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Introduction
Artificial and human intelligence compete with each other in various tasks. Com-
puter programs perform very well especially when it comes to games with defined
rules. In 1997, Deep Blue from IBM beat the human grandmaster Garry Kasparov
at chess [Campbell, Hoane Jr., and Hsu, 2002]. In 2011, the question-answering
computer system IBM Watson [Ferrucci, 2012] won the first prize on the quiz
show Jeopardy! against the legendary champions Brad Rutter and Ken Jennings.
In 2015, Google’s DeepMind system Alpha Go defeated the European reigning
Go Champion Fan Hui [Silver et al., 2016]. In 2017, the artificial intelligence
Libratus developed at Carnegie Mellon University defeated four top professional
poker players in no-limit Texas Hold’em [Brown and Sandholm, 2017].

Tasks requiring creativity, on the other hand, can be very challenging for com-
puters [A. Boden, 1998]. Despite that fact, generative systems already managed
to write poetry [Yan, 2016] or paint images [Gregor et al., 2015]. A music compo-
sition is undoubtedly a very complicated and powerful field of art, as music can
express emotions and inspire people all around the world.

“Music gives a soul to the universe, wings to the mind, flight to
the imagination and life to everything.” — Plato

“How is it that music can, without words, evoke our laughter, our
fears, our highest aspirations?” — Jane Swan

An artificial music composition is challenging for various reasons. One of
them is the inability to automatically evaluate the generated results. Another is
to capture a long-term structure, which many musical masterpieces undeniably
have.

This thesis is organized as follows: In the first chapter, we present the ideas
of machine learning as well as the most common algorithms (a linear regres-
sion, support vector machines, k-nearest neighbors, regression trees and random
forests, a principal component analysis and k-means) and introduce neural net-
works. In the second chapter, we compare the feedforward neural network with
the generalized linear model, describe recurrent neural networks with LSTM cells,
which are suitable for music representation, derive backpropagation formulas used
in Magenta model and review the important milestones in artificial music com-
position.

Finally, in the third chapter, we train three recurrent neural networks with
LSTM cells, which were introduced by Google’s Brain Team Magenta [Waite,
2016], on Beatles’ songs. In order to avoid overfitting, we choose an appropriate
number of iterations of neural network training for each of the three different
configurations. As we restricted ourselves to monophonic melodies to be able to
explore generated music more comprehensively, we provide a script in Python
capable of reducing polyphonic melodies into monophonic ones. In addition,
generated pieces of music are evaluated both objectively using musically informed
metrics [Yang and Lerch, 2018] and subjectively.
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1. Machine Learning: Overview
Machine learning is a form of applied statistics, which enables us to solve prob-
lems, that are too difficult to be solved by fixed programs without any learning
abilities. In this chapter, we introduce the basic concepts of machine learning
and the most frequently used algorithms alongside with the neural networks.

At the very beginning, I would like to point out the difference between ma-
chine learning models and statistical models, as some terms (such as a linear
regression, see the section 1.1.1) may sound similar, but they are slightly differ-
ent. Generally speaking, machine learning models are not based on a probability
theory. The machine learning model is usually trained on a subsample of the
data set and we do not know how well the model will perform until we test it
on the additional data set that was not present during training. On the other
hand, statistical models are specified under certain assumptions, which enable us
to derive the properties of the parameter estimations. There is no need for the
testing and the evaluating dataset. The more detailed comparison of the statisti-
cal generalized linear model and the machine learning simple feed forward neural
network can be found in the section 2.1.

Both approaches can be useful based on the nature of the problem. Machine
learning models are suitable when it comes to predicting numerical values (re-
gression problems) or categories (classification problems) based on other variables,
because they are able to capture complex nonlinear relationships. Nevertheless,
they may be hard to interpret and can be used as a blackbox. On the contrary,
statistical models enable us to make inference about parameters and distinguish
which variables actually effect the dependent variable through submodel testing.
No such thing is possible using machine learning algorithms.

The first attempt to develop a machine that would imitate a living creature in
performance goes back to the beginning of the 1930s when Thomass Ross [1938]
started his work on automata maze-solver called Robot Rat. His machine was
inspired by a familiar test of animal intelligence in finding the way out of a maze.
The automatic learning feature of the Robot Rat was based on a rotating disk,
so-called Memory Disk. He used a system of toy-train tracks, so his maze-solver
could learn the way out by trial and error.

In 1959, Arthur Samuel, who is considered to be a pioneer in the field of
artificial intelligence, established the term Machine Learning and claimed: “Pro-
gramming computers to learn from experience should eventually eliminate the need
for much of this detailed programming effort“ [Samuel, 1959]. That quote was
slightly changed and is now frequently used to define Machine Learning as:

“Field of study that gives computers the ability to learn without
being explicitly programmed.“

In 1997, a more engineering-oriented definition was stated by Mitchell [1997]:

“A computer program is said to learn from experience E with re-
spect to some task T and some performance measure P, if its perfor-
mance on T, as measured by P, improves with experience E.“
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Mitchell’s definition covers all three necessary parts of a machine learning
algorithm. Task T is usually described in terms of how the machine learning
algorithm should process an observation, which is given as a set of features. Math-
ematically, we usually represent one observation as a vector X ∈ Rp, where for
each i = {1, ..., p}, Xi describes one feature. The most common tasks T are classi-
fication and regression, examples of other tasks can be a transcription, a machine
translation, an anomaly detection, an imputation of missing values, a denoising,
a density estimation, etc. The process of learning is usually done by improving
the approximation of certain parameters. Nevertheless, some parameters often
need to be fixed before the training process, e.g. the degree of a polynomial in
linear regression. These parameters are called hyperparameters.

Performance measure P is chosen to evaluate the quality of the model in
terms of the task T. In case of a classification, it is reasonable to measure the
accuracy of the model (a proportion of correctly classified observations) or the
error rate (a proportion of incorrectly classified observations). The usual way
of measuring the performance is done by various loss functions L. The accuracy
or the error-rate are referred to as the 0-1 loss, as one specific observation is
classified either correctly (0) or incorrectly (1). On the other hand, it is more
reasonable to use continuous loss functions L for tasks such as a regression or a
density estimation. The learning process is then associated with minimization of
the loss function L with respect to the parameters that aim to be estimated.

Based on experience E, machine learning algorithms can be broadly cat-
egorized as supervised (each input observation is associated with a label or a
target value) or unsupervised (no output annotation provided). Supervised algo-
rithms learn to understand the structure of examples with respect to provided
outputs or labels. Unsupervised algorithms experience features of a dataset and
learn useful properties of the structure without being told about desired results.
Nevertheless, supervised and unsupervised learning are not completely separable
concepts, as it is sometimes hard to distinguish between features and labels.

In practice, we want the machine learning model to perform well in general,
not only on the training dataset. It is possible to design an extremely complex
model that would fit perfectly to the provided training examples but failed in case
of the unobserved ones. This issue is called overfitting. To avoid overfitting,
it is recommended to randomly divide the dataset into the training set and the
evaluating set. Firstly, we use the training set to optimize the model parameters
and then, after the training part is complete, we evaluate the model on the test
set. The model able to generalize should perform similarly on both sets.

1.1 Supervised Learning Algorithms

1.1.1 Linear Regression
One of the basic supervised learning algorithm is the linear regression. Suppose
we have data (Yi, XT

i )T , i = 1, . . . , n, Yi ∈ R, Xi ∈ Rp. The goal is to predict the
outcome Yi from Xi.
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Let us denote

X =

⎛⎜⎜⎜⎝
XT

1
...

XT
n

⎞⎟⎟⎟⎠ , Y = (Y1, . . . , Yn)T ,

the input data matrix X with included intercepts and Y the output vector.
In the statistical approach, we often work under the assumption of normal

linear model specified as Y |X ∼ Nn(Xβ, σ2In), where β = (β0, . . . , βp−1)T ∈ Rp

and 0 < σ2 < ∞ are unknown parameters. This enables us to derive properties
of parameter estimations, such as their conditional distribution etc.

In machine learning approach, on the other hand, there are no assumptions
about conditional distribution Y |X, nor conditional expected value E(Y |X), nor
conditional variance var(Y |X). The goal is to build a model, that takes vector
Xi ∈ Rp with included intercept as an input and predict a value of a scalar Yi as
the output in a form of a linear function of the input. Let us denote predicted
value of Yi as Yî = wT Xi, where w ∈ Rp is a parameter to be estimated. Task T
in this case is to predict Yi from Xi by computing Yî = wT Xi. As a perfomance
measure P we can choose mean square error loss function LMSE, which is given
by:

LMSE(Ŷ , Y ) = 1
n

n∑︂
i=1

(Ŷ i − Yi)2 = 1
n

n∑︂
i=1

(wT Xi − Yi)2.

To improve perfomance, we want to minimize MSE with respect to w, which can
be done by calculating gradient and setting it equal to 0. As a result we obtain
system of normal equations for parameter w : w = (XTX)−XT Y . Nevertheless,
we obtain the same results due to solving the same set of normal equations in
both approaches. Although, in machine learning approach we can only verify
quality of parameter w if we split dataset into training and evaluating part and
compare their LMSE for all observations Xi.

1.1.2 Support Vector Machine
Support vector machine (SVM) is one of the most influential approaches to su-
pervised learning [Cortes and Vapnik, 1995],[Boser, Guyon, and N. Vapnik, 1996].
The goal is to predict one of two categories 0 or 1 for observations Xi ∈ Rp−1,
i = 1, ..., n, with no itercept term included. Based on the linear function wT Xi+b,
the SVM predicts class 1 classification if wT Xi + b is positive and class 0 classi-
fication otherwise.

Thus we need to find a p − 1 dimensional hyperplane, specified as the set
of points x ∈ Rp−1 satisfying wT x + b = 0, where w ∈ Rp−1 is an uknown
normal vector to hyperplane, that would separate observations, and b ∈ R is an
unknown constant. As there might be many hyperplanes that classify the data,
it is reasonable to choose the one that represents the largest separation, e.g. we
can choose such hyperplane so that the distance from it to the nearest data point
on each size is maximized.

A linear function describing a hyperplane can be rewritten as

wT x + b =
n∑︂

i=1
αix

T Xi + b,
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where α = (α1, . . . , αn)T ∈ Rn, b ∈ R are parameters to be estimated. This way,
we can optimize parameters while taking observations into account.

In case of non-linearly separable points, we can make predictions based on
a sign of a function f : Rp−1 → R,

f(x) =
n∑︂

i=1
αik(x, Xi) + b,

where k(x, Xi) = φ(x)T φ(Xi) is called a kernel function and φ : Rp−1 → Rd,
d > 0 is a given feature function. Thanks to this so-called kernel trick, we can
separate points, which was not linearly separable before transormation φ.

Even though a function f(x) is non-linear with respect to x, it is linear with
respect to φ(x) and α. A model based on the kernel-based function is equivalent
to the model we would get if we firstly preprocessed the original data by applying
the function φ(x) and then learned a model in the newly transformed space.

Common kernels include:

kpolynomial(x, Xi) = (xT Xi)d,

kradial(x, Xi) = e−γ∥x−Xi∥2
, γ > 0,

ktanh(x, Xi) = tanh(κxT Xi + c), κ > 0, c < 0.

1.1.3 k-Nearest Neighbours
k-nearest neighbours (k-NN) is a family of simple algorithms that can be used
for both a classification and a regression. In both cases, the first step is to find
k closest observations to chosen observation X ∈ Rp, where k ∈ N is typically
small.

In a k-NN classification, we simply assign the object X to the class most
common among its k closest neighbours. In a k-NN regression, the output is av-
eraged output value of its k closest neighbours. For k = 1, the algorithm just uses
the nearest neighbour value. k-NN is a type of instance-based learning, which
means that instead of performing an explicit generation, it simply compares new
instances with instances stored in memory. To determine the k-nearest neighbors,
one needs to choose a distance metric. Euclidean distance is often used for con-
tinuous variables, Hamming distance for categorical variables. There are many
generalizations of this concept, such as assigning a weight to the contribution
of the neighbors, so that the nearest neighbors contribute more to the average
than the distant ones.

1.1.4 Regression Trees and Random Forests
Regression trees are based on a recursive partitioning. In the first step, the
sample population Xi ∈ Rp, i = 1, . . . , n is split into two groups based on a
splitting value of a splitting variable. The leftward and rightward groups are then
again recursively split until they reach their terminal nodes. Various algorithmic
rules can be applied to determine which splitting variable and splitting value to
choose.
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We will describe the most common method at the step k of the algorithm.
Suppose we have set of observations (Yi, XT

i )T , i = 1, . . . , n, Xi ∈ Rp, Yi ∈ R.
Let us denote Ik group of Nk cases remaining to be split, mk = ∑︁

i∈Ik

Yi

Nk
mean of

their outputs and S2
k = ∑︁

i∈Ik

(Yi − mk)2. Dividing Ik into Ik,left and Ik,right gives

us respective values of mk,left and mk,right and S2
k,left and S2

k,right. The algorithm
then choose the splitting variable Xk with the splitting value vk such that sum
S2

k,left + S2
k,right is minimized. This way, we get two groups that are as different

from each other as possible.

Figure 1.1: Regression tree ([Efron and Hastie, 2016])

Regression trees are high-variance estimators. The bushier they are, the higher
is the variance. To overcome this issue, random forests were introduced. The idea
is to grow many trees and reduce the variance by averaging. As individual trees
should not be too correlated, randomness is injected into the tree-growing process
by bootstrap resampling and split variable randomization. For more details please
refer to the book by Efron and Hastie [2016, section 17.1].

1.2 Unsupervised Learning Algorithms

1.2.1 Principal Component Analysis
A principal component analysis (PCA) provides orthogonal data transformation
into a lower dimension while capturing as much variance as possible. It can be
viewed as an unsupervised learning algorithm that aims to reduce a dimension-
ality and a correlation of data. PCA learns a linear orthogonal data transforma-
tion which project input vector X ∈ Rp into reduced uncorrelated representation
Z ∈ Rk, where k ≪ p. The PC transformation of a random vector X with a co-
variance matrix Σ and mean µ is defined as Y = ΓT (X − µ), where Γ comes
from spectral decomposition of Σ: Σ = ΓΛΓT . All elements of Y are mutually
uncorrelated and Var(Yi) = λi, i = 1, . . . , p, where λi are eigen values of matrix Σ
ordered by size in diagonal matrix Γ. After specifying k reasonably with respect
to the captured variance, we denote Z as first k components of Y .
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1.2.2 k-Means Clustering
A k-means clustering is a simple algorithm that divides the training set consisting
of n samples Xi ∈ Rp, i = 1, ..., n, into k different clusters C1, . . . , Ck, such that
observations in each cluster are similar to each other. At the very beginning,
k-means algorithm initialize random values to k centroids {µ1, . . . , µk}, µi ∈ Rp.
Then following two steps iterate until convergence:

(1) Each training sample Xi is assigned to the cluster Ci, where i is the index
of the closest centroid µi.

(2) Values of centroids {µ1, . . . , µk} are updated to the means of all training
examples Xi assigned to respective clusters C1, . . . , Ck.

Similarly to k-NN, an Euclidean distance is often used for continuous variables.
Modifications of the algorithm include k-mode algorithm for categorical data,
with simple-matching metric and modes (instead of means) for centroid updates,
and k-prototype algorithm for mixed-type data, which combines both k-means
and k-modes.

The main drawback of k-means algorithm is that k must be fixed ahead.
To determine suitable k, one can use Elbow method: Total within sum of squares

k∑︁
i=1

∑︁
j∈Ci

(Xj − µi)2 are determined for the different number of clusters and usually

the smallest k with reasonably low total within sum of squares is chosen.

1.3 Basic Principles of Neural Networks
Neural networks were evolved from the Perceptron, which was proposed by Rosen-
blatt [1958], and form an important subfield of machine learning. The Perceptron
was originally designed for image recognition, but after a promising start, it was
proved that it was only capable of learning linearly separable patterns. After
that, neural networks reappeared in the 1980s. This time, the linear separa-
bility limitation was overcome by introducing multiple hidden layers joint with
nonlinear units [Werbos, 1982]. As the loss function was not convex after such
generalization and parameters optimization became far more complicated, back-
propagation algorithms using gradient descent were introduced [E. Rumelhart,
E. Hinton, and J. Williams, 1986]. This section is based mainly on work of
Goodfellow et al. [2016].

Efron and Hastie [2016] describe neural networks as:

“Highly parametrized model, inspired by the architecture of the hu-
man brain, what was widely promoted as an universal approximator
– a machine that with enough data could learn any smooth predictive
relationship.”

1.3.1 Motivational Example
At first, we demonstrate the limitations of a linear model and introduce a useful
generalization, which will lead us to neural networks.
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Figure 1.2: Simple feedforward neural network with two hidden units [Goodfellow
et al., 2016]

Consider XOR function f ∗ : R2 → R

f ∗(x1, x2) =

⎧⎨⎩1 x1 = 0, x2 = 1, or x1 = 1, x2 = 0,

0 otherwise.

It is impossible to model the XOR function f ∗ without the nonlinear approach.
We want our model to perform correctly on the four observations:

X = (XT
1 , XT

2 , XT
3 , XT

4 )T = ((0, 0), (0, 1), (1, 0), (1, 1))T .

Goodfellow, Bengio, and Courville [2016] showed, that if we try the linear re-
gression approach with the model f(x; w, b) = xT w + b and minimize MSE loss
function LMSE(w, b) = 1

4

4∑︁
i=1

(f ∗(Xi) − f(Xi; w, b))2 with respect to the parame-
ters w ∈ R2, b ∈ R using the normal equations, we obtain results w = 0 and
b = 1/2. Which means that the linear model simply outputs the value 1/2 for all
the input values.

To solve this issue, we introduce a simple feedforward network with one hidden
layer containing two hidden units (figure 1.2), which consists of two chained
functions f (1) : R2 → R2 and f (2) : R2 → R.

A vector h ∈ R2, called hidden units, is computed by function f (1)(x;W, c),
where W2×2 is weight matrix of linear transformation, c ∈ R2 is the bias vector,
and then used as the input for second layer. Output of second layer is still linear
regression model, but this time applied to h instead of x. The network now
contains two functions chained together: h = f (1)(x,W, c), y = f (2)(h; w, b),
with the complete model f(x;W, c, w, b) = f (2)(f (1)(x)).

To capture nonlinearity features of the function f ∗, we clearly need the non-
linear function f (1), otherwise the compound function f would stay linear.

We define h = f (1)(x;W, c) = g(WT x+c). Function g, so-called an activation
function, is set to be g(z) = max{0, z}. Thus, complete model can be specified
as f(x;W, c, w, b) = wT max{0,WT x + c} + b, where W, w, c and b are the
parameters to be learned. One solution, which can be found by gradient descent
algorithm (see section 1.3.3) is

W =
(︄

1 1
1 1

)︄
, c =

(︄
0

−1

)︄
, w =

(︄
1

−2

)︄
, b = 0.
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Then for

X = (XT
1 , XT

2 , XT
3 , XT

4 )T = ((0, 0), (0, 1), (1, 0), (1, 1))T ,

Y = (Y1, Y2, Y3, Y4)T = (0, 1, 1, 0)T ,

we get that Yi = f(Xi) = f ∗(Xi), i = 1, . . . , 4.

1.3.2 Feedforward Neural Networks
Feedforward neural networks, also called multilayer perceptrons, represent the
first and the simplest type of artificial neural networks. Later on, convolutional,
recurrent and recursive neural networks were derived from this base. The core
ideas behind modern feedforwards networks are still based on the same backprop-
agation algorithm and gradient descent approach like in the 1980s, but the avail-
ability of larger datasets and more powerful computers significantly improve their
performance.

The goal is to approximate a function f ∗ with a function f , which is formed
by chaining several functions, e.g. f(x) = f (n) ◦ ... ◦ f (1)(x). A function f (1)

is called the input layer, functions f (2), . . . , f (n−1) represent hidden layers,
a function f (n) is called the output layer. The natural number n captures
the overall length of the chain and gives us the depth of the neural network.
A feedforward neural network with more then two hidden layers is called a deep
feedforward neural network, which arose the name deep learning. The name
feedforward came from the fact, that information captured in x goes straight
from f (1) to f (n) and there are no feedback connections, unlike in recurrent neural
networks (see section 2.1).

Figure 1.3: Feedforward neural network [Efron and Hastie, 2016]

In fact, a neural network is just a nonlinear model, not too different from
many other generalizations of a linear model. Each cell, called a neuron, com-
putes a linear combination of its inputs and puts the result into an activa-
tion function g. The output of the j-th neuron in the i-th layer is given by
f

(i)
j (h(i−1); w

(i)
j ) = g(w(i)T

j h(i−1)), where w
(i)
j ∈ Rp is a specific parameter vector

of weights belonging to j-th neuron in the i-th layer which needs to be learned,
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h(i−1) ∈ Rp is output from previous layer and g is a nonlinear activation func-
tion. Usually, we also include a bias term w0 ∈ R, then f

(i)
j (h(i−1); w̃

(i)
j ) =

g(w(i)T
j h(i−1) + w0), where w̃

(i)
j = (w0, w

(i)T
j )T .

Figure 1.4: Feedforward neural network [Efron and Hastie, 2016]

The most often used activation function are sigmoid, tanh, reLU, leaky reLU
[Efron and Hastie, 2016].

Sigmoid g(z) = ez

ez+1 ∈ (0, 1).
Hyperbolic tangens tanh g(z) = ez−e−z

ez+e−z ∈ (−1, 1).
Rectified linear unit ReLU g(z) = max{0, z} = z+ ∈ R+

0 , also called a
positive-part function, with advantage of making gradient computations cheaper
to compute.

Leaky rectified linear unit leaky ReLU g(z) = z+ − αz− ∈ R, where α
is non-negative and close to zero. Introducing α reduces flat spots for negative
numbers and helps avoid zero gradients.

Finally, we need to specify a loss function. An example of a loss function
commonly used for regression is the mean square error:

LMSE(Ŷ , Y ) = 1
n

n∑︂
i=1

(Ŷ i − Yi)2,

where Ŷ ∈ Rn are estimated values of Y ∈ Rn.
A cross entropy loss is a widely used loss function for classification tasks

with K categories Y1, . . . , YK . At first, we use a softmax function, which takes
an output vector Ŷ ∈ RK estimating Y ∈ RK and transforms it into a vector
p ∈ RK of probabilites

pi = softmax(Ŷ )i = eŶ i

K∑︁
j=1

eŶ j

,

then we can apply a cross entropy loss as:

LCE(p, Y ) = −
K∑︂

i=1
Yilog(pi).
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1.3.3 Backpropagation and Gradient Descent Algorithm
In this section, we provide a brief overview of backpropagation and gradient
descent algorithm. Detailed derivation of backpropagation in recurrent neural
network, which was used for artificial music composition, follows in section 2.3.
During a training phase of a neural network, backpropagation and gradient de-
scent algorithms are used to the find optimal values of the parameter w. After
feeding the input X into the feedforward neural network, we obtain output Ŷ
and respective scalar cost L(w). The backpropagation algorithm then lets the
information from the cost flow backward through the network to calculate the
gradient. Then, the gradient descent algorithm is used to perform learning using
this gradient.

As a neural network consists of many chained functions, the backpropaga-
tion algorithm computes derivatives of compound functions using the chain rule.
Analytically, this is straightforward, but evaluating gradient numerically can be
computationally expensive and through iterations, the same subexpressions are
computing over and over again. A detailed description of various modifications
using different approaches to those subexpressions can be found in Goodfellow
et al. [2016, section 6.5.3].

Having the gradient calculated, one can use the gradient descent algorithm to
iteratively compute optimal values of w. For a training set X1, . . . , Xn with the
targets Y1, . . . , Yn and the loss function L, the gradient g of the parameter w is
calculated and values of w are updated:

g = 1
n

∇w

n∑︂
i=1

L(f(Xi; w), Yi),

wnew = wold − ϵkg,

where ϵk is prespecified learning rate, which is gradually decreasing over time.
As computing gradient on all available data can be very slow in practice,

stochastic gradient descent calculating a gradient only with a batch of B
examples is used instead. Similarly as with any other optimization algorithm,
many modifications were introduced to make a gradient descent more effective
and robust against a local minima, for more details see Goodfellow et al. [2016,
chapter 9].

12



2. Mathematical and Statistical
Theory
In this chapter, we show the similiarities between neural networks and generalized
linear model. Then, we introduce recurrent neural networks, illustrate complica-
tions with long-term dependecies and derive the expressions for the backpropa-
gation in recurrent neural networks with LSTM cells used for the artificial music
composition in the third chapter. Finally, we provide an overview of important
milestones in artifical music composition

2.1 Neural networks and generalized linear
model

Suppose we have the data (Yi, XT
i )T , i = 1, . . . , n, Yi ∈ R, Xi ∈ Rp. The goal

is to predict the outcome Yi from Xi. In case of continous variable Yi ∈ R, this
is a regression task, in case of discrete Yi ∈ Z with K values, K ∈ N, this is
a classification task. We will apply both neural network and generalized linear
model approach to point out differences and similarities. We will show, that a
logistic regression and a feedforward neural network with one hidden layer and
the sigmoid activation function with a cross entropy lost function LCE for two
categories lead to the same results.

2.1.1 Generalized Linear Model Approach
Let us recall what holds for the data (Yi, Xi), Yi ∈ R, Xi ∈ Rp, under the as-
sumptions of the generalized linear model [Nelder and Wedderburn, 1972]:

1. Let Y1, . . . , Yn be independent with the distribution of Yi depending on Xi

through regression parameters β = (β1, . . . , βp)T

2. The conditional distribution of Yi given Xi has the form

f(y; θi, ϕ) = exp

{︄
yθi − b(θi)

ϕ
+ c(y, ϕ)

}︄

(is of exponential type), where b(·) is a known twice continuously differen-
tiable function, θi depends on Xi and β, ϕ is known or unknown constant

3. The parameter θi depends on Xi and β through linear predictor ηi := XT
i β

4. There exists a known strictly monotone, twice continuously differentiable
link function g such that g(µi) = ηi.

To compare the cross-entropy loss function results with the logistic regres-
sion, consider independent variables Y ∗

ij ∼ Alt(πi), π ∈ (0, 1), i = 1, . . . , n,
j = 1, . . . , mi, where for a fixed i, Y ∗

i1, . . . , Y ∗
imi

are identically distributed. The
total number of observations is N = ∑︁n

i=1 mi.
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Let us choose a canonical logistic link g(µi) = (b′)−1(µi) = log µi

1−µi
, where

µi = exp{XT
i β}

1+exp{XT
i β} which further implies θi = log πi

1−πi
, b(θi) = log(1 + exp{θi}).

This lead us to the likelihood

L(β|Y ) =
n∏︂

i=1

mi∏︂
j=1

[︃
π

Y ∗
ij

i (1 − πi)1−Y ∗
ij

]︃
,

if we denote Yi = ∑︁mi
j=1 Y ∗

ij , we get loglikelihood in a form

l(β|Y ) =
n∑︂

i=1

[︄
Yi log πi

1 − πi

− mi log 1
1 − πi

]︄
.

For mi = 1, meaning we have only one response Yi for each covariate vector
Xi, which happens when at least one covariate is continuous, we obtain this
equation to maximize with respect to β:

l(β|Y ) =
n∑︂

i=1

[︄
Yi log πi

1 − πi

− log 1
1 − πi

]︄
. (2.1)

We will show, that we obtain exactly the same expression to minimize with
respect to the parameters in case of feedforward neural network with one hidden
layer and the sigmoid activation function when we use the cross-entropy loss
function LCE for 2 categories.

2.1.2 Neural Network Approach
At first, we present the universal approximation theorem [Cybenko, 1989], which
states that a feedforward neural network f with one hidden layer and nonconstant,
bounded and continous activation funcion g can approximate any continuous
function f ∗ on Ip, p-dimensional unit hypercube [0, 1]p. The theorem holds even
if we replace Ip with any compact subset of Rp.

Theorem 1. Let g : R → R be a nonconstant, bounded and continous func-
tion (called the activation function). Let Ip denote p-dimensional unit hypercube
[0, 1]p. The space of real-valued continuous functions on Im is denoted by C(Ip).
Then, given any ϵ > 0 and any function f ∗ ∈ C(Ip), there exist n ∈ N, vi, bi ∈ R,
wi ∈ Rp, i = 1, . . . , n, such that we may define: f(x) = ∑︁n

i=1 vig(wT
i x + bi) as

an approximate realization of the function f ∗, that is |f(x) − f ∗(x)|< ϵ for all
x ∈ Ip.

In order to predict the outcome Yi from Xi, we assume there exists a function
f ∗ : Rp → R, such that Yi = f ∗(Xi). We aim to use a feedforward neural network
with one hidden layer and a sigmoid activation function g(z) = ez

ez+1 to estimate
the function f ∗ by the function f , specified as:

f(x) = exp{wT x + b}
1 + exp{wT x + b}

,
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where w ∈ Rp, b ∈ R are parameters to be estimated. Note that the assumptions
of the universal approximation theorem are satisfied, so it should be possible to
approximate the function f ∗ with function f .

Choice of the loss function depends on the nature of the variable Yi.
For the continuous variable Yi, we choose usually the MSE loss function, which

leads to w, b that minimize

LMSE(w, b) =
n∑︂

i=1

(︄
exp{wT Xi + b}

1 + exp{wT Xi + b}
− Yi

)︄2

.

For the categorical variable Yi, we choose typically the cross-entropy function.
For the special case of two categories K = 2, the cross-entropy loss function is
equivalent to the log-likelihood of an alternative distribution:

LCE(w, b) = −
n∑︂

i=1

[︄
Yilog exp{wT Xi + b}

1 + exp{wT Xi + b}
+ (1 − Yi)log 1

1 + exp{wT Xi + b}

]︄
=

= −
n∑︂

i=1

[︁
Yilogπi + (1 − Yi)log(1 − πi)

]︁
= −

n∑︂
i=1

[︃
Yilog πi

1 − πi
− log 1

1 − πi

]︃
,

where πi = exp{wT Xi+b}
1+exp{wT Xi+b} .

This leads to the same optimization problem for the parameters as in logistic
regression:

LCE(w, b) = −l(β|Y ) = −
n∑︂

i=1

[︄
Yi log πi

1 − πi

− log 1
1 − πi

]︄
.

The major difference is, that under the assumptions of generalized linear
model, we have asymptotic results about estimated parameter

β̂ = argmax l(β|Y ),

thus we can perform statistical inference etc. In case of feedforward neural
network, the only thing we know from universal approximation theorem is that
function f approximates f ∗. Nevertheless, there is no guarantee that such func-
tion Yi = f ∗(Xi) really exists. Again, we would need to split dataset into training
and evaluating part to see the actual performance.

2.2 Recurrent Neural Networks
Recurrent neural networks (RNNs) are a family of neural networks for processing
sequential data, such as sequences of values X

(1)
i , ..., X

(T )
i , i = 1, . . . , n, T > 0.

Recurrent networks can deal with much longer sequences than would be practical
for networks without sequence-based specialization. The idea behind recurrent
neural networks is to include cycles, which represent the influence of the current
state of a variable on its own future state. Therefore, the state of a hidden unit
h at time t can be expressed as

h(t) = g(t)(X(t), X(t−1), . . . , X(1)) = f(h(t−1); X(t), w).

All previous steps are taken into account.
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Figure 2.1: Unfolded recurrent neural network [Goodfellow et al., 2016]

Recurrent network with one hidden layer that maps an input sequence to
an output sequence of the same length on figure 2.1 can be specified as follows:

a(t) = b + Wh(t−1) + UX(t),

h(t) = tanh(a(t)),
o(t) = c + Vh(t),

Ŷ
(t) = softmax(o(t)),

where the parameters are the bias vectors b, c and the weight matrices U, V
and W, for input-to-hidden, hidden-to-output and hidden-to-hidden connections.
The total loss for a given sequence of X(t), t = 1, . . . , T values paired with a
sequence of Y (t), t = 1, . . . , T values would be the sum of the losses over all the
time steps:

L(X(1), . . . , X(T ), Y (1), . . . , Y (T )) =
T∑︂

t=1
L(X(t), Y (t)).

2.2.1 Long-Term Dependencies and LSTM Cells
Recurrent neural networks aim to capture all previous information to know the
right context in the right time for predicting future values. When trying to
capture such long term dependencies, one needs recurrent networks with many
hidden layers. The main issue with deep recurrent networks is that gradients
propagated through many stages tend to either vanish (often) or explode (rarely).

Let us consider a very simple recurrent neural network defined as

h(t) = Wh(t−1) = Wth0

without any activation function and without inputs. We can apply an eigende-
composition on W of the form W = QΛQT , with Q orthogonal, Λ diagonal and
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Figure 2.2: Overview of LSTM cell [Olah, 2015]

Figure 2.3: Step 1 Figure 2.4: Step 2 Figure 2.5: Step 3 Figure 2.6: Step 4

we can write h(t) = QΛtQT h0. Eigenvalues are thus raised to the power of t.
That causes eigenvalues with magnitude greater then one to explode and eigen-
values with magnitude less then one go to zero for large values of t. This problem
particular to recurrent networks was first discovered by Bengio, Frasconi, and
Simard [1993].

The best currently used approach to overcome this issue is to use special hid-
den units called gated RNNs. These include long short-term memory (LSTM)
and gated recurent units (GRU). Nayebi and Vitelli [2015] from Stanford com-
pared their performance and their results indicate that outputs of the LSTM net-
work are more musically plausible. As we use LSTM cell in our artificial music
composition, we provide a detailed look.

LSTM cells were firstly introduced in 1997 by Hochreiter and Schmidhuber
[1997]. The core idea was to add the vector s(t), t = 1, . . . , T , calles a cell state,
which acts as long-term memory. Overview of a LSTM cell can be seen in figure
2.2.

In the first step (figure 2.3), LSTM chooses which information from the pre-
vious cell state s(t−1) will be kept and which will be thrown away. The input is
h(t−1) and X(t), the output is number between 0 and 1 for each number in the cell
state s(t−1), where 1 represents information worth keeping and 0 stands for useless
information. This sigmoid layer lf is called the forget gate layer:

l
(t)
f = l

(t)
f (Wf ,Uf , bf ) = σ(Wfh(t−1) + UfX(t) + bf ),

where Wf ,Uf and bf are parameters to be learned.
In the second step (figure 2.4), LSTM decides in two parts what new infor-

mation will be added to the cell state. Firstly, a sigmoid layer lc called the
input gate layer chooses which values will be updated. Secondly, a tanh layer
la creates vectors of potentially new values l(t)

a , that could be added to the cell
state:

l(t)
c = l(t)

c (Wc,Uc, bc) = σ(Wch
(t−1) + UcX

(t) + bc),
l(t)
a = l(t)

a (Wa,Ua, ba) = tanh(Wah(t−1) + UaX(t) + ba),

tanh(z) = ez − e−z

ez + e−z
∈ (−1, 1),
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where Wc,Uc, bc,Wa,Ua and ba are parameters to be learned.
In the third step (figure 2.5), we update the cell state s(t−1) into the new cell

state s(t) using values from previous steps:

s(t) = l
(t)
f ∗ s(t−1) + l(t)

c ∗ l(t−1)
a ,

where * stands for bit-wise multiplication operator.
In the last step (figure 2.6), LSTM produces the output h(t). Firstly, we apply

hyperbolic tangens to the cell state s(t) and then we multiply it by the output of
sigmoid gate to filter it. Last step is called the output gate layer:

l(t)
o = l(t)

o (Wo,Uo, bo) = σ(Woh
(t−1) + UoX

(t) + bo),
where Wo,Uo and bo are parameters to be learned.
Finally, the output h(t) is produced as a combination of results from output

layer l(t)
o and new cell state s(t) :

h(t) = l(t)
o ∗ tanh(s(t)).

2.3 Backpropagation
In this section, we describe the specific architecture of a recurrent neural network
used for an artificial music composition. As a music is a sequence of tones, a
recurrent neural network represents a perfect way to model it. We will use a
neural network with one hidden layer with LSTM cells and the cross-entropy loss
function with the combination of the softmax transformation, because future note
prediction is a classification problem with K categories.

Recall that LSTM cells are specified by the following functions:

l
(t)
f = l

(t)
f (Wf ,Uf , bf ) = σ(Wfh(t−1) + UfX(t) + bf ), (2.2)

l(t)
c = l(t)

c (Wc,Uc, bc) = σ(Wch
(t−1) + UcX

(t) + bc), (2.3)
l(t)
a = l(t)

a (Wa,Ua, ba) = tanh(Wah(t−1) + UaX(t) + ba), (2.4)
l(t)
o = l(t)

o (Wo,Uo, bo) = σ(Woh
(t−1) + UoX

(t) + bo), (2.5)
s(t) = l

(t)
f ∗ s(t−1) + l(t)

c ∗ l(t)
a , (2.6)

h(t) = l(t)
o ∗ tanh(s(t)), (2.7)

where t = 1, . . . , T . Before applying the cross-entropy loss function, we need
to transform the output vector h(t) ∈ RK into the vector of probabilities. To
achieve that, we use the softmax function:

p
(t)
k = softmax(h(t))k = eh

(t)
k

K∑︁
j=1

eh
(t)
j

. (2.8)

Now, we can compare the output probability vector p(t) = (p(t)
1 , . . . , p

(t)
K ) ∈ RK

with the real value Y (t) ∈ RK in each time event t using the cross-entropy loss
function:
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L
(t)
CE(p(t), Y (t)) = −

K∑︂
k=1

Y
(t)

k logp
(t)
k . (2.9)

To find the optimal values of the parameter matrices Wf ,Wc,Wa,Wo,Uf ,
Uc, Ua, Uo ∈ RK×K , and the parameter vectors bf , bc, ba, bo ∈ RK , we need to
minimize the loss function L

(t)
CE summed over all the time events t:

Ltotal =
T∑︂

t=1
L

(t)
CE. (2.10)

As we will use the gradient descent algorithm, we need to calculate the gradi-
ents of the loss function Ltotal with respect to all parameters. The loss function
Ltotal is a compound function, thus we have to use a chain rule.

At first, we calculate the partial derivatives of p
(t)
k defined in (2.8) with respect

to the j-th component of the output vector h(t) at the time t. We will distinguish
two cases k = j and k ̸= j:

k = j : ∂p
(t)
k

∂h
(t)
j

=

∂ e
h

(t)
k

K∑︁
j=1

e
h

(t)
j

∂h
(t)
j

=
eh

(t)
k

K∑︁
j=1

eh
(t)
j − eh

(t)
k eh

(t)
j

(
K∑︁

j=1
eh

(t)
j )2

= p
(t)
j (1 − p

(t)
j ), (2.11)

k ̸= j : ∂p
(t)
k

∂h
(t)
j

=

∂ e
h

(t)
j

K∑︁
j=1

e
h

(t)
j

∂h
(t)
j

= −p
(t)
k p

(t)
j . (2.12)

Afterwards, we calculate derivatives of the cross-entropy loss function L
(t)
CE

with respect to the h
(t)
j :

∂L
(t)
CE

∂h
(t)
j

= −
K∑︂

k=1
y

(t)
k

∂logp
(t)
k

∂h
(t)
j

= −
K∑︂

k=1
y

(t)
k

1
p

(t)
k

∂p
(t)
k

∂h
(t)
j

=

= −yk(1 − pk) −
∑︂
k ̸=j

y
(t)
k

1
p

(t)
k

(−p
(t)
k p

(t)
j ) =

= −y
(t)
j (1 − p

(t)
j ) +

∑︂
k ̸=j

y
(t)
k p

(t)
j = p

(t)
j

K∑︂
k=1

y
(t)
k − y

(t)
j = p

(t)
j − y

(t)
j .

(2.13)

When calculating the derivatives of L
(t)
CE with respect to all parameters Wf ,

Wc, Wa,Wo,Uf ,Uc,Ua,Uo, bf , bc, ba, bo one needs to take into account all previ-
ous time events, because all parameters are involved in compound functions from
the very beginning at the time t = 1. To keep everything simple at first, we start
at the time t = 1.

Now we need to calculate the derivatives of L
(1)
CE with respect to all parameters

Wf ,Wc,Wa,Wo,Uf ,Uc,Ua,Uo, bf , bc, ba, bo. At first, we calculate the derivatives
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of L
(1)
CE with respect to the parameters from the output-gate layer Wf , Uf and

bf . As the loss function L
(1)
CE is a compound function, we have to use the chain

rule:

∂L
(1)
CE

∂Wf

= ∂L
(1)
CE

∂h(1) ∗ ∂h(1)

∂s(1) ∗ ∂s(1)

∂l
(1)
f

∗
∂l

(1)
f

∂Wf

. (2.14)

To calculate ∂L
(1)
CE

∂h(1) ∈ RK we use 2.13. To express the derivatives with respect
to the vector h(1) ∈ RK , we can calculate the derivatives component-wise as
∂L

(1)
CE

∂h(1) =
(︄

∂L
(1)
CE

∂h
(1)
1

, . . . ,
∂L

(1)
CE

∂h
(1)
K

)︄
.

[︄
∂L

(1)
CE

∂h(1)

]︄
j

=
[︄

∂L
(1)
CE

∂h
(1)
j

]︄
= p

(1)
j − y

(1)
j =⇒ ∂L

(1)
CE

∂h(1) = (p(1) − Y (1)). (2.15)

Next, we continue with ∂h(1)

∂s(1) ∈ RK :

∂h(1)

∂s(1) = ∂(l(1)
o ∗ tanh(s(1)))

∂s(1) = l(1)
o ∗ (1 − tanh2(s(1)), (2.16)

as the derivatives of tanh(x) = ex−e−x

ex+e−x are

dtanh(x)
dx

=
(︄

ex − e−x

ex + e−x

)︄′

= (ex + e−x)2 − (ex − e−x)2

(ex + e−x)2 =

= 1 −
(︄

ex − e−x

ex + e−x

)︄2

= 1 − tanh2(x).

Then, we calculate ∂s(1)

∂l
(1)
f

∈ RK :

∂s(1)

∂l
(1)
f

=
∂l

(1)
f ∗ s(0) + l(1)

c ∗ l(1)
a

∂l
(1)
f

= s(0). (2.17)

Finally, we calculate ∂l
(1)
f

∂Wf
∈ RK×K . To express the partial derivatives of

L
(1)
CE with respect to matrix Wf ∈ RK×K , we can again calculate derivatives

component-wise as
[︄

∂l
(1)
f

∂Wf

]︄
ij

= ∂l
(1)
f

∂wfij
, i, j = 1, . . . , K where wfij

is (i, j)th element

of Wf , which can be written with use of the outer product ⊗.

∂l
(1)
f

∂Wf
= ∂σ(Wf h(t−1)+Uf X(t)+bf )

∂Wf
=

= σ(Wfh(0) + UfX(1) + bf ) ∗ (1 − σ(Wfh(0) + UfX(1) + bf )) ⊗ h(0),

as the derivatives of σ(x) = ex

1+ex are
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dσ(x)
dx

=
(︄

ex

1 + ex

)︄′

= ex(1 + ex) − exex

(1 + ex)(1 + ex) = ex

(1 + ex)
1

(1 + ex) = σ(x)(1 − σ(x)).

Altogether, we get

∂L
(1)
CE

∂Wf
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ l(1)
o ∗ (1 − tanh2(s(1))⏞ ⏟⏟ ⏞

∂h(1)

∂s(1)

∗ s(0)⏞⏟⏟⏞
∂s(1)

∂l
(1)
f

∗ σ(Wfh(0) + UfX(1) + bf ) ∗ (1 − σ(Wfh(0) + UfX(1) + bf )) ⊗ h(0)⏞ ⏟⏟ ⏞
∂l

(1)
f

∂Wf

.

Similarly, we can calculate derivatives of L
(1)
CE with respect to the parameters

Uf and bf .

∂L
(1)
CE

∂Uf
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ l(1)
o ∗ (1 − tanh2(s(1))⏞ ⏟⏟ ⏞

∂h(1)

∂s(1)

∗ s(0)⏞⏟⏟⏞
∂s(1)

∂l
(1)
f

∗ σ(Wfh(0) + UfX(1) + bf ) ∗ (1 − σ(Wfh(0) + UfX(1) + bf )) ⊗ X(1)⏞ ⏟⏟ ⏞
∂l

(1)
f

∂Uf

.

∂L
(1)
CE

∂bf
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ l(1)
o ∗ (1 − tanh2(s(1))⏞ ⏟⏟ ⏞

∂h(1)

∂s(1)

∗ s(0)⏞⏟⏟⏞
∂s(1)

∂l
(1)
f

∗ σ(Wfh(0) + UfX(1) + bf ) ∗ (1 − σ(Wfh(0) + UfX(1) + bf ))⏞ ⏟⏟ ⏞
∂l

(1)
f

∂bf

.

Analogously, we calculate the derivatives of L
(1)
CE with respect to the parame-

ters from the input gate layer Wc, Uc and bc.

∂L
(1)
CE

∂Wc
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ l(1)
o ∗ (1 − tanh2(s(1))⏞ ⏟⏟ ⏞

∂h(1)

∂s(1)

∗ l(1)
a⏞⏟⏟⏞

∂s(1)

∂l
(1)
c

∗ σ(Wch
(0) + UcX

(1) + bc) ∗ (1 − σ(Wch
(0) + UcX

(1) + bc)) ⊗ h(0)⏞ ⏟⏟ ⏞
∂l

(1)
c

∂Wc

.
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∂L
(1)
CE

∂Uc
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ l(1)
o ∗ (1 − tanh2(s(1))⏞ ⏟⏟ ⏞

∂h(1)

∂s(1)

∗ l(1)
a⏞⏟⏟⏞

∂s(1)

∂l
(1)
c

∗ σ(Wch
(0) + UcX

(1) + bc) ∗ (1 − σ(Wch
(0) + UcX

(1) + bc)) ⊗ X(1)⏞ ⏟⏟ ⏞
∂l

(1)
c

∂Uc

.

∂L
(1)
CE

∂bc
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ l(1)
o ∗ (1 − tanh2(s(1))⏞ ⏟⏟ ⏞

∂h(1)

∂s(1)

∗ l(1)
a⏞⏟⏟⏞

∂s(1)

∂l
(1)
c

∗ σ(Wch
(0) + UcX

(1) + bc) ∗ (1 − σ(Wch
(0) + UcX

(1) + bc))⏞ ⏟⏟ ⏞
∂l

(1)
c

∂bc

.

Then, we continue with the derivatives of L
(1)
CE with respect to the parameters

Wa, Ua and ba.

∂L
(1)
CE

∂Wa
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ l(1)
o ∗ (1 − tanh2(s(1))⏞ ⏟⏟ ⏞

∂h(1)

∂s(1)

∗ l(1)
c⏞⏟⏟⏞

∂s(1)

∂l
(1)
a

∗ (1 − tanh2(Wah(0) + UaX(1) + ba)) ⊗ h(0)⏞ ⏟⏟ ⏞
∂l

(1)
a

∂Wa

.

∂L
(1)
CE

∂Ua
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ l(1)
o (1 − tanh2(s(1))⏞ ⏟⏟ ⏞

∂h(1)

∂s(1)

∗ l(1)
c⏞⏟⏟⏞

∂s(1)

∂l
(1)
a

∗ (1 − tanh2(Wah(0) + UaX(1) + ba)) ⊗ X(1)⏞ ⏟⏟ ⏞
∂l

(1)
a

∂Ua

.

∂L
(1)
CE

∂ba
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ l(1)
o (1 − tanh2(s(1))⏞ ⏟⏟ ⏞

∂h(1)

∂s(1)

∗ l(1)
c⏞⏟⏟⏞

∂s(1)

∂l
(1)
a

∗ (1 − tanh2(Wah(0) + UaX(1) + ba))⏞ ⏟⏟ ⏞
∂l

(1)
a

∂ba

.

Finally, we calculate the derivatives of L
(1)
CE with respect to the parameters

from the output-gate layer Wo, Uo and bo.
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∂L
(1)
CE

∂Wo
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ tanh(s(1))⏞ ⏟⏟ ⏞
∂h(1)

∂l
(1)
o

∗ σ(Woh
(0) + UoX

(1) + bo) ∗ (1 − σ(Woh
(0) + UoX

(1) + bo)) ⊗ h(0)⏞ ⏟⏟ ⏞
∂l

(1)
o

∂Wo

.

∂L
(1)
CE

∂Uo
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ tanh(s(1))⏞ ⏟⏟ ⏞
∂h(1)

∂l
(1)
o

∗ σ(Woh
(0) + UoX

(1) + bo) ∗ (1 − σ(Woh
(0) + UoX

(1) + bo)) ⊗ X(1)⏞ ⏟⏟ ⏞
∂l

(1)
o

∂Uo

.

∂L
(1)
CE

∂bo
= (p(1) − Y (1))⏞ ⏟⏟ ⏞

∂L
(1)
CE

∂h(1)

∗ tanh(s(1))⏞ ⏟⏟ ⏞
∂h(1)

∂l
(1)
o

∗ σ(Woh
(0) + UoX

(1) + bo) ∗ (1 − σ(Woh
(0) + UoX

(1) + bo))⏞ ⏟⏟ ⏞
∂l

(1)
o

∂bo

.

Having calculated all that, we know the derivatives of L
(1)
CE with respect to all

parameters Wf ,Wc,Wa,Wo,Uf ,Uc,Ua,Uo, bf , bc, ba, bo. If the final time T was
T = 1, we could update all parameters, calculate new values of L

(1)
CE and continue

until convergence.
For the final time T , T > 1, we have to continue with calculating the deriva-

tives of L
(2)
CE. Again, we start with the derivatives with respect to Wf . This time,

the function L
(2)
CE contains the parameter Wf through l

(2)
f (2.18), but also through

l
(1)
f , which is included in h(1), which is included in four functions l

(2)
f (2.19), l(2)

c

(2.20), l(2)
a (2.21) and l(2)

o (2.22), thus, we need to apply the chain rule for multiple
variable functions to express the partial derivatives of L

(2)
CE with respect to Wf :
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∂L
(2)
CE

∂Wf

= ∂L
(2)
CE

∂h(2) ∗ ∂h(2)

∂s(2) ∗ ∂s(2)

∂l
(2)
f

∗
∂l

(2)
f

∂Wf

+ (2.18)

+ ∂L
(2)
CE

∂h(2) ∗ ∂h(2)

∂s(2) ∗ ∂s(2)

∂l
(2)
f

∗
∂l

(2)
f

∂h(1) ∗ ∂h(1)

∂s(1) ∗ ∂s(1)

∂l
(1)
f

∗
∂l

(1)
f

∂Wf

+ (2.19)

+ ∂L
(2)
CE

∂h(2) ∗ ∂h(2)

∂s(2) ∗ ∂s(2)

∂l
(2)
c

∗ ∂l(2)
c

∂h(1) ∗ ∂h(1)

∂s(1) ∗ ∂s(1)

∂l
(1)
f

∗
∂l

(1)
f

∂Wf

+ (2.20)

+ ∂L
(2)
CE

∂h(2) ∗ ∂h(2)

∂s(2) ∗ ∂s(2)

∂l
(2)
a

∗ ∂l(2)
a

∂h(1) ∗ ∂h(1)

∂s(1) ∗ ∂s(1)

∂l
(1)
f

∗
∂l

(1)
f

∂Wf

+ (2.21)

+ ∂L
(2)
CE

∂h(2) ∗ ∂h(2)

∂l
(2)
o

∗ ∂l(2)
o

∂h(1) ∗ ∂h(1)

∂s(1) ∗ ∂s(1)

∂l
(1)
f

∗
∂l

(1)
f

∂Wf

. (2.22)

Analogously, we can calculate the partial derivatives L
(2)
CE with respect to all

the other parameters. For the final time T , T > 2, the derivatives of L
(3)
CE would

consist of even more parts. Even though many terms keep repeating, it is quite
complicated and a bit confusing to continue this way.

Fortunately, there is a more convenient and more elegant way of calculating
desired updates of the parameteres. Instead of starting at the time t = 1, we begin
at the final time t = T and go backwards in time. At first, we will demonstrate
the idea for the overall time T = 2 and generalize it later on.

At the final time T = 2, we take into account only information from the last
layer. Thus we calculate the partial derivatives only with respect to the final
layer, as there were no other previous layers at all. As we will chain a lot, we
write the partial derivatives in a suitable form to keep expressions more clear:

δh(2) = ∂L
(2)
CE

∂h(2) = (p(2) − Y (2)),

δs(2) = ∂L
(2)
CE

∂s(2) = δh(2) ∗ l(2)
o ∗ (1 − tanh2(s(2))).

We will denote

δl
(2)
f = δs(2) ∗ s(1) ∗ l

(2)
f ∗ (1 − l

(2)
f ),

even though it does not hold δl
(2)
f = ∂L

(2)
CE

∂l
(2)
f

. Including the derivatives of the

function σ(x) into δl
(2)
f enables us to write the derivatives of L

(2)
CE with respect to

e.g. Wf in a form of δl
(2)
f ⊗ h(1) etc.

Analogously, we denote

δl(2)
c = δs(2) ∗ l(2)

a ∗ l(2)
c ∗ (1 − (l(2)

c )),
δl(2)

a = δs(2) ∗ l(2)
c ∗ (1 − (l(2)

a )2),
δl(2)

o = δs(2) ∗ tanh(s(2)) ∗ l(2)
o ∗ (1 − l(2)

o ).
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Now, we can go backwards to the time t = 1. When calculating the parameter
updates at the time t = 1, we also need to take into account the time t = 2, as all
parameters from layer 1 are also included in layer 2. Thus we have to calculate
all derivatives with respect to the sum L

(1)
CE + L

(2)
CE.

We start with the derivatives of L
(1)
CE + L

(2)
CE with respect to h(1), because this

term will be included in all other expressions.

δh(1) = ∂L
(1)
CE

∂h(1) + ∂L
(2)
CE

∂h(1) = ∂L
(1)
CE

∂h(1) + ∂L
(2)
CE

∂h(2) ∗ ∂h(2)

∂s(2) ∗ ∂s(2)

∂l
(2)
f

∗
∂l

(2)
f

∂h(1) +

+ ∂L
(2)
CE

∂h(2) ∗ ∂h(2)

∂s(2) ∗ ∂s(2)

∂l
(2)
c

∗ ∂l(2)
c

∂h(1) + ∂L
(2)
CE

∂h(2) ∗ ∂h(2)

∂s(2) ∗ ∂s(2)

∂l
(2)
a

∗ ∂l(2)
a

∂h(1) +

+ ∂L
(2)
CE

∂h(2) ∗ ∂h(2)

∂l
(2)
o

∗ ∂l(2)
o

∂h(1) =

= (p(1) − Y (1)) + Wfδl
(2)
f + Wcδl(2)

c + Waδl(2)
a + Woδl(2)

o .

Then, we continue with the derivatives of L
(1)
CE + L

(2)
CE with respect to s(1).

δs(1) = ∂L
(1)
CE

∂s(1) + ∂L
(2)
CE

∂s(1) =
(︄

∂L
(1)
CE

∂h(1) + ∂L
(2)
CE

∂h(1)

)︄
∗ ∂h(1)

∂s(1) + ∂L
(2)
CE

∂s(2) ∗ ∂s(2)

∂s(1) =

= δh(1) ∗ l(1)
o ∗ (1 − tanh2(s(1))) + δs(2) ∗ l

(2)
f .

Now, we directly obtain

δl
(1)
f = δs(1) ∗ s(1) ∗ l

(1)
f ∗ (1 − l

(1)
f ),

δl(1)
c = δs(1) ∗ l(1)

a ∗ l(1)
c ∗ (1 − (l(1)

c ))
δl(1)

a = δs(1) ∗ l(1)
c ∗ (1 − (l(1)

a )2)
δl(1)

o = δs(1) ∗ tanh(s(1)) ∗ l(1)
o ∗ (1 − l(1)

o ).

In the same way, we can start at the final time T > 2, chain the updates and
go back in time from t = T to t = 1. We need to calculate the derivatives with
respect to the total loss in each time event t, let us denote:

L
(t)
total =

T∑︂
i=t

L
(i)
CE.

Then L
(t)
total = L

(t)
CE + L

(t+1)
total and we can use above expressions for general t.

For general t, t = 1, . . . , T we thus get the following relationships, which en-
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ables us to update parameters after backpropagation is completed at time t = 1.

t = T :

δh(t) = ∂L
(t)
total

∂h(t) = ∂L
(t)
CE

∂h(t) = (p(t) − Y (t)),

δs(t) = ∂L
(t)
total

∂s(t) = ∂L
(t)
CE

∂s(t) = δh(t) ∗ l(t)
o ∗ (1 − tanh2(s(t))),

t < T :

δh(t) = ∂L
(t)
total

∂h(t) = (p(t) − Y (t)) + Wfδl
(t+1)
f + Wcδl(t+1)

c + Waδl(t+1)
a + Woδl(t+1)

o ,

δs(t) = ∂L
(t)
total

∂s(t) = δh(t) ∗ l(t)
o ∗ (1 − tanh2(s(t))) + δs(t+1) ∗ l

(t+1)
f .

The terms can be express as follows:

δl
(t)
f = δs(t) ∗ s(t−1) ∗ l

(t)
f ∗ (1 − l

(t)
f ),

δl(t)
c = δs(t) ∗ l(t)

a ∗ l(t)
c ∗ (1 − (l(t)

c )),
δl(t)

a = δs(t) ∗ l(t)
c ∗ (1 − (l(t)

a )2),
δl(t)

o = δs(t) ∗ tanh(s(t)) ∗ l(t)
o ∗ (1 − l(t)

o ).

This approach is suitable also for implementation purposes. Parameters are
upgraded after each completed backpropagation process from t = T to t = 1 in
the following way. At first, we need to calculate overall change of all parameters:

∆Wf =
T∑︂

t=1
δl

(t)
f ⊗ h(t−1), ∆Uf =

T∑︂
t=1

δl
(t)
f ⊗ X(t), ∆bf =

T∑︂
t=1

δl
(t)
f .

Analogously, we can calculate updates for other parameters as well. Then,
we use calculated gradients to update the old values of the parameters with the
known learning rate ϵ.

Wnew
f = Wold

f − ϵ∆Wf ,Unew
f = Uold

f − ϵ∆Uf , bnew
f = bold

f − ϵ∆bf .

This way, we keep iterating forward and back through the recurrent neural
network until convergence.

2.4 Algorithmic Implementation
Implementation of machine learning is possible in both R and Python. When it
comes to machine learning, there is a wide range of useful packages, we state the
most famous ones.

In R, there is a package CARAT Kuhn [2009] which refers to classification and
regression training. The parameters are optimized over intergation of several
functions to calculate the overall performance of a given model by the grid search
method, which finds the best combinations. Another popular machine learn-
ing package is randomForest Liaw and Wiener [2002], which implement random
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forests for both classification and regression tasks, as well as for imputing miss-
ing values and detecting outliers. For deep learning, there is a package called
neuralnet Fritsch et al. [2019] which allows custom-choice of loss functions and
activation functions.

In Python, popular machine learning library is a Sci-kit Learn Pedregosa
et al. [2011], which provides a range of supervised and unsupervised learning
algorithms, but its deep learning functionality is quite limited. On the other
hand TensorFlow Abadi et al. [2015] enables to build complex deep learning
models from scratch instead of having a pre-defined off-the-shelf algorithms, but
its syntax is quite complicated. Also, TensorFlow allows using GPUs for more
efficient training. Keras Chollet [2015] is a high level API built on TensorFlow,
which was introduced to make TensorFlow more user-friendly even for building
very elaborate models.

2.5 Related Work
In 1957, Illiac Suite (also known as String Quartet No. 4), which is generally
agreed to be the first algorithmic musical composition, was created. This famous
example of the early efforts was composed by the ILLIAC I computer at the Uni-
versity of Illinois at Urbana-Champaign, which was programmed by composers
and professors Lejaren Hiller and Leonard Isaacson. It consists of four movements,
corresponding to four various ruled-based experiments (see [Sandred, Laurson,
and Kuuskankare, 2009] for its modern reconstruction). In the late 1980s, a sys-
tem named Experiments in Musical Intelligence(EMI) designed by David Cope
[2000] extended handcrafted rules approach with the capacity to learn from a cor-
pus of scores of a composer to create its own grammar and database of rules.

Through time, music generation moved from rule-based systems, generative
grammars and Markov chains to using various types of neural networks. As early
approaches often relied on specific rules created by musical experts, the results
were quite limited.

Comprehensive survey and analysis of different ways of using deep artificial
neural networks to generate musical content were conducted by Briot et al. [2018],
alongside with different representations of music with suitable architectures fol-
lowed by respective challenges. Fernandez and Vico [2014] provided a detailed
description of all methods used for algorithmic composition such as grammars,
knowledge-based systems, Markov chains, artifical neural networks, and evolu-
tionary methods.

Generally, there are two main approaches when it comes to generating music.
The first one is to synthesize a raw audio signal using a direct waveform ap-
proach, whereas the second is based on a symbolic discrete representation of tones.
The advantage of the first approach is that it considers the raw material untrans-
formed with its full resolution. The main drawback is in the computational loads,
as it is demanding in terms of processing and memory. The latest example of
this approach is represented by WaveNet [Van Den Oord et al., 2016], which per-
forms amazing results when it comes to text-to-speech tasks. On the other hand,
it seems that for music generation raw signals are too complex to be captured
by current neural networks.
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Nowadays, the second approach is more preferable for several reasons [Briot
et al., 2018]:

• the grand majority of the current deep learning systems for music generation
are symbolic

• artists compose music via symbolic representation and it might be reason-
able to follow their compositional process

• it is easier to perform harmonic analysis etc. on the symbolic representation
of music

In the past, few difficulties had to be overcome to make music generation
by recurrent neural networks possible. Mozer [1994] attempted to compose mu-
sic with RNNs and noticed their inability to capture global music structure and
rhythm. Eck and Schmidhuber [2002] overcame this limitation, proposed us-
ing Long-Short Term Memory (LSTM) cells in RNN and created a system that
was able to learn and compose pleasing blues music. An alternative to LSTM
is using Gated Recurrent Unit (GRU). Nevertheless, Nayebi and Vitelli [2015]
from Stanford compare their performance and their results indicate, that outputs
of the LSTM network are more musically plausible.

Various compound architectures are often used to solve specific issues. Bidi-
rectional RNNs were introduced by Schuster and K. Paliwal [1997] for cases
when the prediction depends also on the next elements (not just the previous
ones), as it is for example with speech recognition. RNN Encoder-Decoder [Cho
et al., 2014] enables to encode a variable-length sequence produced by a recur-
rent network into another variable-length sequence produced by another recur-
rent network. Boulanger-Lewandowski, Bengio, and Vincent [2012] introduced
an approach that combines a restricted Boltzmann machine with RNN to com-
pose polyphonic music. This approach enables them to work with the fact, that
the occurrence of particular note at the particular time changes the probability
with which other notes may occur at the same time.

The field of music generation is rapidly improving. Recently, Mao, Shin, and
Cottrell [2018] introduced DeepJ, a generative model with tunable parameters,
which enables to control the style of generated music. Also, many sources are open
to the public. Flow Composer [Papadopoulos, Roy, and Pachet, 2016] is a web
application that helps generate musical lead sheets. Users can specify the style
of the lead sheet by choosing a corpus of existing lead sheets. Chord sequences
and melodies are based on Markov and Meter models. OpenMusic [Assayag
et al., 1999] is a visual programming environment for music composition. It is
based on programming language Common Lisp. Many specialized libraries are
involved, which extend its functionality into areas like spectral music, minimalist
music or sound synthesis.

Finally, Magenta [Waite, 2016] research project from Google Brain Team
based on Python machine learning library TensorFlow [Géron, 2017], [Müller and
Guido, 2016] offers various configuration for training and generating monophonic
music as well as polyphonic music with dynamics.
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3. Application: Artificial Music
Composition
In this chapter, we train three recurrent neural networks with LSTM cells on the
Beatles’ songs and discuss qualities of artificial melodies. Firstly, we describe the
basics of music theory and the structure of a musical format called MIDI, which
is used as an input into deep learning models. Then, we describe three Magenta’s
configuration (Basic, Lookback, and Attention), which we use for artifical music
composition. As all configurations are designed for monophonic melodies, we
provide a script able to transfer polyphonic music into monophonic. In order to
avoid overfitting, we split Beatles’ songs into training and evaluating datasets and
choose appropriate number of iterations, so that models perform similar results
on both datasets. Finally, we generate new melodies from all three configurations
and evaluate them both objectively using musically informed objective metrics
[Yang and Lerch, 2018] and subjectively.

3.1 Music Representation
Music can be viewed as a sequence of tones organized in time. A written form
of a tone is called a note. Four main attributes of tones are a pitch, a length,
a timbre, and a velocity. The way our artificial music is composed, as well as
conducted melody analysis, take into account only a pitch and a length.

We work with music in a MIDI (Musical Instrument Digital Interface) format,
which was designed for sharing musical information between computer devices.
Unlike audio file formats (MP3, WAV or FLAC), MIDI files do not contain actual
raw audio data and are thus smaller in size.

A MIDI file is a stream of event messages, including a note’s notation, a pitch,
and a velocity. Each note begins with a note-on message and ends with a note-off
message. In addition, each of those messages is specified with time (in internal
units), a pitch on a scale 21 − 108 representing a standard twelve-tone tuning
from A0 to C8, a channel, and a volume. An example of a musical piece and its
MIDI representation is shown in figure 3.1.

Metadata messages are often included and can specify a tempo, a key signature
or a text information about the composer and the interpreter.

A considerable disadvantage of MIDI files is that the event representation is
quite elementary and for example does not capture all aspects of a tone color.
Nevertheless, they serve perfectly for our purposes.

There are many collections of MIDI files available online, such as Notting-
ham collection or Yamaha e-piano Competition dataset, which are widely used
for machine learning tasks.

3.2 Magenta Algorithm
Magenta is a research project released by Google Brain Team. It is built on
machine learning library TensorFlow in Python and provides scripts for training
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Figure 3.1: Melody in traditional notation and its MIDI representation. The
pitch number 60 stands for C4

deep learning models based on real-world music. In this section, we describe
three Magenta’s configurations (Basic, Attention, and Lookback), which we use
for artificial music composition based on training samples from the Beatles. All
configurations process MIDI files as an input and an output.

In all configurations, each bar is divided into 16 steps. According to config-
uration, each step is encoded as an input vector in a slightly different way using
a MIDI representation of events. Those vectors are then used as the input to
the recurrent neural network with LSTM cells. In each step, the target is to
determine the next step, also encoded as a vector. This way, the neural network
aims to learn patterns in what notes follow each other. All notes should be in a
range between 48 and 83, which corresponds to C3 and B5, otherwise, they are
transposed.

3.2.1 Basic RNN
The Basic configuration is the simplest configuration. Each step X(t) ∈ R38,
t = 1, . . . , T is encoded as a one-hot vector of a length 38. The first position is
an indicator of a note-off event, the second position is an indicator of no event
(previous note continues playing or remaining silence). Positions 3 to 38 indicate
a note-on event for each pitch in range 48 to 83.

3.2.2 Lookback RNN
The Lookback configuration aims to capture the long-term structure in music.
Each step X(t) ∈ R121, t = 1, . . . , T is encoded as a vector of a length 121 consist-
ing of values −1, 0 and 1. Positions from 1 to 38 correspond to a one-hot vector
from the Basic configuration for the current step. Positions from 39 to 76 corre-
spond to a one-hot vector from the Basic configuration for step in the previous
bar on current position increased by one, positions from 77 to 114 correspond to
a one-hot vector from the Basic configuration for the step two bars ago on the
current position increased by one. That means that if the current step is the first
one in a bar, the algorithm takes a look at the second step in the previous bar
and the bar before that.

Positions from 115 to 119 capture the current position of a step within the
measure (number between 1 and 16) coded as a binary step clock, but with
values −1 instead of 0. Step 1 is than coded as [−1, −1, −1, −1, 1], step 2 as
[−1, −1, −1, 1, −1], step 3 as [−1, −1, −1, 1, 1] etc.
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Finally, the position 120, resp. 121 indicates whether the current step one-
hot vector from the Basic configuration is equal to the one-hot vector from the
Basic configuration for the same position one, resp. two bars ago. For example,
if the third bar of the melody is completely repeating the first bar, all vectors
created for steps in the third bar would be equal to 1 on position 121.

This allows the model to more easily repeat 1 or 2 bar phrases and recognize
new patterns from scratch.

3.2.3 Attention RNN
The Attention configuration aims to capture even longer long-term structure.
Each step X(t) ∈ R74, t = 1, . . . , T is encoded as a 74 long vector consisting of
values −1, 0, 1. Positions 1 to 38 again correspond to a one-hot vector from the
Basic configuration for the current step. The position 39 indicates if there is a
note playing (note-on event or note playing from previous steps). The position
40 indicates whether the melody is currently ascending (1) or descending (−1).
Positions 41 and 42 correspond to lookback distances, as positions 120 and 121
in Lookback configuration. Positions 43 to 49 capture the current position of the
step within a measure (number between 1 and 16) coded as a binary step clock,
but with values −1 instead of 0, this time with 6 values. The step 1 is than
coded as [−1, −1, −1, −1, −1, 1], the step 2 as [−1, −1, −1, −1, 1, −1], the step
3 as [−1, −1, −1, −1, 1, 1] etc. The position 50 indicates if the next step is the
start of a bar (and thus current step is the last one in a bar). Positions 51 to
62 consist of a one-hot vector representing 12 pitches classes, where 1 is on the
position of the pitch class of the currently playing note. Positions 63 to 74 consist
of a one-hot vector representing 12 pitches classes, where 1 is on the position of
the pitch class of the last three different playing notes.

Furthermore, weighted previous outputs are also taken into account using the
attention mask a(t) ∈ Rn [Bahdanau et al., 2014]. Specifically:

u(t) = vT tanh(W1h
(t) + W2s

(t)), a(t) = softmax(u(t)), h(t) =
t−1∑︂

i=t−40
a

(t)
i h(i),

where v,W1 and W2 are learnable parameters of the model, h(i) are the RNN
outputs from previous 40 steps (h(t−40), . . . , h(t−1)) and a(t) is called attention
mask.

3.3 Artificial Music Composition and Evalua-
tion

3.3.1 Data Preprocessing
All configurations are intended for composing monophonic music, therefore all
chords had to be removed. We provide a script in Python, which we designed
to transform polyphonic melodies into monophonic melodies. Based on general
knowledge of music theory, we decided to remove lower notes from chords and keep
the highest one, as it plays the most important part in melody specification.
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Furthermore, when a new note starts playing, but a previous note has not stopped
yet, we force it to end prematurely.

As a training dataset, we used the famous Beatles’ songs. Our main goal
was to generate interesting and likable melodies similar to the Beatles, so we ex-
tracted key melody parts from the chorus, the bridge and the verse of each song.
Altogether, we obtained 124 pieces of melody.

3.3.2 Artificial Music Composition
The common issue with neural networks is overfitting. In order to avoid it, we split
the set of examples into training and evaluating subsets with evaluation ratio 0.3
and run training and evaluating at the same time. Based on results (Figure 3.2),
we chose the number of iterations as 9500 for Basic, 2140 for Lookback and 620
for Attention. Hyperparameters were set as follows: The batch size for stochastic
gradient descent was set up to 16, learning error ϵ was set up to 0.001. A recurrent
neural network with LSTM cells consists of two layers as suggested by creators
of Magenta. A number of neurons in both layers was set up to 16.

0 2500 5000 7500 10000 12500 15000 17500 20000
Step

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Basic configuration
Train_Loss
Eval_Loss

(a)

0 2500 5000 7500 10000 12500 15000 17500 20000
Step

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Lookback configuration
Train_Loss
Eval_Loss

(b)

0 2000 4000 6000 8000 10000
Step

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Attention configuration
Train_Loss
Eval_Loss

(c)

Figure 3.2: Loss of all three configuration on both training and evaluating datasets

After training all three configurations, 124 pieces of music were composed
for each of them. The composing process started with one prespecified note. The
individual first notes were chosen the same as the starting notes in training pieces.
At each step X(t), t = 1, . . . , T , we want to predict the next step X(t+1) in the
form of one-hot vector of a length 38 from Basic configuration. This prediction can
be viewed as a classification problem with 38 categories. The trained recurrent
neural network output for each step X(t) vector of probabilities p(t) ∈ R38 for
the following step X(t+1) (for more details see 2.3). The step X(t+1) is then
randomly chosen based on p(t) as it was a conditional probability distribution
over 38 categories. Generated melodies are on average 37 notes long, as well as
the original melodies.
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3.3.3 Artificial Music Evaluation
In this section, we are going to evaluate artificial music and compare it with
the original Beatles. Objective analysis is based on musically informed objective
metrics for evaluating and comparing the outputs of music generative systems
proposed by Yang and Lerch [2018]. The majority of those metrics are based
on note pitches, the rest of them describes rhythm features.

Pitch-Based Features

The pitch measures the degree of highness or lowness of a tone based on fre-
quency. There exists 12 semitones (C, C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, B) in
one pattern block which altogether forms an octave.

• Pitch count (PC): The pitch count specifies the number of different
pitches within one sample. The output is a scalar for each sample.

• Pitch count histogram (PCH): The pitch class histogram has one bin
for each of the 12 octave-independent representation of the pitch. That
means that C♯1 = C♯2. The output is a vector of length 12 for each sample.

• Pitch class transition matrix (PCTM): The pitch class transition ma-
trix is a two-dimensional representation of pitch class transitions for each
ordered pair of notes. The output is 12 × 12 matrix for each sample.

• Pitch range (PR) The pitch range represents the difference between the
highest and lowest pitch in semitones. The output is a scalar for each
sample.

• Average pitch interval (API) The average pitch interval is calculated as
the average value of the interval between two consecutive pitches in semi-
tones. The output is a scalar for each sample.

• Average non-decreasing sequence (ANDS), average non-increasing
sequence (ANIS) The average non-decreasing sequence, resp. the average
non-increasing sequence captures the average length of all non-increasing,
resp. non-decreasing sequences of at least two notes. Both features are
calculated independently on each other, thus multiple following notes with
the same pitch would be classified as part of both, non-increasing as well
as non-decreasing sequence.

• Pitch distance transition matrix (PDTM) The pitch distance transi-
tion matrix is a two-dimensional representation of pitch distance transitions
between consecutive notes. The distance can be either positive (melody is
increasing), or negative (melody is decreasing). Distances with absolute
values larger than 6 were united to category 6+, resp. -6+. The output
is 13 × 13 matrix for each sample.

• Pitch distance histogram (PDH) The pitch distance histogram has one
bin for each of the 26 absolute distances in pitch between two consecutive
notes. The output is a vector of length 26 for each sample.
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Rhythm-Based Features

The rhythm is a music pattern based on the length of notes. The length is mea-
sured in units of musical time called beats. Categories of duration are fractions
of a beat, usually in powers of 2. Terminology goes as follows: a 4-beats note is
called a whole note, a 2-beats note is a half note, a 1-beat note is a quarter note,
etc. To extend a note for another half of its duration, a dot symbol is used, e.g.
a half dot note last 3-beats. Pieces of silence are called rests and are measured in
the same way as notes.

• Note count (NC) The note count specifies the number of different lengths
of notes within a sample. The output is a scalar for each sample.

• Average rest length (ARL) The average rest length is calculated by
averaging all rests included in one sample. The output is a scalar for each
sample.

• Note length histogram (NLH) The note length histogram has one bin
for each of the 9 beat length classes [full, dot half, half, dot quarter, quarter,
dot eighth, eighth, dot sixteenth, sixteenth]. The classification of each note
length is performed by finding the closest length category. The output is a
vector of length 9 for each sample.

• Rest length histogram (RLH) The rest length histogram has one bin
for each of the 9 beat length classes [full, dot half, half, dot quarter, quarter,
dot eighth, eighth, dot sixteenth, sixteenth]. The classification of each rest
length is performed by finding the closest length category. The output is a
vector of length 9 for each sample.

• Note length transition matrix (NLTM) The note length transition
matrix is a two-dimensional representation of length class transitions for
each ordered pair of notes. The output is 9 × 9 matrix for each sample.

3.3.4 Results
We compare and evaluate four sets of 124 examples - one original Beatles used
for training and three generated with different configuration - Basic, Lookback,
and Attention. For various features, intra-set distances and inter-set distances
are calculated to compare the distance of the features within and between sets
of musical examples, then pairwise cross-validation is performed. In each cross-
validation step, one sample is chosen and the Euclidean distance to each of the
other samples is computed. In case of cross-validation within one data set, we talk
about intra-set distances. If we compare each sample of one set with all samples
of the other set, we talk about inter-set distances. As a result, we obtain the his-
togram of distances for each feature, thus we can calculate the sample mean and
the sample standard deviance (table 3.1).

Furthermore, we calculate absolute measures for pitch count, pitch range,
average pitch interval, average length of non-decresing and non-increasing se-
quences, note count, and average rest length (table 3.2).
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Pitch-Based Features Results

Generally speaking, artificially generated pieces of music contain a wider range
of note pitches and higher pitch differences in semitones of consecutive notes.

The average pitch range of the original Beatles per piece is nearly 11, whereas
generated melodies have the range on average 15 notes (Basic), almost 14.5 (Look-
back) and almost 15.5 (Attention). The closely linked average number of different
pitches follows the same trend, as the original Beatles usually consist of nearly
7 different pitches and generated music of almost 8 in case Attention and even
more than 8 in the other two cases. We also observe considerable differences be-
tween original and generated music for average pitch interval. Consecutive notes
in the Beatles’ songs usually differ by 2 pitches, but the difference is at least
2 times higher for generated melodies with 4 pitches for Basic and more than
5 pitches for Lookback and Attention. Furthermore, higher lengths of mono-
tonic sequences in case of original music also indicate that generated music is less
coherent and contains higher jumps and shorter monotonous parts (table 3.2).

All those conclusions are echoed by summative transition matrices and his-
tograms. Pitch difference transition matrices show, that in the original music
the same notes are repeated after each other in 14 % of cases (figure 3.4), whilst
in case of generated music two consecutive jumps higher than 6 semitones occur
the most often. This is more than consistent with previous findings of the wider
spread of consecutive notes of generated melodies. In addition, 60.2 % of two
pitch consecutive differences in a row are less or equal to 2 when it comes to Bea-
tles, but only 20.6 % in case of Basic, only 11.3 % in case of Lookback and 11.4
% in case of Attention. It is also worth noting, that pitch difference +1 semitone
is never followed by pitch difference +2 semitones and the other way around with
-1 semitone followed by -2 semitones in case of Beatles and Lookback. The most
common pitch difference between two consecutive notes is 2 in all cases (figure
3.6), but all generated pieces reach a maximum pitch difference between two con-
secutive notes at least 24 which means two octaves, whereas a maximum pitch
difference between two consecutive notes of Beatles is 16.

Intra-set distances of pitch based features are slightly higher for original music,
which indicates that generated pieces are more similar to each other. Inter-set
distances comparing directly original and generated music are often slightly higher
then intra-set distances, as can be expected regarding the nature of example sets
(table 3.1). The biggest change between inter-set and intra-set distances occurs
for pitch range and average pitch interval which mirrors conclusions from previous
paragraphs. In all four cases, natural notes (such as C) are used more often than
the raised ones (such as C♯) as can be seen in figure 3.5.

Rhythm-Based Features Results

First of all, we observe that all three generative models tend to use a lot of 16th
notes (at least in 25 % cases), which are the shortest notes those models are
capable of. On the contrary, the most frequently used note length in the original
Beatles is dotted 8th (around 25 % of all cases) as can be seen in figure 3.8a,
whereas 16th notes were around 5 % of all cases. The more sophisticated model,
the shorter notes were used most. This could be related to the fact, that the most
complicated model Attention was training with the lowest number of iteration.
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Beatles Basic Lookback Attention Beatles & Bas. Beatles & Look. Beatles & Att.

Intra-set Intra-set Intra-set Intra-set Inter-set Inter-set Inter-set
Mean1 SD2 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Pitch count 2.08 1.63 1.80 1.40 1.61 1.31 2.10 1.66 2.24 1.70 2.20 1.64 2.25 1.73
Pitch class histogram 0.53 0.15 0.42 0.15 0.42 0.15 0.46 0.15 0.49 0.13 0.49 0.13 0.50 0.15
Pitch class trasition matrix 0.47 0.11 0.39 0.06 0.40 0.07 0.40 0.07 0.44 0.09 0.45 0.09 0.45 0.09
Pitch range 3.70 3.03 4.43 3.43 3.19 2.59 4.77 3.77 5.22 3.98 4.43 3.42 5.52 4.34
Average pitch interval 0.76 0.56 1.18 0.96 1.22 0.93 1.37 1.09 2.00 1.22 3.00 1.26 3.19 1.40
Note count 1.29 1.05 0.87 0.74 0.86 0.76 0.92 0.78 1.60 1.13 1.42 1.08 1.27 1.00
Average rest length 0.28 0.21 0.14 0.13 0.15 0.13 0.14 0.11 0.26 0.21 0.26 0.20 0.26 0.21
Note length histogram 0.61 0.24 0.28 0.09 0.29 0.09 0.27 0.10 0.56 0.15 0.60 0.15 0.67 0.15
Note length transition matrix 0.54 0.16 0.33 0.05 0.33 0.06 0.32 0.09 0.49 0.11 0.50 0.11 0.53 0.11
Note: 1 Sample mean 2 Sample standard deviation

Table 3.1: Relative measures for pitch-based and rhythm-based features

Beatles Basic Lookback Attention

Mean SD Mean SD Mean SD Mean SD

Pitch count 6.95 1.86 8.30 1.61 8.33 1.46 7.97 1.88
Pitch range 10.99 3.36 15.02 3.94 14.41 2.89 15.41 4.28
Average pitch interval 2.03 0.67 4.01 1.07 5.04 1.08 5.22 1.23
Average non-increasing sequence 3.97 1.44 2.75 0.52 2.66 0.46 2.65 0.41
Average non-decreasing sequence 3.66 1.16 2.77 0.44 2.64 0.34 2.63 0.39
Note count 4.95 1.17 6.30 0.80 6.02 0.80 5.68 0.85
Average rest length 0.43 0.25 0.27 0.13 0.29 0.14 0.26 0.14

Table 3.2: Absolute measures for pitch-based and rhythm-based features

Nevertheless, the average number of notes with different lengths is nearly 5 in case
of original Beatles which is around 1 note lower than in case of generated music,
but with higher variability among samples (table 3.2). The average length of rest
is 0.43 for of original music, which is considerably higher than 0.27 for Basic, 0.29
for Lookback and 0.26 for Attention. The trend of longer notes and longer rests
is also reflected in table 3.1, as inter-set values for rhythm-based features exceed
intra-set values for generated samples. This also indicates that original samples
are more diverse in rhythmic structure, whereas generated samples tend to be
more homogenous.

Subjective Evaluation

As the ultimate judge of creative output is the human [Yang and Lerch, 2018],
we provide also subjective evaluation of generated music. How interesting, how
real and how pleasant do new melodies appear? Nearly no melody does sound z-
of-tune. However, they definitely do not reach the Beatles’ qualities. We observed
that generated melodies really do sound more pleasing with the increasing number
of iterations, but overfitting caused the model to repeat the same melody pattern
all over again. At first, we attempted to evaluate each melody with a number
between 1 and 100 to see if there are any hidden treasures, but we perceived that
all melodies are on a similar level of likability. Furthermore, is nearly impossible
to distinguish between three different configurations. Unfortunately, we do not
found generated music as real and pleasant as we hoped.
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Figure 3.3: Pitch class transition matrices in percentage for all four datasets
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Figure 3.4: Pitch difference transition matrices in percentage for all four datasets
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Figure 3.5: Pitch class histograms for all four datasets
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Figure 3.6: Pitch difference histograms for all four datasets
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Figure 3.7: Note length transition matrix in percentage for all four datasets
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Figure 3.8: Note length histograms for all four datasets
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Figure 3.9: Rest length histograms for all four datasets
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Conclusion
The aim of this thesis was to train a computer on Beatles’ songs using research
project Magenta from the Google Brain Team to produce its own music, to derive
backpropagation formulas for recurrent neural networks with LSTM cells used in
the Magenta music composing model, to overview machine learning techniques
and discuss its similarities with methods of mathematical statistics.

At first, we presented the idea of machine learning and described the most
common algorithms in both supervised and unsupervised learning (a linear regres-
sion, support vector machines, k-nearest neighbors, regression trees and random
forests, a principal component analysis and k-means). After that, we generalized
the concept of the linear model into neural networks with non-linear hidden units.
We showed similarity between the feedforward neural network with one hidden
layer and the sigmoid activation function and the generalized linear model of a
logistic regression. We introduced recurrent neural networks with LSTM cells,
as they represent a way of generating music with long-term structure and de-
rived backpropagation formulas used in the Magenta music composing model.
Furthermore, we provided an overview of important milestones in artifical music
composition and presented several other approaches of generating music, includ-
ing open software available to the public.

In practically oriented third chapter, we summarized the basics of a music
theory and described the structure of MIDI files, which were used as an input for
training generative models. We presented three different configurations (Basic,
Lookback, and Attention) of Magenta, a research project based on Python’s ma-
chine learning library Tensorflow, which was recently released by Google Brain
Team. We decided to restrict ourselves to monophonic melodies only, as we
wanted to see if generative systems can capture and creates interesting patterns.
We wrote a script able to transform polyphonic melodies into monophonic ones.
We preprocessed 124 monophonic melodies from Beatles and determined a suit-
able number of iterations for each configuration in order to avoid overfitting.

After training three generative models, we composed 124 samples from each
of them with the same starting notes as training samples do. We evaluated them
using musically informed objective metrics [Yang and Lerch, 2018] and compared
them with original music. We discovered that generated samples tend to use
a wider range of shorter notes with higher pitch differences between consecutive
notes. Even though the generated pieces did not sound out-of-tune, they definitely
did not reach the Beatles’ qualities.

It is plausible, that we would obtain better results if we imputed the same
Beatles samples multiple times after various transpositions. We did not use this
option as several musically informed objective criteria depend on pitch classes and
they would become pointless after such action. Regarding various representations
of three different configurations and results with much higher pitch differences,
it could be interesting to represent individual steps in terms of pitch differences
between consecutive notes in order to learn model to keep notes closer together,
as we believe that melodies with notes closely tight together sound better.
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