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1. Introduction
This study presents a method for dance genre classification by convolutional
neural networks (CNN). Dance genre classification is a topic within the research
field music information retrieval (MIR) and it aims to recognize a dance class
(Waltz, Tango Jive, ...) from a given audio recording.

The problem of predicting dance class from audio recordings is interesting
from both theoretical and practical perspectives. The core of the dance recog-
nition problem is to encode low-level information from a raw audio signal and
to produce a semantic high-level information. The process of extracting such
high-level information from music is similar to music perception by humans, and
can be used for applications as music discovery and recommendation. We benefit
from employing the dance music, because a large amount of audio data is publicly
available. Various audio recordings of dance music can be extracted either from
YouTube or from video recordings of dance competitions, that experience increas-
ing popularity. The categorization of such music data is usually within video or
track titles, thus the data can be easily labeled. Moreover, dance recognition
is beneficial for beginners or amateur dancers that have difficulties to recognize
the dance genre from the music. To the best of our knowledge, there is no such
commercial application that would help the dancers to recognize a dance from
music.

Rather than a dance genre classification, many researches focused on a related
problem, music genre recognition, for the past decades. The problem of predicting
a dance class from audio recordings is largely unexplored.

A brief explanation of our technique for dance genre classification will follow.
First, we convert given audio recording to image representation called spectro-
gram. Spectrogram is temporal representation of spectrum of frequencies. The
spectrogram is cut to segments in sliding window fashion, each segment cor-
responding to audio of given length. A convolutional neural network (CNN)
takes each spectrogram segment as an input and outputs the classification re-
sults. CNNs are deep convolutional networks that only consists of convolutional
layers and they do not rely on any fully connected layer. Our model is trained
using a set of 4000+ audio recordings of ballroom music, to predict a correct
dance style. We achieved accurate results on both, our test set that we publicly
provide for research community, and on the novel Extended Ballroom dataset
[Marchand and Peeters, 2016a].

Our method might me useful for music information retrieval (MIR), because
it propose novel approach of extracting high-level features of audio signal, i.e.
the dance classes. Our classifier is fast and classify dance music in real-time
with only a small latency. Moreover, we demonstrate our approach on a working
web application. We believe that the method has potential as a commercial
application meant for the beginner dancers.

The contributions of the thesis are: (1) We proposed a novel CNN based
method for dance recognition, (2) we collected the test dataset that we made
publicly available for research community, and (3) we implemented the web ap-
plication as a demonstration.

The remainder of this study is organized as follows. We present overview of
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related work in Section 2 and explain our method in Section 3. The method is
quantitatively evaluated by various experiments in Section 4. In the experiment
section, we firstly describe our datasets for training, testing and validation in
Section 4.2. To compare with our results, we describe baseline algorithm in
Section 4.3, followed by presenting results of our method in Section 4.4. Several
CNN architectures are used for dance recognition and compared with each other
in Section 4.5. Section 4.6 provides results of our method on different datasets
with ballroom dances including dataset with low quality data. Unsatisfactory
results on the low quality dataset motivate us to adjust our model to handle
the low quality data in Section 4.7. Several classification results for notable
audio recordings are shown in Section 4.8 as well as working web application is
demonstrated. Finally, conclusion is presented in Section 5.

4



2. Related Work
Dance recognition from audio samples relates to interdisciplinary area called Mu-
sic Information Retrieval (MIR) [Downie, 2003]. The aim of this science is to
analyse and to describe musical data and to retrieve information concerning mu-
sic files.

Significant research has been made recently in the field with different objec-
tives. Music genre classification task is common in this area, although there is
no significant focus on dance music recognition.

Among the small number of studies regarding dance music recognition, we
highlight three. Dixon et al. [2003] classify dance music by timing information
as tempo and meter (periodicity). The authors use the timing information to
describe each dance class by functional language rules. The approach was further
improved by Chew et al. [2005] by relying not only on periodicity patterns in the
music, but also on the accent patterns.

Lastly, Marchand and Peeters [2016b] present scale and shift-invariant time-
frequency representation of audio content. The authors propose a classifier of
ballroom dance music with promising results, although there is no significant
focus on the classifier and the testing protocol is unclear.

We also explored mobile phone applications related to dance music and we
can highlight DancePicker1. The authors present that the application can find
the right dance for given music. However, the music is supposed to be specified
by title and artist name and the music database is limited. We did not find any
application with functionality of detecting dance from audio recordings.

In conclusion, to the best of our knowledge, there is neither commercial appli-
cation nor a recent paper on dance recognition. Music classification studies does
not focus on dance recognition, but rather on music genres classification (MGC)
with the goal to predict music genre (e.g. classical, electronic, jazz, rock, metal)
from given audio recording.

2.1 Music Genres Classification
Bellow we review stat-of-the-art literature of the related problem, MGC, and the
methodology we are inspired by.

Musical genres are classes in which the audio samples share similar audio fea-
tures as instruments, tempo, chords and rhythmic patters [Costa et al., 2012].
However, the definition of the classes may be vague. The reason is that to dis-
tinguishing musical genres and information about them may be challenging task
even for humans [Lippens et al., 2004].

There are several approaches for music genres classification. Many papers
attempted to solve the task by extracted handcrafted features from audio, such as
Mel Frequency Cepstral Coefficients [Logan et al., 2000]. These features routinely
used in speech recognition are used as input to machine learning classifier such as
Support Vector Machine (Tzanetakis and Cook [2002]; Nakai et al. [2018]). Novel
architectures use image-like representation of the audio, called spectrogram, along

1http://dancepicker.com
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with convolution neural networks. The lastly mentioned is the state-of-the-art
approach [Bahuleyan, 2018].

2.2 Classification using Neural Networks
Modern approaches use neural networks to solve the problem of music classifi-
cation. Most of these approaches rely on spectrogram and convolutional neural
networks (CNN) (Dieleman and Schrauwen [2014]; Pons et al. [2016]; Choi et al.
[2016]; Pons et al. [2017]). Further Dieleman and Schrauwen [2014] and Pons
et al. [2017] compare the mentioned method with approach classifying the mu-
sic using raw audio without constructing the spectrogram. The authors achieved
good results, however they do not outperform the spectrogram-based approaches.

Several CNN-based approaches employ neural networks, that are pre-trained
for different task, e.g. image categorization, with larger dataset. These archi-
tectures take advantage of transfer learning. While weights in the convolution
layers are kept fixed, the weights in the classification part of neural network are
trained in order to predict the correct music genre (Image 2.1). The idea behind
is that the convolutional blocks provide invariant representation, while the last
layers perform no-linear classification.

Figure 2.1: Transfer learning architecture on convolutional neural net-
work (Source: https://github.com/Hvass-Labs/TensorFlow-Tutorials/
blob/master/10_Fine-Tuning.ipynb)

Among the studies that use a pre-trained CNN, we can highlight Bahuleyan
[2018]. The authors employed VGG16, CNN network which was the top per-
forming model in the ImageNet Challenge 2014 [Simonyan and Zisserman, 2014].
The network consists of 5 convolution blocks followed by densely connected layers
predicting class of a given image. Bahuleyan [2018] used pre-trained convolution
layers of VGG-16 with spectrogram as an input. The pre-trained layers were
followed by densely connected layers to predict genre of the music.

We also highlight Tang et al. [2018]. The authors employed hierarchical Long
Short Term Memory (LSTM), a recurrent neural network, to recognise music
genres.

Further, Oramas et al. [2018] studied multimodal music genre classification
with use of deep neural networks. Besides audio, the authors used images of cover
photos and text of reviews.
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2.3 Datasets
The method for music classification described above requires training dataset
with music files. Next, we will list significant datasets used for dance genre
classification and related tasks.

2.3.1 Datasets with Dance Genres
In this section, we describe two datasets that contain dance music and can be
used for dance genre classification task. The first is the Ballroom Dataset in-
troduced for a conference ISMIR 2004 (5th International Conference on Music
Information Retrieval). The authors used website www.ballroomdancers.com that
sells audio CDs of ballroom dances and offers 30 seconds preview of each track
to listen for free. It contains 698 music recordings divided into 8 genres that rep-
resent ballroom dances (Cha Cha Cha, Jive, Quickstep, Rumba, Samba, Tango,
Viennese Waltz, Waltz). The disadvantage of this dataset is low audio quality
and small amount of both audio recordings and dance classes.

Other dataset with dance music was made by improving the Ballroom Dataset
and is referred as Extended Ballroom Dataset [Marchand and Peeters, 2016a].
Similarly to the Ballroom Dataset, it consists of 30 seconds recordings obtained
from the website. However, compared to the Ballroom Dataset, the Extended
Ballroom Dataset contains 6 times more recordings (4180) and it has better au-
dio quality. Further, besides the classes of the Ballroom Dataset, the Extended
Ballroom Dataset contains 5 new dance classes as Foxtrot, Paso Doble, Salsa,
Slow Waltz and West Coast Swing. For every recording, the dataset also pro-
vides annotations as tempo, artist, song title and album name.

2.3.2 Datasets with Music Genres
For the reason, that music genre classification task is more common than dance
genre classification, there is higher amount datasets labeled with music genres.
Two of them will be highlighted in this section.

GTZAN Genre Collection [Tzanetakis and Cook, 2002] has been extremely
popular. The dataset contains 10 genres as classical, country, disco, hiphop, jazz,
rock, blues, reggae, pop and metal. Every genre is represented by 100 tracks each
30 seconds long.

Other interesting approach to obtain recordings of musical genres was used by
Bahuleyan [2018]. Dataset with 2.1 million sound clips extracted from YouTube
videos was used [Gemmeke et al., 2017]. The dataset contains 10 second sound
segments that are specified by YouTubeID of the corresponding videos along with
the start end end times. The segments are divided into 632 audio classes and,
while most of these classes relate to audio events and not to the music, Bahuleyan
[2018] extracted 7 of the classes belonging to music genres. Such approach resulted
into 40 540 audio recordings of pop, rock, hip hop, techno, rhythm blues, vocal
and reggae.
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2.3.3 Other Datasets
It should be noted, that there is also the Million Song Dataset [Bertin-Mahieux
et al., 2011] that is popular in MIR. While it is made from 1 million songs, it
does not contain audio but audio features and metadata only.
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3. Method
Given an audio recording of a ballroom dance, our goal is to classify it into one
of ten ballroom dance classes, five standard and five latin:

1. Cha Cha Cha

2. Jive

3. Paso Doble

4. Quickstep

5. Rumba

6. Samba

7. Slow Foxtrot

8. Slow Waltz

9. Tango

10. Viennese Waltz

The classes correspond to the International Style dances popular on dance
competitions. We divide our approach into three stages. Firstly, we convert
audio signal to image representation called spectrogram. The spectrogram is cut
into short overlapping segments that are then classified independently. In the
next step, we employ convolutional neural network to classify the spectrogram
segments. Finally, we aggregate classification results from several segments to
classify the whole recording. Next, we describe the three stages.

3.1 Converting Audio to Image Representation
Before we employ neural networks to classify the audio, we perform pre-processing
by converting the raw audio signal to image representation called spectrogram.
We have chosen this approach for the reason that it is currently state-of-the-art
method in music genre classification [Bahuleyan, 2018].

3.1.1 Spectrogram
Spectrogram is a frequency-temporal 2D representation of audio signal having
time on the horizontal axis and frequency on the vertical axis. It represents the
spectrum (magnitudes of given frequencies) within a given time window as can
be seen in Figure 3.1. Short-time Fourier transformation (STFT) is used for
spectrogram computation.
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Figure 3.1: Comparison of normal-scaled and and mel-scaled spectrogram cre-
ated from 10 second recording of Jive music. The 1.4 seconds in the beginning
correspond to the duration before the song start.

3.1.2 Mel Spectrogram
In this study, we convert audio signal to MEL spectrogram that has the frequency
axis scaled logarithmically. See comparison of these spectrograms in Figure 3.1.

Parameter n mels = 224 represents the height of the spectrogram. The width
of the spectrogram depends on audio sample length. With used parameters, one
spectrogram column corresponds with a time span of the following size:

hop length

sr
= 512

22050
.= 0.023 = 23 ms

In our research, we converted all audio files to image representation using
MEL spectrograms. The 2D representation of the input allows us to use the
same convolutional network architecture that has been used in computer vision
to categorize the images.
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3.2 Convolutional Neural Network
Next, we cut the spectrogram to segments of size 224 × 224 in sliding window
fashion. It means the segment has original spectrogram height (n mels = 224)
but lower width than the original spectrogram as depicted in Figure 3.2.

Figure 3.2: The spectrogram is cut to segments in sliding window fashion. The
segment size is 224 × 224 and its width correspond to time span of 5.2 seconds.

The segment width corresponds to time span that is given by:

timespan = 224 · hop length

sr
= 224 · 512

22050
.= 5.20 s

The spectrogram segment with length of 5.20 seconds is further used for classi-
fication using convolutional neural network. Experiments show the used segment
length is long enough to predict correct dance style accurately. However, section
3.3 describes mechanism to classify samples that are longer than segment length.
The spectrogram segment of size 224 × 224 is used as input to our model.

3.2.1 CNN Architecture
While there is significant number of convolutional neural networks architectures,
we use Dense Convolutional Network (DenseNet) introduced by Huang, Liu, Van
Der Maaten, and Weinberger [2017].

Dense Convolutional Network

DenseNet is a recent convolutional network that outperforms state-of-the-art ap-
proaches such as ResNet [He et al., 2016] in various aspects. It requires less
computational power to achieve high accuracy.

The architecture is inspired by residual connections in ResNet and embrace
the observation of advantage of shorter connections between layers. While ResNet
contains residual connections between consecutive layers, DenseNet connect each
layer with every subsequent layer.

The main building block of DenseNet is dense block depicted in Figure 3.3.
Dense block consists of convolutional layers where each layer obtains additional
inputs from all preceding layers and passes its output to all subsequent layers.
In contrast to ResNet, the features are not combined by summation before they
are passed into a layer. Instead, the features are concatenated. Consequently,
the layer l has l inputs corresponding to outputs to all preceding layers within a

11



Figure 3.3: Dense block with 5 layers. Each layer takes all preceding feature-maps
as input. (Reproduction from Huang et al. [2017])

given dense block. Similarly each layer output is passed to every L− l subsequent
layer.

Note, that the number of input channels increases with proceeding convolution
layer, since each layer input consists of concatenated outputs of all preceding
layers. The increased number of channels for each convolutional layer is constant
and referred as growth rate. By design, the growth rate also corresponds to the
number of output channels of each convolution layer.

Although the output feature-maps are narrow, the number of input channels
increases substantially. Hence 1 × 1 convolutions are employed to reduce number
of input channels before applying 3 × 3 convolutions.

The 1×1 convolutions are applied to the output of each dense block excluding
the last one. Then, 2×2 average pooling layers are applied to reduce feature-map
size. The output of the last pooling layer is followed by global average pooling.
Finally, to predict the model output, the fully connected linear layer is applied
along with softmax function (we will refer the last linear layer as classification
layer). The architecture of the DenseNet is depicted in Figure 3.4.

Figure 3.4: Architecture of DenseNet with three dense blocks. (Reproduction
from Huang et al. [2017])

It should be noted, that first dense block is preceded by 7×7 convolution layer
that has RGB image of size 224 × 224 as input. Moreover, dropout [Srivastava
et al., 2014] is applied after each 3 × 3 convolution to prevent overfitting.

While DenseNet has typically either 3 or 4 dense blocks, the authors exper-
imented with other various meta parameters. In our research, DenseNet 161 is
used with following parameters:

• Dense blocks sizes: 6, 12, 36, 24 - Number of convolutional layers in
four dense blocks

12



• Initial number of features: 96 - Output features after initial convolu-
tion.

• Growth rate: 48

In our study, pre-trained DenseNet is used with parameters learned on Ima-
geNet [Deng et al., 2009]. The last classification layer is replaced with layer of 10
neuron output corresponding to the number of dance classes.

3.2.2 Training
This section describes, how we train the model. For each training iteration, we
create a batch by the following approach.

Let C = (c1, . . . , cn) be the dance classes and let D = ((x1, y1), . . . , (xm, ym))
be the labeled audio recordings where xi = (xi,1, xi,2, . . . ) corresponds to the
audio signal and yi ∈ C. We obtain the training sample by the following process.

First, we choose a class ci ∈ C randomly. Next, audio recording with its
label (xj, yj) ∈ D is chosen randomly from the dataset such that yj = ci. We
select the audio recording sampling uniformly the dance classes to compensate
class-imbalance in the training set.

Given the audio recording, we obtain corresponding MEL spectrogram Sj =
S(xj) where S is a function that converts audio signal to the spectrogram. Spec-
trogram Sj can be represented by a matrix of size 224 × dj and we suppose only
samples where dj ≥ 224:

Sj =

⎡⎢⎢⎣
s1,1 s1,2 . . .

... . . .
s224,1 s224,dj

⎤⎥⎥⎦ .

Next, we cut a random spectrogram segment S ′
j from Sj such that its size is

224 × 224. In other words, we select a random k ∈ {1, 2, . . . , dj − 224} and set

S ′
j =

⎡⎢⎢⎣
s1,k s1,k+1 . . .

... . . .
s224,k s224,k+224

⎤⎥⎥⎦ .

Pair (S ′
j, yj) consisting of the spectrogram segment and its label is the resulting

training sample.
The process is repeated 8 times to populate the training batch. The batch is

then fed into the neural network. The spectrograms corresponding to S ′
j in the

batch are used as the model input.
The CNN output can be interpreted as probability scores predicting that given

audio recording xj belongs to particular dance class. The labels corresponding
to yj are used for loss computation. Negative Log Likelihood Loss (NLL) [Zhu
et al., 2018] is used as the loss function.

The model is trained to improve the prediction by repeating the training
steps while new random batch is generated for each of the step. We rely on
Adam optimizer [Kingma and Ba, 2014] with learning rate lr = 0.0005.
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3.3 Segment Aggregation
While we train the network to predict short segments, it is beneficial to predict
samples that are longer than the segment duration of 5.2 seconds. The reason
is, that more information is naturally encoded in longer recordings, therefore
classification accuracy can be higher. We accomplish this by classifying multi-
ple segments belonging to given recording independently and aggregating their
classification outputs.

Given an audio sample x and its spectrogram S, we cut the spectrogram to
overlapping fixed size segments S1, S2, . . . , Sn with a given stride. Shorter stride
leads to higher accuracy while longer stride leads to faster classification. We
achieved good results with stride = 200 ≈ 4.6 seconds.

The CNN is executed for all segments S1, S2, . . . , Sn. For a given segment Si,
the resulting softmax output oi = model(Si) = {o

(1)
i , . . . , o

(10)
i } is a vector that

represents probability scores that segment belongs to a particular dance class.
Next, the resulting vectors o1, . . . , on are averaged by arithmetic mean:

o =
∑︁n

i=1 oi

n
=

⎛⎝∑︁n
i=1 o

(1)
i

n
,

∑︁n
i=1 o

(2)
i

n
, . . . ,

∑︁n
i=1 o

(10)
i

n

⎞⎠ .

The resulting vector o = {o(1), . . . , o(10)} represents probability scores that
the audio sample x belongs to a particular class.

3.4 Discussion
This section describes arguments and justifications of design choices we made in
the proposed method.

The proposed method is converting a raw audio recording to spectrogram
image representation. Then, the spectrogram is cut to segments that are classi-
fied independently. This is in fact a sliding window classifier. The independent
segment predictions are then aggregated.

We chosed the approach of classifying the segments independently, for a sta-
tionary nature of dance music. Dance music is a specific type of music containing
repetitive patterns (beats, melody, ...) and stationary features (musical instru-
ments, tempo, key, ...) that can be found and detected in each of the independent
segments.

Popular means for sequence processing are recurrent neural networks (RNNs).
However contrary to RNN that are suitable for time dependent problems as speech
recognition, machine translation or action recognition. We suppose that each 5-
seconds segment contains sufficient information for classification. This gives us a
possibility to use CNN that is much faster than RNN and it is easier to train.

We can further benefit from averaging nature of aggregation, to classify dance
music in real-time. The real-time classification can be achieved by aggregating
the segments in incremental-average fashion. Precisely, we can classify newly-
recorded segments independently, and update the aggregated average with each
recent segment prediction, to achieve more accurate results.

The real-time classification of independent segments is shown in Figure 3.5.
The figure represents probability scores o1, o2, . . . , on for consecutive segments
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Figure 3.5: Classification of Slow Waltz. The independent classification of the
segments in sliding window fashion allows us to predict the dance class in real-
time. The figure shows probability scores for consecutive segments with stride =
10.

S1, S2, . . . , Sn. Note, that the incremental average ∑︁t
i=0 oi/t is visually repre-

sented by the areas corresponding to the dance classes.
Figure: stackplot - example
As the experiments will show in Section 4.4, the aggregation improves the

classification results. We are aware of the fact, that output scores do not reflect
the posterior probability distribution. It is well known that the neural networks
often tend to be overconfident, i.e. the output is a very peaky distribution of
scores. In our case, this effect is not that strong, as will be shown in Figure
4.13, that shows almost uniform distribution on the song beginning, where the
classification is ambiguous. Nevertheless, we could still improve the aggregation
by training a proper network confidence as proposed by Franc and Prusa [2019],
which would probably further improve the aggregation results. Moreover, this
way the reject option could be implemented, that allows the model to abstain
from prediction in uncertain cases.

3.5 Implementation Details

3.5.1 Obtaining Audio Files
We trained and tested the model on several datasets. Python library youtube dl1

was used to download various samples from YouTube. The library was used in
conjunction with ffmpeg2 to convert the data to wav audio format. Each audio
file contains name of corresponding YouTube video in its filename. We include
scripts for easy downloading these datasets as an attachment.

1https://github.com/ytdl-org/youtube-dl
2https://github.com/FFmpeg/FFmpeg
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3.5.2 Labeling Data
Next, our goal was to label the obtained audio files by splitting them to corre-
sponding 10 dance classes.

We have chosen the class of each audio file by applying regular expression to
given filename. As we have downloaded data from different YouTube channels,
the regular expressions were different for each channel in order to be able to label
as much files as possible. When a given filename matched two regular expressions
corresponding to different dance classes, the file was marked as conflicting and
was not added to the labeled dataset. Similarly, files with filenames matching no
regular expression were not added to the dataset.

3.5.3 Spectrogram Computation
We have generated MEL spectrogram from audio signal of sampling rate 22050.
Librosa3, a Python library, was used to generate spectrogram with following
parameters:

• Sampling rate sr = 22050

• Number of frequencies in y axis n mels = 224

• Time advance between frames hop length = 512

• Window size for STFT n fft = 2048

• Maximum frequency fmax = sr/2 = 11025

For audio recording with sampling rate sr′ ̸= 22050, we modify the parameters
accordingly:

sr = sr′,

n fft = 2048 · sr′

22050 ,

hop length = 512 · sr′

22050 .

3.5.4 Removing Duplicate Samples
In order to train the model, we used our private dataset of 4655 labeled audio
samples with ballroom dances. Then we tested the model using dataset obtained
from YouTube as described above. This approach resulted into a problem with
songs included in both training and testing dataset. Even though the correspond-
ing audio signals were not equal and differed by distinct time shifts and audio
quality, they both contained the same song recorded by the same interpreter.

Based on this insight, we introduce a script that identifies the near-duplicate
audio files existing in both datasets. We used the script to delete the files from
the train dataset. Next, we describe the technique used for identification of the
near-duplicate files.

3https://librosa.github.io
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Suppose we have two conflicting datasets D1 and D2 (in our case train dataset
and test dataset) with labeled audio recordings (xi, yi). First, we convert each
audio recording xi ∈ D1 ∪ D2 to a spectrogram

Si = S(xi) =

⎡⎢⎢⎣
s1,1 s1,2 . . .

... . . .
s224,1 s224,di

⎤⎥⎥⎦
where di refers to spectrogram length.
Our goal is to find two audio samples xi and xj with spectrograms Si and Sj

resp. that correspond to the same song and ∃yi, yj : (xi, yi) ∈ D1 ∧ (xj, yj) ∈ D2.
We accomplish this by looping over all spectrogram pairs Si, Sj where each spec-
trogram belong to different dataset D1 resp. D2 and computing their correlation.

We define correlation of same-sized spectrograms represented by matrices
A, B ∈ Rn×m as

corr(A, B) = corr(a, b) = aT · b√︂
var(a) · var(b)

where a, b ∈ Rmn are vectorized matrices elements. For different-width matri-
ces A, B : A ∈ Rn×m, B ∈ Rn×m′

, m ̸= m′, we cut the overflowing matrix columns
and proceed as in the same-size case.

Some of the recordings downloaded from YouTube has fixed music intro and
the dance music starts after this intro. Based on this insight, we gradually shift
spectrogram Si along time axis by removing first k columns resulting into S

(k)
i .

The correlation is computed for each of these shifts and the highest is chosen:

corr′(Si, Sj) = max
k∈{0,...,l}

corr(S(k)
i , Sj).

While we put l = 200 in our research, the spectrogram shifting allows us to
match the audio signal with the correlated audio signal shifted in time.

The correlation higher than given threshold indicates, that the spectrograms
correspond to the same recording. For our purposes, we have chosen threshold =
0.7, however the proper threshold may vary for different datasets.

Moreover, for the reason that comparing each spectrogram pair takes signifi-
cant amount of computational power, we have compared only the pairs withing
same dance class. This made the approach 10 times faster.

The technique of using spectrogram correlation has a potential flaw, that it
does not detect recordings of the same song played by different interpreters since
pitch and tempo can be different. So in theory, there might still be a small
number of the same songs both in the training and the testing set. While we are
aware of this flaw, we consider the problem of finding two distinct recordings of
the same song challenging, hence we allow our model to take advantage of this
flaw for predicting dance genre as part of its solution.
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4. Experiments

4.1 Error Statistics
This section describes the error statistics that will be used to evaluate the exper-
iments.

4.1.1 Accuracy
Accuracy, or top-1 accuracy, corresponds to percentage of test samples that
were correctly classified. Accuracy of our model will be computed two times,
once without the segment aggregation (Section 3.3), once with the aggregation
included. In the first case, when the segment aggregation is used, an average
accuracy over 5.2-seconds segments will be computed. In other case, when the
aggregation is used, the accuracy from aggregated results will be computed for
test samples corresponding to entire audio recordings.

4.1.2 Top-2 accuracy
Top-2 accuracy refers to percentage of cases, where either the first or the second
predicted class with the highest probability score corresponds to the true class.

4.1.3 Confusion Matrix
A confusion matrix is represented by a matrix that describes relationships be-
tween true classes and predictions. Element aij of the confusion matrix repre-
sents a ratio of instances in class i, that were predicted as class j, versus the total
number of instances in class i. Diagonal elements aii correspond to the accuracy
of predicting class i.

18



4.2 Datasets
To train and test our model, we use datasets with ballroom dance music labeled by
dance genres. In this section, we describe our private dataset used for training.
Then, we describe datasets used for testing and validation, that are publicly
available.

4.2.1 Training Dataset
We train our model with a private dataset that consists of 4655 audio recordings
of ballroom dance music that belong to 10 dance classes. We collected this dataset
from dance music albums of various interpreters. The audio is recorded in studio
quality and each recording is about 4 minutes long.

Table 4.1 specifies number of recordings for each of the dance classes. Note
that number of recordings corresponding to Paso Doble is small compared to
other classes.

Dance Genre Count

Cha Cha Cha 711
Jive 490
Paso Doble 112
Quickstep 458
Rumba 658
Samba 721
Slow Foxtrot 421
Slow Waltz 411
Tango 395
Viennese Waltz 281
Total 4655

Table 4.1: Number of recordings for each of the classes in the training dataset.

4.2.2 Testing and Validation Datasets
For testing and validation, we use dataset obtained from YouTube to minimize
overlap with the training dataset. We created the dataset by extracting an audio
track from videos in YouTube channel with ballroom music1. Moreover, the
YouTube dataset is publicly available and can be used by other researchers to
compare their results with our method. The YouTube dataset can be downloaded
at http://dance.ironbrain.net/testset.zip. It is distributed as an archive
with two text files corresponding to test and validation dataset. Each text file
contains links to YouTube videos with ballroom music along with label for each
link.

To ballance classes among the downloaded dance music, we selected 12 record-
ings for each of the dance class and split it uniformly to testing and validation
datasets. Thus, both testing and validation datasets consist of 10 classes of 6

1https://www.youtube.com/channel/UC0bYSnzAFMwPiEjmVsrvmRg
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recordings each which implies 10 · 6 · 2 = 120 recordings in both testing and
validation datasets.

The recordings are about 3 minutes long and they are in studio quality. Some
of the recordings has fixed few-seconds intro, that was added to the dance music
by authors of the channel. Since the intro does not relate to any dance genre and
it is short compared to the rest of the recording, we suppose it has minor impact
for classification and we keep it in the recording.

As described in Section 3.5.4, we verified that recordings in the test and
the validation datasets do not overlap with recordings in the training dataset.
Further, in order to replicate the test and the validation dataset, we include a
script for extracting the audio from the YouTube channel and for labelling them
by dance classes with use of corresponding video titles.

4.2.3 Extended Ballroom Dataset
To further validate our results and compare it with other approach as Marchand
and Peeters [2016b], we use publicly available dataset Extended Ballroom [Marc-
hand and Peeters, 2016a], as described in Section 2.3.1. The Extended Ballroom
dataset contains ten-seconds audio recordings in 13 dance classes as shown in
Table 4.2.

Dance Genre Count

Cha Cha Cha 455
Jive 350
Quickstep 497
Rumba 470
Samba 468
Tango 464
Viennese Waltz 252
Waltz 529
Foxtrot 507
Paso Doble 53
Salsa 47
Slow Waltz 65
West Coast Swing 23
Total 4180

Table 4.2: Number of recordings for each of the classes in the Extended Ballroom
dataset [Marchand and Peeters, 2016a].

To use the Extended Ballroom dataset for testing of our method with ten
classes, several modification were performed. Firstly, classes Salsa and West Coast
Swing were removed from the dataset. Since the audio recordings in Extended
Ballroom’s classes Waltz and Slow Waltz correspond to one class in our dataset,
the both classes were merged resulting to 594 audio recordings of Slow Waltz.
Finally, class Foxtrot was renamed to Slow Foxtrot. The resulting dataset consists
of 4110 audio recordings as shown in Table 4.3.
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Dance Genre Count

Cha Cha Cha 455
Jive 350
Paso Doble 53
Quickstep 497
Rumba 470
Samba 468
Slow Foxtrot 507
Slow Waltz 594
Tango 464
Viennese Waltz 252
Total 4110

Table 4.3: Number of recordings for each of the classes in the modified Extended
Ballroom dataset.
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4.3 Baseline Algorithm
To assess the performance improvement that can be achieved by the CNNs, we
also train a simple machine learning classifier that rely on hand-crafted audio
features [Bahuleyan, 2018]. In this section, we describe such baseline classifier
and its results.

4.3.1 Hand-Engineered Features
For each audio recording, we extract hand-crafted features bellow. We have
chosen representative features from both time domain and frequency domain
that are used by Bahuleyan [2018]. A vector, that is created by concatenating all
the features is referred as a feature vector. The features were extracted using a
Python library Librosa2.

• Zero Crossing Rate (ZCR) - This feature corresponds to a number of
points where the signal changes sign from positive to negative [Gouyon
et al., 2000]. We divided the whole recording to small overlapping windows
2048 samples long with a hop size 512 (note that we used these parameters
across other features as well). Then, ZCR was computed for each of the
window and the average along with the standard deviation of all ZCRs were
added to the feature vector.

• Chromagram - This feature refers to the energy of the signal in each of the
pitch classes as C, C#, D, D#, E, F, F#, G, G#, A, A# and B [Ellis, 2007].
This vector is computed for all of the windows and average and standard
deviation for each of the pitch are chosen as representative features.

• Spectral Centroid Spectrum is computed for each window and treated as
a distribution over frequency bins. The distribution mean is computed and
referred as centroid [Klapuri and Davy, 2007].
More precisely, the centroid for window t is defined as

f
(c)
t =

∑︂
k

S(k, t)f(k)∑︁
j S(j, t)

where S(k, t) is a spectral magnitude of frequency bin k in window t, and
f(k) is a frequency corresponding to the bin k. Note that function S can
be represented by a spectrogram.
Centroid f

(c)
t is computed for each of the windows and mean and standard

deviation are added to the feature vector.

• Spectral Band-width While spectral centroid corresponds to distribution
mean, 2nd order spectral band-width represents standard deviation [Klapuri
and Davy, 2007].

2https://librosa.github.io
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• Spectral Roll-off The roll-off frequency [Klapuri and Davy, 2007] is com-
puted for each window and corresponds to the frequency f such that fre-
quencies f ′ : f ′ ≤ f contain 85% (this threshold can be changed) of the
total energy in the spectrum. It can be used to approximate the maximum
frequency by setting the threshold to a value close to 1.

• Mel-Frequency Cepstral Coefficients (MFCC) This feature has been
very useful for tasks as speech recognition [Davis and Mermelstein, 1980]
and it is represented by a vector of size 20 (this value can be changed) that
is computed for each window. Again, the mean and standard deviation is
computed among the windows, which results to a vector of size 40 that is
added to the final feature vector.

The dimension of the resulting feature vector of the concatenated features is
72.

4.3.2 Classifier
The feature vectors extracted from audio files are used to train support-vector
machine (SVM) classifier ([Cortes and Vapnik, 1995]. A radial basis function
(RBF) kernel is used because it is required to address this non-linear problem.

4.3.3 Baseline Algorithm Results
The SVM classifier was trained using the training dataset (Section 4.2.1) resulting
in accuracy 40% on test data (Section 4.2.2). Figure 4.1 shows the confusion
matrix of the resulting classifier.
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Figure 4.1: Confusion matrix of the baseline algorithm, a SVM classifier that
took handcrafted features, each created from one audio recording, as an input.
The confusion matrix was calculated from results on testing dataset.
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4.4 Results
In this section, our model will be evaluated. The model was trained using the
training dataset (Section 4.2.1) and it will be evaluated using the testing and
validation datasets (Section 4.2.2), that are publicly available.

The model is trained by epochs of 20 batches each consisting of 8 spectrogram
segments. For each epoch, training loss and accuracy are calculated. Losses and
accuracies for the test and the validation dataset are calculated every twentieth
epoch for the long calculation process. The model was trained using 2000 training
epochs, as seen in Figure 4.2. The segment aggregation is not employed in this
case.

The last training epochs (1500 - 2000) show, that the testing and validation
loss is higher than the training loss and similarly the testing and validation ac-
curacy is lower than the training accuracy. This is caused by model overfitting
which is reduced by dropout [Srivastava et al., 2014] as described in Section 3.2.1.
The dropout is properly used only on training data which is seen in the majority
of first epochs (0 - 500), where the model performs better on test and validation
data.

To further improve our results, the segment aggregation is employed and the
accuracy is calculated from the aggregated results. We calculate the accuracy
after the aggregation for both train and validation data every twentieth epochs.
As shown in Figure 4.3, the accuracy increases when the aggregation is employed.

The model corresponding to the epoch with the highest accuracy on the valida-
tion data is finally selected for evaluation. The epoch with the highest accuracy
on the validation data will be referred as the best epoch. The accuracy on
the validation data is computed without the segment aggregation employed for
finer scale of the results because aggregation leads to accuracy 100% for some
epochs. The model corresponding to the best epoch is then evaluated using the
test dataset.

On the test dataset, the model achieved results shown in Table 4.4.

Top-1 Top-2Method accuracy accuracy

Our method with aggregation 96.7% 100.0%
Our method without aggregation 92.2% -

Table 4.4: Our results on the test dataset.

Note, that the model training is not deterministic and each training can lead
to a different accuracy. The variance of such accuracies can be high because the
test dataset of 60 audio recordings is relatively small. This motivates us to further
test our model on the modified Extended Ballroom dataset (Section 4.2.3) which
is larger and allows us to compare our method with other method, MASSS [Marc-
hand and Peeters, 2016b]. The authors of MASSS, that stands for Modulation
Scale Spectrum with Auditory Statistics, mainly focus on representation of audio
content. They present their technique on a simple classifier, that our results are
be compared with, but such classifier is marginal and not fully explained.

The results of our model on the Extended Ballroom dataset, consisting of
4,000+ audio recordings each 10 seconds long, are shown in table 4.5.
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While the MASSS accuracy is slightly higher than the accuracy of our method,
one should consider that the number of classes used by the MASSS approach
is lower (9 instead of 10). Moreover, the testing configuration of the MASSS is
uncertain, because the authors did not specify what data they use for the training
and the testing protocol is unclear.

Moreover, the results achieved on the test dataset are better than the results
achieved on the Extended Ballroom dataset not only, because more information is
naturally encoded in longer audio recordings of the test dataset, but also because
each ten seconds recording of the Extended Ballroom dataset represents beginning
of a dance song. Such recording often corresponds to a song intro whose prediction
is ambiguous.

Top-1 Top-2Method accuracy accuracy

MASSS [Marchand and Peeters, 2016b] 94.9%a -
Our method with aggregation 93.9% 97.5%
Our method without aggregation 86.6% -
Note: a While this accuracy is slightly higher than the accuracy of our results, one
should consider that the number of classes used by the MASSS approach is
lower (9 instead of 10) and the testing protocol is unclear.

Table 4.5: Our results on the Extended Ballroom dataset compared to the MASSS
method [Marchand and Peeters, 2016b], which is presented in italic.

4.4.1 Confusion Matrix
Next, confusion matrices of the model will be described. Figure 4.4 shows the
confusion matrices of our model evaluated on the test dataset. While prediction
of most dances is accurate, the confusion matrices show Slow Waltz to be falsely
classified as Viennese Waltz. These dances are challenging to predict, since they
are related to each other and with highly similar patterns. Note, that the values
in the confusion matrix of the method with the segment aggregation are rather
round compared to the values in the confusion matrix of the method without
the aggregation, because by design, the segment aggregation reduces number of
results.

The confusion matrices of our model evaluated on the Extended Ballroom
dataset are shown in Figure 4.5. We highlight dance Rumba that is mostly
misclassified as Slow Waltz or Slow Foxtrot for the slow nature of these three
dances.
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Figure 4.2: Training of our model. Values of the loss (top) and the accuracy
(bottom) when training our model. The accuracy is computed for the outputs
without the segment aggregation employed.
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lines). The accuracy is computed using the test and the validation datasets.
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Figure 4.4: Confusion matrices of our model on the test dataset for both with
(top) and without (bottom) the segment aggregation.
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Figure 4.5: Confusion matrices of our model on the Extended Ballroom dataset
for both with (top) and without (bottom) the segment aggregation.
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4.5 CNN Models Comparison
In this section, we compare DenseNet [Huang et al., 2017] with other CNN ar-
chitectures as ResNet [He et al., 2016]. Moreover, to empirically demonstrate
effectiveness of our method that uses pre-trained model and trains all its param-
eters, we compare this approach with other approaches as using transfer learning
techniques, starting with random parameters and modifying DenseNet architec-
ture.

4.5.1 Comparison of Different CNN Architectures
As described in Section 3.2.1, CNN network DenseNet 161 [Huang et al., 2017]
is used in this study. We compare this CNN architecture with other three CNN
architectures as VGG 16 [Simonyan and Zisserman, 2014], ResNet-18 [He et al.,
2016] and ResNeXt-50 32x4d [Xie et al., 2017]. The described architectures are
trained using the training set (Section 4.2.1) and similarly to our method, pre-
trained networks are used with parameters learned on ImageNet [Deng et al.,
2009]. The last classification layer is replaced with layer of 10 neuron outputs
which correspond to the number of dance classes.

As seen in Table 4.6, DenseNet outperforms other CNN architectures. While
there is a significant difference between the accuracy of VGG and DenseNet, the
accuracies of novel architectures DenseNet, ResNet and ResNeXt are similar.

Top-1 Top-2 Top-1 withoutArchitecture accuracy accuracy aggregation

VGG 16 25.0% 41.7% 24.8%
ResNet-18 96.7% 100.0% 89.9%
ResNeXt-50 32x4d 95.0% 100.0% 89.6%
DenseNet 161 96.7% 100.0% 92.8%

Table 4.6: Accuracies on the test dataset for given CNN architectures. The
highest values are bolded.

4.5.2 Comparison of Training Configurations
Since DenseNet 161 is the best performing CNN architecture for our task, we will
use it to further experiment with its training process configuration. The config-
urations we will experiment with can be broadly separated to two groups. The
first group (DenseNet-TL) uses pre-trained DenseNet with parameters learned on
ImageNet. It enables us to use transfer learning (TL) approaches. Other group
(DenseNet-RW) uses DenseNet’s parameters initialized with random values which
allows us to further modify the DenseNet’s structure without loosing information
about pre-trained parameters as it would happen with pre-trained approach.

Since the number of DenseNet’s classification classes is 1000 by default, we
replace the classification linear layer of DenseNet with linear layer of 10 output
neurons which correspond to number of dance classes. The parameters of such
layer cannot be learned on ImageNet dataset due to the number of the dataset
classes and they are initialized with random values.
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In our experiments, the DenseNet will be trained with the following configu-
rations.

DenseNet-TL-C In this transfer learning configuration, all convolution lay-
ers are frozen and only the classification layer, which is represented by densely
connected layer of size 2208 × 10, is trained.

DenseNet-TL-DB4 (half or full) Not only the classification layer, but also
the last of the four dense blocks is trained in this configuration. The 4th dense
block is initialized with parameters learned on ImageNet as well as other dense
blocks. In our experiments, either second half of the dense block (12 convolu-
tion layers) is trained, or the full dense block (24 convolution layers) is trained,
respectively.

DenseNet-TL-DB4-N To increase the capacity of the trained neural network
parameters, we replace the last dense block with a dense block of higher size.
Similarly to DenseNet-TL-DB4, the parameters of the first three dense blocks
are frozen. The last dense block is replaced with a dense block of n convolution
layers for given n. The newly created dense block has the same growth rate as
the substituted dense block and its parameters are initialized with random values.
Note, that for increasing n, the number of input neurons in classification layer
increases by design.

DenseNet-FT This is our proposed configuration (Section 3.2.1) where pre-
trained DenseNet with parameters learned on ImageNet is employed.

DenseNet-RW This configuration employs DenseNet with all parameters ini-
tialized with random values in order to demonstrate effectiveness of the approach
in configurations above, where pre-trained DenseNet with parameters learned on
ImageNet was employed. In this configuration, DenseNet 161 is used with classi-
fication layer modified only and the model is initialized with random parameters.

DenseNet-RW-1C7x7 While DenseNet is designed for classification of RGB
images, its first convolution layer has three input channels. To improve the model
performance on one-channel spectrograms, we replaced the first three channel
convolutions with convolutions of one input channel, while keeping the kernel
size 7 × 7, and feed the spectrogram segments to the network accordingly.

DenseNet-RW-1C16x3, DenseNet-RW-1C40x3 To highlight the impor-
tance of vertical axis of spectrograms, where the vertical axis represents the spec-
trum of frequencies, we replace 7 × 7 convolutions with vertical convolutions of
sizes 16×3 and 40×3 resp. Similarly to DenseNet-RW-1C, the convolutions have
one input channel.

Results

Table 4.7 shows that training of all network parameters (DenseNet-FT, DenseNet-
RW ) significantly outperforms the approaches where some parameters are frozen
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(DenseNet-TL). The low results of configurations with frozen parameters are not
surprising. The statistics of spectrograms (and consequently the learned con-
volutional filters) are very different than the image statistics on the ImageNet
dataset. However, to freeze some model parameters significantly reduce the num-
ber of trainable parameters and can be beneficial for training on a small dataset.

While both, approach of using pre-trained model and the approach of using
the randomly initialized model, achieve similar results, modification of the first
convolution layer to have one input channel does not significantly improve the
results. Although, it is not very surprising, because the capacity of the modified
convolution layer consisting of 3 · 7 · 7 · 96 = 14112 parameters is insignificant
compared to the capacity of whole model. Moreover, the vertical convolutions
decreased the accuracy rather than helping with the classification.

Top-1 Top-2 Top-1 withoutConfiguration accuracy accuracy aggregation

DenseNet-TL-C 63.3% 76.7% 42.9%
DenseNet-TL-DB4 (half) 80.0% 85.0% 62.7%
DenseNet-TL-DB4 (full) 83.3% 91.7% 64.5%
DenseNet-TL-DB4-N (n=24) 70.0% 85.0% 62.0%
DenseNet-TL-DB4-N (n=48) 76.7% 80.0% 63.3%
DenseNet-TL-DB4-N (n=72) 75.0% 86.7% 64.5%
DenseNet-FT 96.7% 100.0% 92.8%
DenseNet-RW 95.0% 100.0% 91.3%
DenseNet-RW-1C7x7 93.3% 100.0% 89.2%
DenseNet-RW-1C16x3 93.3% 100.0% 88.2%
DenseNet-RW-1C40x3 91.7% 98.3% 88.2%

Table 4.7: Accuracies on the test dataset for given training configurations. The
highest values are bolded as well as our proposed configuration.
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4.6 Cross-dataset Testing
In this section, we will test our model (see Section 4.4) performance on datasets
of various quality. The model will be evaluated using 4 different datasets. We will
compare the method on a dataset created from the same source as the training
set (Section 4.2.1) with other datasets created from different sources. First of
the different-source datasets is created from audio recordings of ballroom dance
competitions. Other dataset is created using recordings from StarDance, Czech
version of Dancing with the Stars TV show, where often popular songs are played
instead of typical dance music. Finally, low quality audio from various dance
competitions recorded using mobile phone, will show, how the model behave on
noisy input.

4.6.1 Dataset from the Same Source as the Training Data
While we use a dataset consisting of only 60 audio recordings for testing (Section
4.2.2), it is beneficial to further evaluate our results using other, larger dataset.

Hence, when the private training dataset (Section 4.2.1) was created, 10 audio
recordings were separated from each of 10 classes while creating new testing
dataset. The created dataset contains 100 audio recording of ballroom dances
and does not overlap with the training dataset.

4.6.2 Dataset from Dance Competitions
We leverage the popularity of dance competitions to create another dataset, that
will be described in this section. It was created by extracting music from 363
YouTube dance videos3. Videos from various dance competitions of the World
DanceSport Federation4 (WDSF) were used. Both latin and standard dances are
included.

Videos from the following competitions were used:

• WDSF GrandSlam Standard in Moscow (Russia), 2019

• WDSF GrandSlam Standard in Rimini (Italy), 2019

• WDSF European Championship Standard in Salaspils (Latvia), 2019

• WDSF GrandSlam Latin in Moscow (Russia), 2019

• WDSF GrandSlam Latin in Rimini (Italy), 2019

• WDSF European Championship Latin in Paris (France), 2019

4.6.3 StarDance
For the increasing popularity of TV show called StarDance, we evaluate the model
using audio recordings extracted from the show. StarDance is a Czech dance
competition, where couples (a celebrity + professional dancer) dance ballroom

3https://www.youtube.com/user/DanceSportTotal/
4https://www.worlddancesport.org/
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dances, similarly to the show Dancing with the Stars popular in UK. While both
latin and standard dances are competed, the background music is not typical
dance music, but rather a popular music, that was not composed for a specific
dance. This makes the dance recognition from such audio tracks challenging even
for humans.

We created the dataset by extracting an audio from 70 videos of dances from
10th season5 broadcasted in 2019. The StarDance dataset does not contain any
recordings of Slow Foxtrot.

4.6.4 Low Quality Recordings
In order to test the model robustness to noise and low quality input in general,
we extracted audio from 85 YouTube videos of dance competitions, that were
recorded using a mobile phone camera. The audio quality of such recordings
is very low, including echo, people applauding, dancers steps sounds, and other
noise and audio artifacts.

4.6.5 Results
As expected, the introduced test dataset, that was created by separating 100
audio recordings from the training dataset, has similar results as the original
testing dataset, as seen in Table 4.8.

Top-1 Top-2 Top-1 withoutDataset accuracy accuracy aggregation

YouTube test dataset 96.7% 100.0% 92.2%
Separation from training dataset 93.0% 98.0% 86.5%
Dance competitions 87.9% 98.6% 70.6%
StarDance 68.0% 78.0% 45.2%
Low Quality Recordings 72.7% 86.7% 58.0%

Table 4.8: Results of our method on various datasets.

Compared to the testing dataset, the accuracy of the dataset with dance
competitions is slightly lower. We suggest an explanation, that contrary to the
testing dataset, the audio recordings are recorded using a microphone placed in
the dancing hall and, apart from the dance music, audio contains noise as steps
of the dancers in the background. Note, that the top-2 accuracy of the dance
competitions dataset is similar to the top-2 accuracy of the test dataset.

Our model performed unsurprisingly worse on the StarDance dataset. The
accuracy is low because the dataset contains popular songs rather than a typical
ballroom music and the classification is ambiguous even for humans.

As shown in Figure 4.6, the songs played for Jive dance in StarDance TV
show sound like Jive music. On the other hand, there are not many popular songs
used that sound like Paso Doble. Further, since Slow Waltz and Viennese Waltz
dances are accompanied by triple-meter music only and cannot be accompanied by

5https://www.ceskatelevize.cz/porady/12607522764-stardance-x/
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music for other dances, both Slow Waltz and Viennese Waltz are not significantly
confused with other dances.

The worst results is seen in low quality recordings. It is not surprising because
the model was trained using studio-quality audio with no noise or artifacts and
is sensitive to low quality data. This problem will be addressed in Section 4.7.
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Figure 4.6: Confusion matrices of our model on the StarDance dataset for both
with (top) and without (bottom) the segment aggregation. The classification on
the StarDance dataset is ambiguous because the dataset contains popular songs
rather than a typical ballroom music. Empty cells correspond to the Slow Foxtrot,
which is not contained in the StarDance dataset.
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4.7 Sensitivity to Low Quality Data
While our model performs well on audio recordings of studio quality, it has dif-
ficulties with low quality data. As Table 4.8 has shown, the model achieved
accuracy of only 72.7% on the low quality recordings.

To further illustrate the model sensitivity on data with background noise, we
mixed a recording of crowd noise, extracted from YouTube video6, into each audio
recording in test dataset with given intensity α.

The perturbed signal is the convex combination in the temporal domain:

˜︁x(t) = (1 − α)xsignal(t) + αxnoise(t)

where xsignal corresponds to the original signal and xnoise corresponds to the
signal of the noise recording. We call the resulting set of audio recordings created
by mixing the noise into the recordings in the test set, as the synthetic test set.

Both signals, the original from the test set and the crowd noise, are normalized
so that:

max x(t) = 1

where x(t) corresponds to the value of signal sample for given time t.
To illustrate the intensity of the normalized signals, root mean square (RMS)

is calculated as:

RMS =
⌜⃓⃓⎷ 1

n

∑︂
t

(︂
x(t)

)︂2

where n is the number of the samples. The resulting RMS for normalized
noise recording was calculated as RMSnoise = 0.16 and the averaged RMS of all
normalized recordings from the test set was calculated as RMSsignal = 0.23.

We tested the model on the synthetic test set, each with increasing background
noise intensity. The results are shown in Figure 4.7.

We describe the ratio of the original signal intensity and the intensity of
the noise using signal-to-noise ratio (SNR). SNR of the synthetic test set with
background noise of intensity α = 0.5 is:

SNR =
RMS2

signal

RMS2
noise

= 1.95

Figure 4.8 shows an example of synthetically adding noise to the Jive, audio
recording from the test set, with ratio α = 0.5.

4.7.1 Extending the Training Dataset
To improve the model accuracy on low quality data, we added low quality audio
recordings to the training dataset. These recordings are similar to those low
quality recordings used for testing, as they are extracted from the same YouTube
channel. Although the both datasets do not overlap. The number of low quality

6https://www.youtube.com/watch?v=IKB3Qiglyro
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Figure 4.7: Accuracy on synthetic test set with background noise of increasing
intensity, using our original model. The synthetic test set was created by adding
crowd noise to the recordings from the testing dataset in given ratio α. Ratio 0.0
corresponds to the original audio recording, ratio 1.0 correspond to a recording
of the noise only.

Top-1 Top-2 Top-1 withoutDataset accuracy accuracy aggregation

YouTube test dataset 98.3% 100.0% 92.7%
Separation from training dataset 93.0% 98.0% 86.0%
Dance competitions 93.7% 98.9% 75.7%
StarDance 46.0% 74.0% 38.6%
Low Quality Recordings 89.8% 95.3% 71.7%

Table 4.9: Results of a model, where low quality audio recordings were added
to the training dataset. The bold values represent accuracies that increased
compared to the previous results in Table 4.8.

recordings added to the training set is 239 which corresponds to 4.88% of audio
recordings in training set overall.

Then, new model is trained on the extended dataset from the training dataset.
Similarly to the original model, the pre-trained DenseNet with parameters learned
on ImageNet [Deng et al., 2009], is used.

4.7.2 Results
The resulting model has achieved substantially better performance on low quality
data, than the old model has (Table 4.9). The resulting accuracy increased by
89.8% − 72.7% = 17.1 p.p. on low quality recordings dataset. Moreover, the
accuracy on dance competitions dataset has increased. The reason is probably
that the dance competitions have certain amount of background noise that the
extended model can handle. Decreased accuracy is seen in StarDance dataset
and it decreased by 68%−46% = 12 p.p. The accuracy decrease of the StarDance
dataset is mostly caused by ambiguity of the StarDance dataset which is indicated
by the top-2 accuracy with slight decrease of 78% − 74% = 4 p.p.
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Figure 4.8: The recording of Jive (first) is mixed with the recording of crowd
noise (second) resulting in the synthesized recording (third). The corresponding
mel spectrograms are shown and the mixing ratio α = 0.5.
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Figure 4.9: Accuracy on synthetic test set with background noise of given in-
tensity, using a model, that was trained the extended training set. See the im-
provement compared to Figure 4.7. The synthetic test set was created by adding
crowd noise to the recordings from the testing dataset in given ratio α. Ratio 0.0
corresponds to the original audio recording, ratio 1.0 correspond to a recording
of the noise only.

To further investigate the suggested model results, we test the model on the
synthetic test set with increasing crowd noise intensity. Figure 4.9 shows slight
improvement compared to the results of previous model.

In conclusion, we have achieved substantially better results on low quality
data with simple technique of adding noisy recordings to the training dataset in
a ratio as small as 4.9%.
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4.8 Classification Examples
This section shows remarkable classification outputs of chosen audio recordings
from both the test set and the StarDance dataset. Our proposed model is used
for the classification. All mentioned audio recordings are publicly available and
links referring to them are included. Moreover, we propose a web application as
demonstration of our approach.

4.8.1 Demonstration
Our method is demonstrated using a responsive web application at http://
dance.ironbrain.net as shown in Figure 4.10. The application enables user
to upload audio file and shows the classification results to the user. The clas-
sification results are represented by probability scores over the dance classes.
The classification is performed using the model, that is trained on the training
set extended by low quality audio recordings, as described in Section 4.7. The
demonstration achieves promising results and it has a potential for a commercial
deployment.

Figure 4.10: Screenshot of the web application that demonstrates our method.
The screenshot shows predictions for Slow Waltz. Note, that the Viennese Waltz
is second prediction because it is in triple meter. Both Rumba and Slow Foxtrot
are similar to Slow Waltz for their slow tempo. The application can be accessed
at http://dance.ironbrain.net.

4.8.2 Classification Examples on The Test Set
This section will show classification results of several audio recordings from the
test set. As audio recordings are classified by independent spectrogram segments
each 5.2-seconds long, the resulting probability scores of each segment will be
depicted in figures. It enables us to see the classification result for each 5.2-
seconds window in given audio recording. The audio is classified in sliding window
fashion with given stride. Note, that the aggregated probability score is visually
represented by the ratio of areas corresponding to the dance classes.
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Figure 4.11: Classification of Cha Cha Cha (https://youtu.be/
GHY3Mb4x2Bg 0:00-0:20 ) with fixed intro, that was digitally added before
the dance music. The figure shows probability scores for consecutive segments
with stride = 3.

Audio Recordings with Digitally Added Intro

As mentioned in Section 4.2.2, some of the audio recordings from the test dataset
contain fixed few-seconds intro that is digitally added to the recordings beginning.
The classification results of recording of Cha Cha Cha, that contains the fixed
intro, are shown in Figure 4.11. As the figure illustrates in the beginning, our
model is unsurprisingly unable to recognize Cha Cha Cha for 5.2-seconds segments
that contain the fixed intro and the correct class Cha Cha Cha is predicted as
long as the dance music starts, around time 0:02.

Recordings with Gradual Music Beginning

Classification of some audio recordings has bad results in the beginning of the
recording despite the fact that the fixed intro is absent. This is caused by the
gradual music beginnings of some dance songs. Even though the beginnings
belong to the dance music, the patterns that are required to correctly predict
dance class, as beats and timing, are not present in the beginning of the song.
Such misclassification of beginning of Tango is shown in Figure 4.12.

As discussed earlier, our results on the Extended Ballroom dataset are slightly
lower than those on the test set. We suppose, that this is caused by the reason,
that the Extended Ballroom dataset contains 10-seconds song beginnings rather
than entire songs. As shown in the Figure 4.12, the 10-seconds beginnings are
sometimes challenging to classify.

Another example is shown in Figure 4.13, where both effects, the digitally
added intro and gradual beginning of the dance music, are present.

Classification of Similar Dance Classes

Similarities of some dances are noticeable from the model output as shown in
Figure 4.14. The similarity of Slow Waltz and Viennese Waltz can be seen in the
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Figure 4.12: Classification of Tango (https://youtu.be/eC-GLP5WdAg?t=2 0:02-
1:02 ) that has song beginning which is challenging to classify. The figure shows
probability scores for consecutive segments with stride = 10.

figure as well as the slight similarity of latin dances Cha Cha Cha and Rumba.
Further, Figure 4.15 shows classification outputs of Slow Waltz recording that is
confused with Viennese Waltz for high tempo of the recording. Note, that the
classification progress changes in the middle of the recording, where beat pattern
changes and the beats start to play slightly louder. The increased beat loudness
falsely decrease the probability score of Slow Waltz that is often characteristic by
its soft nature.

Audio Events in Dance Music

Our approach of classifying 5.2-seconds segments independently works well for au-
dio recordings with stationary signals. Although, some audio recordings contain
musical events as verse change or bridge, that are challenging for the classifier,
with 5.2-seconds segments as input, to handle, as shown in Figure 4.16. How-
ever, such problematic musical events are unusual for dance music and they are
usually only few seconds long. Thus, the presence of the musical events in audio
recording does not significantly affect the aggregated results.

4.8.3 Classification Examples on the StarDance Dataset
The audio recordings extracted from StarDance, Czech TV show, contain popular
music rather then typical dance music. A prediction of dance styles from popular
music is often ambiguous.

Ambiguous Recordings of Popular Music

The classification ambiguity of the StarDance dataset will be illustrated on two
audio recordings of Czech Viennese Waltzes from the dataset. While Viennese
Waltz can be usually easily recognized for its triple-meter timing, the triple-meter
timing is not significant for the two audio recordings of the Viennese Waltz. Fig-
ure 4.17 shows ambiguous classification of the two Viennese Waltz recordings
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Figure 4.13: Classification of Samba (top, https://youtu.be/h7hj3KSQ2Ec
0:00-0:40 ) and Rumba (bottom, https://youtu.be/u7GYcsOkTxw 0:00-0:40 ).
Both audio recordings contain both digitally added intro and gradual music
beginning. The figures show probability scores for consecutive segments with
stride = 10.
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Figure 4.14: Classification of Slow Waltz (top, https://youtu.be/dVdI1mo_
va0 0:00-2:00 ) and Rumba (bottom, https://youtu.be/3xtV_HnEu48 0:00-
2:00 ). Both, the recording of Slow Waltz and the recording of Rumba, are
similar to dances Vienesse Waltz and Cha Cha Cha, respectively. The figure
shows probability scores for consecutive segments with stride = 20.
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Figure 4.15: Classification of Slow Waltz (https://youtu.be/
j6QCy-19cFs 0:00-2:00 ) that is confused with Viennese Waltz. The change in
the middle of the recording classification is triggered by loud beats. The figure
shows probability scores for consecutive segments with stride = 20.

without significant triple-meter timing. Note, that the probability score of Vien-
nese Waltz increases when the triple meter becomes more remarkable.

Recordings with Czech Music

As shown in Section 4.6, the accuracy on the StarDance dataset is lower than
the accuracies of other datasets. To show, that the accuracy is small not by
the fact, that the dataset contains Czech songs, we lastly provide example of a
Czech song, that is correctly classified as Rumba (Figure 4.18). The song is from
Czechoslovak fairy tale movie. Even though the song is not typical dance music,
it is classified correctly, because it is played with beats that are typical for Rumba
dance. Note, that the audio recording also contains sounds from the StarDance
TV show, which cause inaccurate classification in the beginning.
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Figure 4.16: Spectrogram (top) and classification (bottom) of audio recording
of Slow Foxtrot (https://youtu.be/ZyYn7Bw3EqA 0:00-2:00 ). As shown in the
figure, the recording contains three musical events where music changes and plays
with low volume. The bottom plot shows probability scores for consecutive seg-
ments with stride = 20.
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Figure 4.17: Classification of ambiguous recordings of Waltz from StarDance TV
show (https://www.ceskatelevize.cz/porady/12607522764-stardance-x/
219544160450001-stardance-x-kdyz-hvezdy-tanci Karel Kovy Kovář a
Veronika Lišková - Valčı́k SD 9 and Gabriela Koukalová a Martin Prágr - Valčı́k
SD 6 resp. both 0:00-2:00 ). The recording accompanied triple meter Waltz
dance, but the triple-meter timing is not significant in the recordings which causes
bad results. The figure shows probability scores for consecutive segments with
stride = 20.
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Figure 4.18: Classification of song from Czechoslovak fairy tale
movie. The song accompanied Rumba dance in StarDance TV show
(https://www.ceskatelevize.cz/porady/12607522764-stardance-x/
219544160450004-stardance-x-kdyz-hvezdy-tanci Veronika Khek Kubařová
a Dominik Vodička - Rumba SD 2 0:00-2:00 ). The audio recording also contains
sounds from the show, which cause inaccurate classification in the beginning.
The figure shows probability scores for consecutive segments with stride = 20.
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5. Conclusion
We presented a technique for dance genre classification based on fully convolu-
tional neural networks (FCN). The technique relies on spectrograms that repre-
sent a segment of raw audio signal as an image. It was shown, that computer
vision approaches can be effectively utilized for predicting dance genres from the
spectrograms and we have achieved the best results when relying on pretrained
Dense Convolutional Network [Huang et al., 2017], referred as DenseNet, with pa-
rameters learned on ImageNet [Deng et al., 2009]. We have shown, that DenseNet
slightly outperforms other convolutional neural network architectures as VGG,
ResNet and ResNext. We relied on cutting each spectrogram to overlapping seg-
ments in sliding window fashion and classified the segments independently. Re-
sults has shown, that each 5.2-seconds segment contained sufficient information
for correct prediction of a dance class.

We achieved remarkable results of accuracy 96.7% on our independent test
dataset of 60 recordings about four minutes long and 93.9% accuracy on novel
Extended Ballroom dataset [Marchand and Peeters, 2016a] of 4000+ recordings
each ten seconds long. We believe, our results are competitive and probably
achieves the state-of-the-art in dance genre recognition. We further evaluated our
model on various datasets, as audio recordings extracted from dance competitions,
and audio recordings extracted from StarDance TV show. The approach was
finally evaluated on two datasets with low quality data. Audio recordings in
one of the datasets were recorded on a mobile phone and contained noise of
surrounding. Second dataset was created synthetically by adding a background
noise to each of the recording in the test set with increasing intensity.

Based on the results of our method on low quality data, we extended the
training set by adding low quality audio recordings (Section 4.7.1). We have
shown, that accuracy on independent low quality data increased significantly,
even though the ratio of the low quality data in the training set was as low as
4.9%.

We implemented a baseline algorithm for dance genre classification. The
baseline employs digitally extracted features (e.g. chromagram, spectral centroid
and Mel-Frequency Cepstral Coefficients) and support vector machines (SVM).
The results of our method were compared with the baseline algorithm and with
the MASSS classifier proposed by Marchand and Peeters [2016b].

As a demonstration of our method, we presented a web application with func-
tionality to predict dance from audio recording uploaded by user (Section 4.8.1).

With respect to DenseNet architecture, we experimented with a number of
layers and we changed the network structure as replacing the first convolutional
layer with vertical convolutions (Section 4.5). It was shown, that the original
DenseNet with 7 × 7 convolutions in the first layer slightly outperforms its mod-
ifications, where the first layer is replaced with the layer of vertical convolutions.
Further, training all model parameters significantly outperformed the approaches,
where parameters of first convolutional layers, learned on ImageNet, were frozen
and only the parameters of other layers were trained. The training of all model
parameters achieved accurate results for both, the DenseNet pretrained with pa-
rameters learned on ImageNet and the DenseNet with parameters randomly ini-
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tialized.
Suggestions of possible improvements that we keep as a future work, will fol-

low. Our current approach utilizes simple average to aggregate the classification
results of spectrogram segments. Future technique could employ more sophisti-
cated aggregation mechanisms as recurrent neural networks.

The softmax output scores do not reflect the posterior probability distribution.
We could train the proper network confidence following Franc and Prusa [2019]
that would possibly further improve the aggregation results. Moreover, it would
allow us to implement a reject option, that would extend the model to abstain
from prediction in ambiguous cases or on classes that the model is not trained
for.

As our method employs spectrogram as a representation of an audio signal,
other methods for the audio signal representation could be investigated [Marc-
hand and Peeters, 2016b]. Moreover, end-to-end techniques could be employed
to classify the dance class from the raw signal without utilizing any intermediate
representation, as studied by Dieleman and Schrauwen [2014]. The end-to-end
approach could work if enough data is available since the neural network has to
learn the representation of the raw signal from scratch.

To achieve more accurate results, ensemble of classifiers could be utilized to
predict a dance class, similarly as proposed by Silla Jr et al. [2007]. Especially,
CNN-based approach for music classification could be ensembled with approach
employing manually extracted features. A hand-crafted feature with a clear in-
terpretation, e.g. music tempo, could achieve more accurate results.

Lastly, the web application, that is presented as a demonstration, could be
improved. The method could be implemented as a mobile phone application with
impressive user interface and with the possibility to classify dance music recorded
using a microphone in real-time. The entire classification process could also work
locally on the mobile device. Running the classifier offline on limited compu-
tational resources would require replacing DenseNet with computation-efficient
CNN architecture as SqueezeNet [Iandola et al., 2016], MobileNet [Howard et al.,
2017] or ShuffleNet [Zhang et al., 2018].
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