
MASTER THESIS

Adam Frey

Predicting novel drug-target
interactions via deep learning

techniques

Department of Software Engineering

Supervisor of the master thesis: Mgr. Ladislav Peška, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2020



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ........ date ............ signature of the author

i



I would like to thank my thesis supervisor, Mgr. Ladislav Peška, Ph.D., for his
guidance and helpful advice during the writing of this work.

ii



Title: Predicting novel drug-target interactions via deep learning techniques

Author: Adam Frey

Department: Department of Software Engineering

Supervisor: Mgr. Ladislav Peška, Ph.D., Department of Software Engineering

Abstract: Aim of this work was to develop a machine-learning model for a predic-
tion of drug-target interactions. Inspired by previous state-of-the-art approaches,
the work focuses on collaborative filtering methods and deep learning neural net-
work models. The goal of improving upon the previous work was achieved using a
series of improvements of a basic latent matrix factorization algorithm on the rel-
evant dataset. The small amount of data currently seems like the bottleneck for
utilizing more sophisticated deep learning methods. As such hybrid approaches
for recommendation systems can prove to be interesting next step due to their
effective utilization of multiple data sources.

Keywords: drug-target interaction, machine learning, deep learning

iii



Contents

1 Introduction 2

Introduction 2

2 Drug Target Interaction 4
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Molecular docking . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Machine Learning 16
3.1 Machine Learning Background . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Empirical Error vs. Generalization Error . . . . . . . . . . 18
3.1.2 Overfitting and Bias . . . . . . . . . . . . . . . . . . . . . 21

3.2 Neural Network and Deep Learning . . . . . . . . . . . . . . . . . 23
3.2.1 Multi-layered neural network . . . . . . . . . . . . . . . . . 25
3.2.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Convolutional networks . . . . . . . . . . . . . . . . . . . . 32

3.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Methods for Classification . . . . . . . . . . . . . . . . . . 35
3.3.2 Methods for Regression . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Neighborhood Regularized Logistic Matrix Factorization

for Drug-Target Interaction Prediction [Liu et al. [2016]] . 45
3.4.2 Drug repositioning by integrating target information

through a heterogeneous network model [Wang et al. [2014] 47
3.4.3 NeoDTI: Neural integration of neighbor information from

a heterogeneous network for discovering new drug-target
interactions [Xiao et al. [2018]] . . . . . . . . . . . . . . . . 49

4 Model 53
4.1 Considerations and influences . . . . . . . . . . . . . . . . . . . . 53
4.2 Modified logistic matrix factorization . . . . . . . . . . . . . . . . 54
4.3 Penalized drug-target error . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Adding descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Transformation layers . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Final evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7 Experiment details . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Conclusion 65

Conclusion 65

Bibliography 66

List of Figures 72

1



1. Introduction
The price of drug research has been steadily increasing in the past. As such, it
is often not financially viable to develop a brand new drug for each particular
disease. In these cases it can be possible to use existing tested drugs with addi-
tional desirable effects. Discovery of these agents is not trivial, although there
are several possible approaches to this issue.

One group of these methods employs machine learning. This approach is less
accurate than some of its alternatives, but it is arguably less resource-intensive,
and can provide probable candidates for focused search using more accurate,
albeit more expensive methods. The aim of this thesis is to create a machine
learning solution for discovery of interacting drug-target pairs that would im-
prove upon previously published models. Focus is mostly put on neural networks
and the so-called deep learning.

Chemical compounds used as drugs in medicine can have unforeseen side
effects. It is not only due to negative cases like thalidomide, which has caused
birth defects [Kim and Scialli [2011]], that drug development has grown ever more
expensive. Generally the efficiency of drug discovery has been in steady decline
for the last 60 years, and one could say that the low-hanging fruit was already
picked [Scannell et al. [2012]].

Some studies estimate the price of a new drug development to be around 2.6
billion dollars [Dimasi et al. [2016]]. Such costs limit the probability of drug
detection for less frequent or less severe diseases, and in these cases a different
approach needs to be taken. For example an already developed drug might be
used that positively influences given condition. This process is called drug re-
positioning. Unfortunately, as stated before, side-effects for a given drug are not
so easily found.

There are three basic approaches used for drug re-positioning, each with its
own advantages and disadvantages. The first possibility is to perform in-vivo or
in-vitro experiments, and search for desirable effects. While this is certainly the
most accurate method, it is also the most time-consuming and the most financially
demanding one. It is worth to say that while toxicity is a factor when testing
new drugs, this issue is already eliminated before drug re-positioning. Originally
both in-vivo and in-vitro methods were indirectly the only methods used as the
discovery of drug’s secondary effects was almost always accidental. For example
minoxidil was originally aimed to treat ulcers, but was subsequently also found
to decrease blood pressure and limit hair loss [Talevi [2018]].

The second approach consists of simulating the interactions between the struc-
ture of a drug molecule and that of the target protein. It is called molecular
docking [Meng et al. [2011]], and it achieves accurate results without the need to
perform direct experiments. Its downside is the need for structural description
of both actors. This is not always known, and as such the utility of docking is
limited.

Last but not least is the family of machine learning approaches. These use
descriptors of both proteins and drugs as well as already existing information
about interacting pairs. In contrast to structural information in case of docking,

2



descriptors used by these methods are more ubiquitous. In comparison to actual
experiments, it is far more time efficient as a single model can be used to predict
interactions among a large group of targets and drugs. A downside is a lower
accuracy than both previously noted options.

While drug repositioning as a whole rose in importance, “machine learning”,
a data-driven approach for computer behaviour inferred from presented patterns,
also gained a large traction. The term machine learning denotes a family of
approaches that build a model based on provided data. In many cases is this
model then used for prediction. Previously predictors needed to be created by
a human, typically a domain expert. Models created by a machine learning
approach on the other hand do not need such a level of supervision. This allows
for a faster development as well as creation of models that would be too complex
or too laborious for people to create. Additionally, machine learning may be
successful in situations where there is no thorough domain knowledge.

Neural networks are a family of machine learning techniques formerly inspired
by neuron connections in a brain. Their most important successes have been rel-
atively recent, although neural networks have been studied before. A more pow-
erful hardware allowed for larger and more complicated networks that were then
able to achieve high accuracy on previously difficult tasks. Those were for exam-
ple image recognition [Krizhevsky et al. [2012a]] or machine translation [Sutskever
et al. [2014]]. Notable term within the the neural network field is deep learning.
Deep learning is concerned with neural networks that are created from multiple
groups of neurons that together form a sort of a cascade. It is this general ar-
chitecture that proved to be especially effective for many previously untractable
problems.

Neural networks themselves have formed some of the machine learning so-
lutions used for prediction of drug-target interactions. The relevant models are
often based on approaches originally utilized for recommender systems with which
they share many characterstics. Recommender systems are concerned typically
with finding links between prospective buyers and relevant products utilizing pre-
vious links. There are other tasks, but here the relation with with drug-target
interaction is quite clear. Drugs can be conceptualized as buyers that look for
prospective targets in the form of proteins. This correspondence allows for uti-
lization of machine learning models previously used elsewhere.

As for deep learning, some of these approaches are successfully utilized for rec-
ommender systems. For drug-target interaction specifically, the paper Xiao et al.
[2018] achieves state-of-the-art results while utilizing these general principles.

3



2. Drug Target Interaction

2.1 Overview
The main reasoning behind the development of computational methods of inter-
action discovery was already presented in the introduction. The basic demands
for this approach stem from the decreasing rate of new drug discovery, which is
tightly linked with its increasing costs. A great effort is put into proving that
newly-developed drugs are not harmful. While this demands are valid, it makes
discovery even more expensive, and thus it puts more strain on re-use of drugs,
that are already proved to be safe. This is the goal of drug re-positioning.

While this is a thesis mostly concerned with computer science, the underlying
biological and chemical principles used in drug-repositiong cannot be completely
ignored or abstracted. The following chapter concerns itself with the domain
knowledge and its corresponding assumptions with which machine learning (ML)
algorithm works. This chapter aims to introduce basic terminology and relation-
ships, as well as molecular docking, which is another computational approach for
discovery of drug-target interactions that aims to illustrate the interaction mech-
anism itself. Additionally, possible representations are discussed with special
emphasis put on data used for training and testing of machine learning models.

The goal of a drug is to cause a physiological change in a body to positively
affect its health. A mechanism through which this change happens concerns
receptors [Farlex [2012]], proteins that receive and transmit signals regulating the
function of a biological system. Drug’s purpose is to bind to the proper set of
receptors, and thus elicit a desirable response from the body. These receptor
objectives are often called targets.

Organic molecules that bind to specific sites on a cell surface, not only recep-
tors, are called ligands [Mosby [2009]]. Drugs form a subset of all ligands, and
they are sometimes referenced by this term in the following chapters. Ligands
change the biochemical properties of receptors by binding with them. More on
this in section 2.2. As not all ligands interact with all receptors, the goal of drug
re-positioning is to find actual interactions that may be utilized in medicine.

The already presented terms in vivo and in vitro methods describe experiment
performed within a living body and within an artificial environment respectively.
In silico on the other hand refers to the silicone within a CPU, and thus the term
corresponds to experiments simulated on a computer. Both molecular docking
and machine learning approaches are in silico.

There is one more concept that is useful to mention. Originally defined only for
research paper search, Swanson’s ABC model [Swanson [1991]] aims to describe
a mechanism through which new hypotheses about connections between subjects
can be made. It builds on the assumption that if there exists a known connection
between concept A and B and another known connection between B and C,
then that increases the probability of a connection between A and C. Together
these three points A, B, and C form a triangle where two edges AB and BC
are known while the existence of AC is implied. Swanson refers to this principle
as “logic of suggestibility”. The model is concerned with relations defined by
research papers which form a knowledge base called “complementary but disjoint

4



structures within the literature of science” [Swanson [1991]]. Disjoint implies that
these two structures of articles do not reference each other, are not co-cited, and
have no overlap.

An example is a newly stated hypothesis linking migraine (A) to magnesium
(C). Eleven indirect connections are defined to support this hypothesis. One of
them uses as an intermediate link stress and type A behaviour. The corresponding
connections are that stress and type A behaviour are associated with migraines,
and that stress and type A behaviour lead to body loss of magnesium. Another
pair of links builds on the transitional step of vascular tone and reactivity. Here
the links are formed by statements claiming that excessive vascular tone and
reactivity may increase susceptibility to migraine, and that magnesium can reduce
vascular tone and reactivity. Stress and type A behaviour and vascular tone and
reactivity represent the B nodes of the ABC model.

Originally, Swanson defined the concept only for scientific literature, and thus
this method was dependent on text mining. But assuming that intermediate
connections are already explicit and encoded in a graph, there is no more need
for further data mining. ABC model applied to interactions or relations between
receptors, ligands, and possibly other actors is mentioned for example in Talevi
[2018].

2.2 Molecular docking
The following section is concerned with computational docking. This is a method
for discovery of novel interactions between ligands and targets, typically proteins.
It uses information about the 3D structure of these individual objects in order to
find possible configurations in which they fit together.

This approach is quite successful, but can be used only in situations where
the corresponding 3D structures are known. This is the case only in a fraction
of cases [Prokop [2015]], which reduces docking utility quite a bit. Additionally
when this information is known, docking generally tends to outperform methods
based on machine learning. As such the choice of dedicating a section to docking
in work centered around deep learning may seem peculiar. The main reason
for focusing on this topic is that different variants of docking provide a good
overview of the underlying mechanisms without introducing an excessive amount
of notation from chemistry or biology. In other words, it presents the topic of
drug and target interaction using terminology rooted in computer science.

Molecular docking relies on simulating the relationship described by theoret-
ical models of actual biological processes. These are generally concerned with
the possible states of individual actors, and the conditions under which they in-
teract. In history, models describing molecular interactions have been evolving
and getting more precise. Typically, that meant progress from simple hypotheses
and methods to ones with fewer invariants and greater complexity. Similarly,
algorithms for computational docking built on these models have grown more
complex.

A simple description of interaction between targets and ligands presents the
lock and key model [Fischer [1894]]. It assumes that the structure of both target
and the binding ligand is constant and rigid. It uses a metaphor of a physical
lock that can be opened only by a key of certain shape. Target is analogous to a

5



Figure 2.1: Several conformations of a protein with corresponding potential en-
ergy. Note the yellow arrow representing change caused by induced fit. Source:
dti

lock, while ligand is analogous to a key. Together they interact if and only if there
exists a part of surface of the protein the ligand can latch and connect onto. For
a key to enter a lock, it needs to be of a correct shape. For a successful molecular
interaction it is crucial to decrease the potential energy of the complex.

Alternatively, the induced fit model [Koshland [1958]] presents a more complex
explanation of drug-target interaction. The metaphorical lock and key described
by the previous model both remain rigid through the whole process. To be more
precise, that means that the conformation, the relative spatial arrangement of
atoms within one of these objects remains the same. Such a description does not
account for the external forces that in reality modify the shape of a molecule.
Induced fit model on the other hand assumes that atoms within a single molecule
do not perfectly retain their relative positions, but instead allows for small shifts.
To return to the previous metaphor, both the lock and the key are now partially
flexible and can thus accommodate greater number of complementary shapes.
This approximates the actual biological process more closely, and can thus yield
better docking results.

The conformational ensemble model [Boehr et al. [2009]] allows for deeper
structural changes in proteins. In addition to small induced changes, proteins can
exist in multiple structural configurations. As such a protein forms an ensemble
of conformational states. Each of these has its own set of possible interacting
ligands due to differing conformations.

As for the molecular docking algorithm, there does not exist a single ideal
approach that would always yield correct result while satisfying all desirable con-
straints like time complexity. There are too many possible configurations in which

6



can interactions occur, and no efficient way to find the correct ones. So molec-
ular docking relies on defining individual conformation states and subsequently
searching through them. For each state, one can evaluate the quality of the fit
that is based mostly on a potential energy of the unified complex. The complete
space of all possible solutions is typically far too large to analyze completely.
That creates the need for intelligent search strategies and useful heuristics. The
introduction of flexibility in both actors complicates things even further.

To successfully search through possible individual binding modes, that is com-
plex conformations, one needs to define the representation of a molecule. These
representations define the searched space. They also form the input for scoring
functions that evaluate the quality of the fit.

A frequently used possibility for molecule representation is atomic represen-
tation [Prokop [2015]]. Individual molecules are here described by a list of atoms,
each with its own type and position. Bonds between atoms are also part of this
description.

Another form of molecule characterization is the surface representation. For
this representation, the atoms are not presented directly but instead the whole
molecule is covered by a 2D surface that forms its representation. This can be
achieved by taking the van der Waals surfaces of all atoms in a molecule and
“rolling” a ball over them to get continuous, smooth surface with convex and
concave areas [Connolly [1983]]. The advantage of this method is that it makes
the various ridges and protrusions explicit, thus making spatial complementarity
that plays a role during an interaction assessment easier.

In a grid-based representation, one of the actors, typically the receptor is fixed
in space. This space is then overlaid with a fine grid. For each vertex of this
grid, forces stemming from the position of the receptor are computed. This in
the case of a rigid receptor position is done only once, and is thus arguably
computationally efficient compared to the previously described representations
[Atassi and Appella [1995]]. During actual docking simulation, forces acting on
individual atoms of the ligand are then approximated from the nearest points of
the grid.

A crucial part of docking is a mechanism, that decides, if a ligand and a recep-
tor in a given configuration interact. More precisely, a mechanism that measures
the quality of the fit. In molecular docking, it is called a scoring function. This
function typically takes into account multiple relations and types of force. These
individually can be classified into several groups. Among others these are force
field scoring functions and empirical scoring functions [Jhoti and Leach [2007]].
Notable exceptions are methods based on machine learning [Ballester and Mitchell
[2010]] that predict results only from presented data.

Scoring functions based on approximation of force fields use combination of
van der Waals interactions, electrostatic interactions, and desolvation energy.
To alleviate the potentially high computational costs, energies are often pre-
computed in the previously introduced grid-based representation of a receptor.

Empirical scoring function is based on the wrong [Mark and van Gunsteren
[1994]], but useful assumption that binding energy ∆G can be decomposed into a
series of distinct terms each with its own underlying chemical phenomena [Jhoti
and Leach [2007]]. ∆G of the complex is defined as an energy needed to split the
complex again into its two original components. The higher it is, the stronger

7



the connection, and thus it is a good measure of the strength of an interaction
between a ligand and a protein. In Prokop [2015] it is defined in the following
form although its computation using the previously presented scoring functions
is typically more complex as one does not know the potential energies of all
participants. Energies of ligand and receptor are taken in their unbound state.

∆G = Ecomplex − Eligand − Ereceptor (2.1)

Hydrogen bonds, hydrophobic, and ionic interactions all belong among the
phenomena that influence ∆G, and the weighted sum of all these factors deter-
mines the ∆G prediction.

Another crucial component of molecular docking is state space search. Con-
sidering at first that both ligand and receptor are rigid, it is possible to fix the
position of one of them, typically the receptor. Then the state is defined by the
position of the other in space In 3D space that means 3 coordinates for transla-
tion and 3 angles for rotation. As search through all possible states is for larger
complexes too computationally intensive, a more sophisticated algorithm needs
to be chosen. Several possible choices are valid. Simulated Annealing is one of
them, so are Monte Carlo methods or approaches based on Genetic Algorithms.

Additionally, Tabu search [Glover and Laguna [1998]], a search algorithm
restricting usage of previously visited nodes, can be used. There are multiple
versions of this algorithm, but the core idea is some form of search for a local
optimum in discrete space. This search strategy may be stochastic or not, but
the main feature of tabu search is an additional memory designed to store already
visited nodes. These are the nodes that are taboo for the algorithm, i.e. they
should be avoided. There are again several modifications to the way the taboo
memory can be approached. It can be for example finite, or the ban can be just
probabilistic, allowing older memorized nodes with higher probability than new
ones.

In the simplest form, tabu search keeps a taboo list, a record of the last k
nodes that were visited. Whenever a choice is made where to go from the current
state s, these nodes are removed from the list of possibilities. Then the oldest
node in the taboo list is removed and replaced by s.

In contrast to the iterative state space search, another method used for finding
possible interactions is feature-based matching [Prokop [2015]]. At first a set of
features in a ligand is matched with a complementary set of features of a receptor.
Quality of these matchings are then assessed individually. Then both actors are
assembled based on the filtered feature pairs, and the overall fit is evaluated.

So far methods were implicitly using rigid forms of molecules. The state of the
complex was defined by translation and rotation of the ligand, but no structural
changes within individual actors was allowed. This corresponds to the lock and
key model, but can be a too severe simplification. On the other hand, adding a
parameter for all flexible bonds can make the model computationally intractable.
An approximative approach is needed.

Firstly, a distinction has to be made between introducing flexibility to ligands
and introducing it to receptors. Ligands are typically smaller, and are thus treated
differently. Arguably, one of the easier methods of introducing flexibility on
a ligand is introducing a set of rigid forms for each ligand molecule. In this
approach, an ensemble of ligand conformations is generated, and then its members

8



Figure 2.2: Illustration of the feature-based matching process. Source: Prokop
[2015]

are used individually in a rigid docking algorithm.
A different set of approaches is based on breaking the original ligand into

several pieces. One method tries to fit the distinct fragments individually onto
the receptor. If that happens, it then tries to assert if this combination is possible
based on the position of all fragments. Another method starts with connecting a
single fragment onto the ligand and then successively adds additional pieces, so
that they connect to their already placed predecessors.

As for flexible receptors, here is a situation different due to a larger molec-
ular size. One of the approaches is to keep the structure rigid, but introduce
more permissive, softer scoring functions. This approach is called soft docking
[Ferrari et al. [2004]], and its underlying concept is that with certain repulsive
functions being inhibited, conformations do in fact interact thanks to receptor
flexibility. Van der Waals repulsive force is an example of a force that is here
being attenuated.

As a side-note, the previous section omitted one important part of molecular
docking. The preparation of molecular models themselves is no trivial matter.
Among other activities, hydrogen bonds need to be optimized, atomic clashes
need to be removed, and tautomer and ionization states need to be generated
[Sastry et al. [2013]]. This adds to the complexity of the process, but at the same
time it is beyond the scope of this text.

9



2.3 Dataset
While molecular docking relies on accurate 3D models, machine learning ap-
proaches are less demanding and can utilize greater range of information. Ar-
guably, machine learning achieved considerable achievements even as a compo-
nent of docking techniques [Khamis et al. [2015]].

Broadly speaking, information used by ML techniques can be classified into
two classes. The first one composes of information relating to discrete actors, most
notably drugs and receptors. An example is the number of atoms or bonds for a
molecule. While this may present useful information, it does not actually provide
necessary data for supervised1 machine learning approaches that are typically
used for drug-target interaction. Into second class one could group all data that
describe relations between individual actors. The crucial associations are the
already known drug-target interactions.

As for the first group, information about molecules are aggregated into so-
called molecular descriptors. A molecular descriptor “is the final result of a
logic and mathematical procedure which transforms chemical information en-
coded within a symbolic representation of a molecule into a useful number or the
result of some standardized experiment” [Todeschini and Consonni [2008]]. There
is a range of descriptors computed. An example is a molecular surface area, or
number of atoms. Broadly they can be classified into 1D, 2D, and 3D descriptors.
Each descriptor can consist of a single property, or it can form an aggregation of
multiple properties like 3D-MoRSE [Yap [2011]].

A distinct set of molecular descriptors that does not fit neither the 1D, 2D, or
3D group is the collection of fingerprints. A fingerprint is a sequence of typically
boolean values that encodes structure and properties of a molecule [Bajorath
[2008]]. Its main purpose is to detect pairs of molecules that are not structurally
similar. This is important as the general algorithm for substructure search is
NP-complete, and is thus too slow for searching through large databases [day
[2011]].

There are multiple kinds of software projects used for generating molecular
descriptors. They differ in the set of features they generate, their license, or the
platform on which they run. PaDEL-Descriptor [Yap [2011]] is one of them. It is
an open source project written in Java and thus running on all major platforms.
It computes 797 descriptors and 10 fingerprints. A software with even greater
number of descriptors (5270) is Dragon [Mauri et al. [2006]]. Unfortunately the
fact that it is a commercial software is a downside compared to the free PaDEL.

In contrast to information relating to individual molecules or other discrete
objects, there are several types of relations that may be used during machine
learning. Given the assumption that drug-target interaction is being performed,
the most important information are the already discovered interactions. Data
about pairs drug-target that are known not to interact are of course also use-
ful, if they are provided. Other possible types of relations are protein-protein
interactions among receptors or known drug-disease associations.

For evaluation of introduced machine learning methods a heterogenous dataset
was taken from Xiao et al. [2018]. It consists of nodes and edges between them.
Nodes here represent discrete entities grouped into 4 classes or types, drugs, pro-

1For definition of supervised ML, see 3.1.

10



0.10%
(1.92k)

0.39%
(7.36k)

0.53%
(10.04k)

10.51%
(199.21k)

4.23%
(80.16k)

84.24%
(1.6M)

protein

side-effect disease

drug

Figure 2.3: Types of nodes in graph each represented as a vertex. The percentages
denote the portion of edges of given kind. Number in brackets is the total number
of edges of this kind.

teins, diseases and side-effects. Edges then represent known interactions between
these objects. No further descriptive informations are provided. This dataset was
used to allow comparison between models, namely between the model presented
in this work and the already mentioned Xiao et al. [2018].

Altogether data was compiled from 4 sources. As for the nodes, drugs were
taken from DrugBank 3.0 [Knox et al. [2011]], proteins from ninth release of
HPRD database [Keshava Prasad et al. [2008]], diseases from the 2013 update of
Comparative Toxicogenomics Database [Davis et al. [2012]], and side-effects from
the second version of SIDER database [Kuhn et al. [2010]]. Concerning the edges,
drug-drug interactions are taken from DrugBank, protein-protein interactions
from HPRD, disease-related interactions from the Comparative Toxicogenomics
Database, and interactions between side-effects and drugs from SIDER. Finally
protein-drug connections were extracted also from DrugBank.

All of these sources are publicly and freely available online for non-commercial
uses. As an example, DrugBank is a database created in 2006 “containing infor-
mation on drugs and drug targets” dru. Release 5.1.4 contained 13370 individual
drug entries.

Below are several graphs and visualizations meant to familiarize the reader
with the used dataset. These focus mostly on the dataset as a graph of inter-
actions or connections. Most notably 2.3 shows the total amounts of edges and
their quantity for each type of connection. It can be seen that connections uti-
lizing disease information present a majority of all edges. But not all diseases
contribute equally to this number The same applies to side-effects.

11



Figure 2.4: Proportion of different types of nodes in the graph.

12



Figure 2.5: Histogram of edge degrees for proteins and drugs.

13



Figure 2.6: Histogram of edge degrees for drugs and side-effects.

14



Figure 2.7: Histogram of edge degrees for proteins and drugs on a subgraph with
only proteins and drugs.

15



3. Machine Learning
The following chapter is about machine learning. It aims to introduce the theo-
retical background centered on machine learning in general and neural networks
in more detail. For information about the developed model and corresponding
experiments, refer to a chapter 4.

The first section is concerned with a very high-level view of machine learning
where individual algorithms are not discussed. It should provide an overview of
the terminology used, provide unifying framework for following practical methods
as well as assert their limits.

In second section, neural networks, a family of machine learning algorithms,
are presented in more detail. Apart from the more basic models, emphasis is put
on the so-called deep learning models or approaches that were developed relatively
recently. Some of the most successful models are discussed together with those
that are relevant to the following experiments. The problem of finding an optimal
model configuration given model’s neuron weights is considered as well.

In addition, a section on model evaluation is also included. It is concerned
with the basic methods designed to specify model’s performance as well as with
the specialized approaches that are more relevant to given problem area.

Several notable machine learning algorithms that have been successfully em-
ployed to previously advance the field of drug-target interaction prediction are
briefly touched on in the last section of this chapter.

3.1 Machine Learning Background
Machine learning is generally defined as a collection of computational methods
geared toward optimization or prediction based on past experiences or previous
information [Mohri et al. [2012]]. While this definition is quite abstract, some
examples are object recognition, speech-to-text transcription, clustering, virtual
agent learning, artificial intelligence for games like chess or go, and recommender
systems. This thesis is concerned with prediction of drug-target interactions.
This is in itself a quite distinct problem compared to the full breadth of machine
learning approaches. For that reason following chapter will be centered on a
section of Machine Learning called supervised learning. Its goal is to provide
some, possibly new information about an object given the object’s description.

An algorithm is in the beginning supplied with a sequence of pairs ((x1, y1),
(x2, y2), . . . (xn, yn)) ∈ (X × Y )n. The first element in each pair is typically
called a feature and provides a characterization of an object often in a form of a
vector. The second element the output algorithm should provide given the afore-
mentioned feature is typically called a label1 [Mohri et al. [2012]]. Another way to
look at it is that ML algorithm, sometimes also called a learner, is provided with
questions, and when it produces an answer, the answer is checked and corrected.
The learning process is therefore supervised, hence the name.

1The term label is here used in its broader sense. Yet often it is defined as a value from a
discrete set. Like dog or cat for image classification. That is in contrast to continuous values
for which the term label is not used as often.

16



Figure 3.1: A simple example of clustering. An algorithm is provided with a set
of unannotated points in R2. Its task is to divide those points into a set of groups
so that members of each group lie close together while points from distinct groups
are relatively far apart. Resulting groups are here denoted with colours.

17



There are other classes of machine learning algorithms, one of them being
unsupervised learning. In such case, a learner is provided only with features.
The goal then typically isn’t to provide a response to each object, but rather to
provide information about the set of features itself. An example of this approach
is clustering where elements in a feature space are returned to represent distinct
groups in the original dataset. A basic case is shown in figure 3.1.

A bit more exotic group of algorithms is covered by the term reinforcement
learning. In this scenario, an agent is embedded within an environment with
which it interacts. It is not provided with a direct plan of action, but instead it
is given a function rewarding it for achieving desirable states of the environment,
and punishing it for entering undesirable ones. In this way, its goal is to act on
its own to maximize its gain. A concrete example is the artificial intelligence for
the game of Go [Silver et al. [2016]].

Returning to supervised learning, a learning algorithm is defined as a function
F that takes a training set, a sequence2 of pairs (feature, label) from a set X ×Y .
The learning algorithm itself returns a function f : X → Y . This new function
is called a hypothesis. The range of a learning algorithm rng(F), the set of all
possible classifiers, is called a hypothesis set. The process of acquiring a hypothesis
for given input data is called training.

Machine learning tasks are sometimes split into two categories based on the
range of their hypotheses, i.e. Y . A task with a finite, discrete range is called
classification, while task with a continuous range is called regression.

3.1.1 Empirical Error vs. Generalization Error
As there is a broad range of classifying functions, it is important to have a mech-
anism for discriminating between successful and unsuccessful ones. Let’s assume
an underlying probability distribution D on set X × Y and a training sequence
S = ((x1, y1), (x2, y2), . . . (xn, yn)) drawn from D where individual samples are
independent and identically distributed. For both of these cases an evaluation
function is needed. The resulting classifier should be able to perform well on
the whole distribution. In other words it should generalize well. Meanwhile the
only information provided to the learner is the sequence S, so performance can
be only evaluated empirically using those pairs. The corresponding functions are
thus called generalization loss and empirical loss. Alternativelly they are also
called generalization risk and empirical risk.

Definition 1 (Generalization error). Given a hypothesis h : X → Y , a loss
function L : Y × Y → R+, and a distribution D on X × Y , generalization error
is defined as

R(h) = E(x,y)∼D[L(h(x), y)] (3.1)

Definition 2 (Empirical error). Given a hypothesis h : X → Y , a loss function
L : Y × Y → R+ and a sequence ((x1, y1), (x2, y2), . . . (xn, yn)) ∈ (X × Y )n,

2Note that the input is a sequence rather than a set. While allowing duplicities may seem
redundant, they can provide information about the training dataset itself and its underlying dis-
tribution. More frequent features are bound to occur more often if the samples are independent
and identically distributed.

18



empirical error is defined as

R̂(h) = 1
n

n∑
i=1

L(h(xi), yi) (3.2)

The previous definitions use the term loss function, and define it as Y × Y →
R+ where Y is the hypothesis range. While this definition is sufficient in theory,
defining a loss function is done with certain goals in mind. The actual loss
function from the set Y × Y → R+ should fulfill those goals. Generally an error
is being minimized so a loss function is also being minimized. A loss for an output
of a hypothesis yh ∈ Y should decrease as the output gets in some sense closer
to the true label y ∈ Y . an extreme case is a situation where yh = y. Typically
L(y, y) = 0 for every y ∈ Y .

A simple example of a loss function is L1 : R × R → R+ for which L1(x, y) =
|x−y|. This function fulfills all conditions for a metric and the assumptions about
a loss function mentioned previously. It can also be generalized for Rd (d ∈ N)
as L1(x, y) = ∑d

i=1 |xi − yi|. This generalized version is in different contexts also
called L1-distance or Manhattan distance.

Another example is the 0-1 loss for which L(x, y) = 0 ⇐⇒ x = y and
L(x, y) = 1 ⇐⇒ x ̸= y. This function is typically used for discrete Y .

Now assume a learning dataset d is provided. Sampled features are elements
of set R2 while labels are boolean, i.e. from {0, 1}. The set is visualized in figure
3.2. Considering the 0-1 loss, can it be assumed that a hypothesis with empirical
error equal to 0 is in some sense good? Or can it at least be assumed that it is
better than a hypothesis with empirical error equal to some given l > 0?

As an example a memorizing learner M is introduced. Learned features are
elements from R2, each labeled with 0 or 1. A memorizing learner returns a
hypothesis h. h returns a label 1 for feature x, if (x, 1) was a part of the training
dataset, and 0 otherwise. As there doesn’t exist x ∈ R2 such that (x, 0) ∈
d∧ (x, 1) ∈ d, learner does indeed return a hypothesis with 0 empirical error. But
simply looking at the dataset makes this hypothesis suspect. The reader probably
has a hypothesis of his own that seems more plausible. Yet this learner always
returns a hypothesis with zero loss for any dataset, if there are no two samples
with identical features and different labels. Fortunately this does not imply that
using empirical error to evaluate hypotheses is a dead end. This approach just
needs to be modified to be useful.3

One would need to know the underlying distribution D to precisely compute
the generalization error of a hypothesis. While D isn’t known in most cases,
the generalization error can be at least approximated. Assuming that there is
a sequence S ′ = ((x1, y1), (x2, y2), . . . (xn, yn)) ⊆ (X × Y )n where individual
samples are independent and identically distributed, ES′∼Dn [R̂S′(h) = R(h)].

Theorem 1. If all elements of S = ((x1, y1), (x2, y2), . . . (xn, yn)) ⊆ (X × Y )n

are sampled independently from distribution D, then ES∼Dn [R̂S(h)] = R(h).
3The previous example is inspired by, and to a large extent identical as the one in subsection

2.2.1 in Shalev-Shwartz Shai [2014].

19



Figure 3.2: A set of features from dataset d in R2. Points with label 1 are marked
with green colour while points with label 0 are marked with red colour.

20



Proof.

ES∼Dn [R̂S(h)] = ES∼Dn [ 1
n

n∑
i=1

L(h(xi), yi)] =

= 1
n

n∑
i=1

E(xi,yi)∼D[L(h(xi), yi)] =

= 1
n

n∑
i=1

R(h) =

= R(h)

(3.3)

This sequence S ′, called validation set [Shalev-Shwartz Shai [2014]], is not
provided separately from the previously introduced training set S. Instead all
available samples need to be split into those two sequences. This division intro-
duces a dilemma. Providing more samples for training increases the probability
of the learner returning a better hypothesis. At the same time, a small validation
set is less likely to approximate the generalization error well. The question of
how to set the relative sizes is in more detail investigated in subsection 3.3.3 and
in Kohavi [1995].

Another situation arises when an algorithm or even a human tries to train
several learners on the same dataset. It trains and then evaluates each with a
training set and a validation set respectively. Yet as it discriminates among their
results, it also becomes a part of the training process. This situation may not
seem as important when talking about hypothetical learners, but becomes crucial
when not only different types of models are tested, but also when a single model
is trained several times with different configurations, also called hyperparameters.
Each of these hyperparameters influences the choice of the final hypothesis. Such
a process introduces bias that then needs to be accounted for and so additional
sequence is needed. This one is called test set and it is independent of both
training and validation sets. It is used only after model and its hyperparameters
were chosen, and the model was trained so as not to prejudice the final result.

3.1.2 Overfitting and Bias
Consider the memorizing learner again. Its hypothesis space is too large, and so it
can always return a hypothesis fitting the training data perfectly without express-
ing any underlying pattern. Such a case is called overfitting [Shalev-Shwartz Shai
[2014]]. It usually happens when the hypothesis set is too large in comparison to
the training set. A clear solution to this phenomenon is collecting more samples
to train on. But the dataset is often fixed and cannot be expanded. Also for
cases like the memorizing learner, no finite dataset can fit the correct hypothesis
perfectly.

The other option is to decrease the hypothesis size. Rather than using the
memorizing learner again to showcase this approach, it is clearer when using
polynomial learners with differing maximal polynomial degrees. So let a learner
Lk

p returns a hypothesis pk : R → R from the set Pk = {{(x,
∑k

i=1 αix
i) | x ∈

R} | ∀i ∈ {0, 1, . . . k} : αi ∈ R}. As αi can be 0, P0 ⊆ P1,P1 ⊆ P2 and so

21



Figure 3.3: An example of overfitting showing an approximation of a sine curve
with a series of polynomials. p2 is a polynomial with a maximal degree 2, p3 is
a polynomial with a maximal degree 3, and p6 is a polynomial with a maximal
degree 6.

forth. Yet that does not always imply a better result for the more sophisticated
method. Consider the approximation of a sine wave by several polynomials of
various degree in figure 3.3. While only p6 fits all points perfectly, p3 achieves
a lower generalization error. This effect is even more pronounced if the desired
function is noisy. Then too complex hypothesis will fit this noise while a simpler
approach is more likely to only follow the underlying pattern.

At the same time, decreasing the size of the hypothesis set tends to lower
the probability that the desired function is actually learnable. Additionally, it
puts more responsibility onto the designer of the learning algorithm and its user
respectively. Simpler learning algorithms demand more information about the
possible desired hypothesis. These limitations bias the learner by constricting the
range of possible solutions. For that reason these restrictions are called inductive
bias [Shalev-Shwartz Shai [2014]]. The need for compromise between bias and
overfitting is called bias-complexity tradeoff, or sometimes bias-variance tradeoff.

The generalization error R(h) of a hypothesis h ∈ H can be decomposed. This
is firstly done to better illuminate the relationship between bias and overfitting.
Secondly different types of error are caused by different phenomena. Each phe-
nomenon has a different set of approaches to minimize it, and so it is useful to
differentiate between them.

Assume RH = infh′∈H R(h′). Then R(h) can be decomposed into two4 parts
as R(h) = (R(h) − RH) + RH. The first component, (R(h) − RH), is called
approximation error. Informally it denotes how close is the chosen hypothesis h
to theoretical optimum. The remaining component RH is called estimation error.
It is not concerned with h but rather with a best error a hypothesis in H can
achieve.

4Sometimes third component is added. Bayes error denotes the error of an ideal hypothesis
that does not need to be 0. More details in Mohri et al. [2012].

22



Figure 3.4: Two images of human faces created by a GAN-based generator,
Source: Karras et al. [2018]

An approximation error is concerned with the choice of a hypothesis by a
learner. It can be decreased by introducing new data or by modifying the hy-
pothesis set. This often means decreasing its size. An example is the previous
case with polynomials where P3 achieved better results than P6. Estimation error
on the other hand never changes when new evidence is presented, and it can only
grow if H is reduced to its subset. On the contrary, learner must become more
complex, its hypothesis set larger, to decrease RH. This is the core problem of
the bias-complexity tradeoff.

3.2 Neural Network and Deep Learning
Neural networks are a type of machine learning models originally inspired by
biological neurons. They were in some form researched and developed since 1940s
but they have gained greater popularity only in the 21st century after more
powerful hardware allowed to train larger networks.

There are many use-cases for neural networks as they can be used for classifi-
cation or regression for general problems. But there are areas in which they have
achieved unmatched performance. For example image or voice recognition, or
certain reinforcement learning approaches that rely on neural networks. One of
the examples is artificial intelligence for the board game Go [Silver et al. [2016]].
Another case of successful utilization is presented by generative adversarial neural
networks [Karras et al. [2018]] that can be for utilized to create images similar to
those from the training dataset.

A biological neuron [Nicholls et al. [1999]] that is found in organisms, notably
in human brains, is a signal processing unit. Its goal is to transfer and control
signal travelling between various parts of body. These parts either stimulate
neurons, for example cells in an eye, or they become stimulated by them, like
muscle tissue cells.

A neuron consists of three distinct parts, a set of dendrites, a cell body, and

23



Figure 3.5: Biological neuron, Source: Karpathy [2015]

an axon. Dendrites form a connection to preceding cells that may send a signal.
Then they are connected to a body of the neuron that may transfer an impulse
of its own through an axon which splits into a series of axon terminals that can
transfer signal further.

A strength of a signal received by a dendrite is influenced by a distance be-
tween the dendrite and the source of the signal. Additionally nearby transmitted
impulses may have an inhibitory role as well. As a signal travels through the den-
drite toward the cell body, it becomes stretched out and attenuated. As signals
arrive into the body, they add up. If this signal exceeds a so called activation
potential, an impulse is sent by the body through the axon forward. Otherwise
no action is performed. It is useful to explicitly state that individual dendrites
are not synchronized, and thus timing is important for eliciting a response from
a cell body. When a response signal is sent forward, axon transfers it all the way
to its terminals. These are typically connected to some following cell, e.g. an-
other neuron. But as it was previously noted, a transfer of a signal may have an
inhibitory role on the neighbourhood of an axon terminal. Thus sometimes these
terminals are not connected to anything but they only perform this inhibitory
role.

So while both timing of a signal transfer and positioning of dendrites are
crucial, there are other phenomena that make things even more complex. Specifi-
cally sometimes when activation threshold is exceeded and a signal is sent forward
over an axon, this impulse is also transfered “backwards” over the dendrites. This
event is called backpropagation [Stuart et al. [1997]], but it does not have anything
to do with learning process on artificial neural networks that is discussed later
on.

Artificial neuron is a simplification of its organic counterpart. Dendrites are
replaced each with a single value that represents the strength of a connection
which may be also negative. Each such value corresponds to a single preceding
input. Together these values form a vector w ∈ Rn. Vector of inputs is aggregated
to x ∈ Rn. These signals are then multiplied by their weights and summed
up together. Activation potential is here represented by b ∈ R which is called
bias. Importantly bias can have a negative value, which partially breaks the
activation potential metaphore. Nonetheless the value of bias is subtracted from
the weighted sum of input signals. This result is then fed to a transfer function
f : R → R that yields the final result. An example of f is a sigmoid function

24



σ(x) = 1
1+e−x that reaches a value close to zero for negative values of x and a

value close to 1 for positive values. The more extreme the value x, the closer is
σ(x) to either zero or one. This roughly corresponds to the impulse being sent,
or not being sent across an axon. The following equation briefly summarizes this
description5.

h(x) = f(wT x − b)

In comparison to a biological neuron, a signal is here represented as a single
number rather than an impulse that changes during time. There is also zero
probability of signal travelling backwards. This dramatically decreases the com-
putational complexity, and makes artificial neurons easier to describe.

3.2.1 Multi-layered neural network
While a single neuron does have some uses in machine learning on its own, its
main utility lies in being the basic building block of larger structures called neural
networks6. Similarly to a neuron, a neural network has an input vector x ∈ Rn.
To simplify things a bit these values are also considered special cases of neurons,
each with no inputs and thus a constant output. Every other neuron takes as
input a set of values. Each value is either an element from the input vector x
or an output of a different neuron. One can define a vertex for each neuron to
allow the use of terminology from graph theory. Then the relation “the output
of a neuron a is the input of neuron b” forms a directed edge on these vertices.
In the current context, a graph of a neural networks needs to be acyclical. This
allows for a non-ambiguous evaluation. At first only values of neurons utilizing
elements of x are computed, then follows the computation for neurons utilizing
x and outputs of neurons from the previous step, and so on. As we assume a
finite number of neurons, this procedure will result in a correctly defined output
of every network unit.

Networks are typically organized into layers, collections of neurons with the
same “depth” in the previously mentioned acyclical graph. The input vector x
forms the input layer. Neurons which do not have any successors, i.e. no other
neuron depends on their output value, form the output layer. For all other units,
situation is a bit more complicated, but typically neurons from k-th layer take
as an input only output values from the (k-1)-th layer. In the same way their
output is only directly utilized by the following, (k+1)-th layer. Layers which are
neither input nor output are called hidden.

Similarly to the definition of an artificial neuron, neural networks have other
alternative forms that do not fit the previous description. In addition to fairly
minor deviations which respond to special types of input data, desired results
or specific modelled hypothesis sets, there is far more to be said about neural
networks that try to be more true to their biological predecessors. As such a
general definition for all of them would prove to be very vague and thus almost
useless. Neural networks fitting the previously mentioned and arguably restricted
characterization are called feed-forward neural networks. This is due to their

5This is a description of a neuron typically used in deep learning. There are other, possibly
more complex models that often resemble organic neuron in more detail.

6For this reason, neurons are also sometimes called units.

25



acyclicity as the output values are sequentially fed forward. In contrast recurrent
neural networks were designed to work with sequences of data, and thus permit
backward connections, although this reversed signal is used only in the following
step of a sequence.

Now it is useful to talk more about activation functions in more detail as their
existence plays a major role in the usefulness of neural networks. In addition to
the previously noted sigmoid, there are other activation functions as well, notably
step function [Kyurkchiev and Markov [2016]] or hyperbolic tangent. Step function
equals 0 for input values smaller than 0 while for positive values it is always 1.
For 0 step function equals 1

2 .
A hyperbolic tangent, typically shortened to tanh, is a scaled and shifted

version of the sigmoid that instead of ranging from 0 to 1 has an infimum of -1
and a supremum of 1 with tanh(0) = 0. Although the definition of a hyperbolic
tangent does not originate in machine learning, the direct relation to sigmoid is
simply tanh(x) = 2σ(2x) − 1.

The currently most important, practical alternative to the sigmoid seems to
be ReLU which is defined as ReLU(x) = max(0, x). Its crucial advantage is that
its derivative is always 1 for x > 0, and it does not drop to values close to 0 like
sigmoid does. The reasoning behind this assertion is explained in the following
subsection about backpropagation as it is tightly linked to this concept.

Leaky ReLU is a modified variant of ReLU for which LeakyReLUα(x) = x
when x > 0, and LeakyReLUα(x) = αx otherwise. It is more computationally
demanding, but it does not have the same problems as standard ReLU with
“dead” neurons later presented in subsection 3.2.2.

There are are also activation functions that do not work on individual neurons
but on whole layers instead. An example is the softmax function s : Rk → Rk

which is for vector v = (v1, v2, . . . vk) defined as

s(v)i = evi

k∑
j=1

evj

(3.4)

Notably elements of the vector s(v) sum up to 1.
The need for activation function becomes clear when one considers the pos-

sible functions represented by neural networks without them. Each neuron then
represents a function h(x) = f(wT x − b) =

f = id
wT x − b. We can extend the

input x = (x1, x2, . . . xn) with -1 to get x′ = (x1, x2, . . . xn, −1). Similarly for w′,
w′ = (w1, w2, . . . wn, b). Then it holds that h(x) = wT x − b = w′T x′. As the
input vector x is identical for all neurons in a single layer, the output of this layer
becomes Hk(x) = W ′T x′ with w′

1, w′
2, . . . w′

k being the extended weight vectors
for each of the k neurons, which form the columns of W ′ 7 . A neural network
with l layers and corresponding weight matrices W ′

1, W ′
2, . . . W ′

l then for input x′

yields W ′
1 × W ′

2 . . . × W ′
l x

′. As the product W = W ′
1 × W ′

2 . . . × W ′
l does not in

any way depend on the value of x′, this whole network can be then replaced by
a single multiplication of x′ by a matrix W . So for extended x′ is every neural
network equivalent to a linear map.

7To be rigorous this matrix needs to be extended in such a way that the last element of the
output vector is again -1. As it is guaranteed that the last element of the input vector is -1, it
suffices to append 0 to each column and add a new leftmost column (0, . . . 0, 1).

26



Figure 3.6: Activation functions; note the varying axis ranges.

The natural follow-up question to this result is “How much does the intro-
duction of activation functions improve this situation?” Actualy quite a bit. The
following theorem was in a slightly different form proved by Kolmogorov.

Theorem 2 (Universal Approximation Theorem [Cybenko [1989], Wikipedia
contributors]). Let ϕ : R → R be a nonconstant, bounded, and continuous func-
tion. Let Im denote the m-dimensional unit hypercube [0, 1]m. The space of real-
valued continuous functions on Im is denoted by C(Im). Then given any ϵ > 0
and any function f ∈ C(Im), there exist an integer N , real constants vi, bi ∈ R
and real vectors wi ∈ R⋗ for i = 1, . . . , N such that it can be defined

F (x) =
N∑

i=1
viϕ(wi

T x + bi) (3.5)

as an approximate realization of f , so |F (x) − f(x)| < ϵ for all x ∈ Im.

So for a function f , there is a finite number of neurons in a single hidden
layer such that they approximate f with correctly set parameters. This is a quite
strong statement not only because due to this theorem, there is no need for more
complex network structures. It can be additionally proved that the domain of f
does not need to be [0, 1]m, but instead [a, b]m for any a, b ∈ R such that a < b.

While this theorem exposes powerful theoretical properties of neural networks
with only a single hidden layer, it shows no procedure to acquire the necessary
weight parameters. So contrary to the implications of this theorem, practice
seems to favour networks with large number of smaller layers rather than shallow
networks where each layer contains a relatively large number of neurons. The
general approach relying on putting a larger number of simpler layers in a se-
quence is called deep learning, and it is responsible for a majority of the successes
mentioned in the beginning of this section. These advances were to a large extent
enabled by a more powerful hardware capable of fast, parallel floating-point op-
erations. That means both traditional GPUs as well as TPUs (Tensor Processing
Units) designed explicitly for neural networks [Jouppi et al. [2017]].

27



3.2.2 Backpropagation
So far it was implicitly assumed that network weights are already set. To return
back to hypothesis sets, a neural network structure and the corresponding weights
completely specify a function h : Rk → Rl where k is the number of input neurons
and l is the number of output neurons. h is a hypothesis for which the choice
of activation function can heavily restrict the range of h. While it is possible
to set weights manually for smaller tasks, it gets prohibitively more complex for
non-trivial problems.

So it is necessary to find a mechanism that can choose a set of weights for
a rigid network structure. These weights must then correspond to an optimal
hypothesis or a hypothesis that is “close enough”. A naive approach to this
optimization problem might be to try all possible combinations of weights. While
each weight can have every value from R, this continuous set can be discretized to
a finite number of values. If every weight can have only a finite number of values
then the hypothesis set is finite as well. But even if the decreased precision does
not lead to an insufficient solution, extensive search is not tractable as the size of
the hypothesis set increases exponentially with the number of weights. Thus this
approach will prove to be too computationally intesive for almost all non-trivial
cases.

The general approach that is actually utilized here is not unique to neural
networks. It is often used in situations when there is a well-defined error func-
tion, the state space is too large, and there is no known analytical solution. It’s
called gradient descent and it is an approach based on small incremental changes
utilizing local information. In this case, a state is defined by weight values for all
neurons.

An illuminating metaphor for such an approach is the situation of a hiker lost
in mountains which is trying to find his way down. There is a heavy fog, and he
sees only his close surroundings. As he doesn’t know his position and thus cannot
rely on a map, he is forced to depend only on his vision which is very limited. His
approach is to look around and to find the lowest place he can see. By moving to
this new position, he moves downwards. As he moves on, he discovers the area in
front of him, and so he can again decide on his next move in this new position.
In this way he proceeds to continue until he arrives to the valley.

The position of the hiker corresponds with the chosen hypothesis, and the
height to the value of an error function. While the hiker tries to go downward,
a learning algorithm tries to minimize the error on all samples it knows. While
for the hiker the visibility is restricted by the fog, a learner is impeded by the
complexity of the hypothesis space. To choose a next, better hypothesis, a learner
searches the space around the currently chosen state. There may be a finite or an
infinite number of candidates. This depends on the particular hypothesis space
and the learner. When it selects the best option, it “moves” there, effectively
selecting a new hypothesis. Then it again “looks around”, evaluating the new
neighbourhood. This process is repeated until no further improvement can be
made, or until other terminating condition is met.

The arguably most important thing to note about this approach is that it can
fail. The hiker can get unlucky and end up in an enclosed ravine high up in the
mountains. Similarly a learning algorithm can reach a so-called local minimum,
a hypothesis surrounded only by inferior or equal alternatives, but not the lowest

28



possibility. There are many modifications trying to alleviate this issue, the pre-
viously mentioned tabu search being one of them. Often they rely on procedures
that in certain cases allow choosing a worse hypothesis with the hope that a bet-
ter solution, one that does not lie in the currently found local minimum, can be
achieved later on.

Backpropagation is a learning method for neural networks that is based on
this gradient descent principle. It does not modify the structure of the neural
networks, but only changes the weights. As each sequence of weight values corre-
sponds to a particular hypothesis, this approach leads to selecting the hypothesis
near the local minimum. In the most general view, backpropagation fits very
closely the gradient descent pattern. An original hypothesis, in this case defined
by randomly selected weights, is generated. Then a best candidate is chosen
from a neighbourhood of this original hypothesis. As a hypothesis is defined by
a network’s set of weights, each hypothesis is defined by a point h ∈ Rn where n
is the total number of variable network weights. Instead of testing a sequence of
candidates to see which one is best, backpropagation instead chooses the direc-
tion in which to proceed. This direction is defined by the gradient of the error
function in Rn. How is this gradient computed is explained later on. Importantly
backpropagation chooses to make a step in the opposite direction of the gradient
vector thus proceeding in the “steepest” direction that minimizes error. As this
happens, a new hypothesis defined by a vector in Rn is chosen and the whole
cycle starts again until a terminating condition is met.

In a more detail, there is a weight vector (w1, w2, . . . wn) = w ∈ Rn and a
gradient ∇e of the error function in point w. To get the new hypothesis vector
w′, it is necessary to make a step in the opposite direction of the ∇e vector. The
exact position of w′ is specified by a constant α > 0. For individual weights, this
approach is defined by the equation below.

w′
i = wi − α(∇e)i (3.6)

While ∇e specifies the direction in which to move, it does not precisely define
the new vector w′. For that vector, one needs to determine the value of α, a
so-called learning rate. In the simplest case of backpropagation, α is set before
training is even started, and then kept constant during the whole process. More
sophisticated methods vary the learning rate during training, typically slowly
decreasing it with time. Either way, learning rate can have a very large effect
on the final state of the network and the training time. A learning rate that is
too low can result in an extreme number of iterations needed to reach the local
minimum. On the other hand, a large α can produce such a change that the
metaphorical valley is jumped across, and thus missed. There does not seem to
be a method to compute a balanced learning rate before a training process occurs,
and as such it is an important hyperparameter for which multiple values should
be tested.

So far a general gradient descent approach was defined, and gradient-based
method was introduced to get a successor of a current hypothesis, but the gradient
on all weights was just assumed to be provided by some abstract black-box mech-
anism. Actually the term backpropagation describes quite closely the principle
in which gradient is computed even though it is not apparent straight away.

There are two basic pieces of information needed to understand backpropa-

29



gation. Originally a so-called chain rule must be defined. It allows to express a
single derivative d(f◦g)

dx
of a composite function (f ◦g) with two derivatives d f(g(x))

d g(x)

and d g(x)
d x

.

d (f ◦ g)(x)
d x

= d f(g(x))
d x

= d f(g(x))
d g(x) · d g(x)

d x
(3.7)

The second piece of information is more of an enforced invariant. It is neces-
sary for all computational operations done on a neural network to be derivable.
As all operations on the previously defined networks can be broken down into
addition, multiplication, and activation functions, the only issue seems to be the
choice of activation functions. These are not always derivable, which rules out for
example the step function as it does not have a gradient at 0, and thus cannot
be used for backpropagation.

Using the chain rule one can then compute gradient for every weight of every
neuron. This is done by first computing the gradient of the error. This gradient
is then propagated backwards using the chain rule and known derivatives of the
various components like multiplication or various activation functions. This is
done until all weights have its gradient computed.

As an example a backpropagation will be applied and presented on a single
neuron. Input will be the extended input vector with -1 denoted as x, and a weight
vector w will again also contain bias b as it was done in the previous subsection in
an example about networks without activation functions. The output of a neuron
is y = f(wT x) = f(

n∑
i=1

wixi) where f is an activation function derivable in wT x.

The gradient “flowing” backwards is d l
d y

where l is the loss for the current sample.
It does not matter if this neuron is in the last layer or if there are several layers
after it.

What is needed to compute are the values d l
d wi

and d l
d xi

for i ∈ [n]. The
first term is necessary for weight change, and the second term is necessary for
propagation of gradient to lower layers if there are any. The procedure will be
shown only for wi as xi is computed almost identically. Using the chain rule,
the desired derivative d l

d wi
equals d l

d y
· d y

d wi
. The derivative d l

d y
was the value

propagated from the following layer, and thus it is known. d y
d wi

can be broken
down further using the chain rule.

d y

d wi

=
d f(

n∑
j=1

wjxj)

d wi

=
d f(

n∑
j=1

wjxj)

d
n∑

j=1
wjxj

·
d

n∑
j=1

wjxj

d wi

(3.8)

The first part is just a derivative of f for the value wT x. As it is demanded that
f is derivable at wT x, this value is known. As for the second part, d

∑n

j=1 wjxj

d wi
, it

equals xi. Thus the results for wi and xi are following:

d l

d wi

= d l

d y
· f ′(wT x) · xi (3.9)

d l

d xi

= d l

d y
· f ′(wT x) · wi (3.10)

30



The crucial part of these equations is that they contain only the passed d l
d y

and values of given neuron, namely w and x. Thus the result does not in any
way depend on other neurons in the same layer8; all values are local. This means
that derivatives for one layer can be computed in parallel.

There is one pitfall that for some time restricted the use of backpropagation
to shallower networks. Consider the previous example, namely the equation for
d l

d xi
with sigmoid being the activation function. The derivative of a sigmoid is

always relatively low. It is highest for 0, namely 1
4 , and it tends to 0 for values

approaching either −∞ or ∞. So for network with k layers, the error gradient
is multiplied by f ′(wT

k xk), f ′(wT
k−1xk−1), . . . f ′(wT

1 x1) before reaching the weights
of the bottom layer. Each of these values will be at most 1

4 but can be far
lower. Thus the weights for lower layers will change markedly slower than their
counterparts closer to output. This fact limits the number of layers a network can
have as the bottom layers may need an excessive number of iterations to finish
training.

This issue is called vanishing gradient problem, and it is the reason why ReLU
activation functions have proven to be so popular even though they are technically
not derivable in 0. The derivation is always either 0 or 1, and thus the gradient
does not suffer from the same issues as sigmoid or tanh.

But ReLU units do have an another problem. Namely during a weight change,
weight can be pushed to such an extreme value that wT x will be always negative
and ReLU(wT x) will thus be always equal 0. So the gradient flowing backwards
will also be always zero and the value of this extreme weight will never change
resulting in a “dead” neuron. This issue can never be solved entirely but it can be
alleviated by using a low enough learning rate and relatively small initial weights.

So far the details of an error function computation were not given. Typically
for a single sample, L1 or L2 error9 is used on the difference between the actual
and the desired output. For multiple samples the accurate option is to compute
error for each sample and then average these together. But this option demands
to compute an output for all of them which becomes extremely slow for larger
networks and larger datasets containing more than tens of thousands of samples.
Similarly backpropagation needs to happen for all of these samples separately as
their neuron activations are different. To cut down on computation time, one
can perform backpropagation and subsequent weight change for only a single,
randomly chosen sample. This approach is called stochastic gradient descent. It
drastically cuts down the needed computation, but the error of a single sample
is in many cases a poor approximation of the real error function. A mini-batch
backpropagation uses small batches of training samples. In this way a single
sequence of forward computation, backward propagation, and weight change is
still relatively fast but the aggregated error is a closer approximation of the overall
error. As such this approach typically converges in lower number of iterations
and also faster.

Backpropagation is not the only option for learning network weights for a
particular task. Genetic algorithms are also capable of setting neuron weights.

8There are exception, for example softmax layer. Nonetheless the computation remains
local.

9Both are defined later in equations 3.20 and 3.21. Both loss functions sum errors for
individual samples which are computed separately.

31



In many cases they are not limited to the standard supervised learning scenario
where we always need to know all desired values for each training sample. Instead
they rely on fitness which is a form of a score. It describes how well a network is
doing. A notable genetic algorithm is NEAT [Stanley and Miikkulainen [2002]]
which does not only learn weights but also the structure. It starts with a simple
network with no hidden neurons which grows more complex if needed.

Another approach is Hebbian learning [Hebb [2005]] which is based on the rule
that neurons with correlated outputs should have its connecting weight strength-
ened. This is summed up in the sentence “If they fire together, they wire to-
gether.”

These alternatives are capable of learning network weights but they have its
limitations. Typically they are not capable of training large networks, and as such
they are poor subsitutes for backpropagation, especially for deep archictectures.

3.2.3 Convolutional networks
One of the first successes of deep learning was object recognition. Its goal is to
recognize not only easily defined items, e.g. a circle or a cube, but also real-
world objects like different types of animals, cars, etc. This should be possible
with photographs made under various conditions like sunny weather or indoor
environment. Deep learning has achieved state-of-the-art results in this task
using a novel approach built on biological principles.

While the first impulse might be to just stack a series of standard neuron
layers, this approach is bound to fail. Assuming colour pictures of size 256 × 256
with RGB encoding, each image is represented by 256 × 256 × 3 ≈ 196k integer
values in range [0, 255]. It is almost pointless in this case to try to come up with
a neural network structure without further experimentation, but it is helpful to
illustrate how many weights a basic feed-forward network might have. A network
with a single hidden layer of size 1000 and a single output neuron, whose value
represents an appearance of some phenomena10 in an image, has over 196 million
parameters. This is assuming that each neuron in the hidden layer is connected
with each neuron from the previous, input layer. Such a layer where every neuron
takes all values from the previous layer as input is called fully-connected layer.

In addition to the fact that this network would require an extreme number of
samples to train, this approach largely diverges from vision processing discovered
in organisms. For example in cats, neurons processing signal from the retina are
connected only to a small number of local “inputs” [Hubel and Wiesel [1968]].
Additionally neighbours tend to work similarly. They all send a signal across
the axon if there was a horizontal edge detected in their respective field. This
general principle of locality and uniformity is emulated by convolutional layers
which form a basic block for building convolutional neural networks capable of
accurate object recognition.

A convolutional layer consists of a grid of neurons where each neuron is con-
nected only to a spatially local selection of inputs from the previous layer. An
image with each pixel represented in 3 RGB channels forms in the input layer a
three dimensional grid. Height of the grid is the height of the image. Similarly for

10That may be for example an occurence of a certain object like a dog or a car. An output
layer may consist of several neurons. Each one corresponds to a different phenomenon.

32



width. Depth equals three; with values of each channel saved in a single so-called
depth slice. While depth is set constant for an image due to a constant number
of channels, this is not an invariant that is always true. Actually a convolutional
layer creates a grid of neuron with an arbitrary depth. For each depth slice a
convolutional layer has a set of weights called filter, sometimes also kernel, that
define the values in this depth slice. All filters are independent of each other, but
they do have the same shape.

A filter is the structure that introduces the previously mentioned locality and
uniformity. One way to think about it, is that all neuron in given depth slice
share the same weight vector. Arguably a more descriptive way of looking at it
gets rid of the concept of a layer as a grid of neurons altogether and replaces it
with a simple 3D memory array. This memory is then filled by the set of filters.
In this case each filter is a smaller 3D set of weights with depth identical to
the input layer. Such an object “slides” across the input layer and sequentially
generates a set of values given by its weights and the connected input values.
These connected input values are called a receptive field.

Figure 3.7: Convolutional filter (Source: Guo et al. [2015])

There are multiple hyperparameters for a convolutional layer. The most ob-
vious choice that needs to be considered is the size filter. While a convolutional
layer always takes values from all depth slices, a choice needs to be made for
filter’s width and height. Next is the depth of a convolutional layer or rather the
number of filters. Depth typically grows monotonically from input layer toward
output layer in convolutional layers. The choice of step a moving filter makes
as it slides across its input is another important parameter. While it may seem
natural for a filter to always only move one position in a particular direction, this
is not neccessary. Additionally an input layer can be padded on its sides with
constant values, typically 0. One of the consequences of such a modification is
the change of possibly both height and width of output layer.

The convolutional layers are not the only layers used in convolutional net-
works. The representation of an image in an input layer is rather large compared
to the output with only a handful of neurons. As such there must be a method
for converting larger layers to ones with lower number of neurons. There are
several possible approaches. A crude method is to use a fully connected layer
with smaller number of layers than its predecessor. This is a valid solution for

33



upper parts of the network where the number of neurons is relatively small, but
it is not reasonable for layers closer to the input layer. Another possibility is to
use convolutional layers with step larger than 1. While this is feasible, pooling
layers are specifically designed to solve this problem. They work very similarly to
convolutional layers with a shared filter “moving” over the input layer and creat-
ing output only from a spatially limited neighbourhood. The crucial difference is
that while the convolutional filter is composed of trainable weights, pooling lay-
ers filters are set by choosing the type of the pooling layer. They stay constant
during backpropagation.

There are two main types of pooling layers. Filter of average pooling layer
outputs the arithmetic average of all local input values. Conversely max pooling
layer selects their maximum.

A first deep learning model for object recognition that successfully combined
the previously defined layers was AlexNet [Krizhevsky et al. [2012b]]. It works
by putting a max pooling layer after a convolutional layer or a sequence of con-
volutional layers several times. Lower convolutional layers extract features like
edges or a single colour channel while those that are higher extract more abstract
patterns. As it was noted previously, a pooling layer is used to sequentially de-
crease the size of processed data, and thus prepare it for the last sequence of
fully connected layers. These are meant to work more flexibly with the features
extracted by convolutional layers and to generate the final result.

Figure 3.8: AlexNet layers. params denotes the number of trainable parameters
for each layer. FLOPs denotes the number of floating-point operations needed
for forward pass of each layer. (Source: Guo et al. [2015])

34



3.3 Model Evaluation11

Assuming that a model generated by some machine learning technique is already
given, the training process is not yet finished. Each model has a set of attributes
and characteristics that are important. In addition to the more straightforward
aspects as model size or the time needed to acquire results for new data, the
most crucial question that can be asked is “How good is the hypothesis?” This
question is here purposefully asked in such a general fashion as there is a range
of criteria that can influence the desired result. It is also relevant when a model
is being trained as it is repeatedly decided, if training is to be continued.

For classification one of the most basic methods is taking the number of correct
test results divided by the number of all test samples. This method is simply
called accuracy. Although such a straightforward approach is often used, it is
not always appropriate. Consider the case when a model is trained to detect a
malignant tumour in a tissue. If a hypothesis mistakenly classifies harmless cells
as malignant then the patient will be checked by a specialist and the subsequent
costs will be only monetary. If the cases are reversed and a tumour is classified
as benign, the situation will be graver. Here it might be useful to treat different
cases of misclassification with different penalties.

Another case where accuracy might not be the correct measure is a situation
in which the testing dataset is highly unbalanced. For example if samples are
labeled either as positive or negative, and out of 1000 test samples only 10 are
negative, the accuracy of a hypothesis that classifies every sample as positive is
99%. At first sight this seems like an excellent result yet every negative sample
is misclassified.

An issue that also needs to be kept in mind is that there may not exist any
hypotheses correctly classifying all given samples. That may be caused by noisy
data or badly annotated training samples. Another option is that the dataset
does not provide enough information to correctly discern between different results.
Either way it is necessary to take into account these shortcomings and take them
into account during model evaluation. Additionally instead of searching for a
perfect result for each point in the sample space, a probabilistic approach needs
to be taken. That means selecting the most likely correct answer or the one
closest to the actual result.

In the following section several methods for model evaluation are presented.
In addition to their definitions, their strengths and weaknesses are described as
well. Cross-validation, an approach mainly used for estimating overfitting of a
model, is also explained. Emphasis is put on more practical measures used during
model training. For that reason more theoretical approaches and measures like
Rademacher complexity or Growth function are not discussed.

3.3.1 Methods for Classification
Definition 3 (Accuracy). Given desired hypothesis f : X → Y , modelled hy-
pothesis h : X → Y , and finite test set X ⊆ X, accuracy a ∈ [0, 1] is defined as:

11The structure of this section is loosely based on the notes of Martin Pilát for the lecture
Application of Computational Intelligence Methods [Pilát [2018]]

35



Real Positive Real Negative
Predicted Positive TP FP
Predicted Negative FN TN

Figure 3.9: Confusion matrix

a = 1
|X|

∑
x∈X

I(f(x) = (h(x)) (3.11)

where I(a = b) = 1 ⇐⇒ a = b and I(a = b) = 0 ⇐⇒ a ̸= b.

The first, already noted method for evaluating classification models is ac-
curacy. It does not distinguish between different samples from the test set or
between different types of mistakes. Despite its simplicity it is widely used as it
is useful when the previously mentioned phenomena are not too significant. It is
also helpful in situations where the sample set is not well described. Then it can
be used as a starting position before a more detailed exploration.

Let’s consider the situation when a given classifier is designed to assign either
a positive or a negative label. This is the most basic, but also arguably the most
common type of a classifier. For such a situation, there are 4 possible results
in relation to original, or rather correct, labels. If a classifier assigned correctly
then either both real and predicted labels are positive, such a case is called true
positive (TP), or both of them are false, then it is a true negative (TN). The case
when the true label is positive while negative label was predicted is called false
negative (FN). If the true label was negative but the predicted label was positive
then such a case is denoted as false positive (FP).

TP, TN, FP, and FN are often presented in a 2 × 2 matrix called a confusion
matrix (3.3.1). It is used to succinctly present the distribution among the pre-
viously noted cases. This table can be also generalized for classifiers with n ≥ 3
output labels. Then for a confusion matrix M ∈ Nn×n, the element Mij denotes
the number of samples with a real label j and a predicted label i.

Using the terms defined above, accuracy can be for binary classifiers redefined
as T P +T N

T P +T N+F P +F N
.

Definition 4 (Precision).
P = TP

TP + FP
(3.12)

Definition 5 (Recall).
R = TP

TP + FN
(3.13)

Let’s return to the situation with an unbalanced dataset. There are 990 pos-
itive samples and 10 negative samples. The failure of accuracy in this scenarion
was already presented. The issue here is the ratio of positive and negative sam-
ples is not taken into account. As such even if TN is 0, TP is still very high for
the always-positive classifier and accuracy is close to 1. Both precision and recall
are useful as they are more sensitive to unbalanced datasets although this is not
their only quality.

Precision denotes the portion of true positive samples among all those that are
marked as positive. For that reason it is also sometimes called positive predictive

36



Figure 3.10: Datasets: A: balanced and small overlap, B: balanced and large
overlap, C : unbalanced and large overlap; Positive samples are denoted by green
colour while negative samples are red.

value. A useful example is the already mentioned tumour classification. While
the always-negative classifier reaches very high accuracy as the percentage of
positive samples in dataset will be most likely quite small, its precision will be
exactly 0.

Recall on the other hand expresses the percentage of truly positive samples
that are actually labeled as positive. Instead of recall, a value 1−R that is called
miss rate is sometimes used. It denotes the portion of true positive samples that
were misclassfied, or said differently “lost”.

Naturally a classifier with both high recall and high precision is desirable.
It is possible to use the melanoma example again to showcase usage differences
in both measures. While high precision implies that not many harmless lesions
were classified as malignant, high recall means that at most a small percentage
of dangerous samples was not selected. Here achieving recall close to 1 is very
important, but in other cases precision might be crucial. It’s important to note
that neither one is generally better. Neither precision nor recall aims to substitute
accuracy, they are measures meant to highlight distinct properties of hypothesis
in relation to the data set.

Definition 6 (F-score).

Fα(R, P ) = (α + 1)RP

R + αP
(3.14)

Both precision and recall stress some particular aspect of the given classifica-
tion. F-score is a harmonic mean of precision and recall that aggregates these two
values into a single real value. Harmonic mean is used instead of, for example,
the average mean because it penalizes extreme values of both precision and recall
more heavily. The α parameter is used to weigh the importance of precision in
relation to recall and vice versa. Typically when neither of these two values is
more important, α is set to 1.

Many classification algorithms do not directly output a binary value, but in-
stead they assign some x ∈ R to every sample which then needs to be transformed
into a binary value. For logistic regression this x represents probability that a
label is positive while for neural networks the output may not be so easy to
interpret.

37



In general a hypothesis h creates a sequence of real-valued numbers where
higher values correspond to a positive result while lower values correspond to a
negative result. At this situation it does not make much sense to label a sample
as positive if there is another negatively-labeled sample with higher output value.
So selecting a threshold t ∈ R unambiguously assigns a positive or a negative
label to every sample. Input datum x is labeled as positive if h(x) ≥ t and as
negative otherwise.

Naive way to evaluate such datasets is to first label the data and then use one
of the previously presented methods. As only the real-valued hypothesis output
can be used, some way to generate positive and negative labels must be devised,
i.e. a threshold must be set. One way to do this is to try every possible value
as a threshold and then take the best option. But it is not obvious what does
“best” mean in this context. If the measure is recall, sometimes also called true
positive rate, that is the used measure, the best solution is to label everything
as positive. On the other hand using false positive rate defined as F P

F P +T N
yields

classifier that labels everything as negative.
Additionally it is not only important for a hypothesis to yield results that can

be separated by a threshold. Intuitively it is also useful for the positive cluster
and the negative cluster to be far from each other so to that small perturbations
to the threshold value do not change results too much or even at all.

Definition 7 (Receiver Operating Characteristic Curve). Given a true positive
rate (recall) TPR and a false positive rate FPR, Receiver Operating Character-
istic Curve is defined as:

ROC(x) = TPR(FPR−1(x)) (3.15)

where x ∈ [0, 1]. And the area under ROC is then defined as:

AUR =
∫ 1

x=0
ROC(x)dx (3.16)

Instead of taking a single measure or even several measures at given point,
AUR aggregates TPR and FPR for all possible thresholds. It does that by plotting
the ROC curve that expresses the compromise between TRP and FPR and taking
the area underneath. The ideal case is when a classifier assigns all negative
samples to a single point x ∈ R and all positive samples to a single point y ∈ R
where x < y. Then the ROC curve will go through the point [0, 1] and AUC will
equal 1.

To present behaviour of AUC and its shortcomings, 3 distinct datasets were
created. Apart from a true label, a real value that may be interpreted as a
direct output of some classifier is included. In all cases the mean of the positive
cluster is higher than the mean of the negative cluster. Each time there is an
overlap between the values of both positive and negative samples. The dataset
A consists of the same number of positive and negative samples. Positive and
negative samples cannot be separated with perfect accuracy, but setting the cut-
off to about 0 will yield decent results. Set B is also balanced but this time
the variance of the positive and the negative cluster is higher, and as such these
clusters blend together. Set C is unbalanced as positive samples cover only 5%
of the data. In addition, values of positive and negative samples are mixed quite
thoroughly.

38



Figure 3.11: ROC curve plotted for all three datasets. The dashed line corre-
sponds to a set of classifiers which assign both positive and negative label ran-
domly with a probability p ∈ [0, 1]. Each classifier corresponds to a single point
on the line.

From the corresponding figure it can be seen that results for sets A and B
meet the previously stated requirements for an evaluation method. Meanwhile
AUC for set C is almost as good as for set A. This is because set C is unbalanced
and misclassified positive samples do not have such an impact.

Definition 8 (Precision/Recall Curve). For precision and recall, Precision-Recall
Curve is defined as:

PR(x) = recall(precision−1(x)) = TPR(precision−1(x)) (3.17)

where x ∈ [0, 1]. And the area under PR is then defined as:

AUPR =
∫ 1

x=0
PR(x)dx (3.18)

The issues with ROC curve are especially problematic for medical data where
the amount of negative data heavily outweighs the positive component. The
Precision/Recall curve on the hand does not share these downsides as it can be
seen from the results. While AUC seemed to be quite high for set C, the AuPR
metric evaluates it more negatively. Actually it ends up even worse than set B.

39



Figure 3.12: PR curve plotted for all three datasets.

40



The last mentioned method for evaluation of classification tasks is Discounted
Cumulative Gain [Järvelin and Kekäläinen [2002]]. It is used in information
retrieval for assessing the returned list of queries. Such a list is often limited as
the user does not typically care about the ranking of all possibilities, but wants
only top k results. An example is Google web search, where the user wants not
only a limited number of links per page, but it is also expected that the most
relevant ones will be at the beginning.

Definition 9 (Discounted Cumulative Gain). For a vector of retrieved objects of
length n with corresponding relevance rel1, . . . relp, Discounted Cumulative Gain
is defined as

DCGn =
n∑

i=1

reli
log2(i + 1) (3.19)

Higher relevance implies a closer fit to the user query.

As it can be seen from the preceding equation, DCGn is maximized when the
most relevant results are at the beginning of the vector. Apart from web search,
this metric is also relevant for recommendation systems as its goal is again to
supply a user with a series of objects, e.g. films. Subsequently it is a valid metric
for drug-target interaction prediction as the top k predictions are the further
research candidates.

3.3.2 Methods for Regression
The previous methods were geared toward classification, i.e. hypotheses with
discrete output. Meanwhile regression aims to predict a real-valued output based
on the input data. There are several main differences between these methods.
Primarily there is an implicit similarity between output points in regression tasks.
Given points x, y, z ∈ R where x < y < z, result y is better compared to result
z for desired output x. On the other hand, there may also be various similarity
measures for classification, but they must be explicitly defined. This ties to the
second point, the fact that rarely does a hypothesis generate the exact desired
value. Mostly a machine learning approach returns only an approximation of a
desired hypothesis. This renders certain classification methods such as accuracy
useless.

Definition 10 (L1 error). Given a sample set {(x1, y1), (x2, y2) . . . (xn, yn)} ⊆
X × R and a hypothesis f : X → R L1 error is described as:

L1 =
n∑

i=1
|yi − f(xi)| (3.20)

L1 error measures the absolute value between desired and returned output.
In practice it means that several mistakes, even if very large, will not not impact
the resulting error too much as long as the other samples do not differ too much
from their desired values.

Definition 11 (L2, (Root) Mean Squared Error). Given a sample set

41



{(x1, y1), (x2, y2) . . . (xn, yn)} ⊆ X × R and hypothesis f : X → R, mean squared
error is defined as:

L2 =
n∑

i=1
(yi − f(xi))2 (3.21)

MSE = 1
n

n∑
i=1

(yi − f(xi))2 = 1
n

L2 (3.22)

Subsequently the root mean squared error is defined as:

RMSE =
√

MSE =
√ 1

n

n∑
i=1

(yi − f(xi))2 (3.23)

The MSE measure more heavily penalizes large differences. Compared to
the L1 error, it favours many small errors to few large ones. It is often used
as a target to minimize during training of neural networks. In these cases it
is mostly multiplied by 1

2 to reduce the amount of computation needed during
backpropagation. In this form it is also referred to as L2 error. Both L1 and L2
errors are used for weight regularization of neural networks to prevent overfitting.

RMSE adds square root to the MSE to make results more easily interpretable.
It is meant to normalize values that are disproportionate to the original inputs
due to the quadratic function.

Definition 12 (Coefficient of Determination). Given a sample set
T = ((x1, y1), (x2, y2) . . . (xn, yn)) ⊆ X × R where sequence (y1, y2, . . . yn) is de-
noted as y and given hypothesis f : X → R, coefficient of determination, also
called R2, is defined as:

R2 = 1 − MSE

var(y) (3.24)

where MSE is computed for the data set T and hypothesis f .

Another way to normalize results of MSE is to use the R-squared measure
also called coefficient of determination. It uses a variance of data set outputs to
normalize the MSE. R2 represents goodness of fit where 1 corresponds to ideal
fit with zero error.

3.3.3 Cross-Validation
There is another important technique often used during model evaluation. Its task
isn’t to provide a single value characterizing a specific facet of the hypothesis.
Instead it is used to estimate overfitting. This need for cross-validation arises
from the previously mentioned bias-overfitting trade-off. It is crucial especially
for deep learning models that are complex and thus their hypothesis set size is
considerable. The amount of data needed to perform training of such models
is significant. While compiling training samples can be both costly and time-
intesive, deep learning models are often trained with barely enough data. In such
cases the probability of overfitting is high.

The purpose of cross-validation is to generate several hypotheses h1, h2 . . . hk

using a single learner L and a dataset d. The learner is provided with a subset

42



of the original data sl ⊆ d to train each newly-created hypothesis hl. These sub-
sets are typically distinct, although this property does not need to hold for some
stochastic variants of cross-validation. Each hypothesis hl is then evaluated on
its validation set d \ sl. This sequence of evaluation results is then statiscally an-
alyzed. Most notably variance of accuracy, AUC, or AUPR provides information
about the “fragility” of the learner and the dataset respectively. High variance
implies that modifying dataset can greatly influence the hypothesis.

The standard cross-validation algorithm takes n data-points for supervised
learning as its input. It then proceeds to randomly divide this sequence into k
non-overlapping groups f1, f2, . . . fk called folds of size ⌈n

k
⌉ or ⌊n

k
⌋. Using this

decomposition, k distinct models are trained always taking 1 fold as a validation
set and the rest as a training set. So the first model is trained on f2, f3 . . . fk and
tested on f1; the second model is trained on f1, f3, . . . fk and tested on f2 etc.
This variant is called k-fold cross-validation.

The extreme case of the previous approach is the so-called one-out cross val-
idation where k = n. In this case ∀i ∈ [n] : |si| = 1 and so hi is tested on exactly
one sample.

The Monte Carlo cross-validation [Dubitzky et al. [2007]] is a stochastic ap-
proach where the folds are created by random sampling from the overall dataset.
In this case the size of both training and validation set are not dependent on
the number of folds, which can be seen as an advantage. On the other hand,
there is no guarantee that any particular sample is tested. This may have large
implications on results, for example with highly unbalanced datasets.

A similar situation may cause problems for standard k-fold cross-validation
as well, if some rare labels are grouped into only a small number of folds. In this
case, the result may cause a high variance among the resulting measurements.
The answer to this issue is stratified cross-validation. It enforces an approximately
uniform distribution of samples for each label across all folds. For classification
it effectively performs l ∈ N distinct cross-validations partitionings where l is the
number of distinct labels in the dataset. These distinct folds are then merged
together.

To be more rigorous, assume a dataset d = (s1, s2, . . . sn) and l ∈ N again
being the number of unique labels. Let’s denote ∀l′ ∈ [l] : il′ ⊆ [n] the set of
indices that are labeled with label l′ in d. The sets i1, i2, . . . il form a partition of
[n]. So they do not share any elements and ⋃l

l′=1 il′ = [n]. A standard k-fold cross-
validation partitioning is performed for every ij (j ∈ [l]) that results in k sets of
indices i

(1)
j , i

(2)
j , . . . ik

j . The final folds for the stratified k-fold cross-validation are
f1, f2, . . . fk where ∀k′ ∈ [k] : fk′ = {sj|j ∈ ⋃l

l′=1 il′
k′}.

Before running a k-fold cross-validation, the number of folds k ∈ N needs
to be chosen. It is good to state the factors that might influence this decision.
Increasing k enlarges the training set used for every hypothesis. This in turn at
least in theory increases the probability of the learner yielding a better classifier.
The negative effect is the most pronounced for k = 2 where only 50% of the
complete dataset is used for training.

On the other hand as there is more data for training, the validation set grows
smaller. This tends to increase bias on individual folds. Another factor is the
computation time needed to train a model. While training a deep learning model
can take hours even with a dedicated GPU, choosing a high number of folds can

43



prove to be untractable.
Setting k equal to 8, 10 or 20 was experimentally proven to achieve good

results [Kohavi [1995]].

3.4 Previous work
While the drug-target interaction problen was presented already, the current
methods used to solve it were not shown so far. The work in the following chap-
ter was not performed in vaccuum, but was preceded by previous research upon
which it builds. For that reason, several successful papers are here presented.
These were chosen to showcase problems related to DTI and their corresponding
answers. As such they focus mainly on used methods and the reasoning behind
them, rather than on experiment results. Relevant evaluations are presented later
on.

One of the first cases of machine learning being used to predict drug-target
interaction was Supervised prediction of drug–target interactions using bipartite
local models [Bleakley and Yamanishi [2009]]. Drugs and targets were represented
as set D = {d1, d2, . . . dm}, respectively T = {t1, t2, . . . tn}. These sets then
together form a bipartite graph where each existing edge is a known interaction.
For each predicted edge (d, t), 2 local models are trained. First is trained on all
targets except t. Target is considered positive, if it is connected to d via an edge
and negative, if it isn’t. The second model is trained on all drugs except d in
similar fashion. In this particular research paper, the chosen learning algorithm
was SVM. These trained models are used to predict results for t and d. Those
results are then aggregated to generate a final prediction.

There was quite a large influx of solutions for drug-target interaction from
Recommender Systems or Collaborative filtering to be more precise. Collaborative
filtering is a method used to predict an interest of a set of users in a set of
items [Sarwar et al. [2001]]. The underlying principle is trying to find similarities
between users and similarities between items, for example represented by vectors
in a high-dimensional space, and then making predictions for an entity based
on the history of its neighbours. An example is Youtube which recommends a
different sequence of videos to each user based on their viewing history. This has
been a field that has gained a large attention in recent years as many companies
like Amazon or Google are willing to invest large sums of money to improve their
predictions in this area. Probably the most famous case is the Netflix prize whose
contestants competed for 1 million US dollars as they tried to improve the Netflix
recommendation engine [Bennett et al. [2007]].

Research in this area has been quite influential on machine learning approaches
to drug-target interaction. This is true as proteins can be seen as users potentially
interested in items, here drugs, based on their previously recorded activity. Based
on a more general definition, collaborative filtering can be seen as filtering for
information in a multi-agent system environment [Terveen and Hill [2001]]. In
that case, no metaphore is needed and DTI is just a specific case of collaborative
filtering. Either way, research into recommender systems was influential to DTI.

The several following subsections revolve around previous models used for
drug-target interaction prediction. They are not the only ones. Apart from
the already noted Bleakley and Yamanishi [2009], there are others like Öztürk

44



et al. [2018] or van Laarhoven et al. [2011]. What sets apart those presented
below is either an exposition of characteristics and issues important to drug-
target interaction or interesting machine learning approaches utilized to solve
DTI.

3.4.1 Neighborhood Regularized Logistic Matrix Factor-
ization for Drug-Target Interaction Prediction [Liu
et al. [2016]]

The goal of collaborative filtering is to predict new interactions between two sets
of objects SU and SV based on the interactions that are already known. One of
the approaches to this task is to represent each object with a vector of constant
length. So for every u ∈ SU ∃ wu ∈ Rk. Similarly for every v ∈ V ∃ wv ∈ Rk.
In this case these representations are not known a priori. They are not based
on some individual characteristics of their corresponding items. Instead they are
meant to model interactions between SU and SV , and are called latent vectors

One approach for expressing this interaction between u ∈ SU , v ∈ SV is to take
their dot product u ·v = x ∈ R. One of the interpretations of x is considering the
value of 0 as modelling lack of interaction. Value of 1 then implies some form of a
relation. Taking σ(x), also sometimes called logistic function, instead of x removes
the need to interpret values lower than 0 and higher than 1. Values in between
may model the strength of activation or the confidence in given relation. As
such this method is called matrix factorization in case when we are searching for
matrices composed of these latent vectors, or logistic matrix factorization[Johnson
[2014]] when we afterwards explicitly use a logistic function for normalization.

Vectors for elements of SU can be compactly expressed in a matrix U ∈ R|SU |×k

as its rows. In the same way elements of {wv | v ∈ SV } form rows of V ∈ R|SV |×k.
All interactions are then represented by a matrix Y = UV T ∈ R|SU |×|SV |.

For the learning process to make sense, only some elements of Y are known.
These interactions define constraints on U and V , which when specified, generate
the rest of Y . The problem can be characterized as solving arg min

U,V
||Y − UV T ||F

where || · ||F is the Frobenius norm. At this point it is useful to notice that
until now k remained unspecified. Its size is directly proportionate to the size
of the hypothesis set, and as such it is subject to the previously mentioned bias-
complexity tradeoff.

To prevent overfitting, values of U and V are penalized by adding a term
λ1||U || and λ2||V || respectively to the expression being minimized. || · || is again
a norm effectively restricting large values of elements in U and V . The final term
is then

arg min
U,V

||Y − UV T ||F + λ1||U || + λ2||V || (3.25)

A variation of the gradient descent approach can be used to solve this problem.
This is the general method Liu et al. build on. U ∈ Rm×k is the matrix

representing drugs with their corresponding latent vectors being its rows. V ∈
Rn×k is similarly the matrix containing the latent vectors of targets as its rows.
Y ∈ {0, 1}m×n is the matrix of interactions between those two groups where
Yij = 1, if and only if it is known that drug i interacts with target j.

45



During prediction, pij = σ(u · v) models the probability of interaction, and
should in ideal case be equal to Yij. The method in this paper as a whole takes
the probabilistic approach as it is the goal to find U, V such that they maximize
P (Y | U, V ) under several constraints. One of the observations the authors make
is that more emphasis should be put on positive elements of Y as they correspond
to experimentally tested results compared to elements which equal zero. These
do not represent a clear result as they may either correspond to experimentally
tested lack of interaction or just missing information. For this reason, positive
samples are weighted more strongly with constant c empirically tested to behave
well with value equal to 5. With this extension, the original version of P (Y | U, V )
then looks as follows:

p(Y | U, V ) =
∏

i∈[m],j∈[n],yij=1
p

cyij

ij (1 − pij)1−yij ×

∏
i∈[m],j∈[n],yij=0

p
cyij

ij (1 − pij)1−yij

=
m∏

i=1

n∏
j=1

p
cyij

ij (1 − pij)1−yij

(3.26)

As was the case in the more straight matrix factorization case, some form of
regularization is presented to reduce overfitting. In this work U and V are limited
by Gaussian priors with zero mean and parametrizable σ2 that is identical for
every element in a latent vector.

p(U | σ2
d) =

m∏
i=1

N(ui | 0, σ2
dI), p(V | σ2

d) =
m∏

i=1
N(ui | 0, σ2

t I), (3.27)

Due to the Bayesian rule and the chain rule, the relation

p(U, V | Y, σ2
d, σ2

t ) ∝ p(Y | U, V ) p(U | σ2
d) p(V | σ2

t ) (3.28)
holds. The desired matrices are then computed using gradient descent, to be

more precise, AdaGrad algorithm [Duchi et al. [2011]]. As the consecutive multi-
plications of both p

cyij

ij and (1−pij)1−yij , which are both within the interval [0, 1],
may prove to be computationally difficult, log p(U, V | Y, σ2

d, σ2
t ) is maximized

instead. The equation is then as follows:

log p(U, V | Y, σ2
d, σ2

t ) =
m∑

i=1

n∑
j=1

cyijuiv
T
j − (1 + cyij − yij) log(1 + exp(uiv

T
j ))

− 1
2σ2

d

m∑
i=1

||ui||22 − 1
2σ2

t

n∑
j=1

||vj||22 + C

(3.29)

for constant C independent of both U and V .
So far no information about the relationships between objects of the same class

was used. But it can be reasonably expected, and for drug-target interaction it
can be also empirically proved, that proteins that are structurally similar, often

46



bind to the same targets. It would be prudent to use such an information, and Liu
et al. did indeed use similarities between both proteins and targets to improve
the prediction model. For each object, either protein or drug, they introduce 5
most similar neighbours. Then they add terms to the equation 3.29 penalizing
distance of each latent vector from its corresponding neighbours

α

2

n∑
i=1

n∑
j=1

aij||ui − uj||2F ,

β

2

m∑
i=1

m∑
j=1

bij||vi − vj||2F
(3.30)

where α and β are hyperparameters controlling the relative effect of these
terms.

The complete term that is being maximized is then

m∑
i=1

n∑
j=1

cyijuiv
T
j − (1 + cyij − yij) log(1 + exp(uiv

T
j ))

− 1
2σ2

d

m∑
i=1

||ui||22 − 1
2σ2

t

n∑
j=1

||vj||22

−α

2

n∑
i=1

n∑
j=1

aij||ui − uj||2F − β

2

m∑
i=1

m∑
j=1

bij||vi − vj||2F

(3.31)

To recapitulate, the Neighbourhood Regularized Logistic Matrix Factorization
approach to prediction of drug-target interaction uses a method originally used
for recommender systems. The main idea behind this method is to represent every
item with a latent vector. Logistic function is used to limit the range of results
for two objects, and information about similar proteins and drugs is incorporated
using the neighbourhood penalization term. The resulting matrices U and V are
then found by maximizing the final function 3.31 using an algorithm based on a
gradient descent.

At the same time the latent vectors of proteins and drugs are multiplied
directly, only applying the logistic function to the result. Such an approach can
be considered as too restrictive, as a similarity penalization is applied among other
terms. A more general function from latent vector representation to “interaction”
vectors can improve the model results.

3.4.2 ]
Drug repositioning by integrating target information through a heterogeneous
network model [Wang et al. [2014]]

The previously noted model was successful at the time of its publication as
it achieved state-of-the-art results. Nonetheless, there are several shortcomings
that limit its performance. Primarily the method utilises only information about
proteins and drugs. The paper itself notes use of 4 datasets. Together they
consist of 989 proteins and 932 drugs with only 5127 documented interactions in
total. That’s only about 0.2% of all possible interactions. There exists additional

47



Figure 3.13: Relations among all three groups of data. Source: Wang et al. [2014]

information in the form of relationships between both drugs and proteins on one
side and diseases or side-effects on the other. This data remains unused.

The following model aims to alleviate this issue by using several types of
interactions. It also heavily depends on the transitive property of what they
call a guilt-by-association relation [Barabási et al. [2011]]. This is just another
term for the Swanson’s ABC model. Basically, it means that if objects A and B
interact, and B and C interact, then that increases the probability of interaction
between A and C.

It is important to note that the aim of this model is not to predict interactions
between drugs and targets, but instead between drugs and diseases. Nonetheless,
it is not difficult to modify the algorithm for the former case.

Wang et al. work with interaction data best conceptualized as a graph. It
consists of nodes of three types, diseases, drugs, and targets. These are denoted
with D, R and T . Information about interactions are represented in Edr and Ert

that contain edges between diseases and drugs and drugs and targets respectively.
Similarities are encoded by Edd, Err, and Ett. Additionally the magnitudes of
these relations are stored in weight matrices Wdr, Wrt, Wdd, Wrr, and Wtt.

The algorithm itself is iterative in nature. It takes the normalized weight
matrices, and then using the guilt-by-association principle it converges to a steady
state of the system. One case of this principle is here realized by the following
equation for disease d and protein r.

w(d, r) =
∑
ti∈T

∑
tj∈T

w(d, ti) × w(ti, tj) × w(r, tj) (3.32)

Partial changes of this kind are done together by multiplying the individual
matrices. For example, the corresponding “bulk” operation in (k + 1)-th step for
3.4.2 is W k+1

dr := W k
dt × W k

tt × W k
rt

T . Together they are all listed below.

W k+1
dt := W k

dr × W k
rr × W k

rt,

W k+1
dr := W k

dt × W k
tt × W k

rt

T
,

W k+1
rt := W k

dr

T × W k
dd × W k

dt

(3.33)

48



Matrix Wdt is not originally present so it is used only as a shorthand, that is
used in the other two equations. When Wdt is replaced by the right side in 3.33,
the results look like so:

W k+1
dr := (W k

dr × W k
rr × W k

rt) × W k
tt × W k

rt

T
,

W k+1
rt := W k

dr

T × W k
dd × (W k

dr × W k
rr × W k

rt)
(3.34)

Although these two equations could denote the update rules in this form, the
authors decided to put more weight on the original weight matrices. Thus they
use a decay factor α ∈ (0, 1) that controls how conservative is the model in its
predictions.

W k+1
dr := α(W k

dr × Wrr × W k
rt × Wtt × W k

rt

T ) + (1 − α)W 0
dr,

W k+1
rt := α(W k

dr

T × Wdd × W k
dr × Wrr × W k

rt) + (1 − α)W 0
rt,

(3.35)

As it was previously noted, the model will converge given a proper normal-
ization of all matrices. This normalization is defined by the equation 3.4.2 where
aij ∈ A, for A being a matrix of size m × n. The element a′

ij is then an element
of the normalized matrix A′ of the same size. The supplementary materials of
this research paper do contain a full proof for this assertion. Here it is omitted
for the sake of brevity.

a′
ij = aij√

m∏
k=1

aik

n∏
k=1

akj

(3.36)

One of the drawbacks of this method is its inability to make predictions about
drugs or diseases without any known interactions. For such cases, authors advise
to use the previously described algorithm to generate weights for objects with
interactions and then use these results as a spring board for an algorithm that
does not share this shortcoming. Notably authors recommend their previous
work, Wang et al. [2013].

Despite its simplicity, this model achieves almost surprisingly good results.
Compared to the previous research paper utilizing matrix factorization, this al-
gorithm works directly with graphs. Representing knowledge in this way has
certainly its advantages. Additionally, previous iterative approach demonstrates
the effectiveness of explicitly using the Swanson’s ABC model in machine learning
approaches.

3.4.3 NeoDTI: Neural integration of neighbor information
from a heterogeneous network for discovering new
drug-target interactions [Xiao et al. [2018]]

The previous research paper is capable of effectively using heterogenous sources
of data using the iterative approach. This is indeed a positive feature, but its
architecture is arguably too simple. NeoDTI, another drug-target prediction al-
gorithm, aims to utilize data from multiple sources represented as a graph, but it

49



Figure 3.14: Convolutional neural network with 3 layers. Ω0, Ω1 and Ω2 denote
the sets of nodes for corresponding level. f1 and f2 denote the dimension of node
vectors for layer 1 and 2 respectively. Convolutional kernel functions are denoted
with F1 and F2. Source: [Bruna et al. [2014]]

uses latent vectors similarly to the first featured reaseach paper. It builds upon a
preceding work A network integration approach for drug-target interaction predic-
tion and computational drug repositioning from heterogeneous information [Luo
et al. [2017]]. The main difference is that this model takes the form of a neural
network, and is thus trained using backpropagation.

Typically graph-based data present a challenge for the more traditional feed-
forward neural networks with fixed input sizes. Yet they can naturaly present
connected heterogenous data, and so they pose an opportunity for ML approaches
geared towards drug-target interaction or recommendation systems.

An example of a neural network tailored to work with graphs is the graph
convolutional neural network. The previously presented convolutional neural net-
work in 3.2 can be considered to take special types of graphs as input. To be more
precise, it works with multidimensional matrices where each element represents
a node in a graph. Each node is then connected to its neighbours with an edge.
Convolutional networks that explicitly work with graph structures then accept
input graphs of more general form, but in principle their mechanism is the same.
Neighbourhoods are defined on each layer except of the last one. These neigh-
bourhoods are then contracted using a layer-specific uniform function. Typically
the dimension of a vector for each node grows as the number of nodes decreases.
This process is nicely visualized on a figure 3.14 taken from the research pa-
per Spectral Networks and Locally Connected Networks on Graphs [Bruna et al.
[2014]] that discusses convolutional networks more broadly. Other examples of
neural networks working with graphs can be found in Ying et al. [2018] or Gilmer
et al. [2017].

Data used by Xiao et al. for drug-target interaction are the same that were
already presented in section 2.3. To briefly re-introduce them, they consist of
interactions between 4 distinct groups of objects. Those are proteins, drugs, dis-
eases, and side-effects. As the model is used to predict matches between proteins
and drugs, the matrix consisting of these interactions is present. But further
matchings of type protein-protein, protein-disease, drug-drug, drug-disease, and
drug-side-effect are also utilized. Set of all these relation types is denoted as R.

50



The neural network model used in this research paper represents the inter-
action information as a graph. All distinct objects, be it proteins, drugs or the
auxiliary items, form the set of vertices V . Positive interactions of all relation
types from R form edges E. So (u, v) ∈ E if and only if there is a known interac-
tion between objects u and v. Together V and E form G = (V, E). Additionally
the function s : E → R+ assigns edges their weights.

Again each object is represented with a latent vector, and individual vectors
are assigned to vertices from V using a function f 0 : V → Rd. The crucial
difference is that instead of using only the latent vectors to perform matrix fac-
torization, a neural network is used that also utilizes latent vectors of direct
neighbours. This added information is defined like this:

av =
∑
r∈R

∑
e=(u,v)∈E
e of type r

s(e)
Mv,r

σ(Wrf
0(u) + br) (3.37)

Wr ∈ Rd×d and br ∈ Rd used in the previous equation are learned param-
eters that are randomly initialized. σ is a non-linear function, in this case
ReLU(x) = max(0, x), applied element-wise. Mv,r is a normalization factor that
for all neighbours of vertex v of type r averages their results. Arguably this can
be seen as constructing a new vector in the place of the original latent vectors
representing their aggregate information. Precisely it is defined as so:

Mv,r =
∑

{e=(u,v) | e∈E, e of type R}
s(e) (3.38)

av ∈ Rd is then a vector representing the neighbourhood of vertex v. To merge
latent vector f 0(v) and av, those two vectors are concatenated. The result is then
once again transformed using W 1 ∈ R2d×d, b1 ∈ R×d and the already defined σ.
The new vector is normalized to form the resulting representation vector f 1(v)
used directly for interaction prediction.

f 1(v) = σ(W 1concat(f 0(v), av) + b1)
||σ(W 1concat(f 0(v), av) + b1)||2

(3.39)

Due to normalization, |f 1(v)| = 1 for every v ∈ V . This means that all f 1(v)
lie on a unit sphere with its central point in 0. Also do note the stark difference in
the amount of learnable parameters between matrix factorization and NeoDTI.
Apart from latent vectors themselves, NeoDTI also defines W 1, b1, and Wr and br

for every r ∈ R as learnable parameters just to get representation vectors f 1(v).
The following term defines the loss function that is being optimized as well as

all the learnable parameters. Notably instead of using directly the dot product
f 1(u) · (f 1(v))T to predict interaction, a linear projection defined by a matrix
Gr ∈ Rd×d is utilized. L2 norm is used as an error function.

min
{f0(v),W 1,b1,Wr,br,

Gr | v∈V,r∈R}

∑
e=(u,v)∈E,e is of type r

(s(e) − f 1(u)T Grf
1(v))2 (3.40)

All the defined components, notably f 0(v), f 1(v) and av have properly defined
derivatives. Thus the equation 3.4.3 can be used for parameter learning based
on gradient descent. For weight training, the authors used the Adam optimizer

51



[Kingma and Ba [2014]]. With a trained model, the term f 1(u)T Gf 1(v) can
be used to predict interactions between protein u and drug v. Positive value
corresponds to a match while 0 implies no effect between u and v.

Several performance evaluation strategies were tested. Notably during one
variation of the experiment, the number of negative examples used for training
was limited so the ratio of positives and negatives in the training set was 1:10. In
all cases NeoDTI achieved better results that the regularized matrix factorization
by Liu et al.

In summary, NeoDTI builds on the matrix factorization approach by using
latent vectors to represent individual objects. It creates a more flexible model
for predicting interactions, and successfully aggregates local neighbourhoods of
graph vertices. This allows it to achieve state-of-the-art results.

52



4. Model
What follows is a chapter about the development of a machine learning model used
for prediction of interactions between drugs and proteins. Known interactions will
form the dataset further reinforced by additional types of connections with other
types of discrete nodes, namely diseases and side effects. Used data were taken
from the previously referenced NeoDTI paper, and are in more detail discussed
in chapter 2. There are several versions of a model presented here. Together they
share a large part of their experiment hyperparameters, implementation details,
and evaluation methods, unless explicitly mentioned otherwise. The common
core is described in section 4.7.

4.1 Considerations and influences
In the beginning the lack of a precise problem description should be noted. As
with many other machine learning tasks, where deep learning was successfully
utilized, the problem, or rather the input-output distribution, is not well math-
ematically defined. The list of visible proteins and drugs is not extensive, and
the information about interactions is quite sparse. In addition, there is the im-
plicit assumption that all drug-target pairs lacking positive edge are known not
to interact. In the end, this works due to the large imbalance between positive
and negative edges, but it introduces errors into the dataset. Such a disparity
between actual interaction states and those presented by the dataset almost cer-
tainly negatively affects the learned model for any kind of a machine learning
algorithm. To make things even worse, the considered model works only with bi-
nary states. Either there is an interaction, or there isn’t. This is a simplification
as the strength of an interaction is also a valid and potentially important value.

Due to these imperfections there does not seem to be a method to methodically
analyze the dataset and select the best model. Instead the best current possibility
seems to be to note parallels with similar problems, incorporate attributes of pre-
viously successful approaches, and iteratively test potentially successful models.
The rest of this section lists some of the more important influences for the drug-
target interaction problem. These also present a sort of an overview of several of
the themes presented in the previous parts of this work.

The first crucial observation is that if protein A and protein B both interact
with drug C and protein A interacts with drug D, then the likelihood of B-D
interaction is increased. This assumption can be based for example on the lock-
key model previously mentioned in section 2.2 as it can be hypothetized that both
A and B share a “lock” on their surfaces for C, and this lock can be also “opened”
by D. This principle directly allows for collaborative filtering approaches, and
consequently machine learning approaches for collaborative filtering like matrix
factorization. In that ML approach, likelihood increase is expressed by pulling
vectors for A and B closer. Similarly for C and D.

As it was already presented in 2.3, the information about known interactions
is rather sparse. This is a limitation for the use of more complex, and thus
possibly more accurate, machine learning algorithms. As such, utilizing other

53



source of data can be lead to a notable increase in performance. One of the
possible sources of relevant data are interactions of proteins or drugs with other
entities, e.g. diseases or side-effects as in Xiao et al. [2018].

The empirical reasoning behind the utility of these other types of interactions
is formalized in the Swanson’s ABC model [Swanson [1991]]. This principle allows
for indirect ties between drugs and proteins, or even drug-drug ties or protein-
protein ties. Actually due to the transivity of this rule, it can also support the
increased likelihood of B-D connection from the preceding example.

As for the actual machine learning algorithms, there are multiple alternatives
to the simple matrix factorization approach. One of them is sketched in Xiao
et al. [2018], where a neural network forms a preprocessing step before dot prod-
uct operation that results in interaction strength further processed by a sigmoid
function. Graph convolutional networks formalize local and uniform modifica-
tions on graphs, and can be also utilized to process the graph-based interaction
data that form the input of a machine learning algorithm for prediction of drug-
target interactions.

4.2 Modified logistic matrix factorization
The model described in this chapter will follow the general schema of a matrix
factorization. That means that each entity, be it a protein or a drug, will be
represented by a latent vector. This vector will be in the beginning randomly
initialized. These latent vectors will then be optionally modified to incorporate
other auxiliary information. Each valid pair of these modified latent vectors, e.g
protein-drug, will then be used to predict interaction, or lack thereof.

In this section latent vectors will be kept unmodified and only the last step,
most similar to pure logistic matrix factorization, will be used. This approach
has two reasons. Primarily to set a baseline with which following, arguably more
complex models can be compared. Secondarily, to allow for gradual explanation
of model’s properties.

To refresh the previously explained concept, and to define the terminology
used from now on, a brief description of logistic matrix factorization is given.
Assume the existence of two sequences of entities of different types A and B
and their corresponding matrices MA ∈ Rt×|A| and MB ∈ Rt×|B| for t ∈ N.
Each row in MA represents a latent vector of an element of A, and each row in
MB represents a latent vector of an element of B. Assuming a known interaction
matrix of elements IAB, the desired matrices MA and MB can be found by solving
the equation

arg min
MA,MB

||IAB − MAMT
B ||F + λ1||MA||F + λ2||MB||F (4.1)

where || · ||F is a Frobenius (L2) norm while λ1 and λ2 are constant regulariza-
tion terms. The value of IAB at position (i, j) corresponds to the interaction of
elements Ai and Bj. It is the scalar product of their corresponding latent vectors
that are meant to approximate IAB.

Unfortunately this equation is not too useful as it is hardly the case that a
complete IAB is known. Typically, it is exactly matrix factorization that aims
to approximate unknown elements of IAB. Additionally, vector dot products can

54



reach quite large values and thus high loss, while elements of IAB are often drawn
only from the domain {0, 1}. An element-wise application of a logistic function
σ, otherwise known as sigmoid, is used to deal with this issue. The modified
equation dealing with both problems is written below.

arg min
MA,MB

||K ◦ (IAB − σ(MAMT
B ))||F + λ1||MA||F + λ2||MB||F (4.2)

K ∈ {0, 1}|A|×|B| is a matrix masking undefined interactions. Ki,j = 1 if
and only if position (i, j) in IAB is known. The symbol ◦ denotes element-wise
multiplication.

This would be a sufficient statement of a drug-target interaction task if there
was no additional information provided. But that is not true as disease and side-
effects form another two types of entities. Together these four types of elements
present in total five different kinds of interactions. While it is only drug-target
interactions, that are meant to be found, the other four kinds serve as auxiliary
information.

Using multiple interaction types calls again for a modification of the optimized
loss function. To allow for higher flexibility of different latent vector behaviours
across different interaction types, additional projection matrix PAB ∈ R|A|×|B| is
added for each pair of entity sequences (A, B) with a defined interaction. Scalar
bAB ∈ R works as a standard neural network bias. Modified equation is once
again written below.

arg min
Mprotein,Mdrug

∑
(A,B)∈T

||K◦(IAB−σ(MAPABMT
B +bAB))||F +λ1||MA||F +λ2||MB||F

(4.3)
Set T in this case holds all the entity pairs with interactions. These are

protein-drug, protein-protein, protein-disease, drug-disease, and drug-side effect.
This equation correctly defines the loss function for the first model iteration. The
crucial question here is, how good is this simple solution compared to NeoDTI
utilizing several layers of neural network preprocessing? Additionally, what is the
optimal size of latent vectors?

A series of experiments was run with a dimension of latent vectors ranging
from 128 to 2048. Results are in figure 4.1. At first sight, the larger the dimen-
sion of latent vector, the better. There is a significant jump from 128 to 256,
and then from 256 to 512 as well. Further on increasing dimension yields little
gain. Notably increasing latent vector size from 1024 to 2048 does not achieve
statistically significant improvements.

The other interesting observation is that even this rudimentary collaborative
filtering methods can yield results on average equivalent or slightly better than
NeoDTI given the results from 8-fold cross-validation. This calls into question
the usefulness of deep-learning preprocessing of latent vectors.

4.3 Penalized drug-target error
As it was briefly noted previously, other types of edges apart from protein-drug
edges form only a supportive, auxiliary role. How closely does the final model

55



Figure 4.1: A bar chart showing the performance of the modified logistic matrix
factorization model, in this case as area under precision-recall curve, relative to
the dimension of the latent vectors of given model. Red line delimits the average
AuPR of NeoDTI from 8 cross-validation folds. A symmetric range at individual
bars denotes +/- single standard deviation.

56



Figure 4.2: Average AuPR for different values of protein-drug loss weight. Be
aware of the logarithm scale on x axis, and the restricted range of y axis. Once
again NeoDTI performance is denoted by a red horizontal line.

fit their interactions is largely irrelevant. Nonetheless in the previously men-
tioned model, their interaction loss had the same loss as that of the protein-drug
interactions. This rule is not inherent in the model, and can be modified.

Theoretically speaking, there are two opposing factors or forces. On the one
hand, the lower the relative weight of protein-drug interaction loss is compared to
other edge types, the greater “effort” will model put into fitting interactions that
are in the end not useful. On the other hand, the higher it is, the less useful will
those supportive edges be. This of course assumes that they present any utility
at all. Nonetheless if the Swanson’s ABC rule is generally true, then that is a
factor to be considered.

In the following experiment, a loss of protein-drug interaction will be mul-
tiplied by a single scalar to find out which value is optimal, and where is the
balance between the two previously mentioned factors. There is a only a single
hyperparameter so there is little risk of overfitting. Also, rather unusually, the
multiplication is done within the L2 error. There is no crucial difference though
as both versions are apart from the size of the scalar equivalent.

The figure 4.2 presents the results. Overall there were six loss weights tested
ranging from 1 to 1000. There was no multiplication loss weight for other edge
types, or in other words it was kept equal to 1. Each model was tested with 8-fold
cross-validation as before. Latent vector size was set to 512. The trend defined
by the measured results supports the hypothesis of two opposing factors.

The maximal AuPR was achieved with a protein-drug loss weight of 55 and
was equal to 0.614. It constituted 9.6% percent increase relative to loss weight of
1, and 8.7% increase relative to NeoDTI.

57



There is a natural follow-up question to these results. What are the optimal
weights for other edge types? Considering different importances and subsequent
edge type hierarchy implies setting a particular weight for each type. A hyperpa-
rameter grid search can be easily utilized to find the results, but such an approach
is quite time-consuming. Setting loss weight multiplier for protein-protein inter-
actions to 10 lead to increased AuPR of 0.618, so there is a potential for further
improvement.

4.4 Adding descriptors
As it was previously mentioned already several times, the amount of data poses
a problem for machine learning in general and more sophisticated deep learning
approaches in particular. One of the solutions trying to rectify this issue in this
model was presented already. Introducing other types of interactions adds signifi-
cant amount of other edges, and in the end does increase the model performance.
Yet this is not all the information present, that can be theoretically utilized.
While, when we already have 3D structure, it is more prudent to use methods
like molecular docking, those are not all options. Fingerprints and other types of
descriptors briefly presented in section 2.3 form another source of auxiliary data.

Both molecular descriptors and other types of entity descriptors can improve
performance as they encode structural and non-structural information relevant
from the perspective of drug-target connections. Typically they form a vector of
numbers which allows for efficient augmentation of a model.

In this experiment, PubChem fingerprints [Maggiora and Shanmugasundaram
[2011]] for drugs and amino-acid frequencies for proteins were added to try to
improve the model results. No additional information was provided for either
diseases or side-effects. A PubChem fingerprint for a single drug is a vector of
881 boolean bits1. Each bit has a fixed meaning relating to the structure of the
molecule. For example the bit in the 117-th position is set to 1 if and only if the
drug contains at least one saturated or aromatic nitrogen-containing ring of size
3. As for amino-acid frequencies, they consist of relative number of occurences for
each particular amino-acid divided by the total amount of amino-acids in protein.
Their representing vectors have a dimension of 20.

This combination of auxiliary descriptions was used as it was previously uti-
lized already in Lee et al. [2019]. Nonetheless, a deeper separate analysis would
be needed to see if these are the best data sources for machine learning compared
to other options.

In the model, both descriptors are appended as constants to variable latent
vectors. Resulting vectors are in the case of proteins, diseases, and side-effects
padded with zeros to get uniform-width augmented latent vectors. Both finger-
prints and amino-acid frequencies do not form only an initialization for latent
vectors, but remain fixed during the whole training. Backpropagation does not
change them.

Apart from these changes, the following experiment is unmodified compared
to the previous iterations. Apart from augmenting latent vectors, only the ma-

1For three drugs from 708, a relevant fingerprint was not found. In these cases a zero vector
was provided instead.

58



trices grow larger. As such, this poses a quite simple transformation to utilize
added information. Again, 8-fold cross-validation was performed resulting in
0.566 AuPR with standard deviation comparable to the previous experiments.
Arguably the model as defined here does not provide enough flexibility to utilize
the augmenting data.

4.5 Transformation layers
So far almost no transformation is done to the augmented latent vectors before
their corresponding dot product operation. Apart from a single matrix multi-
plication right at the very end, they are left constant. This approach already
achieved non-trivial results, but further modifications can prove to be beneficial
especially with appended descriptors for drugs and proteins. The previously oft
referenced NeoDTI model does itselfutilize a graph convolutional layer. This sec-
tion is meant to explore other possibilities of neural network layers, and see if
they can achieve better results than its simpler predecessors.

As for the descriptors added in the preceding section, a simple possibility to
test their benefit is to use them in conjunction with latent vectors and convolu-
tional layers. Each entity is in this case modified separately using a shared neural
network. As such it is a sort of a degenerated form of a convolutional network.
Latent vectors for diseases and side-effects are kept constant. The modified vector
x′ for either drug or protein latent vector x equals LeakyReLU(xT × WT + bT

T )T

where WT ∈ RL×L and bT ∈ RL are drug-specific or protein-specific model param-
eters with L being the dimension of already augmented latent vector, i.e. latent
vectors potentially with added fingerprint or descriptor for drugs and proteins
respectively. The slope of LeakyReLU is set to 0.2.

An issue encountered with this newly enhanced model was overfitting. Model
very quickly reached a state, where all validation pairs were classified as zero,
i.e. without interaction. This was caused by an unbalanced dataset and usage
of the L2 norm. To rectify this issue, two other losses were tested. Logistic loss
and binary cross-entropy loss. Logistic loss, defined as L(ytrue, ypred) = log(1 +
e−ytrue·ypred) and used for example in Johnson [2014], did not yield results better
than any reasonable baseline. Binary cross-entropy, defined as L(ytrue, ypred) =
−ytruelog(ypred) − (1 − ytrue)log(1 − ypred), achieved on the other hand non-trivial
results. But with AuPR 0.465, it did not have performance better than either
NeoDTI or previous best model without a transformation layer. Several modi-
fications were tested to achieve better results. Among them the already noted
loss weights, and also higher penalties for misclassifying positives utilized to deal
with label unbalance. Nonetheless neither of these changes did achieve a result
comparable even to NeoDTI.

The previous model was mainly used to test more sophisticated ways to incor-
porate additional features rather than to serve as a graph convolutional network.
Direct knowledge of local subgraph can prove useful as not all interaction data
has to be stored in the latent vector. Ideally, a node would get information from
its neighbours already in the forward phase, which could then be aggregated to
the vector representing a node built from the original latent vector and received
signal. As neighbours also “see” their neighbours, this mechanism creates an

59



additional path for the Swanson’s ABC rule to propagate through the network.
Unfortunately, there is a single issue with the current dataset. As it can be seen
from histograms 2.5 and 2.6, there is a large difference between degrees of indi-
vidual nodes. So a uniform graph convolutional layer must handle both vertices
with high and low numbers of connections. One, possibly promising approach
is to utilize attention mechanism to control from which neighbours will a node
receive information. In this case, the principle lies in a separate, relatively simple
machine learning mechanism, that will decide, which neighbours are important,
and which should be silenced. This mechanism is part of the overall model, and
as such it is also trained via a backpropagation. This principle was already suc-
cessfully used in natural language processing, as well as in more similar tasks.
An example of a machine learning model working with graph convolutional net-
works utilizing attention is Liu et al. [2019], which uses segmented textual data
to classify entities in structured documents like receipts or forms.

The following model works similarly to the previous one. It utilizes trans-
formed latent vectors and subsequent modified logistic matrix factorization de-
scribed in 4.2 to make predictions. But instead of a single tranformation layer,
a graph convolutional layer with attention is used. It aggregates information
from those nodes, with which a selected vertex has a connection, i.e. those that
interact with it.

From a high-level perspective, each vertex vi aggregates its own latent vector
xi and already transformed vectors x̄T1

i , . . . x̄Tk
i with one vector x̄T

i for each neigh-
bouring entity type T in a graph. So for example a disease would have its latent
vector, and then 2 vectors each representing its neighbours of a given type. In this
case proteins and drugs. All these vectors are then concatenated2, and turned
into a new vector by a neural network layer. The whole operation is described in
the equation below.

x′
i = LeakyReLU((xi||x̄T1

i || . . . ||x̄Tk
i )WT (i) + bT (i)) (4.4)

T (i) in this case denotes the entity type of vertex vi. So each entity type T
has its own WT ∈ R(kT +1)L×L and bT ∈ RL, where L is the dimension of all latent
vectors, and kT is the number of all possible neighbouring entity types.

As for the transformed entity type vector x̄T
i , it is created by modifying the

original latent vectors of neighbouring nodes of type T , and then summing the
results, with each being multiplied by an attention weight.

x̄T
i =

∑
j interacts with i, T (j)=T

ᾱij(W̄T (i),T xj + b̄T (i),T ) (4.5)

W̄T (i),T ∈ RL×L and b̄T (i),T ∈ RL define the original transformation.
Attention weights are first defined by a simple network, where vT , wT ∈ RL.

αij = ReLU(vT
T (i)xi + wT

T (j)xj + bα) (4.6)

Then they are normalized so only the important ones are propagated into the
2In the following equation, concatenation is denoted by the symbol ||.

60



Name AUC AuPR
NeoDTI 0.915 0.565
Latent vector size 512 0.928 0.560
Latent vector size 2048 0.940 0.571
Latent vector size 512, modified loss weights 0.934 0.614
Latent vector size 512, added descriptors 0.892 0.566
Latent vector size 512, 1 transformation layer 0.877 0.465
Latent vector size 512, 1 attention layer 0.812 0.476

Table 4.1: Result summary

transformed entity type vector. Do note that ᾱij does not necessarily equal ᾱji.

ᾱij = αij∑
k interacts with i, T (j)=T (k)

αik

(4.7)

To run this model, a binary cross-entropy loss was used once again with latent
vector dimension set to 512. The resulting AuPR was 0.476, which, while being
marginally better than the preceding model, does not compare favourably to
the currently best model. While modifying loss weights did originally achieve
notable performance increase, no hyperparameter setting was sufficient to exceed
this AuPR.

As a sidenote, both for the previous transformation layer model, and for the
model with attention layer, stacking several layers on top was tested, but resulted
in significant performance drop both in AUC and in AuPR. Also both layers pre-
sented in this section retain the latent vector dimension even for the transformed
result. Getting rid of this invariant, no statistically significant increase was ob-
served when running a simple train/test validation split.

4.6 Final evaluation
Overall, the goal of this work was to develop a model that would push the state-
of-the-art for prediction of interacting drug-target pairs. The main area of focus
was deep learning, yet the current best model does not utilize principles generally
associated with that topic.

In the table 4.1, the aggregated results can be seen. While the model with
modified loss weights did perform a little bit worse than its simpler predecessor in
AUC, its AuPR is notably better. Notably it scored higher than the state-of-the-
art approach of NeoDTI in both metrics. For AuPR this amounted to increase
of 8.7%.

An interesting fact is the low performance of both models inspired by deep
learning, although both utilized only a single additional layer. Several loss func-
tions and other modifications were tested, yet there might be a solution that
would alleviate at least some of the issues. This evaluation can be partly ap-
plied also to NeoDTI as most of its weights seem redundant in comparison to
simpler models with equivalent AuPR. It begs the question if stacking multiple
layers on top of each other, at least partially inspired by conceptually different
image recognition tasks, is the correct approach for relatively small datasets. An

61



Figure 4.3: A development of AuPR and DCG in first 750 iterations of a sin-
gle cross-validation fold. Dashed blue line denotes the theoretical maximum of
DCG50.

alternative may be a wider, rather than a deeper, network efficiently utilizing
multiple types of data. An approach for extracting information from documents
and research papers might prove worth the effort as these sources contain data
not readily accessible in databases like DrugBank etc.

In addition to AuPR, Discounted Cumulative Gain, itself described in 3.3.1,
can provide further interesting information. Namely, the model itself should be
in ideal case used to highlight potential candidates worthy of further research.
As whole output of the model is a set of interaction strengths, it is desirable to
found out if the first k most likely options are really positive. Those are in the
end the most relevant outputs. Drug-target pairs with the strongest interaction
signals are considered to be the most likely candidates here. Relevance of a pair
is in this case set to 1 for positive interactions and 0 for negative ones, i.e. those
pairs that lack an interaction. DCG50 is measured on a validation fold. In figure
4.33, it can be seen that the top 50 most likely predictions do indeed in most
cases contain true positives as max DCG50 = ∑50

i=1
1

log2(i+1) = 12.898. Addition-
ally, DCG50 grows quite a bit faster than AuPR. That implies that a model can
relatively quickly filter out non-interacting pairs from the “top”.

A machine learning prediction model can be indeed used just for prelimi-
nary search and prioritization. As it was mentioned in the preface, there are
other, more precise experiments for which an ML model can filter candidates.
Nonetheless, there is always the possibility of direct prediction. Seemingly, such
a performance can be measured by simply dividing the current data, and running
evaluations on the validation set. But arguably the currently undetected interac-
tions differ from those in the dataset as progressively the process of testing and

3The sharp growth was observable in all cross-validation folds despite the fact that the figure
contains only data from a single fold.

4Dopamine receptors D1, D2, D3, D4 have at least medium affinity with Asenapine, while
only the interaction with D5 remains to be uncertain [Rampino et al. [2018]]

62



Drug Target Truly interacting
1. Diazepam GABRA4
2. Estazolam GABRA4 Yes (sub-unit of GABA-A receptor)
3. Risperidone HTR1B
4. Amoxapine HTR2A Yes
5. Pentazocine OPRD1
6. Methadone OPRK1
7. Methylnaltrexone OPRD1
8. Asenapine HTR1D
9. Asenapine DRD5 Likely4

10. Pergolide HTR7
. . .

12. Meperidine ORPM1 Yes
14. Atenolol ADRB2 Yes

Table 4.2: A table with most likely interaction pairs, which are themselves not
in the Drugbank 3.0 dataset. Results from the final model.

uncovering new pairs gets more difficult and more expensive. The low-hanging
fruit has been already picked, and so a validation set distribution does not nec-
essarily match the distribution of currently undiscovered interactions.

Thankfully, the DrugBank 3.0 database with drug-target interactions used in
the preceding experiments comes from 2011, and as such it is possible to compare
it with the current, updated version. That way the model has never seen the
current database state, and so it can use it as an interesting, although imprecise
validation set. Evaluation is again performed using a 8-fold cross-validation.
After each finished training iteration, validation fold predictions are kept for pairs
marked as non-interacting by the old dataset, and in the end aggregated together.
This way a model is not biased against these individual “false positives”, while
each pair is only in a single validation fold.

Table 4.2 contains those drug-target pairs, that were not referenced in Drug-
Bank 3.0 dataset as interacting, but that did have the strongest positive model
predictions. While not even half in the first 10 was really positive, one must
consider how broad was the database already in 2011. It is also necessary to
keep in mind, that while an interaction might not be in the current version of the
DrugBank database, it does not mean, that it doesn’t exist.

4.7 Experiment details
Code for the experiments was written exclusively in Python 3.6 with Tensorflow
1.14.0 being the machine learning library used for gradient descent, and with
Ubuntu 18.04 being the operating system. Tensorflow utilized an Nvidia GTX
1080 graphical processing unit for computation.

As previously noted, the dataset was taken from Xiao et al. [2018] to ease
evaluation and comparison. It consists of 5 types of edges. Apart from the
predicted protein-drug interactions, there are also interactions of type protein-
protein, protein-disease, drug-disease, and drug-side effect. All four auxiliary data
sources were kept whole, i.e. they were not divided to form a training or a testing

63



dataset. Protein-drug interactions were randomly split into 8 cross-validation
folds for experiment evaluation. There were no other restrictions apart from equal
number of individual positive and negative sample counts being distributed across
all folds. Experiments were all evaluated with a constant, randomly selected seed
for the random generator used to make the cross-validation splits. This was done
to make sure that models work with exactly the same data.

As for the loss function, it was a sum of two components, optimized target loss
and regularization loss. Optimized target loss consisted of L2 difference between
correct interaction values on test set and the model’s predictions for all edge
types. Alternatively as noted above, binary cross-entropy loss was used instead
for models described in section 4.5. Relative weight for differing entity losses was
not always equal as is in more detail explained in section 4.3. Regularization L2
loss was used for all variable components of the model, notably latent vectors.

As a gradient descent optimizer, the Adam optimizer [Kingma and Ba [2014]]
was used with a learning rate 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e − 8.
Results were taken after 1500 iterations of backpropagation. Together an average
evaluation for a single fold took approximately 20 minutes, which is comparable
with NeoDTI. As for the code itself, it is in more detail described in separate
README file and in source file comments respectively.

64



5. Conclusion
The goal of this thesis was to develop a machine learning model for prediction of
drug-target interactions. As the name suggests, utilized techniques were meant
to explore deep learning approaches to this problem. This direction was informed
by the successes of previous state-of-the-art algorithms. A method was in the end
really developed with performance, in this case primarily measured using Area
under Precision-Recall Curve, exceeding its predecessors on the relevant dataset.
Nonetheless deep learning did not play such a crucial role for its success as it
was hypothesized previously. Method itself is composed of a series of partial
modifications built on the foundation of logistic matrix factorization, rather than
a single consolidated, closed machine learning algorithm.

As for further work, there are two basic directions in which to go. On one
hand, there are further unexplored possibilities for extending and improving the
current model. Apart from simple grid search that in the end proved to be
too time-consuming due to the high number of hyperparameters, other types of
fingerprints and descriptors can be also possibly utilized to improve model’s per-
formance. Similarly data mining approach for building a robust training database
can be potentially successful. There is also the question of experimenting with
other models, for example those successfully deployed as recommender systems.
Due to the relative low amount of available interaction data, hybrid approaches
may prove to be an interesting alternative due to their ability of utilizing different
data sources.

The other line of development is concerned with a practical use of this model.
Generally, it can be used for pre-selection of more accurate, but also more ex-
pensive experiments. These have additional concerns of their own. Notably one
has to consider experiment price, potential utility of given drug with relation to
their relative targets, etc. These concerns can be partially encoded in the model,
for example by increasing loss weight for relevant protein-drug families, but can
be also explored after the model is trained. An ensemble or a more sophisticated
meta-analysis can be done to further decrease the risk of error. Overall there is
a series of topics more concerned with bioinformatics rather than with machine
learning that may be interesting to explore in the future.

65



Bibliography
Drugbank. URL https://www.drugbank.ca/about.

MolCalX - molecular docking model and molecular recognition. http:
//www.molcalx.com.cn/%e5%88%86%e5%ad%90%e5%af%b9%e6%8e%a5%e7%9a%
84%e6%a8%a1%e5%9e%8b. Accessed: 2019-04-23.

Fingerprints - screening and similarity, 2011. URL http://www.daylight.com/
dayhtml/doc/theory/theory.finger.html.

M. Zouhair Atassi and Ettore Appella. Methods in Protein Structure Analysis.
Springer, 1995. ISBN 978-1-4899-1031-8. doi: 10.1007/978-1-4899-1031-8.

Jürgen Bajorath. Fingerprint design and molecular complexity effects. http://
infochim.u-strasbg.fr/CS3/program/material/Bajorath.pdf, 2008. Ac-
cessed: 2019-05-12.

Pedro J Ballester and John BO Mitchell. A machine learning approach to pre-
dicting protein–ligand binding affinity with applications to molecular docking.
Bioinformatics, 26(9):1169–1175, 2010.

Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. Network
medicine: a network-based approach to human disease. Nat Rev Genet, 12
(1):56–68, Jan 2011. ISSN 1471-0064. doi: 10.1038/nrg2918.

James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD
cup and workshop, volume 2007, page 35. New York, NY, USA, 2007.

Kevin Bleakley and Yoshihiro Yamanishi. Supervised prediction of drug–target
interactions using bipartite local models. Bioinformatics, 25, 2009.

David D. Boehr, Ruth Nussinov, and Peter E. Wright. The role of dynamic con-
formational ensembles in biomolecular recognition. Nature Chemical Biology,
Oct 2009. URL https://doi.org/10.1038/nchembio.232.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral
networks and locally connected networks on graphs. In ICLR, 2014. URL
http://arxiv.org/abs/1312.6203.

Michael L Connolly. Solvent-accessible surfaces of proteins and nucleic acids.
Science, 221(4612):709–713, 1983.

George Cybenko. Approximations by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2:183–192, 1989.

Allan Peter Davis, Cynthia Grondin Murphy, Robin Johnson, Jean M Lay, Kel-
ley Lennon-Hopkins, Cynthia Saraceni-Richards, Daniela Sciaky, Benjamin L
King, Michael C Rosenstein, Thomas C Wiegers, et al. The comparative toxi-
cogenomics database: update 2013. Nucleic acids research, 41(D1), 2012.

66

https://www.drugbank.ca/about
http://www.molcalx.com.cn/%e5%88%86%e5%ad%90%e5%af%b9%e6 %8e%a5%e7%9a%84%e6%a8%a1%e5%9e%8b
http://www.molcalx.com.cn/%e5%88%86%e5%ad%90%e5%af%b9%e6 %8e%a5%e7%9a%84%e6%a8%a1%e5%9e%8b
http://www.molcalx.com.cn/%e5%88%86%e5%ad%90%e5%af%b9%e6 %8e%a5%e7%9a%84%e6%a8%a1%e5%9e%8b
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://infochim.u-strasbg.fr/CS3/program/material/Bajorath.pdf
http://infochim.u-strasbg.fr/CS3/program/material/Bajorath.pdf
https://doi.org/10.1038/nchembio.232
http://arxiv.org/abs/1312.6203


Joseph A. Dimasi, Henry G. Grabowski, and Ronald W. Hansen. Innovation in
the pharmaceutical industry: New estimates of R&D costs. Journal of Health
Economics, 47, 2016.

Werner Dubitzky, Martin Granzow, and Daniel P Berrar. Fundamentals of data
mining in genomics and proteomics. Springer Science & Business Media, 2007.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

Farlex. Farlex Partner Medical Dictionary. 2012.

Anna Maria Ferrari, Binqing Q Wei, Luca Costantino, and Brian K Shoichet.
Soft docking and multiple receptor conformations in virtual screening. Journal
of medicinal chemistry, 47(21):5076–5084, 2004.

Emil Fischer. Einflus der Configuration auf die Wirkung der Enzyme. Berichte
der deutschen chemischen Gesellschaft, 27:2985 – 2993, 1894. doi: 10.1002/
cber.18940270364.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. Neural message passing for quantum chemistry. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1263–1272.
JMLR. org, 2017.

Fred Glover and Manuel Laguna. Tabu search. In Handbook of combinatorial
optimization, pages 2093–2229. Springer, 1998.

Yanming Guo, Yu Liu, Ard Oerlemans, and Michael S. Lew. Deep learning for
visual understanding: A review. Neurocomputing, 187, November 2015.

Donald Olding Hebb. The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

David H Hubel and Torsten N Wiesel. Receptive fields and functional architecture
of monkey striate cortex. The Journal of physiology, 195(1):215–243, 1968.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir
techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–
446, 2002.

Harren Jhoti and Andrew R Leach. Structure-based drug discovery. Springer,
2007.

Christopher C Johnson. Logistic matrix factorization for implicit feedback data.
Advances in Neural Information Processing Systems, 27, 2014.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers,
et al. In-datacenter performance analysis of a tensor processing unit. In 2017
ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), pages 1–12. IEEE, 2017.

67



Andrej Karpathy. Biological neuron, 2015. URL https://cs231n.github.io/
assets/nn1/neuron.png.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. arXiv preprint arXiv:1812.04948, 2018.

TS Keshava Prasad, Renu Goel, Kumaran Kandasamy, Shivakumar Keerthiku-
mar, Sameer Kumar, Suresh Mathivanan, Deepthi Telikicherla, Rajesh Raju,
Beema Shafreen, Abhilash Venugopal, et al. Human protein reference
database—2009 update. Nucleic acids research, 37(suppl 1), 2008.

Mohamed A Khamis, Walid Gomaa, and Walaa F Ahmed. Machine learning
in computational docking. Artificial intelligence in medicine, 63(3):135–152,
2015.

James. H. Kim and Anthony R. Scialli. Thalidomide: The Tragedy of Birth
Defects and the Effective Treatment of Disease. Toxicological Sciences, 122,
2011. URL https://doi.org/10.1093/toxsci/kfr088.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Craig Knox, Vivian Law, Timothy Jewison, Philip Liu, Son Ly, Alex Frolkis,
Allison Pon, Kelly Banco, Christine Mak, Vanessa Neveu, Yannick Djoumbou,
Roman Eisner, An Chi Guo, and David S. Wishart. Drugbank 3.0: a compre-
hensive resource for ’omics’ research on drugs. Nucleic Acids Res, 39(Database
issue), Jan 2011. ISSN 1362-4962. doi: 10.1093/nar/gkq1126.

Ron Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. International Joint Conference on Artificial Intelligence,
1995.

D. E. Koshland. Application of a theory of enzyme specificity to protein synthesis.
Proc Natl Acad Sci U S A, 44(2):98–104, Feb 1958. ISSN 0027-8424. URL
https://www.ncbi.nlm.nih.gov/pubmed/16590179.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012a.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012b.

Michael Kuhn, Monica Campillos, Ivica Letunic, Lars Juhl Jensen, and Peer
Bork. A side effect resource to capture phenotypic effects of drugs. Molecular
systems biology, 6(1), 2010.

Nikolay Kyurkchiev and Svetoslav Markov. On the hausdorff distance between the
heaviside step function and verhulst logistic function. Journal of Mathematical
Chemistry, pages 109–119, 2016.

68

https://cs231n.github.io/assets/nn1/neuron.png
https://cs231n.github.io/assets/nn1/neuron.png
https://doi.org/10.1093/toxsci/kfr088
https://www.ncbi.nlm.nih.gov/pubmed/16590179


Ingoo Lee, Jongsoo Keum, and Hojung Nam. Deepconv-dti: Prediction of drug-
target interactions via deep learning with convolution on protein sequences.
PLoS computational biology, 15(6):e1007129, 2019.

Xiaojing Liu, Feiyu Gao, Qiong Zhang, and Huasha Zhao. Graph convolution
for multimodal information extraction from visually rich documents. arXiv
preprint arXiv:1903.11279, 2019.

Yong Liu, Min Wu, Chunyan Miao, Peilin Zhao, and Xiao-Li Li. Neighborhood
regularized logistic matrix factorization for drug-target interaction prediction.
PLoS Comput Biol, 12(2), Feb 2016. doi: 10.1371/journal.pcbi.1004760. URL
https://www.ncbi.nlm.nih.gov/pubmed/26872142.

Yunan Luo, Xinbin Zhao, Jingtian Zhou, Jinglin Yang, Yanqing Zhang, Wenhua
Kuang, Jian Peng, Ligong Chen, and Jianyang Zeng. A network integration
approach for drug-target interaction prediction and computational drug repo-
sitioning from heterogeneous information. Nature Communications, 8(1), 2017.
ISSN 2041-1723. doi: 10.1038/s41467-017-00680-8.

Gerald M Maggiora and Veerabahu Shanmugasundaram. Molecular similarity
measures. In Chemoinformatics and computational chemical biology, pages 39–
100. Springer, 2011.

Alan E Mark and Wilfred F van Gunsteren. Decomposition of the free energy
of a system in terms of specific interactions: implications for theoretical and
experimental studies. Journal of molecular biology, 240(2):167–176, 1994.

Andrea Mauri, Viviana Consonni, Manuela Pavan, and Roberto Todeschini.
Dragon software: An easy approach to molecular descriptor calculations.
Match, 56(2):237–248, 2006.

Xuan-Yu Meng, Hong-Xing Zhang, Mihaly Mezei, and Meng Cui. Molec-
ular docking: A powerful approach for structure-based drug discovery.
Current computer-aided drug design, 7:146–57, 06 2011. doi: 10.2174/
157340911795677602.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. Second Edition. MIT Press, 2012. ISBN 978-0-262-01825-8.

Mosby. Mosby’s medical dictionary. Mosby/Elsevier, 2009. ISBN 9780323052900.

J.G. Nicholls, A.R. Martin, P.A. Fuchs, and B.G. Wallace. From Neuron to
Brain. Sinauer Associates Incorporated, 1999. ISBN 9780878935826. URL
https://books.google.cz/books?id=4spqPgAACAAJ.

Hakime Öztürk, Arzucan Özgür, and Elif Ozkirimli. Deepdta: deep drug–target
binding affinity prediction. Bioinformatics, 34(17):i821–i829, 2018.

Martin Pilát. Application of computational intelligence methods lecture notes,
2018. URL https://github.com/martinpilat/CImethods/blob/master/
01Vizualizace/02-Vyhodnocen\unhbox\voidb@x\bgroup\let\unhbox\
voidb@x\setbox\@tempboxa\hbox{\OT1\i\global\mathchardef\accent@

69

https://www.ncbi.nlm.nih.gov/pubmed/26872142
https://books.google.cz/books?id=4spqPgAACAAJ
https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb
https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb
https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb
https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb


spacefactor\spacefactor}\accent19\OT1\i\egroup\spacefactor\
accent@spacefactormodel\unhbox\voidb@x\bgroup\let\unhbox\voidb@
x\setbox\@tempboxa\hbox{u\global\mathchardef\accent@spacefactor\
spacefactor}\accent23u\egroup\spacefactor\accent@spacefactor.
ipynb.

Martin Prokop. Structural bioinformatics - molecular docking. http://ncbr.
muni.cz/˜martinp/C3210/StructBioinf9.pdf, 2015. Accessed: 2019-04-19.

Antonio Rampino, Aleksandra Marakhovskaia, Tiago Soares-Silva, Silvia Tor-
retta, Federica Veneziani, and Jean Martin Beaulieu. Antipsychotic drug re-
sponsiveness and dopamine receptor signaling; old players and new prospects.
Frontiers in psychiatry, 9, 2018.

Badrul Munir Sarwar, George Karypis, Joseph A Konstan, John Riedl, et al.
Item-based collaborative filtering recommendation algorithms. Www, 1:285–
295, 2001.

G Madhavi Sastry, Matvey Adzhigirey, Tyler Day, Ramakrishna Annabhimoju,
and Woody Sherman. Protein and ligand preparation: parameters, protocols,
and influence on virtual screening enrichments. Journal of computer-aided
molecular design, 27(3):221–234, 2013.

Jack W. Scannell, Alex Blanckley, Helen Boldon, and Brian Warrington. Di-
agnosing the decline in pharmaceutical r&d efficiency. Nature Reviews Drug
Discovery, 11, Mar 2012. URL https://doi.org/10.1038/nrd3681.

Ben-David Shai Shalev-Shwartz Shai. Understanind Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014. URL http://www.
cs.huji.ac.il/˜shais/UnderstandingMachineLearning/.

David Silver, Aja Huang, Chris J. Maddison, and Arthur et al Guez. Mastering
the game of go with deep neural networks and tree search. Nature, 529:484 EP
–, Jan 2016. URL https://doi.org/10.1038/nature16961. Article.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary computation, 10(2):99–127, 2002.

Greg Stuart, Nelson Spruston, Bert Sakmann, and Michael Häusser. Action
potential initiation and backpropagation in neurons of the mammalian cns.
Trends in Neurosciences, 20, March 1997.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

Don R Swanson. Complementary structures in disjoint science literatures. In An-
nual ACM Conference on Research and Development in Information Retrieval:
Proceedings of the 14 th annual international ACM SIGIR conference on Re-
search and development in information retrieval, volume 13, pages 280–289,
1991.

70

https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb
https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb
https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb
https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb
https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb
https://github.com/martinpilat/CImethods/blob/master/01Vizualizace/02-Vyhodnocen\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 19 \OT1\i \egroup \spacefactor \accent@spacefactor  model\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 u\egroup \spacefactor \accent@spacefactor .ipynb
http://ncbr.muni.cz/~martinp/C3210/StructBioinf9.pdf
http://ncbr.muni.cz/~martinp/C3210/StructBioinf9.pdf
https://doi.org/10.1038/nrd3681
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
https://doi.org/10.1038/nature16961


Alan Talevi. Drug repositioning: current approaches and their implications in
the precision medicine era. Expert Review of Precision Medicine and Drug
Development, 3(1):49–61, 2018. doi: 10.1080/23808993.2018.1424535. URL
https://doi.org/10.1080/23808993.2018.1424535.

Loren Terveen and Will Hill. Beyond recommender systems: Helping people help
each other. HCI in the New Millennium, 1(2001):487–509, 2001.

Roberto Todeschini and Viviana Consonni. Handbook of molecular descriptors,
volume 11. John Wiley & Sons, 2008.

Twan van Laarhoven, Sander B Nabuurs, and Elena Marchiori. Gaussian inter-
action profile kernels for predicting drug–target interaction. Bioinformatics, 27
(21):3036–3043, 2011.

Wenhui Wang, Sen Yang, and Jing Li. Drug target predictions based on het-
erogeneous graph inference. Pac Symp Biocomput, pages 53–64, 2013. ISSN
2335-6936. URL https://www.ncbi.nlm.nih.gov/pubmed/23424111.

Wenhui Wang, Sen Yang, Xiang Zhang, and Jing Li. Drug repositioning by inte-
grating target information through a heterogeneous network model. Bioinfor-
matics, 30(20):2923–2930, 2014. ISSN 1367-4811. doi: 10.1093/bioinformatics/
btu403.

Wikipedia contributors. Universal approximation theorem — Wikipedia,
the free encyclopedia. URL https://en.wikipedia.org/wiki/Universal_
approximation_theorem.

An Xiao, Fangping Wan, Lixiang Hong, Jianyang Zeng, and Tao Jiang. NeoDTI:
neural integration of neighbor information from a heterogeneous network for
discovering new drug–target interactions. Bioinformatics, 35(1), 07 2018. ISSN
1367-4803. doi: 10.1093/bioinformatics/bty543. URL https://dx.doi.org/
10.1093/bioinformatics/bty543.

Chun Wei Yap. Padel-descriptor: An open source software to calculate molecular
descriptors and fingerprints. Journal of computational chemistry, 32(7):1466–
1474, 2011.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. Graph convolutional neural networks for web-scale recom-
mender systems. CoRR, abs/1806.01973, 2018. URL http://arxiv.org/abs/
1806.01973.

71

https://doi.org/10.1080/23808993.2018.1424535
https://www.ncbi.nlm.nih.gov/pubmed/23424111
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://dx.doi.org/10.1093/bioinformatics/bty543
https://dx.doi.org/10.1093/bioinformatics/bty543
http://arxiv.org/abs/1806.01973
http://arxiv.org/abs/1806.01973


List of Figures

2.1 Protein conformations . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Illustration of the feature-based matching process . . . . . . . . . 9
2.3 Entity connection graph . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Node type histogram . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Histogram of edge degrees for proteins and drugs . . . . . . . . . 13
2.6 Histogram of edge degrees for drugs and side-effects . . . . . . . . 14
2.7 Histogram of edge degrees for proteins and drugs on a subgraph

with only proteins and drugs . . . . . . . . . . . . . . . . . . . . . 15

3.1 Clustering example . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Feature set in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Overfitting example . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 GAN-generated faces . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Biological neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 AlexNet layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 3 classification datasets from R . . . . . . . . . . . . . . . . . . . 37
3.11 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.12 PR curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.13 Data relations, Wang et al. [2014] . . . . . . . . . . . . . . . . . . 48
3.14 Convolution on a graph . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Latent vector dimension bar chart . . . . . . . . . . . . . . . . . . 56
4.2 Protein-Drug loss weight plot . . . . . . . . . . . . . . . . . . . . 57
4.3 AuPR and DCG development trend . . . . . . . . . . . . . . . . . 62

72


	Introduction
	Introduction
	Drug Target Interaction
	Overview
	Molecular docking
	Dataset

	Machine Learning
	Machine Learning Background
	Empirical Error vs. Generalization Error
	Overfitting and Bias

	Neural Network and Deep Learning
	Multi-layered neural network
	Backpropagation
	Convolutional networks

	Model Evaluation
	Methods for Classification
	Methods for Regression
	Cross-Validation

	Previous work
	Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction [Liu2016]
	Drug repositioning by integrating target information  through a heterogeneous network model [hnm
	NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions [neodti]


	Model
	Considerations and influences
	Modified logistic matrix factorization
	Penalized drug-target error
	Adding descriptors
	Transformation layers
	Final evaluation
	Experiment details

	Conclusion
	Conclusion
	Bibliography
	List of Figures

