June 2, 2016, Revised Selected
Papers, pages 95–100, 2016.

[10] Jakub Kĺımek, Jiŕı Helmich, and Martin Necaský. LinkedPipes Visualization:
Simple Useful Linked Data Visualization Use Cases. In The Semantic Web
- ESWC 2016 Satellite Events, Heraklion, Crete, Greece, May 29 - June 2,
2016, Revised Selected Papers, pages 112–117, 2016.

[11] Ames Bielenberg, Lara Helm, Anthony Gentilucci, Dan Stefanescu, and
Honggang Zhang. The growth of diaspora - A decentralized online social
network in the wild. In 2012 Proceedings IEEE INFOCOM Workshops, Or-
lando, FL, USA, March 25-30, 2012, pages 13–18, 2012.

[12] Diaspora. Diaspora Decentralized Social Network. Accessed: 2018-11-03.

[13] Max Van Kleek, Daniel Smith, Nigel Shadbolt, and schraefel. A decen-
tralized architecture for consolidating personal information ecosystems: The
WebBox. 01 2012.

[14] Matteo Zignani, Sabrina Gaito, and Gian Paolo Rossi. Follow the
”Mastodon”: Structure and Evolution of a Decentralized Online Social Net-
work. In Proceedings of the Twelfth International Conference on Web and
Social Media, ICWSM 2018, Stanford, California, USA, June 25-28, 2018,
pages 541–551, 2018.

[15] Read-Write Linked Data. A Reference Linked Data Platform server for the
Solid platform, 2015.

[16] Solid. Solid server in NodeJS, 2015.

105

[17] Toby Inkster, Henry Story, and Bruno Harbulot. WebID Authentication over
TLS, 2014.

[18] Solid. Specs for WebID-OIDC decentralized authentication protocol, 2016.

[19] Steve Speicher, John Arwe, and Ashok Malhotra. Linked data
platform 1.0. W3C recommendation, W3C, February 2015.
http://www.w3.org/TR/2015/REC-ldp-20150226/.

[20] Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola
Greco, Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and
Tim Berners-Lee. Solid: A platform for decentralized social applications
based on linked data, 2016.

[21] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba, Sarven
Capadisli, Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee.
A demonstration of the solid platform for social web applications. In Proceed-
ings of the 25th International Conference on World Wide Web, WWW 2016,
Montreal, Canada, April 11-15, 2016, Companion Volume, pages 223–226,
2016.

[22] Natalya Fridman Noy, Monica Crubézy, Ray W. Fergerson, Holger
Knublauch, Samson W. Tu, Jennifer Vendetti, and Mark A. Musen. Protégé-
2000: An open-source ontology-development and knowledge-acquisition en-
vironment: AMIA 2003 open source expo. In AMIA 2003, American Medical
Informatics Association Annual Symposium, Washington, DC, USA, Novem-
ber 8-12, 2003, 2003.

[23] Ahmad Alobaid, Daniel Garijo, Maŕıa Poveda-Villalón, Idafen Santana-
Pérez, and Óscar Corcho. Ontoology, a tool for collaborative development
of ontologies. In Proceedings of the International Conference on Biomedical
Ontology, ICBO 2015, Lisbon, Portugal, July 27-30, 2015, 2015.

[24] Erik Rasmussen. Ducks: Redux Reducer Bundles, 2015.

[25] Sarven Capadisli, Amy Guy, Christoph Lange, Sören Auer, Andrei Vlad
Sambra, and Tim Berners-Lee. Linked data notifications: A resource-centric
communication protocol. In The Semantic Web - 14th International Confer-
ence, ESWC 2017, Portorož, Slovenia, May 28 - June 1, 2017, Proceedings,
Part I, pages 537–553, 2017.

[26] James Snell and Evan Prodromou. Activity Streams 2.0. World Wide Web
Consortium, Working Draft WD-activitystreams-core-20150722 (July 2015),
2017.

106

List of Figures

1.1 Official LPA logo designed by author as a part of separate contri-
bution into the software project. 11

1.2 A sample user story describing usage of LPA platform 12
1.3 High-level overview of LPA platform 13

3.1 A UML use-case diagram describing user authentication requirement. 21
3.2 A UML use-case diagram describing creation, storing and publish-

ing application requirements. 22
3.3 A UML use-case diagram describing requirements on storage man-

agement and sharing of published application. 23

4.1 High level overview of LPA and LPS interactions 29
4.2 Main abstractions of LPS. 31
4.3 Sequence diagram for authenticate operation invoked from LPA

frontend. 32
4.4 Sequence diagram for POST resource operation invoked from Stor-

ageFileManager. 34
4.5 Sequence diagram for GET resource operation invoked from Stor-

ageFileManager. 34
4.6 Sequence diagram for a complex operation to rename a particular

resource in StorageFileManager. 35
4.7 Sequence diagram for a complex operation to delete a particular

resource in StorageFileManager. 37
4.8 A higher level class diagram of classes contained within Storage-

FileManager abstraction. 38
4.9 A higher level class diagram of classes contained within Storage-

FileManager abstraction. 39
4.10 A class hierarchy visualization of LPA vocabulary. 40
4.11 A formal representation of LPA configurations expressed as RDF

files using the LPS vocabulary. 41
4.12 React container abstraction decomposition following LPS design

conventions. 43
4.13 Mock UI for Authentication webpage in LPA Frontend. 43
4.14 Mock UI for Storage Dashboard webpage in LPA Frontend. 44
4.15 Mock UI for Storage Dashboard webpage in LPA Frontend. 45

5.1 Official LPS package logo designed by author. 46
5.2 A diagram demonstrating the process of transpilation of LPS pack-

age and bundling LPA frontend with Webpack 47
5.3 A class diagram generated directly from a TypeScript file, demon-

strating an implemented AuthenticationManager abstraction . . . 49
5.4 A class diagram generated directly from a TypeScript file, demon-

strating an implemented FileManager abstraction 50
5.5 A class diagram generated directly from a TypeScript file, demon-

strating implemented ResourceConfig class and SolidResource in-
terface . 54

107

5.6 A class diagram generated directly from a TypeScript file, demon-
strating implemented AccessControlConfig and AccessControlState-
mentConfig extending ResourceConfig 57

5.7 Official LPS Ontology logo designed by author. 59
5.8 Example UI of Protégé ontology editor at Active Ontology tab. . 60
5.9 UI of Ontoology displaying the processed repository with LPS On-

tology. 61
5.10 General architecture of Redux store and React components within

frontend . 62
5.11 Diagram representing the chain of render() method invocations

among components representing Storage Dashboard. 67
5.12 The final render of an Authentication View webpage 69
5.13 And example of the providers dropdown in expanded state. 69
5.14 Example of a login popup provided by Solid server. 70
5.15 Example of a register popup provided by Solid server 70
5.16 The User Profile webpage with options to reset or logout from Solid

provider. 70
5.17 The global control toolbar of LPA platform. The logout button

allows to quickly logout from authenticated Solid provider. 70
5.18 A part of Create Application page that invokes creation and pub-

lishing of an application. 71
5.19 A popup presented after configuration is stored and a published

URL is ready to be shared. 73
5.20 A popup presented after user pressed Rename button. 75
5.21 Option to invoke the deletion confirmation popup on Application

Control and Setup web page . 76
5.22 Popup displayed before removing published application configura-

tion. 76
5.23 A user interface components to interact with filters available for a

visualizer. 76
5.24 A final render of Storage Control Panel component. 78
5.25 Access control configuration popup for published application. . . . 79
5.26 A sequence diagram of implemented sharing functionality for col-

laborative editing. 80
5.27 An inbox dialog popup with two new invitations to collaborate on

application. 81
5.28 A shared visualizer card displayed to recipient in his Storage Dash-

board after he accepts the invitation. 81

6.1 Listing of LPA platform on official Solid project website. 85
6.2 One of multiple interactions with creator of Solid on Solid commu-

nity chat. 86
6.3 Google Analytics traction of users of test LPA platform instance

over a period of six months. 86
6.4 Feedback, views and comments on for LPA launch on official Solid

community forum. 86

7.1 A detailed overview of CI and CD pipeline interaction for LPA and
LPS. 91

108

8.1 The Dashboard page displayed after successfull authentication into
LPA platform. 93

8.2 An access control popup displayed on latest NSS instances. 93
8.3 Template data sources provided by LPA platform. 94
8.4 Create Application page. 94
8.5 Create Application page - Choose Visualizer. 95
8.6 Create Application page - Executing pipeline. 95
8.7 Create Application page - Finished pipeline execution. 96
8.8 Application Control and Setup webpage. 96
8.9 Published application configuration inside Solid POD. 97
8.10 Published and publicly accessible application accessed via Share

URL. 98

109

List of Tables

2.1 A comparison table between Solid and alternative technologies
with similar concepts. 19

110

Acronyms
ACL Access-Control List. 10

API Application Programming Interface. 14, 15

BARTOC Basel Register of Thesauri, Ontologies and Classifications. 86

CRUD Create Read Update Delete. 30

ETL Extract, Transform and Load. 15

FOAF Friend of a Friend. 8

JSON-LD JavaScript Object Notation for Linked Data (syntax). 8

LDN Linked Data Notifications. 80

LDP Linked Data Platform. 32

LDP-BC Linked Data Platform Basic Container. 33

LDPR Linked Data Platform Resource. 33

LOV Linked Open Vocabularies. 5

LPA LinkedPipes Applications. 5, 20

LPS LinkedPipes Storage. 5

MIME Multipurpose Internet Mail Extensions. 7

ORDBMS Object-relational database management system. 15

OWL Web Ontology Language. 7

POD Personal Online Dataspace. 10

RDBMS Relational database management system. 15

RDF Resource Description Framework. 7

SPARQL SPARQL Protocol and RDF Query Language. 7

TLS Transport Layer Security. 26

TTL Turtle (syntax). 8

URI Uniform Resource Identifier. 7

URL Uniform Resource Locator. 61

W3C World Wide Web Consortium. 5

111

A. Online sources
• https://github.com/aorumbayev/linkedpipes-storage - LPS GitHub

repository.

• https://www.npmjs.com/package/linkedpipes-storage - LPS npm web
page.

• https://aorumbayev.github.io/linkedpipes-storage/ - LPS develo-
per documentation.

• https://git.io/JeQSk - LPS Ontology GitHub repository.

• https://w3id.org/def/lpapps - LPS Ontology documentation.

• https://github.com/aorumbayev/solid_diploma_thesis - source texts
of thesis work in LaTeX, compatible with Overleaf.

112

https://github.com/aorumbayev/linkedpipes-storage
https://www.npmjs.com/package/linkedpipes-storage
https://aorumbayev.github.io/linkedpipes-storage/
https://git.io/JeQSk
https://w3id.org/def/lpapps
https://github.com/aorumbayev/solid_diploma_thesis

	Preliminaries
	Semantic Web
	RDF
	SPARQL

	Solid
	LPA
	Platform description
	Components overview
	LinkedPipes Services

	Related work
	Diaspora
	WebBox
	OwnCloud
	Mastodon
	Hubzilla
	Centralized cloud storage solutions
	Pitfals of centralized cloud storages

	Comparison of technologies

	Analysis
	Functional requirements
	User authentication
	Create, Store and Publish Application
	Managing storage and sharing published applications

	Non-functional requirements
	Compatibility with latest tools
	Clean APIs and libraries
	Continuous Integration and Delivery
	Easy integration with LPA
	Decentralized storage

	Solid development toolset
	The Solid servers
	The Solid React development stack

	Why Solid?

	Architecture
	High-Level Overview
	Storage
	Authentication Manager
	File Manager
	Access Control Manager

	LinkedPipes Applications Ontology
	Using Web Ontology Language

	Storage Component Design
	Designing React Components
	Authentication View
	Storage Dashboard
	Storage Control Panel

	Implementation
	Storage Package
	Preliminaries
	Authentication Manager
	File Manager
	Access Control Manager

	Hosting Storage Ontology
	Preliminaries
	Using Protégé
	Using Ontoology

	Storage Frontend
	Preliminaries
	Storage folder structure
	Authentication View
	Storage Dashboard
	Storage Control Panel

	Implemented functional requirements
	User Authentication
	Create, Store and Publish Application
	Configuring Application
	Storage Management
	Visualizer Access Control

	Implemented non-functional requirements
	Compatibility with latest tools
	Clean APIs and libraries
	Continuous Integration and Delivery
	Easy integration with LPA
	Decentralized storage

	Evaluation
	Benefits of Solid
	ACL managed applications
	Everything is an RDF resource
	Provider agnostic storage

	Results and achievements
	Recognition on official Solid website
	Comments from Sir Tim Berners-Lee
	User traction on LPA platform

	Testing
	Technologies used
	Unit testing
	Continious Integration and Delivery
	Using Travis CI
	Integration testing in LPA

	Documentation
	User documentation
	Creating Account
	Creating Application
	Publishing application
	Sharing the Application
	LPA platform guide

	Developer documentation
	Installation
	LPS package
	Storage Components

	Conclusion
	Future work

	Bibliography
	List of Figures
	List of Tables
	Acronyms
	Online sources

