
MASTER THESIS

Marzia Cutajar

RDF Data Querying in Multi-Model
NoSQL Databases

Department of Software Engineering

Supervisor of the master thesis: RNDr. Martin Svoboda, Ph.D.
Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date

i

Niddedika dan it-teżi lill-gℏażiża nanna tiegℏi Lela, li ℏalliet din id-dinja fit-8 ta’
Diċembru 2017.

ii

I would like to thank everyone who helped me in any way while writing this
master’s thesis.

Firstly, I thank my supervisor Martin Svoboda for his guidance and contribution
to the writing process.

Secondly, I would like to thank my family and friends for supporting me during
my studies. I especially thank my dear mother Gertrude for always inspiring me
and believing in me. I would not be here without her.

Finally, I thank my boyfriend Dario for his patience and words of encouragement
during the stressful times.

iii

Title: RDF Data Querying in Multi-Model NoSQL Databases

Author: Marzia Cutajar

Department: Department of Software Engineering

Supervisor: RNDr. Martin Svoboda, Ph.D., Department of Software Engineering

Abstract: The RDF framework has gained popularity in recent years, as it makes
semantic data easily accessible and queryable on the Web. However, RDF data
management systems are facing certain challenges, particularly that of scalabil-
ity. NoSQL databases, which are known for their ability to store large amounts of
unstructured data, could be exploited for this purpose to gain more efficient sys-
tems. Even more interesting would be the use of Multi-Model NoSQL databases,
which incorporate several different data models within a single database man-
agement system, and were created as a response to Polyglot Persistence and its
challenges. As of yet, semantic data is not well supported in such database sys-
tems. In this thesis, we present approaches for transforming and storing RDF
data within the Multi-Model database ArangoDB, as well as propose a query
transformation algorithm that enables us to query RDF data in ArangoDB using
SPARQL. The functionality of these data transformation and query transforma-
tion algorithms is experimentally evaluated on sample data and queries, using
our prototype implementation.

Keywords: RDF, Multi-Model databases, NoSQL, ArangoDB, SPARQL

iv

Contents

Introduction 5

Context . 5

Motivation . 5

Research Questions . 6

Thesis Outline . 6

1 Background 8

1.1 Semantic Web . 8

1.1.1 Linked Data . 8

1.1.2 RDF . 9

1.1.3 RDF Formats . 11

1.1.4 Ontologies . 13

1.1.5 SPARQL . 13

1.2 Triplestores . 14

1.2.1 OpenLink Virtuoso Universal Server 15

1.3 NoSQL Databases . 15

1.3.1 NoSQL data models . 15

1.3.2 JSON . 16

1.4 Multi-Model Databases . 17

1.4.1 OrientDB . 17

1.4.2 ArangoDB . 18

2 Preliminary Definitions 22

2.1 RDF . 22

2.2 JSON . 22

2.3 ArangoDB . 23

1

3 Related Work 24

3.1 RDF Data Storage in ArangoDB 24

3.2 RDF Data Querying in Relational databases 27

3.3 RDF Data Querying in NoSQL databases 28

4 SPARQL Algebra 32

4.1 Basic Definitions . 32

4.2 Algebra Operators . 35

4.2.1 Basic Operators . 35

4.2.2 Solution Modifiers . 37

4.3 Evaluation of SPARQL query parts 38

4.4 SPARQL Algebra Tree . 40

5 ArangoDB AQL 44

5.1 Syntax and Semantics of AQL queries 44

5.2 AQL Query Tree . 48

6 Modelling RDF data in ArangoDB 54

6.1 Basic Approach . 54

6.2 Graph Approach . 56

7 Transforming SPARQL query to AQL query 60

7.1 Transformation Phases . 60

7.2 Modifying the SPARQL algebra tree 60

7.3 Variable Binders . 62

7.4 Generating the AQL query expression 66

7.4.1 BGP node . 67

7.4.2 SolutionTable node . 75

7.4.3 Join node . 75

2

7.4.4 Minus node . 76

7.4.5 LeftJoin node . 79

7.4.6 Union node . 82

7.4.7 Filter node . 84

7.4.8 Extend node . 85

7.4.9 Order node . 86

7.4.10 Project node . 87

7.4.11 Distinct node . 88

7.4.12 Slice node . 88

7.4.13 SPARQL expression tree 89

7.5 Transforming the AQL query result 94

7.6 Other Optimization Considerations 95

8 Implementation 96

8.1 Technologies . 96

8.1.1 Java . 96

8.1.2 Apache Jena . 96

8.1.3 ArangoDB Java Driver . 97

8.2 RDF data transformation tool . 97

8.3 SPARQL-to-AQL query transformation tool 98

8.3.1 Processing the query . 98

9 Evaluation 100

9.1 Experiments . 100

9.2 Performance . 101

Conclusion 104

Future Work . 104

3

Bibliography 106

List of Figures 111

List of Tables 113

List of Abbreviations 114

Appendix A Queries used for evaluation 115

4

Introduction

Context

The adoption of the Linked Data paradigm and the RDF [33] format has grown
significantly over the past decade. The Linked Data paradigm promotes the
publishing of semantically enriched data on the Web through the use of self-
describing data and interlinking based on associating globally unique identifiers
of data.

Even though RDF data is gaining wider acceptance, there are still challenges that
come with the practical use of RDF. RDF data management systems are facing
two challenges, namely system scalability and dealing with the generality of the
data, the former being a particularly pressing issue [72]. Working with RDF
graphs, which are typically highly connected and distributed, results in matching
and querying large volumes of data, thus highlighting the scalability problem.

Larger amounts of data have pushed the development of solutions for handling
Big Data, such as Hadoop [6]. To further improve the handling of data that
exists in a variety of formats, NoSQL database systems have emerged, offering
flexibility due to not enforcing the type and structure of stored data. This is in
contrast to traditional relational database systems.

Moreover, not only because of the variety of Big Data, choosing a suitable logical
data model as well as a particular database system for a given project became
difficult. This led to the idea of so-called Polyglot Persistence [68], where mul-
tiple databases can be used within a single application. This concept is further
addressed by Multi-Model NoSQL databases, incorporating several different data
models even within a single database system.

Motivation

With ever-growing amounts of data being stored, the need to store it as descrip-
tively as possible has become even more important. By using semantic data
formats like RDF to describe and store data, the data in itself contains the value
definition and data type. The RDF description makes it easier to use data for
analytical purposes as the data does not need to be transformed or standardized
before use.

The increasing amount of data and the variety of data formats have been the
reason for the increase in popularity of NoSQL database management systems
and their adoption, since they are able to store large amounts of unstructured
data. The availability of many NoSQL database management systems as open-
source solutions is another factor that contributed to their popularity.

5

In particular, semantic data is one of the data types that are not yet well sup-
ported in NoSQL and Multi-Model database systems. While contemporary RDF
stores are often based on the underlying relational model and are facing not
just scalability challenges, the flexibility of NoSQL databases could be exploited
for this purpose to gain more efficient systems. Thus, Multi-Model and NoSQL
databases have the potential of handling massive amounts of RDF data.

Research Questions

The scope of this thesis is to investigate the possibility of using a recently emerged
NoSQL Multi-Model database, ArangoDB [10], to store and represent RDF data,
as well as the possibility of querying RDF data stored in ArangoDB using the
standard RDF querying language called SPARQL. This requires analyzing exist-
ing approaches for the storage and retrieval of RDF data within Multi-Model or
core NoSQL database systems.

The purpose of this thesis is to develop novel approaches to store and query RDF
data within a Multi-Model NoSQL database management system, thus making
use of a storage solution that has the potential of better handling the scalability
challenges traditional RDF stores are facing.

The main goal is to develop an algorithm that translates a SPARQL query ex-
pression into a query expression in the native query language of ArangoDB, which
is AQL. Its prototype implementation will then be experimentally evaluated in
order to demonstrate its properties and usability.

Based on the above-described purpose of this thesis, the following research ques-
tions are explored:

• How can the RDF data model be represented within the multi-model,
NoSQL database management system ArangoDB?

• How can RDF data that is stored within ArangoDB be queried using
SPARQL?

• How well do the suggested solutions for storing and querying RDF data in
ArangoDB perform compared to existing RDF stores?

Thesis Outline

The remaining parts of the thesis are structured into the following chapters.

Chapter 1 contains general background information required for the thesis. It
describes RDF data as well as NoSQL and Multi-Model databases. This chapter
also introduces the multi-model database ArangoDB, on which the research is
based.

6

Chapter 2 contains preliminary formal definitions for components of RDF, JSON,
and ArangoDB, required as a basis for other definitions in consecutive chapters.

Chapter 3 provides overviews of research papers and studies related to the topic
of this thesis.

Chapter 4 gives a formal definition of the SPARQL algebra, also describing the
constructs used in a SPARQL query. We also define the structure of a SPARQL
algebra tree and its nodes.

Chapter 5 introduces the query language of ArangoDB, AQL, giving details of its
constructs and syntax. We also formally define a tree structure for representing
an AQL query expression, called an AQL query tree.

Chapter 6 defines and describes our two approaches for transforming and storing
RDF data in ArangoDB, and provides reasons for the chosen approaches.

Chapter 7 describes our approach for transforming a SPARQL query into an AQL
query. It gives a detailed explanation of each transformation step, together with
sample transformations for better understanding.

Chapter 8 describes the prototype implementation of our proposed transformation
algorithms.

Chapter 9 presents the evaluation results for our prototype implementation, ex-
perimentally evaluated on sample data and queries.

Finally, we conclude the thesis with a discussion of the main findings, limitations,
and contributions of the study. Moreover, recommendations for future work are
presented and discussed.

7

1. Background

This chapter provides some background information related to the topic of this
thesis and the technologies used. Specifically, we introduce and describe impor-
tant semantic technologies such as RDF and SPARQL. We also describe the com-
ponents, features and use cases of NoSQL and Multi-model databases, focusing
on our database of interest ArangoDB.

1.1 Semantic Web

The Semantic Web [46] is an extension of the World Wide Web (WWW) [48] as
envisioned and standardised by the World Wide Web Consortium (W3C) [45],
and is essentially considered to be a Web of Linked Data.

The term “Semantic Web” was coined by Tim Berners-Lee [49], the inventor of
the WWW and director of the W3C. The idea behind it is to insert machine-
readable metadata about web pages and how they are related to each other. This
data can take the form of meta tags that are simply appended to the HTML of
a website. However, HTML has its limitations, which led to the creation of new
solutions and technologies specifically made with the Semantic Web in mind, for
example the Resource Description Framework (RDF) [33]. Such technologies can
be combined in order to provide data that supplements or replaces the content
of Web documents.

Semantic Web standards promote common data formats and exchange protocols
on the Web, thus providing a common framework that allows data to be shared
and reused across applications, systems, and enterprises.

Semantic Web technologies enable people to create data stores on the Web and
define vocabularies and rules for describing and handling different data and the
relationships between them. These technologies allow a better and more auto-
matic interchange of data.

1.1.1 Linked Data

Linked Data is structured data that is interlinked with other related data over
the Web for useful semantic querying.

Linked data that is freely available for everyone to access and reuse is called Linked
Open Data (LOD), and enriches the Linked Open Data Cloud (LOD Cloud) [44].
A small part of the LOD Cloud is pictured in Figure 1.1. There are ever-increasing
sources of LOD on the Web, together with data services that may be restricted
to the suppliers and consumers of those services.

8

Figure 1.1: Part of the LOD Cloud [44]

Linked Data is about the use of URIs as names for things, the ability to deref-
erence these URIs to get further information about them, and to include links
to other URIs when publishing data on the Web. This creates an interconnected
network of machine-processable, discoverable data.

1.1.2 RDF

RDF is a standard format for data interchange on the Web. It is particularly
used for specifying relationships between resources on the Web, thus providing
the foundation for linking and publishing data.

The RDF data model is based on the idea of creating statements about Internet
resources in the subject-predicate-object form. In RDF terminology, these sen-
tences are called RDF triples. The subject defines the described resource. The
predicate describes a characteristic of the resource and expresses the relation be-
tween the subject and the object. The object stores the value of this relation. A
graphical representation of an RDF triple is shown in Figure 1.2.

Figure 1.2: Graphical representation of an RDF triple

The basic components of the RDF model relate to the resources. The elements are
composed of three disjoint subsets: Internationalized Resource Identifiers (IRIs),
blank nodes, and literals [33].

9

An IRI is a global identifier that may be used to uniquely identify a resource.

Blank nodes are used for marking resources for which the IRI is not given. They
represent resources which we are not able to, do not want to or simply cannot be
referenced using a globally unique IRI.

Literals are used for representing values such as strings, numbers, and dates. A
literal l is made up of two or three components:

• value(l) = a lexical value in the form of a Unicode string
• datatype(l) = a data type identified by an IRI, which determines how the

lexical value can be mapped to the actual value
• lang(l) = a language tag, if and only if datatype(l) = http://www.w3.org/

1999/02/22-rdf-syntax-ns\#langString, otherwise it is undefined.

The subject of an RDF triple can be either an IRI or a blank node, the predicate
must be an IRI, and the object can be an IRI, blank node, or literal.

An RDF graph is made up of a set of RDF triples. In an RDF graph, the subject
and object of a triple are represented as vertices, while the predicate of the triple is
represented as a directed edge connecting the subject vertex to the object vertex.

An RDF Dataset is made up of one Default Graph and zero or more Named
Graphs. A Default Graph is an RDF graph that does not have a name and can
be empty, while a Named Graph is an RDF graph that is identified by a name,
where the name is an IRI.

There are multiple different reasons why one might want to group RDF triples
into a named graph instead of storing them in the default graph. For example, it
can help to track the provenance of RDF data, or it can simply be a convenient
way of sorting the triples.

Listing 1.1 shows a serialization of an RDF Dataset made up of the default graph
containing two triples, and two named graphs identified by the IRIs
http://example.org/persons and http://example.org/places. The syntax
of this RDF data serialization is explained in 1.1.3.

@prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>.
@prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema#> .
@prefix foaf: <http :// xmlns.com/foaf /0.1/ > .
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .
@prefix schema : <http :// schema .org/> .
@prefix ex: <http :// example .org/> .

default graph
ex: persons rdfs:label "Graph of people " .
ex: places rdfs:label "Graph of geographical places "

named graph http :// example .org/ persons
ex: persons
{

10

ex: Maria_Cassar rdf:type foaf: Person ;
foaf: firstName "Maria" ;
foaf: lastName " Cassar " ;
schema : birthPlace ex:Malta ;
schema : address _: maria_cassar_address ;
foaf:knows ex: Jaroslav_Svoboda .

_: maria_cassar_address rdf:type schema : postalAddress .

ex: Jaroslav_Svoboda rdf:type foaf: Person ;
foaf: firstName " Jaroslav " ;
foaf: lastName " Svoboda " ;
schema : birthPlace ex: Czech_Republic .

}

named graph http :// example .org/ places
ex: places
{

ex: Prague rdf:type schema :City ;
rdfs:label " Prague "@en ;
rdfs:label "Praha"@cs ;
schema : containedInPlace ex: Czech_Republic .

ex:Malta rdf:type schema : Country ;
rdfs:label "Malta"@en .

ex: Czech_Republic rdf:type schema : Country ;
rdfs:label "Czech Republic "@en ;
rdfs:label "Česk á Republika "@cs ;
ex: capitalCity ex: Prague .

}

Listing 1.1: Sample RDF Dataset serialized in TriG

1.1.3 RDF Formats

RDF data can be represented using different serialization formats. The most com-
mon format is RDF/XML [38] which represents data in XML syntax. Two other
well-known formats are N-Triples [35] and Turtle [37], which are more human-
readable formats than RDF/XML. These formats are semantically equivalent and
can be converted into one another using RDF translation tools.

Turtle allows writing RDF in a compact and natural text form, with abbreviations
for common usage patterns. In Turtle, IRIs have to be enclosed between angle
brackets. In addition, they can also be written relatively, since Turtle allows
defining bases and prefixes in order to refer to IRIs using a more human-readable
shortened form. Blank nodes are expressed as : followed by a blank node label,
and repeated usage of the same blank node label identifies the same blank node.
However, blank nodes can also appear in an unlabelled form by using square

11

brackets in the subject or object position of a triple.

The lexical value of a literal is written between double quotation marks. To
specify the data type of a literal, two circumflexes followed by an IRI are appended
to the plain literal value, making it a typed literal. Moreover, a language tag can
also be specified using the @ symbol.

Finally, Turtle provides ways to compact RDF triple statements. This is useful
because the same subject is often referenced by several different predicates, and
the same subject can also be linked to several different objects by the same pred-
icate. Turtle allows making lists of predicate-object pairs for the same subject,
by using a colon to repeat the subject of triples. Similarly, a comma can be used
to repeat subject-predicate pairs for triples differing only in their objects. An
example of RDF data serialized using Turtle is given in Listing 1.2.

Another useful syntax is TriG [36], an extension of the Turtle format allowing the
serialization of named graphs and RDF datasets. An example of an RDF dataset
serialized using TriG can be seen in Listing 1.1. This dataset contains the same
triples serialized using Turtle in Listing 1.2, but split into different RDF graphs.

In TriG, the triple statements making up an RDF graph are enclosed within
curly brackets, and a label identifying the graph is placed before the opening
curly bracket. This is called a graph statement, where the label is the IRI of the
named graph. The label of a graph statement may be omitted, in which case
the graph is considered to be the default graph of the RDF Dataset. In a TriG
document, the same graph IRI or blank node may be used as the label for more
than one graph statement. In this case, the union of all the triples within these
graph statements gives the whole set of triples within the graph identified by the
given label.

@prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>.
@prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema#> .
@prefix foaf: <http :// xmlns.com/foaf /0.1/ > .
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .
@prefix schema : <http :// schema .org/> .
@prefix ex: <http :// example .org/> .

ex: Maria_Cassar rdf:type foaf: Person ;
foaf: firstName "Maria" ;
foaf: lastName " Cassar " ;
schema : birthPlace ex:Malta ;
schema : address _: maria_cassar_address ;
foaf:knows ex: Jaroslav_Svoboda .

ex: Jaroslav_Svoboda rdf:type foaf: Person ;
foaf: firstName " Jaroslav " ;
foaf: lastName " Svoboda " ;
schema : birthPlace ex: Czech_Republic .

_: maria_cassar_address rdf:type schema : postalAddress .

12

ex: Prague rdf:type schema :City ;
rdfs:label " Prague "@en ;
rdfs:label "Praha"@cs ;
schema : containedInPlace ex: Czech_Republic .

ex:Malta rdf:type schema : Country ;
rdfs:label "Malta"@en .

ex: Czech_Republic rdf:type schema : Country ;
rdfs:label "Czech Republic "@en ;
rdfs:label "Česk á Republika "@cs ;
ex: capitalCity ex: Prague .

Listing 1.2: Sample RDF data serialized in Turtle

1.1.4 Ontologies

On the Semantic Web, ontologies [40], also referred to as vocabularies, define
the terms used to describe and represent some domain. Vocabularies are used
to classify the terms that can be used in a particular application, characterize
possible relationships, and define possible constraints on using those terms.

Some of the most well-known vocabulary definition technologies are RDFS [39],
OWL [30], and SKOS [41]. Using such technologies, it is possible to organize and
enrich data with additional metadata, which allows people as well as machines
to do more with it.

RDF Schema (RDFS) is a general-purpose language for representing simple RDF
vocabularies on the Web. It is used for describing and adding classes, sub-classes,
and properties to RDF resources.

Similar to RDFS, the Web Ontology Language (OWL) allows representing knowl-
edge about things, groups of things, and relations between things. However, OWL
builds on RDFS, providing a far larger and richer vocabulary so that more can
be said about the data.

Simple Knowledge Organization System (SKOS) provides a standard way to rep-
resent knowledge organization systems, such as thesauri, glossaries and classifi-
cation schemes, in the form of RDF data. SKOS is based on OWL and can thus
be considered an OWL ontology.

1.1.5 SPARQL

The SPARQL Protocol and RDF Query Language (SPARQL) [42] is essentially a
pattern matching query language for RDF graphs, and is the query language of
the Semantic Web.

13

The language lets users query RDF data in data sources, whether the data is
stored natively as RDF or viewed as RDF through the use of middleware. Gen-
erally, the user does not need to be aware if middleware is being used. SPARQL
queries can be run on an RDF data source through a SPARQL endpoint, which
acts as a sort of interface for query execution over the data.

The SPARQL language is mainly built around triple patterns, used to select
triples from the RDF dataset being queried. Of course, the language is made
up of other constructs as well, which are somewhat similar to constructs in the
Structured Query Language (SQL) used in relational databases.

Although the SPARQL language offers the possibility to update data [43], only
the data retrieval aspect is considered in this thesis.

SPARQL provides four query forms for querying RDF data, these being SELECT,
CONSTRUCT, DESCRIBE, and ASK. All these query forms work with the same prin-
ciple of sub-query pattern matching. They differ only in the type of result they
return and the way the result is presented, that is the data format.

A SELECT query returns tabular data, a CONSTRUCT or DESCRIBE query returns
an RDF graph, and an ASK query returns a boolean value. Moreover, many
SPARQL endpoints allow selecting the data format used to serialize the result,
such as XML, CSV, and so on.

The SPARQL components and algebra are explained and defined in Chapter 4.

1.2 Triplestores

A triplestore or RDF store is a database built purposely for the storage and
retrieval of RDF triples through SPARQL queries.

Triplestores can be broadly classified into three categories. These are native
triplestores, RDBMS-backed triplestores, and NoSQL-backed triplestores.

Native triplestores are those that are implemented from scratch for storing RDF
data and exploit the RDF data model to efficiently store and access the data.
Some examples of such triplestores are Apache Jena TDB [9], AllegroGraph [3],
4Store [1] and RDF4J [18].

RDBMS-backed triplestores are built by adding an RDF-specific layer to an ex-
isting Relational Database Management System (RDBMS). IBM DB2 [19] and
Virtuoso [28] are examples of this type of triplestore.

NoSQL-backed triplestores are RDF stores built on existing NoSQL databases.
For example, CumulusRDF [16] is built on top of Cassandra [5]. One can also find
a large amount of research about using other NoSQL databases as RDF stores.
Some of this research is presented and described in Chapter 3.

14

1.2.1 OpenLink Virtuoso Universal Server

OpenLink Virtuoso [28] is one of the most popular RDF stores, available in both
open-source as well as commercial editions. It provides SQL, XML, as well as
RDF data management. Triplestore access is available via SPARQL, ODBC [23],
JDBC [21] and ADO.NET [2], among others.

DBPedia, one of the biggest and most well-known datasets forming part of the
LOD Cloud, uses Virtuoso to store and provide user access to the data.

1.3 NoSQL Databases

NoSQL databases have been designed to address the problems of voluminous,
multi-source and multi-format data processing in Big Data environments.

Although SQL systems are still used extensively and are ideal for certain use cases,
such as maintaining transactional or legacy data, they are limited in their ability
to store unstructured or semi-structured data. This is because data stored in
relational databases must fit a predefined schema. This rigid structure also causes
issues in terms of scalability. Due to the need to maintain the integrity of the data,
SQL databases were designed to run on a single server, and are thus vertically
scalable. On the other hand, NoSQL databases scale horizontally, which is a big
advantage that NoSQL databases have over the relational databases, although it
can cause complications implied by various aspects of the data distribution.

We shall now describe the data models used in NoSQL databases, as we refer
to them later when we introduce multi-model NoSQL databases. We also briefly
describe JSON [20] as it is a data format that is used in many NoSQL databases,
including our database of interest ArangoDB.

1.3.1 NoSQL data models

NoSQL databases can be classified into four different types. These are the key-
value, document, graph, and column-oriented models.

Key-value model

In this model, data is represented as simple key-value pairs. The key is a string
whereas the value can be a string, number, an object, etc. Such databases only
provide some simple operations such as get, put and delete.

15

Column-oriented model

In column-oriented NoSQL databases, data is stored in cells grouped in columns
rather than as rows. A column consists of a column name and column value,
thus a record is a collection of columns identified by a unique key. Columns are
logically grouped into column families, such that each column family represents
a group of similar data that is usually accessed together, somewhat like a table
of data.

Document model

This model could be viewed as an extension of the key-value model, such that
the value is a JSON or XML document. Each key is associated with a document
whose structure remains free. The advantage of this model is the ability to retrieve
a set of hierarchically structured information via a single key whereas the same
operation on a relational database could involve several joins.

Graph model

This model of data representation is based on graph theory, where data is rep-
resented as nodes and edges between them representing some connection, with
properties on those nodes and edges. A graph-oriented database can be con-
sidered an object-oriented database, facilitating the representation of real-world
things.

1.3.2 JSON

JavaScript Object Notation (JSON) is a lightweight data-interchange format that
is easy and quick for machines to process and generate. It is a text format that
is language-independent but uses conventions that are familiar to programmers
of the C-family of languages.

It originated as the data representation format in JavaScript, the programming
language of the Web. Due to its simple yet expressive structure, JSON has
quickly expanded beyond the Web into applications and services. Nowadays,
JSON is displacing the more complex XML format as the serialization format for
exchanging semi-structured data between applications.

Many NoSQL document-based database vendors have chosen JSON as their pri-
mary data representation format due to its advantages and widespread adoption.

JSON is mainly built on two structures:

• A collection of attribute-value pairs, called a JSON object.
• An ordered list of values, called a JSON array.

16

The attribute in an attribute-value pair of a JSON object must be a string. The
value can be an atomic value such as a string, number, boolean value, or null
value, or an embedded object or array. The value can also be a nested structure
of such values.

1.4 Multi-Model Databases

A multi-model database is able to store and process structurally different data,
that is data with distinct models, in a single data store. In the age of Big Data,
having such databases is important due to the variety of the data.

Multi-model databases aim to address the limitations and issues of polyglot per-
sistence, which supports multiple data models by using multiple data stores.
With polyglot persistence, one may end up with multiple databases (both SQL
and NoSQL), each with its own storage and operational requirements. This re-
quires managing fault tolerance, scalability, and performance requirements for
multiple data stores individually, which can become very complex. It can also
make deployment more complicated and cause data consistency and duplication
issues. With a multi-model database, these requirements are simplified due to
the usage of a single data store. In addition, with multi-model databases, data
integration can be easier when compared to polyglot persistence.

Two of the most popular open-source multi-model databases are ArangoDB [10]
and OrientDB [29].

1.4.1 OrientDB

OrientDB is a multi-model NoSQL database that supports the key-value, docu-
ment, and graph data models. It also supports the object model, that is data can
be modeled in the form of objects, possibly using inheritance or polymorphism,
as done in object-oriented programming.

In the document model, data is stored in documents made up of key-value pairs,
and documents are grouped into classes or clusters. A graph is represented as a
structure of vertices interconnected by edges, where each vertex or edge has some
mandatory properties as well as user-defined properties. Interestingly, OrientDB
allows using a document or graph element as the value of a key-value pair.

OrientDB uses SQL as its query language, however, it extends it to support graph
querying. Another difference is that it does not use join operations, as OrientDB
does not model relationships in the same way as relational databases. Instead, it
uses what are called LINKs, where a LINK is a relationship managed by storing
the target record identifier in the source record.

17

1.4.2 ArangoDB

ArangoDB is a multi-model NoSQL database that supports the key-value, docu-
ment, and graph data models. One can use and freely combine all the supported
data models even in a single query. All data in ArangoDB is stored as documents
that closely follow the JSON format, making it possible to store complex and
nested data.

ArangoDB can operate as a distributed and highly scalable database cluster
for better performance as well as resilience through replication and automatic
failover.

Data stored in ArangoDB can mainly be queried using the ArangoDB Query
Language (AQL), which is ArangoDB’s own declarative query language. It shares
some similarities with the SQL used in relational databases, making it easier to
learn for users with an SQL background. AQL can be used to retrieve and
modify data stored in ArangoDB. However, it does not support data definition
operations, such as creating or dropping databases, collections, and indexes. The
AQL constructs and syntax are described in detail in Chapter 5.

Another way of accessing data in ArangoDB is through the HTTP API [14], which
provides endpoints for creating, accessing and manipulating the data. This API
also lets a user validate and execute AQL queries, among other options.

ArangoDB also provides drivers for a number of programming languages, such
as JavaScript, Java, and PHP. It also has a built-in JavaScript framework called
Foxx [12]. This framework allows users to write data-centric HTTP microservices
that run directly inside of ArangoDB.

For the purpose of this thesis, we chose ArangoDB over OrientDB as our multi-
model database of interest. This is partially due to the lack of research on the
usage of ArangoDB as an RDF store. To our knowledge, there has not been
any attempt at SPARQL-to-AQL query translation in existing research papers,
whereas there have been many studies on the translation of SPARQL queries to
SQL. This made ArangoDB a more interesting choice. We also decided to use
ArangoDB due to a number of performance benchmark tests that show ArangoDB
performing better than OrientDB [73, 69, 27].

We shall now describe the way data is modeled in ArangoDB, the storage engines
it offers, and the index structures it supports.

Data Modelling

In ArangoDB, data takes the form of JSON objects called documents that are
stored in collections. Thus, arbitrarily nested data structures can be represented
in a single document.

Each document must contain the special attributes id, key and rev. The key

18

attribute stores the primary key value, which uniquely identifies a document
within a collection. Furthermore, each document is uniquely identified by its
document handle across all collections in the same database. This document
handle is stored in the id attribute. Different revisions of the same document
can be distinguished by their document revision, which is stored in the rev
attribute. These three attributes are system attributes, as they are automatically
created by ArangoDB for each document. However, if desired, users can also
provide the key value themselves when creating a document. The id and key
values are immutable once the document has been created, while the rev value
is maintained automatically by ArangoDB.

Edge documents are special documents used in ArangoDB graphs which, in addi-
tion to the mandatory system attributes, must contain the attributes from and
to. These two attributes contain document handles of the starting and ending

documents respectively, that is from contains the id value of the start vertex
and to contains the id value of the end vertex. Thus, edge documents are
connection documents that reference other documents.

Documents are grouped into collections, such that each collection is uniquely
identified by a collection name. Every document in a given collection can have
arbitrary attribute-value pairs, that is documents in a single collection do not
need to have the same structure, although in practice their structure is usually
similar.

There are two types of collections, these being the document collection, and the
edge collection. An edge collection is a special type of collection that stores only
edge documents, whereas a document collection stores regular documents. Thus,
normal documents and edge documents cannot be mixed in the same collection.

In the context of graphs, document collections are also referred to as vertex collec-
tions. Generally, two documents, i.e. vertices, stored in document collections are
linked by a document, i.e. edge, stored in an edge collection. This is the graph
data model provided by ArangoDB, which follows the mathematical concept of a
directed, labeled graph. The only difference is that an edge does not simply have
a label, but instead is a document containing multiple properties.

The vertices of an ArangoDB graph can be documents from multiple different
collections, and its edges can be edge documents from multiple different edge col-
lections. ArangoDB edge documents can also be used as vertices in an ArangoDB
graph, however, this feature is not considered or used in this thesis.

ArangoDB allows users to work with named graphs or anonymous graphs. Named
graphs are defined by the user by providing the name of the graph, and the vertex
and edge collections that form the graph. ArangoDB ensures graph integrity for
named graphs, both when inserting and when removing edges or vertices, thus
using named graphs comes with an additional cost. On the other hand, users
might not require the power of named graphs. In this case, anonymous graphs,
i.e. loosely coupled collections, can be used in traversals. An anonymous graph is
a graph that is not strictly defined, but rather is loosely specified by the user in a

19

traversal query, by providing a list of edge collections to be used in the traversal.
Which vertex collections are used in the traversal is determined by the edges in
the specified edge collections.

Collections exist inside of databases. A single ArangoDB instance can contain
multiple databases, each identified by a unique name. The default database in
ArangoDB is named system and cannot be removed. Database users are man-
aged through this database, and their credentials are valid for all the databases
of a server instance.

Storage Engines

ArangoDB offers two storage engines, these being RocksDB and MMFiles. The
storage engine is responsible for persisting ArangoDB documents on disk, loading
and managing copies in memory, as well as providing indexes and caching to
improve query performance. The engine must be selected for the whole server or
cluster when installing ArangoDB, thus it is not possible to mix engines as they
both work very differently.

RocksDB is currently the default storage engine. It is optimized for large datasets,
specifically datasets that do not fit in main memory. Using this engine, indexes are
always stored on disk, however, caches are used for better performance. RocksDB
uses document-level locking allowing for concurrent writes on different documents.
Moreover, writes do not block reads, and vice versa.

The Memory-Mapped Files (MMFiles) storage engine is optimized for datasets
that fit into main memory. Indexes are always stored in memory and are rebuilt
on each startup. Although this gives better overall performance, the start-up time
is longer when using this engine. MMFiles enables very fast concurrent reads,
however, locking is implemented on the collection level, and writes block reads.

Indexes

ArangoDB automatically indexes the id, key, from, and to attributes of
documents, but it also allows users to create additional indexes on other attributes
of documents, including nested attributes.

It supports a range of indexes including the hash index, which is useful when
searching for equality, and the skiplist index, most useful for range queries. Some
index types, such as the full-text index, allow indexing just one attribute, whereas
other index types allow indexing multiple attributes at the same time, i.e. a
combined index. Using a combined index is very useful in case it is known that
certain attributes are often present together in a given search condition in an
AQL query.

A hash index can be used to quickly find documents having specific attribute
values. It supports equality look-ups but not range queries or sorting due to

20

it being an unsorted index. A hash index can be created as a combined index
and is only used by a query if all the index attributes are present in the search
condition, and are all compared using the equality operator. A hash index can
be declared as unique in order to create a unique constraint on the values of the
indexed attributes.

The hash index and skiplist index have recently been deprecated on the RocksDB
engine, as they have been unified into what is called a persistent index, available
only on this engine. This type of index is used for queries that perform equality
look-ups on the index attributes, if either all the index attributes or a leftmost
prefix of the index attributes, are covered by the query. In the latter case, the
last used index attribute in the prefix can also be used for a range look-up.

Every edge collection has an automatically created edge index, providing quick
access to edge documents by their from or to attributes. Edge indexes are used
by AQL when performing equality look-ups on these two attributes in an edge
collection, however, an edge index cannot be utilized for range queries or sorting.
The from and to attributes can also be used in user-defined indexes, in this case
called vertex centric indexes. They are so-called because they can be considered
localized indexes for an edge collection, which are stored at every single vertex.
This is because this type of index indexes a combination of a vertex, the edge
direction and any arbitrary set of other attributes on the edges attached to the
vertex.

Vertex centric indexes are useful when running more specific queries involving
other attributes of edge documents. They are used in graph traversals when the
optimizer finds appropriate FILTER statements. However, it is not guaranteed
that such an index is always used, as the optimizer may estimate that using
the standard edge index is better. To make sure that the optimizer makes use
of a vertex centric index, the user should, if possible, apply the required filter
conditions on the path of the graph traversal, instead of the vertex or edge.

21

2. Preliminary Definitions

In this chapter, we provide some formal definitions that will be used in consecutive
chapters in this thesis. Specifically, we provide definitions for components of RDF,
JSON, and ArangoDB.

2.1 RDF

Definition 2.1 (Domains I, L, B). Let I be the domain of IRIs, L be the domain
of literals, and B be the domain of blank nodes, such that I, L, and B are pairwise
disjoint infinite sets.

Definition 2.2 (RDF terms). The set of RDF terms is defined as T = I∪L∪B.

Definition 2.3 (RDF Triple). Assume that I is the domain of IRIs, L is the
domain of literals, and B is the domain of blank nodes.
Then t = (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple, where s, p,
and o are called the subject, predicate, and object of the triple respectively.

Definition 2.4 (RDF Graph). An RDF Graph is a finite set of RDF triples
{t1, t2, . . . , tn} for some n ∈ N0.

A Named Graph is an RDF graph that is identified by an IRI.

Definition 2.5 (Named Graph). Let G be an RDF Graph and u ∈ I be an IRI
identifier. Then (u, G) is a named graph.

A Default Graph is an RDF graph that does not have a name and may be empty.

Definition 2.6 (Default Graph). Let G be an RDF Graph and ⊥ /∈ I. Then
(⊥, G) is a special type of graph called the default graph.

An RDF Dataset is made up of one default graph and zero or more named graphs.

Definition 2.7 (RDF Dataset). Let (⊥, G1) be the default graph and {(u2, G2),
. . . , (un, Gn)} for some n ∈ N be a set of named graphs. Then D = {(⊥, G1),
(u2, G2), . . . , (un, Gn)} is an RDF Dataset, such that ∀i, j ∈ N, i ̸= j : ui ̸= uj,
and ∀i ∈ N, i ≥ 2 : ui ̸= ⊥.

2.2 JSON

Definition 2.8 (Domains A, H). Let A be the domain of all JSON attributes,
and H be the domain of all atomic JSON values, such that A ⊂ H.

22

Definition 2.9 (JSON object). A JSON object O = {(a1, h1), (a2, h2), . . . ,
(an, hn)} for some n ∈ N0 is an unordered set of attibute-value pairs, such that
∀i ∈ N0, i ≤ n : hi ∈ H or hi is a nested JSON object or array. We say
that hi is the value associated with the attribute ai ∈ A, (ai, hi) is called a
property, and O.ai = O[ai] = hi. We assume that attributes are distinct, i.e.
∀i, j ∈ N0, i, j ≤ n, i ̸= j : ai ̸= aj.

To access the value of the attribute of a JSON object, one can use the dot notation
or the bracket notation, as in the above definition.

Definition 2.10 (JSON array). A JSON array A = ⟨h1, h2, . . . , hn⟩ for some
n ∈ N0 is a sequence of values, such that ∀i ∈ N0, i ≤ n : hi ∈ H or hi is a nested
JSON object or array.

2.3 ArangoDB

Definition 2.11 (ArangoDB Document). An ArangoDB document is a JSON
object {(a1, h1), (a2, h2), (a3, h3), . . . , (an, hn)}, for some n ∈ N, n ≥ 3, such that
a1 = id, a2 = key, and a3 = rev.

Definition 2.12 (ArangoDB Edge Document). An ArangoDB edge document is
an ArangoDB document {(a1, h1), (a2, h2), (a3, h3), (a4, h4), (a5, h5), . . . , (an, hn)}
for some n ∈ N, n ≥ 5, such that a4 = from, and a5 = to.

Definition 2.13 (Domain X). Let X be the domain of all ArangoDB collection
names.

Definition 2.14 (ArangoDB Collection). Let D = {d1, d2, . . . , dk} be a finite set
of ArangoDB documents for some k ∈ N0. Then an ArangoDB collection is a
pair C = (n, D), such that n ∈ X and ∀i, j ∈ N, i, j ≤ k, i ̸= j : di. key ̸= di. key,
i.e. keys of documents in a collection are unique.

Definition 2.15 (ArangoDB Graph). Let D = {d1, d2, . . . , dn} be a finite set of
ArangoDB documents for some n ∈ N0, and C = {c1, c2, . . . , ck} be a finite set
of ArangoDB edge documents for some k ∈ N0. Then an ArangoDB graph for D
and C is defined as GD,C = (V, E), where:

• V = {vi | i ∈ N, i ≤ n : vi = di. id} is a set of vertices
• E = {(vi, vj) | vi, vj ∈ V : l ∈ N, l ≤ k, vi = cl. from, vj = cl. to} is a set of

edges

Definition 2.16 (ArangoDB Database). An ArangoDB database is a set of
ArangoDB collections {(n1, D1), (n2, D2), . . . , (nk, Dk)} for some k ∈ N0, such
that ∀i, j ∈ N, i ̸= j : ni ̸= nj, i.e. names of collections are unique. Moreover,
∀dl, dm ∈ (D1 ∪ D2 ∪ · · · ∪ Dk), dl ̸= dm : dl. id ̸= dm. id, i.e. all documents in a
database have unique document handles.

23

3. Related Work

In this chapter, we will mention and describe existing research related to this
thesis. This includes research on the usage of relational or NoSQL databases as
RDF stores. Moreover, we present existing research on how RDF data can be
stored in ArangoDB, which is particularly relevant to this thesis.

3.1 RDF Data Storage in ArangoDB

In [69], Samuelsen proposes different ways of representing and storing RDF data
in ArangoDB. He presents three formats for storing the RDF data, all of them
based on the graph data model of ArangoDB.

His first approach is to create three ArangoDB documents for each triple, each
representing the subject, predicate, and object of the triple respectively. Two
ArangoDB edge documents connecting the subject document to the predicate
document, and then the predicate document to the object document are also
created. The author calls this the direct representation and it gives the most
expressive representation of RDF and can essentially be applied in any graph
database. However, both multi-model as well as general graph databases are not
optimized to work with a very large number of small objects. Thus, this approach
gives the least satisfactory performance of the three approaches. An example of
how RDF data is transformed using this approach is shown in Figure 3.1.

The second approach is similar to the first, however, in this case, two ArangoDB
documents are created for each triple, representing the subject and object of the
triple. An edge document connecting those two documents is then created, and
the predicate IRI is stored as a property of that edge document. The advantage of
using this approach over the first is that we gain a reduction in the size of the data,
due to using fewer documents. This approach is called the direct representation
with edge values and an example of this transformation approach is shown in
Figure 3.2.

In the third approach, an ArangoDB document is created for each IRI in the RDF
dataset. All the literal values linked to that IRI by some predicate are mapped to
JSON properties in the document of that IRI, where the attribute is the predicate
name, and the value is the literal value. Any rdf:type and rdfs:label values
for an IRI are also mapped to properties in the document of the IRI for faster
filtering by type, and for vertex labeling respectively. Edge documents are then
created to represent predicates linking IRI nodes, such that the predicate IRI
is stored as an attribute in the edge document as in the second approach. The
author refers to this storage model as the flattened representation of RDF. The
advantage of using this approach is that we significantly decrease the amount of
ArangoDB documents used, and we have a lower number of small objects to join
together in a query. An example transformation is given in Figure 3.3.

24

(⟨http://example.org/Prague⟩ ,
⟨http://www.w3.org/1999/02/22-rdf-syntax-ns#type⟩ ,

⟨http://schema.org/City⟩)

(a) Sample RDF triple

(b) ArangoDB graph representation

Figure 3.1: Samuelsen’s direct representation of RDF

We believe that the problem with the third approach is that when querying
data, the user has to be very familiar with the data to know which predicates
usually have literal values, in order to look for those values in the ArangoDB
document of a given IRI, and which predicates usually have IRI or blank node
values, in which case a graph traversal must occur. This might not be an issue
when working with RDFS and other well-known vocabularies, but might be if
the RDF data uses other less-known vocabularies. This can also make queries
more complicated to write for the user. Moreover, in the scope of SPARQL
to AQL query translation, dealing with this model would require a mapping
or configuration of which predicates are stored as attributes of the ArangoDB
document of a resource, and which are represented as edge documents, to know
how to translate SPARQL triple patterns into AQL query constructs. Thus, this
would require more input from the user.

Choosing one of the three presented RDF storage models should be a decision
based on how expressive or efficient the representation should be.

The author implemented an extension to the DataGraft [17] platform, which
transforms tabular data into RDF using some user-provided schema mapping,
and then into the flattened representation of RDF for storage in ArangoDB. In

25

Figure 3.2: Samuelsen’s direct with edges representation of RDF for the sample
data in Figure 3.1a

Figure 3.3: Samuelsen’s flattened representation of RDF

our opinion, the limitation of this implementation is that it does not allow a user
to simply provide data that is already in RDF form.

The author ran benchmark tests to compare the MMFiles and RocksDB engines of
ArangoDB with OrientDB, Neo4j [26], MongoDB [24] and PostgreSQL [31]. The
results from the benchmark tests showed that an ArangoDB solution performs
just as good and in many cases even better than the other more traditional
storage solutions. In most cases, ArangoDB performed significantly better than
its multi-model counterpart OrientDB.

The author also ran benchmark tests to compare the performance of querying
transformed RDF data in ArangoDB, stored using the RocksDB engine, to query-
ing the same RDF data stored in the triplestore Apache Jena Fuseki. ArangoDB
outperformed the triplestore in all test cases. Thus, this benchmark result sup-
ports the idea that using a multi-model database to store and query RDF data
can provide better scalability and faster response times, meeting with the main
challenges of current RDF stores.

The author states that for easier adoption of existing RDF users, there is a need
for research on the possibility of translating SPARQL queries into AQL queries,
to provide users with the ability to query data in ArangoDB using SPARQL.
This would ease the possible transmission to the usage of ArangoDB as an RDF
store. The need for such a service is not only to adopt users but also to be
able to support the very essence of using semantic data and RDF, which is the
possibility of combining datasets by using the same query language and data
format. It would help eliminate the issue of interoperability with other RDF
systems and make the approach applicable within the Semantic Web. This is a
motivation for our work.

26

3.2 RDF Data Querying in Relational databases

Chaloupka [55] proposed a way of querying relational data using SPARQL and
R2RML [32]. The motivation for it was to make it easier to map relational data
into RDF for publishing and sharing. Although there are several tools that can
be used to dump a relational database to an RDF file, this is not efficient, as one
would need to create a large dump upon every change and load it into memory.

The R2RML language is a language used to express how to map a relational
database to an RDF dataset, that is to present relational data as RDF. It de-
scribes how particular data in the relational database should be mapped into
RDF triples. R2RML is a standard proposed by W3C for such data mapping.

The main idea behind his work was to create a virtual SPARQL endpoint which
converts every SPARQL query into an SQL query, executes the SQL query on
the relational database, and then transforms the result into the expected format
based on the SPARQL query form used. The SPARQL query translation involves
a number of transformation steps. The SPARQL query is first transformed into
its algebraic representation, to which information from the R2RML mapping can
then be added. The SPARQL algebra tree is then optimized, after which it is
transformed directly into the SQL query expression.

In paper [61], Kiminki et al. presented a more generalized approach for SPARQL
to SQL query translation using an intermediate abstract query language. Using
this intermediate language, they were looking to bridge the differences between
SPARQL and SQL, and to ensure that the translation is not fixed to a particular
SQL schema or dialect.

They created a prototype implementation of their approach called Type-ARQuE.
The query translator in Type-ARQuE first translates a SPARQL query into an
intermediate query, after which the intermediate query goes through some trans-
formation and optimization passes. Finally, the translator translates the inter-
mediate query into an SQL query using a particular target dialect.

Their approach produces a single SQL query for a single SPARQL query and
does not require result post-processing other than for result presentation. More-
over, the translator produces SQL queries that use native SQL data types where
possible and avoids creating sub-selects in queries.

In [70], Sequeda and Miranker propose a system called Ultrawrap which creates
a representation of a relational database as an RDF graph, called a Tripleview,
using unmaterialized SQL views, and then translates SPARQL queries into SQL
queries on those views. The approach enables real-time consistency between the
relational data and its RDF representation.

Ultrawrap translates an SQL schema and its constraints to an OWL ontology,
using an augmented direct mapping. Thus, a user does not need to have knowl-
edge of the relational schema, learn a mapping language or manually create the
mapping, although a custom R2RML mapping can be provided by the user if

27

desired. The Tripleview is then created over the relational data in the form of
one or more SQL views, based on the mapping.

Briefly, the transformation to OWL consists of representing tables as ontolog-
ical classes, foreign key attributes of a table as object properties and all other
attributes as datatype properties. Tables that represent a many-to-many relation-
ship are translated to object properties. A Tripleview is an SQL view consisting
of 5 attributes, these being subject, primary key of subject, predicate, object,
and primary key of object, such that the query optimizer can exploit indexes on
the primary keys. Instead of using IRIs to uniquely identify resources, the table
name is concatenated with the primary key value or the attribute name.

Bizer and Seaborne [52] present a declarative language called D2RQ, used to
describe mappings from application-specific relational database schemas to RDFS
and OWL ontologies. D2RQ makes it possible for RDF applications to treat
legacy relational databases as virtual RDF graphs, which can be queried using
RDQL.

D2RQ is implemented using an Apache Jena graph, such that it wraps one or
more local relational databases into a virtual, read-only RDF graph. The central
object within the D2RQ mapping language is the ClassMap, which represents a
class or a group of similar classes from the ontology, and how the relational data
should be mapped to them.

D2RQ rewrites RDQL queries and Jena API calls into SQL queries that are
application and data model specific. The result sets of these SQL queries are
then transformed into RDF triples.

The authors performed benchmark tests comparing the performance of D2RQ to
the performance of the Jena2 database backend. The results showed that D2RQ
is very competitive when dealing with the most commonly used subject-predicate-
object query patterns.

3.3 RDF Data Querying in NoSQL databases

In [71], Szeremeta and Tomaszu describe the idea of using a document-oriented,
JSON-based NoSQL database as an RDF store. They propose an RDF/JSON [34]
serialization which would allow storing RDF data in such a NoSQL database and
to query it efficiently. Their approach is also cache-friendly.

In [54], Bouhali and Lauren investigate how RDF could be transformed for stor-
age in NoSQL graph databases. Such databases provide very efficient tools for
handling large volumes of complex data and are particularly powerful for retriev-
ing relationships between objects. This makes them an interesting option for
storing and manipulating RDF data. They propose two approaches for convert-
ing RDF data to fit the Property Graph model [66], in which data is organized as
nodes, relationships, and properties on the nodes and relationships. Since RDF

28

can be treated as a submodel of a property graph, any set of RDF triples can be
translated into a property graph without any structural loss.

In the first approach, triples are transformed into a structure similar to the flat-
tened representation described in [69]. Each RDF resource becomes a graph node.
If the object of a triple is a literal, the predicate and object become a property
name and value respectively, and this property is added to the existing or created
node representing the subject resource. If the object is a resource, then both the
subject and object become graph nodes, and a relationship is created between
them, specifying the name of the predicate as the relationship type. If the pred-
icate is rdf:type, the label of the subject node is set to the name of the object.
An example is given in Figure 3.4. The main advantage of this method is that
each triple can be processed one at a time, making it possible to handle a stream
of input RDF triples and convert them on the fly. The main drawback of this
approach is that it does not make full use of the property graph model, since no
properties are defined over relationships.

Figure 3.4: Property Graph representation of RDF

The second approach is an extension of the first, which uses a mapping table to
transform RDF triples to a property graph. This mapping table helps with han-
dling cases where many triples with the same predicate are defined for the same
subject resource, in which case the different object values should be stored in a
collection. It also helps in keeping track of which data type should be attributed
to some literal, in cases where the type is not clearly specified in the RDF data.
Another significant feature of this approach is that structural mappings can be
used to refactor the generated property graph data by replacing certain relation-
ships with others. This feature can be used to reduce the amounts of relationships
or modify them as required for a particular scope. Such a structural mapping
would be provided by the user based on his needs. However, the user would have
to have good knowledge of his dataset as well as the final graph representation
and graph database used, which is rarely the case.

The authors implemented an RDF conversion tool that utilizes the second ap-
proach, and imports the transformed data into a Neo4j graph database for ex-
perimentation and testing.

In paper [64], Michel et al. propose a method for querying legacy data in
MongoDB using SPARQL. Their approach is to first translate a SPARQL query
into a pivot abstract query using MongoDB-to-RDF mappings represented in the
xR2RML [62] language, and then translate the pivot query into a particular Mon-
goDB query. xR2RML is an extension of R2RML and RML [57] that also allows
mapping non-relational data to RDF. Rewriting the SPARQL query into the pivot

29

abstract query is independent of the target database. Thus, this method can be
used also when translating SPARQL queries to other query languages other than
that of MongoDB, as stated by the same authors in [63]. By using this interme-
diate pivot abstract query, one can handle and resolve any discrepancies between
the expressiveness of SPARQL and the target database query language.

Similarly, Botoeva et al. [53] also propose a way of querying data in MongoDB
using SPARQL. However, their approach was to extend the Ontology-Based Data
Access (OBDA) paradigm for use with non-relational databases, particularly to
support MongoDB. They create a relational view over the MongoDB database,
based on its schema. A given SPARQL query can then be rewritten into a rela-
tional algebra query over the relational view, and then translated into MongoDB
aggregate queries.

The authors of [67] propose storing RDF data in MongoDB using the JSON-
LD [22] serialization. They compared the performance of querying such data in
MongoDB using its query language, to the performance of querying the equivalent
RDF and SQL datasets in Apache Jena TDB [9] and MySQL [25] respectively.
MongoDB outperformed Apache Jena TDB significantly in the majority of cases.
It also performed better than MySQL in many cases, however, MySQL performed
better for queries with complex filters, joins, and sub-queries.

In [59], Haque and Perkins present the approach of using the column-oriented
NoSQL database HBase [4] as an RDF data store and HiveQL as the query
language. They proposed a way of modeling RDF triples in an HBase table and
implemented a prototype translator which transforms a given SPARQL query
into a HiveQL query. The latter query can then be run over the HBase database
and return data.

Jena-HBase [60] is a distributed, scalable triple store that also uses HBase to store
its data and can be used with the Jena framework. It uses several HBase tables
with different schemas to store RDF triples. It provides a number of custom-built
RDF data storage layouts for HBase, each having different trade-offs in terms of
query performance and storage. It also supports SPARQL processing through
the implementation of appropriate Jena interfaces.

In [56], Cudré-Mauroux et al. evaluated the usage of the document-oriented,
NoSQL database Couchbase [15] as an RDF store. Since Couchbase has native
support for JSON documents, they mapped RDF triples onto JSON documents,
such that all triples sharing the same subject are in one document and the sub-
ject is used as the key of that document. Couchbase then provides MapReduce
views on top of the stored JSON documents, which are used for querying the
transformed RDF data.

Bikakis et al. [50] introduce the SPARQL2XQuery Framework, which creates an
environment in which SPARQL queries are automatically translated to queries
written in XQuery [47]. It was created to enable access to XML data across the
Web, in the form of Linked Data.

30

The SPARQL2XQuery Framework contains a component that automatically gen-
erates an OWL ontology that captures the semantics of an XML Schema. Another
component, called the Mapping Generator, takes both the XML schema and the
generated ontology as input, and automatically generates and maintains the map-
pings between them. The framework supports both automatic as well as manual
mapping specification between ontologies and XML Schemas. Thus, users can
provide their own OWL or RDFS ontology mappings.

The SPARQL queries posed on the ontology are translated to XQuery expressions
by a Query Translator component, and the query results are then transformed
into the desired format by a Query Result Transformer component.

Finally, in [58], Fischer et al. present a complete translation of SPARQL to
XQuery, which does not make assumptions about the database schema. They
implemented a translator that takes any SPARQL query and turns it into an
XQuery expression. Their performance test results show that even with lim-
ited optimizations, XQuery is typically as fast as and often faster than native
SPARQL.

31

4. SPARQL Algebra

In this chapter we describe the SPARQL algebra and the properties of its parts.
The following definitions are based on the algebra described in [42] and [65].
Only the query parts and operators required for this thesis are defined. We also
introduce and define a SPARQL algebra tree and its nodes, for use in SPARQL
query transformations.

4.1 Basic Definitions

The two basic elements of the SPARQL query language are the RDF term and
the query variable. An RDF term can be an IRI, a literal or a blank node as
described in section 1.1.2.

A query variable is a name which can be bound to some RDF term during the
evaluation of the result of a SPARQL query. Query variables are distinguished
by using ‘?’ as a prefix to the name (e.g. ?var1, ?var2).

A blank node is indicated by either the label form, such as :bn1, or, if it is
used in only one place in the query syntax, by the abbreviated form []. It is
important to note that blank nodes in SPARQL queries do not reference specific
blank nodes in the RDF data being queried, rather they act as undistinguished
variables.

RDF terms and variables are used to compose triple patterns intended to match
triples in the queried dataset.

SPARQL also supports what are called simple literals. These are literals that
have no datatype and no language tag, and we consider them to be separate from
the literals we call RDF terms. Simple literals are used in comparison conditions,
arithmetic operations as well as function calls in a query.

In the following formal definitions, we will define the basic components of the
SPARQL query language. The purpose of these definitions is not to describe the
syntactic aspects of these components, but rather their logical representation.
Definition 4.1 (Domains V, S). Let V be the domain of all query variables
disjoint from the set T of RDF terms and S be the domain of simple literals
disjoint from T ∪ V.
Definition 4.2 (Triple pattern). Assume that V is the set of all query variables
disjoint from the set T of RDF terms.
Then t = (s, p, o) ∈ (I∪B∪V)× (I∪V)× (I∪L∪B∪V) is called a triple pattern.

A graph pattern is one of:

• Basic graph pattern

32

• Group graph pattern
• Filter graph pattern
• Optional graph pattern
• Union graph pattern
• Graph graph pattern
• Minus graph pattern

We now formally define the basic graph pattern and the group graph pattern, as
they are the basis of other graph patterns.

Definition 4.3 (Basic graph pattern). A basic graph pattern P = {t1, t2, . . . , tn}
is a set of triple patterns such that n ∈ N0. If n = 0, it is called the empty graph
pattern.

Definition 4.4 (Group graph pattern). A group graph pattern P = {P1, P2, . . . ,
Pn} is a set of graph patterns, such that n ∈ N0 and ∀i ∈ N0, i ≤ n : Pi is a graph
pattern. If n = 0, P is called an empty group pattern.

Definition 4.5 (Variables in a graph pattern). Let P be a graph pattern. Then
var(P) = {v | v ∈ V and ∃(s, p, o) ∈ P such that (s = v) ∨ (p = v) ∨ (o = v)}.

Definition 4.6 (Blank nodes in a graph pattern). Let P be a graph pattern.
Then blank(P) = {b | b ∈ B and ∃(s, p, o) ∈ P such that (s = b) ∨ (p = b) ∨ (o =
b)}.

When evaluated against an RDF dataset, graph patterns return solution map-
pings, that is data values bound to variables in the pattern during pattern match-
ing. Solution mappings can also simply be called solutions. The empty group
pattern matches any graph, including the empty graph, with one solution that
does not bind data to any variables.

Definition 4.7 (Solution mapping). A solution mapping is a partial function
µ : V → T mapping a set of query variables to a set of RDF terms. The domain
of µ, denoted by dom(µ), is the subset of V where µ is defined.

A variable that is mapped to a value is called a bound variable. Unbound variables
are those that are not mapped to a value by the solution mapping, that is they
are not in the domain of the solution mapping. By substituting variables in a
graph pattern by the values bound to them by a solution mapping, we obtain a
single data result.

Definition 4.8 (Variable substitution). Let P be a graph pattern and µ be
a solution mapping such that var(P) ⊆ dom(µ). Then µ(P) is the result of
replacing every variable v ∈ var(P) by µ(v).
Thus ∀t = (s, p, o) ∈ P : µ(t) = (s′, p′, o′), where:

• s′ =

⎧⎨⎩µ(s), if s ∈ var(t)
s, otherwise

• p′ =

⎧⎨⎩µ(p), if p ∈ var(t)
p, otherwise

33

• o′ =

⎧⎨⎩µ(o), if o ∈ var(t)
o, otherwise

When performing set operations on two sets of solution mappings, we have to
consider the compatibility of solution mappings in one set, to solution mappings
in the other.
Definition 4.9 (Compatible solution mappings). Two solution mappings µ1 and
µ2 are compatible if and only if ∀v ∈ dom(µ1) ∩ dom(µ2): µ1(v) = µ2(v), i.e.
µ1(v) and µ2(v) are the same RDF term. Otherwise we say that µ1 and µ2 are
incompatible when they are not compatible, i.e. if ∃v ∈ dom(µ1) ∩ dom(µ2):
µ1(v) ̸= µ2(v).

A multiset or sequence of solution mappings contain all the possible variable
bindings for a graph pattern. We refer to a solution multiset when we do not care
about the order of the solutions. When the order of the solutions is important,
we consider solution mappings to be in a particular sequence.
Definition 4.10 (Solution multiset). A solution multiset is a multiset of so-
lution mappings Ω = {µ1, µ2, ..., µn} for some n ∈ N0, such that dom(Ω) =⋃n

i=1 dom(µi).
Definition 4.11 (Solution sequence). A solution sequence is a sequence of so-
lution mappings Ψ = ⟨µ1, µ2, ..., µn⟩ for some n ∈ N0, such that dom(Ψ) =⋃n

i=1 dom(µi).

The result of any SPARQL query, executed over an RDF dataset, can be consid-
ered a sequence of solution mappings.
Definition 4.12 (Blank node mapping). A blank node mapping σ is a partial
function σ : B → T mapping a set of query blank nodes to a set of RDF terms.
The domain of σ, denoted by dom(σ), is the subset of B where σ is defined. Given
a mapping σ and a graph pattern P such that blank(P) ⊆ dom(σ), σ(P) is the
result of replacing every blank node b ∈ blank(P) by σ(b).
Thus ∀t = (s, p, o) ∈ P : σ(t) = (s′, p′, o′) where:

• s′ =

⎧⎨⎩σ(s), if s ∈ blank(t)
s, otherwise

• p′ =

⎧⎨⎩σ(p), if p ∈ blank(t)
p, otherwise

• o′ =

⎧⎨⎩σ(o), if o ∈ blank(t)
o, otherwise

Blank nodes in SPARQL graph patterns are treated as variables, however these
cannot be projected and thus cannot be included in a solution mapping. The
same blank node label cannot be used in two different basic graph patterns in
the same query.

34

Definition 4.13 (Pattern instance mapping). A pattern instance mapping, M ,
is the combination of a solution mapping and a blank node mapping. Let P be
a basic graph pattern, µ be a solution mapping, and σ be a blank node mapping
such that var(P) ⊆ dom(µ) and blank(P) ⊆ dom(σ). Then M(P) = µ(σ(P))
is the result of replacing every blank node b ∈ blank(P) with σ(b) and every
v ∈ var(P) with µ(v).

4.2 Algebra Operators

In this section, we define the operators that are used to evaluate a SPARQL query
expression.

4.2.1 Basic Operators

We first define the basic SPARQL operators. For the following definitions, we
only consider solution multisets, as the order of solutions is not important when
working with these operators.

The Bgp operator is used to evaluate a basic graph pattern against a particular
graph in a given RDF dataset.

Definition 4.14 (BGP operator). Let D be an RDF dataset, P be a basic graph
pattern, M be a pattern instance mapping, σ be a blank node mapping, and
u ∈ I ∪ ⊥ be an IRI or undefined. Then:

Bgp(P, D, u) = {µ | dom(µ) = var(P) and ∃(u, G) ∈ D, M :
M(P) = µ(σ(P)) ⊆ G}

The Join operator is used to join the results of two graph patterns when they are
compatible.

Definition 4.15 (Join operator). Let Ω1, and Ω2 be solution multisets. Then:

Join(Ω1, Ω2) = {µ1 ∪ µ2 | µ1 ∈ Ω1 and µ2 ∈ Ω2 are compatible mappings}

The Difference operator is used to discard solutions for a graph pattern that are
compatible with some solution for another graph pattern.

Definition 4.16 (Difference operator). Let Ω1, and Ω2 be solution multisets.
Then:

Difference(Ω1, Ω2) = {µ | µ ∈ Ω1 and ∀µ′ ∈ Ω2, µ and µ′ are not compatible}

The LeftJoin operator returns all the solutions for the first graph pattern even if
they are not compatible with any of the solutions for the second graph pattern.

35

Definition 4.17 (LeftJoin operator). Let Ω1, and Ω2 be solution multisets. Then:

LeftJoin(Ω1, Ω2) = Join(Ω1, Ω2) ∪ Difference(Ω1, Ω2)

The Union operator is used to perform a set union of the results of two graph
patterns, i.e. to combine two solution multisets into one.

Definition 4.18 (Union operator). Let Ω1, and Ω2 be solution multisets. Then:

Union(Ω1, Ω2) = {µ | µ ∈ Ω1 ∪ Ω2}

The Filter operator is used to discard solutions for a graph pattern that do not
satisfy some condition.

Definition 4.19 (Filter operator). Let Ω be a multiset of solution mappings,
and E be a filter condition. Then:

Filter(Ω, E) = {µ | µ ∈ Ω, µ ⊨ E}

such that µ ⊨ E means that µ satisfies E.

The Minus operator removes solutions for one graph pattern that are compatible
with any solution for a second graph pattern, but only if the compatible solutions
bind at least one common variable.

Definition 4.20 (Minus operator). Let Ω1, and Ω2 be solution multisets. Then:

Minus(Ω1, Ω2) = {µ | µ ∈ Ω1 such that ∀µ′ ∈ Ω2, µ and µ′ are not compatible
or dom(µ) and dom(µ′) are disjoint}

The Extend operator is used to add a variable mapping to a solution mapping,
i.e. to extend the domain of a solution mapping, by binding the result of the
evaluation of an expression to the given variable.

Definition 4.21 (Extend operator). Let µ be a solution mapping, Ω be a multiset
of solution mappings, v ∈ V be a variable and expr be an expression such that
expr(µ) is the result of replacing each variable in expr with its mapping in µ.
Then:

Extend(µ, v, expr) = µ ∪ {(v → value)} | v /∈ dom(µ) and value = expr(µ)}

Extend(µ, v, expr) = undefined if v ∈ dom(µ)

Extend(µ, v, expr) = µ if expr(µ) is an error

Extend(Ω, v, expr) = {Extend(µ, v, expr) | µ ∈ Ω}

such that expr(µ) is the result of replacing every variable v ∈ var(expr) by µ(v)

36

4.2.2 Solution Modifiers

Solution modifiers are used to modify the results of graph pattern matching and
aggregation, if applicable. A solution sequence modifier is one of the below:

• Order By - put the solutions in some order
• Project - select certain variables
• Distinct - ensure solutions in the sequence are unique
• Reduced - eliminate some of the non-unique solutions
• Offset - control where the solutions start from in the overall sequence of

solutions
• Limit - restrict the number of solutions

We now define the algebra operators used to evaluate the above solution modifiers.
Due to there not being a well-defined behavior for the Reduced modifier, beyond
that duplicates may or may not be eliminated, we do not formally define an
operator for it. Ignoring this modifier and not eliminating any duplicates is still
in accordance with the SPARQL specification.

For the following definitions, we only consider solution sequences, as the order of
solutions is important when working with these operators.

Definition 4.22 (OrderBy operator). Let Ψ be a solution sequence and C be
an ordering condition. Then OrderBy(Ψ, C) = ⟨µ1, µ2, . . . , µn⟩ for some n ∈ N0
such that ∀i ∈ N, i ≤ n : µi ∈ Ψ and the sequence satisfies C.

All other solution modifiers must preserve any ordering given by the OrderBy
operation.

Definition 4.23 (Project operator). Let Ψ be a solution sequence, µ be a solution
mapping, and PV be a set of variables. Then:

Project(µ, PV) = {µ(v) | v ∈ dom(µ) and v ∈ PV }

Project(Ψ, PV) = ⟨Project(µ1, PV), P roject(µ2, PV), . . . , P roject(µn, PV)⟩
such that ∀i ∈ N, i ≤ n : µi ∈ Ψ.

Definition 4.24 (Distinct operator). Let Ψ be a solution sequence.
Then Distinct(Ψ) = ⟨µ1, µ2, . . . , µn⟩ such that ∀i ∈ N, i ≤ n : µi ∈ Ψ and
there must not exist two mappings µ1, µ2 ∈ Distinct(Ψ) that are identical, i.e.
∀i, j ∈ N, µi, µj ∈ Distinct(Ψ) : µi = µj =⇒ i = j.

The Slice operator below combines Offset and Limit together, such that start is
the offset value and length is the limit value.

Definition 4.25 (Slice operator). Let Ψ = ⟨µ1, µ2, ..., µn⟩ be a solution sequence
for some n ∈ N0, and start, length ∈ N0 be two integer numbers. Then

Slice(Ψ, start, length) = ⟨µstart+1, µstart+2, . . . , µMIN(start+length,n)⟩

such that ∀i ∈ N, (start + 1) ≤ i ≤ MIN(start + length, n) : µi ∈ Ψ.

37

4.3 Evaluation of SPARQL query parts

We now define how different parts of a SPARQL query expression are evaluated
using the operators defined in the previous section.

For the below definitions, we assume that D is an RDF dataset, and u ∈ I∪ {⊥}
is either an IRI or undefined, such that ∃(u, G) ∈ D, i.e u indicates the active
graph, which is either the default graph or a named graph in D.

Definition 4.26 (Evaluation of a basic graph pattern). Let P be a basic graph
pattern. Then:

[[P]]D,u = Bgp(P, D, u)

Although SPARQL does not provide a JOIN keyword, the group graph pattern
combines graph patterns such that it joins every pair of compatible solution
mappings for two graph patterns together.

Definition 4.27 (Evaluation of a group graph pattern). Let {P1, P2} be a group
graph pattern. Then

[[{P1, P2}]]D,u = Join([[(P1)]]D,u, [[(P2)]]D,u)

In a group graph pattern, there can be optional values due to the presence of an
optional graph pattern. An optional graph pattern is defined using the OPTIONAL
clause, and contains variables that do not necessarily have to be bound. This
type of graph pattern either matches a graph, thus adding bindings to one or
more solutions, or it keeps a solution unchanged without adding any additional
bindings.

Definition 4.28 (Evaluation of an optional graph pattern). Let (P1 OPTIONAL
P2) be an optional graph pattern such that P1 and P2 are graph patterns. Then:

[[(P1 OPTIONAL P2)]]D,u = LeftJoin([[(P1)]]D,u, [[(P2)]]D,u)

SPARQL provides the UNION and MINUS keywords to perform set operations on
the results of two graph patterns.

Definition 4.29 (Evaluation of a union graph pattern). Let (P1 UNION P2) be
a union graph pattern such that P1 and P2 are graph patterns. Then:

[[(P1 UNION P2)]]D,u = Union([[P1]]D,u, [[P2]]D,u)

Definition 4.30 (Evaluation of a minus graph pattern). Let (P1 MINUS P2) be
a minus graph pattern such that P1 and P2 are graph patterns. Then:

[[(P1 MINUS P2)]]D,u = Minus([[P1]]D,u, [[P2]]D,u)

The FILTER clause can be used to add constraints on graph patterns. It removes
solutions that do not satisfy the filtering constraints.

38

Definition 4.31 (Evaluation of a filter graph pattern). Let (P FILTER R) be a
filter graph pattern such that P is a graph pattern and R is a filter condition.
Then:

[[(P FILTER R)]]D,u = Filter([[P]]D,u, R)

The graph graph pattern provides the capability of accessing the named graphs
in the RDF dataset. This type of graph pattern is identified using a GRAPH clause,
which changes the current active graph, that will be used for matching the basic
graph pattern(s) within the graph graph pattern.

Definition 4.32 (Evaluation of a graph graph pattern). Let D = {(⊥, G1),
(u2, G2), . . . , (un, Gn)} for some n ∈ N be an RDF dataset, P be a graph pattern,
v ∈ V be a variable, and uG ∈ I ∪ {⊥} be an IRI or undefined, such that
∃i, i ∈ N, i ≤ n : (ui, Gi) ∈ D, uG = ui. Then:

[[(GRAPH uG P)]]D,u = [[P]]D,uG

[[(GRAPH v P)]]D,u =

⎧⎪⎨⎪⎩
⋃n

i=1 Extend([[P]]D,ui
, v, ui), if v /∈ var(P)

⋃n
i=1 Join([[P]]D,ui

, {(v → ui)}), if v ∈ var(P)
.

The BIND clause can be used to bind the result of an expression, or even a simple
constant value, to a variable.

Definition 4.33 (Evaluation of a Bind clause). Let (P BIND X) be a bind clause
such that X is a pair (v, e) where v ∈ V is a variable and e is an expression. Then:

[[(P BIND X)]]D,u = Extend([[P]]D,u, v, e)

Another way of assigning a value to a variable is by using the VALUES clause,
which allows specifying multiple values for one or more variables. Using the
VALUES clause, data can be written directly in a graph pattern or added to a
query. VALUES provides inline data as a solution multiset, and that data can then
be combined with the results of some query evaluation by a join operation.

Definition 4.34 (Evaluation of a Values clause). Let (P VALUES Ω) be a values
clause such that P is a graph pattern and Ω is a solution multiset. Then:

[[(P VALUES Ω)]]D,u = Join([[P]]D,u, Ω)

If a variable has no value for a particular solution mapping in the VALUES clause,
the keyword UNDEF is used instead of an RDF term, indicating that the binding
for that variable should be omitted.

39

4.4 SPARQL Algebra Tree

For this thesis, we need to be able to transform a SPARQL query expression into
a SPARQL algebra tree. For this reason, in this section, we define the algebra tree
and all the nodes that can form part of a tree. Many of these nodes represent
SPARQL algebra operators defined earlier in this chapter, or other functions
offered by SPARQL.

In order to determine the type of a SPARQL tree node, we introduce an arbitrary
function called type which takes a tuple representing a tree node and returns the
first element in that tuple, which is always the identifier associated with the node
type of the given node.

Definition 4.35 (SPARQL query algebra tree). A SPARQL query algebra tree
is a tuple containing three elements (N, r, children), where N = {n1, n2, . . . , ni}
for some i ∈ N is the set of nodes in the tree, r ∈ N is the root node of the tree,
and children is a function that maps every node in N to its sequence of child
nodes.
Let n be a node in a SPARQL query algebra tree. Then:

type(n) ∈ {BGP, GRAPH, TABLE, JOIN, LEFTJOIN, UNION, MINUS,

EXTEND, FILTER, PROJECT, DISTINCT, SLICE, ORDER}

and children(n) = ⟨c1, c2, . . . , cm⟩ for some m ∈ {0, 1, 2} is a sequence of child
nodes of node n.

A BGP node is used to represent a basic graph pattern and can also store an
optional set of IRIs of named graphs against which it is meant to be evaluated.

Definition 4.36 (BGP node). Let P = {t1, t2, . . . , tm} be a set of triple patterns
for some m ∈ N0, v ∈ V ∪ {⊥} be a variable which can be undefined, and
G = {u1, u2, . . . , uj} be a set of graph IRIs for some j ∈ N0, which can be
undefined. Then n = (BGP, P, G, v) is a BGP node such that type(n) = BGP,
children(n) = ⟨⟩ and G ̸= ⊥ if v ∈ V.

A Graph node represents a GRAPH clause in the query and indicates that the active
graph will need to change when evaluating BGP nodes in its subtree.

Definition 4.37 (Graph node). Let u ∈ I ∪ {⊥} be an IRI or undefined, and
v ∈ V ∪ {⊥} be a variable or undefined. Then n = (GRAPH, u, v) is a Graph node
such that type(n) = GRAPH, children(n) = ⟨c1⟩, u ̸= ⊥ if v = ⊥, and u = ⊥ if
v ∈ V.

A SolutionTable node represents the solution multiset specified in a VALUES
clause.

Definition 4.38 (SolutionTable node). Let Ω be a solution multiset.
Then n = (TABLE, Ω) is a SolutionTable node such that type(n) = TABLE and
children(n) = ⟨⟩.

40

A Join node is used to represent a join operation between graph patterns.

Definition 4.39 (Join node). A node n = (JOIN) is a Join node such that
type(n) = JOIN, and children(n) = ⟨c1, c2⟩.

A LeftJoin node is used to represent a left join operation between graph patterns,
i.e. an OPTIONAL graph pattern.

Definition 4.40 (LeftJoin node). A node n = (LEFTJOIN) is a LeftJoin node
such that type(n) = LEFTJOIN, and children(n) = ⟨c1, c2⟩.

A Union node is used to represent a set union operation on the solution multisets
for two graph patterns.

Definition 4.41 (Union node). A node n = (UNION) is a Union node such that
type(n) = UNION, and children(n) = ⟨c1, c2⟩.

A Minus node is used to represent a set minus operation on the solution multisets
for two graph patternss.

Definition 4.42 (Minus node). A node n = (MINUS) is a Minus node such that
type(n) = MINUS, and children(n) = ⟨c1, c2⟩.

An Extend node is used to represent an extend operation on a graph pattern, i.e.
a BIND clause. In the definition of this node as well as some other following node
definitions, we refer to SPARQL expression trees. A SPARQL expression tree is
defined in Definition 4.49 and its nodes are defined in consecutive definitions.

Definition 4.43 (Extend node). Let X = {(v1, E1), (v2, E2), . . . , (vm, Em)} for
some m ∈ N be a set of variable-expression pairs such that ∀i ∈ N, i ≤ m : vi ∈
V and Ei is an expression tree. Then n = (EXTEND, X) is an Extend node such
that type(n) = EXTEND, and children(n) = ⟨c1⟩.

A Filter node is used to represent a filter condition on a graph pattern.

Definition 4.44 (Filter node). Let E be a SPARQL expression tree. Then n =
(FILTER, E) is a Filter node such that type(n) = FILTER, and children(n) = ⟨c1⟩.

We now define the nodes used to represent solution modifiers in a SPARQL query.

Definition 4.45 (Project node). Let P = {v1, v2, . . . , vm} be a set of variables
for some m ∈ N such that ∀i ∈ N, i ≤ m : vi ∈ V. Then n = (PROJECT, P) is a
Project node such that type(n) = PROJECT, and children(n) = ⟨c1⟩.

Definition 4.46 (Distinct node). A node n = (DISTINCT) is a Distinct node such
that type(n) = DISTINCT, children(n) = ⟨c1⟩, and type(c1) = PROJECT.

Definition 4.47 (Slice node). Let offset, limit ∈ N0 be two integers.
Then n = (SLICE, offset, limit) is a Slice node such that type(n) = SLICE and
children(n) = ⟨c1⟩.

41

Definition 4.48 (Order node). Let C = ⟨(E1, d1), (E2, d2), . . . , (Em, dm)⟩ for
some m ∈ N be a sequence of sort conditions such that ∀i ∈ N, i ≤ m : Ei is
an expression tree and di ∈ {ASC, DESC}. Then n = (ORDER, C) is an Order node
such that type(n) = ORDER and children(n) = ⟨c1⟩.

We shall now define a SPARQL expression tree and its nodes. SPARQL ex-
pression trees are used to represent filtering conditions, arithmetic operations,
function calls, and other expressions in a SPARQL query.

Definition 4.49 (SPARQL expression tree). A SPARQL expression tree is a
tuple containing three elements (N, r, children), where N = {n1, n2, . . . , ni} for
some i ∈ N is the set of nodes in the tree, r is the root node of the tree, and
children is a function that maps every node in N to its sequence of child nodes.
Let n be a node in a SPARQL expression tree. Then:

type(n) ∈ {AND, OR, NOT, EQUALS, NOTEQUALS, VALUE, VARIABLE, BOUND, CONCAT,

LANG, LANGMATCHES, ADD, SUBTRACT, MULTIPLY, DIVIDE, GREATERTHAN,

GREATERTHANEQUAL, LESSTHAN, LESSTHANEQUAL, EXISTS, NOTEXISTS}

and children(n) = ⟨c1, c2, . . . , cm⟩ for some m ∈ N0 is a sequence of child nodes
of node n.

Definition 4.50 (LogicalAnd node). A node n = (AND) is a LogicalAnd node
such that type(n) = AND, and children(n) = ⟨c1, c2⟩.

Definition 4.51 (LogicalOr node). A node n = (OR) is a LogicalOr node such
that type(n) = OR, and children(n) = ⟨c1, c2⟩.

Definition 4.52 (LogicalNot node). A node n = (NOT) is a LogicalNot node such
that type(n) = NOT, and children(n) = ⟨c1⟩.

Definition 4.53 (Equals node). A node n = (EQUALS) is an Equals node such
that type(n) = EQUALS, and children(n) = ⟨c1, c2⟩.

Definition 4.54 (NotEquals node). A node n = (NOTEQUALS) is a NotEquals
node such that type(n) = NOTEQUALS, and children(n) = ⟨c1, c2⟩.

A Value node is used to represent an IRI or literal.

Definition 4.55 (Value node). Let v ∈ (I∪L∪S) be an IRI or literal. Then node
n = (VALUE, v) is a Value node such that type(n) = VALUE, and children(n) = ⟨⟩.

A Variable node is used to represent a SPARQL variable.

Definition 4.56 (Variable node). Let v ∈ V be a variable.
Then node n = (VARIABLE, v) is a Variable node such that type(n) = VARIABLE,
and children(n) = ⟨⟩.

A Bound node is a node that represents the BOUND function, which checks whether
a given variable has been bound or not.

42

Definition 4.57 (Bound node). A node n = (BOUND) is a Bound node such that
type(n) = BOUND, and children(n) = ⟨c1⟩.

A Language node is a node that represents the LANG function, which extracts the
language tag of a given literal if it has one.

Definition 4.58 (Language node). A node n = (LANG) is a Language node such
that type(n) = LANG, and children(n) = ⟨c1⟩.

A LanguageMatches node is a node that represents the LANGMATCHES function,
which checks whether the language tag of a given literal matches a particular
language tag or is contained within a range of language tags.

Definition 4.59 (LanguageMatches node). A node n = (LANGMATCHES) is a
LanguageMatches node such that type(n) = LANGMATCHES, and children(n) =
⟨c1, c2⟩.

A Concat node is a node that represents the CONCAT function, which concatenates
a given sequence of string literals.

Definition 4.60 (Concat node). A node n = (CONCAT) is a Concat node such
that type(n) = CONCAT, and children(n) = ⟨c1, c2, . . . , cm⟩ for some m ∈ N.

An Arithmetic node is a node that represents an arithmetic operation.

Definition 4.61 (Arithmetic node). Let t ∈ {ADD, SUBTRACT, MULTIPLY, DIVIDE,
GREATERTHAN, GREATERTHANEQUAL, LESSTHAN, LESSTHANEQUAL} be a node type.
Then node n = (t) is an Arithmetic node such that type(n) = t, and children(n) =
⟨c1, c2⟩.

An Exists node is used to represent an EXISTS condition in a FILTER clause, while
a NotExists node represents a NOT EXISTS filtering condition.

Definition 4.62 (Exists node). Let A be a SPARQL query algebra tree. Then
a node n = (EXISTS, A) is an Exists node such that type(n) = EXISTS, and
children(n) = ⟨⟩.

Definition 4.63 (NotExists node). Let A be a SPARQL query algebra tree.
Then a node n = (NOTEXISTS, A) is a NotExists node such that type(n) =
NOTEXISTS, and children(n) = ⟨⟩.

43

5. ArangoDB AQL

In this chapter, we describe the constructs available in AQL and the syntax of
an AQL query expression. We also introduce and define an AQL query tree and
its nodes, for use in SPARQL-to-AQL query transformations.

5.1 Syntax and Semantics of AQL queries

For the purpose of this thesis, we consider the following main operations offered
in AQL:

Keyword Operation
FOR Collection or JSON array iteration

RETURN Results projection
FILTER Results filtering
SORT Result sorting
LIMIT Result slicing
LET Variable assignment

COLLECT Result grouping

The result of an AQL query is an array of JSON values, that can be JSON
objects and arrays, and items in the result do not necessarily have a homogeneous
structure. The result is projected using the RETURN operator. An AQL query
always includes a RETURN operation, in fact an AQL query can be a single RETURN
statement projecting a static JSON value, as can be seen in figure 5.1. If duplicate
results are unwanted, RETURN DISTINCT can be used to project unique items.

1 RETURN "Hello World"

Figure 5.1: Example AQL query expression with only a RETURN operation

The FOR operator is used to iterate over documents from a collection by specifying
the collection name, and a variable used to store the current document during
each iteration. This can be likened to the for loop used in many programming
languages. A simple example is shown in figure 5.2, of a query that returns the
name of each user in the users collection. During iteration, the order of the
documents is undefined. To traverse the documents in a particular order, the
SORT operation must be used to order the documents before performing other
operations on them.

44

1 FOR user IN users
2 RETURN user.name

Figure 5.2: Example AQL query expression with a simple for loop

It is normal to encounter documents that do not have all the attributes that
are queried in an AQL query. In this case, the non-existing attributes in the
document are treated as if they exist with a value of null.

The FOR operator can also be used to perform graph traversals, although the
syntax is not the same as when we loop over a document collection. For the
purpose of this thesis, we will consider the graph traversal syntax depicted in
figure 5.3, and ignore other possible syntax components that we do not require.

1 FOR vertex [, edge[, path]]
2 IN [min [.. max]]
3 OUTBOUND | INBOUND |ANY startVertex
4 edgeCollection1 , ..., edgeCollectionN

Figure 5.3: AQL graph traversal syntax

In the graph traversal version, the for loop emits one, two, or three variables
depending on the user’s needs. The vertex variable is mandatory and represents
the current vertex in a traversal. The edge and path variables are optional, where
edge represents the current edge in a traversal, and path represents the current
graph path and is an object containing two attributes - vertices and edges.
The vertices attribute is an array of all the vertices on the path, and edges is
an array of all the edges on the path.

The startVertex is the vertex from which the traversal will originate. This can
be specified either in the form of an ID string or in the form of a document having
the id attribute. All other values will lead to an empty result, and the same
applies in case the specified document does not exist.

The min and max numeric values are both optional and represent the minimal
and maximal depth for the traversal, respectively. Thus, edges and vertices that
are not within the min-max inclusive range are not returned by the query. The
smallest possible value for each of them is 0. Moreover, max cannot be specified
without specifying min. If not specified, min defaults to 1, and max defaults to
the value of min.

One of the OUTBOUND, INBOUND and ANY keywords must be specified in order to
follow outgoing, incoming, or edges pointing in either direction in the traversal,
respectively.

Operations like FILTER, SORT and LIMIT can be added to the body of a FOR loop to
narrow down and order the result. These operations do not have to occur in any

45

fixed order, although the order can influence the result significantly. Moreover, it
is allowed to specify multiple statements of the same operation type in a query,
even in the same FOR loop.

The SORT operation sorts the array of already produced intermediate results in
the current block. The SORT statement allows specifying one or more sort criteria,
and an optional direction for each criteria by using the ASC or DESC keywords. If
no direction is specified, ascending order is used by default. In the example given
in figure 5.4, the collection of users is sorted by name in ascending order and the
names are then returned in the sorted order.

1 FOR user IN users
2 SORT user.name
3 RETURN user.name

Figure 5.4: Example AQL query expression with SORT

The LIMIT operation slices the result array using an offset value and a count
value. It reduces the number of elements in the result array to at most the
specified count value. Specifying an offset value is optional, so a limit statement
can be in the form LIMIT offset, count or simply LIMIT count. The example given
in figure 5.5 sorts the collection of users as in the example in figure 5.4, however
in this case, due to the LIMIT operation, only the first 10 user names from the
sorted list are projected.

1 FOR user IN users
2 SORT user.name
3 LIMIT 10
4 RETURN user.name

Figure 5.5: Example AQL query expression with LIMIT

AQL allows the user to assign values to variables in a query, using the LET op-
eration, as shown in the sample query in Figure 5.6. The assigned variable is
introduced in the scope the LET statement is placed in. All variables that are
assigned a value must have a name that is unique within the context of the query
and cannot have the same name as any collection used in the same query. Once
a value is assigned to a variable, that variable cannot be re-assigned later in the
query.

The LET operation can be used to store the results of a computation or subquery
into a variable, like in the example given in figure 5.7. This is useful when we
want to avoid repeating the same computations at multiple points in the query,
or simply want to make the query more readable.

A join operation is expressed by nesting two FOR loops and applying FILTER
conditions on the inner loop, which in this case can be considered join conditions,

46

1 FOR u IN users
2 LET hobbies = u. hobbies
3 RETURN { name : u.name , hobbies : hobbies }

Figure 5.6: Example AQL query expression with a simple LET operation

1 FOR u IN users
2 LET friends = (
3 FOR f IN friends
4 FILTER u._id == f. userId
5 RETURN f
6)
7 RETURN { user : u, friends : friends }

Figure 5.7: Example AQL query expression with LET operation assigning sub-
query

to filter out the data that does not satisfy the join operation. In the sample query
given in Figure 5.8, a join operation is used to find the city where a user lives.

1 FOR u IN users
2 FOR c IN cities
3 FILTER u.city == c._id
4 RETURN { user: u, city: c }

Figure 5.8: Example AQL query expression with JOIN operation

The COLLECT operation can be used to group an array by one or multiple criteria.
The COLLECT statement eliminates all local variables in the current scope, such
that after the grouping operation, only the variables introduced by the COLLECT
statement itself are available.

There are several different syntaxes for COLLECT operations, used to achieve dif-
ferent results. In the example given in figure 5.9, the COLLECT operation acts
similar to the DISTINCT modifier, by finding and storing all the distinct values in
u.city into the variable city.

To also preserve the list of users grouped by city, the INTO keyword needs to be
used as in figure 5.10. It is also possible to group the data by more than one
attribute simply by specifying multiple comma-separated grouping criteria after
the COLLECT keyword.

The COLLECT operation also provides a WITH COUNT clause that can be used to
efficiently count the number of group members. In its simplest form, it can be
used as in figure 5.11, such that no grouping takes place and it simply counts the

47

number of items.

1 FOR u IN users
2 COLLECT city = u.city
3 RETURN city

Figure 5.9: Example AQL query expression with a simple COLLECT operation

1 FOR u IN users
2 COLLECT city = u.city INTO groupedUsers
3 RETURN {
4 "city" : city ,
5 " usersInCity " : groupedUsers
6 }

Figure 5.10: Example AQL query expression with a COLLECT INTO operation

1 FOR u IN users
2 COLLECT WITH COUNT INTO amountOfUsers
3 RETURN amountOfUsers

Figure 5.11: Example AQL query expression with a COLLECT WITH COUNT oper-
ation

There are also other variants of the COLLECT syntax, however, these will not be
mentioned here as they are not within the scope of this thesis.

5.2 AQL Query Tree

For the purpose of this thesis, we use an AQL Query Tree to syntactically repre-
sent an AQL query expression. Thus, by simply traversing and printing an AQL
query tree, we obtain the AQL query expression it represents.

In an AQL query, all the variable names used must be different from the names
of any collections used in the same query. For this reason, we define two domains
below, ie. the domain of AQL variables, and the domain of collection names. As
we define them here, these are not the infinite domains of all the possible variables
and collection names in ArangoDB, as in that case, these domains would intersect.
Instead, we consider both domains to be finite sets that are pairwise disjoint.

Definition 5.1 (Domains W, C). Let W be the domain of AQL variables, and
C be the domain of ArangoDB collection names, such that W and C are pairwise
disjoint finite sets.

48

To determine the type of an AQL tree node, we use the same arbitrary function
type which we introduced in Chapter 4, which takes a tuple representing a tree
node and returns the first element in that tuple.

Definition 5.2 (AQL Query Tree). An AQL query tree is a tuple containing
three elements (N, r, children), where N = {n1, n2, . . . , ni} for some i ∈ N is the
set of nodes in the tree, r ∈ N is the root node of the tree, and children is a
function that maps every node in N to its sequence of child nodes.
Let n be a node in an AQL query algebra tree. Then:

type(n) ∈ {ITERATION, GRAPHITERATION, ASSIGNMENT, SEQUENCE, FILTER, NEST,

SORT, PROJECT, LIMIT, COLLECT}

and children(n) = ⟨c1, c2, . . . , cm⟩ for some m ∈ N0 is a sequence of child nodes
of node n.

An Iteration node is used to represent a regular FOR loop over a collection or
array. In the definition of this node as well as in other following node definitions,
we refer to AQL expression trees. An AQL expression tree is defined in Definition
5.13 and its nodes are defined in consecutive definitions.

Definition 5.3 (Iteration node). Let v ∈ W be a variable and E be an AQL
expression tree. Then node n = (ITERATION, v, E) is an Iteration node such that
type(n) = ITERATION, and children(n) = ⟨⟩.

A Graph Iteration node is used to represent a graph traversal FOR loop.

Definition 5.4 (Graph Iteration node). Let v, e, p ∈ W be variables, min, max ∈
N0 be two integers, s be an ArangoDB document, d ∈ {OUTBOUND, INBOUND, ANY}
be the traversal direction, and E = {c1, c2, . . . , cm} for some m ∈ N be a set of
names of edge collections.
Then node n = (GRAPHITERATION, v, e, p, s, min, max, d, E) is a Graph Iteration
node such that type(n) = GRAPHITERATION, and children(n) = ⟨⟩.

An Assignment node is used to represent a LET statement in a query.

Definition 5.5 (Assignment node). Let v ∈ W be a variable and E be an AQL
expression tree. Then node n = (ASSIGNMENT, v, E) is an Assignment node such
that type(n) = ASSIGNMENT, and children(n) = ⟨⟩.

A Sequence node is used when there is a sequence of LET statements followed by
a FOR loop, on the same level of nesting.

Definition 5.6 (Sequence node). A node n = (SEQUENCE) is a Sequence node such
that type(n) = SEQUENCE, and children(n) = ⟨c1, c2, . . . , cm⟩ for some m ∈ N.

A Filter node is used to represent a FILTER statement.

49

Definition 5.7 (Filter node). Let E be an AQL expression tree. Then n =
(FILTER, E) is a Filter node such that type(n) = FILTER, and children(n) = ⟨c1⟩.

We use a Nest node to indicate when LET statements or FOR loops are nested
within an external FOR loop.

Definition 5.8 (Nest node). A node n = (NEST) is a Nest node such that
type(n) = NEST, and children(n) = ⟨c1, c2⟩.

A Sort node is used to represent a SORT condition.

Definition 5.9 (Sort node). Let C = ⟨(E1, d1), (E2, d2), . . . , (Em, dm)⟩ be a se-
quence of sort conditions such that ∀i ∈ N, i ≤ m : Ei is an AQL expres-
sion tree and di ∈ {ASC, DESC}. Then n = (SORT, C) is a Sort node such that
type(n) = SORT and children(n) = ⟨c1⟩.

A Project node is used to represent a RETURN or RETURN DISTINCT statement.

Definition 5.10 (Project node). Let V = {(v1, E1), (v2, E2), . . . , (vm, Em)} be a
set of variable-expression pairs for some m ∈ N such that ∀i ∈ N, i ≤ m : vi ∈ W
is a variable, Ei is an AQL expression tree, and ∀i, j ∈ N, i, j ≤ m, i ̸= j : vi ̸= vj.
Moreover, let d ∈ {TRUE, FALSE} be a boolean value.
Then n = (PROJECT, V, d) is a Project node such that type(n) = PROJECT, and
children(n) = ⟨c1⟩.

A Limit node is used to represent a LIMIT condition.

Definition 5.11 (Limit node). Let offset, limit ∈ N0 be two integers.
Then n = (LIMIT, offset, limit) is a Limit node such that type(n) = LIMIT and
children(n) = ⟨c1⟩.

A Collect node is used to represent a COLLECT statement. In the below definition
of this node, we use the boolean value b to identify whether there is a WITH COUNT
statement, and if there is, the variable w is used to store the count result.

Definition 5.12 (Collect node). Let V = ⟨(v1, E1), (v2, E2), . . . , (vm, Em)⟩ for
some m ∈ N0 be a sequence of variable-expression pairs such that ∀i ∈ N, i ≤ m :
vi ∈ W is a variable, Ei is an AQL expression tree and ∀i, j ∈ N, i, j ≤ m, i ̸= j :
vi ̸= vj. Moreover, let b ∈ {TRUE, FALSE} be a boolean value, and w ∈ W ∪ {⊥}
be a variable that can be undefined.
Then n = (COLLECT, V, b, w) is a Collect node such that type(n) = COLLECT,
children(n) = ⟨c1⟩ and w = ⊥ if b = FALSE, w ∈ W, otherwise.

We shall now define an AQL expression tree and its nodes. AQL expression
trees are used to represent filtering conditions, subqueries, arithmetic operations,
function calls, and other expressions in an AQL query.

50

Definition 5.13 (AQL expression tree). An AQL expression tree is a tuple con-
taining three elements (N, r, children), where N = {n1, n2, . . . , ni} for some i ∈ N
is the set of nodes in the tree, r ∈ N is the root node of the tree, and children is
a function that maps every node in N to its sequence of child nodes.
Let n be a node in an AQL expression tree. Then:

type(n) ∈ {VARIABLE, COLLECTION, VALUE, EXPRQUERY, AND, OR, NOT, ADD,

SUBTRACT, MULTIPLY, DIVIDE, EQUALS, NOTEQUALS, GREATERTHAN,

GREATERTHANEQUAL, LESSTHAN, LESSTHANEQUAL, UNION, CONCAT,

CONDITIONAL, ISNULL, LENGTH, LOWER, NOTNULL, TOSTRING, POSITION}

and children(n) = ⟨c1, c2, . . . , cm⟩ for some m ∈ N0 is a sequence of child nodes
of node n.

A Variable node is used to represent an AQL variable.

Definition 5.14 (Variable node). Let v ∈ W be a variable name.
Then node n = (VARIABLE, v) is a Variable node such that type(n) = VARIABLE,
and children(n) = ⟨⟩.

A Collection node is used to represent the name of an ArangoDB collection used
in a query.

Definition 5.15 (Collection node). Let c ∈ C be a collection name. Then node
n = (COLLECTION, c) is a Collection node such that type(n) = COLLECTION, and
children(n) = ⟨⟩.

A Value node is used to represent an atomic value, that is a string, number, a
boolean value, or a null value. It can also be used to represent a constant array
or object.

Definition 5.16 (Value node). Let v be a JSON value, array, or object. Then
n = (VALUE, v) is a Value node such that type(n) = VALUE, and children(n) = ⟨⟩.

An Expression Query node is used to represent a subquery within an assignment
or function call.

Definition 5.17 (Expression Query node). Let A be an AQL query tree. Then
n = (EXPRQUERY, A) is an Expression Query node such that type(n) = EXPRQUERY,
and children(n) = ⟨⟩.

An Arithmetic node is a node that represents an arithmetic operation.

Definition 5.18 (Arithmetic node). Let t ∈ {ADD, SUBTRACT, MULTIPLY, DIVIDE,
GREATERTHAN, GREATERTHANEQUAL, LESSTHAN, LESSTHANEQUAL, EQUALS,
NOTEQUALS} be a node type. Then n = (t) is an Arithmetic node such that
type(n) = t, and children(n) = ⟨c1, c2⟩.

51

Definition 5.19 (LogicalAnd node). A node n = (AND) is a LogicalAnd node
such that type(n) = AND, and children(n) = ⟨c1, c2⟩.

Definition 5.20 (LogicalOr node). A node n = (OR) is a LogicalOr node such
that type(n) = OR, and children(n) = ⟨c1, c2⟩.

Definition 5.21 (LogicalNot node). A node n = (NOT) is a LogicalNot node such
that type(n) = NOT, and children(n) = ⟨c1⟩.

A Union node is a node that represents the UNION function, which combines the
elements of multiple JSON arrays into one array.

Definition 5.22 (Union node). A node n = (UNION) is a Union node such that
type(n) = UNION, and children(n) = ⟨c1, c2, . . . , cm⟩ for some m ∈ N, m ≥ 2, such
that ∀i ∈ N, i ≤ m : ci is a constant array or an expression that returns an array.

A Concat node is a node that represents the CONCAT function, which concatenates
a given sequence of JSON values, objects, and/or arrays into a string.

Definition 5.23 (Concat node). A node n = (CONCAT) is a Concat node such
that type(n) = CONCAT, and children(n) = ⟨c1, c2, . . . , cm⟩ for some m ∈ N.

A Conditional node is used to represent the ternary conditional operator that
takes the form of condition ? consequent : alternative, where condition is an
expression which, if evaluated to true, results in the evaluation of the consequent
expression, of which the result is returned. Otherwise, the alternative expression
is evaluated and its result is returned.

Definition 5.24 (Conditional node). A node n = (CONDITIONAL) is a Conditional
node such that type(n) = CONDITIONAL, and children(n) = ⟨c1, c2, c3⟩.

An IsNull node is used to represent the IS NULL type checking function, which
takes one parameter value and returns a boolean value TRUE if it is null, and
FALSE, otherwise.

Definition 5.25 (IsNull node). A node n = (ISNULL) is an IsNull node such
that type(n) = ISNULL, and children(n) = ⟨c1⟩.

A Length node is used to represent the LENGTH function, which returns the number
of elements in a given array.

Definition 5.26 (Length node). A node n = (LENGTH) is a Length node such
that type(n) = LENGTH, and children(n) = ⟨c1⟩.

A Lower node is used to represent the LOWER function which takes a string value
and returns the same value but with all upper-case characters converted to lower-
case.

52

Definition 5.27 (Lower node). A node n = (LOWER) is a Lower node such that
type(n) = LOWER, and children(n) = ⟨c1⟩.

A NotNull node is used to represent the NOT NULL function, which takes a variable
number of inputs in sequence and returns the first input that is not null, or null
if all the inputs are null.

Definition 5.28 (NotNull node). A node n = (NOTNULL) is a NotNull node such
that type(n) = NOTNULL, and children(n) = ⟨c1, c2, . . . , cm⟩ for some m ∈ N.

A ToString node is used to represent the TO STRING type casting function, which
takes an input value of any type and converts it into a string value.

Definition 5.29 (ToString node). A node n = (TOSTRING) is a ToString node
such that type(n) = TOSTRING, and children(n) = ⟨c1⟩.

A Position node is used to represent the POSITION function, which takes an array
and a search element and returns a boolean value TRUE if the array contains
the search element, and FALSE, otherwise. It also takes an optional boolean
parameter, and if this has a value of TRUE, instead of a boolean value, the function
returns the position of the search term in the array, if it contains it, and -1
otherwise.

Definition 5.30 (Position node). A node n = (POSITION) is a Position node
such that type(n) = POSITION, and children(n) = ⟨c1, c2, c3⟩.

53

6. Modelling RDF data in
ArangoDB

In this chapter, we propose two approaches for transforming and storing RDF
data in ArangoDB. The first approach, which we call the Basic Approach, utilizes
the key-value and document data models of storage. The second approach, called
the Graph Approach, makes use of the graph data model in addition to the other
two models.

6.1 Basic Approach

Using this approach, we transform each RDF triple into an ArangoDB document
such that the subject, predicate, and object are each transformed into a JSON
object, and these three JSON objects are nested within the ArangoDB docu-
ment. This is called the Basic Approach as it does not make use of the graph
model of ArangoDB. This storage approach is a modification of the RDF/JSON
serialization, based on [71].

In this approach, all the created documents are stored in a single ArangoDB
collection. During import of the transformed data into ArangoDB, the system
attributes id, key and rev are automatically generated for each document.

In Definition 6.1 below, we define how a single RDF term in a triple is trans-
formed into a JSON object. This is required for transforming each of the subject,
predicate, and object during the transformation of a triple.

Definition 6.1 (RDF Term transformation to a JSON object). Let
i ∈ (I ∪ L ∪ B) be an RDF term. Then

transform(i) = {(type, vtype), (value, vvalue), (datatype, vdatatype), (lang, vlang}

is a JSON object describing the original RDF term i such that:

• vtype = IRI, vvalue = i, vdatatype = ⊥, vlang = ⊥, if and only if i ∈ I
• vtype = BNODE, vvalue = i, vdatatype = ⊥, vlang = ⊥, if and only if i ∈ B
• vtype = LITERAL, vvalue = value(i), vdatatype = datetype(i), vlang = lang(i),

if and only if i ∈ L

We now define the transformation of a whole RDF triple into an ArangoDB
document in Definition 6.2 below. An example of this transformation is also
given in Figure 6.1, in which we assume that the generated ArangoDB document
is stored in a collection called triples.

Definition 6.2 (RDF Triple transformation to single ArangoDB document).
Let (u, G) be an RDF graph and t = (s, p, o) ∈ G be an RDF triple. Then t is

54

transformed into an ArangoDB document transform(t) = O where
O = {(id, vid), (key, vkey), (rev, vrev), (subject, vs), (predicate, vp),
(object, vo), (graph, vg)} such that:

• vid, vkey, vrev are auto-generated by ArangoDB
• vs = transform(s) is a JSON object describing the original RDF subject s
• vp = transform(p) is a JSON object describing the original RDF predicate

p
• vo = transform(o) is a JSON object describing the original RDF object o

• vg =

⎧⎨⎩transform(u), if u ∈ I
⊥, otherwise

(⟨http://example.org/Prague⟩ ,
⟨http://www.w3.org/1999/02/22-rdf-syntax-ns#type⟩ ,

⟨http://schema.org/City⟩)

(a) Sample RDF triple

(b) Generated ArangoDB document

Figure 6.1: Basic Approach - Example Transformation

We also define how to transform a whole RDF Graph and a whole RDF Dataset
in Definitions 6.3 and 6.4, respectively.

Definition 6.3 (RDF Graph Transformation). Let G = (u, G) be an RDF graph.
Then transform(G) = {t′ | ∃t ∈ G : transform(t) = t′} is the set of all ArangoDB
documents generated for the triples in G, such that (triples, transform(G)) is
an ArangoDB collection.

Definition 6.4 (RDF Dataset Transformation). Let D = {(⊥, G1), (u2, G2), . . . ,

55

(un, Gn)} for some n ∈ N be an RDF Dataset. Then

transform(D) = transform((⊥, G1)) ∪ (
n⋃

i=2
transform((µi, Gi)))

is the set of all ArangoDB documents generated for the triples in D.

In choosing this approach, we took into consideration some particular features
and limitations of ArangoDB. One of the cases we wanted to cater to was that
where a user wants to store and query RDF triples in different named graphs.
An obvious approach would have been to have a separate ArangoDB collection
for each named graph, and to store each triple in the collection that represents
the named graph they form part of. The issue with this approach is that AQL
does not allow you to query multiple collections at the same time. Thus, the
user would have to either join the results of multiple duplicate queries run on
different collections, or to use the Union function in AQL to first combine all
the documents from the various collections into one array, and then query that
single large array. Although the second option might sound ideal, one is presented
with the problem that ArangoDB cannot make use of indexes on the results of
a collection union. Thus, filtering the whole array of data would be particularly
slow.

By using our method, we can store all triples in one collection and filter on the
graph attribute to consider only triples in the desired named graph(s). By using
a hash index on the graph attribute, this should be a relatively fast operation,
although this depends on the number of documents in the collection. Moreover, if
we want to consider just the triples in the default graph, we can simply filter and
keep only the documents having graph undefined. However, since many RDF
stores build the default graph of their default dataset by merging the default
graph and all the named graphs, this structure also allows us to do the same by
simply querying the whole collection.

Using this model, it is also easy to add more transformed RDF triples to the
collection in the future, since it is just a matter of inserting a new document
into the collection. This would not be the case if we nested the objects in the
document differently.

6.2 Graph Approach

The Graph Approach is based on the second RDF storage approach for ArangoDB
described in [69], i.e. the direct representation with edge values.

Using this approach, we transform each RDF triple into two vertices connected by
a graph edge, i.e. we transform the subject and object into ArangoDB documents,
and transform the predicate into a JSON object which we store as a property of
an edge document connecting the subject and object documents.

56

Our goal is to have just a single ArangoDB document for each unique IRI or
blank node in the RDF data. Thus, the IRI or blank node label is used to set the
key value for the document. Due to ArangoDB not allowing special characters

in the key attribute value, a simple hashing algorithm is needed to hash an IRI
into a unique numeric value.

All the documents representing some resource r ∈ (I ∪ B) are stored in a single
dedicated ArangoDB collection, whereas all the documents representing some
literal l ∈ L are stored in a single separate ArangoDB collection. All the edge
documents representing predicate links between a subject and object of a triple
are stored in a single ArangoDB edge collection.

Storing documents for IRIs and blank nodes separate from documents for literals
is useful when querying the data, as well as for adding collection indexes. When
we want to perform graph traversals, we can search for start vertices for a traversal
in the collection containing resources, and ignore the collection containing literals,
as the latter cannot be used as subjects of triples. This decreases query runtime
as we iterate over fewer documents.

In Definition 6.5 below, we define how an RDF triple is transformed using the
graph approach.

Definition 6.5 (RDF Triple transformation to two nodes linked by one edge).
Let (u, G) be an RDF graph and t = (s, p, o) ∈ G be an RDF triple. Then t is
transformed into transform(t) = {S, O, P} where:

• S = {(id, vid), (key, vkey), (rev, vrev), (type, vtype), (value, vvalue)} is an
ArangoDB document describing the original RDF subject s such that:

– vid, vrev are auto-generated by ArangoDB
– vkey = hash(s), vtype = IRI, vvalue = s, if and only if s ∈ I
– vkey = nextBNodeKey(), vtype = BNODE, vvalue = s, if and only if s ∈ B

• O = {(id, vid), (key, vkey), (rev, vrev), (type, vtype), (value, vvalue),
(datatype, vdatatype), (lang, vlang} is an ArangoDB document describing the
original RDF object o such that:

– vid, vrev are auto-generated by ArangoDB
– vkey = nextLiteralKey()
– vtype = IRI, vvalue = o, vdatatype = ⊥, vlang = ⊥, if and only if o ∈ I
– vtype = BNODE, vvalue = o, vdatatype = ⊥, vlang = ⊥, if and only if o ∈ B
– vtype = LITERAL, vvalue = value(o), vdatatype = datetype(o), vlang = ⊥,

if and only if o ∈ L and o has no language tag
– vtype = LITERAL, vvalue = value(o), vdatatype = datetype(o), vlang =

lang(o), if and only if o ∈ L and o is a language-tagged string

• P = {(from, S. id), (to, O. id), (predicate, vp), (graph, vg)} is an
ArangoDB edge document such that:

– vp = transform(p) is a JSON object describing the original RDF pred-

57

icate p

– vg =

⎧⎨⎩transform(u), if u ∈ I
⊥, otherwise

where hash is a function that returns a unique key for an IRI, and nextBNodeKey
and nextLiteralKey are functions that return a unique blank node key or unique
literal key respectively, using separate incremented counters.

{(⟨http://example.org/Prague⟩ ,
⟨http://www.w3.org/1999/02/22-rdf-syntax-ns#type⟩ ,

⟨http://schema.org/City⟩) ,
(⟨http://example.org/Prague⟩ ,

⟨http://www.w3.org/2000/01/rdf-schema#label⟩ ,
”Prague”@en)}

(a) Sample RDF data

(b) Generated ArangoDB document

Figure 6.2: Graph Approach - Example Transformation

We also define how to transform a whole RDF Graph and a whole RDF Dataset,
using the Graph Approach, in Definitions 6.6 and 6.7 respectively. A sample
transformation of an RDF graph made up of two triples is also given in Figure
6.2.

Definition 6.6 (RDF Graph Transformation). Let G = (u, G) be an RDF graph.
Then transform(G) = {{S, O, P} | ∃t ∈ G : transform(t) = {S, O, P}} is the
set of all ArangoDB documents generated for the triples in G, such that:

• (vertices, R) is an ArangoDB collection where
R = {r | r ∈ transform(G), r.type ∈ {IRI, BNODE}}

58

• (literals, L) is an ArangoDB collection where
L = {l | l ∈ transform(G), l.type = LITERAL}

• (edges, E) is an ArangoDB edge collection where
E = {e | e ∈ transform(G) and e is an ArangoDB edge document}

Definition 6.7 (RDF Dataset Transformation). Let D = {(⊥, G1), (u2, G2),
. . . , (un, Gn)} for some n ∈ N be an RDF Dataset. Then

transform(D) = transform((⊥, G1)) ∪ (
n⋃

i=2
transform((µi, Gi)))

is the set of all ArangoDB documents generated for the triples in D.

Other RDF storage options were also considered for the graph approach, such as
using the named graph feature offered by ArangoDB to represent named graphs
in RDF. However, AQL graph traversal queries cannot be performed on multiple
named graphs at the same time, whereas in SPARQL, the ability to match dif-
ferent graph patterns in a query against different named graphs is an important
feature. To simulate this in AQL, the results of multiple duplicate graph queries,
executed on different named graphs, would have to be joined. This would be
unintuitive and result in a large amount of duplicate code, especially if we want
to query all the graphs at the same time, i.e. build our default dataset to include
the default graph as well as all the named graphs.

59

7. Transforming SPARQL query
to AQL query

In this chapter, the transformation of a SPARQL query into an AQL query is
described. We present the phases making up this transformation, particularly
focusing on the transformation of a SPARQL query algebra tree into an AQL
query tree.

For this thesis, we only consider SPARQL queries in the SELECT query form, since
it is the most commonly used of the four supported query forms. Nevertheless, our
query transformation algorithm applies even for the other query forms, as these
only differ in the way result data is presented to the user after query execution,
which is not the focus of this study.

7.1 Transformation Phases

The query transformation can be divided into multiple phases. To be able to
work with the SPARQL query, we first need to transform it into its algebra tree
representation. This allows us to use the operations described in Chapter 4.

The next step is to transform the algebraic representation into a form from which
it can be more easily converted into an AQL query expression. This will optimize
the transformation process. Moreover, we will also apply other transformations
to the SPARQL query algebra tree to optimize it and consequently optimize the
generated AQL query expression.

At this point, we can transform the SPARQL algebra tree into the AQL query
tree. The transformation goes through the algebra tree from the leaves up to the
root using Postorder traversal, so we need to be able to create an AQL query
subtree representing any node from the tree. During the generation of the AQL
query tree, optimization options are taken into consideration and applied when
appropriate. The final version of the AQL query tree is then serialized into the
actual AQL query expression.

The created AQL query expression can then be executed against the data in
ArangoDB. The final phase is to transform the query result into the format that
is expected for the SELECT query form.

7.2 Modifying the SPARQL algebra tree

In this section, we propose several methods that can be used to optimize the
query transformation process using some transformations on a given SPARQL

60

query algebra tree. This type of optimization is used to simplify the algebra tree
in preparation for its translation to AQL, thus making it easier to translate.

From this point onwards in the thesis, we assume that each tree node mentioned
is unique, that is no two nodes are the same even if they seem identical, that is
they are of the same type and store the same data. When actually implemented,
each node would be associated with a unique identifier ensuring this uniqueness.

One optimization is that when a Graph node is encountered, we merge it into
each of the BGP nodes found in its subtree. This is done by modifying each
of these BGP nodes, after which the Graph node is completely removed from
the tree. A BGP node is modified such that it stores the set of IRIs of named
graphs, as well as the variable to which we have to bind a graph IRI, in case it is
specified in the Graph node. Storing this information at each BGP node is useful
for transforming the given SPARQL algebra tree into an AQL query tree. This is
because it makes it easier to add filters on the graph attribute of our ArangoDB
documents when matching triple patterns in the AQL query, as well as easier to
bind the graph variable if given.

Definition 7.1 (Transformation of a Graph node). Let T = (N, r, children) be
a SPARQL query algebra tree, n = (GRAPH, u, v) ∈ N be a Graph node in the
tree, and p ∈ N be a node in the tree such that n is a child node of p. Moreover,
let G = {g1, g2, . . . , gj} for some j ∈ N be a set of named graph IRIs such that
∀l ∈ N, l ≤ j : gl ∈ I.
We first find the set of all BGP nodes in the subtree of n as following:

Y = {m | i ∈ N, ⟨m1, m2, . . . , mi⟩ is a sequence such that
∀w ∈ N, w ≤ i : mw ∈ N, m = m1, type(m1) = BGP, mi = n,

∀k ∈ N, k < i : mk ∈ children(mk+1), type(mk) ̸= GRAPH

We then update each of the BGP nodes in Y as following:

∀x ∈ Y, x = (BGP, Px, Gx, vx) : x is modified to (BGP, Px, G′
x, v) such that

G′
x =

⎧⎨⎩G, if u = ⊥
{u}, otherwise

If the subtree of n contains a FILTER (NOT)EXISTS condition, the same has to
be done for the BGP nodes within the EXISTS or NOT EXISTS graph pattern tree
as below:

Z = {o | i ∈ N, ⟨o1, o2, . . . , oi⟩ is a sequence such that
∀w ∈ N, w ≤ i : ow ∈ N, o = o1, o1 = (FILTER, (Ne, re, childrene)),
type(re) ∈ {EXISTS, NOTEXISTS}, oi = n, and
∀k ∈ N, k < i : ok ∈ children(ok+1), type(ok) ̸= GRAPH

H = {m | i ∈ N, ⟨m1, m2, . . . , mi⟩ is a sequence such that
∀w ∈ N, w ≤ i : mw ∈ N : m = m1, type(m1) = BGP, mi = re,

∀k ∈ N, k < i : mk ∈ children(mk+1), type(mk) ̸= GRAPH

61

∀h ∈ H, h = (BGP, Ph, Gh, vh) : h is modified to (BGP, Ph, G′
h, v) such that

G′
h =

⎧⎨⎩G, if u = ⊥
{u}, otherwise

Finally, we can say that T → T ′ such that T ′ = (N ′, r, children′) as following.

N ′ = N \ {n}

Assuming that children(n) = ⟨cn⟩ and children(p) = ⟨c1, c2, . . . , cg, . . . , cq⟩ for
some q ∈ N such that ∃g ∈ N, g ≤ q : cg = n, then

children′(p) = ⟨c1, c2, . . . , cu, . . . , cq⟩

such that u = g and cu = cn.

children′ = (children\{(p, children(p))}) ∪ {(p, children′(p))}

Another optimization is that when a Slice node is encountered, given that its
child node is a Project node, we move the Slice node over the child of the Project
node, that is we swap the positions of the Slice and Project nodes so that the
Project node is the node closest to the root. This is due to projection always
being the final operation in AQL.

Definition 7.2 (Transformation of a Slice node with a Project child node). Let
T = (N, r, children) be a SPARQL query algebra tree, n ∈ N be a node such that
type(n) = SLICE and children(n) = ⟨x⟩ and type(x) = PROJECT. Then T → T ′

such that T ′ = (N, r′, children′) as following:

r′ =

⎧⎨⎩x, if r = n

r, otherwise

children′(n) = children(x)
children′(x) = ⟨n⟩

and if ∃y ∈ N, children(y) = ⟨n⟩ : children′(y) = ⟨x⟩

children′ = (children\{(n, children(n)), (x, children(x)), (y, children(y))})
∪ {(n, children′(n)), (x, children′(x)), (y, children′(y))}

7.3 Variable Binders

Once we have obtained the optimized SPARQL algebra tree, the next step is to
transform it into the corresponding AQL query tree and consequently obtain the
AQL query expression. We shall first introduce the concept of Variable Binders,
their structure, and their role in the transformation of a SPARQL algebra tree
into an equivalent AQL query tree.

62

While generating each AQL query and subquery, we have to keep track of which
AQL variable(s) represent which SPARQL variable. This way we are able to con-
struct correct AQL expressions equivalent to SPARQL expressions, and project
the correct bound values at the end of the AQL query. To store this information,
we use what we call variable binders, which are only slightly similar to the value
binders used in [55]. Our variable binders are used solely during the construction
of the AQL query tree as required.

Definition 7.3 (Variable Binder). Let v ∈ V be a SPARQL variable, o ∈
{TRUE, FALSE} be a boolean value, and A = ⟨a1, a2, . . . , an⟩ for some n ∈ N
be a sequence of AQL variable names. Then b = (v, o, A) is a variable binder.

For each SPARQL algebra tree node that we process as we go from the leaves to
the root, we keep a set of variable binders, containing one binder for each SPARQL
variable in the scope of that node. A variable binder for some SPARQL variable
can hold the names of multiple AQL variables or document (sub)attributes.

A variable binder only contains the name of one AQL variable in case we know the
SPARQL variable it represents is definitely bound. However, a SPARQL variable
could be unbound if it is contained in one or more OPTIONAL clauses, or if it is
assigned an UNDEF value within a VALUES table. In order to be able to handle
these cases, we keep a boolean value in each variable binder to indicate whether
the SPARQL variable it represents can be unbound. If it is set to true, we can add
OR IS NULL filter conditions on the AQL query variables of the variable binder
during join operations. If a SPARQL variable can be bound by one of multiple
OPTIONAL clauses and thus can possibly also remain unbound, the variable binder
contains a sequence of AQL variables and the NOT NULL function in AQL can be
used to return the first non-null AQL variable from that list, or null if all the
alternatives are null. The same applies when we are applying a join operation
involving a VALUES table containing UNDEF values.

To create a set of variable binders for a particular tree node being processed, we
have to make use of the sets of variable binders of its processed child nodes, unless
it is a leaf node. For this reason, we need to be able to merge sets of variable
binders as defined below.

Definition 7.4 (Merging sets of variable binders). Let P = ⟨B1, B2⟩ be a se-
quence of two sets of variable binders such that B1 = {b1, b2, . . . , bi} for some
i ∈ N0 and B2 = {d1, d2, . . . , dj} for some j ∈ N0. Then merge(P) = B is a new
set of variable binders such that:

B = {g | k, l ∈ N, k ≤ i, l ≤ j : bk = (vk, ok, Ak) ∈ B1, dl = (vl, ol, Al) ∈ B2

such that vk = vl and g =

⎧⎨⎩(vk, ok, Ak), if ok = FALSE
(vk, ol, Ak · Al), otherwise

}

∪ {bk | bk = (vk, ok, Ak) ∈ B1,∄dl = (vl, ol, Al) ∈ B2 : vk = vl}
∪ {dl | dl = (vl, ol, Al) ∈ B2,∄bk = (vk, ok, Ak) ∈ B1 : vl = vk}

where Ak · Al means that the elements in sequence Ak are appended to the end
of the sequence Al.

63

Since we need to use the AQL variable name(s) stored in a variable binder within
our AQL query expression, we need a way to transform each AQL variable name
into an AQL query tree node of VARIABLE type. Moreover, if the variable binder
contains more than one AQL variable name, then we need to add a NotNull node
as a parent over all the created Variable nodes.

Definition 7.5 (Transformation of a variable binder to an AQL expression tree).
Let b = (v, o, A) be a variable binder such that A = ⟨a1, a2, . . . , ak⟩ for some
k ∈ N.
Let us transform each variable name in sequence A into a VARIABLE node as
following:

N1 = {ni | i ∈ N, i ≤ k : ni = (VARIABLE, ai)}

Then we can say that transform(b) = (N, r, children) is an AQL expression tree
as following.
If k = 1:

N = N1

r = n1

children = {(n1, ⟨⟩)}

Otherwise:
N = N1 ∪ {nr}

nr = (NOTNULL), children(nr) = ⟨n1, n2, . . . , nk⟩

r = nr

children = {(nr, children(nr)), (n1, ⟨⟩), (n2, ⟨⟩), . . . , (nk, ⟨⟩)}

Moreover, when we need to project results, we need to transform the variable
binder of each SPARQL variable that has to be projected, into an AQL expression
tree using the above definition. This gives us a variable-tree pair for each SPARQL
variable. We define a function to obtain these pairs in the definition below.

Definition 7.6 (Generation of AQL project expressions from variable binders).
Let P = {s1, s2, . . . , sn} for some n ∈ N be a set of SPARQL variables that can be
undefined, and B = {b1, b2, . . . , bm} for some m ∈ N be a set of variable binders.
Then

getProjectVarExprs(P, B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(vi, transform(bi)) | i ∈ N, i ≤ m :
bi = (vi, oi, Ai) ∈ B},

if P = ⊥
{(vk, transform(bk)) | j ∈ N, j ≤ n : sj ∈ P

and ∃k ∈ N, k ≤ m :
bk = (vk, ok, Ak) ∈ B,

sj = vk},

otherwise

64

To perform Join, LeftJoin, and Minus operations, we need to generate equality
filters to match the bound value of variables that are present in both left and
right operands. For this reason, we provide the below definition for generating
the equality filters.

Definition 7.7 (Generation of Equality Filter conditions for common bound
variables). Let B = {b1, b2, . . . , bi} for some i ∈ N0 and D = {d1, d2, . . . , dj} for
some j ∈ N0 be two sets of variable binders.
Firstly, let C = {c1, c2, . . . , cm} for some m ∈ N be the set of SPARQL variables
bound in both B and D, such that ∀o ∈ N, o ≤ m : ∃k, l ∈ N, k ≤ i, l ≤ j : bk =
(ck, ok, Ak) ∈ B, dl = (cl, ol, Al) ∈ D, ck = cl = co.
If C = {}, we can say that filters(B, D) = T such that T = (N, r, children) as
following:

N = {nb}

nb = (VALUE, TRUE)

r = nb

children = {(nb, ⟨⟩)}

Otherwise, let X = {T x
1 , T x

2 , . . . , T x
m}, Y = {T y

1 , T y
2 , . . . , T y

m} be two sets of AQL
expression trees such that ∀o ∈ N, o ≤ m:

T x
o = transform(bk) = (Nx

o , rx
o , childrenx

o)

T y
o = transform(dl) = (Ny

o , ry
o , childreny

o)

Then Z = {T z
1 , T z

2 , . . . , T z
m} is a set of expression trees such that ∀o ∈ N, o ≤ m :

T z
o = (N z

o , rz
o , childrenz

o) represents an equality condition for variable co ∈ C as
following:

N z
o = Nx

o ∪ Ny
o ∪ {nz

o}

nz
o = (EQUALS)

rz
o = nz

o

childrenz
o = childrenx

o ∪ childreny
o ∪ {(nz

o, ⟨rx
o , ry

o⟩)}

Let n0 = rz
1. Then we can say that filters(B, D) = T such that T = (N, r,

children) as below:

∀q ∈ N, q < m : nq = (AND), children(nq) = ⟨nq−1, rz
q+1⟩

N = N z
1 ∪ N z

2 ∪ · · · ∪ N z
m ∪ {n1, n2, . . . , nm−1}

r = nm−1

children = childrenz
1 ∪ childrenz

2 ∪ · · · ∪ childrenz
m ∪ {(n1, children(n1)),

(n2, children(n2)), . . . , (nm−1, children(nm−1))}

65

In Definition 7.7 above, we did not take into consideration two special cases that
can be encountered when querying data stored using the graph approach. These
are when a SPARQL query contains triple patterns that use a predicate variable
in one triple pattern as the subject of another, or when a variable used to bind
a graph name in a graph graph pattern is also used within one or more triple
patterns. The problem with these cases is that in the graph approach, we store
each RDF term as an ArangoDB document, except for an RDF term in the
predicate position of a triple, and the IRI of the named graph that a triple is
in, which are each represented as a JSON object nested in an edge document.
In this case, we may end up generating a filter condition that checks that an
ArangoDB document is equal to a JSON object. These two cannot be directly
compared for equality because the ArangoDB document contains the extra id,
key, and rev attributes which a JSON object on an edge does not. Thus, they

would be seen as unequal during query execution, even if they both represent the
same RDF term. For this reason, in practice we have to separately compare the
type, value, datatype and lang properties of the ArangoDB document to the
corresponding property in the JSON object. This means that instead of one, we
need to introduce four equality conditions that must all be satisfied.

7.4 Generating the AQL query expression

We will now describe and formally define the transformation of an optimized
SPARQL query algebra tree into an AQL query tree. We define how each type of
SPARQL tree node in a SPARQL query algebra tree or expression tree is trans-
formed into an equivalent AQL node, AQL query tree, or AQL expression tree.
As mentioned previously, every node in a given SPARQL algebra tree or SPARQL
expression tree is transformed only after its child nodes have been transformed.

We also provide some sample SPARQL query expressions and equivalent AQL
query expressions for them based on our defined transformations. For the major-
ity of the examples, unless indicated otherwise, the AQL query expressions given
are appropriate when querying RDF data transformed and stored using our basic
approach, and we assume that triples is the name of the ArangoDB collection
storing our transformed RDF data.

For use during the generation of the AQL query, we introduce an arbitrary func-
tion called newVarName, which returns a unique variable name w ∈ W ie. a
variable that has not yet been used in the AQL query tree being built.

For the following definitions, we do not consider the possibility of having sub-
selects within SPARQL queries, i.e. we assume there is only one PROJECT node in
the tree. This is only because having nested PROJECT nodes would considerably
complicate the following formal definitions as this would require extra checks and
processing. Nevertheless, this does not mean that they cannot be supported. The
definitions can be extended to allow sub-selects.

We first define the transformation of a given SPARQL query algebra tree and its

66

nodes. In some of the definitions, we refer to the transformation of a SPARQL
expression tree. The definition of this tree transformation and the transformation
of its nodes are given later in Section 7.4.13.

Definition 7.8 (Transformation of a SPARQL query algebra tree). Let
T = (N, r, children) be a SPARQL query algebra tree.
Then transform(T) = transform(r) = (Tr, Br) such that Tr is the generated AQL
query tree representing the final AQL query expression, and Br is a set of variable
binders.

7.4.1 BGP node

A BGP node is transformed differently depending on whether the RDF data we
are querying was transformed and stored using the basic approach or the graph
approach defined in Chapter 6. Thus, both approaches are described below.

Basic Approach

When working with the basic approach, for each triple pattern in a BGP, we
create a FOR loop over the ArangoDB collection containing our transformed RDF
data. Since the result of a BGP operation is essentially the result of joining the
solutions of all given triple patterns, each FOR loop will be nested within that
of the triple pattern before it. Appropriate FILTER clauses are added to each
FOR loop to match the RDF terms in the triple pattern, as well as to simulate
join conditions between the results of the current triple pattern and the results
obtained from (joining) the results of previously processed triple patterns in the
BGP.

We know that each triple pattern contains a subject, predicate, and object, and
each of these can either be a variable, a resource (i.e. an IRI or literal), or a
blank node. We will process the subject, the predicate and the object of a triple
pattern separately, depending on their type, as described below:

• Variable - If the variable was not already present and bound in a previously
processed triple pattern, a variable binder for it has to be added. Otherwise,
a FILTER condition must be added over the FOR loop, to make sure that
only triples containing the same value as the AQL variable in the existing
variable binder, in the corresponding position, are kept.

• Resource - A FILTER condition must be added over the FOR loop to make
sure that only triples containing the given IRI or literal value in the corre-
sponding position are kept.

• Blank node - This is treated exactly the same way we treat a variable,
because in the SPARQL language, blank nodes are quite similar to standard
variables. The only two differences are that the same blank node label
cannot be used in two different basic graph patterns in the same query,
and a blank node cannot be projected. This is ensured when a SPARQL

67

query is loaded from file and validated, and thus does not affect the query
transformation itself.

A BGP node can optionally also contain a set of named graph IRIs and/or a
SPARQL variable to which the IRI of the named graph that triples matching the
triple patterns form part of, must be bound. If both of these are not provided,
then no further processing needs to be done.

If the SPARQL variable is present, then so is the set of named graph IRIs, since
we have to make sure that the triple patterns only match RDF triples that are
within one of the given named graphs. To ensure this, a FILTER condition has to
be added to the FOR loop of the first processed triple pattern, the condition being
that the value of the graph attribute of matched triples must be one of the given
named graph IRIs. Thus, the variable will be bound by the first triple pattern
and a variable binder is created for it. All consecutive triple patterns will match
triples that are within the graph bound to that variable, which we ensure by
adding an equality FILTER condition in the same way we do when we encounter
a variable in the subject, predicate, or object position of a triple pattern.

If the SPARQL variable is not present, the node may still contain a set of one or
more named graph IRIs. This can be due to having FROM clauses in the query or
due to there being a GRAPH clause that contained an IRI, since we merge Graph
nodes into BGP nodes during the optimization stage of query transformation. In
this case, we again add a FILTER condition to the FOR loop of the first processed
triple pattern, however, since there will not be a variable binder for the graph
IRI, we must pass on the AQL variable name of that first FOR loop to consecutive
processed triple patterns. This way, we will again add a FILTER condition on each
FOR loop to match triples that are in the same graph. This is done by comparing
the graph attribute of possibly matching documents with the graph attribute of
the ArangoDB document represented by that AQL variable.

An example SPARQL query containing a simple basic graph pattern, together
with its equivalent AQL query is given in Figure 7.1. Moreover, we formally
define the transformation of a BGP node, a triple pattern in a BGP node, and a
single triple pattern component in Definitions 7.9, 7.10, and 7.11 below.
Definition 7.9 (Transformation of a triple pattern component). Let x ∈ T ∪ V
be a triple pattern component. Moreover, let B = {b1, b2, . . . , bi} for some i ∈ N0
be a set of variable binders, w ∈ W be an AQL variable, and Z be a set of
expression trees representing filter conditions.
Then transform(x, w, B, Z) = (B′, Z ′) as below.

• If x ∈ I ∪ L : Z ′ = Z ∪ {Tx} and B′ = B
• If x ∈ B ∪ V :

– if ∃k ∈ N, k ≤ i : bk = (vk, ok, ⟨ak⟩) ∈ B, vk = x then Z ′ = Z ∪ {Tx}
and B′ = B

– otherwise: B′ = B ∪ {(x, FALSE, ⟨w⟩)} and Z ′ = Z

such that:
Tx = (Nx, rx, childrenx)

68

Nx = {ne, nv, nt}

ne = (EQUALS)

nv = (VARIABLE, w)

nt =

⎧⎨⎩(VALUE, transform(x)), if x ∈ I ∪ L
(VARIABLE, ak), if x ∈ B ∪ V

rx = ne

childrenx = {(ne, ⟨nv, nt⟩), (nv, ⟨⟩), (nt, ⟨⟩)}

Definition 7.10 (Transformation of a triple pattern). Let t = (s, p, o) be a
triple pattern, B = {b1, b2, . . . , bi} for some i ∈ N0 be a set of variable binders,
G = {g1, g2, . . . , gj} for some j ∈ N be a set of named graph IRIs which can
be undefined, and v ∈ V ∪ {⊥} be a SPARQL variable which can be undefined.
Moreover, let a ∈ W ∪ {⊥} be an AQL variable which can be undefined.
Firstly, we create an Iteration node that loops over our collection of transformed
RDF data as below:

nw = (ITERATION, w, T1)

w = newVarName()

T1 = (N1, r1, children1)

N1 = {nv}

nv = (COLLECTION, triples)

r1 = nv

children1 = {(nv, ⟨⟩)}

We must then process s, p, o. Assuming Z = {} is an empty set of expression
trees, we perform the processing as following:

transform(s, w.subject, B, Z) = (B1, Z1)

transform(p, w.predicate, B1, Z1) = (B2, Z2)

transform(o, w.object, B2, Z2) = (B3, Z3)

We now take named graphs into consideration if applicable. We perform the
below processing to obtain B4, Z4 and a′.

• If a = ⊥ :
– if v = ⊥:

∗ if G = ⊥ : B4 = B3, Z4 = Z3, a′ = a
∗ if G ̸= ⊥ : B4 = B3, Z4 = Z3 ∪ {TG}, a′ = w.graph

– otherwise:
∗ if ∃k ∈ N, k ≤ i : bk = (vk, ok, ⟨ak⟩) ∈ B, vk = v then B4 = B3,

Z4 = Z3 ∪ {Tv}, a′ = a
∗ otherwise: B4 = B3 ∪ {(v, FALSE, ⟨w.graph⟩)}, Z4 = Z3 ∪ {TG},

a′ = a
• otherwise: B4 = B3, Z4 = Z3 ∪ {Ta}, a′ = a

69

such that TG represents a POSITION(G, w.graph.value, FALSE) = TRUE condition,
Tv represents a w.graph = ak condition, and Ta represents a w.graph = a condi-
tion.
Assume that Z4 = {T z

1 , T z
2 , . . . T z

l } for some l ∈ N0 after processing, such that
∀m ∈ N, m ≤ l : T z

m = (N z
m, rz

m, childrenz
m). Then we must join the expression

trees in Z4 into a single expression tree E = (Ne, re, childrene) as follows.
If l = 0:

Ne = {n0}
n0 = (VALUE, TRUE)

re = n0

childrene = {(n0, ⟨⟩)}
Otherwise, assuming n0 = rz

1:
∀m ∈ N, m < l : nm = (AND), childrene(nm) = ⟨nm−1, rz

m+1⟩
Ne = N z

1 ∪ N z
2 ∪ · · · ∪ N z

l ∪ {n1, n2, . . . , nl−1}
re = nl−1

childrene = childrenz
1 ∪ childrenz

2 ∪ · · · ∪ childrenz
l ∪ {(n1, childrene(n1)),

(n2, childrene(n2)), . . . , (nl−1, childrene(nl−1))}
Then we can say that transform(t, B, G, v, a) = (T, B′, a′) such that T = (N, r,
children) is an AQL query tree and B′ is a set of variable binders as following:

N = {nw, nf}
nf = (FILTER, E)

r = nf

children = {(nf , ⟨nw⟩), (nw, ⟨⟩)}

Definition 7.11 (Transformation of a BGP node). Let n = (BGP, P, G, v) be a
BGP node in a SPARQL query algebra tree such that P = {t1, t2, . . . , tk} for
some k ∈ N0. Moreover, let B0 = {} be an empty set of variable binders and
a0 = ⊥ be an undefined AQL variable.
We first transform each triple pattern in P as follows:

∀i ∈ N, i ≤ k : transform(ti, Bi−1, G, v, ai−1) = (Ti, Bi, ai)
Ti = (Ni, ri, childreni)

Let n0 = r1. Then we can say that transform(n) = (T, B) such that T = (N, r,
children) is an AQL query tree and B is a set of variable binders as follows:

∀j ∈ N, j < k : nj = (NEST), children(nj) = ⟨nj−1, rj+1⟩
N = N1 ∪ N2 ∪ · · · ∪ Nk ∪ {n1, n2, . . . , nk−1}

r = nk−1

children = children1 ∪ children2 ∪ · · · ∪ childrenk

∪ {(n1, children(n1)), (n2, children(n2)), . . . , (nk−1, children(nk−1))}
B = Bk

70

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
3
4 SELECT ?p ? firstName ? lastName
5 WHERE {
6 ?p rdf:type foaf: Person ;
7 foaf: firstName ? firstName ;
8 foaf: lastName ? lastName .
9 }

(a) SPARQL query

1 FOR forloop1item IN triples
2 FILTER (forloop1item . predicate .value =="http :// www.w3.org

/1999/02/22 - rdf -syntax -ns#type")
3 && (forloop1item . object .type =="IRI")
4 && (forloop1item . object .value =="foaf: Person ")
5 FOR forloop2item IN triples
6 FILTER (forloop2item .s== forloop1item .s)
7 && (forloop2item .p.value =="http :// xmlns.com/foaf

/0.1/ firstName ")
8 FOR forloop3item IN triples
9 FILTER (forloop3item .s== forloop1item .s)

10 && (forloop3item .p.value =="http :// xmlns.com/
foaf /0.1/ lastName ")

11 RETURN { p: forloop1item .s,
12 firstName : forloop2item .o,
13 lastName : forloop3item .o }

(b) Equivalent AQL query

Figure 7.1: Sample transformation of a SPARQL query with a single BGP

Graph Approach

In this case, for each triple pattern in a BGP we first have to find all the possible
subjects for the pattern, and then perform a graph traversal for each subject,
that is iterate over all the ArangoDB documents representing RDF resources,
keeping all the ones that match the subject, and perform a graph traversal using
the current subject document as the start vertex. A variable, resource, or blank
node in the triple pattern is handled similar to the way described for the basic
approach. However, in this case, FILTER conditions are not only applied over
regular collection documents but also over paths found in the graph traversal.

In Figure 7.2, we give an equivalent AQL query expression for the same SPARQL
query expression shown in Figure 7.1a, however this AQL query expression is for
querying data stored using the graph approach. For this example, we assume that

71

the ArangoDB documents representing transformed RDF resources are stored in
a collection called vertices resources, and edge documents are stored in a
collection called edges.

1 FOR forloop1item IN vertices_resources
2 FOR g_v1 , g_e1 , g_p1 IN 1..1 OUTBOUND forloop1item edges
3 FILTER (g_p1.edges [0].p.value =="http :// www.w3.org

/1999/02/22 - rdf -syntax -ns#type")
4 && (g_p1. vertices [1]. type =="IRI")
5 && (g_p1. vertices [1]. value =="http :// xmlns.com/foaf

/0.1/ Person ")
6 FOR g_v2 , g_e2 , g_p2 IN 1..1 OUTBOUND forloop1item

edges
7 FILTER (g_p2.edges [0].p.value =="http :// xmlns.com/foaf

/0.1/ firstName ")
8 FOR g_v3 , g_e3 , g_p3 IN 1..1 OUTBOUND forloop1item

edges
9 FILTER (g_p3.edges [0].p.value =="http :// xmlns.com/

foaf /0.1/ lastName ")
10 RETURN { p: forloop1item ,
11 firstName : g_p2. vertices [1],
12 lastName : g_p3. vertices [1]}

Figure 7.2: Equivalent AQL query for the SPARQL query given in Figure 7.1a,
based on the graph approach of data storage

Definition 7.11, defining the transformation of a BGP node when dealing with
the basic approach, applies for the graph approach as well. Definition 7.9 also
applies for this approach. However, triple patterns in a BGP must be transformed
differently. Thus, we provide Definition 7.12 to be used instead of Definition 7.10
only in case of the graph approach.

Definition 7.12 (Transformation of a triple pattern – Graph Approach). Let
t = (s, p, o) be a triple pattern, B = {b1, b2, . . . , bi} for some i ∈ N0 be a set of
variable binders, G = {g1, g2, . . . , gj} for some j ∈ N be a set of named graph
IRIs which can be undefined, and v ∈ V ∪ {⊥} be a SPARQL variable which
can be undefined. Moreover, let a ∈ W ∪ {⊥} be an AQL variable which can be
undefined.
Firstly, we create an Iteration node that loops over our collection of transformed
RDF resources to find all possible resources matching the subject of the triple
pattern.

ns = (ITERATION, w, Ts)

w = newVarName()

Ts = (N1, r1, children1)

N1 = {nv}

nv = (COLLECTION, vertices resources)

72

r1 = nv

children1 = {(nv, ⟨⟩)}
Assuming Z0 = {} is an empty set of expression trees, we then process s as
following:

transform(s, w, B, Z0) = (B′, Z ′
0)

Assume that Z ′
0 = {Q1, Q2, . . . , Qk} for some k ∈ N0 such that ∀m ∈ N, m ≤ k :

Qm = (N q
m, rq

m, childrenq
m).

Then we must join the expression trees in Z ′
0 into a single expression tree

E1 = (N1
e , r1

e , children1
e) as follows.

If k = 0:
N1

e = {n1
0}

n1
0 = (VALUE, TRUE)

r1
e = n1

0

children1
e = {(n1

0, ⟨⟩)}
Otherwise, assuming n0 = rq

1:

∀m ∈ N, m < k : nm = (AND), children1
e(nm) = ⟨nm−1, rq

m+1⟩

N1
e = N q

1 ∪ N q
2 ∪ · · · ∪ N q

k ∪ {n1, n2, . . . , nk−1}

r1
e = nk−1

children1
e = childrenq

1 ∪ childrenq
2 ∪ · · · ∪ childrenq

k ∪ {(n1, children1
e(n1)),

(n2, children1
e(n2)), . . . , (nk−1, children1

e(nk−1))}

The next step is to create a GraphIteration node to perform a graph traversal of
our transformed RDF data as below:

ng = (GRAPHITERATION, vertex, edge, path, w, 1, 1, OUTBOUND, {edges})

such that vertex = newVarName(), edge = newVarName() and
path = newVarName().
We must then process p and o as following:

transform(p, edge.predicate, B′, Z0) = (B1, Z1)

transform(o, vertex, B1, Z1) = (B2, Z2)
We now take named graphs into consideration if applicable. We perform the
below processing to obtain B3, Z3 and a′.

• If a = ⊥ :
– if v = ⊥:

∗ if G = ⊥ : B3 = B2, Z3 = Z2, a′ = a
∗ if G ̸= ⊥ : B3 = B2, Z3 = Z2 ∪ {TG}, a′ = edge.graph

73

– otherwise:
∗ if ∃k ∈ N, k ≤ i : bk = (vk, ok, ⟨ak⟩) ∈ B, vk = v then B3 =

B2, Z3 = Z2 ∪ {Tv}, a′ = a
∗ otherwise: B3 = B2 ∪ {(v, FALSE, ⟨edge.graph⟩)}, Z3 = Z2 ∪ {TG},

a′ = a
• otherwise: B3 = B2, Z3 = Z2 ∪ {Ta}, a′ = a

such that TG represents a POSITION(G, edge.graph.value, FALSE) = TRUE condi-
tion, Tv represents a edge.graph = ak condition, and Ta represents a edge.graph =
a condition.
Assume that Z3 = {T1, T2, . . . Tl} for some l ∈ N0 after processing, such that
∀m ∈ N, m ≤ l : Tm = (N z

m, rz
m, childrenz

m).
Then we must join the expression trees in Z3 into a single expression tree
E2 = (N2

e , r2
e , children2

e) as follows.
If l = 0:

N2
e = {n2

0}

n2
0 = (VALUE, TRUE)

r2
e = n2

0

children2
e = {(n2

0, ⟨⟩)}

Otherwise, assuming x0 = rz
1:

∀m ∈ N, m < l : xm = (AND), children2
e(xm) = ⟨xm−1, rz

m+1⟩

N2
e = N z

1 ∪ N z
2 ∪ · · · ∪ N z

l ∪ {x1, x2, . . . , xl−1}

r2
e = xl−1

children2
e = childrenz

1 ∪ childrenz
2 ∪ · · · ∪ childrenz

l ∪ {(x1, children2
e(x1)),

(x2, children2
e(x2)), . . . , (xl−1, children2

e(xl−1))}

Then we can say that transform(t, B, G, v, a) = (T, B′, a′) such that T = (N, r,
children) is an AQL query tree and B′ is a set of variable binders as following:

N = {ns, n1
f , ng, n2

f , nnest}

n1
f = (FILTER, E1)

n2
f = (FILTER, E2)

nnest = (NEST)

r = nnest

children = {(nnest, ⟨n1
f , n2

f⟩), (n1
f , ⟨ns⟩), (ns, ⟨⟩), (n2

f , ⟨ng⟩), (ng, ⟨⟩)}

74

7.4.2 SolutionTable node

When a SolutionTable node is encountered, the multiset of solution mappings is
transformed into an array of objects, and an AQL FOR loop is introduced over
this array. We formally define the node transformation below.

Definition 7.13 (Transformation of a SolutionTable node). Let
S = (N, r, children) be a SPARQL query algebra tree and ns = (TABLE, Ω) ∈ N
be a SPARQL SolutionTable node in the tree such that Ω = {µ1, µ2, . . . , µi} for
some i ∈ N0.
Firstly we transform the multiset of solution mappings into an array of JSON
objects as below:

a =

⎧⎨⎩⟨{}⟩, if i = 0 and ∃x ∈ N : x = (JOIN), ns ∈ children(x)
as, otherwise

as = ⟨v1, v2, . . . , vi⟩ is a JSON array such that ∀j ∈ N0, j ≤ i :
vj = {(c, f) | (c → d) ∈ µj : f = transform(d)} is a JSON object

Let n1 = (ITERATION, w, E) be an Iteration node such that w = newVarName()
and E = (VALUE, a).
Then transform(ns) = (T, B) such that T = (NT , rT , childrenT) is an AQL query
tree and B is a set of variable binders as following:

NT = {n1}

rT = n1

childrenT = {(nl, ⟨⟩)}

B = {(v, o, ⟨w.v⟩) | v ∈ dom(Ω), o =

⎧⎨⎩true, if ∃µ ∈ Ω : µ(v) is undefined
false, otherwise

7.4.3 Join node

To join the results of two AQL subqueries, one subquery is nested within the
other, and a FILTER statement is added to the inner query, specifying equality
conditions between the common variables in both subqueries. This is similar
to how we join triple pattern results in a BGP. We take the variable binders
for variables that are present in both subqueries, and for every pair of variable
binders, we add a condition that the value is equal for both, or that the variable
is unbound in at least one of the subqueries, in which case the value is null.

We then add and keep a new set of variable binders for this JOIN node, which is
obtained by merging the two sets of subquery variable binders.

75

Definition 7.14 (Transformation of a Join node). Let S = (N, r, children) be a
SPARQL query algebra tree and ns = (JOIN) ∈ N be a SPARQL Join node in
the tree such that children(ns) = ⟨n1

s, n2
s⟩.

Firstly, we transform the child nodes n1
s and n2

s as following:

transform(n1
s) = (T 1

a , B1), transform(n2
s) = (T 2

a , B2)

T 1
a = (N1, r1, children1), T 2

a = (N2, r2, children2)

Then we modify T 2
a by adding a FILTER node with equality conditions over it,

obtaining T 3
a = (N ′

2, r′
2, children′

2) as follows:

N ′
2 = N2 ∪ {nf}

nf = (FILTER, filters(B1, B2))

r′
2 = nf

children′
2 = children2 ∪ {(nf , ⟨r2⟩)}

Then we can say that transform(ns) = (T, B) such that T = (NT , rT , childrenT)
is an AQL query tree and B is a set of variable binders as following:

NT = N1 ∪ N ′
2 ∪ {n1}

n1 = (NEST)

rT = n1

childrenT = children1 ∪ children′
2 ∪ {(n1, ⟨r1, r′

2⟩)}

B = merge(⟨B1, B2⟩)

7.4.4 Minus node

Although AQL provides a MINUS function, it does not work in the same way
as the Minus operator in SPARQL. Thus, for this operation, we need to use a
combination of other AQL constructs.

If there are no common SPARQL variables between the left and right graph
patterns, the minus operation is ignored, since it would not remove any result.
Thus, the AQL subquery representing the right graph pattern can be completely
discarded.

Otherwise, we want to remove solutions for the left graph pattern that are com-
patible with some solution for the right graph pattern. The way we perform
this in AQL is shown in the sample query transformation given in Figure 7.3.
What we do is loop over the left-side results and within that loop we nest a LET
statement which stores the count of right-side results that are compatible with
the current left result. Thus, the LET statement assigns the result of an AQL
subquery to a variable.

76

The subquery is a loop over the right-side results, with added equality FILTER
conditions to make sure that the right-side value for a SPARQL variable present
in both graph patterns is the same as the value for that variable in the left-
side result. The subquery then projects the count of right-hand results found
satisfying those conditions. In the outer loop, we then add a FILTER condition
keeping only the left-hand results for which the count of compatible right-hand
results computed within the LET statement is zero.

Definition 7.15 (Transformation of a Minus node). Let S = (N, r, children) be
a SPARQL query algebra tree and ns = (MINUS) ∈ N be a SPARQL Minus node
in the tree such that children(ns) = ⟨n1

s, n2
s⟩.

Firstly we transform the child nodes n1
s and n2

s as following:

transform(n1
s) = (T 1

a , B1), transform(n2
s) = (T 2

a , B2)

T 1
a = (N1, r1, children1), T 2

a = (N2, r2, children2)
such that B1 = {b1, b2, . . . , bi} for some i ∈ N0 and B2 = {d1, d2, . . . , dj} for some
j ∈ N0. We then find the set of SPARQL variables bound in both B1 and B2 as
below:

C = {ck | k, l ∈ N, k ≤ i, l ≤ j : bk = (ck, ok, Ak) ∈ B1, (cl, ol, Al) ∈ B2, ck = cl}

If C = {}, then transform(ns) = (T 1
a , B1).

Otherwise, we must add a Filter node over T 2
a with equality conditions for vari-

ables in C, upon which we then add a COLLECT WITH COUNT clause in node form
to count the amount of solutions for T 2

a matching solutions for T 1
a . We then add

a Project node over the modified tree to obtain T 3
a as follows:

T 3
a = (N3, r3, children3)

N3 = N2 ∪ {nb, nc, np}

nb = (FILTER, filters(B1, B2))
nc = (COLLECT, ⟨⟩, TRUE, length)

np = (PROJECT, {(length, (VARIABLE, length))}, FALSE)
r3 = np

children3 = children2 ∪ {(nb, ⟨r2⟩), (nc, ⟨nb⟩), (np, ⟨nc⟩)}
We then add an Assignment node, such that the results of the evaluation of
the AQL subquery represented by T 3

a , i.e. the count of matching solutions, are
assigned into a variable as below:

na = (ASSIGNMENT, w, E)

w = newVarName()
E = (Ne, re, childrene)

Ne = {nq}

nq = (EXPRQUERY, T 3
a)

77

re = nq

childrene = {(nq, ⟨⟩)}

Then we have to filter out solutions for T 1
a that match any solution for T 3

a using
the below Filter node nf .

nf = (FILTER, Ef)

Ef = (Nf , rf , childrenf)

Nf = {ne, nv, nz}

ne = (EQUALS)

nv = (VARIABLE, w)

nz = (VALUE, 0)

rf = ne

childrenf = {(ne, ⟨nv, nz⟩), (nv, ⟨⟩), (nz, ⟨⟩)}

Then we can say that transform(ns) = (T, B) such that T is an AQL query tree
and B is a set of variable binders as following:

T = (NT , rT , childrenT)

NT = N1 ∪ {na, nnest, nf}

nnest = (NEST)

rT = nf

childrenT = children1 ∪ {(nf , ⟨nnest⟩), (nnest, ⟨r1, na⟩), (na, ⟨⟩)}

B = B1

1 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
2 PREFIX schema : <http :// schema .org/>
3 PREFIX ex: <http :// example .org/>
4
5 SELECT ?p ?f
6 WHERE {
7 ?p foaf:knows ?f
8 MINUS
9 {

10 ?f schema : birthPlace ex: Czech_Republic
11 }
12 }

(a) SPARQL query

Figure 7.3: Sample transformation of a SPARQL query with a Minus operation

78

1 FOR forloop1item IN triples
2 FILTER (forloop1item . predicate .value =="http :// xmlns.com/

foaf /0.1/ knows")
3 LET assign1item = (
4 FOR forloop2item IN triples
5 FILTER (forloop2item . predicate .value =="http :// schema .

org/ birthPlace ")
6 && (forloop2item . object .type =="IRI")
7 && (forloop2item . object .value =="http :// example .org

/ Czech_Republic ")
8 FILTER (forloop1item . object == forloop2item . subject)
9 COLLECT WITH COUNT INTO length

10 RETURN length
11)
12 FILTER (assign1item ==0)
13 RETURN {p: forloop1item .subject , f: forloop1item . object }

(b) Equivalent AQL query

Figure 7.3: Sample transformation of a SPARQL query with a Minus operation
(cont.)

7.4.5 LeftJoin node

Left joins are not directly supported in AQL and are thus more complicated to
translate. A Left join operation can be represented in AQL using subqueries as
shown in Figure 7.4. The node transformation is formally defined in the below
definition.

Definition 7.16 (Transformation of a LeftJoin node). Let S = (N, r, children)
be a SPARQL query algebra tree and ns = (JOIN) ∈ N be a SPARQL Join node
in the tree such that children(ns) = ⟨n1

s, n2
s⟩.

Firstly, we transform the child nodes n1
s and n2

s as following:

transform(n1
s) = (T 1

a , B1), transform(n2
s) = (T 2

a , B2)

T 1
a = (N1, r1, children1), T 2

a = (N2, r2, children2)

We then need to modify T 2
a by adding a FILTER node with conditions for matching

variables bound in both B1 and B2. Finally we also add a PROJECT node over the
modified tree, as following:

T ′
2 = (N ′

2, r′
2, children′

2)

N ′
2 = N2 ∪ {nf , np}

nf = (FILTER, filters(B1, B2))

np = (PROJECT, getProjectVarExprs(⊥, B2), FALSE)

79

r′
2 = np

children′
2 = children2 ∪ {(nf , ⟨r2⟩), (np, ⟨nf⟩)}

We then create an Assignment node so that the results of the AQL query repre-
sented by T ′

2 will be assigned to a variable as following:

l = (ASSIGNMENT, w, T ′
2), w = newVarName()

Then transform(ns) = (T, B) such that T = (NT , rT , childrenT) is an AQL query
tree and B is a set of variable binders as following.

NT = N1 ∪ {l, n1
nest, ni, n2

nest}

n1
nest = (NEST), childrenT (n1

nest) = ⟨T 1
a , l⟩

ni = (ITERATION, newVarName(), E)

E = (Ne, re, childrene)

Ne = {nc, ng, nl, n1
v, n2

v, nz, na}, re = nc

nc = (CONDITIONAL), childrene(nc) = ⟨ng, n2
v, na⟩

ng = (GREATHERTHAN), childrene(ng) = ⟨nl, nz⟩

nl = (LENGTH), childrene(nl) = ⟨n1
v⟩

n1
v = (VARIABLE, w)

nz = (VALUE, 0)

n2
v = (VARIABLE, w)

na = (VALUE, [{}])

childrene = {(nc, ⟨ng, n2
v, na⟩), (ng, ⟨nl, nz⟩), (nl, ⟨n1

v⟩), (n1
v, ⟨⟩), (nz, ⟨⟩), (n2

v, ⟨⟩),
(na, ⟨⟩)}

n2
nest = (NEST), childrenT (n2

nest) = ⟨n1
nest, ni⟩

rT = n2
nest

childrenT = children1 ∪ {(n1
nest, ⟨T 1

a , l⟩), (l, ⟨⟩), (n2
nest, ⟨n1

nest, ni⟩), (ni, ⟨⟩)}

Before we merge the set of variable binders B1 and B2 we need to update every
variable binder in B2 to indicate that each variable could possibly be unbound.
Assuming that B2 = {b1, b2, . . . , bi} for some i ∈ N, we obtain B′

2 as following:

B′
2 = {b | j ∈ N, j ≤ i : bj = (vj, oj, Aj) ∈ B2, b = (vj, FALSE, Aj)}

Then we can say that B = merge(⟨B1, B′
2⟩).

80

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
3
4 SELECT ?x ?y ?label
5 WHERE
6 {
7 ?x rdf:type ?y
8 OPTIONAL { ?x rdfs:label ?label }
9 }

(a) SPARQL query

1 LET assign1item = (
2 FOR forloop1item IN triples
3 FILTER (forloop1item . predicate .value =="http :// www.w3.org

/1999/02/22 - rdf -syntax -ns#type")
4 RETURN {x: forloop1item .subject , y: forloop1item . object }
5)
6 LET assign3item = (
7 FOR forloop3item IN assign1item
8 LET rightResults = (
9 FOR forloop2item IN triples

10 FILTER (forloop2item . predicate .value =="http :// www.w3.
org /2000/01/ rdf - schema #label")

11 FILTER (forloop3item .x== forloop2item . subject)
12 RETURN { x: forloop2item .subject ,
13 label: forloop2item . object }
14)
15 FOR optionalResult IN ((LENGTH (rightResults) >0.0) ?

rightResults : [{ /* no match exists */ }])
16 RETURN { x: forloop3item .x, y: forloop3item .y,
17 label: optionalResult .label }

(b) Equivalent AQL query

Figure 7.4: Sample transformation of a SPARQL query with a LeftJoin operation

81

7.4.6 Union node

To combine two result sets in AQL, the UNION array function can be used by
passing the results of two subqueries as function parameters. The result of the
function call is a single array containing all the array elements combined.

In some cases, such as when transforming a Union node, we need to apply a
Project node over an AQL query tree so that it represents a valid, complete
query expression. This is required when we need to assign the results of an
AQL subquery into a variable or pass the results to some function. We define
a function for applying a Project node every an incomplete AQL query tree in
Definition 7.17, followed by a definition for the transformation of a Union node.
We also provide a sample transformation of a SPARQL query containing a Union
operation in Figure 7.6.

Definition 7.17 (Applying a Project node over an incomplete AQL query tree).
Let T = (N, r, children) be an AQL query tree and B = {b1, b2, . . . , bi} for some
i ∈ N be a set of variable binders. Then ensureComplete(T, B) = (T ′, B′) such
that:

T ′ =

⎧⎨⎩T, if type(r) = PROJECT
(N ′, r′, children′), otherwise

N ′ = N ∪ {np}

np = (PROJECT, V, FALSE)
V = {(vj, Tj) | j ∈ N, j ≤ i : bj = (vj, oj, Aj) ∈ B, Tj = transform(bj)}

r′ = np

children′ = children ∪ {(np, ⟨r⟩)}
B′ = {(vj, FALSE, ⟨vj⟩) | j ∈ N, j ≤ i : (vj, oj, Aj) ∈ B}

Definition 7.18 (Transformation of a Union node). Let S = (N, r, children) be
a SPARQL query algebra tree and ns = (Union) ∈ N be a SPARQL Union node
in the tree such that children(ns) = ⟨n1

s, n2
s⟩.

Firstly, we transform the child nodes n1
s and n2

s, and add a PROJECT node over
each of the transformed trees as following:

transform(n1
s) = (T 1

a , B1
a), transform(n2

s) = (T 2
a , B2

a)

(T1, B1) = ensureComplete(T 1
a , B1

a)
(T2, B2) = ensureComplete(T 2

a , B2
a)

We then want to create an ITERATION node to loop over the UNION of the results
of both subquery trees as below:

n = (ITERATION, w, E), w = newVarName()

E = ({nu, nl, nr}, nu, childrene)
nu = (UNION)

82

nl = (EXPRQUERY, T1)

nr = (EXPRQUERY, T2)

childrene = {(nu, ⟨nl, nr⟩), (nl, ⟨⟩), (nr, ⟨⟩)}

Then we can say that transform(ns) = (T, B) such that T = (NT , rT , childrenT)
is an AQL query tree and B is a set of variable binders as following:

NT = {n}

rT = n

childrenT = {(n, ⟨⟩)}

Bm = merge(⟨B1, B2⟩) = {b1, b2, . . . , bi} for some i ∈ N

B = {b | j ∈ N, j ≤ i, bj = (vi, oi, Ai) ∈ Bm : b = (vi, oi, ⟨w.vi⟩)}

1 PREFIX schema : <http :// schema .org/>
2 PREFIX ex: <http :// example .org/>
3
4 SELECT DISTINCT ?p
5 WHERE {
6 {
7 ?p schema : birthPlace ex:Malta .
8 }
9 UNION {

10 ?p schema : birthPlace ex: Czech_Republic .
11 }
12 }

(a) SPARQL query

Figure 7.5: Sample transformation of a SPARQL query with a Union operation

83

1 LET resultSet1 = (
2 FOR forloop1item IN triples
3 FILTER (forloop1item . predicate .value =="http :// schema .org/

birthPlace ")
4 && (forloop1item . object .type =="IRI")
5 && (forloop1item . object .value =="http :// example .org/

Malta")
6 RETURN {p: forloop1item . subject }
7)
8 LET resultSet2 = (
9 FOR forloop2item IN triples

10 FILTER (forloop2item . predicate .value =="http :// schema .org/
birthPlace ")

11 && (forloop2item . object .type =="IRI")
12 && (forloop2item . object .value =="http :// example .org/

Czech_Republic ")
13 RETURN {p: forloop2item . subject }
14)
15 FOR forloop3item IN UNION(resultSet1 , resultSet2)
16 RETURN DISTINCT {p: forloop3item .p}

(a) Equivalent AQL query

Figure 7.6: Sample transformation of a SPARQL query with a Union operation
(cont.)

7.4.7 Filter node

A SPARQL Filter operation is represented in AQL using its own FILTER state-
ment. This requires translating the SPARQL filtering conditions into equivalent
filter expressions in AQL, as defined in Definition 7.19 and shown in the sample
query transformation in Figure ??.

Definition 7.19 (Transformation of a Filter node). Let S = (N, r, children) be
a SPARQL query algebra tree and ns = (FILTER, E) ∈ N be a SPARQL Filter
node in the tree such that children(ns) = ⟨n1

s⟩.
Firstly we transform the child node n1

s as following:

transform(n1
s) = (T 1

a , B)

T 1
a = (N1, r1, children1)

Then we can say that transform(ns) = (T, B) such that T = (NT , rT , childrenT)
is an AQL query tree as following:

NT = N1 ∪ {nf}

nf = (FILTER, transform(E, B))

84

rT = nf

childrenT = children1 ∪ {(nf , ⟨r1⟩)}

7.4.8 Extend node

The SPARQL Extend operator assigns the result of an expression into a variable
and adds that variable mapping into the current solution mapping.

To extend each solution mapping in the multiset of solutions for a graph pattern,
i.e. the array of current results in AQL, we nest a LET assignment within the
current FOR loop, which assigns the result of the extend expression into an AQL
variable with the same name as the SPARQL variable in the extend operation.
We then keep a variable binder that tells us that the SPARQL variable is bound
to the value of the assigned AQL variable. We give the transformation of a sample
SPARQL query containing an extend operation in Figure 7.7.

For the following definition, we assume that an Extend node cannot try to bind
a variable that has already been bound in its subtree.

Definition 7.20 (Transformation of an Extend node). Let S = (N, r, children)
be a SPARQL query algebra tree and ns = (EXTEND, E) ∈ N be a SPARQL
Extend node in the tree such that E = {(v1, e1), (v2, e2), . . . , (vm, em)} for some
m ∈ N and children(ns) = ⟨n1

s⟩.
Firstly, we transform the child node n1

s as following:

transform(n1
s) = (T 1

a , B1)

T 1
a = (N1, r1, children1)

We then create an ASSIGNMENT node for each pair in E to compute and store the
result of an expression tree to be bound to a variable. We also create a set of
variable binders for these newly bound variables, as below:

Ne = {ni | i ∈ N, i ≤ m : ni = (ASSIGNMENT, vi, transform(ei, B1)}

Be = {(vi, FALSE, ⟨vi⟩) | i ∈ N, i ≤ m : (vi, ei) ∈ E}
Then we can say that transform(ns) = (T, B) such that T = (NT , rT , childrenT)
is an AQL query tree and B is a set of variable binders as following:

NT = N1 ∪ Ne ∪ {nf , nl}

nf = (NEST), childrenT (nf) = ⟨r1, nl⟩
nl = (SEQUENCE), childrenT (nl) = ⟨n1, n2, . . . , nm⟩

rT = nf

childrenT = children1 ∪ {(nf , ⟨r1, nl⟩), (nl, ⟨n1, n2, . . . , nm⟩),
(n1, ⟨⟩), (n2, ⟨⟩), . . . , (nm, ⟨⟩)}

B = B1 ∪ Be

85

1 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
2 SELECT ? fullName
3 WHERE {
4 ?p foaf: firstName ?f ;
5 foaf: lastName ?s
6 BIND(CONCAT (?f, " ", ?s) AS ? fullName)
7 }

(a) SPARQL query

1 FOR forloop1item IN triples
2 FILTER (forloop1item . predicate .value =="http :// xmlns.com/

foaf /0.1/ firstName ")
3 FOR forloop2item IN triples
4 FILTER (forloop2item . subject == forloop1item . subject)&&(

forloop2item . predicate .value =="http :// xmlns.com/foaf
/0.1/ lastName ")

5 LET fullName = CONCAT (forloop1item . object .value ," ",
forloop2item . object .value)

6 RETURN fullName

(b) Equivalent AQL query

Figure 7.7: Sample transformation of a SPARQL query with an Extend operation

7.4.9 Order node

The SPARQL ORDER BY operator works in the same manner as the SORT oper-
ator in AQL, although in the latter we need to specify the document or object
(sub)properties to be used to perform the ordering.

Moreover, we have to make sure that the ordering is performed correctly in the
situation where we have a variable with more than one possible type. We need to
follow the order introduced in the definition of the SPARQL language [42], that
is the following order:

1. Unbound variables
2. Blank nodes
3. IRIs
4. Literals

In order to ensure this, in AQL we need to sort by the two document sub-
attributes type and value. Since null < BNODE < IRI < LITERAL, sorting by the
type attribute first ensures that types appear in the order defined in SPARQL.
We then sort by the value attribute to sort result values of the same type alpha-
betically. This logic is not reflected in Definition 7.21 given below, however it is
assumed that when the AQL query tree is being serialised into the actual AQL

86

query expression, it is taken into consideration.

Although the order of literals can also be affected by their datatype and possible
language tag, this ordering is not well-defined within the SPARQL specification,
and thus we do not consider it.

Definition 7.21 (Transformation of an Order node). Let S = (N, r, children)
be a SPARQL query algebra tree and ns = (ORDER, C) ∈ N be a SPARQL Order
node in the tree, such that C = ⟨(E1, d1), (E2, d2), . . . , (Em, dm)⟩ for some m ∈ N,
and children(ns) = ⟨n1

s⟩.
Firstly, we transform the child node n1

s as following:

transform(n1
s) = (T 1

a , B)

T 1
a = (N1, r1, children1)

We then transform the sequence of sort conditions C as following:

Ca = ⟨(E ′
1, d1), (E ′

2, d2), . . . , (E ′
m, dm)⟩

such that ∀i ∈ N, i ≤ m : E ′
i = transform(Ei, B).

Then we can say that transform(ns) = (T, B) such that T = (NT , rT , childrenT)
is an AQL query tree as following:

NT = N1 ∪ {no}

no = (SORT, Ca)

rT = no

childrenT = children1 ∪ {(no, ⟨r1⟩)}

7.4.10 Project node

The Project operation is represented by looping over the current array of results
and placing a RETURN statement within the FOR loop, in which we specify which
bound variables are to be projected. We formally define the transformation of a
Project node below.

Definition 7.22 (Transformation of a Project node). Let S = (N, r, children)
be a SPARQL query algebra tree and ns = (PROJECT, P) ∈ N be a SPARQL
Project node in the tree such that P = {v1, v2, . . . , vi} for some i ∈ N, and
children(ns) = ⟨n1

s⟩.
Firstly, we transform the child node n1

s as following:

transform(n1
s) = (T 1

a , B1)

T 1
a = (N1, r1, children1)

87

Then transform(ns) = (T, B) such that T = (NT , rT , childrenT) is an AQL query
tree and B is a set of variable binders as following:

NT = N1 ∪ {np}

np = (PROJECT, getProjectVarExprs(P, B1), FALSE)
rT = np

childrenT = children1 ∪ {(np, ⟨r1⟩)}
B = {(vj, FALSE, ⟨vj⟩) | j ∈ N, j ≤ i : vj ∈ P}

7.4.11 Distinct node

The Distinct operation can be represented in AQL using a RETURN DISTINCT
statement.

Definition 7.23 (Transformation of a Distinct node). Let S = (N, r, children)
be a SPARQL query algebra tree and ns = (DISTINCT) ∈ N be a SPARQL
Distinct node in the tree such that children(ns) = ⟨n1

s⟩.
Firstly, we transform the child node n1

s as following:

transform(n1
s) = (T 1

a , B)

T 1
a = (N1, r1, children1)

such that r1 = (PROJECT, V, d). We then modify r1 to ensure a distinct projection,
as following:

r′
1 = (PROJECT, V, TRUE)

Then we can say that transform(ns) = (T, B) such that T = (NT , rT , childrenT)
is an AQL query tree and B is a set of variable binders as following:

NT = (N1\{r1}) ∪ {r′
1}

rT = r′
1

childrenT = (children1\{(r1, children1(r1))) ∪ {(r′
1, children1(r1))}}

7.4.12 Slice node

A Slice operation can be represented using the LIMIT statement in AQL.

Definition 7.24 (Transformation of a Slice node). Let S = (N, r, children) be
a SPARQL query algebra tree and ns = (SLICE, offset, limit) ∈ N be a SPARQL
Slice node in the tree such that children(ns) = ⟨n1

s⟩.
Firstly, we transform the child node n1

s as following:

transform(n1
s) = (T 1

a , B)

88

T 1
a = (N1, r1, children1)

Then transform(ns) = (T, B) such that T = (NT , rT , childrenT) is an AQL query
tree and B is a set of variable binders as following:

NT = N1 ∪ {nl}

nl = (LIMIT, offset, limit)
rT = nl

childrenT = children1 ∪ {(nl, ⟨r1⟩)}

7.4.13 SPARQL expression tree

We now define how a SPARQL expression tree within a SPARQL query tree
node is transformed. To transform a SPARQL expression tree, we require the
set of variable binders for the current scope of the SPARQL query tree being
transformed.

Definition 7.25 (Transformation of a SPARQL expression tree). Let T = (N, r,
children) be a SPARQL expression tree and B = {b1, b2, . . . , bi} for some i ∈ N0
be a set of variable binders. Then transform(T, B) = transform(r, B).

In some cases, we need to access the sub-attribute of a document for compar-
isons, arithmetic operations, and function calls. For this reason, we need to be
able to update Variable nodes that represent documents, such that instead they
then represent sub-attributes of documents. We provide Definition 7.26 for this
purpose.

Definition 7.26 (Transformation of a document variable to a document sub-
-attribute variable). Let n = (VARIABLE, v) be an AQL Variable node and s ∈
{type, value, datatype, lang} be the name of a sub-attribute of a document.
Then update(n, s) → (VARIABLE, v.s).

We now define the transformation of each possible type of node in a SPARQL
expression tree.

Definition 7.27 (Transformation of a LogicalAnd or LogicalOr node). Let S =
(N, r, children) be a SPARQL expression tree and ns ∈ N be a node in the tree
such that type(ns) ∈ {AND, OR}, and children(ns) = ⟨n1

s, n2
s⟩. Moreover, let B be

a set of variable binders.
Firstly, we transform the child nodes n1

s and n2
s as following:

transform(n1
s, B) = T 1

a = (N1, r1, children1)

transform(n2
s, B) = T 2

a = (N2, r2, children2)
Then transform(ns, B) = T such that T = (NT , rT , childrenT) is an AQL expres-
sion tree as following:

NT = N1 ∪ N2 ∪ {nl}

89

nl =

⎧⎨⎩(AND), if type(ns) = AND
(OR), otherwise

rT = nl

childrenT = children1 ∪ children2 ∪ {(nl, ⟨r1, r2⟩)}
Definition 7.28 (Transformation of a LogicalNot node). Let S = (N, r, children)
be a SPARQL expression tree and ns = (NOT) ∈ N be a LogicalNot node in the
tree such that children(ns) = ⟨n1

s⟩. Moreover, let B be a set of variable binders.
Firstly, we transform the child node n1

s as following:

transform(n1
s, B) = T 1

a = (N1, r1, children1)

Then transform(ns, B) = T such that T = (NT , rT , childrenT) is an AQL expres-
sion tree as following:

NT = N1 ∪ {nl}
nl = (NOT)

rT = nl

childrenT = children1 ∪ {(nl, ⟨r1⟩)}
Definition 7.29 (Transformation of a Bound node). Let S = (N, r, children) be
a SPARQL expression tree and ns = (BOUND) ∈ N be a Bound node in the tree
such that children(ns) = ⟨n1

s⟩. Moreover, let B be a set of variable binders.
Firstly, we transform the child node n1

s as following:

transform(n1
s, B) = T 1

a = (N1, r1, children1)

Then transform(ns, B) = T such that T = (NT , rT , childrenT) is an AQL expres-
sion tree as following:

NT = N1 ∪ {ne, nl}
ne = (NOTEQUALS)
nl = (VALUE, null)

rT = ne

childrenT = children1 ∪ {(ne, ⟨r1, nl⟩), (nl, ⟨⟩)}
Definition 7.30 (Transformation of a Language node). Let S = (N, r, children)
be a SPARQL expression tree and ns = (LANG) ∈ N be a Language node in the
tree such that children(ns) = ⟨n1

s⟩. Moreover, let B be a set of variable binders.
Firstly, we transform the child node n1

s as following:

transform(n1
s, B) = (N1, r1, children1)

such that type(r1) = VARIABLE. Then we update r1 so that we access the language
sub-attribute of the document referenced by the variable, using update(r1, lang).
Then we can say that transform(ns, B) = T such that T = (NT , rT , childrenT) is
an AQL expression tree as following:

NT = {r1}

rT = r1

childrenT = children1

90

Definition 7.31 (Transformation of an Equals or NotEquals node). Let S =
(N, r, children) be a SPARQL expression tree and ns = (EQUALS) ∈ N be an
Equals node in the tree such that children(ns) = ⟨n1

s, n2
s⟩. Moreover, let B be a

set of variable binders.
Firstly, we transform the child nodes n1

s and n2
s as following:

transform(n1
s, B) = T 1

a = (N1, r1, children1)

transform(n2
s, B) = T 2

a = (N2, r2, children2)
If and only if exactly one of the nodes r1, r2 is a variable, and the other is not a
literal or IRI value, then we have to compare the value attribute of the JSON
object represented by the variable. Thus,

• r1 is modified using update(r1, value) if and only if
(type(r1) = (VARIABLE) ∧ type(r2) ̸= (VARIABLE) ∧
(type(r2) ̸= (VALUE) ∨ (r2 = (VALUE, v) ∧ v is not an IRI or literal)))

• r2 is modified using update(r2, value) if and only if
(type(r1) ̸= (VARIABLE) ∧ type(r2) = (VARIABLE)) ∧
(type(r1) ̸= (VALUE) ∨ (r1 = (VALUE, v) ∧ v is not an IRI or literal)))

Then transform(ns, B) = T such that T = (NT , rT , childrenT) is an AQL expres-
sion tree as following:

NT = N1 ∪ N2 ∪ {ne}

ne =

⎧⎨⎩(EQUALS), if type(ns) = EQUALS
(NOTEQUALS), otherwise

rT = ne

childrenT = children1 ∪ children2 ∪ {(ne, ⟨r1, r2⟩)}

In Definition 7.31 above, we did not specify that when checking for the equality of
r1 and r2, if they both represent an ArangoDB document or JSON object for an
RDF term, we have to separately check that the type, value, datatype and lang
properties of r1 are all equal to the corresponding property of r2. As explained
previously, this is done so that if only one of them contains the id, key, and
rev attributes, these will not affect their equality.

Definition 7.32 (Transformation of a LangMatches node). Let S = (N, r,
children) be a SPARQL expression tree and ns = (LANGMATCHES) ∈ N be a
LangMatches node in the tree such that children(ns) = ⟨n1

s, n2
s⟩. Moreover, let

B be a set of variable binders.
Firstly, we transform the child nodes n1

s and n2
s as following:

transform(n1
s, B) = T 1

a = (N1, r1, children1)

transform(n2
s, B) = T 2

a = (N2, r2, children2)
Finally, we can say that transform(ns, B) = T such that T = (NT , rT , childrenT)
is an AQL expression tree as following.

91

If n2
s = (VALUE, *):

NT = N1 ∪ {nd, nl}

nd = (NOTEQUALS)
nl = (VALUE, null)

rT = nd

childrenT = children1 ∪ {(nd, ⟨r1, nl⟩), (nl, ⟨⟩)}
Otherwise:

NT = N1 ∪ N2 ∪ {ne}

ne = (EQUALS)
rT = ne

childrenT = children1 ∪ children2 ∪ {(ne, ⟨r1, r2⟩)}

For the transformation of a Concat node given in Definition 7.33 below, we ignore
the language and datatype attributes of literals and simply concatenate their
string value properties, i.e. we treat them as simple literals.

Definition 7.33 (Transformation of a Concat node). Let S = (N, r, children)
be a SPARQL expression tree and ns = (CONCAT) ∈ N be a Concat node in the
tree such that children(ns) = ⟨c1, c2, . . . , cm⟩ for some m ∈ N. Moreover, let B
be a set of variable binders.
Firstly we transform the children of ns into a sequence of AQL expression trees
as following:

X = ⟨T1, T2, . . . , Tm⟩

such that ∀i ∈ N, i ≤ m : Ti = transform(ci, B) = (Ni, ri, childreni) and if
type(ri) = VARIABLE, we update ri using update(ri, value) since we want to
concatenate simple literals. Then we can say that transform(ns, B) = T such
that T = (NT , rT , childrenT) is an AQL expression tree as following:

NT = N1 ∪ N2 ∪ · · · ∪ Nm ∪ {nc}

nc = (CONCAT)
rT = nc

childrenT = children1 ∪ children2 ∪ · · · ∪ childrenm ∪ {(nc, ⟨r1, r2, . . . , rm⟩)}

Definition 7.34 (Transformation of a Value node). Let ns = (VALUE, v) be a
SPARQL Value node. Then

transform(ns, B) =

⎧⎨⎩(VALUE, v), if v ∈ S
(VALUE, transform(v)), otherwise

Definition 7.35 (Transformation of a Variable node). Let ns = (VARIABLE, v)
be a SPARQL Variable node and B = {b1, b2, . . . , bm} for some m ∈ N be a set
of variable binders. Then transform(ns, B) = transform(bi) such that
∃i ∈ N, i ≤ m : bi = (vi, oi, Ai) ∈ B, vi = v.

92

Definition 7.36 (Transformation of an Arithmetic node). Let S = (N, r,
children) be a SPARQL expression tree and ns = (t) ∈ N be an Arithmetic node
in the tree such that children(ns) = ⟨n1

s, n2
s⟩. Moreover, let B be a set of variable

binders.
Firstly we transform the child nodes n1

s and n2
s as following:

transform(n1
s, B) = (N1, r1, children1)

transform(n2
s, B) = (N2, r2, children2)

If and only if r1 = (VARIABLE, v1) such that v1 ∈ W is a variable that represents
a JSON object for an RDF literal, we update r1 using update(r1, value). The
same applies to r2, i.e. if and only if r2 = (VARIABLE, v2) such that v2 ∈ W is a
variable that represents a JSON object for an RDF literal, we update r2 using
update(r2, value).
Then we can say that transform(ns, B) = T = (NT , rT , childrenT) is an AQL
expression tree such that:

NT = N1 ∪ N2 ∪ {nr}

nr = (t)
rT = nr

childrenT = children1 ∪ children2 ∪ {(nr, ⟨r1, r2⟩)}

For the following definition for the transformation of a SPARQL Exists or No-
tExists node, we assume that the graph pattern in the node can only contain
basic graph patterns and simple joins. Other constructs are not considered for
this particular case as they would significantly impact and complicate the other
formal definitions. Nevertheless, the definitions can be modified and extended to
allow further constructs.

Definition 7.37 (Transformation of an Exists or NotExists node). Let S =
(N, r, children) be a SPARQL expression tree and ns = (t, A) ∈ N be a SPARQL
node in the tree such that t ∈ {EXISTS, NOTEXISTS}, and B be a set of variable
binders.
Firstly we transform A as following:

transform(A) = (T1, B1)

T1 = (N1, r1, children1)
We then modify T1 by adding a Filter node over it with equality conditions, to
only keep solutions that match solutions in the parent scope of ns, i.e. variables
bound in both B1 and B must have the same value. We also add a PROJECT node
over the tree, obtaining T ′

1 as below:

T ′
1 = (N1 ∪ {nf , np}, r′

1, children′
1)

nf = (FILTER, filters(B, B1))

93

np = (PROJECT, {}, FALSE)

r′
1 = np

children′
1 = children1 ∪ {(nf , ⟨r1⟩), (np, ⟨nf⟩)}

We then use T ′
1 as a subquery in a conditional filter expression, such that if ns is

an Exists node, the subquery must have returned at least one result, i.e. length
of results is more than zero. Otherwise if ns is a NotExists node, the subquery
must have returned no result, i.e. length of results is zero. For this, we need to
create the below nodes:

ns = (EXPRQUERY, T ′
1)

nl = (LENGTH)

no =

⎧⎨⎩(GREATERTHAN), if t = EXISTS
(EQUALS), otherwise

nz = (VALUE, 0)

Then we can say that transform(ns, B) = T = (NT , rT , childrenT) is an AQL
expression tree such that:

NT = {no, nl, ns, nz}

rT = no

childrenT = {(no, ⟨nl, nz⟩), (nl, ⟨ns⟩), (ns, ⟨⟩), (nz, ⟨⟩)}

7.5 Transforming the AQL query result

The last step after retrieving the results of the AQL query execution on the
ArangoDB dataset is to return the data to the user in the format expected based
for SPARQL SELECT query form.

Due to our transformation algorithm, each column in the result set is already
labeled according to the SPARQL variable it bounds. Thus, these do not need
to be changed and can simply be printed.

Each column value is either a null value, a document or JSON object representing
some RDF IRI, blank node, or literal, or a string value representing a simple
literal. In the case of a null value, we simply print out nothing, while in the
case of an atomic string value, we simply print out that value as a quoted string.
Otherwise, the nested type property of the JSON object must be read to check
what type of RDF value it represents and format it accordingly.

If the object represents an IRI, then we can simply print out the IRI present in
the value attribute. If the object represents a blank node, then we print it out
in the form “ :” followed by the value of the value attribute of the object, that
is the blank node label or identifier.

94

If the object represents a literal, then the format depends on the literal’s datatype
or language tag. If the literal has a language tag, then we print it in the format
“⟨value here⟩”@⟨lang here⟩ such that ⟨value here⟩ is replaced by the value of the
value attribute of the object, and ⟨lang here⟩ is replaced by the value of the
lang attribute of the object. If the literal does not have a language tag but has
a datatype, we print it in the format “⟨value here⟩”ˆˆ⟨datatype here⟩ such that
⟨value here⟩ is replaced by the value of the value attribute of the object, and
⟨datatype here⟩ is replaced by the value of the datatype attribute of the object.

7.6 Other Optimization Considerations

While transforming a SPARQL algebra tree into an AQL query tree, we consider
other optimizations which are not mentioned in the transformations and formal
definitions given previously.

One optimization is that before processing the triple patterns in a BGP node, we
first modify the set of triple patterns into a sequence, such that we can first process
the triple patterns which are most likely to match less data, thus improving the
performance of the created nested FOR loops. For example, a triple pattern of
which the subject, predicate, and object are all IRIs, will only match one triple.
On the other hand, a triple pattern made up of three variables will match all the
triples in the queried dataset if none of the variables were bound by previously
processed triple patterns.

Another optimization considered is that when creating a graph traversal iteration
to match triples to a triple pattern, we decide whether to perform an inbound or
an outbound traversal based on the components of the particular triple pattern,
as well as the set of currently bound variables. For example, if the subject of
the triple pattern is a variable that has already been bound, we introduce an
outbound traversal with the vertex representing the subject as the start vertex.
We similarly use an outbound traversal when the subject is an RDF term, by first
iterating over the vertex collection to find the document matching the subject,
and then using it as the start vertex for the traversal. However, if the subject is a
variable that has not yet been bound, we look at the object of the triple pattern
to check if it is an RDF term or a variable that has already been bound. If it is,
then we can use an inbound traversal with the document representing the object
as the start vertex. This way, we avoid high-cost iterations to match the subject
when it is possible. If both the subject and object are variables that have not yet
been bound, then the high-cost iteration to match the subject cannot be avoided.

Unrelated to the query transformation itself, using indexes on the ArangoDB col-
lections significantly improves the performance of generated AQL queries. How-
ever, it is important to consider that over-indexing can result in a worse perfor-
mance. Moreover, the proper index selection depends on the storage approach
used, as well as the typical queries used. Thus, the user must keep this in mind
when defining indexes.

95

8. Implementation

In this chapter, we describe our implemented tools and the technologies used
to implement them. We present two implementations, these being a tool for
transforming RDF into a JSON structure for ArangoDB, and a prototype imple-
mentation of a tool for transforming SPARQL queries into AQL queries.

8.1 Technologies

The following main technologies were used to implement our two command-line
tools.

8.1.1 Java

Java was used as the programming language for both the RDF-to-ArangoDB
data transformation tool as well as the SPARQL-to-AQL query translator. It is
a modern, object-oriented language that is particularly popular due to it being
platform-independent. It was chosen due to its portability as well as the stability
of its RDF libraries.

8.1.2 Apache Jena

Apache Jena [7] is a free and open-source Java framework composed of different
APIs that interact together to process RDF data. It allows us to load RDF data
or SPARQL query expressions from file and transform them into a structure of
Java class instances for manipulation.

ARQ Query Engine

ARQ [8] is a query engine for Apache Jena that supports the SPARQL query
language. ARQ is used to transform a SPARQL query into a SPARQL algebra
expression. It also provides out-of-the-box optimization processes for the algebra
expressions, in the form of Transformer classes which one can pick and choose
from and apply as seen fit. Users can also add their own optimization processes
by building on top of the existing Transformer classes in ARQ.

96

8.1.3 ArangoDB Java Driver

We use the official ArangoDB Java Driver [13] to connect to an ArangoDB
database from within our SPARQL-to-AQL query translation tool, in order to
execute our generated AQL queries and retrieve and process the query results.

8.2 RDF data transformation tool

A command-line tool 1 that loads RDF data from file and transforms it into a
JSON format that can be stored in ArangoDB was implemented. When running
the tool, the user must choose whether to transform the RDF data using the
basic approach or using the graph approach, as defined in Chapter 6.

The RDF data is read from file and into a Jena Dataset instance so that it can
be processed and transformed more easily and efficiently. Moreover, if there is
any syntax error in the data provided, this is caught immediately by the Jena
library while attempting to load the data into the dataset, and the user is notified
accordingly.

Based on the chosen transformation approach, the tool makes use of an instance
of the RdfToDocumentModelBuilder class or the RdfToGraphModelBuilder class
to transform the RDF data into the appropriate JSON data, which can then be
imported into ArangoDB.

The generated JSON data is saved to one or more files, depending on the transfor-
mation approach. If the basic approach was used, all the JSON objects are saved
to a single file. If the graph approach was used, the tool saves four files of JSON
data. One file contains the JSON objects representing all the RDF resources, that
is IRIs and blank nodes. Another file contains the JSON objects representing all
RDF literals. Another file contains all the JSON objects representing ArangoDB
edges between two resources. The last file contains all the JSON objects repre-
senting ArangoDB edges between a resource and a literal. The ArangoDB edges
have to be separated into these two files due to the way data is imported into
ArangoDB.

The data in these files then has to be manually imported into ArangoDB, using
the arangoimport command-line tool utility [11] that comes with ArangoDB.

1Available at https://github.com/Ponsietta/RdfToArangoDBJson

97

8.3 SPARQL-to-AQL query transformation tool

Another command-line tool 2 that loads a SPARQL query expression from file,
transforms it into an equivalent ArangoDB AQL query expression, and runs the
latter query on the ArangoDB database was implemented. The tool does not im-
plement full support for the SPARQL language and its algebra. It offers support
for the SELECT query form, and all the SPARQL query constructs described and
defined in Chapter 4, with the following limitations:

• limited support for nested OPTIONAL patterns
• VALUES clauses can only be present within a SELECT WHERE clause
• the graph pattern within an EXISTS or NOT EXISTS statement can only

contain basic graph patterns

One difference between the prototype implementation and the SPARQL query
algebra tree we define in Chapter 4 is that we support another node called a
QuadPattern node. This type of node is used instead of a BGP node when a
basic graph pattern needs to be evaluated against one or more named graphs,
and not the default graph. In our implementation, a BGP node simply contains
the basic graph pattern. A QuadPattern node stores a basic graph pattern as
well as a named graph IRI or a SPARQL variable to which a named graph IRI
needs to be bound.

The project structure of our tool is made up of the following main folders:

• com.aql.querytree contains classes that represent nodes in an AQL query
tree, and other classes used to serialize an AQL query tree into a concrete
AQL query expression

• com.sparql to aql contains classes used to transform a SPARQL query
into an AQL query

8.3.1 Processing the query

The SPARQL query is initially read from file, using the file path passed by the
user as a command-line argument. The QueryFactory class in Jena ARQ is
then used to parse the string query into a Query object. If the SPARQL query
expression is not syntactically correct, Jena will catch the error at this stage, and
the user can be notified that the query is invalid.

The Algebra class in ARQ is then utilized to build the SPARQL query algebra
tree for the query expression. At this point, some transformations are applied to
the SPARQL algebra tree to optimize it and make it easier to convert into our
AQL query tree, as described and defined in Sections 7.2 and 7.6. We used the
TransformReorder transformer provided in ARQ to reorder the triple patterns
in every BGP and QuadPattern node in the algebra tree so that we process the

2Available at https://github.com/Ponsietta/SparqlToArangoDbAql

98

triple patterns that filter out the most data first. This is an optimization that
improves query runtime.

We also implemented some custom transformers for modifying the SPARQL al-
gebra tree. Our OpProjectOverSliceTransformer is used to swap the positions
of any encountered Slice node and its child Project node, since in AQL, the data
first has to be sliced and then projected. Our OpGraphTransformer class is used
to merge any encountered Graph node into each BGP node in its subtree, by
transforming each BGP node into a QuadPattern node, and then removing the
Graph node from the tree.

The next step is to convert the SPARQL query algebra tree into an AQL query
tree. Depending on which approach was used to transform and store the RDF
data we are querying, the ArqToAqlTreeVisitor BasicApproach class or the
ArqToAqlTreeVisitor GraphApproach class is used to carry out this transfor-
mation. These classes extend the ArqToAqlTreeVisitor class, which contains
transformation logic common between both approaches. These classes make use
of the Visitor design pattern to perform a postorder traversal of the SPARQL
algebra tree and generate corresponding AQL query tree nodes for each node
traversed. During traversal, if any unsupported operator is found, an error is
returned to the user. Moreover, when expressions are encountered in operators,
for example filter expressions, the RewritingExprVisitor is used to translate
each SPARQL expression into an equivalent expression in AQL.

The created AQL query tree is then converted to the actual AQL query expression
using our AqlQuerySerializer class. The ArangoDB Java driver is used to
execute the query on the ArangoDB database storing the transformed RDF data.
The database name and names of the database collections containing the data to
be queried are specified in the config.properties configuration file within the
project, which can be updated by the user as required.

The last step is the conversion of the AQL result data into RDF form, which
is performed as explained in Section 7.5 in the previous chapter. The correctly
formatted result data is then saved to a CSV file for the user to view.

99

9. Evaluation

In this chapter, the implemented SPARQL-to-AQL query transformation tool,
as well as the two RDF storage approaches we presented for ArangoDB, will be
evaluated. The Berlin SPARQL Benchmark (BSBM) [51] was used to perform
tests and performance comparisons. The RDF data used in this evaluation was
generated using the data generator presented in the BSBM, and we used SPARQL
queries from the query mix of the benchmark.

9.1 Experiments

The BSBM is built around an e-commerce use case, where we have a set of
products offered by different vendors, as well as reviews of the products, posted
by different consumers. As a basis for our experiments, we used the BSBM data
generator to generate an RDF dataset based around 1000 products, resulting
in a dataset of about 375,000 triples. We then used our RDF transformation
tool to transform the generated RDF data into a JSON format appropriate for
ArangoDB, after which the JSON data was imported into an ArangoDB database.
Both the basic and the graph approach for transforming and storing the data were
used.

We also uploaded the original RDF data into a Virtuoso database so that we
could compare the results of querying RDF data stored in a popular RDF store,
to the results of querying the same transformed RDF data in ArangoDB. By
making these comparisons, we could ensure that our SPARQL-to-AQL query
transformation tool works correctly as expected.

We chose to use the SPARQL queries described in Table 9.1 to evaluate our
SPARQL-to-AQL tool and its performance. The actual SPARQL query expres-
sions are included in Appendix A. We used our tool to transform each of the eight
SPARQL query expressions into two equivalent AQL query expressions, one for
querying data stored using the basic approach, and one for querying data stored
using the graph approach.

We also used our tool to execute each of the AQL query expressions against
the ArangoDB database containing our transformed RDF data. Since our tool
saves the result data of each query to file, we could then execute the original
SPARQL query over the Virtuoso database and compare the returned results to
those obtained from our AQL query execution.

The result data obtained from each of our executed AQL queries matched the
execution results of the original corresponding SPARQL query on Virtuoso. This
shows that our tool correctly transforms the given SPARQL query expressions into
equivalent AQL query expressions, and that the results returned by ArangoDB
are the same as the results returned by Virtuoso, even in terms of sort order.

100

Query Description

Q1 Find products for a given set of generic features – touches a large
amount of data and uses ORDER BY and LIMIT

Q2 Retrieve basic information about a specific product – touches only
a small amount of data, contains many triple patterns, and uses
OPTIONAL graph patterns

Q3 Find products having some specific features and not having one feature
– uses negation, ORDER BY and LIMIT

Q4 Find products matching two different sets of features – uses UNION,
ORDER BY, LIMIT and OFFSET

Q5 Find products that are similar to a given product – touches a large
amount of data, uses complex FILTER conditions involving arithmetic
operations, uses LIMIT

Q6 Retrieve in-depth information about a specific product including offers
and reviews – touches a large amount of data including products,
offers, vendors, reviews and reviewers, uses OPTIONAL graph patterns

Q7 Get recent reviews in English for a specific product – uses
langMatches function, ORDER BY and LIMIT

Q8 Get all information about an offer – contains triple patterns with
unbound predicates and uses UNION

Table 9.1: Table of queries used for evaluation

9.2 Performance

In this section, the performance of our SPARQL-to-AQL tool and its generated
AQL queries is evaluated using the SPARQL queries above.

The performance is tested on a Windows 10 64-bit laptop having 16GB of RAM
and a 1.8GHz Intel Core i7-4500u CPU.

To evaluate the performance, we measure the time it takes for an AQL query
generated by our tool to execute over the ArangoDB database and return the
correctly formatted results. ArangoDB’s default storage engine RocksDB is used.
We also measure the time it takes for the original SPARQL query to execute over
the Virtuoso database and return the result data. The execution times of both
scenarios are then compared.

Every query was executed 15 times against the database. The two best and two
worst execution times were removed and an average of the remaining execution
times was taken. Table 9.2 shows the resulting average query execution times,
and the same results are also plotted in the form of a bar chart in Figure 9.1.

101

Query ArangoDB ArangoDB Virtuoso
Basic Approach Graph Approach

1 17.9 ms 15.4 ms 1 ms
2 34.4 ms 59.3 ms 2.3 ms
3 21.5 ms 46.3 ms 0.6 ms
4 102.4 ms 124.4 ms 1 ms
5 100 ms 179.6 ms 0.9 ms
6 29.8 ms 50.1 ms 1.1 ms
7 20.4 ms 33.9 ms 1 ms
8 2.8 ms 6 ms 1.1 ms

Table 9.2: Query execution times

Figure 9.1: Plotted query execution times

102

It is important to mention that we defined a number of persistent indexes and
vertex-centric indexes on our ArangoDB collections, which greatly improved our
query runtimes.

Unfortunately, ArangoDB did not outperform Virtuoso for any of the queries
used in our evaluation tests. Nevertheless, the query runtimes recorded were very
reasonable both when querying data stored using the Basic Approach, as well as
when using the Graph Approach. Query 4 and 5 stand out for having the longest
average runtimes of all the queries for both basic and graph approaches.

For query 5, the longer runtime is due to the multiple arithmetic operations
and comparisons in the query. The query optimizer does not use the available
persistent indexes for improving the filter conditions involving these operations,
as the indexes can only be used for the equality comparisons in the query and
not the range comparisons. This is due to ArangoDB’s indexing limitations.

In the case of query 4, the runtime is largely affected by the union operation.
Once we union the results of two subqueries, the optimizer cannot make use of
indexes for any consecutive filtering, sorting, and slicing of data.

Generally, an AQL query run on data stored using the graph approach, had a
longer runtime than the equivalent AQL query run on data stored using the basic
approach. This is due to the graph traversals performed in the former, which
are expected to be slower than a regular iteration over a collection due to the
traverser having to walk the graph edges and emit each vertex, edge, and path.
Moreover, before performing a traversal, we often need to use a regular collection
iteration to find all the possible start vertices for the traversal, depending on the
subject or object of the triple pattern being processed. This adds to the cost of
a query.

Although Virtuoso performed better than ArangoDB, this could be due to dif-
ferences in their general system settings and configuration. For example, Vir-
tuoso may be using a larger part of system memory than ArangoDB, or it may
be caching more data and query results. Moreover, Virtuoso could be making
greater utilization of the CPU than ArangoDB. Thus, comparing and adjusting
their configurations could result in significant differences in query runtimes.

Furthermore, although Virtuoso outperformed ArangoDB in querying the dataset
used for this thesis, it might not be the case if a much larger dataset is used. This
is because ArangoDB is based on the horizontal scaling architecture and thus, its
real advantage may only appear when working with truly big data.

103

Conclusion

In this master thesis, we presented two approaches that can be used to transform
and store RDF data in ArangoDB, together with our main contribution, which is
an algorithm for transforming a given SPARQL query into an AQL query, taking
into consideration the chosen storage approach. A prototype implementation of
our algorithm was also implemented, tested, and evaluated.

Although our query transformation algorithm does not fully cover the syntax
and semantics of the SPARQL language, we have shown that it is possible to
query RDF data in ArangoDB using SPARQL and that the performance of our
evaluated queries is acceptable and relatively comparable to the popular RDF
store Virtuoso. We also provided possible valid reasons for the slower performance
of certain AQL queries and compared the performance of querying data stored
using our basic approach against that of querying data stored using our graph
approach.

We considered and handled several non-trivial issues concerning the query trans-
formations, due to the differences between the SPARQL and AQL languages, as
well as the different way data is stored in ArangoDB versus in a traditional RDF
store.

Future Work

While this thesis presents a solution for storing and querying RDF data within a
multi-model database, there are still ways to improve the solution.

Currently, the SPARQL-to-AQL query transformation tool provides limited sup-
port for the SPARQL algebra. The first task would be to expand and finalize
the support for certain parts of the algebra which are currently supported with
restrictions. The next task would be to add support for more components of
the SPARQL language which were not considered in the thesis, until the whole
language and its algebra is supported. This would most likely require the imple-
mentation of additional query optimizations.

Another task would be to extend our SPARQL-to-AQL query transformation al-
gorithm to make it appropriate for querying RDF data stored in ArangoDB using
the flattened representation described by Samuelsen [69], which we discussed in
Chapter 3. It would be interesting to compare the performance of querying data
stored using this approach against our two proposed approaches, as using the
flattened representation could significantly improve query runtime.

One could also investigate the possible usage of xR2RML mappings for translating
SPARQL queries into AQL queries. Using such mappings, although requiring
more user input, could make translation more flexible and not restrict the user

104

to using a single specific storage model.

Another future task is to implement a SPARQL endpoint that takes a SPARQL
query provided by the user, transparently translates it into an AQL query using
our algorithm and executes it on an ArangoDB database, and returns the result
data to the user in RDF format. This would enable interoperability with other
RDF backend applications.

105

Bibliography

[1] 4store. Last accessed 27 September 2019. URL: https://github.com/
4store/4store.

[2] ADO.NET. Last accessed 3 December 2019. URL: https://
docs.microsoft.com/en-us/dotnet/framework/data/adonet/.

[3] AllegroGraph. Last accessed 27 September 2019. URL: https://
allegrograph.com/.

[4] Apachde HBase. Last accessed 29 September 2019. URL: https://
hbase.apache.org/.

[5] Apache Cassandra. Last accessed 27 September 2019. URL: http://
cassandra.apache.org/.

[6] Apache Hadoop. Last accessed 9 December 2019. URL: http://
hadoop.apache.org.

[7] Apache Jena. Last accessed 16 July 2019. URL: https://jena.apache.org/.

[8] Apache Jena ARQ. Last accessed 16 July 2019. URL: https://
jena.apache.org/documentation/query/.

[9] Apache Jena TDB. Last accessed 27 September 2019. URL: https://
jena.apache.org/documentation/tdb/.

[10] ArangoDB. Last accessed 26 December 2019. URL: https://
www.arangodb.com/.

[11] ArangoDB - Arangoimport. Last accessed 24 December 2019. URL: https:
//www.arangodb.com/docs/stable/programs-arangoimport.html.

[12] ArangoDB - Foxx Microservices. Last accessed 4 December 2019. URL:
https://www.arangodb.com/docs/stable/foxx.html.

[13] ArangoDB Java Driver. Last accessed 24 December 2019. URL: https:
//www.arangodb.com/docs/stable/drivers/java.html.

[14] ArangoDB v3.5.3 HTTP API Documentation. Last accessed 4 December
2019. URL: https://www.arangodb.com/docs/stable/http/index.html.

[15] Couchbase. Last accessed 14 October 2019. URL: https://
www.couchbase.com/.

[16] Cumulus RDF. Last accessed 27 September 2019. URL: https://
github.com/cumulusrdf/cumulusrdf.

[17] DataGraft. Last accessed 2 October 2019. URL: https://datagraft.io/.

[18] Eclipse RDF4J. Last accessed 27 September 2019. URL: https://
rdf4j.eclipse.org/.

106

https://github.com/4store/4store
https://github.com/4store/4store
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/
https://allegrograph.com/
https://allegrograph.com/
https://hbase.apache.org/
https://hbase.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://hadoop.apache.org
http://hadoop.apache.org
https://jena.apache.org/
https://jena.apache.org/documentation/query/
https://jena.apache.org/documentation/query/
https://jena.apache.org/documentation/tdb/
https://jena.apache.org/documentation/tdb/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/docs/stable/programs-arangoimport.html
https://www.arangodb.com/docs/stable/programs-arangoimport.html
https://www.arangodb.com/docs/stable/foxx.html
https://www.arangodb.com/docs/stable/drivers/java.html
https://www.arangodb.com/docs/stable/drivers/java.html
https://www.arangodb.com/docs/stable/http/index.html
https://www.couchbase.com/
https://www.couchbase.com/
https://github.com/cumulusrdf/cumulusrdf
https://github.com/cumulusrdf/cumulusrdf
https://datagraft.io/
https://rdf4j.eclipse.org/
https://rdf4j.eclipse.org/

[19] IBM Db2. Last accessed 27 September 2019. URL: https://www.ibm.com/
cz-en/analytics/db2.

[20] Introducing JSON. Last accessed 17 June 2019. URL: https://
www.json.org.

[21] Java JDBC API. Last accessed 3 December 2019. URL: https://
docs.oracle.com/javase/8/docs/technotes/guides/jdbc/.

[22] JSON-LD. Last accessed 5 October 2019. URL: https://json-ld.org/.

[23] Microsoft Open Database Connectivity (ODBC). Last accessed 3 December
2019. URL: https://docs.microsoft.com/en-us/sql/odbc/microsoft-
open-database-connectivity-odbc.

[24] MongoDB. Last accessed 19 September 2019. URL: https://
www.mongodb.com/.

[25] MySQL. Last accessed 5 October 2019. URL: https://www.mysql.com/.

[26] Neo4j. Last accessed 5 October 2019. URL: https://neo4j.com/.

[27] NoSQL Performance Benchmark 2018. Last accessed 12 September
2019. URL: https://www.arangodb.com/2018/02/nosql-performance-
benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/.

[28] OpenLink Virtuoso Universal Server. Last accessed 15 September 2019.
URL: https://virtuoso.openlinksw.com/.

[29] OrientDB. Last accessed 28 September 2019. URL: https://
orientdb.com/.

[30] OWL 2 Web Ontology Language - Document Overview. Last accessed 23
November 2019. URL: https://www.w3.org/TR/2012/REC-owl2-overview-
20121211/.

[31] PostgreSQL. Last accessed 29 September 2019. URL: https://
www.postgresql.org/.

[32] R2RML: RDB to RDF Mapping Language. Last accessed 19 September
2019. URL: https://www.w3.org/TR/r2rml/.

[33] RDF 1.1 Concepts and Abstract Syntax. Last accessed 27 December 2019.

[34] RDF 1.1 JSON Alternate Serialization (RDF/JSON). Last accessed 15
September 2019. URL: https://www.w3.org/TR/rdf-json/.

[35] RDF 1.1 N-Triples. Last accessed 30 July 2019. URL: https://www.w3.org/
TR/n-triples/.

[36] RDF 1.1 TriG. Last accessed 23 November 2019. URL: https://www.w3.org/
TR/trig/.

[37] RDF 1.1 Turtle. Last accessed 30 July 2019. URL: https://www.w3.org/
TR/turtle/.

107

https://www.ibm.com/cz-en/analytics/db2
https://www.ibm.com/cz-en/analytics/db2
https://www.json.org
https://www.json.org
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://json-ld.org/
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mysql.com/
https://neo4j.com/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/
https://virtuoso.openlinksw.com/
https://orientdb.com/
https://orientdb.com/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.w3.org/TR/r2rml/
https://www.w3.org/TR/rdf-json/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/

[38] RDF 1.1 XML Syntax. Last accessed 30 July 2019. URL: https://
www.w3.org/TR/rdf-syntax-grammar/.

[39] RDF Schema 1.1. Last accessed 23 November 2019. URL: https://
www.w3.org/TR/rdf-schema/.

[40] Semantic Web Ontologies. Last accessed 27 September 2019. URL: https:
//www.w3.org/standards/semanticweb/ontology.

[41] SKOS Simple Knowledge Organization System Reference. Last accessed 23
November 2019. URL: https://www.w3.org/TR/skos-reference/.

[42] SPARQL 1.1 Query Language. Last accessed 27 December 2019.

[43] SPARQL 1.1 Update. Last accessed 27 December 2019.

[44] The Linked Open Data Cloud. Last accessed 24 October 2019. URL: https:
//lod-cloud.net/.

[45] The World Wide Web Consortium (W3C). Last accessed 23 December 2019.
URL: https://www.w3.org/.

[46] W3C Standards - Semantic Web. Last accessed 28 September 2019. URL:
https://www.w3.org/standards/semanticweb/.

[47] XML Query. Last accessed 26 September 2019. URL: https://www.w3.org/
XML/Query/.

[48] T. Berners-Lee and M. Fischetti. Weaving the Web; The Original Design
and Ultimate Destiny of the World Wide Web. Harper, 1999.

[49] T. Berners-Lee, J. Hendler, and O Lissila. The Semantic Web. Scientific
American, May 2001. Last accessed 29 September 2019. URL: https://
www.scientificamerican.com/article/the-semantic-web/.

[50] N. Bikakis, C. Tsinaraki, I. Stavrakantonakis, N. Gioldasis, and
S. Christodoulakis. The SPARQL2XQuery Interoperability Framework. Uti-
lizing Schema Mapping, Schema Transformation and Query Translation to
Integrate XML and the Semantic Web. World Wide Web, 18:403–490, Jan-
uary 2013.

[51] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. Int. J. Semantic
Web Inf. Syst., 5:1–24, 2009.

[52] C. Bizer and A. Seaborne. D2RQ - treating non-RDF databases as virtual
RDF graphs. In ISWC 2004 (posters), November 2004.

[53] E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, and G. Xiao. OBDA beyond
relational DBs: A study for MongoDB. In Proc. 29th Int. Workshop on
Description Logics, volume 1577, 2016.

[54] R. Bouhali and A. Laurent. Exploiting RDF Open Data Using NoSQL Graph
Databases. In R. Chbeir, Y. Manolopoulos, I. Maglogiannis, and R. Alhajj,
editors, Artificial Intelligence Applications and Innovations, pages 177–190.
Springer International Publishing, 2015.

108

https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/TR/skos-reference/
https://lod-cloud.net/
https://lod-cloud.net/
https://www.w3.org/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/XML/Query/
https://www.w3.org/XML/Query/
https://www.scientificamerican.com/article/the-semantic-web/
https://www.scientificamerican.com/article/the-semantic-web/

[55] M. Chaloupka. Querying RDF graphs stored in a relational database using
SPARQL and R2RML. Master’s thesis, Charles University in Prague, 2014.

[56] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque,
A. Harth, F. L. Keppmann, D. Miranker, J. F. Sequeda, and M. Wylot.
NoSQL Databases for RDF: An Empirical Evaluation. In The Semantic
Web – ISWC 2013, pages 310–325. Springer Berlin Heidelberg, 2013.

[57] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and
R. Van de Walle. RML: A Generic Language for Integrated RDF Map-
pings of Heterogeneous Data. In Proc. 7th Workshop on Linked Data on
the Web, April 2014. URL: http://events.linkeddata.org/ldow2014/
papers/ldow2014 paper 01.pdf.

[58] P. Fischer, D. Florescu, M. Kaufmann, and D. Kossmann. Translating
SPARQL and SQL to XQuery. In XML Prague, pages 81–98, January 2011.

[59] A. Haque and L. Perkins. Distributed RDF Triple Store Using HBase and
Hive. December 2012.

[60] V. Khadilkar, M. Kantarcioglu, B. M. Thuraisingham, and P. Castagna.
Jena-HBase: A Distributed, Scalable and Effcient RDF Triple Store. In
International Semantic Web Conference, 2012.

[61] S. Kiminki, J. Knuuttila, and V. Hirvisalo. SPARQL to SQL Translation
Based on an Intermediate Query Language. 2010.

[62] F. Michel, L. Djimenou, C. Faron-Zucker, and J. Montagnat. xR2RML: Rela-
tional and Non-Relational Databases to RDF Mapping Language. Technical
report, September 2015.

[63] F. Michel, C. Faron-Zucker, and J. Montagnat. A Generic Mapping-based
Query Translation from SPARQL to Various Target Database Query Lan-
guages. pages 147–158, January 2016.

[64] F. Michel, C. Faron-Zucker, and J. Montagnat. A Mapping-Based Method
to Query MongoDB Documents with SPARQL. volume 9828, pages 52–67,
September 2016.

[65] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of
SPARQL. In The Semantic Web - ISWC 2006, pages 30–43. Springer Berlin
Heidelberg, 2006.

[66] M. A. Rodriguez and P. Neubauer. Constructions from dots and lines.
Bulletin of the American Society for Information Science and Technology,
36(6):35–41, 2010.

[67] K. Runapongsa Saikaew, C. Aswamenakul, and M. Buranarach. Design and
evaluation of a NoSQL database for storing and querying RDF data. KKU
Engineering Journal, 41:537–545, December 2014.

[68] P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerg-
ing World of Polyglot Persistence, chapter 13. Addison-Wesley, August 2012.

109

http://events.linkeddata.org/ldow2014/papers/ldow2014_paper_01.pdf
http://events.linkeddata.org/ldow2014/papers/ldow2014_paper_01.pdf

[69] S. D. Samuelsen. Representing and Storing Semantic Data in a Multi-Model
Database. Master’s thesis, University of Oslo, 2018.

[70] J. Sequeda and D. Miranker. Ultrawrap: Sparql execution on relational
data. Web Semantics: Science, Services and Agents on the World Wide
Web, 22:19–39, October 2013.

[71] L. Szeremeta and D. Tomaszuk. Document-oriented RDF graph store. Studia
Informatica, 38:31–43, May 2017.

[72] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A Distributed Graph En-
gine for Web Scale RDF Data. Proc. VLDB Endow., 6(4):265–276, February
2013.

[73] C. Zhang, J. Lu, P. Xu, and Y. Chen. Unibench: A benchmark for multi-
model database management systems. In R. Nambiar and M. Poess, editors,
Performance Evaluation and Benchmarking for the Era of Artificial Intelli-
gence, pages 7–23. Springer International Publishing, 2019.

110

List of Figures

1.1 Part of the LOD Cloud [44] . 9

1.2 Graphical representation of an RDF triple 9

3.1 Samuelsen’s direct representation of RDF 25

3.2 Samuelsen’s direct with edges representation of RDF for the sample
data in Figure 3.1a . 26

3.3 Samuelsen’s flattened representation of RDF 26

3.4 Property Graph representation of RDF 29

5.1 Example AQL query expression with only a RETURN operation . . 44

5.2 Example AQL query expression with a simple for loop 45

5.3 AQL graph traversal syntax . 45

5.4 Example AQL query expression with SORT 46

5.5 Example AQL query expression with LIMIT 46

5.6 Example AQL query expression with a simple LET operation . . . 47

5.7 Example AQL query expression with LET operation assigning sub-
query . 47

5.8 Example AQL query expression with JOIN operation 47

5.9 Example AQL query expression with a simple COLLECT operation 48

5.10 Example AQL query expression with a COLLECT INTO operation . 48

5.11 Example AQL query expression with a COLLECT WITH COUNT op-
eration . 48

6.1 Basic Approach - Example Transformation 55

6.2 Graph Approach - Example Transformation 58

7.1 Sample transformation of a SPARQL query with a single BGP . . 71

7.2 Equivalent AQL query for the SPARQL query given in Figure 7.1a,
based on the graph approach of data storage 72

111

7.3 Sample transformation of a SPARQL query with a Minus operation 78

7.4 Sample transformation of a SPARQL query with a LeftJoin operation 81

7.5 Sample transformation of a SPARQL query with a Union operation 83

7.7 Sample transformation of a SPARQL query with an Extend operation 86

9.1 Plotted query execution times . 102

112

List of Tables

9.1 Table of queries used for evaluation 101

9.2 Query execution times . 102

113

List of Abbreviations
AQL ArangoDB Query Language.

BGP Basic Graph Pattern.
BSBM Berlin SPARQL Benchmark.

HTML Hypertext Markup Language.

IRI Internationalized Resource Identifier.

JSON JavaScript Object Notation.

LOD Linked Open Data.
LOD Cloud Linked Open Data Cloud.

MMFiles Memory-Mapped Files.

OBDA Ontology-Based Data Access.
OWL Web Ontology Language.

RDBMS Relational Database Management System.
RDF Resource Description Framework.
RDFS RDF Schema.

SKOS Simple Knowledge Organization System.
SPARQL SPARQL Protocol and RDF Query Language.
SQL Structured Query Language.

URI Uniform Resource Identifier.
URL Uniform Resource Locator.

W3C World Wide Web Consortium.
WWW World Wide Web.

XML Extensible Markup Language.

114

A. Queries used for evaluation

1 PREFIX bsbm -inst: <http :// www4. wiwiss .fu - berlin .de/bizer/
bsbm/v01/ instances />

2 PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/
v01/ vocabulary />

3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5
6 SELECT DISTINCT ? product ?label
7 WHERE {
8 ? product rdfs:label ?label .
9 ? product a bsbm -inst: ProductType15 .

10 ? product bsbm: productFeature bsbm -inst: ProductFeature2113
.

11 ? product bsbm: productFeature bsbm -inst: ProductFeature10 .
12 ? product bsbm: productPropertyNumeric1 ? value1 .
13 FILTER (? value1 > 200)
14 }
15 ORDER BY ?label
16 LIMIT 10

Listing A.1: SPARQL query #1

1 PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/
v01/ vocabulary />

2 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
3 PREFIX dataFromProducer3 : <http :// www4. wiwiss .fu - berlin .de/

bizer/bsbm/v01/ instances / dataFromProducer3 />
4 PREFIX bsbm -inst: <http :// www4. wiwiss .fu - berlin .de/bizer/

bsbm/v01/ instances />
5 PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
6
7 SELECT ?label ? comment ? producer ? productFeature
8 ? propertyTextual1 ? propertyTextual2 ? propertyTextual3
9 ? propertyNumeric1 ? propertyNumeric2 ? propertyTextual4

10 ? propertyTextual5 ? propertyNumeric4
11 WHERE
12 { dataFromProducer3 : Product118
13 rdfs:label ?label ;
14 rdfs: comment ? comment ;
15 bsbm: producer ?p .
16 ?p rdfs:label ? producer .
17 dataFromProducer3 : Product118
18 dc: publisher ?p ;
19 bsbm: productFeature ?f .
20 ?f rdfs:label ? productFeature .
21 dataFromProducer3 : Product118
22 bsbm: productPropertyTextual1 ? propertyTextual1 ;
23 bsbm: productPropertyTextual2 ? propertyTextual2 ;

115

24 bsbm: productPropertyTextual3 ? propertyTextual3 ;
25 bsbm: productPropertyNumeric1 ? propertyNumeric1 ;
26 bsbm: productPropertyNumeric2 ? propertyNumeric2
27 OPTIONAL
28 {
29 dataFromProducer3 : Product118
30 bsbm: productPropertyTextual4 ? propertyTextual4
31 }
32 OPTIONAL
33 {
34 dataFromProducer3 : Product118
35 bsbm: productPropertyTextual5 ? propertyTextual5
36 }
37 OPTIONAL
38 {
39 dataFromProducer3 : Product118
40 bsbm: productPropertyNumeric4 ? propertyNumeric4
41 }
42 }

Listing A.2: SPARQL query #2

1 PREFIX bsbm -inst: <http :// www4. wiwiss .fu - berlin .de/bizer/
bsbm/v01/ instances />

2 PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/
v01/ vocabulary />

3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5
6 SELECT ? product ?label
7 WHERE {
8 ? product rdfs:label ?label .
9 ? product a bsbm -inst: ProductType2 .

10 ? product bsbm: productFeature bsbm -inst: ProductFeature1717
.

11 ? product bsbm: productPropertyNumeric1 ?p1 .
12 FILTER (?p1 > 400)
13 ? product bsbm: productPropertyNumeric3 ?p3 .
14 FILTER (?p3 < 1100)
15 OPTIONAL
16 {
17 ? product bsbm: productFeature bsbm -inst: ProductFeature12

.
18 ? product rdfs:label ? testVar
19 }
20 FILTER (! bound (? testVar))
21 }
22 ORDER BY ?label
23 LIMIT 10

Listing A.3: SPARQL query #3

116

1 PREFIX bsbm -inst: <http :// www4. wiwiss .fu - berlin .de/bizer/
bsbm/v01/ instances />

2 PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/
v01/ vocabulary />

3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
5
6 SELECT DISTINCT ? product ?label ? propertyTextual
7 WHERE {
8 {
9 ? product rdfs:label ?label .

10 ? product rdf:type bsbm -inst: ProductType3 .
11 ? product bsbm: productFeature bsbm -inst: ProductFeature25 .
12 ? product bsbm: productFeature bsbm -inst: ProductFeature2460

.
13 ? product bsbm: productPropertyTextual1 ? propertyTextual .
14 ? product bsbm: productPropertyNumeric1 ?p1 .
15 FILTER (?p1 > 100)
16 }
17 UNION
18 {
19 ? product rdfs:label ?label .
20 ? product rdf:type bsbm -inst: ProductType3 .
21 ? product bsbm: productFeature bsbm -inst: ProductFeature25

.
22 ? product bsbm: productFeature bsbm -inst: ProductFeature34 .
23 ? product bsbm: productPropertyTextual1 ? propertyTextual .
24 ? product bsbm: productPropertyNumeric2 ?p2 .
25 FILTER (?p2 > 750)
26 }
27 }
28 ORDER BY ?label
29 OFFSET 5
30 LIMIT 10

Listing A.4: SPARQL query #4

1 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/

v01/ vocabulary />
4 PREFIX dataFromProducer4 : <http :// www4. wiwiss .fu - berlin .de/

bizer/bsbm/v01/ instances / dataFromProducer4 />
5
6 SELECT DISTINCT ? product ? productLabel
7 WHERE {
8 ? product rdfs:label ? productLabel .
9 FILTER (dataFromProducer4 : Product159 != ? product)

10 dataFromProducer4 : Product159 bsbm: productFeature
11 ? prodFeature .
12 ? product bsbm: productFeature ? prodFeature .

117

13 dataFromProducer4 : Product159 bsbm: productPropertyNumeric1
? origProperty1 .

14 ? product bsbm: productPropertyNumeric1 ? simProperty1 .
15 FILTER (? simProperty1 < (? origProperty1 + 120) &&
16 ? simProperty1 > (? origProperty1 - 120))
17 dataFromProducer4 : Product159 bsbm: productPropertyNumeric2

? origProperty2 .
18 ? product bsbm: productPropertyNumeric2 ? simProperty2 .
19 FILTER (? simProperty2 < (? origProperty2 + 170) &&
20 ? simProperty2 > (? origProperty2 - 170))
21 }
22 ORDER BY ? productLabel
23 LIMIT 5

Listing A.5: SPARQL query #5

1 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
2 PREFIX rev: <http :// purl.org/stuff/rev#>
3 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
4 PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/

v01/ vocabulary />
5 PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
6 PREFIX dataFromProducer6 : <http :// www4. wiwiss .fu - berlin .de/

bizer/bsbm/v01/ instances / dataFromProducer6 />
7
8 SELECT ? productLabel ?offer ?price ? vendor ? vendorTitle
9 ? review ? revTitle ? reviewer ? revName ? rating1 ? rating2

10 WHERE {
11 dataFromProducer6 : Product236 rdfs:label ? productLabel .
12 OPTIONAL {
13 ?offer bsbm: product dataFromProducer6 : Product236 .
14 ?offer bsbm:price ?price .
15 ?offer bsbm: vendor ? vendor .
16 ? vendor rdfs:label ? vendorTitle .
17 ? vendor bsbm: country <http :// downlode .org/rdf/iso -3166/

countries #DE > .
18 ?offer dc: publisher ? vendor .
19 ?offer bsbm: validTo ?date .
20 FILTER (? date > "2008 -07 -10")
21 }
22 OPTIONAL {
23 ? review bsbm: reviewFor dataFromProducer6 : Product236 .
24 ? review rev: reviewer ? reviewer .
25 ? reviewer foaf:name ? revName .
26 ? review dc:title ? revTitle .
27 OPTIONAL { ? review bsbm: rating1 ? rating1 . }
28 OPTIONAL { ? review bsbm: rating2 ? rating2 . }
29 }
30 }

Listing A.6: SPARQL query #6

118

1 PREFIX bsbm: <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/
v01/ vocabulary />

2 PREFIX dc: <http :// purl.org/dc/ elements /1.1/ >
3 PREFIX rev: <http :// purl.org/stuff/rev#>
4 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
5 PREFIX dataFromProducer6 : <http :// www4. wiwiss .fu - berlin .de/

bizer/bsbm/v01/ instances / dataFromProducer6 />
6
7 SELECT ?title ?text ? reviewDate ? reviewer ? reviewerName ?

rating1 ? rating2 ? rating3 ? rating4
8 WHERE {
9 ? review bsbm: reviewFor dataFromProducer6 : Product250 .

10 ? review dc:title ?title .
11 ? review rev:text ?text .
12 FILTER langMatches (lang (? text), "EN")
13 ? review bsbm: reviewDate ? reviewDate .
14 ? review rev: reviewer ? reviewer .
15 ? reviewer foaf:name ? reviewerName .
16 OPTIONAL { ? review bsbm: rating1 ? rating1 . }
17 OPTIONAL { ? review bsbm: rating2 ? rating2 . }
18 OPTIONAL { ? review bsbm: rating3 ? rating3 . }
19 OPTIONAL { ? review bsbm: rating4 ? rating4 . }
20 }
21 ORDER BY DESC (? reviewDate)
22 LIMIT 20

Listing A.7: SPARQL query #7

1 SELECT ? property ? hasValue ? isValueOf
2 WHERE {
3 {
4 <http :// www4. wiwiss .fu - berlin .de/bizer/bsbm/v01/ instances

/ dataFromVendor1 /Offer10 > ? property ? hasValue
5 }
6 UNION
7 {
8 ? isValueOf ? property <http :// www4. wiwiss .fu - berlin .de/

bizer/bsbm/v01/ instances / dataFromVendor1 /Offer10 >
9 }

10 }

Listing A.8: SPARQL query #8

119

	Introduction
	Context
	Motivation
	Research Questions
	Thesis Outline

	Background
	Semantic Web
	Linked Data
	RDF
	RDF Formats
	Ontologies
	SPARQL

	Triplestores
	OpenLink Virtuoso Universal Server

	NoSQL Databases
	NoSQL data models
	JSON

	Multi-Model Databases
	OrientDB
	ArangoDB

	Preliminary Definitions
	RDF
	JSON
	ArangoDB

	Related Work
	RDF Data Storage in ArangoDB
	RDF Data Querying in Relational databases
	RDF Data Querying in NoSQL databases

	SPARQL Algebra
	Basic Definitions
	Algebra Operators
	Basic Operators
	Solution Modifiers

	Evaluation of SPARQL query parts
	SPARQL Algebra Tree

	ArangoDB AQL
	Syntax and Semantics of AQL queries
	AQL Query Tree

	Modelling RDF data in ArangoDB
	Basic Approach
	Graph Approach

	Transforming SPARQL query to AQL query
	Transformation Phases
	Modifying the SPARQL algebra tree
	Variable Binders
	Generating the AQL query expression
	BGP node
	SolutionTable node
	Join node
	Minus node
	LeftJoin node
	Union node
	Filter node
	Extend node
	Order node
	Project node
	Distinct node
	Slice node
	SPARQL expression tree

	Transforming the AQL query result
	Other Optimization Considerations

	Implementation
	Technologies
	Java
	Apache Jena
	ArangoDB Java Driver

	RDF data transformation tool
	SPARQL-to-AQL query transformation tool
	Processing the query

	Evaluation
	Experiments
	Performance

	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Appendix Queries used for evaluation

