
MASTER THESIS

Andrej Čižmárik

Dynamic Analysis Framework for
C#/.NET Programs

Department of Distributed and Dependable Systems

Supervisor of the master thesis: RNDr. Pavel Paŕızek, Ph.D.
Study programme: Computer Science

Study branch: Software Systems

Prague 2020

This is not a part of the electronic version of the thesis, do not scan!

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor, Pavel Paŕızek, for his guidance, valuable
advice, and his genuine interest both in the implementation part, as well as in
this thesis. I am also very grateful for the support and encouragement that my
family and friends provided throughout my whole master’s studies.

ii

Title: Dynamic Analysis Framework for C#/.NET Programs

Author: Andrej Čižmárik

Department: Department of Distributed and Dependable Systems

Supervisor: RNDr. Pavel Paŕızek, Ph.D., Department of Distributed and De-
pendable Systems

Abstract: Dynamic analysis is a technique used to analyse the behaviour of pro-
grams, which can be utilized when searching for various software errors. Nowa-
days, there is a trend in software development towards multi-threaded programs
that are, undeniably, prone to race conditions. Furthermore, software errors that
stem from timing issues and incorrect ordering of operations across individual
threads are generally hard to find, since they are by nature non-deterministic.
We decided to implement a dynamic analysis framework for C# programs, along
with two well-known algorithms capable of detecting and predicting data-races.
As a result, we created an extensible and configurable tool, SharpDetect, that
supports dynamic analysis of CIL programs created by compilation from C#
source code on platforms supported by .NET Core. To demonstrate its practical
usefulness, SharpDetect was successfully applied on NetMQ, C# implementation
of ZeroMQ, where it found one real software error.

Keywords: dynamic analysis, data-races, .NET Core

iii

Contents

1 Introduction 4
1.1 Project Goals and Contribution 5
1.2 Thesis Outline . 6

2 Dynamic Analysis 7
2.1 Analysed Events . 7
2.2 Capturing Events . 8

2.2.1 Runtime Interpretation . 8
2.2.2 Code Instrumentation . 8

2.3 Available Tools for .NET . 9
2.3.1 Roslyn . 9
2.3.2 Mono.Cecil . 9
2.3.3 dnlib . 9
2.3.4 Profiling API . 10

2.4 Summary . 10

3 Common Language Infrastructure 11
3.1 Common Language Runtime . 11
3.2 Managed and Unmanaged Code 12
3.3 Common Intermediate Language 12

3.3.1 Common Type System . 13
3.4 Programming using CIL . 13

3.4.1 Metadata . 14
3.4.2 Creating Objects and Structs 15
3.4.3 Arrays . 15
3.4.4 Fields . 16
3.4.5 Method Calls . 16
3.4.6 Boxing and Unboxing . 19
3.4.7 Generics . 19
3.4.8 Prefix instructions . 21
3.4.9 Flow Control . 25
3.4.10 Exceptions . 26
3.4.11 Handler Blocks . 26

3.5 Compilation to Native Code . 28
3.5.1 Native Images . 28
3.5.2 JIT compiler . 28
3.5.3 Optimizations . 28

3.6 Managed Code Hosting . 29
3.7 System.Private.CoreLib . 29
3.8 Self-contained Packages . 30
3.9 Strong-named Assemblies . 30

1

4 Design and Implementation of SharpDetect 31
4.1 Overview . 31

4.1.1 SharpDetect.Console . 32
4.1.2 SharpDetect.Plugins . 34
4.1.3 SharpDetect.Core . 35
4.1.4 SharpDetect.Injector . 36
4.1.5 SharpDetect.Common . 38

4.2 Testing SharpDetect . 39
4.2.1 Unit Tests and Functional Tests 40
4.2.2 Continuous Integration Pipeline 41
4.2.3 SharpLab and DnSpy . 41

4.3 Development Diary . 41
4.3.1 Instrumentation Routines 42
4.3.2 Instrumenting Blocking Synchronization Actions 44
4.3.3 Restrictions on Instrumentation 45
4.3.4 Passing Live Objects . 45
4.3.5 Event Dispatching . 46
4.3.6 Concurrent Invocation of Event Handlers 47
4.3.7 Modifying Core Libraries 47

4.4 Possible Improvements . 49
4.4.1 Complexity of Programming in CIL 49
4.4.2 Observer effect . 50
4.4.3 Analysis Performed by Managed Code 52
4.4.4 Virtual Method Dispatching 52
4.4.5 Mapping Analysis Events to Original Source 53

5 Evaluation 54
5.1 Performance Optimizations . 54

5.1.1 Minimizing Dynamic Allocations 54
5.1.2 Avoiding Memory Leaks 54
5.1.3 String Interning and Caching Resolved Identifiers 55

5.2 Measurements . 55
5.2.1 Environment . 55
5.2.2 Measuring Time Overhead 56
5.2.3 Measuring Memory Overhead 56
5.2.4 Subject 1: Simple Task Parallel Library Program 56
5.2.5 Subject 2: Producer-Consumer Program 58
5.2.6 Summary . 60

6 Using SharpDetect 61
6.1 Preparing Subject Program . 61
6.2 Preparing Configuration . 61

6.2.1 Additional Configuration Settings 62
6.3 Generating Self-Contained Package 63
6.4 Assemblies Instrumentation . 63
6.5 Executing Dynamic Analysis . 64
6.6 Implementing Analysis Plugins 66

6.6.1 General Guidelines . 66
6.6.2 Eraser . 67

2

6.6.3 FastTrack . 67

7 Case Study 69
7.1 Preparing for Dynamic Analysis 69
7.2 Evaluating Obtained Results . 71

8 Conclusion 73

Bibliography 74

List of Abbreviations 77

3

1. Introduction
Software errors, more commonly referred to as ”bugs”, have been troubling
developers throughout the history of software engineering. Their consequences
can be, however, catastrophic – some well-known software errors were linked
with disasters, such as, Ariane 5 explosion shortly after launch [1] or Therac-25
radiation therapy machine delivering lethal radiation doses [2].

One of the reasons for occurrence of many errors is complexity.
Undoubtedly, some problems are hard to solve by their nature and therefore
require proper design and implementation. However, due to ever-changing
requirements, growing code-base and improper design, software can easily
become hard to maintain. As a result, this may clearly lead to more software
errors. Moreover, even in well-maintained software products, errors can be hard
to find and replicate. Then after successful replication it can be also
significantly hard to remove them.

Nowadays we can observe a trend in development of concurrent and parallel
programs. This may be driven by the fact that modern CPUs have not been
getting significantly faster per a single core as they used to in the past, but
instead they tend to have multiple cores that need to be utilized in order to
gain the best performance. Furthermore, concurrency brings another source of
possible software errors which are by nature non-deterministic and therefore
harder to even observe. Development of parallel programs is also considered
more complex as it affects normal execution flow. As a result, developers need
to ensure that programs behave correctly after every possible interleaving of
machine instructions. This is generally the place were developers tend to make
mistakes when working on concurrent programs.

Due to the mentioned reasons, there have been a major effort to create tools
that could simplify the process of finding and replicating software errors. As a
result, a variety of tools and techniques were adopted – from creating and
analysing memory dumps, through using debuggers and profilers to utilizing
tools that analyse the behaviour of programs and verify specified properties.
Individual tools and techniques are better suited for different problems,
however, they all contribute to easier, more manageable and also more
dependable software development process.

One of the techniques that can be used to search for different kinds of
software errors is dynamic analysis. The aim of this technique is to analyse the
behaviour of a program based on a single execution path. Information about
the execution path is usually obtained by instrumenting analysed executables to
raise events on, for example method calls and memory accesses. Dynamic
analysis has been already successfully deployed even in bigger solutions, for
instance by Facebook [3].

Even though dynamic analysis can be useful when searching for software
errors, there are tools available only for some programming languages
(executable types). To name a few, there is a tool called Valgrind [4] for various
hardware platforms and operating systems or a tool called RoadRunner [5] for
java bytecode. Mentioned tools provide users with the ability to search for
various kinds of software errors and even implement their own plugins and

4

analysers on top of them. This is certainly something which would be beneficial
also for other platforms when searching for software errors.

One of such platforms is .NET which became a popular choice for writing
software that is not only easy to write, memory and type safe, but also
cross-platform. While the platform has currently multiple implementations, the
most important one from the long point of view seems to be .NET Core – the
successor of the previously predominant implementation called .NET
Framework [6]. Despite the recent popularity of .NET, at the time of writing
this thesis, there are no freely available tools for dynamic analysis of .NET
programs.

1.1 Project Goals and Contribution
The ultimate ambition of this project is to design and implement a dynamic
analysis framework for the .NET platform. As we previously mentioned, we aim
to support modern cross-platform and open-source implementation called .NET
Core. In order to achieve this, we will present several major goals which we aim
to fulfil while working on this project.

(G1) Extensibility

Users of the framework should be able to implement their own analysis
extensions. This can be achieved by providing a pluggable environment,
simple API and easy-to-follow guidelines for successful implementation
and integration of custom extensions.

(G2) Configurability

Dynamic analysis can have significant performance overhead on the
analysed programs. To counter this issue, users should be allowed to
specify what aspects of the program behaviour should be analysed and
what should be skipped. The main purpose of this goal is to reduce events
from unrelated parts of programs, as well as filter whole event categories.

(G3) Performance

The execution of analysed programs should not be performance-wise
affected more than necessary. While dynamic analysis is known to
negatively affect performance of programs, we should aim to minimize this
overhead when designing and implementing the framework.

(G4) Support for multiple platforms

As we already mentioned, .NET Core supports multiple platforms –
Windows, Linux and OS X. Since developers can use .NET Core on
multiple platforms, our dynamic analysis framework should support an
additional platform apart from Windows as well.

As a result of the mentioned goals above, we designed and implemented a
dynamic analysis framework called SharpDetect. An important part of

5

SharpDetect are also two extensions that implement well-known algorithms,
specifically Eraser [7] and FastTrack [8], which can be used to discover and
predict concurrency issues in analysed programs. We also prepared several
examples and illustrative tutorials on how to use SharpDetect to analyse the
behaviour of programs.

1.2 Thesis Outline
The rest of this thesis is organized as follows; we start the next chapter by further
describing dynamic analysis, our chosen approach for analysing the behaviour of
programs. Most importantly, we will discuss its advantages over other techniques,
as well as its drawbacks and how we may try to counter them. We finish the
chapter by comparing various approaches on how we can capture dynamic analysis
events using available tools for .NET platform.

In the third chapter, we will look at the Common Language Infrastructure,
which is a specification of the .NET environment. We will be mostly interested
in the description of its executable code and runtime. After we introduce general
concepts, we will continue by describing some implementation-specific details of
the selected framework – .NET Core. This will help the reader understand from
a low-level point of view how we can implement dynamic analysis for the .NET
platform.

The main focus of the fourth chapter will be the design and implementation
of the created dynamic analysis tool, SharpDetect. Apart from the architectural
overview and the description of its implementation, we will organize this
chapter as a development diary. While working on SharpDetect, we faced many
interesting problems that we tried to solve in various ways. In this chapter, we
will discuss the solutions we tried, why some of them did not work, as well as,
how we finally solved the respective problems. At the end of the chapter, we
describe possible improvements that are left as future work.

The fifth chapter will be dedicated to the evaluation of our project. We will
discuss implemented performance optimizations, as well as, present measurements
on how SharpDetect impacts the performance of selected subject programs.

In the sixth chapter, we will present tutorials and more in-depth examples
on how to use SharpDetect to analyse .NET programs. Moreover, we discuss
guidelines for implementing analysis plugins and describe some interesting aspects
of the already implemented plugins.

The whole seventh chapter is dedicated to a case study where we apply
SharpDetect on an existing .NET library in order to search for possible
concurrency issues. We describe the process of preparing the subject program,
configuring SharpDetect, and evaluating obtained results.

Then, in the last chapter, we will present the conclusion of the whole thesis.
Furthermore, we will discuss how we managed to fulfil thesis goals that we
presented in the previous section.

6

2. Dynamic Analysis
Dynamic analysis is a technique that can be used to analyse the behaviour of
programs during their runtime based on a single execution path. This approach
can be used to obtain truly precise information about the given execution path,
considering the fact that its runtime behaviour is directly observed. The downside
is that only a single execution path is analysed and therefore, the coverage of
dynamic analysis depends on the quality of the provided test suite. However,
we gain precision, as compared to static analysis that generally approximates
obtained information about the program’s behaviour because it tries to reason
about it without actually executing the program.

In the following sections, we will thoroughly describe individual analysed
events that might be interesting when analysing the behaviour of programs and
possible ways how to observe and capture them. Then we continue by
discussing available .NET tools that could help us implement a dynamic
analysis framework for .NET Core. Lastly, we provide a comparison of the tools
and we choose an approach, as well as, a tool that suite our use-case the most.

2.1 Analysed Events
In this section, we discuss individual events that can be observed during
dynamic analysis and contribute to the comprehension of the analysed
program’s behaviour. Specifically, we are interested in local operations with the
evaluation stack, such as load and store memory, dynamic objects allocation, as
well as method calls. In fact, method calls alone cover also some special events,
for example user-threads manipulation, synchronization and signals. Together,
mentioned events provide a powerful information about the analysed program’s
behaviour and as such we can split them into the following categories:

• Memory accesses: volatile and non-volatile memory accesses performed
on fields and array elements

• Methods: calls and returns of methods together with their arguments and
return values

– Threads: creating, starting and joining of user-created threads
– Locks: acquire and release of locks on objects
– Signals: wait and notify signals on objects

• Objects: dynamic allocations on the heap

• Classes: class constructors

As indicated, presented events can be already used to check many interesting
properties of analysed programs, for example detection and prediction of possible
concurrency issues, such as deadlocks, race conditions and atomicity violations.

7

2.2 Capturing Events
Now that we covered the basic set of events that we need to observe and capture
information about, we can discuss how to achieve this. There are actually multiple
ways to observe the behaviour of programs which will be further discussed in the
following subsections.

2.2.1 Runtime Interpretation
In order to obtain required events, we could use a modified interpreter for .NET
programs where some of its routines would simply notify our dynamic analysis
framework. Since it is clear that interpreters have complete information about
program execution, this approach would certainly work.

However, the development of such interpreter would be a significant task on
its own. Even though the official .NET Core repository contains an interpreter
[9], it is not production-ready and it is advised not to use it. In fact the only
use-case for this interpreter is currently when porting .NET Core to a different
platform where some of its components are not ready for the given platform yet.
It is also noticeably slower compared to a normal execution.

2.2.2 Code Instrumentation
Code instrumentation works by modifying programs either on the source code
level or on the bytecode level. This grants us the ability to insert custom code
into individual methods before they get executed by runtime. Therefore, we could
locate occurrences of analysis events and instrument them so that they capture
information about the event and notify the analysis framework.

In our case, however, instrumentation on bytecode level is clearly preferred.
For example, there is a bigger chance that language designers introduce new
constructs, compared to when there is a need to change the underlying bytecode
which happened in .NET so far only once [10]. Additionally, there are multiple
languages that compile to the same bytecode, such as C#, F# or Visual Basic
.NET. Therefore, when supporting instrumentation on the bytecode level, we can
easily provide better coverage in terms of different languages, as well as language
constructs.

Although we showed that bytecode instrumentation is the preferred approach,
there are actually two options how to implement it. The first option works online
during the analysed program’s execution and the second option is offline and
as such works ahead of time to the actual program’s execution. In case of the
online approach, we need further support from runtime – the ability to observe
method calls, inspect their bytecode and make on-the-fly modifications. This is
certainly more complicated compared to the offline approach where we can work
with any bytecode inspector capable of generating code. From the execution
point of view, the offline approach does not negatively affect start-up time of
dynamic analysis as compared to the online approach. On the other hand, with
the online approach everything can be easily performed in-memory without the
need to store any generated code in persistent storage.

8

2.3 Available Tools for .NET
Since we already described available approaches on how to observe and capture
information about the behaviour of programs, we need to further analyse
available options for the implementation of these approaches. Therefore, the
following subsections are dedicated to the analysis of available tools for .NET
using which we can implement a dynamic analysis framework. Later, we will
present the results – an approach and a tool we will use throughout the rest of
this thesis.

2.3.1 Roslyn
Roslyn [11] is an open-source C# and Visual Basic .NET compiler with a powerful
static code analysis API. The biggest advantage is Roslyn’s philosophy which
offers its capabilities in a Compiler as a Service fashion. This means that we
can actually access results of individual stages of compilation, as well as modify
them. Therefore, Roslyn would be a powerful candidate for instrumentation on
the source code level.

However, we already mentioned the disadvantages in connection with this
approach and here with Roslyn we can observe the same problem once again.
Even though Roslyn is together with its code analysers very powerful, it is more
suited for static analysis. Additionally, by using Roslyn we would miss on some
.NET languages, for example, F# which has its own compiler infrastructure [12]
that is independent from Roslyn.

2.3.2 Mono.Cecil
Mono.Cecil [13] is an open-source library for inspecting and generating code that
supports .NET programs. The library provides powerful object representation
of .NET programs and is widely used in many projects that need to inspect,
manipulate or generate bytecode. Moreover, there are many available examples
and tutorials together with a fairly active online community.

Despite the popularity and maturity of this project, it lacks some features that
can be used by some .NET libraries. An example of such feature is the support
for mixed-mode assemblies. Apart from bytecode, mixed-mode assemblies contain
also native code that is specific for the underlying platform. Although most .NET
libraries do not use such features, core libraries are known to use this mainly for
performance benefits.

2.3.3 dnlib
There is another library that covers a similar use-case as Mono.Cecil, called
dnlib [14]. The difference is that dnlib additionally supports, for example
obfuscated .NET libraries and already mentioned mixed-mode assemblies.

Even though this library has not been around for so long as Mono.Cecil and
provides significantly less examples, it covers more use cases. The ability to
instrument also framework libraries would be very helpful later when
implementing the dynamic analysis framework. Therefore, dnlib is in our case
a better candidate for instrumentation on the bytecode level.

9

2.3.4 Profiling API
One of the key features of .NET runtime is that is provides a profiling API [15].
This API grants users the ability to observe program execution by raising various
events whenever, for instance, a method is being compiled, a dynamic allocation
is being handled or a thread is starting to run, and many more.

Despite the fact that this approach provides the functionality we require,
it is an unmanaged API that is hard to use from high-level .NET languages.
Furthermore, any calls to a .NET library within the profiling API can easily
cause an endless recursion because its execution may end in a profiling routine,
as well. Additionally, at the time of writing this thesis, there are no similar tools
like Mono.Cecil or dnlib available for other platforms than .NET that would be
usable in combination with the profiling API.

Compared to other presented tools, the profiling API is the only candidate
that operates at the low-level – directly interacting with the .NET runtime.
Moreover, at the time of writing this thesis, it is probably the only viable option
for online bytecode instrumentation. However, this API is harder to use and
there is only limited information on how use it with examples mostly available
for older runtime used by the .NET Framework.

2.4 Summary
To sum up our analysis, we clearly showed that instrumentation is a better choice
compared to interpretation, as there is no customizable and production-ready
interpreter available for the .NET platform. Moreover, offline instrumentation
would not provide any major disadvantages over the online approach. Therefore,
we decided to continue our work on this thesis using the offline instrumentation
approach with the help from dnlib library.

10

3. Common Language
Infrastructure
The Common Language Infrastructure (CLI) is a specification standardized by
ECMA 335 [16] that describes the virtual execution system of .NET programs
and its executable code format. The CLI is platform-agnostic and supports high-
level programming languages. Executable code then depends only on the target
virtual execution system and does not need to be modified to execute on different
platforms. In the following sections, we will further describe the CLI and provide
details about some well-known implementations.

3.1 Common Language Runtime
The Common Language Runtime (CLR) is a CLI-compatible runtime
environment. More specifically, the CLR is a high-level virtual machine whose
main purpose is to make programming easier and support high-level languages.
Some of its key features are the following (cf. The Book of the Runtime [17]):

• Garbage collection (GC) relieves programmers from the requirement to
explicitly delete no longer needed memory. The CLR keeps track of all
references to dynamically allocated objects on the garbage-collected heap.
The objects are always guaranteed to be deleted by GC at a safe point of
execution.
Various CLI implementations additionally perform heap compaction, which
is a way to minimize fragmentation. In order for the compaction to work,
the CLR needs to move live objects and subsequently fix corresponding
references in the program.

• Memory safety requires use of allocated memory only. Together with
some runtime checks and prohibition of dangling pointers, the CLR
guarantees that programs are memory safe. There are some exceptions,
for example the usage of unsafe blocks.

• Type safety requires that each memory allocation is associated with a
type. Moreover, for each memory allocation the program can perform only
operations which are valid for the given type. Similarly to memory safety,
unless the program is compiled as unsafe, it is guaranteed to be type safe.

• Verifiable code is both memory and type safe. Such code is guaranteed
not to contain technical errors, for example segmentation faults, but only
logical ones. Due to this fact, it is highly advised to use verifiable code
whenever possible.

We can see from the mentioned features above that programming for the CLR
can be safer and less error-prone compared to traditional languages like C and
C++.

When programming for the CLR, the code is placed together with some
metadata into modules. Individual modules are then packed in assemblies,

11

which have usually .exe or .dll extension. The code contained in the modules
is called managed code. In the following section, we will further describe the
difference between managed and unmanaged code. Then in the subsequent
section, we will focus on the language that is used when programming for the
CLR.

3.2 Managed and Unmanaged Code
In order for the CLR to be able to provide certain functionality, such as the
already mentioned GC, it needs to have complete information about the running
code. This information is either obtained from metadata embedded into modules
during compilation, or it can be obtained by observing its execution. Code that
provides this information for the CLR is called managed code.

On the other hand, unmanaged code, more commonly known as native code,
generally does not provide this information and therefore cannot be further
observed nor controlled by the CLR. Interoperability with unmanaged code is,
however, necessary in order for managed code to communicate with the
environment. As unmanaged code we can consider any code that started before
the initialization of the CLR, which is on its own mostly composed from
unmanaged code.

In the next section, we will focus on the description of the Common
Intermediate Language (CIL), which is the language used when programming
for the CLR and generates managed code. Later, in one of its subsections which
is dedicated to method calls, we will also revisit unmanaged code, when
discussing some of the techniques that can be used when calling into
unmanaged code.

3.3 Common Intermediate Language
Common Intermediate Language (CIL) is an instruction set for an abstract
object-oriented and stack-based virtual machine. Having an abstract machine as
a compilation target, it is necessary for the code to be either interpreted or
just-in-time (JIT) compiled into native code. By default, the CLR uses a JIT
compiler.

An example of a code written in CIL can be seen in the following code-listing.
1 . method private hidebysig static void Main (string [] args)
2 cil managed {
3 . maxstack 8
4 . entrypoint
5

6 IL_ 0000: ldstr "Hello World!"
7 IL_ 0005: call void [System . Console] System . Console :: WriteLine

(string)
8 IL_ 000a: ret
9 }

Listing 3.1: Hello world written in CIL

First, the string "Hello World!" is pushed onto the evaluation stack. The
string then gets popped by a call to a static method WriteLine defined by the

12

class System.Console. On return, WriteLine does not push anything on the
evaluation stack, which is denoted by the void return type. Finally, the Main
method returns.

In the following subsection, we will briefly introduce the Common Type
System, which is necessary to understand basic concept of types in .NET and
then in the subsequent subsection, we will focus on programming using CIL.

3.3.1 Common Type System
The Common Type System (CTS) standardizes how are type definitions and
their corresponding runtime values represented in memory. This is helpful for
supporting multiple languages, as well as interoperability between them [17].
Apart from this, CTS distinguishes three basic categories of types – pointer types,
reference types and value types.

Pointer Types

In an unsafe block of code, programmers can use C-like raw pointers. Pointers
are not derived from System.Object and cannot be converted to anything apart
from different pointer types and integral types. Usage of this feature, however,
always results in an unverifiable code as described in Section 3.1.

Reference Types

Reference types are always allocated on the heap. Therefore, variables of reference
types always contain a reference to an object stored on the heap. Additionally,
when passing reference types as method arguments, their reference is always
passed by copy, unless specified otherwise. Passing by reference semantics can
be achieved using the in, ref or out keywords. All classes and interfaces are
reference types.

Value Types

Value types can be directly allocated on the stack and memory-wise consists only
from the actual value. Furthermore, they can be either (i) built-in, for example
primitive types like int, long, float, bool or (ii) user-defined, which stands
for all custom structs. Some value types, for example many of the primitive
types, are blittable, which means that they have the same managed and native
representation. Additionally, value types are always passed by value – its content
is copied, unless programmer uses the ref, in or out keyword. Similarly to
reference types, these keywords can be only used in a few cases, for example
when defining method parameters. It is also important to add that language
designers made this feature in a way that it does not break memory safety of
programs as described in Section 3.1.

3.4 Programming using CIL
In the following sections, we are going to describe basic programming using CIL.
We start with describing metadata and then continue with several simple object-

13

oriented constructs. Later we advance to more complex examples, such as generics
and usage of prefix instructions. This will help us in the following chapter when
describing the design of instrumentation routines for dynamic analysis.

3.4.1 Metadata
In .NET, when programming using high-level languages, programmers do not
usually need to fully understand how metadata work. Apart from the fact that
users may specify custom attributes, metadata are generated by compilers.

The basic idea behind embedded metadata is to allow generation of a self-
describing code. This means that programmers do not need to supply interface
definition files. However, when programming in CIL, metadata become quite
important. Due to this fact, in the following paragraphs, we describe the format
of .NET programs – the Portable Executable (PE) format, we also discuss how
are metadata stored, as well as introduce basic terminology common for .NET
metadata records.

Portable Executable Format

Portable Executable (PE) [18] format is an executable file format used
commonly on Windows operating system and for .NET executables. When
inspecting .NET modules, we can observe that their PE sections contain apart
from already mentioned CIL code also metadata tables.

Metadata tables

The purpose of metadata tables is to list all types and members defined by the
current module. Moreover, it also lists all references to types and members defined
by other modules that are referenced by the current module. Although there are
many different kinds of metadata tokens, we focus only on the most common ones
to give an example on what is stored in metadata tables.

• TypeDef stands for a type definition provided by the current module

• MethodDef stands for a method definition that is owned by a TypeDef

• FieldDef stands for a field definition that is owned by a TypeDef

• TypeRef represents an imported type that is owned by a different module

• MemberRef represents an imported method, field or a property that is owned
by a different module.

• AssemblyRef stands for an imported external assembly

While this was certainly not a comprehensive listing of all metadata token
types, these are the most important ones for basic programming in CIL. Later
when discussing generics, we will introduce a few more that are specific when
working with generic parameters, instantiated types and instantiated methods.
But first, in the couple of the following subsections, we will show programming
in CIL illustrated using basic object-oriented constructs.

14

3.4.2 Creating Objects and Structs
In case we want to create a new object that has a reference type, we should use
the instruction newobj. This results in a memory allocation, zero-initialization
of its fields and a call to the specified constructor. After these steps are finished,
a reference to the new instance is pushed onto the evaluation stack. Usage of this
instruction can be seen in the following code-listing.

1 IL_ 0000: newobj instance void [DeclaringAssembly]Type ::. ctor ()

With value types the situation is a bit more complex. Even though the
newobj instruction can be also used with value types, in many cases this creates
an unnecessary copy of the underlying value. Usually, we only need to store
something to a local variable – memory that is available on the stack and is not
accessible from different threads. In such cases we can perform a copy-elision
optimization using instructions initobj and call.

1 // Example with initobj (zeroed value type)
2 IL_ 0000: ldloca .s 0
3 IL_ 0002: initobj valuetype [DeclaringAssembly]Type

1 // Example with call (initialized value type)
2 IL_ 0000: ldloca .s 0
3 IL_ 0002: call instance void valuetype [DeclaringAssembly]Type

::. ctor ()

In both cases we first load an address of a local variable using the instruction
ldloca. Then we either zero out the memory using the instruction initiobj or
initialize it by calling the specified constructor with the call instruction.

Presented examples are the most common constructs when creating new
objects and structs. However, there are some other ways, for example when
creating arrays, which will be discussed in the following subsection.

3.4.3 Arrays
When dealing with arrays, there are several instructions programmers need to be
aware of. For example, when creating arrays we cannot use the newobj instruction
since arrays are considered a special case. Instead we need to use the instruction
newarr. The instruction functions similarly to the newobj from the programmers
point of view – it allocates memory for the array and zero-initializes its elements.

1 // Creating Int32 array of 100 elements and storing it to
variable with index 0

2 IL_ 0000: ldc.i4 100
3 IL_ 0005: newarr [System . Private . CoreLib] System .Int32
4 IL_ 000a: stloc .0

Reading elements can be performed with instructions ldelem.* or ldelema,
depending on whether we load the element by value or its address. An example of
ldelem.i4 instruction that loads an element of type System.Int32 can be seen
in the following code-listing.

1 // Loads previously stored array from variable with index 0
and gets its 11-th element

2 IL_ 000b: ldloc .0
3 IL_ 000c: ldc.i4.s 11
4 IL_ 000d: ldelem .i4

15

Analogically, writing to array elements can be performed with instructions
stelem.* as we show in the following code-listing.

1 // Loads previously stored array from variable with index 0
and writes value 22 to its 11-th element

2 IL_ 000b: ldloc .0
3 IL_ 000c: ldc.i4.s 11
4 IL_ 000e: ldc.i4.s 22
5 IL_ 0010: stelem .i4

Using the code-listings above, we presented basic use cases in connection with
arrays. Later, when discussing prefix instructions, we will briefly revisit arrays
as there is one special case that will be important to look into. But now we will
continue with our description of CIL.

3.4.4 Fields
There are two basic kinds of fields – static and instance fields. We will start by
discussing static fields as they are not bound to a specific instance. An example
of working with static fields can be seen in the following code-listing.

1 // Loads value of a field to local variable with index 0 and
stores string " NewValue " back to the field

2 IL_ 0000: ldsfld string Class :: StaticField
3 IL_ 0005: stloc .0
4 IL_ 0006: ldstr " NewValue "
5 IL_ 000b: stsfld string Class :: StaticField

When working with instance fields, the situation is only a bit more
complicated. In order to be able to work with an instance field, an instance
needs to be specified in the form of pushing this onto the evaluation stack. We
can accomplish it using the instruction ldarg.0 because each instance method
has 0-th argument, which is sometimes referred to as ”hidden this”. Usage of
the ldarg.0 instruction is common when retrieving the instance, using which
the method was invoked. An example of how to work with instance fields can be
observed in the following code-listing.

1 // Loads value of a field to local variable with index 0 and
stores 11 back to the field

2 IL_ 0000: ldarg .0
3 IL_ 0001: ldfld int32 Class :: InstanceField
4 IL_ 0006: stloc .0
5 IL_ 0007: ldarg .0
6 IL_ 0008: ldc.i4.s 11
7 IL_ 000a: stfld int32 Class :: InstanceField

For completeness, there are two additional instructions that can be used to
push address of a field onto the evaluation stack: ldflda and ldsflda. Similarly
to arrays, we will briefly revisit fields once we get to prefix instructions which can
change semantics and also the way we write and generate code. But first we need
to look into more basic concepts, such as method calls and value type boxing.

3.4.5 Method Calls
We begin describing method calls by thoroughly discussing calling conventions
and different call types. In order to invoke a method, we can use one of the

16

following instructions: call, callvirt and calli. Despite the fact that calli,
indirect call, is at the time of writing this thesis not used by common compilers,
there is still a lot to discuss about method calls using the other two call
instructions.

Calling Convention

CIL provides a virtual calling convention, which is an uniform way for calling
methods and as such it is completely independent from the underlying platform.
In fact, it is the job of the JIT compiler to convert method calls to the actual
calling convention, based on the given platform. Therefore, when programming
in CIL, we always use the virtual calling convention whose rules are following [16]:

• All arguments are present on the evaluation stack

• When calling an instance method, the first argument is the this pointer

• Remaining arguments are pushed on the evaluation stack from left to right.
This means the first real argument of the method is the lowest one on the
stack, following the this pointer if available.

The resulting calling convention generated by the JIT compiler can be
changed when directly calling native code. This can be achieved, for example
using the CallingConvention field on the DllImportAttribute. The attribute
forces the JIT compiler to generate calling convention for the given method
exactly as specified by a programmer.

Instruction Call

The purpose of the call instruction is to invoke a method which is determined
solely based on the provided metadata token. This means that the invoked
method is not resolved based on the type of the receiver object on the stack if it
is available. An example of a method call using the call instruction can be
seen in the following code-listing.

1 // Example call to Console :: WriteLine with multiple arguments
2 IL_ 0000: ldstr "Hello"
3 IL_ 0005: ldstr " "
4 IL_ 000a: ldstr "world!"
5 IL_ 000f: call void [System . Console] System . Console :: WriteLine (

string , object , object)

This instruction can be also used on delegates, or even for virtual methods,
however, the same rule applies – the invoked method is determined at compile
time. Whenever we want to use the actual type and its record in the virtual
method table, we should use the instruction callvirt which will be discussed in
the following paragraphs.

Instruction Callvirt

As already mentioned, the major difference between the callvirt and the call
instructions is determining which method to invoke. With the callvirt

17

instruction the invoked method is resolved during runtime based on the receiver
object. An example source code in C# where compilers must generate this
instruction can be seen in the following code-listing.

1 class A { public virtual string M() { return "A"; } }
2

3 class B : A { public override string M() { return "B"; } }
4

5 class Example {
6 public void Method () {
7 var A = new B();
8 A.M();
9 }

10 }

The disassembled body of Example::Method() can be seen in the following
code-listing. Note that even though we provided the metadata token for the
method A::M(), during runtime the method B:M() will be called instead.

1 IL_ 0000: newobj instance void B::. ctor ()
2 IL_ 0005: callvirt instance string A::M()

We showed basic usage for the instructions call and callvirt which at the
time of writing this thesis covers all commonly used method invocation types.
Previously we also mentioned the instruction calli, however, this instruction
is currently not used by any available compilers and as such will not be further
interesting for us. In the following paragraphs, we will focus on currently used
constructs when calling native code.

Calling native code

While it is advised to stay in managed code as much as possible, there are certainly
many cases when it is not possible. To mention a few examples, we can consider
programming wrappers for native libraries or communicating directly with the
CLR. Both cases are actually commonly used in certain framework assemblies
that provide managed facades for low-level API, such as working with file system,
networking or directly accessing some CLR features like GC.

There are multiple ways to call into native code, mainly QCalls, FCalls and
P/Invokes. All of the mentioned approaches have one important thing in
common – the target method is not implemented in CIL and programmers
provide only method signature and some additional metadata in form of
attributes. QCalls and FCalls are mechanisms to call the CLR. QCalls are
identified as static extern methods to a library called QCall. FCalls are extern
methods with MethodImplOptionsAttribute set to InternalCall and are
more prone to cause errors in code. On the other hand, P/Invoke is a general
mechanism for calling native libraries [17].

The mentioned approaches make it hard to further inspect or instrument
implementation of certain methods as it would require to analyse also native
code. When designing instrumentation routines, we need to keep in mind that
calls to native code need to be handled carefully.

18

Conclusion

We discussed instructions for calling methods, virtual calling convention used in
CIL, as well as presented some facts which might complicate the
instrumentation process. Similarly to previous subsections, we will briefly
revisit method calls when discussing prefix instructions. But first we will
introduce two more important concepts – value type boxing and generics.

3.4.6 Boxing and Unboxing
Sometimes it is useful to be able to treat even value types like reference types.
This can be helpful, for example, when passing value types as arguments to
methods which expect System.Object or when calling methods defined by base
classes, such as ToString() or GetHashCode(). Due to this reason. all value
types are derived from class System.ValueType – this class is, however, not
directly used when defining new value types. Instead language designers provided
us with different ways to define them, for example, in C# we use the keyword
struct.

For each value type, the CTS, which is described in Section 3.3.1, defines its
corresponding boxed type which is a reference type. Whenever a value is boxed,
an instance of its corresponding boxed type is populated with a bitwise copy of
the original value [16]. This is always a result of executing the box instruction
because boxed types cannot be directly referenced by their names.

Similarly for each boxed type, there is the unbox instruction which returns
the boxed value as a value type. In this case it is not required to create a copy
of the value, in fact it is common to return the address of the value type that is
present in the boxed object [16].

3.4.7 Generics
This subsection is dedicated to discussing generics and showcasing how we can use
them in CIL. We already introduced some metadata token types in Section 3.4.1,
however, in order to generate code with instantiated types and methods, we need
to look also into other metadata token types.

• GenericParam is a definition of a generic parameter owned by a MethodDef
or a TypeDef

• GenericParamConstraint records constraints for a GenericParam. Each
GenericParam can derive from a class or implement some interfaces

• TypeSpec is an instantiated type created from a generic TypeDef. It was
created by substituting each GenericParam owned by the TypeDef with
a concrete type

• MethodSpec is an instantiated method created from a generic MethodDef.
It was created by substituting each GenericParam owned by the MethodDef
with a concrete type

19

The key information from this subsection is the difference between the
TypeDef and the TypeSpec, as well as between the MethodDef and the
MethodSpec. In order to illustrate the difference, let us first consider the
following code-listing in C#.

1 // Example : definition of GenericClass ‘2 and its instantiation
2 public class GenericClass <T, U> {
3 public GenericClass (T item1 , U item2) { }
4 }
5

6 public class Program {
7 public void Main () {
8 var item = new GenericClass <int , String >(11 , "Hello");
9 }

10 }

In the previous example, we can see the definition of a type GenericClass‘2,
which is a generic TypeDef that owns two GenericParams. Its constructor is a
MethodDef that owns no generic parameters. In the following code-listing we
show the disassembled version of the constructor. Note the generic parameters
which are present in the method signature.

1 // Disassembled constructor of the GenericClass ‘2
2 . method public hidebysig specialname rtspecialname instance

void .ctor (!T item1 , !U item2) cil managed {
3 . maxstack 8
4

5 IL_ 0000: ldarg .0
6 IL_ 0001: call instance void [System . Private . CoreLib] System .

Object ::. ctor ()
7 IL_ 0006: ret
8 }

The main method of the first presented code-listing gets disassembled into the
code which we show in the next code-listing.

1 // Disassembled Main method of the example
2 . method public hidebysig instance void Main () cil managed {
3 . maxstack 8
4

5 IL_ 0000: ldc.i4.s 11
6 IL_ 0002: ldstr "Hello"
7 IL_ 0007: newobj instance void class GenericClass ‘2<int32 ,

string >::. ctor (!0, !1)
8 IL_ 000c: pop
9 IL_ 000d: ret

10 }

In the previous code-listing, we can observe that the GenericClass‘2 was
already correctly instanced using types System.Int32 and System.String and
as such represents a TypeSpec. The constructor itself is not a generic method,
since the mentioned generic arguments are owned by the TypeDef and not by
the MethodDef. Therefore this method can is not a MethodSpec.

Whenever instrumenting code, SharpDetect needs to work with
non-instantiated versions of types and methods because their CIL code is shared
between all instantiations. For example, consider that we want to instrument a

20

method based on a method call that was invoked using a MethodSpec. In this
case, we must first resolve the MethodSpec to its generic MethodDef and
instrument the method’s body there. Subsequently, when generating code that
uses generics, they must be instantiated first. And now since we already covered
the basic usage of generics, we can continue with the next important concept in
CIL, which is prefix instructions.

3.4.8 Prefix instructions
Until now we were considering CIL instructions to be independent operations.
However, it turns out that the basic behaviour of certain instructions is in some
cases not ideal. While the most straight-forward solution would be to provide
multiple variants of these instructions, this could quickly result in a significantly
larger instruction set with many instructions being rarely used. Instead CIL
introduces six special prefix instructions: constrained, no, readonly, tail,
unaligned and volatile. These instructions can be used in well-defined
situations to override the behaviour of some instructions when required.

Prefix instructions are not valid on their own and therefore cannot be
considered as independent operations. In fact they must always be followed by
certain instructions according to the specification [16]. Also when using
control-flow branches, any prefix instruction is a valid label, but its subsequent
instruction cannot be a label. In the following paragraphs, we will further
describe prefix instructions and discuss how they modify the default behaviour
of their subsequent instructions.

Instruction Constrained

The constrained instruction is used to call virtual methods on a type which
was constrained to be type T. Therefore, this instruction must be followed by the
instruction callvirt and works uniformly on reference types and value types.

Originally, the instruction callvirt could be applied only on reference
types. However, when writing generic code and interfaced value types, it is
sometimes necessary to actually use callvirt instruction also on value types.
Moreover, constrained can be sometimes also used to avoid boxing when
calling, for example methods defined by System.Object [16]. This can provide
significant performance gain as there is no need to allocate new object on the
heap and perform bitwise copy of the value type as described in Section 3.4.6.
An example of code in C# that uses the constrained prefix instruction when
compiled can be seen in the following code-listing.

1 // Example C# code that generates constrained call
2 struct CustomValueType { }
3

4 class Program {
5 static void Main () {
6 var instance = new CustomValueType ();
7 instance . ToString ();
8 }
9 }

In the code-listing above, we can see a definition of a value type called
CustomValueType and an implementation of a method Main(). In the method

21

we create an instance of the CustomValueType, on which we then call the
method ToString(). The disassembled version of this method can be seen in
the following code-listing.

1 // Disassembled body of Program :: Main () method :
2 IL_ 0000: ldloca .s 0
3 IL_ 0002: initobj CustomValueType
4 IL_ 0008: ldloca .s 0
5 IL_ 000a: constrained . CustomValueType
6 IL_ 0010: callvirt instance string [System . Private . CoreLib]

System . Object :: ToString ()
7 IL_ 0015: pop
8 IL_ 0016: ret

In the previous code-listing, we can see the disassembled body of the method
Main(), which shows usage of the constrained prefix instruction to call method
ToString() on an instance of the CustomValueType. Even though boxing the
instance would be a valid operation as described in Section 3.4.6, compilers prefer
the variant using the constrained instruction as it results in a faster code.

Instruction Readonly

If we tried to access an address of an array element in a generic method, for
example, from an array declared as T[] where T is a generic argument, we would
run into runtime issues due to a type check defined for the ldelema instruction.
This is something which can be avoided using the prefix instruction readonly.
However, its main purpose is to push onto the evaluation stack a controlled-
mutability managed pointer. Due to the fact that by using a regular managed
pointer we are actually able to mutate the returned reference, the readonly prefix
must be used to ensure that users cannot corrupt their memory [16].

This prefix instruction is valid only before the ldelema instruction and its
usage can be seen in the following code-listing.

1 // Example code that generates readonly instruction
2 public class Program {
3 public void Method <T >() {
4 T[] array = new T[10];
5 array [0]. ToString ();
6 }
7 }

1 // Disassembled body of Program :: Method ()
2 IL_ 0000: ldc.i4.s 10
3 IL_ 0002: newarr !!T
4 IL_ 0007: ldc.i4.0
5 IL_ 0008: readonly .
6 IL_ 000a: ldelema !!T
7 IL_ 000f: constrained . !!T
8 IL_ 0015: callvirt instance string [System . Private . CoreLib]

System . Object :: ToString ()

In the first part of the example presented above, we can see an implementation
of a generic method Program::Method<T> written in C#. In the body of the
method we created an array of generic type T and size 10. After that we called
the method ToString() on its first element.

22

Using the second part of the example, we can observe the disassembled version
of the generic method Program::Method<T>. We can see that when loading the
address to the first element, compiler generated the readonly prefix instruction.

Instruction Tail

The ability to perform optimized tail calls is really important especially for
functional programming languages, such as F#. Calling the same method before
its return is a special case of recursion, called tail recursion. In order to support
tail recursion, CIL introduces the prefix instruction tail that can be written
before any of the call instructions. Without the prefix instruction tail,
recursion could end with StackOverflowException.

The rules for using the tail instruction are fairly simple. Before the tail call,
only arguments for the call can be pushed on the evaluation stack. Subsequently,
right after the call, the only valid instruction is the ret instruction and the
evaluation stack should be in the original state from the beginning of the current
call. This is required because the way tail calls work in the CLR is by removing
the current stack frame right before invoking the tail call [16].

While the tail prefix instruction is supported by the majority of
implementations, compilers often do not generate this instruction at all. In fact
at the time of writing this thesis, the most used C# compilers do not generate
this instruction at all. Furthermore, F# compiler generates the instruction only
in case the method can not be rewritten using a cycle, as can be seen in the
following example [19]:

1 let apply f x = f x

In the previous code-listing, we can see a function that takes two arguments: a
function and an argument. Its implementation then just simply calls the function
using the provided argument. The disassembled version of the function can be
seen in the following code-listing.

1 IL_ 0000: ldarg .0
2 IL_ 0001: ldarg .1
3 IL_ 0002: tail.
4 IL_ 0004: callvirt instance !1 class [FSharp .Core] Microsoft .

FSharp .Core.FSharpFunc ‘2 <!!a, !!b >:: Invoke (!0)
5 IL_ 0009: ret

From the disassembled code above, we can see that the compiler actually
generated a true tail call using the tail prefix instruction. All arguments are
present on the evaluation stack before the tail call is invoked and immediately
after it returns, there is only the ret instruction.

Instruction Unaligned

Whenever we have a pointer on the evaluation stack that is not aligned to the
natural pointer size, to access this data we need to use the unaligned prefix
instruction [16]. This can be used before instructions, such as field reads and
writes or some special instructions like the cpblk.

23

Instruction Volatile

In order to perform a volatile read or write, we need to prefix the memory
operation with the volatile prefix instruction. Additionally, the volatile
instruction can be combined with the unaligned instruction – the only
exception are static fields which can have only the volatile prefix [16]. An
example can be seen in the following code-listing.

1 // Declaration of an instance volatile field
2 .field private int32 modreq ([System . Private . CoreLib] System .

Runtime . CompilerServices . IsVolatile) Field

1 // Disassembled method reading the volatile field
2 IL_ 0000: ldarg .0
3 IL_ 0001: volatile .
4 IL_ 0003: ldfld int32 modreq ([System . Private . CoreLib] System .

Runtime . CompilerServices . IsVolatile) Class :: Field

In the previous code-listing, we can see an example of using the volatile
prefix instruction before the ldfld instruction making the access to the field
volatile. Moreover, we can notice an important custom modifier on the field
declaration which also states that the field is volatile:

1 modreq ([System . Private . CoreLib] System . Runtime .
CompilerServices . IsVolatile)

The custom modifier is embedded into the field declaration as metadata and
therefore provides information for other modules on how to treat this field. We
can say that the prefix instruction volatile is information for the CLR, while
the custom modifier is mostly used by compilers.

Instruction No.*check

The no instruction can be used in one of its following three forms: no.typecheck,
no.rangecheck and no.nullcheck. These instructions can be used to instruct
the CLR that it may skip some runtime checks that are normally performed
during execution. The first form of the instruction indicates that type checking
can be skipped and can be used before instructions such as castclass or unbox.
The second form of the instruction indicates that range checking can be skipped
and can be used before array instructions that manipulate with array elements.
Finally, the third form of the instruction indicates that null checks can be skipped
and can be used, for example when loading fields, calling virtual methods or
getting addresses of array elements [16].

However, usage of these instructions is generally not considered safe and
always results in an unverifiable code as described in Section 3.1. While these
instructions can provide some performance improvements, the CLR is able to
ignore them and still throw exceptions if a specific check fails [16].

Summary

In the previous paragraphs, we described available prefix instruction, how they
change the behaviour of individual instructions and how well they are supported
by current CLR implementations. Knowledge of prefix instructions will be crucial
when designing instrumentation routines for dynamic analysis, as there are many

24

constraints on how the resulting code has to look like when it comes to using
these constructs.

3.4.9 Flow Control
This subsection describes instructions that can be used to introduce decision
making, loops and branches when programming using CIL. Similarly to other
programming languages, these constructs are used for conditional execution of
blocks of code.

In order to create a conditional branch, the following instructions can be used:
beq, bge, bgt, ble, blt, bne, brfalse, brinst, brnull, brtrue and brzero. All
of the mentioned instructions also exist in a short-form where the jump target can
be specified using a single byte. In the case of the default form of instructions,
the jump target is specified using four bytes. Furthermore, branching instructions
that do not branch based on an equality test also exist in a special form that is
used for unsigned and floating types [16]. A simple branching example can be
seen in the following code-listing.

1 // if (arg1 <= arg2)
2 IL_ 0000: ldarg .1
3 IL_ 0001: ldarg .2
4 IL_ 0002: bgt.s IL_ 0006:
5 {
6 // return arg1;
7 IL_ 0004: ldarg .1
8 IL_ 0005: ret
9 }

10 // else
11 {
12 // return arg2;
13 IL_ 0006: ldarg .2
14 IL_ 0007: ret
15 }

In the previous code-listing, we can see an implementation of a simple compare
method that takes two signed integers as its input and on its return yields the
smaller of the two values. Note that this is implemented using the instruction
bgt.s, which stands for branch greater than and also it is the short-form of the
instruction because its target is just two instructions apart. Therefore, operands
of the comparison are determined based on their position on the evaluation stack
– in our case the first operand is arg2 and the second is arg1.

CIL supports also unconditional branches using the following two
instructions: br and jmp. The difference between these instructions is, however,
really significant. While the br instruction is quite similar to the previous
instructions (except for the missing condition), the jmp instruction takes as its
operand a method metadata token. When the jmp instruction is executed, the
evaluation stack must be empty and the calling convention and arguments of
the target method must match the current method. Similarly to the tail
instruction described in Section 3.4.8, the current stack frame is removed after
the execution of the jmp instruction. Furthermore, usage of the jmp instruction
always results in an unverifiable code [16].

There is a common restriction when using branching instructions. These

25

instructions can not be used to jump out of certain code regions, such as
synchronized blocks or handler blocks.

3.4.10 Exceptions
Since we already covered flow control in the previous subsection, the important
concepts that remain to be explained are handler blocks and exceptions. In
CIL, the exceptions are quite straight-forward – in order to throw an exception,
the following two instructions can be used: throw and rethrow. However, the
instruction rethrow can be only used to throw an already caught exception
within a catch block. Therefore, in order to throw a new exception, the
instruction throw needs to be used. An example of throwing a new exception of
type System.InvalidOperationException can be seen in the following
code-listing.

1 IL_ 0000: ldstr "The requested operation is not valid"
2 IL_ 0005: newobj instance void [System . Private . CoreLib] System .

InvalidOperationException ::. ctor(string)
3 IL_ 000a: throw

While technically the CLI permits any object to be thrown using these
instructions, according to the specification [16] only classes derived from
System.Exception are permitted in this context. Now that we covered the
basic usage of exceptions, we continue by describing handler blocks.

3.4.11 Handler Blocks
Any method can have some of its instructions marked as protected, which stands
for a try block in high-level programming languages. Moreover, each try block
can be associated with one or multiple handler blocks [16]. There are four types of
handler blocks: filter blocks, catch blocks, finally blocks and fault blocks,
all of which will be described in the following lines.

In order to mark a certain block of instructions as either a try block, or
one of the handler blocks, the beginning of the block should be the first affected
instruction and the ending of the block should be the first instruction after the
block. This results in a system where no two handler blocks can have the same
starting address [16]. An example of a simple try-catch construct can be seen in
the following code-listing.

1 .try {
2 IL_ 0000: ldstr "The requested operation is not valid"
3 IL_ 0005: newobj instance void [System . Private . CoreLib] System

. InvalidOperationException ::. ctor(string)
4 IL_ 000a: throw
5 } // endtry (IL_0000 - IL_000b)
6

7 catch [System . Private . CoreLib] System . Exception {
8 IL_ 000b: pop
9 IL_ 000c: leave.s IL_ 0018:

10 } // endcatch (IL_000b - IL_000e)
11

12 IL_ 000e: ret

26

In the presented code-listing above, we can see the same code as in the
previous code-listing, but marked as protected code, which forms a try block.
Its associated catch block does nothing, but it is important to note that it must
be exited using the instruction leave or its short-form leave.s.

In the previous example, we presented a catch block handler that catches
managed exceptions compliant with the specification [16]. If we wanted to further
constrain when should the catch block handler be executed, we could additionally
specify also a filter block handler. An example of setting a filtering constraint
that checks whether the Message property of the exception is not null can be
seen in the following code-listing.

1 filter {
2 IL_ 000b: isinst [System . Private . CoreLib] System . Exception
3 IL_ 0010: dup
4 IL_ 0011: brtrue .s IL_ 0017:
5 IL_ 0013: pop
6 IL_ 0014: ldc.i4.0
7 IL_ 0015: br.s IL_ 0022:
8 IL_ 0017: callvirt instance string [System . Private . CoreLib]

System . Exception :: get_Message ()
9 IL_ 001c: ldnull

10 IL_ 001d: cgt.un
11 IL_ 001f: ldc.i4.0
12 IL_ 0020: cgt.un
13 IL_ 0022: endfilter
14 } // endfilter (IL_000b - IL_0024)

In the code-listing above, we can see that the filter block is ending with
the instruction endfilter. Moreover, the endfilter instruction pops a single
item of type System.Int32 from the evaluation stack, its value must be either 1
or 0. If the value was equal to 1, the execution continues with the catch block.
Otherwise the execution searches for a different catch block.

The next handler block, the finally block, is executed always, regardless of
whether an exception occurred or not. Any exception handling, as presented
within the previous example, must be nested in a try block, otherwise the
finally block might not be executed correctly. Furthermore, it would result in
an unverifiable code [20]. An example can be seen in the following code-listing.

1 .try {
2 .try {
3 /* protected instructions */
4 }
5 catch [System . Private . CoreLib] System . Exception {
6 /* exception handling */
7 }
8 leave exitProtected
9 }

10 finally {
11 /* finally handling */
12 endfinally
13 }
14 exitProtected :

The last type of handler block, the fault block, is quite similar to finally.
However, it is executed only if an exception occurred within the original try block.
It can be written using the fault directive and always ends with the instruction

27

endfault. Furthermore, there is actually no way to express this handler block
using C#.

3.5 Compilation to Native Code
As we already mentioned, CIL code cannot be directly executed by the CLR and
therefore it needs to be compiled into native code prior to the execution. There
are two options how the CLR can obtain native code, first being native images
and second being JIT compilation.

3.5.1 Native Images
Native images, also known as ahead of time (AOT) compilation, contain
executable native code which is similar to what would the JIT compiler produce
under normal circumstances. This approach can be used to minimize start-up
time of applications, which is commonly used for some framework assemblies.

For .NET Core we can generate native images using a tool called
CrossGen [21]. Whenever there is a native image available, the CLR prefers the
load of that specific image. Furthermore, when a native image is loaded by the
CLR, its code can be executed without any interception of the JIT compiler.

Despite the mentioned advantages, there are also some drawbacks when
working with native images. For example, size – native images are significantly
bigger than managed assemblies. Moreover, native images are dependent on the
platform that they were generated for.

3.5.2 JIT compiler
The preferred alternative to native images is JIT compilation. Whenever the
CLR tries to load an assembly for which it was unable to find its native image,
it defaults to JIT compilation of the assembly.

When loading managed assemblies, method tables of types, specifically their
individual entries are initialized with a call to the JIT compiler. Therefore,
whenever we call a method for the first time, it is handled by the JIT compiler.
It is responsible for generating native code and for patching the entry in the
method table of its declaring type. The patch is really simple – it needs to
ensures that consecutive calls jump straight into the generated native code [22].

The most important observations are that methods are compiled just before
they are executed and that each method is compiled at most once. This is different
compared to the process of native image generation where we needed to compile
all referenced methods, because we could not predict what is needed at runtime
and what can be skipped.

3.5.3 Optimizations
Both mentioned approaches can apply various optimizations on the resulting
native code. These optimizations are not as powerful as, for example
optimizations issued by moderns C++ compilers. Nonetheless, in many cases
they are capable of changing code in a significant way in order to make it faster.

28

3.6 Managed Code Hosting
Now that we covered the most important components of the CLI, we can discuss
how we can execute .NET programs. Since we already mentioned in Section 3.3
that code written in CIL cannot be directly executed, we are going to need a
hosting application.

The purpose of the hosting application is to load and initialize the CLR and
then start the execution of the provided assembly. Luckily, most programmers
will never need to write their own hosts because there is already a viable
implementation called dotnet [23]. This host is capable of many more
operations than just running .NET assemblies, to name a few: building, running
tests, packing nugets or publishing self-contained packages.

Even though the initialization process of the CLR happens mostly in native
code, there is one particularly interesting assembly that plays an important role
during the initialization – the core library. This library, more specifically
System.Private.CoreLib will be further discussed in the following section.
After that we will revisit the dotnet command, especially publishing
self-contained packages where we will showcase how we can access all managed
and native dependencies of any .NET Core program.

3.7 System.Private.CoreLib
Core libraries, such as System.Private.CoreLib for .NET Core, have several
unique properties compared to other managed assemblies. This is mostly due to
the fact that core libraries are always tightly coupled with the CLR and implement
the most basic types and methods provided by the base class library. The most
important constraints and properties of core libraries are the following [17]:

• Base types, such as, System.Object, System.Int32 or System.IntPtr are
always defined in core libraries. These types are also needed by the CLR
and therefore core libraries are always loaded during the startup phase of
the CLR.

• Core libraries cannot have any managed dependencies and they may use
only native libraries. Additionally, only one core library can be loaded per
process.

• Core libraries need to expose certain functions from the CLR and are heavily
used for native interoperability. Among others, this requires that managed
types can be easily mapped to their corresponding native types.

It is common to find core libraries installed in system together with
corresponding native images, as described in Section 3.5.1. Being the common
dependency for .NET programs, native images can provide significant
performance gain during startup.

29

3.8 Self-contained Packages
Command dotnet publish is capable of packing applications together with all
of their dependencies. As a result, it creates so called ”self-contained packages”
with all dependencies in a single folder. This is a user-friendly way to deploy
.NET Core applications because it does not place any requirements on the target
machine about installed frameworks or runtimes.

Packaging applications can also be a great utility when implementing
instrumentation routines because one of the hardest challenges would be to find
all referenced assemblies. Assemblies can be generally in many directories, not
even counting different versions or platform-dependent assemblies. Therefore,
having an utility that correctly resolves all references and places them in a
single folder can be a great advantage.

Despite being able to access all dependencies, we might still run into issues
when modifying assemblies on certain .NET implementations. The most
commonly used mechanism which could prevents this is called strong-name
verification and will be further discussed in the following section.

3.9 Strong-named Assemblies
Instrumentation routines for dynamic analysis will heavily rely on the ability to
successfully load instrumented assemblies and execute them. In this section, we
will describe how we can achieve this and why is this possible.

.NET Framework introduced strong assembly names which consist of
information like filenames, versions and public keys. Their purpose was to
tackle two kinds of problems – manageability and security. Strong assembly
names provide unique identifiers and therefore counter issues like DLL hell [24].
Regarding security, strong assembly names can be used, for example to ensure
that assemblies were not modified since build.

Despite the fact that using strong assembly names the CLR could check
integrity of assemblies, in practise it was commonly bypassed – one of the
reasons was performance. In fact since .NET Framework 3.5, the check was
turned off by default when loading assemblies from trusted sources [25]. Newer
implementations, like .NET Core, do not validate assemblies integrity during
load at all. In order to ensure that modified assembly gets loaded by the CLR,
we need to ensure that it comes up first when looking for the specific assembly
based on its filename and version.

30

4. Design and Implementation of
SharpDetect
SharpDetect is a framework for dynamic analysis of .NET Core programs. It
takes executable assemblies as its input and yields instrumented assemblies
together with environment configuration for dynamic analysis. In this chapter,
we describe the design and implementation process of SharpDetect.
Furthermore, we describe several interesting problems that we encountered
during our work on this project and at the end of the chapter, we propose some
improvements that can be implemented as future work.

4.1 Overview
SharpDetect consists of five modules, SharpDetect.{Common, Console, Core,
Injector, Plugins}. Moreover, we can divide them into two major categories:
compile-time and runtime modules. The first category consists of Console and
Injector, while the runtime category includes Core and Plugins. Basically, the
only exception from this rule is Commmon, since it is used both during compile-time
and runtime. The basic overview of SharpDetect can be seen in Figure 4.1.

Output program

SharpDetect.Core

Instrumented program

Raises events handled by

SharpDetect.Plugins

Relays events for processing by

SharpDetect - instrumentation

SharpDetect.Injector

SharpDetect.Console

Uses

Input program

Analysed program

Result of dynamic analysis

Software errors
detected by analysis

plugins

Figure 4.1: High-level overview of SharpDetect’s architecture. There are two
main parts: compile-time instrumentation and dynamic analysis execution.

31

4.1.1 SharpDetect.Console
SharpDetect.Console is a .NET Core frontend of SharpDetect that is
implemented as a console application. Its main purpose is to create
self-contained packages, as described in Section 3.8, from analysed .NET
programs, run the instrumentation process and also execute the dynamic
analysis using the instrumented assemblies.

An integral part of this module is parsing configuration from provided files
and the command-line. When passing configuration to SharpDetect, there are
actually multiple ways to do so. The first place where SharpDetect looks for
configuration is the global configuration file global-config.json that has to
be placed right next to the SharpDetect.Console.dll. The default content of
this file can be seen in code-listing 4.1.

1 {
2 " AlwaysIncludeMethodPatterns ": [
3 " System . Threading . Monitor ",
4 " System . Threading . Thread ::. ctor",
5 " System . Threading . Thread :: Start",
6 " System . Threading . Thread :: Join"
7],
8

9 " ArrayInjectors ": true ,
10 " FieldInjectors ": true ,
11 " MethodInjectors ": true ,
12 " ClassCreateInjector ": true ,
13 " ObjectCreateInjector ": true ,
14

15 " VerifyInstrumentation ": true
16 }

Listing 4.1: Default content of the SharpDetect’s global configuration file. All
supported event types are instrumented and created assemblies are verified after
the instrumentation. Furthermore, method patterns that are defined to be
always included are always instrumented regardless of any overrides by other
configurations.

Apart from the patterns that are always instrumented, the default
configuration provided by the global-config.json can be easily overriden and
extended by providing a local configuration that describes a concrete dynamic
analysis of a specific program. Additionally, the local concrete configuration
needs to specify the target assembly and patterns that should be instrumented
from the specific assembly or one of its referenced assemblies. An example of
such configuration can be seen in code-listing 4.2.

Correct usage of the global and local configuration files significantly reduces
the amount of analysed events, and as such fulfils the goal (G2) about
configurability described in Section 1.1. Moreover, we need to specify a path
where SharpDetect is supposed to search for analysis plugins. This can be easily
achieved by setting the environment variable SHARPDETECT PLUGINS to a
directory with plugins. This causes SharpDetect to search the specified
directory, as well as its subdirectories, for available plugins.

Once the necessary configuration is prepared, SharpDetect.Console can be

32

used as can be seen in code-listing 4.3. To perform individual actions,
SharpDetect.Console relies mostly on other modules that are described in the
following subsections.

1 {
2 " TargetAssembly ": " Assembly .dll",
3

4 " FieldPatterns ": [
5 " NamespaceA .TypeA",
6],
7

8 " MethodPatterns ": [
9 " NamespaceA .TypeA", " NamespaceB .TypeB :: Method "

10],
11

12 " ArrayInjectors ": false ,
13 " FieldInjectors ": false ,
14 }

Listing 4.2: Example content of a concrete local configuration for a specific
dynamic analysis. Users have to specify a path to the target assembly and
instrumentation patterns for methods and fields. On top of that users can override
the default configuration provided by the global-config.json.

An important observation is that SharpDetect must actually traverse the
whole call graph, regardless of the provided MethodPattterns and
FieldPatterns. This is necessary in order for certain settings, such as
AlwaysIncludePatterns, to work because many methods subjected to analysis
might be nested inside a call graph segment that would be otherwise skipped
based on other patterns.

1 // [Optional] prepare C# project for instrumentation
2 dotnet SharpDetect . Console .dll build <path_to_csproj > \
3 --rid <platform_rid > --output <output_folder >
4

5 // Instrument assembly based on the provided configuration
6 dotnet SharpDetect . Console .dll instrument <path_to_config >
7

8 // Run dynamic analysis
9 dotnet SharpDetect . Console .dll run \

10 <path_to_instrumented_assembly > \
11 --config <plugins_registration >

Listing 4.3: Example usage of SharpDetect.Console to build project, instrument
the target assembly and run the dynamic analysis.

In order to run the dynamic analysis, users must also specify a plugin
registration string. The format of the registration string is quite simple, it
consists of one or multiple plugin names that are delimited with the ’|’
character. An example of the plugin registration string would be the following:
"plugin1|plugin2|...|pluginN". Registering plugins into chains is further
described in the following subsection that is solely dedicated to plugins.

33

4.1.2 SharpDetect.Plugins
As we previously mentioned, SharpDetect also contains a few plugins, more
specifically Eraser [7] and FastTrack [8], that can be used to detect and predict
certain concurrency issues. Their implementation can be found within the
module SharpDetect.Plugins. Additionally, it is loosely-coupled with the tool.
In order to implement custom plugins, users must only ensure that their plugin
implementation is derived from the abstract class BasePlugin defined by the
module SharpDetect.Core.

Custom plugins can benefit from the fact that analysis events are supplied
through virtual methods on the abstract BasePlugin class. In code-listing 4.4,
we present a couple of these methods, which are available for overriding by
custom plugins. For completeness, SharpDetect offers the following analysis
events: analysis start, analysis end, array created, array element read, array
element written, class constructed, field read, field written, lock acquire
attempted, lock acquire returned, lock released, object created, object wait
attempted, object wait returned, object pulsed one, object pulsed all, method
called, method returned, user thread created, user thread started and user
thread joined.

1 // Called right after SharpDetect initialization
2 public virtual void AnalysisStart (MethodDescriptor method);
3 // Called right before program exits from its entrypoint
4 public virtual void AnalysisEnd (MethodDescriptor method);
5

6 // Called when an array element is read
7 public virtual void ArrayElementRead (int threadId ,

MethodDescriptor method , Array array , int index);
8 // Called when an array element is updated
9 public virtual void ArrayElementWritten (int threadId ,

MethodDescriptor method , Array array , int index , object
value);

10

11 // Called right before the execution of the return instruction
of a class constructor - .cctor ()

12 public virtual void ClassConstructed (int threadId ,
TypeDescriptor type);

13

14 // Called right before a lock method is called
15 public virtual void LockAcquireAttempted (int threadId ,

MethodDescriptor method , object lockObj , (int , object)[]
parameters);

16 // Called right after a lock method returned
17 public virtual void LockAcquireReturned (int threadId ,

MethodDescriptor method , object lockObj , bool result , (int ,
object)[] parameters);

18

19 // Called right after the execution of the newobj instruction
on reference type

20 public virtual void ObjectCreated (int threadId , object obj);

Listing 4.4: Example of some methods that can be found in the abstract class
BasePlugin that can be overriden to implement custom analysis plugins.

The default implementation of all public virtual methods on the abstract class
BasePlugin forwards the information about events to the next plugin in the chain

34

if such plugin is available. We already mentioned plugin chains in the previous
subsection, more specifically how we can use them to hook multiple plugins for
the dynamic analysis. Users are required to provide plugins registration string in
the format "plugin1|plugin2|...|pluginN" that consists of names of required
plugins delimitted by the ’|’ character. This basically means that whenever
SharpDetect receives an analysis event, it is dispatched first to the plugin1.
A plugin that got an event may choose to consume the event or forward the event
to the next plugin in the chain after processing. Therefore, this is another way
to filter analysis events that need to be processed. Nevertheless, the presented
ability to implement custom analysis plugins fulfils the goal (G1) related to
extensibility as described in Section 1.1.

4.1.3 SharpDetect.Core
The main component that is used at runtime is called SharpDetect.Core. During
the initialization phase of the dynamic analysis, the purpose of this component is
to register event handlers for the instrumented events and setup required plugins.
After the initialization process is done, its main purpose is to orchestrate the
dispatching of analysis events to plugins.

Process event

Return to original control-flow

For each plugin
or until event not

consumed

Analyse collected information
about object creation

Return from analysis

NEWOBJ
<get created object>
<call SharpDetect>

Analysed
program

(thread T1)
SharpDetect Plugins

Figure 4.2: Basic principle of capturing and analysing events that is illustrated
on the case of a dynamic object allocation. Right after an object is created, its
reference is stored and passed to SharpDetect. SharpDetect then packs additional
information, such as managed thread id of the thread that raised the event, and
dispatches its information to the registered plugin chain. Blue-coloured items
represent the content of uninstrumented assembly. Everything in the orange
colour was added during the instrumentation process.

In order to initialize this module, SharpDetect.Injector must inject
bootstrapping instructions at the beginning of analysed program’s entrypoint

35

method. As previously mentioned, the purpose of these instructions is to call
the initialization method of SharpDetect that is responsible for registering event
handlers and preparing analysis plugins. The initialization method is basically a
static instance getter on the singleton class EventDispatcherFrontend.
Therefore, the bootstrapping code that needs to be instrumented at the
beginning of the entrypoint method can be written in C# exactly as can be seen
in the following code-listing.

1 SharpDetect .Core. EventDispatcherFrontend . GetInstance ();

The presented code above can be easily translated into CIL using two
instructions, call and pop, which can be seen in the following code-listing. We
just need to make sure that SharpDetect assemblies are added to the referenced
assemblies of the analysed program.

1 IL_ 0000: call class [SharpDetect .Core] SharpDetect .Core.
EventDispatcherFrontend [SharpDetect .Core] SharpDetect .Core.
EventDispatcherFrontend :: GetInstance ()

2 IL_ 0005: pop

Right after the initialization phase is completed, analysis events are captured
and further dispatched to registered plugins. The basic principle how this works
is illustrated in Figure 4.2 on an example where we instrumented dynamic object
allocation, i.e., usage of the instruction newobj together with reference types.

From the figure above, we can see that analysis of individual events is always
carried out by the same thread that raised them. Therefore, whenever a thread
raises an event, its control-flow is hijacked to perform analysis of the event.
Once the analysis is completed, the control-flow is returned to the analysed
program. More information on how are events captured is presented in the
following subsection.

4.1.4 SharpDetect.Injector
SharpDetect.Injector is responsible for instrumenting target assemblies based
on the configuration obtained from SharpDetect.Console. After it instrumented
target assemblies, it is no longer needed during runtime.

This module contains individual instrumentation routines for injecting
custom classes, methods, fields and events, but also for modifying various
existing methods in order to capture information about analysis events, as
described in Section 2.1. The instrumentation process supports even framework
assemblies, and overall it prepares necessary environment for the subsequent
dynamic analysis.

In order to describe the instrumentation process to a greater detail, let us
consider a method that allocates an object, which we intend to capture, as
previously illustrated in Figure 4.2. Since we already covered object allocation
using CIL in Section 3.4.2, we know that in order to create an object, we need
to push constructor arguments before the newobj instruction. Then after
executing the newobj instruction, a reference to the new instance is pushed onto
the evaluation stack. First consider the following code-listing with a single
instruction that creates an instance of System.Object.

36

1 IL_ 0000: newobj instance void [System . Private . CoreLib] System .
Object ::. ctor ()

In order to notify SharpDetect.Core about the occurrence of this specific
event, SharpDetect.Injector instruments code after the newobj instructions
exactly as can be seen in code-listing 4.5. Presented code is created as a result of
applying the class SharpDetect.Injector.Injectors.ObjectCreateInjector
on the instruction shown in the code-listing above.

1 IL_ 0000: newobj instance void [System . Private . CoreLib] System .
Object ::. ctor ()

2 // Duplicate reference to the newly created object instance
3 IL_ 0005: dup
4 // Store the top instance in the variable V_0
5 IL_ 0006: stloc .0
6 // Get instance to EventDispatcher backend
7 IL_ 0007: call class [System . Private . CoreLib] SharpDetect .

EventDispatcher [System . Private . CoreLib] SharpDetect .
EventDispatcher :: get_Instance ()

8 // Load stored object instance in the varriable V_0
9 IL_ 000C: ldloc .0

10 // Notify SharpDetect about object creation
11 IL_ 000D: call instance void [System . Private . CoreLib]

SharpDetect . EventDispatcher :: RaiseObjectCreate (object)

Listing 4.5: Example of instrumenting dynamic object allocation. SharpDetect
duplicates the reference to the object instance on the evaluation stack and stores
one copy to a local variable. Then a reference to the EventDispatcher together
with the copied object reference gets pushed onto the evaluation stack and finally
the ObjectCreate analysis event is raised.

When instrumenting CIL code, it is necessary to make sure (i) that the
resulting code is valid, (ii) that after execution the code leaves the evaluation
stack in its original state and (iii) that the .maxstack annotation of the method
is adjusted if necessary. In order to set the annotation correctly, SharpDetect
needs to be aware of how much stack the CLR needs when executing the
instrumented code. If we look at the original uninstrumented code from the last
example, it pushes exactly one item on the stack – a reference to the new object
instance. Therefore, the original code reaches maximum stack depth of one.
However, the instrumented code reaches at one point the depth of three items,
which is why SharpDetect must increase the maximum stack depth.
Furthermore, it needs to fix also the affected control flow branch instructions, as
well as handler blocks.

Correcting Broken Branch Targets

Since we already covered control flow instructions in Section 3.4.9, it should be
clear that by instrumenting code, we can break them quite easily. Consider a
case where we have a brach target instruction, before which we need to inject
some instructions. Now if the original instruction was a target for a branch
instruction, our injected code would not be executed together with the original
target instruction. This issue is shown in the following code-listing.

37

1 IL_ 0000: <injected_instruction >
2 IL_ 0001: <target_instruction >
3 // more code
4 IL_ xxxx: br IL_ 0001:

As this is certainly not an intended behaviour, we need to fix branch targets
whenever a situation like this one occurs. We need to make sure that whenever we
inject code, it is always executed together with the instruction it was intended for.
Otherwise, we could encounter issues like System.InvalidProgramException
during the execution of the instrumented assembly.

Correcting Malformed Handler Blocks

Moreover, by injecting code SharpDetect can also break handler blocks that were
described in Section 3.4.11. In the mentioned section, we described that each
handler block must start with the first affected instruction and end with the first
non-affected instruction. The cases that need to be fixed are the following:

• Injecting before an instruction that is at the beginning of a try block. In
this case we want our code to become the new beginning of the try block.
This is due to the fact that the original code was for some reason protected
and therefore the injected code should be protected as well.

• Injecting before an instruction that is at the beginning of a handler block.
This is a similar case to the previous one. We want our code to end up
in the beginning of the specific handler block. Note that in this case we
additionally need to fix also the ending of the previous block, which is either
a try block or a handler block. The previous block needs to point at the
beginning of the injected code.

• Injecting before an instruction that is the next instruction after the last
handler block. In this case we want to exclude the code from the handler
block. Therefore, SharpDetect needs to fix the ending of the handler block
to point at the beginning of the injected code.

Furthermore, also occurrences of the leave instruction must be fixed
according to the same rules because their target instruction changes exactly in
the same way. We also need to make sure that we do not break prefix
instructions, which were described in Section 3.4.8. The described corrections of
handlers blocks ensure that whenever SharpDetect instruments code within
handler blocks, the resulting code is valid.

4.1.5 SharpDetect.Common
The aim of the SharpDetect.Common module is to provide shared definitions,
description of injected types and analysis events, as well as some utility classes
and extension methods. This library is shared by most other modules and as
such is needed both during compile-time and also when executing the dynamic
analysis.

The definition of all analysis events can be located within the class
SharpDetect.Common.Definitions. Basically, analysis events are public static

38

properties of the type SharpDetect.Common.Events.DynamicAnalysisEvent
that have to be annotated with the RegisteredEvent attribute. Moreover, if it
is an extension to an already existing analysis event, it needs to be annotated
also with the Extension attribute, both from the namespace
SharpDetect.Common.Metadata. An example definition of a few events can be
seen in code-listing 4.6.

1 [RegisteredEvent (Type= AnalysisEventType . ObjectCreate ,
Parameters = new string [] { " System . Object " })]

2 public static AnalysisEvent ObjectCreate { get; set; }
3

4 [RegisteredEvent (Type= AnalysisEventType .MethodCall ,
Parameters = new string [] { "# PARAMS #", " System . String " })]

5 public static AnalysisEvent MethodCall { get; set; }
6

7 [Extension (FromEvent = DynamicAnalysisEventType . MethodCall)]
8 [RegisteredEvent (Type= AnalysisEventType . LockAcquireAttempt ,

Parameters = new string [] { "# PARAMS #", " System . String " })]
9 public static AnalysisEvent LockAcquireCall { get; set; }

Listing 4.6: Example definition of three analysis events: ObjectCreate,
MethodCall and LockAcquireCall, which is an extension of MethodCall.

In the code-listing above, we can see that in order to define an analysis
event, one needs to provide its name, event type and parameters. Moreover,
when specifying parameters, users have to specify valid reflection names of type
definitions as described in Section 3.4.1 about metadata. There is one exception
– #PARAMS# – that stands for a type specialization rather than a type definition.
It has the type System.ValueTuple<System.Int32,System.Object>[], which
is quite helpful when capturing method arguments. Furthermore, due to the
reason that will be covered in the development diary (Section 4.3.5) when
talking about modifying core libraries, the reflection names can refer only to
types defined by the core library, i.e., System.Private.CoreLib.

Once the event is defined, a handler must be dynamically registered in the class
SharpDetect.Core.EventDispatcherFrontend, and its corresponding injector
must be implemented when it is a base analysis event. In case the added event is
just an extension to a previously defined base analysis event, its descriptor should
be added to SharpDetect.Common.Extensions. After all these steps are done,
the new analysis event is ready to use.

4.2 Testing SharpDetect
In the previous subsection, we focused on the individual modules of
SharpDetect that users of this tool interact with when performing dynamic
analysis. However, for the development purposes there are actually two
additional modules that are used for testing. Moreover, during our work on this
project we defined a continuous integration pipeline using the Gitlab API [26]
that further helped maintain the functional integrity of the project throughout
the development. In the following subsections, we describe these modules and
capabilities of the pipeline, as well as mention some tools that helped us during
the development but are not directly integrated with SharpDetect.

39

4.2.1 Unit Tests and Functional Tests
SharpDetect contains two testing modules, SharpDetect.UnitTests and
SharpDetect.FunctionalTests. The first module, as it name suggests, is
dedicated to unit tests. This is used mostly for testing some analysis utilities
from SharpDetect.Core and implementation of analysis plugins.

Unfortunately, code instrumentation is not that easy to test because
instrumentation routines often access metadata tables when searching for
various types and members. Also the default behaviour of .NET
implementations is to load assemblies from a persistent storage, rather than
directly from a memory stream. Due to this reasons, we developed a simple
testing framework using the library NUnit [27] that, based on a given test case,
takes source code in C#, builds it, instruments it, verifies that all required
methods and types were instrumented, and executes it – testing that the CLR
does not crash or kill the instrumented program due to an invalid code.

In order to create a functional test for SharpDetect, users must create a single
C# source file with an entrypoint that starts the test. The source file should
be placed inside the Tests folder, within the SharpDetect.FunctionalTests
module. Moreover, it should be excluded from the build, but instead it needs to
be copied to the output directory. Additionally, every test needs to be registered
within the TestDefinitions class as a test case for its method GenericTest.
An example of a test case definition using the TestCaseAttribute can be seen
in the following code-listing. Additionally, each test needs to provide a path to a
local configuration, or use the built-in property UniversalConfig that points to
a basic configuration, which instruments everything inside the testing namespace.

1 [TestCase (" Threading / LockKeyword .cs", UniversalConfig ,
2 TestName = " LockKeyword ",
3 Description = " Testing lock keyword injection ")]

Furthermore, each test case may define a class that is responsible for
checking that every tested construct was correctly identified and instrumented.
The class needs to have the same name as the test but with the suffix Checker
and derive from the abstract BaseChecker class. Users may define various
TypeRequirements, MethodRequirements or FieldRequirements in the
constructor of their checker. An example of how to add a new
TypeRequirement can be seen in the following code listing.

1 var typeToInstrument = " TestedNamespace . TargetType ";
2

3 Requirements .Add(new TypeRequirement ()
4 . AddEvent (AnalysisEventType . ClassCreate)
5 . SetInjectedType (resolver . ResolveType (typeToInstrument)));

In the code-listing above, we can see a definition of a TypeRequirement that
states that the class constructor of the type TestedNamespace.TargetType
needs to be instrumented by injecting the class created analysis event. The
implemented testing framework checks that all defined requirements are met
during the instrumentation.

40

4.2.2 Continuous Integration Pipeline
Nowadays it is quite common to automate certain tasks connected with the
development process, such as testing, artifacts generation, preparation of
releases or even application deployment. While this is certainly convenient for
developers, it provides also a way to avoid unnecessary mistakes compared to
performing these tasks manually. Due to this reasons, we decided to implement
a declarative continuous integration pipeline using the Gitlab API [26].

The pipeline is based on the mcr.microsoft.com/dotnet/core/sdk:2.1
image, which is basically Debian 9 with pre-installed .NET Core SDK version
2.1. We configured the pipeline to run whenever someone pushes commits to the
main development branch. The pipeline consists of the following stages:

• Build: this stage ensures that all SharpDetect modules, including the
testing modules, can be successfully built

• Test: this stage is responsible for running unit tests and functional tests

• Release: this stage is responsible for generating persistent build artifacts
that can be used to create releases. The Release stage is run only in case a
new tag was created, or it can be executed manually.

Successful execution of the pipeline ensures that SharpDetect works also on
Linux, apart from Windows where it was mainly developed. This as a result fulfils
the goal (G4) about supporting multiple platforms, as described in Section 1.1.

4.2.3 SharpLab and DnSpy
In this subsection we present two very useful tools that were invaluable
throughout our work in this project. The first of these tools is SharpLab [28],
which is capable of showing results of code compilation – not only CIL, but also
the resulting native code generated by the JIT compiler. Furthermore,
SharpLab is currently capable also of running code, visualizing syntax trees,
collecting profiling metrics and more.

The second tool we would like to mention is called DnSpy [29], which is
created by the same author as the already mentioned library dnlib. DnSpy can
be used as a hex editor, .NET assemblies editor and also a debugger. One of the
most interesting features of DnSpy is the ability to debug .NET assemblies even
without their original source code. This is quite useful when looking for errors in
instrumented assemblies.

4.3 Development Diary
Throughout this section we present various problems that we encountered while
designing and implementing SharpDetect. We describe the individual problems,
as well as some solutions. While the vast majority of the problems was resolved
during the work on this project, in few cases we only suggest possible solutions
that are left for future work.

41

4.3.1 Instrumentation Routines
One of the first tasks was to design the instrumentation routines. These routines
are responsible for generating CIL code that is capable of capturing information
about analysis events and notifying SharpDetect. Two particularly interesting
cases involved method calls and field accesses – both will be further discussed in
the following paragraphs.

Method Calls and Returns

There are multiple ways to capture information about method calls and their
returns. Two most notable approaches can be seen in the following code-listings.

1 public void CallerMethod () {
2 CalledMethod (...)
3 }
4

5 public void CalledMethod (...) {
6 /* Notify SharpDetect about method call */
7 /* Implementation */
8 /* Notify SharpDetect about method return */
9 }

We can see that in the first approach the analysis would rely solely on the
instrumentation of the target callee method’s body. The advantage of such
approach is the ability to use CIL instructions ldarg.* for accessing individual
arguments that simplifies their capturing. However, there are two major
disadvantages. The first is that this approach does not work on methods
without CIL bodies, for example when calling native code as described in
Section 3.4.5. The second disadvantage is that the evaluation stack needs to be
manually inspected for return values. Moreover, methods can have multiple
return points, which needs to be accounted for as well.

1 public void CallerMethod () {
2 /* Notify SharpDetect about method call */
3 CalledMethod (...)
4 /* Notify SharpDetect about method return */
5 }
6

7 public void CalledMethod (...) {
8 /* Implementation */
9 }

The second approach is quite the opposite from the previous one. In this
approach both events are instrumented in the caller method. The most important
advantages of this approach are (i) that it works uniformly on all methods and
(ii) the fact that the return value can be easily retrieved as it is the top-most item
available on the evaluation stack. The disadvantage, however, is that a manual
inspection of the stack needs to be performed in order to capture arguments of
the method call. Similarly to obtaining the return value, all arguments must be
present on the evaluation stack before the call instruction.

Due to the mentioned reasons, SharpDetect instruments method calls and
their returns as described by the second approach. Even though both approaches
have their disadvantages, the chosen approach works uniformly for all types of

42

method calls within managed code and as such provides better coverage compared
to the first approach.

Field Accesses

Capturing information about field accesses might not seem problematic at the
first glance. We already covered CIL programming with fields in Section 3.4.4.
Nonetheless, there is an issue with capturing the target object when accessing
instance fields whose declaring types are value types. But before we get to that,
let us consider a simpler case when the declaring type is a reference type, which
can be seen in the following code-listing.

1 public class RefType { public int Field; }
2

3 public void Method (RefType instance) {
4 var copy = instance .Field;
5 }

From the presented code-listing above, we are mostly interested in the method
that loads an instance field to a local variable. In order for SharpDetect to capture
information about this event, it needs to obtain information about the field, but
also a reference to its target object. In the following code-listing, we present the
disassembled implementation of the method in CIL.

1 IL_ 0000: ldarg .1
2 IL_ 0001: ldfld int32 RefType :: Field
3 IL_ 0006: pop
4 IL_ 0007: ret

Based on the disassembled method code, we can see that it first pushes a
reference to the ReferenceType instance onto the evaluation stack. This
reference is obtained from the method’s first argument using the instruction
ldarg.1. After that, the field is loaded using the instruction ldfld. Clearly,
storing the obtained reference as System.Object is a valid operation. Even in
the case of heap compacting, as described in Section 3.1, the reference is still
valid. In the following code-listing, we present a very similar example, however,
a bit more complex field is being accessed.

1 public struct ValType { public int Value; }
2 public class RefType { public ValType Field; }
3

4 public void Method (RefType instance) {
5 var copy = instance .Field.Value;
6 }

In the code-listing above, we can see that there are actually two fields accessed:
(i) using the provided instance of RefType the first field gets accessed and then,
(ii) using the obtained ValType instance the second field gets accessed. Therefore,
in order to access the value of the latter field, either a ValType or a managed
pointer to a ValType needs to be pushed onto the evaluation stack. Generally,
the second approach is preferred as can be seen in the following code-listing where
we showcase the disassembled body of the method from the previous code-listing.

43

1 IL_ 0000: ldarg .1
2 IL_ 0001: ldflda valuetype ValType RefType :: Field
3 IL_ 0006: ldfld int32 ValType :: Value
4 IL_ 000b: pop
5 IL_ 000c: ret

From the previous code-listing, we can see that in order to access the
ValType instance, the instruction ldflda is used. This instruction pushes onto
the evaluation stack a managed pointer – basically a System.IntPtr. Using the
managed pointer, the actual value is then retrieved and pushed onto the
evaluation stack using the instruction ldfld.

Undoubtedly, storing information about the instance of ValType is harder
than in the previous case. The System.IntPtr that gets pushed onto the
evaluation stack is an unsafe pointer that points to a ValType instance, which is
a value type that is not tracked by GC as described in Section 3.3.1. Due to this
fact, SharpDetect can not store this pointer as we would not be able to
determine whether it is still valid. Furthermore, if SharpDetect tried to load the
value based on the managed pointer indirectly, boxing it, and then passing it as
an instance of System.Object, the obtained reference would be meaningless
since boxing creates a copy of the value as described in Section 3.4.6.

An important observation is that in .NET we can not have true global value
types. In other words, all value types are transitively owned by a class or one of
its instances. Therefore, in order to obtain information about accesses on fields
that are defined on value types, SharpDetect should track its closest enclosing
reference type. Current implementation of SharpDetect does not support this
feature and during the instrumentation emits a warning.

4.3.2 Instrumenting Blocking Synchronization Actions
Once we implemented the basic MethodCalled and MethodReturned events, we
naturally wanted to use these events to implement more advanced events as
extensions to those previously defined, which was described in Section 4.1.5.
Specifically, we started by implementing the LockAcquired and the
LockReleased events as extensions to the MethodReturned, since these events
were meant to trigger whenever the static methods Enter and Exit from the
class System.Threading.Monitor returned. However, this design had one
important flaw – analysis plugins could not easily tell that a thread is
potentially blocked. Therefore, it would have been hard to implement, for
example, a plugin that would analyse deadlocks.

Due to the problem that we just described, certain analysis events, such as
the already mentioned LockAcquired event, were split into two events – (i) an
event occurring before the actual action and (ii) an event occurring after the
action completed. For example, instead of the LockAcquired event,
we added events LockAcquireAttempted and LockAcquireReturned. The
LockAcquireAttempted event is always injected before the critical section, just
before the lock acquire action. Subsequently, the LockAcquireReturned is
injected inside the critical section at its beginning. By implementing this
solution, SharpDetect provides a more useful API to implement analysis
plugins.

44

4.3.3 Restrictions on Instrumentation
Almost immediately after implementing the first instrumentation routines, we
encountered another interesting problem. Regardless of the configuration
provided by the users, SharpDetect.Injector must be aware that in some
cases instrumentation should be skipped. Particularly, there are the following
important cases to consider.

SharpDetect should not instrument itself

Based on the sequence diagram in Figure 4.2, we can see that such behaviour could
quickly result in an endless recursion. Therefore, due to this reason, SharpDetect
can not be analysed by itself and any attempt to do so must be ignored.

SharpDetect should not trigger analysis events

Similarly to analysed programs, SharpDetect is also a .NET program that even
runs within the same process as the analysed program. Basically, this means
that SharpDetect shares code with analysed programs. Therefore, it is important
to distinguish events triggered by the analysed program from those that were
triggered by SharpDetect, which just happens to use the same code.

Due to this problem, each event handler in SharpDetect.Core needs to check
the thread-static flag EventForwardingSupressed that is defined in the class
EventDispatchingFrontend. Moreover, each event handler needs to set this
flag on its invocation and clear it just before it finishes. To simplify the process
of setting and clearing the flag, SharpDetect introduces a custom IDisposable
struct that can be used to set and clear the flags automatically.

1 using (new InternalSection ()) {
2 /* 1. Preprocess event information */
3 /* 2. Send to analysis plugins */
4 }

In the code-listing above, we can see a simple solution to the mentioned
problem. In order to ignore events triggered by SharpDetect, we must enclose
event handlers using an instance of the InternalSection, whose constructor
sets the required flag and its Dispose method clears it. Moreover, since
InternalSection is a struct, there is no dynamic allocation involved and it
only takes one byte on the stack because it does not have any fields.

4.3.4 Passing Live Objects
From the description of presented instrumentation routines, one can notice that
SharpDetect passes live objects to analysis plugins. While this approach is
necessary to track various information about the objects, there is a couple of
important issues that users (e.g., authors of plugins) should be aware of when
dealing with live objects from an analysed program.

• State of objects might non-deterministically change. However, it
is still safe to perform some operations, such as comparing by reference.
Moreover, if SharpDetect passes an argument or a return value that was
originally of a value type, it must be boxed first, which creates a copy as

45

described in Section 3.4.6. Therefore, in this cases, as well as in other cases
where the object is certainly immutable, it is safe to perform also many
other operations.

• Storing references might result in memory leaks. Analysis plugins
should either quickly throw away all references or hold them using weak
pointers so that they do not affect GC. SharpDetect could otherwise
suddenly require enormous amount of memory. Moreover, it is probably
not that useful to perform analysis on objects that would be under normal
circumstances already removed by GC.

Even though we mentioned that in the case of value types SharpDetect boxes
obtained values, which effectively creates their copies, it never happens in the
case of reference types. Otherwise it would be generally hard, for example, to
group accesses to the same instance field if SharpDetect always created a copy of
the instance.

4.3.5 Event Dispatching
An interesting challenge was to come up with a solution on how to raise analysis
events. We wanted to use the publish-subscribe pattern, where the publisher
would be an object that is accessible from any managed code and the subscriber
would be SharpDetect.Core. The publisher would define a .NET event for each
analysis event and a public trigger method so that events can be raised also by
other classes. However, the most important question was where to inject the
publisher.

It quickly became obvious that in order for the publisher to be accessible from
any managed code, it needs to be implemented either (i) in an assembly which is a
common dependency for all other assemblies or (ii) in a new assembly that would
be injected as a new common dependency. Luckily, .NET Core and all other
implementations have their own core library, which is a common dependency like
in our case System.Private.CoreLib, as described in Section 3.7.

The other mentioned approach is in fact not possible. This was also covered
in Section 3.7. Basically, the reason is that core libraries define basic types and
contribute to the initialization of the CLR. Therefore, it would not make any
sense for a core library to reference a managed assembly, as the assembly would
need to use the types defined by the core library before the CLR had a chance to
fully initialize them. The only way around it would be to implement the publisher
using native code since there are no limitations on referencing native libraries.

Due to the mentioned reasons, SharpDetect injects the singleton class
EventDispatcherBackend directly into the System.Private.CoreLib, together
with individual events and helper trigger methods. The definition of these
events is provided by SharpDetect.Common and they are subsequently
instrumented by SharpDetect.Injector. Raised analysis events eventually
need to be handled by SharpDetect.Core and then passed to analysis plugins.
This was a high-level overview on how event dispatching can be achieved, but
there are some more interesting problems that need to be resolved for event
dispatching to work as described above. We discuss these problems in the
following subsection.

46

4.3.6 Concurrent Invocation of Event Handlers
In Section 4.1.3, we mentioned that analysis events are always handled by the
same thread that triggered them. Therefore, if the analysed program utilizes
multiple threads, event handlers can be invoked concurrently. In this case there
is also a possibility that some events might appear in a wrong order.

Consider the following example: thread T1 releases a lock L. But right before
SharpDetect notifies plugins about the release of lock L, a context switch happens
– thread T2 now runs instead of T1. Immediately after that, T2 takes lock L
and notifies plugins about this event. Therefore, in this case, plugins receive
information about T2 taking lock L before the notification from T1 about the
release of L. The solution to this problem is left as future work.

In order to resolve the mentioned issue, we need to impose a more strict
ordering across the analysis events from multiple threads. One way to get a
more strict ordering would be to implement some form of vector clock into the
event dispatcher within the SharpDetect.Core module. This would generate a
causal ordering, based on which SharpDetect could delay dispatching of certain
events, such as in the example as described above, until all events that precede
the current event are dispatched.

4.3.7 Modifying Core Libraries
We already know that in order to develop a dynamic analysis framework for .NET,
the framework needs to be able to instrument also core libraries. Moreover, we
already covered the importance and special properties of core libraries in the
previous subsection and also in Section 3.7. Some of the mentioned facts make
core libraries harder to instrument. In fact, during the work on this project we
actually tried a simple proof-of-concept instrumentation of core libraries on all
three major .NET implementations: .NET Framework, .NET Core and Mono. In
the following paragraphs, we describe how we approached this task, what worked,
as well as why we could not support one of the three cases.

.NET Frameworks

We start by describing the only case where we could not instrument core
libraries in a way that would be usable by SharpDetect. The reason is that
.NET Framework, the first predominant CLI implementation, introduced a
concept called Global Assembly Cache (GAC), whose main purpose is to
provide a machine-wide cache of assemblies. Furthermore, this cache is the first
place where the CLR looks whenever it needs to load an assembly. All
assemblies stored in GAC need to have strong names as described in Section 3.9.

However, when doing offline instrumentation, the mentioned assembly
resolving mechanism is problematic. Anytime the CLR needs to load an
assembly, it ignores other paths if the assembly exists in GAC. Therefore, if we
instrumented an assembly whose original version exists in GAC, the
instrumented assembly would be always ignored by the CLR. Even though it
was already presented that the core library of the .NET Framework can be
modified [30], all approaches relied on loading the instrumented core library into

47

GAC, which removes the original version and as such affects all .NET programs
on the given machine.

Basically, the only approach to force the CLR to ignore GAC is to run
programs with a setting called development installation that is not well
documented nor supported. However, as some Microsoft developers mentioned
on their blogs [31], this setting is used only for internal development purposes.

We can see that instrumentation of core libraries and even many other
assemblies that are located in GAC is a hard problem in the case of the .NET
Framework. Fortunately, the strong enforcement to prefer GAC when resolving
assemblies is used only on the .NET Framework. In the following paragraphs we
will show that GAC is no longer such a problem on the other tested CLI
implementations.

Mono

Mono is an open-source implementation of the .NET Framework that also uses
GAC. Even though the default assembly resolving mechanism is almost
identical to the one used by the .NET Framework, Mono developers
implemented a switch that makes it possible to bypass GAC. This can be
achieved by setting the environment variable MONO PATH to the directory that
should be probed first when resolving referenced assemblies.

The solution described above works even in the case of core libraries.
Compared to the .NET Framework’s development installation, this setting is
well supported and we did not encounter any problems while testing it.

.NET Core

In case of .NET Core, its development team chose not to implement GAC or to use
any similar concept. The instrumentation process of core libraries and ensuring
that they get loaded by the CLR is much simpler. Together with being able
to even list the correct dependencies for any .NET Core program as described
in Section 3.8, the instrumentation of analysed programs together with their
dependencies is a significantly easier task.

Native Images

The only common problem for all mentioned implementations are native
images. We already covered native images in Section 3.5.1, but basically they
are assemblies that contain both CIL code and its corresponding native code.
The CLR prefers execution of native code as it can be run without any
interventions from a JIT compiler.

To ensure that the CLR actually loads instrumented versions of assemblies,
SharpDetect needs to disable the use of native images. In .NET Core this can be
achieved simply by setting the environment variable COMPlus ReadyToRun to zero.
However, even after this setting, the native code is still present if assemblies were
generated using the CrossGen tool, as described in Section 3.5.1. Furthermore, if
SharpDetect instrumented these assemblies, their native code would differ from
their managed code, which can cause various problems. But based on a personal
communication with the developer of dnlib, we decided to implement a suggested

48

work-around to completely strip the native code from instrumented assemblies.
This ensures that resulting assemblies are still valid and do not contain any native
code.

In order to strip all the native code, SharpDetect needs to perform a few
modifications to the PE header prior to storing instrumented assemblies. PE
header was already briefly introduced in Section 3.4.1. First, it has to set the
IsILOnly flag and clear the ILLibrary flag, both of which can be found in the
Cor20 part of the PE header. Moreover, it needs to make sure that the Machine
property for the given module is set to a valid architecture. Specifically, when
setting the Machine property, only architectures that are not used for native
images should be used. After SharpDetect successfully removes the native part
of the assembly, it basically forces the JIT compiler to always compile types and
methods of the given assembly, and therefore we can be sure that the instrumented
code is actually executed.

Before the implementation of this work-around, we were not able to
successfully run instrumented assemblies on other platforms than Windows.
The execution always failed with a message Failed to initialize CoreCLR, where
the CoreCLR is the CLR for .NET Core. Fortunately, by striping off native
code of the instrumented assemblies, we were able to successfully run
SharpDetect also on two additional platforms: Ubuntu 18.04 and Debian 9
(using the continuous integration pipeline described in Section 4.2.2).

4.4 Possible Improvements
Throughout this chapter we covered general overview of SharpDetect and
described its individual modules together with some details about their
implementation. Moreover, we discussed some interesting challenges that we
faced together with approaches that we tried in order to solve them. Later, in
the testing stage of this project, we discovered and identified certain aspects
that can be improved. In the following subsections, we will cover these
suggested improvements that are left as future work for this project.

4.4.1 Complexity of Programming in CIL
In Section 3.3 we presented an overview of programming using CIL. However, the
language constructs shown within the section form by no means a comprehensive
list. Actually, throughout the development we kept discovering new ways of
expressing various operations that undoubtedly complicated the development of
the SharpDetect.Injector module.

This problem mostly stems from the fact that there is a lack of proper tools
that would simplify the process of development using CIL. For example, there is
a utility called PEVerify.exe [32] that is shipped with .NET Framework
installations and that is capable of verifying entire assemblies. The downside is
that this tool does not support .NET Core and verifying core libraries.
Therefore, the process of validating instrumented code can be really hard and
error-prone. Despite the fact that there is a new tool called ILVerify.dll [33]
that does not have the mentioned limitations, it is still in development.

49

Currently it seems that in order to make sure that SharpDetect produces
correct code, a lot of testing is needed.

Due to the already mentioned facts, we can not currently guarantee that
SharpDetect produces correct code for every possible input program. Despite this,
we made sure that correct code is instrumented for all tests defined within the
module SharpDetect.FunctionalTests. Further testing and code verification is
still needed in order to gain better coverage of .NET constructs.

4.4.2 Observer effect
The term ”observer effect”, commonly known in quantum physics, is used to
describe a phenomenon where any observation of an experiment may change its
outcome. This is also relevant to SharpDetect because in order to observe the
behaviour of a program, we need to instrument it first. Therefore, SharpDetect
tries to reason about the behaviour of the original program based on its
instrumented version.

One of the most important goals of analysis tools that rely on instrumentation
is to make sure that they do not alter the behaviour of the program in a way
that would interfere with the analysis. However, this is sometimes very hard to
achieve. For example, consider the method in the following code-listing.

1 . method public hidebysig instance void Method () cil managed {
2 . maxstack 8
3 IL_ 0000: newobj instance void [System . Private . CoreLib] System

. Object ::. ctor ()
4 IL_ 0005: pop
5 IL_ 0006: ret
6 }

The method in the code-listing above allocates a new instance of
System.Object, pops its reference from the evaluation stack and returns. In the
following code-listing we can see the disassembled version of the same method
that was compiled into x86 assembly using the JIT compiler. Additionally, the
original module was built in Debug mode that disables some JIT optimizations.

1 /* Disassembled method that was compiled by the JIT compiler
2 * The instruction newobj was compiled to lines 8 - 12
3 * Surrounding nops simplify debugger attaching */
4

5 Class.Method ():
6 // Truncated (8 instructions)
7 L0022: nop
8 L0023: mov rcx , 0 x7ff9a5cd0ae8
9 L002d: call 0 x7ffa05834690

10 L0032: mov [rbp -0x8], rax
11 L0036: mov rcx , [rbp -0x8]
12 L003a: call System.Object..ctor ()
13 L003f: nop
14 // Truncated (3 instructions)
15 L0046: ret

From the truncated x86 assembly code-listing above, we can see that a very
simple method in CIL can be actually translated into many native instructions.
We will not cover the entire presented code-listing – many of the instructions
are there only to enable debugging anyway. However, the most important

50

instruction is on the line 12 with address L003a that actually calls the
constructor of System.Object. Now in the following code-listing, we present the
disassembled version of the same method, whose module was originally built in
the Release mode. This configuration enables more advanced JIT optimizations.

1 C. Method ()
2 L0000: ret

The resulting code created by the JIT compiler is quite different compared to
the previous code-listing. Basically, the JIT compiler correctly deduced that the
allocation in the method can be removed because the created instance is not used
anywhere. Furthermore, it is not visible by other threads, the obtained reference
is immediately thrown away and the specified default constructor does not have
any side-effects.

We will now try to describe why is the presented behaviour, specifically JIT
compiler optimizations, problematic for SharpDetect. Since we already
described the instrumentation routine for object allocations in Section 3.4.2, we
know that SharpDetect would generate an event in both presented cases. This
is caused by the fact that SharpDetect generally knows nothing about
optimizations that the JIT compiler is able to perform on the analysed code
because SharpDetect operates on the bytecode level rather than on the native
assembly level. Furthermore, when SharpDetect instruments the method by
introducing the object created event, the JIT compiler is no longer able to
perform the presented optimization because the reference to the newly created
instance is not thrown away but instead it is passed to SharpDetect.

Even though the presented example is rather simple, its main aim is to give
the reader a basic understanding of the problem. Moreover, the JIT compiler is
capable of performing many optimizations, such as method inlining, removing
unnecessary loads or copy propagations, all of which can in theory cause
SharpDetect to introduce observer effects. In the following paragraph we
present an option how we can minimize the impact of the observer effect on the
analysed programs.

Minimizing Impact of the Observer Effect

When discussing different instrumentation approaches, we already mentioned the
profiling API in Section 2.3.4, an approach for online instrumentation at the
bytecode level. Even though this option was due to various reasons discarded, it
could be particularly helpful when minimizing the impact of the observer effects.

The profiling API exposes a mechanism for direct observation of the CLR.
The runtime itself is then capable of notifying registered profilers about certain
events raised by the execution of the analysed program. The advantage is that
these events can be configured to raise even without instrumenting anything.
Furthermore, it is possible to configure the profiler to receive only subset of
events, which could be used to prevent stack overflows when calling high-level
languages from the profiler.

Even though all disadvantages that are mentioned in Section 2.3.4 are still
valid, an ideal implementation of a dynamic analysis framework for .NET would
probably use to some extent also the profiling API.

51

4.4.3 Analysis Performed by Managed Code
Majority of .NET programmers should try to stay within managed code as much
as possible because it provides many advantages as described in Section 3.1.
However, when programming an analysis tool for .NET programs that relies on
bytecode instrumentation, in contrary it can introduce some problems. Actually
there are three particularly problematic cases:

• As we already covered in Section 3.7, some types and methods from core
libraries are needed during the initialization phase of the CLR.
Instrumentation of these types and methods before the initialization is
over may result in crashes.

• SharpDetect.Core and SharpDetect.Plugins, the most important
runtime modules of the tool, are implemented using managed code.
Therefore, users must be careful when instrumenting types and methods
that are internally used by SharpDetect for analysis.

• There is not enough information exposed to the level of the managed code
from the underlying CLR. For example, SharpDetect is only able to observe
user-created threads, and not threads from the threadpool or other system
threads like the GC thread or the finalizer thread.

We showed that when developing a dynamic analysis framework, usage of
managed code can be in certain cases disadvantageous. In order to resolve this
problem, it seems that the best course of action would be to introduce a small
unmanaged SharpDetect module. Furthermore, if we integrated this module with
the profiling API, we would gain the ability to instrument code online, listen to
profiler events and also obtain more detailed information from the CLR about
the analysed program’s execution. SharpDetect would no longer fully rely on
instrumentation, but instead in critical cases it could fallback to listening to
profiler events in order to impact the analysed program in a less significant way.

4.4.4 Virtual Method Dispatching
In Section 3.4.5, we discussed the instruction callvirt that can be used to call
virtual method. Basically, the actual invoked method is determined at runtime
based on the target object instance.

Therefore, whenever SharpDetect instruments a method call to be invoked
using the instruction callvirt, it is generally not possible to determine the
actual method prior to the execution. This can be partially resolved by
searching for all derived types from the declaring type of the method call
receiver and instrumenting all of its overrides. However, SharpDetect can
perform this only for all referenced assemblies. This means that if an assembly
loads another assembly dynamically using, for example the method
System.Reflection.Assembly.LoadFrom, SharpDetect may fail to find some
overrides. Similarly to previous issues, this is exactly the place where an
integration with the .NET profiling API would be quite useful. Using the
profiling API we would obtain an information about the actual method that
would be instrumented online.

52

4.4.5 Mapping Analysis Events to Original Source
Current implementation of SharpDetect maps individual analysis events to
affected types, methods and fields based on metadata as described in
Section 3.4.1. However, in some cases a more detailed information might be
helpful, specifically a mapping of individual analysis events back to the original
source code when possible.

When building .NET programs, it is common to generate also debugging
information in the form of PDB files [34]. PDB is a proprietary file format
developed by Microsoft for storing debugging information. Therefore PDB files,
if available, could be used by SharpDetect to provide additional information,
such as already mentioned mapping to original source code, or names of local
variables. Moreover, this information could be quite helpful when working with
bigger assemblies, or when integrating SharpDetect into an extensible
development environment with the intention of directly marking source code
lines with potential issues.

Actually, dnlib [14], the library SharpDetect uses for bytecode inspection and
generation already supports PDB files. Therefore, information about the mapping
of individual analysis events can be stored either separately to a file or using dnlib
as an embedded resource to subject assemblies. Furthermore, analysis events
can be assigned unique identifiers that might be, when necessary, queried in the
prepared resource to obtain the debugging information. This solution would
affect the execution of dynamic analysis only in a small way, as the debugging
information can be queried by SharpDetect at the end of its execution.

53

5. Evaluation
In this chapter, we present an evaluation of the SharpDetect tool. We discuss
some of its interesting performance aspects and implemented optimizations.
Moreover, we discuss how much SharpDetect impacts analysed programs.

5.1 Performance Optimizations
As we previously indicated, dynamic analysis negatively affects runtime
performance of analysed programs. While the overhead of dynamic analysis is
generally inevitable, we dedicate this section to describing some approaches that
were implemented in order to keep the overhead reasonable and practical.

5.1.1 Minimizing Dynamic Allocations
The CLR is generally capable of performing quite fast dynamic allocations due to
the heap compacting mentioned in Section 3.1. As a result, memory allocation is
as simple as increasing the pointer that points to the next free memory chunk on
the heap. Despite this, frequent creation of objects with a short life span often
creates unnecessary pressure on the memory management, as well as on GC that
is triggered more frequently. These small objects are, in our case, mainly instances
of analysis events.

We considered the following two possible solutions to tackle this issue:
(i) introducing object-pools and (ii) using value types. Undoubtedly, both
solutions solve the mentioned problems because they generate little to no
pressure on the memory management and as a result, the overhead of GC is
negligible. Moreover, the correct usage of value types can provide even greater
performance advantages, since value types can be stored directly on the stack
and therefore, all accesses on their fields are direct because there is no indirect
reference to the heap.

Due to these reasons, all analysis events are created as ValueTuples. When
dispatching analysis events, SharpDetect performs dynamic allocation only
when packing method arguments. This might be improved (i) either by
introducing object-pools for arrays that store method arguments (ii) or by using
the stackalloc operator to allocate arrays on stack, as well.

5.1.2 Avoiding Memory Leaks
For the purpose of dynamic analysis, SharpDetect needs to store information
about some of the events. Since SharpDetect works with live objects, it needs to
find out when are the objects released by the analysed program and release them
as well, otherwise SharpDetect introduces potential memory leaks.

Since the CLR already uses GC to track live objects, SharpDetect can
benefit from the same mechanism, too. For example, when tracking accesses to
instance fields, SharpDetect can drop all records once their owner instance is
collected by GC. In order to implement this functionality, we can make use of
the System.WeakReference type or collections built using weak references, such

54

as the System.Runtime.CompilerServices.ConditionalWeakTable<K,V>.
Once the last non-weak reference is released, GC is free to collect the object.
This ensures that SharpDetect does not unnecessarily hijack unused memory
and thus does not create memory leaks. ConditionalWeakTables are mostly
used by plugins that keep track of accessed memory locations.

5.1.3 String Interning and Caching Resolved Identifiers
In order to identify methods and types that triggered individual analysis events,
SharpDetect.Injector packs the full method identifier as a string. Right before
an event is dispatched to analysis plugins, the string gets parsed into a descriptor
that is easier to work with in analysis plugins.

Furthermore, an important observation is that the string identifiers are
injected during the instrumentation process and therefore appear in the CIL as
string literals. The library that SharpDetect uses for instrumentation,
dnlib [14], behaves in this case similarly to C# compilers – effectively interning
string literals. This ensures two useful things at runtime: (i) for each interned
string there exists only one instance, (ii) when comparing interned strings, it is
sufficient to compare just their references. The obvious downside is a larger
#Strings section within the PE header of instrumented assemblies. We already
covered PE headers in Section 3.4.1. However, the undeniable advantage of
interning the string identifiers is the fact that comparison of interned strings is
generally very fast.

In order to provide more useful environment for the development of analysis
plugins for SharpDetect, we mentioned that identifiers of methods are parsed into
instances of the MethodDescriptor, similarly their declaring types are parsed into
TypeDescriptors and so forth. These descriptors are cached and their instances
are shared across all occurrences. Therefore, when developing analysis plugins,
SharpDetect users may rely on the fact that whenever a specific method is called,
the same MethodDescriptor is passed to the plugin. Analogically, the same rule
applies to all other events as each type, field, method and parameter is parsed
only once and the obtained instance is reused for subsequent events.

5.2 Measurements
In this section, we report and discuss the results of measurements of time and
memory overhead of SharpDetect on the selected subject programs, which we
performed in order to estimate how much usage of the tool impacts analysed
programs. We begin by describing the environment under which the
measurements were executed together with the methodology of measuring the
running time and memory consumption. After that, we present the individual
subject programs, as well as the results of time and memory measurements.

5.2.1 Environment
For the purpose of measuring overhead of SharpDetect, we used the following
hardware and software configuration.

55

• CPU: Intel Core i7-8550U @ 1.80GHz

– Cores/Threads: 4/8
– Cache: 4 x (32 + 32 + 256) + 8MB

• Memory: 16GB

• Operating System: Windows 10, 64bit version

• .NET Core: 2.1

5.2.2 Measuring Time Overhead
In order to measure the time overhead of SharpDetect, we used the powershell
utility Measure-Command that measures wall-clock. To obtain the baseline, we
used this utility on the subject assembly prior to the instrumentation. Then, we
continued by using the utility on the subject assembly after the instrumentation.

5.2.3 Measuring Memory Overhead
At the time of writing this thesis, there were no freely available profilers for .NET
Core that are capable of tracing detailed information about the managed heap.
Due to this reason, for the purpose of the memory measurements, we added
a simple memory measuring routine that triggers after each dispatched analysis
event. This routine obtains the current memory usage with the following method.

1 long System .GC. GetTotalMemory (bool forceFullCollection);

The described approach using the method above can be used to obtain the
current memory usage on the garbage collected heap in bytes. For the purpose of
these measurements, we did not force GC as we did not want to further impact
the execution of the subject programs.

To obtain the baseline, which is equal to the memory usage on the subject
program before the instrumentation, one may use the same measuring routine
and execute it periodically inside a long-term task. Undoubtedly, this approach
makes the subject programs use even more memory. However, compared to the
rest of the program, this memory usage is quite small.

5.2.4 Subject 1: Simple Task Parallel Library Program
The first subject program uses Task Parallel Library (TPL) to process a big array
in an unsafe way. More specifically, the possibility of a data-race is there almost
for each array element access. Therefore, we expected the Eraser plugin to report
plenty of violations, compared to the FastTrack plugin, whose total number of
reports depends on the interleaving of individual threads. The subject program
for this test can be seen in the following code-listing. Is is also available in the
SharpDetect/Examples/Evaluation1 directory of the electronic attachment.

56

1 using System ;
2 using System . Threading .Tasks;
3

4 namespace Evaluation1 {
5

6 class Program {
7 static int [] Data = new int [10000];
8

9 static void Main(string [] args) {
10 for (var i = 0; i < Data. Length ; i++)
11 Data[i] = i;
12

13 Parallel .For (0, Data. Length - 1,
14 (index) => Data[index + 1] = Data[index] + 1);
15 }
16 }
17 }

Measuring Time and Memory Overhead

In this paragraph, we focus on the time and memory overhead of SharpDetect
for the subject program presented at the beginning of this section. In order to
cover the significant aspects that contribute to the time and memory overhead,
we begin by presenting the original sizes of subject assemblies, as well as their
sizes after the instrumentation, which can be seen in Table 5.1.

Input Assemblies Results
Name Original Size [KiB] Instrumented Size [KiB]
Subject Assembly 4 7
Core Library 12 721 2 700

Table 5.1: Difference in sizes of assemblies before and after the instrumentation.
Subject Assembly corresponds to the program from the beginning of Section 5.2.4.
Core Library corresponds to the System.Private.CoreLib that is referenced by
the Subject Assembly.

In Table 5.1, we can see that the instrumented subject assembly is about
1.75-times bigger compared to its original size. Furthermore, the instrumented
core library is about 4.7-times smaller than its original size. This is due to the
fact that SharpDetect strips native code off assemblies, as described in
Section 4.3.7. As a result, the absence of AOT compiled native code will force
the JIT compiler to compile also the core library at runtime, which is not
normally required. Therefore, the overhead of the JIT compiler will be bigger,
since the subject assembly is bigger and also the core library needs to be
compiled, too.

Moreover, during the initialization phase, SharpDetect uses reflection, which
has a constant time overhead that contributes to the total execution time, as well.
The exact running time and memory consumption of the subject program under
different configurations can be seen in Table 5.2.

57

Test Description Results
Instrumented Plugins Time [s] Memory [KiB]
No (baseline) – 0.19 ± 0.01 333
Yes EmptyPlugin 0.44 ± 0.01 541 ± 5
Yes FastTrack 0.56 ± 0.01 4223 ± 37
Yes Eraser 0.79 ± 0.03 7216 ± 6

Table 5.2: The running time and memory consumption of the subject program
presented in Section 5.2.4. The first line provides the baseline, which stands for
the subject program before the instrumentation. In the following lines, we present
the running time and memory consumption of the instrumented subject program
that was measured together with different plugins configuration.

In Table 5.2, we can observe that SharpDetect was responsible for a slow-
down, which caused the subject program to run about 4-times slower compared
to the baseline time. This slow-down was measured while using the Eraser
plugin, which reported a data-race for almost each array element. The bigger
memory overhead is caused by the fact that each array element is treated as an
independent variable for which some analysis information needs to be tracked.

Furthermore, each measurement was repeated 50-times. In Table 5.2, we
present average values together with their corresponding standard deviations.
The measurements of the memory baseline did not deviate at all. This is due
to the fact that at runtime, there is not a lot of dynamic allocation for the non-
instrumented version of the subject program.

5.2.5 Subject 2: Producer-Consumer Program
The second subject program is a simple implementation of the
producer-consumer pattern. In this implementation, both the producer and the
consumer are implemented as separate Tasks and share a common Queue<int>.
The truncated version of the program can be seen in the following code-listings.

1 using System ;
2 using System . Collections . Generic ;
3 using System . Threading ;
4 using System . Threading .Tasks;
5

6 namespace Evaluation2 {
7 public class Program {
8 const int size = 100;
9 static Queue <int > queue;

10 static object lockObj ;
11

12 public static void Main(string [] args) {
13 queue = new Queue <int >(size);
14 lockObj = new object ();
15

16 var producer = Task.Run (() => Producer ());
17 var consumer = Task.Run (() => Consumer ());
18 Task. WaitAll (producer , consumer);
19 }

58

The code-listing above was truncated and its complete version can be seen in
the SharpDetect/Examples/Evaluation2 directory, which is a part of the
electronic attachment. Basically, the producer task iteratively produces about
10 000 items for the consumer task to consume. In order to enqueue or dequeue
an item from the queue, a lock needs to be acquired. Furthermore, this
implementation uses signals where the producer task signalizes whenever an
item is produced and waits for a signalization when the queue is full.
Analogically, the consumer task signalizes whenever an item is consumed and
waits for a signalization when the queue is empty. The producer task terminates
by producing a ”poison pill”, which terminates also the consumer task once it is
consumed.

Despite the fact that there are no data-races in this implementation, it is useful
when analysing the overhead of SharpDetect because the program generates a lot
of analysis events.

Measuring Time and Memory Overhead

Similarly to the previous subject program, we begin by presenting size differences
of assemblies before and after the instrumentation. This can be seen in Table 5.3.

Input Assemblies Results
Name Original Size [KiB] Instrumented Size [KiB]
Subject Assembly 5.0 10.5
Core Library 12721 2701

Table 5.3: Difference in sizes of assemblies before and after the instrumentation.
Subject Assembly corresponds to the program from the beginning of Section 5.2.5.
Core Library corresponds to the System.Private.CoreLib that is referenced by
the Subject Assembly.

In Table 5.3, we can see that the instrumented subject assembly more than
doubled in size compared to its original version. Furthermore, the instrumented
core library is about 4.7-times smaller compared to its original version. This is
due to the same reason that is described in the previous measurement in
Section 5.2.4. The exact running time and memory consumption of the subject
program under different configurations can be seen in Table 5.4.

Test Description Results
Instrumented Plugins Time [s] Memory [KiB]
No (baseline) – 0.145 ± 0.003 261.1
Yes EmptyPlugin 0.51 ± 0.01 4265.7 ± 0.5
Yes Eraser 0.53 ± 0.02 4267.5 ± 0.5
Yes FastTrack 0.54 ± 0.02 4268.3 ± 0.7

Table 5.4: The running time and memory consumption of the subject program
presented in Section 5.2.5. The first line provides the baseline, which stands for
the subject program before the instrumentation. In the following lines, we present
the running time and memory consumption of the instrumented subject program
that was measured together with different plugins configuration.

59

In Table 5.4, we can observe that the subject program was at most slowed
down by about 3.7-times. Even though the memory usage seems to be about
16-times larger, we can see that there is a constant memory overhead of about
4000 KiB, regardless of the plugin configuration. This is caused by the fact that
SharpDetect needs to track a lot of information during the execution, such as
method arguments and return values. Therefore, even when the plugins do not
need to track much of the data, it may still consume a significant amount of
memory compared to the memory baseline.

Similarly to the first subject program, each measurement was repeated
50-times. In the Table 5.4, we present average values together with their
corresponding standard deviations. Moreover, the measurements of the memory
baseline did not deviate at all since during the runtime there is not a lot of
dynamic allocation happening.

5.2.6 Summary
Throughout this chapter we presented multiple approaches that were
implemented for the sole purpose of minimizing runtime overhead of
SharpDetect. Furthermore, we analysed its time and memory overhead based
on the selected subject programs. According to our measurements and the
implemented performance solutions, we claim that SharpDetect minimizes its
impact on the analysed programs, thus fulfilling the goal (G3) about
performance as described in Section 1.1.

60

6. Using SharpDetect
This chapter is dedicated to a more detailed description of how to use
SharpDetect. We cover various tasks – preparing a subject program and
configuration, instrumenting assemblies and running the dynamic analysis.
Furthermore, we also describe how to verify the generated code by SharpDetect,
as well as the implementation of analysis plugins.

6.1 Preparing Subject Program
In order to illustrate the process of preparation and the subsequent execution
of the dynamic analysis, let us consider the following simple program written in
C#. This program is a part of the electronic attachment and can be found in the
SharpDetect/Examples/Sample directory.

1 using System ;
2 using System . Threading .Tasks;
3

4 namespace Sample {
5

6 class Program {
7 static int [] Data = new int [10];
8

9 static void Main(string [] args) {
10 for (var i = 0; i < Data. Length ; i++)
11 Data[i] = i;
12

13 Parallel .For (0, Data. Length - 1,
14 (index) => Data[index + 1] = Data[index] + 1);
15 }
16 }
17 }

In the following sections, we will describe how to prepare the configuration
and how to search for concurrency errors within the call to Task Parallel Library
(TPL) [35] that can be seen in the previous code-listing. But first, we create a C#
.NET Core console application project called ”Example” using the source code
from the previous code-listing.

6.2 Preparing Configuration
In order to analyse the subject program, we need to make sure that required
injectors are not disabled within any of the configurations – we are using mainly
array, field and method injectors – these settings were presented in
Section 4.1.1. Furthermore, we also need to set MethodPatterns and
FieldPatterns in order to specify what exactly should be instrumented.
Individual patterns represent paths to methods and fields – each pattern
consists of a namespace, a declaring type and a name of the field or method
delimited with double colons "::". Furthermore, if users want to, for example
inject all methods of a declaring field, they can omit the method name.
SharpDetect.Injector compares these patterns during the instrumentation in

61

a full-text mode. Therefore, in order to analyse the call to TPL within the
subject program, we can use the following local configuration.

1 {
2 " TargetAssembly ": " Sample .dll",
3 " FieldPatterns ": [" Sample "],
4 " MethodPatterns ": [" Sample "],
5 }

Using the local configuration above, we can instruct SharpDetect to
instrument all analysis events within the Sample namespace. This configuration
should be saved right next to the C# project file with name ”Example.json”.

6.2.1 Additional Configuration Settings
In Code-Listing 4.1, we presented the default content of the global configuration
file. While the presented settings where already covered within Section 4.1.1,
there are actually two more settings that can be quite helpful when working with
SharpDetect but require a deeper understanding of SharpDetect and the CLR.

EnableJitOptimizations

Whenever we set the EnableJitOptimizations setting to true, it allows
optimizations that are normally performed by the JIT compiler. We already
briefly introduced JIT optimizations in Section 3.5.3, as well as, described how
it can cause problems when analysing the behaviour of programs in
Section 4.4.2. SharpDetect by default disables JIT optimizations using the
environment variable COMPlus JITMinOpts.

However, when performing dynamic analysis, it can be useful to run the
analysis both with JIT optimizations and without them. The difference can be
illustrated on the example program we presented at the beginning of
Section 6.1. If we allowed JIT optimizations, we could observe that each
execution of the provided lambda function is performed by the same thread,
regardless of the fact that we used TPL and some users might expect it to
execute in multiple threads. Analogically, if we turned the optimizations off, we
could observe that each execution of the lambda function is performed by a
different thread. Therefore, based on what we are planning to analyse, it might
be useful to keep this setting in mind when executing dynamic analysis and
evaluating obtained results.

For the purpose of this example, we will consider that JIT optimizations are
turned off, as we want to showcase the capabilities of implemented plugins when
searching for concurrency issues, which would not be possible if all the code is
executed in the same thread. This setting can be defined on the command-line
right before the execution of dynamic analysis.

VerifyInstrumentation

In Section 4.4.1, we introduced a tool called ILVerify [33] that can be used to
verify .NET assemblies. Despite the fact that at the time of writing this thesis

62

the tool is still under development and not yet available as a stand-alone package,
its integration into SharpDetect can be really useful.

The verification of the instrumented assemblies is performed, if the setting
VerifyInstrumentation is set to true. Discovered violations found by ILVerify
are printed to console with logging level set to Warning. The verification of
System.Private.CoreLib is turned off because it generates many violations
due to many unverifiable constructs used there. Despite this, throughout the
development we made sure that types and methods instrumented into this
assembly can be verified without any problems.

However, the integration of ILVerify into SharpDetect is experimental and
the evaluation of verification results is not automatized. Basically, this can be a
useful feature when implementing new features or fixing errors in
SharpDetect.Injector where users immediately see whether the code that
SharpDetect generates is verifiable or not. Needless to say, unverifiable code
does not imply the code is not correct – for example core libraries use many
unverifiable constructs. However, SharpDetect generally should not introduce
new violations to the code.

For the purpose of this example, we will consider that the verification of
instrumented assemblies is turned on, as we intend to showcase the output of the
tool after the verification in the following section. This setting can be defined
using the configuration files.

6.3 Generating Self-Contained Package
After we prepared the subject program and the necessary configuration, we can
proceed by generating the self-contained package as described in Section 3.8
using the following command:

1 dotnet SharpDetect . Console .dll build <Example .csproj > \
2 --rid <RID >

The RID from the previous command stands for a Runtime Identifier. The
whole list of supported runtime identifiers (RIDs) can be found in the official
documentation hosted by Microsoft [36]. This identifier needs to be specified in
order to create a fully self-contained package.

6.4 Assemblies Instrumentation
Since we have the subject assembly prepared, as well as the configuration, we
can run the instrumentation process using the following command. We
intentionally run the command with increased verbosity as we intend to
describe certain phases of the process.

1 dotnet SharpDetect . Console .dll instrument \
2 <_SharpDetect \\ Example .json > \
3 --level Information

First, SharpDetect checks whether the target assembly is valid – it must have

63

an entrypoint, i.e. it must be executable, as well as, it must target the .NET
Core framework. After the initial checks, SharpDetect begins the instrumentation
process. For each analysis event it prints a message in the following format:

1 // HH:mm:ss - 24- hour Timestamp
2 // Level - Logging level
3 // Injector - Name of the injector
4 // Instruction - IL_xxxx : OpCode <Operand >
5 HH:mm:ss [Level] [Injector] Instruction

Based on the description above, after executing the mentioned command, we
can expect an output similar to the following:

1 // SharpDetect loaded Example .dll targeting .NET Core 2.1
2 16:49:40 [INF] Assembly Sample , Version =1.0.0.0 , Culture =

neutral , PublicKeyToken =null targets framework .NETCoreApp ,
version 2.1.0.0

3 // First analysis event instrumented -- load of the Data array
4 16:49:42 [INF] [FieldRead] IL_0005 : ldsfld System .Int32 []

Sample . Program :: Data
5 at System .Void Sample . Program :: Main(System . String [])
6 // Truncated (17 other analysis events)

After the successful instrumentation of the required analysis events,
SharpDetect continues by storing modified assemblies and in our case verifying
them, as well. During this phase, we can see an output similar to the following:

1 // Truncated (write of System . Private . CoreLib .dll)
2 // Writing instrumented assembly Sample .dll
3 16:49:44 [INF] Writing assembly Sample , Version =1.0.0.0 ,

Culture =neutral , PublicKeyToken =null
4 // Running ILVerify on instrumented Sample .dll
5 16:49:45 [INF] ILVerify starting verification of <_SharpDetect

\ Sample .dll >
6 // No violations found in the instrumented assembly
7 16:49:45 [INF] Successfully verified all types and methods of

the assembly

After the whole command finished, we can observe that SharpDetect created
various analysis events. Moreover, for the purpose of dynamic analysis it needed
to instrument both the Sample.dll and the System.Private.CoreLib.dll and
it also verified that the Sample.dll should be safe to execute. Finally, since
everything is ready we may proceed to executing the dynamic analysis, which is
further covered in the following section.

6.5 Executing Dynamic Analysis
In the previous sections we described the process of creating a subject assembly
based on the program presented in Section 6.1, we discussed the configuration –
both for instrumentation and runtime, and finally we prepared instrumented
assemblies for the dynamic analysis. This section is dedicated to executing the
dynamic analysis and evaluating the obtained results. We can start by
executing the dynamic analysis using the following command.

64

1 dotnet SharpDetect . Console .dll run \
2 <_SharpDetect \\ Example .dll > \
3 --level Information \
4 --config Eraser | EchoPlugin \
5 -- enableJitOptimizations false

Immediately after executing the command above, we can observe the
initialization phase of SharpDetect, whose output is similar to the following.

1 // SharpDetect searches for plugins
2 19:36:50 [INF] Searching for assemblies in C:\ SharpDetect \

Plugins ...
3 // Truncated (3 assemblies ; searching for plugins ...)
4 // SharpDetect found assembly with implementation of plugins
5 19:36:50 [INF] Found plugin EchoPlugin in SharpDetect .Plugins ,

Version =1.0.0.0 , Culture =neutral , PublicKeyToken =null
6 // Truncated (3 other plugins : Eraser , FastTrack , EmptyPlugin)
7 // Information about constructing plugin chain
8 19:36:50 [INF] Required plugins for analysis : [" Eraser ", "

EchoPlugin "]
9 19:36:50 [INF] Dynamic analysis framework successfully

initialized .

We can see that SharpDetect starts looking for plugins in the directory
C:\SharpDetect\Plugins, which SharpDetect obtained from the environment
variable SHARPDETECT PLUGINS. The process of searching for and initializing
plugins is covered in Section 4.1.1. Furthermore, we can observe that after
SharpDetect found all available plugins, it tries to construct a plugin chain
based on the provided configuration. If the previous steps succeeded,
SharpDetect is correctly initialized and the execution continues with the
entrypoint of the analysed program.

At this point, SharpDetect.Core is dispatching analysis events that are being
processed both by the Eraser and the EchoPlugin. We can observe a textual
representation of individual analysis events provided by the EchoPlugin in the
following format:

1 // HH:mm:ss - 24- hour Timestamp
2 // Level - Logging level
3 // ThreadID - Managed thread ID
4 // EventCategory - Event group (Field , Method , Array ...)
5 HH:mm:ss [Level] [ThreadID] EventCategory : Description message

Furthermore, implemented analysis plugin use a slightly different format when
reporting warnings and errors. This is because they usually do not report issues
based on a single event but instead based on a sequence of events, therefore, some
information categories, such as thread id do not apply to them. In order to report
warnings and errors, analysis plugins use the following format:

1 // HH:mm:ss - 24- hour Timestamp
2 // Level - Logging level
3 // PluginName - Name of the analysis plugin
4 HH:mm:ss [Level] [PluginName] Description message

Since we just showed the format of messages that are used by individual
plugins, it should not be a big surprise that the configured plugin chain starts
generating output similar to the following. Note that timestamps were removed
and the array descriptor was shortened in the example below.

65

1 [INF] [1] Array: System .Int32 [] created in method System .Void
Sample . Program ::. cctor ()

2 // Truncated (up to the point the array is being filled)
3 [INF] [1] Array: System .Int32 [] wrote value 0 on index 0 in

method System .Void Sample . Program :: Main(System . String []).
4 // Truncated (loading array from field)
5 [INF] [1] Array: System .Int32 [] wrote value 1 on index 1 in

method System .Void Sample . Program :: Main(System . String []).
6 // Truncated (up to the TPL call)
7 [INF] [6] Array: System .Int32 [] wrote value 4 on index 4 in

method System .Void Sample . Program /<?>::<Main >b(System .Int32
).

8 // Found a possible data -race
9 [ERR] [Eraser] detected data -race on array element <array >[4]

10 // Truncated (the rest of the analysis)

From the output above, we can see that the Eraser plugin found a data-race.
In fact, there is a data-race on each array element except for the element with
the index 0. The Eraser plugin actually reveals the problem for each affected
array element, but, for the purposes of clarity, the example output above was
truncated.

6.6 Implementing Analysis Plugins
In Section 4.1.2, we already covered the basic information needed to implement
a custom analysis plugin for SharpDetect. This section is dedicated to the
guidelines that need to be obeyed in order for the created analysis plugins to
work as intended. Furthermore, we discuss the implementation of the two
non-trivial example plugins, the Eraser plugin and the FastTrack plugin,
which were implemented as a part of this project.

6.6.1 General Guidelines
There are couple of rules and advices that users of SharpDetect need to keep in
mind when implementing custom plugins or changing implementations of existing
plugins. These guidelines can be expressed in the following points.

• Threading model: Every analysis event needs to be handled
synchronously by the thread that raised the event. SharpDetect has no
mechanism to distinguish custom analysis threads from the threads used
by the analysed programs. Furthermore, analysis events may be raised
concurrently – therefore, a proper thread synchronization might be needed
when implementing some plugins.

• Hijacking threads: Even though in Section 4.1.3 we described that
threads are hijacked in order to analyse the events they triggered, it is
probably not a good idea to hold on these threads for extended periods of
time. Clearly, by holding a thread, SharpDetect actually pauses execution
of the analysed program. Therefore, all threads should be released
immediately after the necessary analysis was performed.

66

• Reference as few as possible: In Section 4.4.3, we already covered issues
in connection with analysing managed code using the same managed code.
Generally, we want to minimize the number of referenced types and methods
by analysis plugins in case users decide to instrument them. As long as users
obey the first mentioned rule, SharpDetect has a mechanism to distinguish
analysis events triggered by SharpDetect code and plugins from those that
are triggered by the analysed program. But still it is advised to keep the
plugin implementations simple.

Now that we covered the basic guidelines, together with the description in
Section 4.1.2, users should have enough information to be able to write their own
analysis plugins. In the following subsections, we focus on the description of the
implementation of two analysis plugins that can be used to search for concurrency
issues in analysed programs.

6.6.2 Eraser
The implementation of the Eraser [7] plugin can be found within the
SharpDetect.Plugins module, more specifically in its subnamespace LockSet.
In order to search for data-races, the plugin needs to keep track of the following
variables that represent individual memory accesses:

• Static fields: The plugin needs to track information about the field only,
since it is not bound to an instance. Furthermore, it needs to check whether
the field is not marked as [ThreadStatic] because that would mean that
each thread accesses its own instance and data-races would not be possible.

• Instance fields: The plugin needs to additionally track information about
the instance the field belongs to. Otherwise, the plugin would report data-
races also in case we accessed the same field but on different instances.

• Array elements: The plugin needs to also track accesses to array elements.
These accesses consist of references to arrays and information about their
specific elements in the form of indices.

According to Savage et al. [7], for each variable the plugin additionally needs
to track a collection of candidate locks. This collection consists of locks that
previously potentially guarded given variable access. Therefore, on each variable
access, a lock refinement operation needs to be performed – generating an
intersection of the locks currently held by the thread with the previous
candidate locks. Whenever the plugin finds a variable whose resulting candidate
locks collection is empty and its state is marked as shared-modified, it reports a
possible data-race.

6.6.3 FastTrack
FastTrack [8] is a precise vector clock based data-race detector. Its
implementation can be found within the SharpDetect.Plugins module, in the
VectorClock subnamespace. Similarly to the Eraser plugin, in order to search
for data-races, this plugin needs to keep track of memory accesses as described

67

in the previous subsection. Moreover, FastTrack monitors also these types of
analysis events:

• Thread fork: The plugin needs to track information about creating and
starting threads. As described in Section 2.1, SharpDetect currently
supports this information only for the user-defined threads. This is due to
the fact that there is almost no information available about forks of other
threads, such as threads from ThreadPool, from the managed code.

• Thread join: Similarly to the thread fork event, this plugin needs to track
also information about joining threads. However, the same limitations apply
as with the thread fork event.

FastTrack uses an improved vector clock based algorithm for detecting
data-races that adaptively switches between simple epochs to vector clocks
when possible without the loss of precision. This technique effectively reduces
the overhead of dynamic analysis compared to the traditional vector clock based
data-race detectors. Furthermore, compared to the Eraser, this algorithm does
not try to predict data-races and only detects them, but also does not produce
any false-positives.

68

7. Case Study
In this chapter, we describe our experience with the application of the developed
tool SharpDetect on an existing .NET library in order to search for possible
concurrency issues. The tested library is called NetMQ [37], which is a fully
managed C# implementation of ZeroMQ – a high-performance asynchronous
messaging middleware that operates without a message broker server.

Independently from the development of SharpDetect, we observed a possible
timing issue in NetMQ that occurred very rarely. In the following sections we
describe how we used SharpDetect to search for the source of the timing issue.

7.1 Preparing for Dynamic Analysis
We already covered how to use SharpDetect in Chapter 6 and that in order to
perform a dynamic analysis, the user needs to provide the following: (i) a subject
program and (ii) a local configuration that describes the analysis. The resulting
folder structure looks as follows:

1 .
2 |-- Worskspace
3 | |-- CaseStudy
4 | | |-- CaseStudy . csproj
5 | | |-- CaseStudy .json
6 | | |-- Program .cs

The first step is to create a subject program. We can implement simple
ResponseSocket and RequestSocket that represent a server and a client,
respectively. The server is then bound to a localhost IP address on a fixed port
and client connects to it. Moreover, both the server and the client are
implemented to run in separate threads. Their subsequent communication is
performed using two extension methods SendMultipartMessage and
TryReceiveMultipartMessage that take System.Timespan instances as
arguments in order to define timeouts. The described test should be
implemented as a standard .NET Core console application. According to the
folder structure described above, the project is called CaseStudy and its
implementation is provided by the file Program.cs. A complete example that is
used in this section can be found in the electronic attachment of this thesis in
the SharpDetect/Examples/CaseStudy directory.

The second step is configuration, we need to configure what SharpDetect
needs to instrument. In fact, this step is quite easy because we do not need to
set any method patterns – locks are instrumented by default and for fields we
can just set the library’s common namespace, which is ”NetMQ”. Moreover, the
configuration file should be placed right next to the C# project file and named
CaseStudy.json. This configuration is part of the attachment as well, and its
content can be seen in the following code-listing.

69

1 {
2 " TargetAssembly ": " CaseStudy .dll",
3 " FieldPatterns ": ["NetMQ"],
4 " MethodPatterns ": [],
5 }

Now we need to prepare the target assembly by creating a self-contained
package as described in Section 3.8. In order to create a self-contained package,
we need to provide a runtime identifier (RID) [36]. We assume that we are
using the 64-bit version of Windows 10, whose runtime identifier is win10-x64.
Then, we can generate the self-contained package using the following command.

1 dotnet SharpDetect . Console .dll build <CaseStudy .csproj > \
2 --rid win10 -x64

Without specifying the --output option as described in Section 4.1.1, the
default folder is called SharpDetect. The resulting folder structure is in this
case the following:

1 .
2 |-- Worskspace
3 | |-- NetMQ_Test
4 | | |-- _SharpDetect
5 | | | | <self -contained -package >
6 | | | | <SharpDetect -assemblies >
7 | | | | <copy of CaseStudy .json >
8 | | |-- bin
9 | | |-- obj

10 | | |-- CaseStudy . csproj
11 | | |-- CaseStudy .json
12 | | |-- Program .cs

Now everything is prepared for the instrumentation process, which can be
executed using the following command:

1 dotnet SharpDetect . Console .dll instrument \
2 <_SharpDetect \\ CaseStudy .json >

Finally, we are able to execute the dynamic analysis. In order to start it, we
need to provide a list of analysis plugins that should be used for this specific
run. We assume usage of the following two plugins: the Eraser, which reports
possible data-race, and the EchoPlugin, which displays textual representation
of individual analysis events. We can start the dynamic analysis using the
following command.

1 dotnet SharpDetect . Console .dll run \
2 <_SharpDetect \\ CaseStudy .dll > \
3 --config Eraser | EchoPlugin

Results obtained by running the dynamic analysis are described in the
following section.

70

7.2 Evaluating Obtained Results
In the previous section, we covered the process of preparing the subject program
and configuration, creating self-contained assemblies, instrumenting target
assemblies and executing the dynamic analysis. Since the process of observing
the behaviour of analysed programs was already covered in Section 6.5, we
continue by evaluating obtained results.

As we are looking for errors, we can set the logging level to a more strict value,
such as Warning or Error. Then, for the subject program and configuration we
prepared, we can observe the following issues found by the Eraser plugin:

1 21:12:57 [ERR] [Eraser] detected data -race on a static field
System .Int64 NetMQ.Core.Utils.Clock :: s_lastTsc

2 21:12:57 [ERR] [Eraser] detected data -race on a static field
System .Int64 NetMQ.Core.Utils.Clock :: s_lastTime

In the presented output above, we can see that the Eraser plugin found a
possible data-race on the static fields s lastTsc and s lastTime defined by the
class NetMQ.Core.Utils.Clock. If we look at the implementation of NetMQ, we
can observe that the two mentioned static fields are read and written only by the
following method [38]:

1 public static long NowMs () {
2 long tsc = Rdtsc ();
3 if (tsc == 0) {
4 return NowUs () / 1000;
5 }
6

7 /* Beginning of critical section */
8 if (tsc - s_lastTsc <= Config . ClockPrecision / 2 && tsc >=

s_lastTsc) {
9 return s_lastTime ;

10 }
11

12 s_lastTsc = tsc;
13 s_lastTime = NowUs () / 1000;
14 return s_lastTime ;
15 /* End of critical section */
16 }

Now if we re-run the dynamic analysis with the logging level set to
Information, we can see from the output below that the method is actually
executed by multiple threads without any synchronization of the critical section.

1 // Field s_lastTime was written by thread with ID=3
2 21:12:57 [INF] [3] Field: System .Int64 NetMQ.Core.Utils.Clock

:: s_lastTime was written with value 27266154.
3 // Field s_lastTsc was read by thread with ID=4
4 21:12:57 [INF] [4] Field: System .Int64 NetMQ.Core.Utils.Clock

:: s_lastTsc was read from.
5 // Field s_lastTime was read by thread with ID=3
6 21:12:57 [INF] [3] Field: System .Int64 NetMQ.Core.Utils.Clock

:: s_lastTime was read from.
7 // Field s_lastTsc was written by thread with ID=4
8 21:12:57 [INF] [4] Field: System .Int64 NetMQ.Core.Utils.Clock

:: s_lastTsc was written with value 54333378824957.

The basic format of the output above was covered in Section 6.5. However,

71

the description messages are custom for each event type. In case of field events,
it consists of the following items:

• Field metadata token: describes the affected field. More specifically, it
consists of its type, namespace, declaring type and name of the field. In
the output above, both fields are of type System.Int64, their namespace
is NetMQ.Core.Utils, their declaring class is Clock and their names are
s lastTime and s lastTsc.

• Operation: describes the event type, based on which, we concatenate
the field metadata token with either " was read from.", or with " was
written". In the second case, which corresponds to the FieldWrite event,
the description message contains also the third item.

• Written value: is present only for the FieldWrite event. In this case we
add string " with value " and concatenate it with the result of calling
the ToString() method on the written object or value.

Moreover, at the beginning of this chapter, we mentioned that NetMQ is a
C# implementation of ZeroMQ. If we looked at some other implementations, for
example libzmq [39] implementation in C++, we would find that they actually use
a mutex for thread synchronization of the presented method NowMs.

72

8. Conclusion
In this project, we designed and implemented a dynamic analysis framework
that is capable of analysing the behaviour of .NET programs. Throughout the
individual chapters of this thesis, we compared various related tools and
environments, provided an introduction to the CLI, and discussed many aspects
of .NET Core and its runtime – the CoreCLR. Moreover, we documented the
tool that we created, SharpDetect, together with the development process, and
described a couple of interesting problems that we encountered during our work
on this tool. Finally, we discussed how to use and extend SharpDetect, as well
as demonstrated its capabilities on a real-world case study by using it to search
for concurrency issues.

Within the introductory chapter, we set four major goals in connection with
SharpDetect that we chose to fulfil in this project – extensibility, configurability,
performance and the ability to run SharpDetect on multiple platforms.
Regarding the extensibility, SharpDetect was used to implement two well-known
algorithms – Eraser [7] and FastTrack [8] – that are used when searching for
concurrency issues. Implemented configuration options offer powerful
possibilities both for instrumenting and executing dynamic analysis. Then, in
the fifth chapter, we measured the overhead of SharpDetect on selected subject
programs and presented multiple solutions that were implemented mostly to
reduce the overhead of both the instrumented programs and SharpDetect.
Moreover, we tested that SharpDetect works on Windows and Linux, thus
fulfilling also the goal about the ability to run on multiple platforms.

SharpDetect offers a simple console user-interface, which together with the
plugin extensibility system can be used to integrate SharpDetect into various
existing tools. For example, within an integrated development environment
(IDE), SharpDetect could be utilized to directly mark statements by creating
warnings on source code lines with potential issues. This and some other
features and solutions to existing problems that were left as future work are
covered in this thesis as well.

Despite the documented issues that were left for future work, we showed that
SharpDetect is capable of performing dynamic analysis of .NET programs. We
demonstrated its capabilities when using it to search for concurrency issues in a
messaging library NetMQ [37]. The reports provided by SharpDetect generally
allow for easy pinpointing the sources of issues because SharpDetect describes
individual analysis events using available metadata. The reports can be even
further enhanced to provide also a direct mapping from individual analysis events
to the original source code lines as described in one of the propositions for future
work in Section 4.4.5.

73

Bibliography
[1] Mark Dowson. The Ariane 5 software failure. ACM SIGSOFT Software

Engineering Notes, 22(2):84, 1997.

[2] Nancy G Leveson and Clark S Turner. An investigation of the Therac-25
accidents. Computer, 26(7):18–41, 1993.

[3] Mark Harman and Peter O’Hearn. From start-ups to scale-ups:
Opportunities and open problems for static and dynamic program analysis.
In 2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 1–23. IEEE, 2018.

[4] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI), number 6, pages 89–100. ACM, 2007.

[5] Cormac Flanagan and Stephen N Freund. The RoadRunner dynamic
analysis framework for concurrent programs. In Proceedings of the 9th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 1–8. ACM, 2010.

[6] Announcement of .NET 5.
https://devblogs.microsoft.com/dotnet/introducing-net-5/
[Last access: 2019 October 07].

[7] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer Systems
(TOCS), 15(4):391–411, 1997.

[8] Cormac Flanagan and Stephen N Freund. FastTrack: efficient and precise
dynamic race detection. In Proceedings of the ACM SIGPLAN 2009
Conference on Programming Language Design and Implementation (PLDI),
number 6, pages 121–133. ACM, 2009.

[9] .NET Interpreter.
https://mattwarren.org/2017/03/30/The-.NET-IL-Interpreter/
[Last access: 2019 December 01].

[10] Common Language Infrastructure (CLI) the 3-rd edition (June 2005).
https://www.ecma-international.org/publications/files/
ECMA-ST-WITHDRAWN/ECMA-335,%203rd%20edition,%20June%202005.pdf
[Last access: 2019 December 01].

[11] Roslyn Compiler Infrastructure. https://github.com/dotnet/roslyn
[Last access: 2019 December 01].

[12] F# Compiler Infrastructure.
https://fsharp.github.io/FSharp.Compiler.Service/
[Last access: 2019 December 01].

74

https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://mattwarren.org/2017/03/30/The-.NET-IL-Interpreter/
https://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/ECMA-335,%203rd%20edition,%20June%202005.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/ECMA-335,%203rd%20edition,%20June%202005.pdf
https://github.com/dotnet/roslyn
https://fsharp.github.io/FSharp.Compiler.Service/

[13] Mono.Cecil. https://github.com/jbevain/cecil
[Last access: 2019 December 01].

[14] Dnlib. https://github.com/0xd4d/dnlib
[Last access: 2019 December 01].

[15] Profiling (Unmanaged API Reference). https://docs.microsoft.com/
en-us/dotnet/framework/unmanaged-api/profiling/
[Last access: 2019 December 01].

[16] Common Language Infrastructure (CLI) the 6-th edition (June 2012).
https://www.ecma-international.org/publications/standards/
Ecma-335.htm [Last access: 2019 December 01].

[17] The Book of the Runtime. https:
//github.com/dotnet/coreclr/tree/master/Documentation/botr
[Last access: 2019 October 07].

[18] Portable Executable (PE) Format Specification.
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
[Last access: 2019 December 01].

[19] Tail calls in F#.
https://devblogs.microsoft.com/fsharpteam/tail-calls-in-f/
[Last access: 2019 December 01].

[20] Subterranean IL: Compiling C# Exception Handlers.
https://www.red-gate.com/simple-talk/blogs/
subterranean-il-compiling-c-exception-handlers/
[Last access: 2019 December 04].

[21] Using CrossGen to Create Native Images. https://github.com/dotnet/
coreclr/blob/master/Documentation/building/crossgen.md
[Last access: 2019 December 01].

[22] Jump Stubs and JIT Compiler. https://github.com/dotnet/coreclr/
blob/master/Documentation/design-docs/jump-stubs.md
[Last access: 2019 December 01].

[23] Command dotnet. https://docs.microsoft.com/en-us/dotnet/core/
tools/dotnet?tabs=netcore21 [Last access: 2019 November 04].

[24] Matt Pietrek. Metadata in. net-avoiding dll hell: Introducing application
metadata in the microsoft. net framework. MSDN Magazine, pages 42–55,
2000.

[25] Bypass Signature Verification of Trusted Assemblies.
https://docs.microsoft.com/en-us/dotnet/standard/assembly/
create-use-strong-named [Last access: 2019 December 01].

[26] GitLab CI/CD Documentation. https://docs.gitlab.com/ee/ci/
[Last access: 2019 December 01].

75

https://github.com/jbevain/cecil
https://github.com/0xd4d/dnlib
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://github.com/dotnet/coreclr/tree/master/Documentation/botr
https://github.com/dotnet/coreclr/tree/master/Documentation/botr
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://devblogs.microsoft.com/fsharpteam/tail-calls-in-f/
https://www.red-gate.com/simple-talk/blogs/subterranean-il-compiling-c-exception-handlers/
https://www.red-gate.com/simple-talk/blogs/subterranean-il-compiling-c-exception-handlers/
https://github.com/dotnet/coreclr/blob/master/Documentation/building/crossgen.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/crossgen.md
https://github.com/dotnet/coreclr/blob/master/Documentation/design-docs/jump-stubs.md
https://github.com/dotnet/coreclr/blob/master/Documentation/design-docs/jump-stubs.md
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/standard/assembly/create-use-strong-named
https://docs.microsoft.com/en-us/dotnet/standard/assembly/create-use-strong-named
https://docs.gitlab.com/ee/ci/

[27] NUnit. https://nunit.org/ [Last access: 2019 December 01].

[28] SharpLab. https://sharplab.io/ [Last access: 2019 December 01].

[29] DnSpy. https://github.com/0xd4d/dnSpy
[Last access: 2019 December 01].

[30] Erez Metula. Managed Code Rootkits: Hooking into Runtime
Environments. Elsevier, 2010.

[31] Avoid DevPath – Bypassing GAC in .NET Framework. https:
//blogs.msdn.microsoft.com/suzcook/2003/08/15/avoid-devpath/
[Last access: 2019 December 01].

[32] PEVerify Tool. https://docs.microsoft.com/en-us/dotnet/
framework/tools/peverify-exe-peverify-tool
[Last access: 2019 December 01].

[33] ILVerify Tool.
https://github.com/dotnet/corert/tree/master/src/ILVerify
[Last access: 2019 December 01].

[34] Program Database File Format.
https://github.com/Microsoft/microsoft-pdb
[Last access: 2019 December 13].

[35] Task Parallel Library (TPL). https://docs.microsoft.com/en-us/
dotnet/standard/parallel-programming/task-parallel-library-tpl
[Last access: 2019 December 12].

[36] Runtime Identifier (RID).
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
[Last access: 2019 December 12].

[37] NetMQ. https://netmq.readthedocs.io/en/latest/
[Last access: 2019 December 09].

[38] NetMQ Custom Clock Implementation. https://github.com/zeromq/
netmq/blob/e4dfcf9e8190f85bf4fab9fc657e2c7da820c7f4/src/NetMQ/
Core/Utils/Clock.cs#L88 [Last access: 2019 December 12].

[39] libzmq. https://github.com/zeromq/libzmq
[Last access: 2019 December 12].

76

https://nunit.org/
https://sharplab.io/
https://github.com/0xd4d/dnSpy
https://blogs.msdn.microsoft.com/suzcook/2003/08/15/avoid-devpath/
https://blogs.msdn.microsoft.com/suzcook/2003/08/15/avoid-devpath/
https://docs.microsoft.com/en-us/dotnet/framework/tools/peverify-exe-peverify-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/peverify-exe-peverify-tool
https://github.com/dotnet/corert/tree/master/src/ILVerify
https://github.com/Microsoft/microsoft-pdb
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://netmq.readthedocs.io/en/latest/
https://github.com/zeromq/netmq/blob/e4dfcf9e8190f85bf4fab9fc657e2c7da820c7f4/src/NetMQ/Core/Utils/Clock.cs#L88
https://github.com/zeromq/netmq/blob/e4dfcf9e8190f85bf4fab9fc657e2c7da820c7f4/src/NetMQ/Core/Utils/Clock.cs#L88
https://github.com/zeromq/netmq/blob/e4dfcf9e8190f85bf4fab9fc657e2c7da820c7f4/src/NetMQ/Core/Utils/Clock.cs#L88
https://github.com/zeromq/libzmq

List of Abbreviations
AOT Ahead Of Time (used in context with compilation)

CIL Common Intermediate Language

CLR Common Language Runtime

CTS Common Type System

GAC Global Assembly Cache

GC Garbage Collection

JIT Just In Time (used in context with compilation)

PE Portable Executable

RID Runtime Identifier

TPL Task Parallel Library

77

Attachments

Content of the attached CD
• The SharpDetect folder consists of the following subfolders:

– bin: contains compiled SharpDetect assemblies, except for plugins.
– Examples: contains a copy of the folder src/SharpDetect.Examples

– Plugins: contains compiled SharpDetect analysis plugins.

• The src folder contains source code of the whole SharpDetect solution:

– SharpDetect.{Common, Console, Core, Injector, Plugins}
folders contain the main SharpDetect modules.

– SharpDetect.{FunctionalTests, UnitTests} folders contain the
testing modules of SharpDetect.

– SharpDetect.Examples contains subject programs together with the
configuration as presented in the thesis

– .gitlab-ci.yml is a continuous integration pipeline for SharpDetect
– setup.ps1 is a powershell script that can be used to generate the

content of the bin folder.

• The README.txt file contains information about the content of the attached
CD and author’s email address.

78

	Introduction
	Project Goals and Contribution
	Thesis Outline

	Dynamic Analysis
	Analysed Events
	Capturing Events
	Runtime Interpretation
	Code Instrumentation

	Available Tools for .NET
	Roslyn
	Mono.Cecil
	dnlib
	Profiling API

	Summary

	Common Language Infrastructure
	Common Language Runtime
	Managed and Unmanaged Code
	Common Intermediate Language
	Common Type System

	Programming using CIL
	Metadata
	Creating Objects and Structs
	Arrays
	Fields
	Method Calls
	Boxing and Unboxing
	Generics
	Prefix instructions
	Flow Control
	Exceptions
	Handler Blocks

	Compilation to Native Code
	Native Images
	JIT compiler
	Optimizations

	Managed Code Hosting
	System.Private.CoreLib
	Self-contained Packages
	Strong-named Assemblies

	Design and Implementation of SharpDetect
	Overview
	SharpDetect.Console
	SharpDetect.Plugins
	SharpDetect.Core
	SharpDetect.Injector
	SharpDetect.Common

	Testing SharpDetect
	Unit Tests and Functional Tests
	Continuous Integration Pipeline
	SharpLab and DnSpy

	Development Diary
	Instrumentation Routines
	Instrumenting Blocking Synchronization Actions
	Restrictions on Instrumentation
	Passing Live Objects
	Event Dispatching
	Concurrent Invocation of Event Handlers
	Modifying Core Libraries

	Possible Improvements
	Complexity of Programming in CIL
	Observer effect
	Analysis Performed by Managed Code
	Virtual Method Dispatching
	Mapping Analysis Events to Original Source

	Evaluation
	Performance Optimizations
	Minimizing Dynamic Allocations
	Avoiding Memory Leaks
	String Interning and Caching Resolved Identifiers

	Measurements
	Environment
	Measuring Time Overhead
	Measuring Memory Overhead
	Subject 1: Simple Task Parallel Library Program
	Subject 2: Producer-Consumer Program
	Summary

	Using SharpDetect
	Preparing Subject Program
	Preparing Configuration
	Additional Configuration Settings

	Generating Self-Contained Package
	Assemblies Instrumentation
	Executing Dynamic Analysis
	Implementing Analysis Plugins
	General Guidelines
	Eraser
	FastTrack

	Case Study
	Preparing for Dynamic Analysis
	Evaluating Obtained Results

	Conclusion
	Bibliography
	List of Abbreviations

