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Introduction
In this thesis, we investigate the possible use of so-called implicit constitutive
relations in the description of response of continuous solid bodies. While the
classical approach to constitutive relations is based on the assumption that the
Cauchy stress tensor T is a function of the deformation, that is

T = f(B), (1)

where B denotes the left Cauchy–Green tensor, we follow [1] and [2], and we
consider implicit constitutive relations of the type

g (B,T) = 0, (2)

and
h
(︃
B,B,T,T

)︃
= 0, (3)

where f, g and h denote tensor-valued functions and A denotes an objective rate
of the given tensor.

In Chapter 1, we focus on elastic materials and we provide a counterpart to
the classical representation formula

T = 2ρ∂ψ
∂B

B (4)

for isotropic hyperelastic solids, where ψ denotes the specific Helmholtz free en-
ergy. In the case of implicit constitutive relations, we derive, see Theorem 5, the
representation formula

H = 1
3 log

(︄
ρR

∂g

∂pth

)︄
I + ∂g

∂I2
(Tth,ρ)δ −

[︄
∂g

∂I3
(Tth,ρ)2

δ

]︄
δ

, (5)

where H denotes the Hencky strain tensor and g denotes the specific Gibbs free
energy. Unlike in the previous studies on the subject matter, see [3], the repre-
sentation formula (5) allows us to split the deformation to the volume-preserving
and volume-changing part, analyze the corresponding stress response and iden-
tify certain natural restrictions regarding the choice of the formula for the specific
Gibbs free energy.

In Chapter 2, we focus on the elastic–plastic response. In particular, we focus
on the one-dimensional response described by an analogy of (3), that is on the
response described by the formula

f (ϵ, ϵ̇, σ, σ̇) = 0, (6)

where f is a scalar function, ϵ denotes the relative deformation, σ denotes the
stress and the symbol α̇ denotes the time derivative of the corresponding quantity.
Following [4] we investigate a one-dimensional constitutive relation

σ̇ − Eϵ̇ = −EHn (σϵ̇)Hn (|σ| − σy) ϵ̇, (7)
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where E denotes the Young modulus, σy denotes the yield stress and H denotes
the Heaviside step function. We show that the constitutive relation (7) can
be indeed used to describe the elastic–perfectly plastic response and we briefly
discuss several variants of equation (7), as well as the motivation behind this
evolution equation.

In Chapter 3, we propose a proof-of-concept numerical simulations of the de-
formation of an elastic–plastic beam. We follow [5], and we propose a numerical
scheme for the solution of governing equations for the elastic–plastic beam. We
solve governing equations in the quasistatic approximation, and we use the con-
stitutive relation of the type (6), that now takes the form

g
(︂
κ, κ̇,M, Ṁ

)︂
= 0, (8)

where g is a scalar function and κ and M denote the curvature and the bending
moment. The numerical simulations are based on a straightforward implementa-
tion of the proposed numerical scheme in Mathematica programming language
and they document the viability of the concept of implicit constitutive relations in
the study of the elastic–plastic response. The scripts are attached as an electronic
attachment to this thesis.

Finally, in Chapter 4 we return back to the one-dimensional constitutive re-
lations of the type (6), and we generalize them to the fully three-dimensional
setting. This problem has been already studied in [2], but unlike [2] we provide
a complete thermodynamic basis for the corresponding model. In particular, we
explicitly describe a procedure that allows one to design models for the inelas-
tic response that have the structure (3), and that are guaranteed to satisfy the
first and second law of thermodynamics. (This procedure otherwise shares all
the benefits of the procedure used in the purely mechanical setting in [2] and [4].
Namely, there is no need to directly introduce the concept of plastic strain and
so forth.) As a side effect we also obtain an evolution equation for the tempera-
ture; for example, the complete system of evolution equations for mechanical and
thermal quantities for an elastic–perfectly plastic material reads

dρ
dt + ρ div v = 0, (9a)

ρ
dv
dt = divT, (9b)

T = 2ρ ∂ψ
∂Be

Be, (9c)
△

Be = [1 −H (T : D)H (|T| − Ty)] (DBe + BeD) , (9d)

ρcV,R
dθ
dt = H (T : D)H (|T| − Ty)T : D + κ△θ, (9e)

where ρ is the density, v is the velocity gradient, Be is the elastic part of the left
Cauchy–Green tensor, D denotes the symmetric part of the velocity gradient, Ty
is the yield stress, θ denotes the thermodynamic temperature, cV,R is the specific
heat at the constant volume, κ is the thermal conductivity, T : D denotes the
matrix scalar product of T and D, dρ

dt and dv
dt denote material time derivatives of

the corresponding quantities and △

Be denotes the corotational derivative of Be. In
the end, we briefly comment on the flexibility of the proposed approach in the
development of models for more complex material response.
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1. Representation formula for
isotropic solids described by
implicit constitutive relations
The aim of this chapter is to provide a characterization for isotropic elastic solids
described by implicit constitutive relations. In the beginning, we summarize
several known results for homogeneous hyperelastic solids. In particular, we recall
the standard representation formula

T = 2ρ∂ψ
∂B

B (1.1)

for isotropic hyperelastic solids.
Next, we derive a counterpart to (1.1) for isotropic elastic solids specified by

a constitutive relation of the form

B = g (T) . (1.2)

At the end of this chapter, we show that the linearization of the resulting
representation formula has a well-known counterpart in the theory of linearized
elasticity. This chapter is based mainly on [6], but we provide detailed explana-
tions and derivations.

1.1 Summary of known results
First, let us consider an isotropic homogeneous elastic solid. Let us define the spe-
cific1 Helmholtz free energy ψ as a function of the thermodynamic temperature θ
and the left Cauchy–Green tensor B as

ψ =def ψ (θ,B) , (1.3)

where ψ is an isotropic scalar-valued function. Isotropic functions are defined
in (1.8). The specific Helmholtz free energy is related to the specific internal
energy e =def e (η,B) by the Legendre transformation

ψ(θ,B) = e(η,B)
⃓⃓⃓
η=η(θ,B)

− θη(θ,B), (1.4)

where η is the specific entropy. If we assume the following expression of the
Cauchy stress tensor T in terms of the left Cauchy–Green tensor as

T = f
(︂
B
)︂
, (1.5)

1The adjective specific is important here as the Helmholtz free energy ψ must be measured
as the energy per unit mass. If we were dealing with the specific Helmholtz free energy per
unit volume, we would need to specify whether we are working in the reference or current
configuration, since the same part of the material can occupy a different volume in a different
configuration. Measurement as the energy per unit mass is also used for other thermodynamic
potentials and for the entropy that appear in this thesis.
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then the standard manipulation leads us to (1.1), which provides a relation be-
tween the stress and the derivatives of the specific Helmholtz free energy.

An essential part of the following calculations are the matrix2 invariants I1, I2
and I3, which are defined for a matrix A as

I1 (A) =def TrA, (1.6a)

I2 (A) =def
1
2
[︂
(TrA)2 − TrA2

]︂
, (1.6b)

I3 (A) =def detA. (1.6c)

In the following calculations, formulae for the derivatives of the tensor invariants,
which we recall without their derivations (see, for example, [7, pp. 362–363]), are
also useful. The derivatives are

∂I1

∂A
= I, (1.7a)

∂I2

∂A
= Tr (A) I − AT, (1.7b)

∂I3

∂A
= (detA)A−T. (1.7c)

Furthermore, we formulate important well-known representation theorems for
isotropic scalar-valued and tensor-valued functions. Let us start by defining the
terms used in these theorems.

• A matrix Q is a proper orthogonal matrix if and only if QQT = QTQ = I
and detQ = 1, where I denotes the unit matrix.

• A scalar-valued function φ of a tensor is said to be isotropic if and only if

φ
(︂
QAQT

)︂
= φ (A) (1.8a)

holds for any matrix A and any proper orthogonal matrix Q.

• A tensor-valued function f of a tensor is said to be isotropic if and only if

f
(︂
QAQT

)︂
= Qf (A)QT (1.8b)

holds for any matrix A and any proper orthogonal matrix Q.

Now we can formulate the mentioned representation theorems, which are a very
useful tool for our future calculations.

2As is common in continuum mechanics, we assume in this thesis that the terms matrix and
tensor coincide, although this is not formally the case.
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Theorem 1 (Representation theorem for an isotropic scalar-valued function of
a tensor). Let A be a symmetric tensor. Then a scalar-valued function ϵ (A) is
isotropic if and only if it can be expressed as a function of the invariants of A, i.e.

ϵ (A) = ϵ(I1, I2, I3). (1.9)

Proof. See, for example, [8, p. 28].

Theorem 2 (Representation theorem for an isotropic tensor-valued function
of a tensor). Let A and D be symmetric tensors. Then a tensor-valued func-
tion D = g

(︂
A
)︂

is isotropic if and only if it has a representation of the form

D = ψ0I + ψ1A + ψ2A2, (1.10)
where ψi = ψi (I1, I2, I3) are functions of the invariants of A.

Proof. Also this theorem is presented here without its proof. It can be found, for
instance, in [8, pp. 32–33].

Recall that the evolution equation for the specific internal energy e has the
form

ρ
de
dt = T : D − div je, (1.11)

where ρ is the density, je is the heat flux that can be expressed, for example, from
Fourier's law and the other terms are defined in (1.19).

Evaluating the derivative of the specific internal energy leads to the evolution
equation for the specific entropy

ρ
dη
dt = 1

θ

[︄(︄
T − 2ρ∂ψ

∂B
B
)︄

: D − div je
]︄
. (1.12)

Therefore, the entropy production due to mechanical processes is given by the
term (︄

T − 2ρ∂ψ
∂B

B
)︄

: D,

and this term vanishes for all mechanical processes (i.e. the material is hypere-
lastic) if and only if

T = 2ρ∂ψ
∂B

B, (1.13)

which is the well-known formula. The complete derivation of it can be found, for
instance, in [9, p. 537]. Using Theorem 2, we see that

T = α0I + α1B + α2B2, (1.14)

where αi = ψi (I1, I2, I3) are functions of the invariants of B. With (1.13) it is easy
to determine these functions. The chain rule and using formulae for derivatives
of matrix invariants (1.7) imply

T = 2ρ∂ψ
∂B

B = 2ρ
(︄
∂ψ

∂I1

∂I1

∂B
+ ∂ψ

∂I2

∂I2

∂B
+ ∂ψ

∂I3

∂I3

∂B

)︄
B =

= 2ρ
[︄
I3
∂ψ

∂I3
I +

(︄
∂ψ

∂I1
+ I1

∂ψ

∂I2

)︄
B − ∂ψ

∂I2
B2
]︄
. (1.15)
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Comparing (1.14) with (1.15) we see that

α0 = 2ρI3
∂ψ

∂I3
, (1.16a)

α1 = 2ρ
(︄
∂ψ

∂I1
+ I1

∂ψ

∂I2

)︄
, (1.16b)

α2 = −2ρ ∂ψ
∂I2

. (1.16c)

Having recalled the classical result (1.13), we are now in a position to investigate
its counterpart to isotropic solids specified by the so-called implicit constitutive
relation. As a counterpart to (1.5), assume the following constitutive relation

B = g
(︂
T
)︂
. (1.17)

We want to derive an analogy of equation (1.13), but using the implicit consti-
tutive relation. We do not work directly with the left Cauchy–Green tensor, but
we define the Hencky strain H tensor as

H =def
1
2 logB. (1.18)

The Hencky strain tensor has some nice properties, which we can formulate into
Proposition 3. Before we do that, we introduce some notation.

• For matrices A and B is the matrix scalar product defined as

A : B =def Tr
(︂
ABT

)︂
. (1.19a)

• The deviatoric (traceless) part of a matrix A is defined as

Aδ =def A − 1
3 (TrA) I. (1.19b)

• The symbol α̇ denotes the time derivative of a scalar function α (t).

• The symbol ṙ denotes the time derivative of a vector function r (t).

• The material time derivative of a scalar field ϕ (x, t) is defined as

dϕ
dt =def

∂ϕ

∂t
+ v · ∇ϕ, (1.19c)

where v is the velocity field.

• The material time derivative of a vector field Φ (x, t) is defined as

dΦ
dt =def

∂Φ
∂t

+ v · ∇Φ. (1.19d)

• The material time derivate of a tensor field A (x, t) is defined as

dA
dt =def

∂A
∂t

+ v · ∇A. (1.19e)
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• The velocity gradient tensor L is defined as

L =def (∇v)T . (1.19f)

• The symmetric part of the velocity gradient D is defined as

D =def
1
2
(︂
L + LT

)︂
. (1.19g)

• The deviatoric strain measure B is defined as

B =def
B
J

2
3
, (1.19h)

where J denotes the determinant of the deformation gradient defined as

J =def detF. (1.19i)

The purpose of defining the deviatoric strain measure is that detB = 1,
which means that volume does not change, hence B is called the volume-
preserving strain measure.

• As in (1.18), we introduce the corresponding deviatoric Hencky strain ten-
sor H as

H =def
1
2 logB. (1.19j)

The introduction of these new deviatoric variables is motivated by the fact that
for some models it is convenient to work with a deviatoric strain measure and
the determinant of the deformation gradient. Some examples are in [10]. In
these models it is possible to split the Cauchy stress tensor into its deviatoric
and spherical part, as well as subsequently characterize the volume-changing in
addition to the volume-preserving deformations and the corresponding parts of
the Cauchy stress tensor. This motivates us to find such a decomposition into
the volume-changing and volume-preserving parts also for our Hencky strain ten-
sor H.3

Now that we have introduced all the necessary definitions, we can therefore
formulate and prove the following proposition about the properties of the Hencky
strain tensor.

3Another undeniable advantage of Hencky strain tensor is the fact that in the one-
dimensional case it tends to infinity as F (one-dimensional deformation gradient) tends to
zero, thus in a very natural way bounding the regime of applicability to the case F > 0 as it is
claimed in [11, p. 42]. In our three-dimensional case, we extend it as J > 0, which provides us
the correctness of definition (1.19h).
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Proposition 3. The Hencky strain tensor H has the following properties:

(i) The Hencky strain tensor is stress-conjugate to the Cauchy stress tensor,
which means that

T : D = T : dH
dt . (1.20)

(ii) The deviatoric Hencky strain tensor is equal to the deviatoric part of the
Hencky strain tensor, i.e.

H = Hδ. (1.21)

(iii) For an incompressible material the constrain detF = 1 can be rewritten in
terms of the Hencky strain tensor as TrH = 0.

Proof.

(i) The proof of equality (1.20) is more demanding and is not the subject of
this thesis. The equality is proven, for example, in [12]. We note that
equality (1.20) neither means nor implies that D = dH

dt .

(ii) First, due to the rule of the product of the determinants and the determinant
of the transposed matrix we get

detB = (detF) (detFT) = (detF)2 = J2. (1.22)

Second, we use the following identity of the determinant of the matrix
exponential

det eA = eTrA, (1.23)
which is proven, for instance, in [13, p. 60]. Using (1.23), the definition of
the Hencky strain tensor H and (1.22) implies that

e2 TrH = det e2H = (detF)2 = J2. (1.24)

This equation finally leads to the desired result

H = 1
2 log B

J
2
3

= 1
2

[︃
logB − 2

3 (log J) I
]︃

= H − 1
3 (TrH) I = Hδ. (1.25)

(iii) The last part of this proposition is a direct consequence of identity (1.23)
and the fact that detF = 1 for incompressible materials. This directly
implies that TrH = 0.

In fact, equation (1.25) gives us a simple additive volumetric-isochoric split4

of the Hencky strain tensor as

H = H + 1
3 (TrH) I, (1.26)

4In fact, according to [14], [15] or [16], the Hencky strain is the only strain measure for which
exists the additive volumetric-isochoric split.
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as it is proven, for example, in [14, p. 28]. Next applying the logarithm to both
sides of equation (1.24) implies

TrH = log J, (1.27)

and substituting (1.27) into equation (1.26) yields

H = H + 1
3 (log J) I. (1.28)

The next approach is therefore as follows. We want to gradually determine the
individual terms of the right-hand side of equation (1.28) and then substitute
them back into (1.28). Let us start with the tensor H.

Let us think about a different scalar function e used in the definition of the
specific internal energy, where the deviatoric Hencky strain H and the determinant
of the deformation gradient J are used instead of B. Assume that

e =def e
(︂
η, J,H

)︂
. (1.29)

Differentiation yields

de
dt = ∂e

∂η

dη
dt + ∂e

∂J

dJ
dt + ∂e

∂H
: dH

dt . (1.30)

Now we use formula (1.21) from Proposition 3 and we show that

∂e

∂H
: dH

dt = ∂e

∂H
: dHδ

dt = ∂e

∂H
:
(︄

dH
dt

)︄
δ

=
(︄
∂e

∂H

)︄
δ

:
(︄

dH
dt

)︄
δ

=
(︄
∂e

∂H

)︄
δ

: dH
dt .

(1.31)
Using this relation and the standard definition of the thermodynamic temperature
(see, for example, [17, p. 6])

θ =def
∂e

∂η
, (1.32)

we can rewrite equation (1.30) to the form

de
dt = θ

dη
dt + ∂e

∂J

dJ
dt +

(︄
∂e

∂H

)︄
δ

: dH
dt . (1.33)

Furthermore, we can substitute this expression into the evolution equation for the
specific internal energy (1.11) and we get the evolution equation for the specific
entropy

ρ
dη
dt + div

(︃je
θ

)︃
= 1
θ

[︄
T : D − ρ

∂e

∂J

dJ
dt − ρ

(︄
∂e

∂H

)︄
δ

: dH
dt

]︄
− je · ∇θ

θ2 . (1.34)

Next, we manipulate with this equation to define the thermodynamic pressure
and thermodynamic stress tensor, similarly as with the thermodynamic temper-
ature. It is obvious that the expression T : D should be examined. We exploit
formula (1.20) from Proposition 3 and use the fact, that H is traceless, that we
also know from Proposition 3. This motivates us to decompose the Cauchy stress
tensor to its deviatoric and spherical part as

T = mI + Tδ, (1.35)
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where m is the mean normal stress defined by the formula

m =def
1
3 TrT. (1.36)

Using this decomposition and again Proposition 3, we rewrite the matrix scalar
product T : D as

T : D = T : dH
dt = (Tδ +mI) : d

dt

(︃
H + 1

3 Tr (H) I
)︃

= Tδ : dH
dt +m

d
dt TrH.

(1.37)
Furthermore, differentiating both sides of equation (1.27) gives us

d
dt TrH = 1

J

dJ
dt . (1.38)

Now we are ready to rewrite the evolution equation for the specific entropy (1.34)
using relations (1.37) and (1.38) as

ρ
dη
dt + div

(︃je
θ

)︃
= 1
θ

(︄[︄
m

J
− ρ

∂e

∂J

]︄
dJ
dt +

[︄
Tδ − ρ

(︄
∂e

∂H

)︄
δ

]︄
: dH

dt

)︄
− je · ∇θ

θ2 .

(1.39)
Based on this version of the evolution equation for the specific entropy, we define
the thermodynamic pressure pth as

pth =def −ρJ ∂e
∂J

(1.40a)

and the thermodynamic (traceless) stress tensor (Tth)δ as

(Tth)δ =def ρ

(︄
∂e

∂H

)︄
δ

. (1.40b)

This definition of the thermodynamic pressure is absolutely consistent with the
classical definition used, for example, for compressible gas. To show this, let us
first recall the balance of the mass in the Lagrangian description, which is

ρR = ρJ, (1.41)

where ρR is the density in the reference configuration. Now is also a good time
to recall the balance of mass in the Eulerian description, which is also used in
future calculations, as

dρ
dt + ρ div v = 0. (1.42)

Derivations of (1.41) and (1.42) can be found, for instance, in [18, p. 19]. Us-
ing (1.41) and the chain rule, we get

pth = −ρJ ∂e
∂J

= −ρJ ∂e
∂ρ

∂ρ

∂J
= ρJ

∂e

∂ρ

ρR
J2 = ρ2 ∂e

∂ρ
,

which is the desired formula. Going back to our definition of the thermodynamic
pressure and the thermodynamic traceless tensor (1.40), we rewrite the evolution
equation for the specific entropy (1.39) to its final form

ρ
dη
dt + div

(︃je
θ

)︃
= 1
θ

(︄
1
J

[m+ pth] dJ
dt + [Tδ − (Tth)δ] : dH

dt

)︄
− je · ∇θ

θ2 . (1.43)
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Again, the elastic material is defined as a material, which does not produce the
entropy during mechanical processes. In words of formula (1.43), this condition
is satisfied if and only if

1
J

[m+ pth] dJ
dt + [Tδ − (Tth)δ] : dH

dt = 0,

and it occurs if

m = −pth, (1.44a)
Tδ = (Tth)δ . (1.44b)

Note that we could work also with the specific Helmholtz free energy ψ defined
as

ψ =def ψ
(︂
θ, J,H

)︂
,

and repeating the same approach, but evaluating derivatives of ψ with respect
to H and J gives us the following counterparts to (1.13)

m = ρJ
∂ψ

∂J
, (1.45a)

Tδ =
(︄

2ρB∂ψ
∂B

)︄
δ

. (1.45b)

1.2 Specific Gibbs free energy
Having defined the thermodynamic pressure pth and the thermodynamic ten-
sor (Tth)δ, we can introduce a new thermodynamic potential. Firstly, to simplify
our future calculations, we slightly modify the definition of the thermodynamic
(traceless) tensor, where we get rid of the density. Starting now, (Tth)δ takes over
the role of the thermodynamic (traceless) tensor and it is defined as

(Tth,ρ)δ =def
(Tth)δ
ρ

=
(︄
∂e

∂H

)︄
δ

. (1.46)

The new potential is the specific Gibbs free energy g and it is defined as the
Legendre transformation of the specific internal energy with respect to η, J and H,
which are the corresponding variables from definition (1.29). The defining formula
is

g
(︂
θ, pth, (Tth,ρ)δ

)︂
=def

[︄
e− ∂e

∂η
η − ∂e

∂J
J −

(︄
∂e

∂H

)︄
δ

: H
]︄⃓⃓⃓⃓
⃓⃓ η=η(θ,pth,(Tth,ρ)

δ
)

J=J(θ,pth,(Tth,ρ)
δ
)

H=H(θ,pth,(Tth,ρ)
δ
)

, (1.47)

where e = e
(︂
η, J,H

)︂
. The next step is to differentiate g with respect to its

variables. Using definitions of the temperature (1.32), the thermodynamic pres-
sure (1.40a) and the thermodynamic tensor (1.46), formula (1.47) can be rewritten
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to the form

g
(︂
θ, pth, (Tth,ρ)δ

)︂
= e

(︂
η, J,H

)︂⃓⃓⃓⃓⃓⃓ η=η(θ,pth,(Tth,ρ)
δ
)

J=J(θ,pth,(Tth,ρ)
δ
)

H=H(θ,pth,(Tth,ρ)
δ
)

− θη

⃓⃓⃓⃓
⃓⃓
η=η(θ,pth,(Tth,ρ)

δ
)

+

+ pth
ρ

⃓⃓⃓⃓
⃓⃓
ρ=ρ(θ,pth,(Tth,ρ)

δ
)

− (Tth,ρ)δ : H
⃓⃓⃓⃓
⃓⃓
H=H(θ,pth,(Tth,ρ)

δ
)

.

(1.48)

Differentiating (1.48) with respect to time we get

dg
dt = ∂e

∂η

dη
dt + ∂e

∂J

dJ
dt +

(︄
∂e

∂H

)︄
δ

: dH
dt − dθ

dt η − θ
dη
dt + d

dt

(︄
1
ρ

)︄
pth+

+ 1
ρ

dpth
dt −

d (Tth,ρ)δ
dt : H − (Tth,ρ)δ : dH

dt .
(1.49)

Let us look again at the balance of mass (1.41). It implies that

d
dt

(︄
1
ρ

)︄
= d

dt

(︄
J

ρR

)︄
= 1
ρR

dJ
dt = 1

ρJ

dJ
dt . (1.50)

In the next step, we use this relation and the same definitions triplet of the
temperature (1.32), the thermodynamic pressure (1.40a) and the thermodynamic
tensor (1.46), and reduce the previous equation (1.49) to

dg
dt = −ηdθ

dt + 1
ρ

dpth
dt − H : d (Tth,ρ)δ

dt . (1.51)

On the other hand, if we differentiate the specific Gibbs free energy g directly
(i.e. as a composed function) with respect to time, we have

dg
dt = ∂g

∂θ

dθ
dt + ∂g

∂pth

dpth
dt + ∂g

d (Tth,ρ)δ
: d (Tth,ρ)δ

dt , (1.52)

which can be further rewritten as:

dg
dt = ∂g

∂θ

dθ
dt + ∂g

∂pth

dpth
dt +

(︄
∂g

∂ (Tth,ρ)δ

)︄
δ

: d (Tth,ρ)δ
dt , (1.53)

Comparing (1.51) with (1.53) we can finally identify formulae for the derivatives
of g as

∂g

∂θ
= −η, (1.54a)

∂g

∂pth
= J

ρR
, (1.54b)(︄

∂g

∂ (Tth,ρ)δ

)︄
δ

= −H. (1.54c)
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1.3 Representation theorem for isotropic elastic
solids with given specific Gibbs free energy

Further we assume that H = g
(︂

(Tth,ρ)δ
)︂
, which is in the form of the implicit

constitutive relation (1.17). We also assume that we are dealing with isotropic
material. One of the aims of this chapter is to derive a representation theorem
for isotropic elastic solids. The procedure for its derivation is as follows. First,
we derive the representation theorem only for the deviatoric part of the Hencky
strain tensor, then we use the definition of deviatoric part and get the desired
theorem from it.

Let us start with Theorem 2, which implies

H = α0I + α1 (Tth,ρ)δ + α2 (Tth,ρ)2
δ , (1.55)

where αi = αi(I1, I2, I3), i = 0, 1, 2, are functions of the tensor invariants of the
tensor (Tth,ρ)δ. Thanks to the fact, that (Tth,ρ)δ is a traceless tensor, we can find
some relations between these functions. We see that

I1 = 0, (1.56a)

I2 = 1
2

[︃(︂
Tr
(︂
(Tth,ρ)δ

)︂)︂2
− Tr

(︂
(Tth,ρ)δ

)︂2
]︃

= −1
2

[︃
Tr
(︂
(Tth,ρ)δ

)︂2
]︃
, (1.56b)

I3 = det
(︂
(Tth,ρ)δ

)︂
. (1.56c)

The next step is applying a trace operator to both sides of equation (1.55). Using
again the facts that H and (Tth,ρ)δ are traceless tensors, we get

0 = 3α0 + α2 Tr
[︂
(Tth,ρ)2

δ

]︂
, (1.57)

from which we can identify α0 using (1.56b) as

α0 = −1
3α2 Tr

[︂
(Tth,ρ)2

δ

]︂
= 2

3α2I2. (1.58)

Substituting (1.58) into representation formula (1.55) yields

H = 2
3α2I2I + α1 (Tth,ρ)δ + α2 (Tth,ρ)2

δ . (1.59)

Using Theorem 1 for our isotropic scalar valued function, which is the specific
Gibbs free energy g, we can see that it must take the form

g = g (θ, pth, I2, I3) . (1.60)

Moreover, if we use the chain rule and formula (1.54c), we identify the deviatoric
Hencky strain H as

H = −
(︄

∂g

∂ (Tth,ρ)δ

)︄
δ

= −
(︄
∂g

∂I2

∂I2

(Tth,ρ)δ
+ ∂g

∂I3

∂I3

(Tth,ρ)δ

)︄
δ

. (1.61)

Here we can use formulae for derivatives of matrix invariants, which we have
introduced in (1.7). With the property that (Tth,ρ)δ is a symmetric traceless
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tensor, the derivatives of invariants I2 and I3 are

∂I2

∂ (Tth,ρ)δ
= Tr

(︂
(Tth,ρ)δ

)︂
I − (Tth,ρ)T

δ = − (Tth,ρ)δ , (1.62a)

∂I3

∂ (Tth,ρ)δ
= det

(︂
(Tth,ρ)δ

)︂ (︂
(Tth,ρ)δ

)︂−T
= I3 (Tth,ρ)−1

δ . (1.62b)

We substitute these formulae into equation (1.61) and we get

H =
(︄
∂g

∂I2
(Tth,ρ)δ − ∂g

∂I3
I3 (Tth,ρ)−1

δ

)︄
δ

. (1.63)

Only partial derivatives of g with respect to I2 and I3 remain to be determined.
We use the following well-known theorem to determine them.

Theorem 4 (Cayley–Hamilton). A tensor A satisfies its own characteristic equa-
tion, i.e.

A3 − I1A2 + I2A − I3I = 0. (1.64)

Proof. See, for example, [19, p. 28].

In our situation, using (1.56a) with Cayley–Hamilton theorem implies

(Tth,ρ)3
δ + I2 (Tth,ρ)δ − I3I = 0. (1.65)

From this equation, we can express (Tth,ρ)−1
δ as

(Tth,ρ)−1
δ = 1

I3

(︂
I2I + (Tth,ρ)2

δ

)︂
. (1.66)

Substituting this relation into formula (1.63) yields

H =
(︄
∂g

∂I2
(Tth,ρ)δ − I2

∂g

∂I3
I − ∂g

∂I3
(Tth,ρ)2

δ

)︄
δ

=

= −2
3I2

∂g

∂I3
I + ∂g

∂I2
(Tth,ρ)δ − ∂g

∂I3
(Tth,ρ)2

δ . (1.67)

Comparing (1.67) with representation formula (1.59), we identify α1 and α2 as

α1 = ∂g

∂I2
, (1.68a)

α2 = − ∂g

∂I3
, (1.68b)

and the final form of the relation for H is

H = −2
3I2

∂g

∂I3
I + ∂g

∂I2
(Tth,ρ)δ − ∂g

∂I3
(Tth,ρ)2

δ . (1.69)

From the volumetric-isochoric split of the Hencky strain (1.28) the second term,
which is log J , remains to be expressed. Fortunately, it is a lot easier than the
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first term. The formula for the derivative of g with respect to pth (1.54b) implies

log J = log
(︄
ρR

∂g

∂pth

)︄
. (1.70)

The final step is to obtain the representation theorem for the complete Hencky
strain tensor H. In order to do that, we substitute (1.69) and (1.70) into the
volumetric-isochoric split (1.28). Since H = Hδ is traceless, we see that H = Hδ,
and it leads to the formula

H = H + 1
3 log J = Hδ + 1

3 log
(︄
ρR

∂g

∂pth

)︄
I =

= 1
3 log

(︄
ρR

∂g

∂pth

)︄
I + ∂g

∂I2
(Tth,ρ)δ −

[︄
∂g

∂I3
(Tth,ρ)2

δ

]︄
δ

. (1.71)

Summing up this approach, we can formulate the following version of the repre-
sentation theorem for isotropic elastic solids.

Theorem 5 (Representation theorem for isotropic elastic solids with a given
specific Gibs free energy). Let us consider an isotropic elastic solid with a given
specific Gibbs energy of the form

g = g(θ, pth, I2, I3), (1.72)

where I2 = I2
(︂
(Tth,ρ)δ

)︂
and I3 = I3

(︂
(Tth,ρ)δ

)︂
are the second invariant and the

third invariant of the tensor (Tth,ρ)δ. Then the constitutive relation between the
Hencky strain tensor H and the Cauchy stress tensor T is

H = 1
3 log

(︄
ρR

∂g

∂pth

)︄
I + ∂g

∂I2
(Tth,ρ)δ −

[︄
∂g

∂I3
(Tth,ρ)2

δ

]︄
δ

. (1.73)

1.4 Full system of governing equations
In this section, we formulate a full system of governing equations for isotropic
elastic solids in the Eulerian description with given specific Gibbs free energy g,
which is in the form

g = g
(︂
θ, pth, (Tth,ρ)δ

)︂
. (1.74)

This system of governing equations consists of four equations. The first one is
the well-known balance of the linear momentum in which we do not take into
account the body force b. Thus, the balance of the linear momentum is

ρ
dv
dt = divT, (1.75)

where the Cauchy stress tensor T is given by the formula

T = −pthI + ρ (Tth,ρ)δ , (1.76)

see (1.35), (1.44) and (1.46).
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The second equation is representation formula (1.73) from Theorem 5. To de-
rive the third equation, we start with a definition of the upper convected derivative
of a matrix A as

▽
A =def

dA
dt − LA − ALT. (1.77)

Recall that
dF
dt = LF. (1.78)

Using (1.78) we calculate the upper convected derivative of the left Cauchy–Green
tensor B as

▽
B = dF

dt F
T + F

dFT

dt − LB − BLT = 0. (1.79)

Moreover, the definition of the Hencky strain tensor H (1.18) implies
▽

e2H =
▽
B. (1.80)

And from (1.79) and (1.80), we get our third equation as the evolution equation
for H as

▽

e2H = 0. (1.81)
In the last equation, we want to include the evolution equation for the tem-

perature θ. Dealing with the elastic solid, the dissipative term in the evolution
equation for the specific entropy (1.43) has to be zero, so we get

ρ
dη
dt + div

(︃je
θ

)︃
= −je · ∇θ

θ2 . (1.82)

Furthermore, the relation (1.54a) for the derivative of g implies

−ρ d
dt

(︄
∂g

∂θ

)︄
+ div

(︃je
θ

)︃
= −je · ∇θ

θ2 . (1.83)

It remains to deal with the heat flux je. For it we use Fourier's law

je = −κ∇θ, (1.84)

where κ > 0 is the thermal conductivity and it is a constant. Overall, equa-
tion (1.83) can be rewritten as

−ρ d
dt

(︄
∂g

∂θ

)︄
− κ div

(︄
∇θ
θ

)︄
= κ

∇θ · ∇θ
θ2 (1.85)

or after using the identity div
(︄

∇θ
θ

)︄
= △θ

θ
+ ∇θ · ∇

(︃1
θ

)︃
as

−ρ d
dt

(︄
∂g

∂θ

)︄
− κ

△θ

θ
− κ∇θ · ∇

(︃1
θ

)︃
− κ

∇θ · ∇θ
θ2 = 0. (1.86)

And finally after evaluating that ∇
(︃1
θ

)︃
= −∇θ

θ2 we get

−ρθ d
dt

(︄
∂g

∂θ

)︄
= κ△θ. (1.87)
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The density ρ, which appears in (1.75) and (1.87), is expressed from the relation

ρeTrH = ρR, (1.88)

which comes from the balance of mass (1.41) and relation (1.24). Now we are
finally able to formulate the full system of governing equations

ρR
eTrH

dv
dt = divT, (1.89a)

H = 1
3 log

(︄
ρR

∂g

∂pth

)︄
I + ∂g

∂I2
(Tth,ρ)δ −

[︄
∂g

∂I3
(Tth,ρ)2

δ

]︄
δ

, (1.89b)

▽

e2H = 0, (1.89c)

−θ ρR
eTrH

d
dt

(︄
∂g

∂θ

)︄
= κ△θ, (1.89d)

which should be solved for unknowns H, v and θ.

1.5 Restrictions on specific Gibbs free energy
and relation to standard linearized elasticity

We have almost completed the theoretical part of this chapter and at the end
we look at a specific example. The main result, Theorem 5, works with the
assumption that we have the specific Gibbs free energy. However, the specific
Gibbs free energy cannot be just any function of the respective variables. In
addition, it must have a certain structure. But what are the requirements that a
given function must meet to be the specific Gibbs free energy? The best way to
investigate this question is to study the behavior of the density.

We can see that in formula (1.54b) for the partial derivative of the specific
Gibbs free energy g with respect to the thermodynamic pressure pth, the refer-
ential density ρR appears. Nevertheless, we are interested in the density ρ in the
current configuration. Using the balance of mass (1.41) in formula (1.54b) leads
to the desired relation with ρ as

∂g

∂pth
= 1
ρ
. (1.90)

Since the density at point P , which is the interior point of the body located in a
small element of volume ∆V whose mass is ∆m, is defined as the limit

ρ =def lim
∆V→0

∆V
∆m, (1.91)

and because ∆V and ∆m are positive, the density ρ has to be positive as well,
and using (1.90) we get the first condition as

∂g

∂pth
> 0. (1.92)

The second condition stems from the physical assumption that the material
stretches in the direction of the highest tensile force. It means that if there
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is an increasing tension in the elastic material, the density is decreasing. This
can be expressed as

∂ρ

∂pth
> 0.

We use this inequality again in formula (1.54b), which leads to the restriction

∂2g

∂p2
th

= ∂

∂pth

(︄
1
ρ

)︄
= − 1

ρ2
∂ρ

∂pth
< 0. (1.93)

Now we are ready to formulate the following proposition, about the necessary
conditions for the specific Gibbs free energy g.

Proposition 6 (Necessary conditions for the specific Gibbs free energy). Let us
consider an isotropic elastic solid with a given specific Gibbs free energy of the
form

g = g(θ, pth, I2, I3). (1.94)
Then the specific Gibbs free energy g must satisfy

(i)
∂g

∂pth
> 0, (1.95a)

(ii)
∂2g

∂p2
th

< 0. (1.95b)

Next we want to show the practical application of this proposition. Let us
define functions g1 and g2 as

g1 (θ, pth, I2, I3) =def −cV,Rθ
[︄
log

(︄
θ

θR

)︄
− 1

]︄
− KR

ρR
e

−
pth
KR + ρR

2µR
I2, (1.96a)

g2 (θ, pth, I2, I3) =def −cV,Rθ
[︄
log

(︄
θ

θR

)︄
− 1

]︄
− KR

ρR
e

−
p2
th

KR + ρR
2µR

I2, (1.96b)

where cV,R is the specific heat at the constant volume, θR is the reference tem-
perature and KR and µR are the positive parameters, which denote the bulk and
shear moduli. Later, we show their relation to the usual definitions of the bulk K
and shear µ moduli, which are defined in the standard linearized elasticity.

First, we check for both functions the first necessary condition from Proposi-
tion 6.

∂g1

∂pth
= e

−
pth
KR

ρR
, (1.97)

which is always positive. On the other hand, the same check for the function g2
leads to

∂g2

∂pth
= 2pth

ρR
e

−
pth
KR , (1.98)
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which might be negative. Therefore, the function g2 cannot be the specific Gibbs
free energy. So, continue only with the function g1 and verify the second condition
for it. We have

∂2g1

∂p2
th

= ∂

∂pth

⎛⎜⎜⎜⎜⎝e
−
pth
KR

ρR

⎞⎟⎟⎟⎟⎠ = − e
−
pth
KR

KR ρR
, (1.99)

which is negative as required. So we can say that g1 is an example of the specific
Gibbs free energy.5

The next step is to express the Hencky strain tensor H based on the function g1
using Theorem 5. Since the function g1 does not depend on the third tensor
invariant I3, formula (1.73) is reduced as

H = 1
3 log

(︄
ρR

∂g1

∂pth

)︄
I + ∂g1

∂I2
(Tth,ρ)δ . (1.100)

All that remains is to calculate ∂g1

∂I2
, which is

∂g1

∂I2
= ρR

2µR
. (1.101)

Since (1.90) and (1.97) imply that

1
ρ

= e
−
pth
KR

ρR
, (1.102)

formula (1.101) can be rewritten as

∂g1

∂I2
= ρ

2µR
e

−
pth
KR . (1.103)

Substituting (1.97) and (1.103) into (1.100) and using definition (1.44b) leads to
the desired result

H = − pth
3KR

I + 1
2µR

e
−
pth
KR (Tth)δ . (1.104)

As mentioned, now we want investigate the linearized version of this result.
First, we briefly recall the theory of linearization. Let us assume that the de-

formation χ can be decomposed as χ = X+U, where X is the position in the ref-
erence configuration and U is the displacement. We also assume that |∇U| ≪ 1.
In the words of the displacement gradient, the linearized strain ϵ is defined as

ϵ =def
1
2
(︂
∇U + (∇U)T

)︂
, (1.105)

5Let us justify the choice of the thermal part of the specific Gibbs energy g1 defined in (1.96a).
Substituting g1 into (1.89d) leads to the linear partial differential equation for the temperature θ
known as the heat equation

ρcV,R
dθ
dt = κ△θ.
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and the deformation gradient F can be expressed as

F = ∇χ = I + ∇U. (1.106)

Substituting this relation into the definition of the Hencky strain tensor (1.18)
yields

H = 1
2 logB = 1

2 log
(︂
(I + ∇U) (I + ∇U)T

)︂
≈ 1

2 log
(︂
I +

(︂
∇U + (∇U)T

)︂)︂
,

(1.107)
where we neglected terms (∇U)T (∇U) and (∇U) (∇U)T as we assume that they
are small. Note, that in (1.107) we have also derived the formula for the linearized
left Cauchy–Green tensor as

B ≈ I + 2ϵ. (1.108)
The next step is to take into account the standard approximation log (1 + x) ≈ x
for |x| < 1 that gives us

H ≈ 1
2
(︂
∇U + (∇U)T

)︂
= ϵ. (1.109)

Note that this also justifies why the coefficient 1
2 appears in the definition of the

Hencky strain tensor (1.18).
The next step is to deal with a linearization of the right-hand side of (1.104)

with respect to the stress. We see that the spherical part is already linear. On
the other hand, we have to appropriately approximate the deviatoric part as the
exponential function represents non-linearity there. The most straightforward
and in this case fully sufficient is to use the Taylor series for the exponential
function ex = ∑︁∞

n=0
xn

n! , specifically only the first term. All together gives us the
complete linearization of equation (1.104) as

ϵ = − pth
3KR

I + 1
2µR

(Tth)δ . (1.110)

From the decomposition of the Cauchy stress tensor T to the deviatoric and
spherical part (1.35) and from (1.44) we calculate that

Tδ = (Tth)δ , (1.111a)
TrT = −3pth. (1.111b)

Substituting these relations into formula (1.110) gives us

ϵ = 1
9KR

(TrT) I + 1
2µR

Tδ. (1.112)

Recall now the standard constitutive relation for the linearized elasticity (which
can be found, for instance, in [20, p. 140])

τ = λ (Tr ϵ) I + 2µϵ, (1.113)

where τ is the stress tensor in the linearized theory, while λ and µ are material
constants called Lamé coefficients. The first Lamé coefficient µ we have already
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defined specifically as the shear modulus. Now we want to invert this equation.
Applying the trace operator to the both sides of (1.113) implies

Tr τ = (3λ+ 2µ) Tr ϵ, (1.114)

which can be substituted back into (1.113) and we can get inverted relation (1.113)
as

ϵ = − λ

2µ (Tr ϵ) I + 1
2µτ =

(︄
1
3 · 1

2µ − λ

2µ · 1
3λ+ 2µ

)︄
(Tr τ ) I + 1

2µτ δ =

= 1
9λ+ 6µ (Tr τ ) I + 1

2µτ δ. (1.115)

Defining the bulk modulus K as K =def λ+ 2
3µ leads to the relation

ϵ = 1
9K (Tr τ ) I + 1

2µτ δ. (1.116)

This shows an evident similarity in equation (1.112). It also explains the chosen
form of the specific Gibbs free energy g1 in definition (1.96a).
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2. Elasto-plastic response of
one-dimensional models
described implicitly
The aim of this chapter is to introduce one-dimensional models for the inelastic
response of the material. These models are based on the concept of implicit
constitutive relations. In standard plasticity, we consider strain decomposition
into its elastic and plastic part, see, for example, [21]. On the other hand, for
some specific materials (such as Aluminium), which shows only negligible elastic
response, this decomposition is not appropriate. Also in soil and rock mechanics,
the plastic strain is viewed with some difficulty and many papers have been
written describing the elimination process (see, for instance, [22]). As we shall
see this theory, based on the implicit constitutive relation, does not need this
decomposition. This theory of describing the inelastic response of the material is
based on [4].

In the first part of this chapter, we introduce the relation between the stress,
the strain, the temperature and their time derivatives to describe the inelastic
response of the material. Then we include discontinuity in this description. This
leads to some complications in our numerical implementations that we have to
deal with, but it also gives us a tool to consider hysteretic materials, wherein
the current state depends on the complete history of the material. Furthermore,
we show some examples describing the elastic-perfectly plastic response (the re-
sponse that contains sharp yield points), where we also show just the mentioned
hysteresis of the material. However, since in fact most materials do not have these
points, we eliminate them and observe the elasto-plastic response of the material,
also with some examples. The implementation of all figures in this chapter is
done in Mathematica programming language using the standard library function
NDSolve.

2.1 General form of constitutive equations for
elastic-perfectly plastic response

In the previous chapter, we assumed in (1.5) a relation between the Cauchy stress
tensor T and the left Cauchy–Green tensor B. That is commonly used assumption
for the standard version of the implicit equation (see, for instance, [23])

f
(︂
B,T, θ

)︂
= 0 (2.1)

for the thermoelastic material. Implicit thermoelasticity is also our starting point
for our analysis. At first, however, for one-dimensional models, we work with
the stress σ, the small strain ϵ and the temperature θ. As a counterpart to
equation (2.1) in three dimensions, we assume the following implicit constitutive
equation for a thermoelastic material in one dimension

h (ϵ, σ, θ) = 0. (2.2)
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Differentiating this equation with respect to time we get
∂h

∂ϵ
ϵ̇+ ∂h

∂σ
σ̇ + ∂h

∂θ
θ̇ = 0. (2.3)

Unlike the previous chapter, we now want to describe the plastic material (in-
elastic). The idea is that for certain ranges of the strain, the stress and the tem-
perature, the material response is elastic, as described in the previous equation.
On the other hand, if we are outside this range, the material could exhibit an in-
elastic response (perfectly plastic response). Therefore, we modify equation (2.3)
by changing its right-hand side as

∂h

∂ϵ
ϵ̇+ ∂h

∂σ
σ̇ + ∂h

∂θ
θ̇ = w (r) p (r) · ṙ + |p (r) · ṙ|

2 , (2.4)

where r =def [ϵ, σ, θ]T and w and p are scalar and vector functions of r. To explain
why we are considering this form of equation, we rewrite it as

∇h · ṙ = w (r)H (p (r) · ṙ) p (r) · ṙ, (2.5)

where the notation H stands for the Heaviside step function defined as

H (x) =def

⎧⎨⎩0, x < 0,
1, x ≥ 0.

(2.6)

Thus, we can rewrite equation (2.4) into the form

∇h · ṙ =def

⎧⎨⎩w (r) p (r) · ṙ, p (r) · ṙ > 0,
0, otherwise.

(2.7)

Now when we have this form of equation, we can see that the term H (p (r) · ṙ)
represents the whole group for loading and unloading criteria based on the stress,
the strain or the temperature for elasto-plastic materials. We can also see this
term as a counterpart to the loading and unloading criteria for three dimensional
elasto-plastic materials (see, for example, [24]). Furthermore, depending on a
sign of the term p (r) · ṙ we can observe the hysteretic behavior of the material.
On the other hand, this term with the Heaviside function cannot handle a yield
criterion. This is the purpose of the scalar function ω (r) that contains the yield
criterion in itself.

2.2 Classical plasticity examples
Now when we have formulated the general form of the constitutive equation for
elasto-plastic response (2.7), let us look further at some specific cases. Let us
begin with the formulation of well-known Hooke's law. First, verbally as Robert
Hooke did it in 1678 in his essay Ut tensio sic vis, followed by the well-known
formula derived, for example, in [25, pp. 70–71].

Theorem 7 (Hooke's law). The power of a springy body is in the same proportion
as the extension. Thus, the stress σ and the small strain ϵ are related by the Young
modulus of elasticity E as

σ = Eϵ. (2.8)
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It is Hooke's law (more precisely its derivative - differentiating both sides of
equation (2.8) with respect to time) that forms an elastic response in our model,
whose constitutive equation is

σ̇ − Eϵ̇ = −EH (σϵ̇)H (|σ| − σy) ϵ̇, (2.9)

where σy is the yield stress.
Now we see how this equation relates to the formulated general constitutive

equation (2.7). First, we notice that we do not include the temperature in this
model, so our assumption is, that the function h depends only on σ and ϵ. Fur-
thermore, the scalar function ω is defined as ω (r) =def −E

σ
H (|σ| − σy), which

includes the yield condition, the vector function p is defined as p (r) =def [σ, 0]T
and finally, we assume that the function h has such a form that its derivatives
are ∂h

∂ϵ
= −E and ∂h

∂σ
= 1. Let us now analyze the situations that may occur. We

expect that we have the given small strain and we are interested in how it affects
the stress.

(i) If σϵ̇ > 0 and |σ| = σy, then σ̇ = 0. Thus, the stress is constant. It can be
also explained that in the first condition σϵ̇ > 0 we consider tensile loading
and the second condition |σ| = σy describes what happens if σ reaches a
certain limit set by σy. This tells us that in this case σ = σy and we observe
the perfectly plastic response.

(ii) In other cases where the conditions of the previous point are not met, we
observe the elastic response given by equation σ̇ = Eϵ̇.

Moreover, the model described by equation (2.9) is a rate-independent process,
which means that if we rescale the time variable t → αt̃ for some α > 0, then
the response of the material does not change. Indeed substituting t = αt̃ into
equation (2.9) yields

1
α
σ̇ − E

α
ϵ̇ = −E

α
H (σϵ̇)H (|σ| − σy) ϵ̇, (2.10)

which after multiplying the whole equation by α gives us again equation (2.9).
Now we want to verify the elastic-perfectly plastic response of the material

defined by equation (2.9) numerically. As mentioned, we have to deal with dis-
continuity given by the Heaviside function. Therefore, for every n ∈ N we define
the function Hn as

Hn (x) =def
1
2 + 1

π
arctan (xn) . (2.11)

As n → ∞, these functions Hn, according to [26, p. 734], converge pointwise to
the Heaviside step function H (x) = 1, if x > 0, and H (x) = 0, if x < 0, which,
together with the continuity of Hn, is exactly what we need. In Figure 2.1 we
can see that convergence is fast enough, just for n = 1000 we get a very good
approximation.
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Figure 2.1: Convergence rate of the approximation of the Heaviside function Hn.

Now that we have solved the problem of implementation of the Heaviside
function, let us look at equation (2.9) itself. First, we rewrite it using the ap-
proximation as

σ̇ − Eϵ̇ = −EHn (σϵ̇)Hn (|σ| − σy) ϵ̇. (2.12)
We further illustrate how the stress σ depends on the small strain ϵ. For this
illustration we need to specify values for the Young modulus E, which measures
the stiffness of the material, the yield stress σy and also for the small strain ϵ. We
further consider that our small strain is given by the formula ϵ (t) = sin (t). The
value of n in definition (2.12) is set to 1011. First, let us analyze the situation,
when E = 1 and σy = 0.5, as shown in Figure 2.2 and Figure 2.3.1

-1.0 -0.5 0.0 0.5 1.0 1.5
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 2.2: Dependence of the stress σ on the small strain ϵ with the Young
modulus E = 1 and the yield stress σy = 0.5. The value of ϵMAX is given by the
definition of ϵ as ϵMAX = sin(t)|

t=π
2

= 1.

1We assume that each physical quantity is scaled by characteristic quantities such as a
characteristic time, a characteristic length and a characteristic mass, while consequently we
effectively work with dimensionless quantities.
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Figure 2.3: Dependence of the stress σ on time t with the Young modulus E = 1
and the yield stress σy = 0.5.

In Figure 2.2 we see that from the beginning the stress σ has increased to
its limit value, which is the yield stress σy (on this interval we can see the elas-
tic response of the material - elastic loading). When σ reaches the limit value,
the stress does not change - the material response is perfectly plastic until the
small strain ϵ reaches its maximum value. Then the material performs the elastic
unloading until the stress σ reaches its extreme value again, but now its min-
imum −σy. This is followed by the perfectly plastic response and this cyclic
process repeats itself again and again. In Figure 2.2 we can also observe the hys-
teresis of the material. The moment when ϵ reaches its maximum value ϵMAX, we
then observe the elastic unloading, as we mentioned before. However, because of
the plastic deformation, for ϵ = 0 we get a different value of σ than we had at the
beginning of the cycle. Since this part of Figure 2.2 for unloading has the same
shape as for loading, it is only shifted (i.e. the material memory is manifested).
Therefore, we call the material response hysteretic.

It is also interesting to look at the dependence of the stress on time shown in
Figure 2.3. The information provided in this figure is similar. When the stress σ
reaches the yield stress σy, we can see the perfectly plastic response of the material
and that the stress is constant for a specific time interval. Then again unloading
and so on as in the previous figure. We notice that due to the definition of the
small strain ϵ, the stress σ has a periodic waveform whose graph is similar to the
sine function.

In Figure 2.4 and Figure 2.5 can see that if the stress does not reach the yield
value, no plastic response is observed. This is achieved by setting σy = 1.1.
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Figure 2.4: Dependence of the stress σ on the small strain ϵ with the Young
modulus E = 1 and the yield stress σy = 1.1 - completely elastic response as the
stress σ never reaches the yield stress σy.
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Figure 2.5: Dependence of the stress σ on time t with the Young modulus E = 1
and the yield stress σy = 1.1. The material response is completely elastic as the
stress σ for any time t does not reach the yield stress σy.

We have just shown and verified, that the model based on the constitutive
relation (2.9) or more precisely on its approximated version (2.12), actually works
as expected.

Let us now look at the problem that occurs in this model. The problem is at
the moment of transition from the elastic response of the material to the perfectly
plastic. These sharp yield points are marked in Figure 2.6 and Figure 2.7.
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Figure 2.6: Dependence of the stress σ on the small strain ϵ with the Young
modulus E = 1 and the yield stress σy = 0.5 with marked sharp yield points.
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Figure 2.7: Dependence of the stress σ on time t with the Young modulus E = 1
and the yield stress σy = 0.5 with marked sharp yield points.

Sharp yield points are consequences of the fact the approximated constitutive
equation (2.12) has a very steep transition to plasticity at the moment when
stress σ reaches σy due to the presence of the term Hn (|σ| − σy). In fact, most
materials do not show such a sharp yield condition, so we smooth this term
including the Heaviside function.

Next, we modify the problematic term Hn (|σ| − σy) with respect to the re-
maining terms in equation (2.12). Consider a modified version of equation (2.12)
in the form

σ̇ − Eϵ̇ = −EHn (σϵ̇) [1 + tanh (α (|σ| − σy))] ϵ̇. (2.13)
Let us justify this choice now. First, we remind in Figure 2.8 how the hyperbolic
tangent function looks like. Second, in Figure 2.9 we can see the difference be-
tween Hn (x) with n = 1011 and 1+tanh (αx) as it appears in equation (2.13) with
the parameter α set to 30. The version of response relation with the hyperbolic
tangent (2.13) obviously has a smoother transition between two value levels.
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Figure 2.8: Functions tanh (αx) for different values of α.
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Figure 2.9: The difference between functions 1 + tanh (30x) and H1011 (x). The
hyperbolic tangent gives a worse approximation. On the other hand, it is much
smoother than the approximation of the Heaviside function.

So, we can see that this approximation can be smooth enough. However,
another question arises from Figure 2.9. Is it not a problem that the positive
values of the function 1+tanh (αx), independent of the choice of the parameter α,
are greater than one, which is contrary to what we expect from the role of the
Heaviside function? Next, we show that this is not the problem.

From definition (2.13) we see that it happens if and only if

|σ| > σy. (2.14)

But can this even happen? Suppose yes and that this situation arises at the
point σ1, which we fix for this moment. First, we assume that σ1 > σy (for
negative σ1 the approach is similar). Moreover, we assume that the stress σ is
increasing on the interval [σy, σ1], so σ̇ > 0 on the interval [σy, σ1]. Then

1 + tanh (α (|σ1| − σy)) = δ, (2.15)
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for some δ > 1. In the same way we use the expression

Hn (σ1ϵ̇) = 1 − λ, (2.16)

for some non-negative λ, for which δ−1
δ

> λ. This can be achieved by taking
larger n in the definition of Hn. Otherwise, if we cannot express Hn as we did, it
does not make sense to discuss this situation because the right-hand side of (2.13)
is zero. Then (2.13) can be rewritten as

σ1̇ = E (1 − (1 − λ)δ) ϵ̇ = E (1 − δ + λδ) ϵ̇ < E (1 − δ + δ − 1) ϵ̇ = 0, (2.17)

which is a contradiction with the fact that σ̇ > 0 on the interval [σy, σ1]. Using
the similar approach for σ1 < σy also leads to the contradiction. Thus, it implies
that σ1 = σy. So, we proved that our response relation (2.13) is right and doing
what we expect it to do.

Successful elimination of sharp yield points given by (2.13) is shown in Fig-
ure 2.10 and Figure 2.11.
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Figure 2.10: Dependence of the stress σ on the small strain ϵ with the Young
modulus E = 1 and the yield stress σy = 0.5 with eliminated sharp yield points
by replacing the Heaviside function with a smooth transition as shown in equa-
tion (2.13) with the parameter α = 30.
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Figure 2.11: Dependence of the stress σ on time t with the Young modulus E = 1
and the yield stress σy = 0.5 with eliminated sharp yield points by replacing the
Heaviside function with a smooth transition as shown in equation (2.13) with the
parameter α = 30.

We can see that Figure 2.10 and Figure 2.11 that describe the elasto-plastic
response of the material preserv all properties (e.g. hysteresis of the material)
that we observed in Figure 2.2 and Figure 2.3 for the elastic-perfectly plastic
response of the material.

It is worth mentioning how different values of α deal with sharp yield points.
In Figure 2.12 we can see that smaller α generates a smoother transition from
the elastic to plastic deformation.

Figure 2.12: Detail on a transition from the elastic to the plastic deformation in
dependence on the value of α and comparison with the original (approximated)
relation (2.12) with n = 1011.

In Figure 2.4 and Figure 2.5 we investigated how the change of the yield
stress σy affects the response of the material. Let us look at the end of this
chapter how the change of the Young modulus E affects the response of the
material.
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Let us analyze the role of the Young modulus in the original constitutive
relation (2.9) and consider that we have previously defined the small strain ϵ as
the sine function. Starting from t = 0 and continuing to some specific time t1,
the stress σ is definitely less than σy. On the interval [0, t1] equation (2.9) yields

σ̇ (t) = Eϵ̇ (t) , (2.18)

which is a differential equation for the stress σ with the initial condition σ (0) = 0,
whose solution on the interval [0, t1] is

σ (t) = E sin (t) . (2.19)

From this solution on the interval [0, t1] we can distinguish two cases:

(i) E < σy
In this case, the stress σ never reaches the yield value σy. So, the right-hand
side of the constitutive equation (2.9) is always zero, thus σ (t) = E sin (t) on
the whole time interval. In this case we observe the purely elastic response
of the material. In Figure 2.13 and Figure 2.14 we can see that the same is
valid also for the discussed approximated relation (2.13). We used α = 30
for both figures.

(ii) E ≥ σy
In this case, there are situations, in which σ (t) = σy, so the “plastic” part of
the response relation (2.9) is activated at periodically repeating intervals,
and in the case E = σy at points. The larger the Young modulus E is,
the faster the stress σ increases and decreases. In other words, in these
situations the larger E extends the duration of the plastic response of the
material. Again in Figure 2.15 and Figure 2.16 we can see that the same
is true also for the approximated relation (2.13). We used α = 30 for both
figures.
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Figure 2.13: Dependence of the stress σ on the small strain ϵ with the Young
modulus E = 0.4 and the yield stress σy = 0.5. We can see that the stress σ
never reaches the yield value σy as its maximum is equal to the Young modulus E,
therefore the response of the material is purely elastic.
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Figure 2.14: Dependence of the stress σ on time t with the Young modu-
lus E = 0.4 and the yield stress σy = 0.5. We can see that the stress σ never
reaches the yield value σy as its maximum is equal to the Young modulus E,
therefore the response of the material is purely elastic.
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Figure 2.15: Dependence of the stress σ on the small strain ϵ with the Young
modulus E = 5.0 and the yield stress σy = 0.5. We can see that the stress σ
reaches the yield value σy very fast and the response of the material is mostly
plastic.
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Figure 2.16: Dependence of the stress σ on time t with the Young modu-
lus E = 5.0 and the yield stress σy = 0.5. We can see that the stress σ reaches
the yield value σy very fast and the response of the material is mostly plastic.
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3. Simulation of elasto-plastic
response of inextensible beams
The aim of this chapter is to simulate the elasto-plastic response of an inex-
tensible beam undergoing bending by using the implicit constitutive relation of
the form (2.13), which we developed in the previous chapter. The constitutive
relation of the inextensible elasto-plastic beam is very similar to (2.13), except
that the variables are replaced by other suitable variables associated with beam
theory. The simulation of the elasto-plastic behavior of the beam is performed
again in Mathematica programming language using the standard library function
NDSolve. We restrict ourselves to a two-dimensional setting - the beam moves in
a plane. The simulation is done by discretizing the beam into N rigid elements of
equal length. In addition to constitutive relations, we formulate other discretized
equations based on kinematics, equilibrium of forces and the balance of angular
momentum for the beam and our approach is quasistatic approximation. Finally,
when we are done with discretization, we show that the model works as expected
and we present simulations of the elastic and elasto-plastic material responses.
The approach used in this chapter is motivated by [5].

3.1 Discrete elasto-plastic beam
We consider an inextensible elasto-plastic beam of length L. The beam is dis-
cretized into N rigid elements of equal length l = L

N
.

1
+

2 i

Ei

i+ 1 N N + 1
x

y

l

L

Figure 3.1: The elasto-plastic beam of length L is discretized intoN rigid elements
of equal length l = L

N
. Each element Ei is described by positions of its nodes.

The default state for discretizing the beam is the position of the first node 1 at
the origin [0, 0], the second node 2 at [l, 0], . . . , the Nth node at [(N − 1) l, 0]
and the (N + 1)th node at [Nl, 0].

Forces acting on each beam element are shown in Figure 3.2.
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Figure 3.2: Forces acting on the discrete beam element Ei. Deformations oc-
cur only at the beam joints. The position of each discrete beam element is de-
scribed by the position of its nodes (beam joints), here [xi, yi] and [xi+1, yi+1], θi is
the angle between the element Ei and the x-axis, Fi = [F i

x, F
i
y] is the external

force vector (such as gravity) applied to the center of the element Ei respec-
tively, Vi = [V i

x , V
i
y ] is the net force vector on the cross section and Mi is the

bending moment at the beam joint.

The bending moments Mi are rotational forces within beam elements Ei that
cause bending. Similar to standard beam bending calculations (see, for exam-
ple, [27]), we describe the shape of the beam by the curvature κ, which is defined
as

κ =def
dθ
ds , (3.1)

where s is the length of the arc. In the standard theory of beam bending the
moment-curvature relationship (derived, for instance, in [28]) in the continuous
setting reads

M = EIκ, (3.2)
where E is the Young modulus of elasticity and I is the second moment of area of a
shape of a beam. The product EI is referred to as the bending stiffness of a beam.
Note that (3.2) can be viewed as a kind of a counterpart to Hooke's law (2.8).
In fact the bending stiffness EI is obviously the same for all elements Ei so
relation (3.2) can be rewritten for each discrete element Ei as

Mi = EIκi. (3.3)

In the previous chapter, we considered a class of constitutive relations of the form

f (ϵ, ϵ̇, σ, σ̇) = 0, (3.4)
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that is capable of describing the elasto-plastic response. So it motivates us (to-
gether with (3.2)) to consider the same constitutive relation for each discrete
element Ei, just instead of σ we use Mi and instead of ϵ we use κi, i.e.

f
(︂
κi, κ̇i,Mi, Ṁ i

)︂
= 0. (3.5)

Since we want to present a model that does not have a sharp yield point and
instead smoothly transits between the elastic and inelastic response (which is
required for each discrete beam element Ei), the appropriate constitutive relation
is (2.13), which in terms of the bending moment Mi and the curvature κi for each
element Ei reads

Ṁ i − EI κ̇i = −EI Hn (Miκ̇i) [1 + tanh (α (|Mi| −My))] κ̇i, (3.6)

where three adjustable parameters, namely the yield bending moment My, which
is a counterpart to σy, the bending stiffness EI, and the parameter α, are the
same for each discrete element Ei and thanks to them we can simulate the hys-
teretic response of the beam. Since the curvature can be in the discrete setting
approximated as

κ̇i ≈ θ̇i − θ̇i−1

l
, (3.7)

response equation (3.6) can be written (also using the Heaviside function prop-
erties) in the following discretized form

Ṁ i = {1 −Hn

(︂
Mi

(︂
θ̇i − θ̇i−1

)︂)︂
[1 + tanh (α (|Mi| −My))]}EI

θ̇i − θ̇i−1

l
, (3.8)

where i = 2, . . . , N , i.e. we observe the response relation only in the inner joints
of the beam. The values of the bending moments M1 and MN+1 in the edge nodes
are determined by the boundary conditions, which are discussed later.

Let us look back at Figure 3.2. It is straightforward to deduce the follow-
ing kinematic relations for the positions of the beam joints for each discrete
element Ei

xi+1 − xi = l cos θi, (3.9a)
yi+1 − yi = l sin θi, (3.9b)

where i = 1, . . . , N . (These kinematic equations hold at each beam joint.) Next,
equilibrium of forces described in Figure 3.2 in discrete beam element Ei implies

V i
x − V i+1

x − F i
x = 0, (3.10a)

V i
y − V i+1

y − F i
y = 0, (3.10b)

where i = 1, . . . , N . Finally, we use also the balance of angular momentum in
each beam element

Mi −Mi+1 −M i
F = 0, (3.11)

where M i
F denotes a sum of the moments of the force acting on the element Ei.

For the force F acting at a point A, the angular momentum M of this force with
respect to a reference point O is defined as

M = r × F, (3.12)
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where r is a vector joining the reference point O to the point of application of the
force. The sum M i

F consist of three parts, namely the momentum of the force Vi,
the momentum of the force Fi and the momentum of the force Vi+1 and because
of the sign convention introduced in Figure 3.1

M i
F = M i

Vi
−M i

Fi
−M i

Vi+1
. (3.13)

Since our reference point is at the node [xi+1, yi+1], where the force Vi+1 is acting,
then M i

Vi+1
= 0. Equation (3.12) gives us formulae for M i

Vi
and M i

Fi
as

MFi
= − l

2

⎡⎢⎣cos θi
sin θi

0

⎤⎥⎦×

⎡⎢⎣F
i
x

F i
y

0

⎤⎥⎦ = − l

2

⎡⎢⎣ 0
0

F i
y cos θi − F i

x sin θi

⎤⎥⎦ , (3.14)

from which we can immediately see that M i
Fi

= − l

2
(︂
F i
y cos θi − F i

x sin θi
)︂
. Simi-

larly

MVi
= −l

⎡⎢⎣cos θi
sin θi

0

⎤⎥⎦×

⎡⎢⎣V
i
x

V i
y

0

⎤⎥⎦ = −l

⎡⎢⎣ 0
0

V i
y cos θi − V i

x sin θi

⎤⎥⎦ , (3.15)

which gives us that M i
Vi

= −l(V i
y cos θi − V i

x sin θi). Substituting these formulae
into (3.13) and then into (3.11) gives us the final form of the balance of angular
momentum for each discrete beam element Ei as

Mi −Mi+1 +
(︃
V i
x − 1

2F
i
x

)︃
l sin θi −

(︃
V i
y − 1

2F
i
y

)︃
l cos θi = 0, (3.16)

where i = 1, . . . , N .
Finally, we can formulate a system of discretized equations, consisting discrete

response equation (3.8), kinematic equations (3.9), equilibrium of forces (3.10)
and the balance of angular momentum (3.16), which describes the elasto-plastic
behavior of the whole beam.

Ṁ i = {1 −Hn

(︂
Mi

(︂
θ̇i − θ̇i−1

)︂)︂
[1 + tanh (α (|Mi| −My))]}EI

θ̇i − θ̇i−1

l
(3.17a)

xi+1 − xi − l cos θi = 0, (3.17b)

yi+1 − yi − l sin θi = 0, (3.17c)

V i
x − V i+1

x − F i
x = 0, (3.17d)

V i
y − V i+1

y − F i
y = 0, (3.17e)

Mi −Mi+1 +
(︃
V i
x − 1

2F
i
x

)︃
l sin θi −

(︃
V i
y − 1

2F
i
y

)︃
l cos θi = 0, (3.17f)

where i = 2, . . . , N for (3.17a) and i = 1, . . . , N for (3.17b) - (3.17f).
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3.2 Numerical simulation of bending of inexten-
sible elasto-plastic beam

Now we want to solve equations (3.17) numerically and simulate the elasto-plastic
behaviour of an inextensible beam. We consider the setting, where the beam is
clamped at its left end and there is a force acting at its right end as shown in
Figure 3.3.

1 2 3 4
4

5

5

6

6

Yload (t)

Figure 3.3: Simulation of the beam bending, where the beam is divided into
five rigid elements. The beam is clamped at its left end (beam joint 1) and the
force Yload (t) is acting at its right end (beam joint 6).

In the simulation, we assume that there are no external forces acting on the
beam. Further we have to specify the boundary conditions for the system of
equations (3.17). Assuming that the origin of the coordinate system is at the
beam joint 1, the following three conditions hold

θ1 (t) = 0, (3.18a)
x1 (t) = 0, (3.18b)
y1 (t) = 0. (3.18c)

The remaining three boundary conditions arise from the fact that the right end
of the beam, which is at the beam joint N + 1, is subject to displacement under
the action of the force VN+1 = [0, Yload (t)]T and there are no external forces as
described in Figure 3.3. These conditions are

MN+1 (t) = 0, (3.19a)
V N+1
x (t) = 0, (3.19b)
V N+1
y (t) = Yload (t) . (3.19c)

Now that we are done with the boundary conditions for the whole beam, we must
further specify the initial conditions for calculation in each discrete element Ei
for time t = 0 (start of the simulation). Again, because we have placed our first
beam joint 1 at the origin of the coordinate system and because there are no
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forces or moments acting on the beam at time t = 0, the initial conditions are

xi (0) = (i− 1) l, (3.20a)
yi (0) = 0, (3.20b)
θi (0) = 0, (3.20c)
M i (0) = 0, (3.20d)
V i
x (0) = 0, (3.20e)
V i
y (0) = 0, (3.20f)

for i = 1, . . . , N + 1.
The last problem we have to solve is the description of the force Yload (t)

acting on the right end of the beam. The approach that is physically consistent
is that the function Yload (t) is linear up to the given time limit of tlimit, where the
function takes the extreme value Yload (tlimit) and then from the limit time tlimit
the force stops acting and we observe the reaction of the beam. This can be
described by the equation

Yload (t) =
⎧⎨⎩At, 0 < t ≤ tlimit,

0, t > tlimit,
(3.21)

where A ∈ R− is a constant (the chosen parameter) that determines the slope of
the function Yload (t), i.e. the rate of loading. Negativity of the parameter A is
determined by the direction of the force Yload (t) in Figure 3.3.

This definition is ideal from a physical point of view, but unfortunately it is
not smooth on the interval [0, T ], where T > tlimit (the problem is at time tlimit).
The problem arises when the numerical software solves equation (3.17f) on the
interval [0, T ] and expresses the time derivative of the bending moment M so that
it can be substituted into equation (3.17a). To overcome this problem, we have
to redefine the function Yload (t) in two steps.

In the first step, we make the function Yload (t) continuous. This is achieved
simply by adding a very steep transition between the extreme value of Yload (t) at
time tlimit and the constant zero value at times t after tlimit as

Yload (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
At, 0 < t ≤ tlimit,

Bt+ (A−B) tlimit, tlimit < t ≤ B − A

B
tlimit,

0, t >
B − A

B
tlimit,

(3.22)

where B ∈ R+ is a constant (the chosen parameter) that determines the slope of
the transition between the extreme value of Yload (t) at time tlimit and the constant
zero value at times t after tlimit. Positivity of the parameter B is implied by
negativity of A. Note that we want to take the parameter B large enough to get
the steepest and fastest possible transition.

The second step is to smooth the piecewise function Yload (t) defined by for-
mula (3.22). Using the procedure described in [29], we get the smooth function
on the interval [0, T ] for any positive T as

Yload (t) = KA +
2∑︂
i=1

KBi
log[1 + e−β(t−γi)], (3.23)
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where

• β is the chosen control parameter,

• γ1 =def tlimit,

• γ2 =def
B − A

B
tlimit,

• KA =def − (B − A) γ1 +Bγ2,

• KB1 =def
B − A

β
,

• KB2 =def
−B
β

.

Figure 3.4 shows an example of the function defined by (3.23) with different values
of β.

-2.5

-2.0

-1.5

-1.0

-0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.4: An example of functions given by (3.23) for several different values
of β for A = −1, B = 105 and tlimit = 2. We can see that the larger β values, the
more similar the function is to the definition of the piecewise function (3.22).

Now we have completed the full description of the model given in Figure 3.3
and together with the corresponding system of equations (3.17), the boundary
conditions (3.18) - (3.19), the initial conditions (3.20) and the loading func-
tion (3.23) and after specifying all needed parameters, we can simulate the be-
havior of the beam.

Two possibilities may now arise depending on the yield moment My. The
first is that in all discrete elements Ei, the bending moment Mi is less than My

so equation (3.17a) results in the time-differentiated moment-curvature relation-
ship (3.3). This is something similar to what we have already examined in the
previous chapter and we got the elastic response of the material as discussed and
shown in Figure 2.4 and Figure 2.5. This situation is described in the first sub-
section. On the other hand, in the second subsection we discuss the second possi-
bility, that is that the parameter My is chosen so that some bending moments Mi

reach the yield value My and we follow an analogy of the plastic deformation,
which we observed in the previous chapter in Figure 2.10 and Figure 2.11.
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3.2.1 Elastic response
First, we want to show that for a suitably chosen parameter My, which is together
with the other parameters defined in Table 3.1, we get the purely elastic response
of the beam in our numerical simulation. The value of N is the highest on which
the simulation went through using Mathematica version 10.3.

Parameter Value
N 14
L 14

tlimit 2
n 1011

α 30
My 10
EI 5
β 103

A -1
B 105

Table 3.1: Parameter values for the first simulation. (Parameter values are given
in a dimensionless form.)

We are interested in how the shape of the beam changes (i.e. how the position
of the coordinates xi, yi for each discrete beam element Ei changes) on a certain
time interval [0, T ]. Numerical calculations were done on the interval [0, 100],
but interesting things happen on a substantially shorter time interval. Hence the
following figures are plotted for T = 10.

Let us look first at the time evolution of the position of the end beam joint
in Figure 3.5 and Figure 3.6. These figures should give us an idea whether we
have chosen the appropriate parameter My (i.e. big enough) and if our response is
indeed elastic. However, we check this explicitly in Figure 3.7, where we show that
on our time interval [0, 10], none of the bending moments Mi, which corresponds
to the inner beam joints, is larger than the yield bending moment My, i.e. there is
no plastic deformation. In the last Figure 3.8, we look at the shape of the beam
at several different time instants.
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Figure 3.5: Figure (a) shows the x-position of the end beam joint (in our case it
is x15) as a function of time. Figure (b) shows the x-position of the node x15 as
a function of time on a short time interval including tlimit.
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Figure 3.6: Figure (a) shows the y-position of the end beam joint (in our case it
is y15) as a function of time. Figure (b) shows the y-position of the node y15 as
a function of time on a short time interval including tlimit.
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Figure 3.7: Values of the bending moments Mi of the inner beam joints
(i.e. i = 2, 3, . . . , 14 in our case) as a function of time. We can see that none
of the moments in the absolute value reaches the value of My. Parameter tlimit is
chosen as tlimit = 2.

In Figure 3.5, Figure 3.6 and Figure 3.7 we can see that we are actually
observing the elastic response of the material - especially in Figure 3.7 we see
that there is no inner beam joint i in the beam, for which the corresponding
bending moment Mi reaches the value of the yield bending moment My. This
leads to the fact that the right-hand side of discretized response equation (3.17a)
does not contain “plastic” terms, that is, only the terms characterizing elasticity
left. We also see that when the force stops acting (i.e. at time t > tlimit = 2), we
observe that the values of bending moments Mi in all internal nodes of the beam
very quickly reach zero. In Figure 3.5 and Figure 3.6 we notice, that when the
force stops acting, the beam returns to its original position very quickly. These
observations are also documented in Figure 3.8 that shows the shape of the beam
at various time instants.
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Figure 3.8: The shape of the beam as a function of time. We observe the elastic
behavior of the material - the beam quickly returns to its original position after
unloading. Value of tlimit is chosen as tlimit = 2.

Figure 3.8 can be seen as one of the two main results of this chapter and the
thesis itself. It is a numerical verification of a physical model of beam bending
described in Figure 3.3 and mathematically formulated in a discretized version
by equations (3.17) with the relevant boundary conditions (3.18) and (3.19) and
initial conditions (3.20). As we have shown in Figure 3.7, there is no bending
momentMi of the inner beam joints in our simulation, that reaches in the absolute
value the critical value given by the parameter My. This gives us an a priori
estimate that we observe the purely elastic behavior of the beam, which is verified
in Figure 3.8.

As can be seen in Figure 3.8, even though the force is applied up to time tlimit,
the beam at time t = 1 already reaches its critical position in which it remains
until time tlimit. As soon as the force stops acting, we observe a rapid reaction of
the beam as the material returns to its original position very quickly.

3.2.2 Elasto-plastic response
Our second simulation is based on the parameter values shown in Table 3.2.
The parameters in this table (especially My) are chosen in that way that we
can observe the elasto-plastic behavior of the beam as shown in the following
figures. The value of N is the highest on which the simulation went through
using Mathematica version 10.3.
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Parameter Value
N 14
L 14

tlimit 2
n 1011

α 30
My 1
EI 5
β 103

A -1
B 105

Table 3.2: Parameter table for the second simulation. (Parameter values are
given in a dimensionless form.)

We are therefore interested in how the shape of the beam changes on a certain
time interval [0, T ]. Let us look first at the time evolution of the position of the
end beam joint in Figure 3.9 and Figure 3.10. As in the previous simulation,
these figures should give us information whether we have chosen the appropriate
parameter My. This is further verified in Figure 3.11. In the last Figure 3.12
the shape of the beam is shown at several different time instants. Again we
chose T = 10.
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Figure 3.9: Figure (a) shows the x-position of the end beam joint (in our case it
is x15) as a function of time. Figure (b) shows the x-position of the node x15 as
a function of time on a short time interval including tlimit.
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Figure 3.10: Figure (a) shows the y-position of the end beam joint (in our case
it is y15) as a function of time. Figure (b) shows the y-position of the node y15
as a function of time on a short time interval including tlimit.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
0 2 4 6 8 10

Figure 3.11: Values of the bending moments Mi of the inner beam joints
(i.e. i = 2, 3, . . . , 14 in our case) as a function of time. We can see that the
moment M2 reaches the value of −My, but none of the moments exceeds it.

In Figure 3.9, Figure 3.10 and Figure 3.11 we see that, unlike the previous
simulation, we now observe the plastic response of the material. Especially in Fig-
ure 3.11 we see that in the beam joint 2, the corresponding bending moment M2
reaches the value of the yield bending moment My (more precisely, the absolute
value of M2 is equal to My). This implies that the right-hand side of discretized
response equation (3.17a) contains “plastic” terms. In Figure 3.9 and Figure 3.10
we notice that when the force stops acting, the beam quickly reaches a static
position, but different from the original position - we observe the plastic defor-
mation. These statements are further documented in Figure 3.12 that shows the
shape of the beam at various time instants.
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Figure 3.12: The shape of the beam as a function of time. We observe the plastic
response of the material - the beam quickly reaches the deformed position where
it remains after unloading. The shape of the beam at t = 2.010 is almost identical
to the shape of the beam at t = 3.000.

Figure 3.12 shows the second main results of this chapter. The only difference
in this simulation compared to the previous one is that we took the lower value of
the parameter My. However, as is shown in Figure 3.11, the bending moment of
the first inner beam joint M2 reaches the yield bending moment, specifically −My.
Based on the theory that we have built, this gives us an a priori estimate that we
observe the elasto-plastic behavior of the material, which is verified in Figure 3.12.

During the time interval when the force is acting at the right end of the beam
(i.e. t ≤ tlimit = 2.000), the beam is bent to its critical position. Subsequently,
when the force stops acting, we can observe the effort of the beam to return to
its original position, but unlike the previous simulation, this does not happen.
Already at time t = 2.010, the beam remains in a deformed bent position, in
which it remains permanently (as shown at time t = 3.000, there is no further
displacement of the beam position). Thus, we observe the elasto-plastic response
of the beam.
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4. Three-dimensional analogy of
elastic-perfectly plastic response
In Chapter 2, we have developed a constitutive relation (2.9), which describes
the elastic-perfectly plastic response of the material in the one-dimensional set-
ting. The aim of this final chapter is to derive a similar constitutive relation
for three-dimensional isotropic solids and to provide a thermodynamic basis for
such a constitutive relation. We achieve this by a similar procedure based on
thermodynamics as we did in Chapter 1, where we worked with the hyperelastic
material. An important part of our approach is, as in Chapter 2, that we want
to avoid calculations involving plastic strain.

4.1 Thermodynamic framework for plasticity

4.1.1 Preliminaries
Let us introduce the corotational derivative, which is for a matrix A defined as

△

A =def
dA
dt − WA + AW, (4.1)

where W is the skew-symmetric part of the velocity gradient L, that is

W =def
1
2
(︂
L − LT

)︂
. (4.2)

The corotational derivative given by definition (4.1) means that the rate is cal-
culated with respect to a frame that is rotated. Furthermore, the equality

▽

B = 0,
proven in (1.79), together with the fact that W is the skew-symmetric tensor
and D is the symmetric tensor yields

△

B = dB
dt − WB + BW = dB

dt − (L − D)B − B (L − D)T =

=
▽
B + DB + BD = DB + BD. (4.3)

The classical elastoplasticity (see, for example, [30, p. 165]) is based on a de-
composition of the deformation gradient F into the elastic and plastic part. The
decomposition takes the form of the multiplicative decomposition of F as

F = FeFp, (4.4)

where Fe is the elastic part of the deformation gradient and Fp is the plastic
part of the deformation gradient. Based on this decomposition, we can define the
elastic part of the left Cauchy–Green tensor Be as

Be =def FeFT
e . (4.5)

Motivated by relation (1.78) we denote the term dFp

dt F
−1
p as Lp. Note that here we

do not use the term definition for this relation, but only denotation as Lp does
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not have any direct physical meaning unlike the velocity gradient L. Having Lp,
we define the plastic strain rate Dp as

Dp =def
1
2
(︂
Lp + LT

p

)︂
. (4.6)

Next, we find a similar evolution equation for Be as we did it already for B
in (4.3). For that we also need a formula for the time derivative of the matrix
inverse, which for an invertible matrix A is

dA−1

dt = −A−1 dA
dt A

−1. (4.7)

Now using formulae (4.4), (4.5), (4.6) and (4.7) we can express dBe

dt as

dBe
dt = d

dt
(︂
FeFT

e

)︂
= dFe

dt F
T
e + Fe

dFT
e

dt = d
dt
(︂
FF−1

p

)︂
FT
e + Fe

d
dt
(︂
F−T
p FT

)︂
=

= LBe + BeLT − Fe
dFp
dt F

−1
p FT

e − Fe
(︄

dFp
dt F

−1
p

)︄T

FT
e =

= LBe + BeLT − 2FeDpFT
e . (4.8)

Substituting this result into the definition of
△

Be and performing the same manip-
ulation as in (4.3) implies the evolution equation for Be as

△

Be = DBe + BeD − 2FeDpFT
e . (4.9)

Furthermore, we write for better clarity the evolution equation for B (4.3) and
the evolution equation for Be (4.9) below each other

△

B = DB + BD, (4.10a)
△

Be = DBe + BeD − 2FeDpFT
e . (4.10b)

Note that equation (4.10b) implies, that the tensor
△

Be is symmetric.
In our approach, we want to avoid direct calculations involving plastic quan-

tities such as Dp in (4.10b). Comparing equation (4.10a) with equation (4.10b)
gives us an idea of rewriting them as one common equation, which is consistent
with both evolution equations for B and Be. The natural candidate is an equation
in the form

△

Be = DBe + BeD + X, (4.11)
where X denotes a tensor, which we want to determine now. To preserve the
symmetry of the tensor

△

Be, our first requirement for the tensor X is to be sym-
metrical as well. The reason for defining the evolution equation this way stems
from the fact that if X = 0, then the evolution equation of Be of the form (4.11)
coincides with the evolution equation of B given by (4.10a).
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4.1.2 Specific Helmholtz free energy
We assume that the specific Helmholtz free energy is given by the formula

ψ =def ψ (θ,Be) . (4.12)

Recall the relation between the specific Helmholtz free energy ψ, the specific
internal energy e and the specific entropy η in terms of Be as a counterpart to (1.4)
as

ψ(θ,Be) = e(η,Be)
⃓⃓⃓
η=η(θ,Be)

− θη(θ,Be), (4.13)

which in fact is the Legendre transformation of the specific internal energy.
Substituting (4.13) into the evolution equation for the specific internal energy

of the form (1.11) only with a slight change that e =def e(η,Be) yields

ρ

(︄
∂ψ

∂θ

dθ
dt + ∂ψ

∂Be
: dBe

dt + dθ
dt η + θ

dη
dt

)︄
= T : D − div je. (4.14)

Further using the formula ∂ψ
∂θ

= −η, we obtain the standard evolution equation
for the specific entropy in the form

ρ
dη
dt = 1

θ

(︄
T : D − ρ

∂ψ

∂Be
: dBe

dt − div je
)︄
, (4.15)

as a counterpart of the evolution equation (1.12). Now we want to modify this
equation in such a way that it includes D and the corotational derivative of Be.
In the first step, we want to substitute the corotational derivate of Be into this
equation. The obvious way how to do it is by modifying the term ∂ψ

∂Be
: dBe

dt
because the definition (4.1) of

△

Be implies
∂ψ

∂Be
: dBe

dt = ∂ψ

∂Be
:
(︃△

Be + WBe − BeW
)︃
. (4.16)

Next, we want to evaluate the matrix scalar product on the right-hand side
of (4.16). Theorem 1 implies that

∂ψ

∂Be
=

3∑︂
n=1

∂ψ

∂Ii

∂Ii
∂Be

, (4.17)

where Ii, i = 1, 2, 3, are the matrix invariants of Be. Using formulae (1.7) for the
derivatives of matrix invariants together with the fact that Be is the symmetric
tensor yields

∂ψ

∂Be
= ∂ψ

∂I1
I + I1

∂ψ

∂I2
I − ∂ψ

∂I2
Be + I3

∂ψ

∂I3
B−1
e . (4.18)

Substituting (4.18) into (4.16) together with the cyclic property of the trace (i.e.
for matrices A and B the equality Tr (AB) = Tr (BA) holds) implies

∂ψ

∂Be
: dBe

dt = ∂ψ

∂Be
:

△

Be. (4.19)

Moreover, having expression (4.18) we notice, that ∂ψ
∂Be

commutes with Be.
In the second step, we want to deal with the symmetric part of the velocity

gradient D. We want to express D from equation (4.11), so that we can sub-
stitute it into equation (4.15). For this we need the following theorem (see, for
example, [31, pp. 7–8]).
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Theorem 8 (Solution of the algebraic Lyapunov equation). Let A and Q be given
matrices and suppose that all the eigenvalues of the matrix A have negative real
parts. Then equation

ATP + PA = −Q (4.20)
has a unique solution

P =
∫︂ ∞

τ=0
eτA

TQ eτA dτ. (4.21)

Since Be is the symmetric positive definite matrix, then all eigenvalues of the
matrix −Be are negative (and real). We see that if we rewrite (4.11) as

(−Be)T D + D (−Be) = −
(︃△

Be − X
)︃
, (4.22)

we obtain the algebraic Lyapunov equation as in (4.20). Then Theorem 8 implies
that

D =
∫︂ ∞

τ=0
e−τBe

(︃△

Be − X
)︃
e−τBedτ. (4.23)

Now substituting (4.19) and (4.23) into (4.15) yields

ρ
dη
dt = 1

θ

{︄
T :

[︃∫︂ ∞

τ=0
e−τBe

(︃△

Be − X
)︃
e−τBe dτ

]︃
⏞ ⏟⏟ ⏞

I

− ρ
∂ψ

∂Be
:

△

Be⏞ ⏟⏟ ⏞
II

− div je⏞ ⏟⏟ ⏞
III

}︄
. (4.24)

The right-hand side of equation (4.24) is divided into three terms I, II and III.
First, we want to manipulate term I and term II. At this moment, we leave
term III unchanged.

Let us start with term I. The definition of the matrix scalar product (1.19a),
the fact that for two (real) matrices A and B the equality A : B = B : A holds and
the symmetry of the Cauchy stress tensor T implies that term I can be rewritten
as

Tr
[︃(︃∫︂ ∞

τ=0
e−τBe

(︃△

Be − X
)︃
e−τBe dτ

)︃
T
]︃
. (4.25)

Since the trace of the matrix product is by definition a finite sum, we can exchange
the integral and the trace, which together with the cyclic property of the trace
yields ∫︂ ∞

τ=0
Tr
[︃
Te−τBe

(︃△

Be − X
)︃
e−τBe

]︃
dτ. (4.26)

Next, we recall the fact that the cyclic property of the trace can be extended to
the product of four matrices A, B, C and D as Tr (ABCD) = Tr (DABC) which
we use as ∫︂ ∞

τ=0
Tr
[︃
e−τBe Te−τBe

(︃△

Be − X
)︃]︃

dτ. (4.27)

The last expression can be further rewritten as

Tr
[︃(︃∫︂ ∞

τ=0
e−τBe Te−τBe dτ

)︃ △

Be
]︃

− Tr
[︃(︃∫︂ ∞

τ=0
e−τBe Te−τBe dτ

)︃
X
]︃
. (4.28)

Using the same approach as before (but in the reverse direction), we can rewrite
the previous expression as

Tr
[︃(︃∫︂ ∞

τ=0
e−τBe Te−τBe dτ

)︃ △

Be
]︃

− Tr
[︃(︃∫︂ ∞

τ=0
e−τBe Xe−τBe dτ

)︃
T
]︃
, (4.29)
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which by the definition of the matrix scalar product (1.19a) and by the fact
that

△

Be is symmetric implies that

I =
(︃∫︂ ∞

τ=0
e−τBe Te−τBe dτ

)︃
:

△

Be − T :
(︃∫︂ ∞

τ=0
e−τBe Xe−τBe dτ

)︃
. (4.30)

We start dealing with term II. First, we mention the following formula for
calculating the definite integral∫︂ ∞

τ=0
e−2τBe dτ =

[︃
−1

2 (Be)−1 e−2τBe

]︃∞

τ=0
= 1

2 (Be)−1 . (4.31)

Next, term II from (4.24) can be rewritten as

Tr
(︄
ρ
∂ψ

∂Be

△

Be
)︄
. (4.32)

Furthermore, using equality (4.31) implies

Tr
(︄

2ρ ∂ψ
∂Be

Be
∫︂ ∞

τ=0
e−2τBe dτ

△

Be
)︄
, (4.33)

which is equal to

Tr
(︄∫︂ ∞

τ=0
2ρ ∂ψ
∂Be

Be e−2τBe dτ
△

Be
)︄
. (4.34)

Next, we need observations that Be commutes with e−τBe , and that ∂ψ
∂Be

commutes
with e−τBe . The commutative property of e−τBe and Be can be seen from the
definition of the matrix exponential

e−τBe =def

∞∑︂
n=0

1
n! (−τBe)n . (4.35)

Then

e−τBe Be =
∞∑︂
n=0

(−τ)n

n! (Be)n+1 = Be
∞∑︂
n=0

(−τ)n

n! (Be)n = Be e−τBe . (4.36)

The commutative property of ∂ψ
∂Be

and e−τB can be shown similarly, only we need
to use formula (4.18) for the partial derivative of ψ. Then (4.34) is equal to

Tr
[︄∫︂ ∞

τ=0
e−τBe

(︄
2ρ ∂ψ
∂Be

Be
)︄
e−τBe dτ

△

Be
]︄
, (4.37)

which after using the definition of the matrix scalar product and the symmetry
of

△

Be leads to the equality

II =
(︄∫︂ ∞

τ=0
e−τBe

(︄
2ρ ∂ψ
∂Be

Be
)︄
e−τBe dτ

)︄
:

△

Be (4.38)

Finally, substituting (4.30) and (4.38) into (4.24) leads to the following form of
the evolution equation for the specific entropy

ρ
dη
dt = 1

θ

{︄[︄∫︂ ∞

τ=0
e−τBe

(︄
T − 2ρBe

∂ψ

∂Be

)︄
e−τBe dτ

]︄
:

△

Be+

− T :
[︃∫︂ ∞

τ=0
e−τBeX e−τBe dτ

]︃
− div je

}︄
. (4.39)
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Now we see that if X = 0, which happens if Be = B, and using the requirement
that the material should not produce entropy due to mechanical processes, we
get a counterpart to the constitutive relation (1.13) as

T = 2ρ ∂ψ
∂Be

Be. (4.40)

Now we need to specify the constitutive relation for X, in such a way that the
response of the material is elastic-perfectly plastic, similar to Chapter 2. We
assume the Cauchy stress tensor in the form (4.40). Thus, only the following term
(except the heat flux) remains on the right-hand side of the evolution equation
for the specific entropy (4.39)

−T :
[︃∫︂ ∞

τ=0
e−τBeX e−τBe dτ

]︃
. (4.41)

As we want to have non-negative entropy production, we need this term to be
non-negative as well. If we denote the integral part as

Y =def

∫︂ ∞

τ=0
e−τBeX e−τBe dτ, (4.42)

and using again Theorem 8, then X solves the algebraic Lyapunov equation

YBe + BeY = X. (4.43)

Next, we want to include in the constitutive equation for X both elastic (X = 0)
and perfectly-plastic (X ̸= 0) responses. We choose our constitutive relation as
a counterpart to (2.9) as

Y =def −H (T : D)H (|T| − Ty)D, (4.44)

where Ty is the yield stress, which is a counterpart to σy from the constitutive
relation (2.9).

Substituting Y of the form (4.44) into (4.41) yields

−T :
[︃∫︂ ∞

τ=0
e−τBeX e−τBe dτ

]︃
= −T : Y = H (T : D)H (|T| − Ty)T : D ≥ 0,

(4.45)
where the non-negativity is assured thanks to the definition of the Heaviside
function (2.6) and the presence of the product H (T : D)T : D. However, our
goal is to find the evolution equation for

△

Be. Substituting (4.44) into (4.43) gives
us

X = −H (T : D)H (|T| − Ty) (DBe + BeD) , (4.46)
which after substitution into (4.11) implies that the evolution equation for Be is

△

Be = [1 −H (T : D)H (|T| − Ty)] (DBe + BeD) . (4.47)

The updated version of the evolution equation for the specific entropy (4.39) is
also useful for deriving governing equations, which is done in the following section.
Substituting (4.40) and (4.45) into (4.39) yields

ρ
dη
dt = 1

θ
[H (T : D)H (|T| − Ty)T : D − div je] . (4.48)
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Let us now analyze the evolution equation (4.47), that is implied by the consti-
tutive relation (4.44). First, we have already shown that this definition always
implies non-negative entropy production. Moreover, the following two situations
may occur:

(i) If T : D < 0, which means that the material is being unloaded or if the yield
value for the stress has not been reached, i.e. |T| < Ty, then (4.47) reads

△

Be = (DBe + BeD) , (4.49)

thus Be satisfies the same evolution equation as B, hence the response is
elastic.

(ii) If T : D ≥ 0, which means that the material is not being unloaded and if
the yield value for the stress has been reached, i.e. |T| = Ty, then (4.47)
reads

△

Be = 0, (4.50)
which indicates the plastic response.

Now let us take a look at the well-known von Mises yield criterion that is in
a general form (see [9, p. 473]) and [32, p. 4]) defined as[︂

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2
]︂

= 2σ2
0, (4.51)

where σ0 is the flow stress, which is defined as the instantaneous value of stress
required to continue plastically deforming the material - to keep the material
“flowing” (for example, for wires it can be determined with a tensile testing)
and σ1, σ2 and σ3 are called principal stresses because they act on faces that have
no shear stress acting upon them. The relation (4.51) can be further expressed
by the definition of the stress deviator (1.19b) as√︄

3
2 |Tδ| = σ0, (4.52)

and if we define the yield stress as Ty =def

√︄
2
3σ0 it gives us

|Tδ| − Ty = 0, (4.53)

which is exactly in the form of (4.44).
The von Mises yield criterion provides good predictions for most polycrys-

talline metals, which are metals that are composed of many crystallites of varying
size and orientation and is used for modelling of rock and soil materials. This
yield condition might be used, for example, for malleable iron.

4.2 Full system of governing equations
Now that we have found the relation for the evolution equation for Be, we further
derive a full system of governing equations in the Eulerian description as an
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analogy of the system of governing equations (1.89) in the implicit elastic theory.
Compared to the implicit elasticity, where we had the relation (1.88) between
the Hencky strain tensor H and the density ρ, thanks to which we did not need
the evolution equation for the density ρ, now we are in a situation where we
do not have a counterpart to (1.88), and therefore the evolution equation for the
density ρ must necessarily be part of governing equations. As a natural candidate
for the description of the evolution of the density, the balance of mass (1.42) offers
itself. We also need to deal with the specific Helmholtz free energy ψ instead of
the specific Gibbs free energy g and with it we start now.

We assume the additive decomposition of the specific Helmholtz free energy
into the thermal and mechanical part as

ψ = ψe (Be) + ψθ (θ) , (4.54)

where the thermal part ψth is given by the standard formula

ψθ (θ) = −cV,Rθ
[︄
log

(︄
θ

θR

)︄
− 1

]︄
, (4.55)

where cV,R is the specific heat at the constant volume, θR is the reference tem-
perature.

Next, we substitute formula (4.55) into the evolution equation for the specific
entropy (4.48) to get the evolution equation for the temperature. The standard
formula

η = −∂ψ

∂θ
, (4.56)

implies that the entropy is in our case (4.54) and (4.55) given by the formula

η = cV,R log
(︄
θ

θR

)︄
. (4.57)

This implies that the evolution equation for the specific entropy (4.48) can be
rewritten as the evolution equation for the temperature

ρcV,R
dθ
dt = H (T : D)H (|T| − Ty)T : D − div je, (4.58)

which can be thanks to Fourier's law (1.84) further rewritten as

ρcV,R
dθ
dt = κ△θ +H (T : D)H (|T| − Ty)T : D. (4.59)

Finally, we are now in a position to summarize the obtained results. The balance
of mass (1.42), the balance of linear momentum without the body force (1.75),
the representation formula for the Cauchy stress tensor (4.40), the evolution
equation for Be (4.47) and the evolution equation for the temperature (4.59)
form the full system of governing equations in the Eulerian description for un-
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knowns Be, v, θ and ρ.

dρ
dt + ρ div v = 0, (4.60a)

ρ
dv
dt = divT, (4.60b)

T = 2ρ ∂ψ
∂Be

Be, (4.60c)
△

Be = [1 −H (T : D)H (|T| − Ty)] (DBe + BeD) , (4.60d)

ρcV,R
dθ
dt = κ△θ +H (T : D)H (|T| − Ty)T : D. (4.60e)

4.3 Linearization of governing equations
We show that the linearization of the evolution equation (4.60d) leads directly
to the one-dimensional constitutive relation (2.9) for the elastic-perfectly plastic
response which has been introduced in [4].

We use the same approach as at the end of Chapter 1. This linearization
is very rough and takes into account several assumptions and simplifications.
In addition to the linearized strain ϵ we work now with the elastic part of the
linearized strain tensor ϵe. Moreover, we further assume that |∇Ue| ≪ 1.

In the same way as in (1.108), where we derived that B ≈ I + 2ϵ, we can
derive the formula for the linearized elastic part of the left Cauchy–Green tensor
as

Be ≈ I + 2ϵe. (4.61)
From (1.108) we can further get that

dB
dt ≈ 2dϵ

dt , (4.62)

and its counterpart is
dBe
dt ≈ 2dϵe

dt . (4.63)

Furthermore, we assume that
dB
dt ≈ 2D. (4.64)

Relations (4.62) and (4.64) imply that

D ≈ dϵ

dt . (4.65)

Now we have completed linearization of the right-hand side of equation (4.60d)
and we want to further linearize its left-hand side, where only the corotational
derivative

△

Be occurs. From the definition of the corotational derivative (4.1) we
get

△

Be = dBe
dt − WB + BW ≈ 2dϵe

dt − W + W = 2dϵe
dt , (4.66)
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where we used only the linear term from the approximation of
△

Be given by (4.61)
and the approximation (4.63). Thus, equation (4.60d) can be linearized as

dϵe
dt =

[︄
1 −H

(︄
τ : dϵ

dt

)︄
H (|τ | − Ty)

]︄
dϵ

dt . (4.67)

We are now in a situation where on the left-hand side of equation (4.67) the
elastic part of the linearized strain tensor ϵe appears, but on the right-hand side
there is the standard linearized strain ϵ. Therefore, now we find the relation
between ϵe and ϵ, that we can rewrite equation (4.67) into a form in which
only the strain ϵ is present. Thanks to formula (4.60c), we can get an analogy
of (1.113) as

τ = λ (Tr ϵe) I + 2µϵe. (4.68)
This relation leads to an analogy of (1.114) as

Tr τ = (3λ+ 2µ) Tr ϵe. (4.69)

Substituting Tr ϵe expressed from (4.69) into (4.68) gives us the inverted relation

ϵe = − λ

2µ (3λ+ 2µ) (Tr τ ) I + 1
2µτ . (4.70)

Defining the Young modulus of elasticity E and the Poisson ratio ν in a standard
way (see, for example, [33, p. 203])

E =def
µ (3λ+ 2µ)
λ+ µ

, (4.71a)

ν =def
λ

2 (λ+ µ) , (4.71b)

implies that equation (4.70) can be rewritten as

ϵe = − ν

E
(Tr τ ) I + 1 + ν

E
τ . (4.72)

Substituting (4.72) back into (4.67) gives us the desired result

1
E

[︄
(1 + ν) dτ

dt − ν

(︄
Tr
(︄

dτ

dt

)︄)︄
I
]︄

=
[︄
1 −H

(︄
τ : dϵ

dt

)︄
H (|τ | − Ty)

]︄
dϵ

dt .

(4.73)
Furthermore, if the stress tensor τ has a form

τ =

⎡⎢⎣0 0 0
0 0 0
0 0 σ

⎤⎥⎦ , (4.74)

then the ẑẑ component of (4.73) reads

σ̇ − Eϵ̇ = −EH (σϵ̇)H (|σ| − Ty) ϵ̇, (4.75)

where ϵ denotes the ẑẑ component of the linearized strain tensor ϵ. Equa-
tion (4.75) is the one-dimensional equation (2.9) that has been introduced in [4].
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Conclusion
In this thesis, we have presented and deeply investigated several implicit consti-
tutive relations. We can say that each chapter describes in its own way certain
implicit constitutive relation or the whole class of these constitutive relations.

In Chapter 1, we have explained and deduced in detail, based on the im-
plicit constitutive relation and the standard thermodynamic framework, three-
dimensional representation formula, see Theorem 5. Then we linearized this
formula and we have shown an important result that linearization based on this
theory of implicit constitutive relations (1.112) gives the same result as lineariza-
tion based on standard elasticity (1.116).

In Chapter 2, we have thoroughly discussed a relatively new approach for
the inelastic response of solids in one dimension. We have shown the implicit
constitutive relation (2.9), which led to the elastic-perfectly plastic response of
the material (when the yield criterion was met). This response is then thor-
oughly discussed in Figure 2.2 and Figure 2.3. However, this kind of material
response contains sharp yield points, that are almost absent from most materi-
als. For this reason we have formulated the (approximated) implicit constitutive
relation (2.13), and we discussed it in Figure 2.10 and Figure 2.11.

In Chapter 3, which is my most significant individual contribution, we have
numerically analyzed the behavior of the inextensible beam. From considerations
based on kinematics, equilibrium of forces, the balance of angular momentum, the
implicit response relation and discretization of the whole beam, we formulated
the system of equations (3.17).

We considered a specific example. The beam was clamped at its left end
and the force was acting at its right end, as described in Figure 3.3. For this
process, we have formulated boundary conditions (3.18) and (3.19) and initial
conditions (3.20). Depending on the value of the yield bending moment My, we
expected two possible material responses that also occurred.

In the first case we simulated the elastic response of the beam, i.e. in any
element of the beam the absolute value of the bending moment did not reach
the critical value determined by the parameter My. How the applied force affects
the beam and especially that when the force stopped acting, while the material
quickly returns to its original shape without any plastic deformation, is shown in
Figure 3.8.

In the second case we have chosen the parameter My small enough, that in
some beam element (specifically the second as seen in Figure 3.11) the absolute
value of the bending moment reached value of My. This led to the elasto-plastic
response, that we observed in Figure 3.12.

The numeric code was implemented in Mathematica programming language.
Unfortunately, it did not allow us to discretize the beam to more than only 14
elements (N = 14). However, as shown in Figure 3.8 and Figure 3.12, it is
sufficient to claim that we have numerically verified the bending theory, which
in our case is described by the system of equations (3.17), including, inter alia,
constitutive equation (3.17a).

The next steps could possibly be, for example, taking into account the differ-
ent situation than described in Figure 3.3, e.g. considering external forces such
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as gravity. Another possible development could be to add a curvature history pa-
rameter to equation (3.17a), which provides better simulations of materials that
hardens with bending (see [5]).

Finally, in Chapter 4 we derived the implicit constitutive relation (4.60d)
based on the thermodynamic framework for plasticity. In deriving this equation,
as in Chapter 2, it was crucial to avoid plastic strain tensor. We have also shown
that the traditional von Mises yield criterion is in line with this derived implicit
constitutive relation. At the end of this chapter and also of the whole thesis, by
linearizing equation (4.60d), we inferred equation (2.9), which we discussed in
detail in Chapter 2.

This relatively new approach, introduced in [4], which describes the elasto-
plastic behavior of the material without having to identify the plastic strain,
apparently has not yet delivered all its results that we can achieve, and there are
other steps that can be further developed. For example, we can adjust the yield
stress Ty to be temperature-dependent.
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[23] José Merodio and Raymond Ogden. Constitutive Modelling of Solid Con-
tinua. First Edition. Springer, 2020.
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