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Abstract 

Protists inhabiting oxygen-depleted environments have evolved various adaptation to thrive in 

their niches, including modified mitochondria to various degrees adapted to anaerobiosis. The 

most radically altered forms of these organelles (Mitochondria-Related Organelles, MROs) 

have completely lost their genomes and other defining features of canonical aerobic 

mitochondria. Anaerobic protists are often found as endobionts (parasites, mutualists, etc.) of 

larger organisms. The endobiotic lifestyle combined with anaerobiosis poses another source of 

evolutionary pressure forcing unique adaptations in the endobionts. Here we present new 

insights into the adaptations of an anaerobic protistan phylum Preaxostyla, especially with 

regard to the reductive evolution of mitochondria, which, uniquely among all known 

eukaryotes, led to a complete loss of the organelle in the oxymonad Monocercomonoides exilis.  

We have obtained M. exilis genomic assembly of good quality and completeness, as well as 

genomic and transcriptomic data of varying quality and completeness from 9 other Preaxostyla 

species. Based on extensive, thorough gene searches and functional gene annotation on these 

datasets, as well as phylogenetic analyses and protein localization experiments, we conclude: 

1) M. exilis has completely lost the mitochondrion. This was likely facilitated by a replacement 

of the mitochondrial system for iron-sulfur (Fe-S) cluster assembly (ISC) with an unrelated 

SUF system of bacterial origin, which was employed for function in the cytosol; 2) Despite the 

loss of mitochondria, M. exilis displays no major reduction in genomic or cellular complexity 

compared to other anaerobic protists endowed with MROs; 3) The SUF system for Fe-S clusters 

assembly is present in all studied Preaxostyla and was likely gained in a single lateral gene 

transfer event from bacteria into a common ancestor of extant Preaxostyla. No studied member 

of Preaxostyla has the mitochondrial ISC system; 4) The ATP-producing arginine deiminase 

(ADI) pathway is present in most studied Metamonada including Preaxostyla and likely 

represents an ancestral feature of Metamonada. Distribution and phylogeny of the 3 ADI 

pathway genes among eukaryotes is consistent with presence of the pathway already in the last 

eukaryotic common ancestor (LECA) and their evolutionary history was shaped by frequent 

losses and lateral gene transfers.  
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Abstrakt 

Protista obývající prostředí chudá na kyslík si vyvinula řadu specifických adaptací, včetně 

modifikovaných mitochondrií, do různé míry přizpůsobených životu bez kyslíku. 

Nejradikálněji pozměněné typy těchto organel nazývaných MRO (Mitochondria-Related 

Organelles) zcela ztratily mitochondriální genom i další znaky definující kanonické aerobní 

mitochondrie. Anaerobní protista jsou často endobionty (tzn. parazity, mutualisty atp.) větších 

organizmů. Vedle anaerobního prostředí představuje endobiotický způsob života další zdroj 

selekčního tlaku, vyžadující unikátní adaptace včetně např. redukovaných biosyntetických 

schopností, nebo modifikovaného souboru povrchových proteinů. V této práci představujeme 

nové poznatky o adaptacích anaerobních protists kmene Preaxostyla, se zvláštním ohledem na 

reduktivní evoluci mitochondrií, která vedla k unikátní úplné ztrátě mitochondrie u zástupce 

této skupiny, druhu Monocercomonoides exilis.  

Získali jsme genomovou sekvenci M. exilis dobré kvality a úplnosti i genomová 

a transkriptomová data z 9 dalších devíti zástupců Preaxostyla. Na základě těchto dat, pečlivých 

funkčních anotací genů, fylogenetických analýz a experimentální lokalizace proteinů 

vyvozujeme tyto závěry: 1) M. exilis zcela ztratil mitochondrii. Tato ztráta byla pravděpodobně 

umožněna nahrazením mitochondriálního systému (ISC) pro syntézu železosirných center 

nepříbuzným systémem SUF, který byl laterálně přenesen z bakterií do předka M. exilis a byl 

zapojen do metabolismu v cytosolu. 2) I přes ztrátu mitochondrie M. exilis nejeví žádné známky 

redukce genomové ani buněčné komplexity ve srovnání s jinými protisty s redukovanými 

mitochondriemi. 3) SUF systém pro syntézu železosirných center je přítomen ve všech 

studovaných zástupcích skupiny Preaxostyla a žádný z nich nemá mitochondriální systém ISC. 

4) Arginindeiminázová (ADI) metabolická dráha produkující ATP je přítomna ve většině 

studovaných zástupců Metamonada a Preaxostyla a pravděpodobně představuje původní znak 

celé skupiny Metamonada. Distribuce a evoluční historie 3 genů ADI dráhy mezi eukaryoty je 

konzistentní s přítomností této dráhy u posledního společného předka eukaryot a jejich evoluční 

historie byla zřejmě formována častými ztrátami a laterálními přenosy. 
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1. Introduction 

The scope of the introductory chapters is mostly limited to protistan lineages without 

mitochondrial genomes for the sake of brevity and relevance to the presented original work. 

Taxonomic names are given in their most recent generally accepted form (Adl et al. 2018) 

regardless of how they occur in the cited literature, unless explicitly stated otherwise. The term 

“anaerobic” is used to describe both microaerophilic and truly anaerobic organisms, as the true 

status of many of the discussed examples is not fully understood.  

1.1.  Historical overview  

This work concerns various topics related to reductive evolution and eventual loss of 

mitochondria and evolution of anaerobic lifestyle and symbiosis in protists. It is therefore 

appropriate to open it with a brief recapitulation of the history of research and scientific thinking 

on these topics (Fig. 1). The rise and fall of the Archezoa hypothesis are discussed first, as this 

period of protistological past is crucial for our current understanding of distribution and 

evolution of mitochondria in eukaryotes, as well as for directing scientific interest towards 

anaerobically living protists not only as pathogens, but also as organisms with fascinating 

evolutionary histories which may illuminate the evolution of eukaryotes as a whole. The 

progress of genomic and transcriptomic research on anaerobic protists is discussed in order to 

show the presented work as a part of certain tradition of thinking and continuation of many 

previous efforts, as well as to introduce various concepts discussed further.  

1.1.1. The Archezoa hypothesis 

In the year 1983, Thomas Cavalier-Smith formulated an idea which ended up dramatically 

shaping protistological research for the following two decades (Cavalier-Smith 1983 in 

Cavalier-Smith 1987). The so called Archezoa hypothesis quickly collected supporting 

evidence and became a generally accepted textbook truth in the 1980s, attracting scientific 

interest and funding to research of previously understudied anaerobic organisms in the 1990s, 

leading to its own downfall and ultimate rejection under the weight of newly gathered evidence 

on the brink of the 21st century. The Archezoa hypothesis claimed that certain taxa of microbial 

eukaryotes, which were not known to harbor mitochondria, indeed completely lack these 

organelles, because they supposedly diverged from the rest of the eukaryotic diversity before 

the symbiogenetic event which resulted in the establishment of mitochondria. These taxa were 

grouped together in a subkingdom Archezoa, hence the name of the hypothesis. As originally 



10 

 

defined, subkingdom Archezoa contained 4 taxa: Microsporidia, Archamoebea, Parabasalia, 

and Metamonada (Fornicata and Oxymonadida).  

The Archezoa hypothesis gained support from a number of early single-gene phylogenetic 

reconstructions of the eukaryotic tree of life. An analysis of the small ribosomal subunit rRNA 

of the microsporidian Vairimorpha necatrix placed this organism as sister to all other included 

eukaryotes already in 1987 (Vossbrinck et al. 1987). No other “Archezoa” sequences were 

present in this analysis. Later analysis of the same gene, now with broader sampling of 

eukaryotes, retrieved Giardia intestinalis (Fornicata) as the sister clade to all other eukaryotes, 

followed immediately by the branches of Vairimorpha (Microsporidia), Trichomonas vaginalis 

(Parabasalia), and the rest of eukaryotes (Kamaishi et al. 1996). The protein phylogeny of 

translation elongation factor EF-1α showed a branching order of 1st Glugea plecoglossi 

(Microsporidia), 2nd G. intestinalis (Fornicata), 3rd Entamoeba histolytica (Archamoebea), and 

4th the rest of eukaryotes (Kamaishi et al. 1996). Multiple other single gene phylogenetic 

analyses performed in the 1980s and 1990s supported this general pattern, consistent with the 

Archezoa hypothesis, in which Microsporidia, Fornicata, Parabasalia, and Archamoebea 

branched together, although in various different orders, as a paraphylum at the base of the 

eukaryotic tree of life (Klenk et al. 1995; Viscogliosi et al. 1993; Yamamoto et al. 1997). The 

supposed primitive state of Microsporidia was also suggested to be supported by their 

prokaryotic-like ribosomes with the 16S and 23S rRNA, rather than 18S and 28S rRNA, and 

the 5.8S rRNA within 23S rRNA (Vossbrinck and Woese 1986). It was later shown (e.g. 

Philippe and Germot 2000) that these early single-gene all-eukaryotic phylogenetic studies 

were heavily influenced by the long branch attraction artefact. This means that the long 

branches of the supposed Archezoa taxa were artificially attracted to the long branch of the 

prokaryotic outgroup (Felsenstein 1978).  

Certain cracks in the Archezoa hypothesis were known to the scientific community already at 

the time of its formulation. E. M. Cheissin in 1965 reported observation of “ovoid pellicular 

bodies” in G. intestinalis and suggested that these might be mitochondria changed by the 

oxygen-poor conditions (Cheissin 1965 in Lloyd and Harris 2002). Mitochondria-like structures 

were reported also in Microsporidia (reviewed in Vávra 1976). Jiří Čerkasov and colleagues in 

1978 noted biochemical similarities between the hydrogenosomes of parabasalids and 

mitochondria (Čerkasov et al. 1978). Cavalier-Smith himself acknowledged the possibility of 

secondary amitochondriality, in which organisms originally endowed with aerobic 

mitochondria would lose these organelles as an adaptation to life in low-oxygen environments 



11 

 

(Cavalier-Smith 1987). Examples of such secondary amitochondriates included rumen dwelling 

Ciliophora and Fungi, all known to be closely related to mitochondriate taxa. This line of 

evidence convinced Cavalier-Smith to reformulate his hypothesis in 1991 by excluding 

Parabasalia from Archezoa after it was shown that several anaerobic ciliates have organelles 

resembling parabasalid hydrogenosomes, but with cristae-like structures which link them to 

mitochondria (Cavalier-Smith 1991). Further evidence of the mitochondrial origin of (at least 

some) hydrogenosomes came from physiological (Biagini et al. 1997) and molecular 

(Akhmanova et al. 1998) studies on anaerobic Ciliophora, as well as additional ultrastructural 

studies on anaerobic ciliates and the anaerobic chytridiomycete Neocallimastix frontalis 

(Benchimol, Durand, and Aquino Almeida 1997). These and other results led Martin Embley 

and colleagues to suggest that the evolutionary transition from aerobic mitochondria to 

hydrogenosomes is “fairly easy” and it might be also the case in parabasalids (Embley et al. 

2003). 

Serious challenge to the Archezoa hypothesis emerged in the middle of the 1990s, when 

multiple groups started reporting findings of mitochondria-derived genes in various supposed 

members of Archezoa (reviewed in Keeling 1998). Using PCR amplification with degenerate 

primers, David Horner and colleagues discovered a partial gene coding for the mitochondrial 

protein Cpn60 in T. vaginalis (Parabasalia) in 1996 (Horner et al. 1996) and Agnès Germot and 

colleagues discovered the mitochondrial 70-kDa heat shock protein (Hsp70) in T. vaginalis 

(Germot, Philippe, and Le Guyader 1996) and Nosema locustae (Microsporidia) (Germot, 

Philippe, and Le Guyader 1997). Andrew Roger, Graham Clark, and colleagues used a similar 

method to discover the mitochondrial chaperonin 60 (Cpn60) in E. histolytica (Archamoebea) 

(Clark and Roger 1995) and T. vaginalis (Parabasalia) (Roger, Clark, and Doolittle 1996) and 

later discovered this gene also in G. intestinalis (Fornicata) (Roger et al. 1998). Phylogenetic 

analyses of the genes supported their mitochondrial origin (Horner et al. 1996). 

Another blow to the Archezoa hypothesis came with new development in the field of molecular 

phylogenetics. Phylogenetic analyses of ribosomal genes from the Archamoebea E. histolytica, 

Mastigamoeba balamuthi (Hinkle et al. 1994), and Pelomyxa sp. (Morin and Mignot 1995 in 

Keeling 1998) have shown their position among other mitochondriate eukaryotes. This led 

Cavalier-Smith to remove Archamoebea from Archezoa and group them with other amoeboid 

eukaryotes in the taxon Amoebozoa (Cavalier-Smith 1998). This position of Archamoebea was 

later supported by further, more sophisticated, phylogenetic and phylogenomic analyses (e.g. 

Fahrni et al. 2003; Tekle et al. 2016). 
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Multiple unique features were suggested to unite Microsporidia with the mitochondria-bearing 

Fungi (e.g. Vivares et al. 1996; Flegel and Pasharawipas 1995) and this relationship was also 

further supported by molecular phylogenetics of tubulins (Keeling and Doolittle 1996; Edlund 

et al. 1996). Therefore, Microsporidia were removed from Archezoa by Cavalier Smith as well 

(Cavalier-Smith 1998). These changes, together with the previous removal of Parabasalia, left 

only Metamonada (at that time including Fornicata and Oxymonadida) as the single putative 

primarily amitochondriate eukaryotic taxon and focused the interest of the protistological 

community towards the best studied member of Metamonada – Giardia intestinalis, turning it 

into the last pillar of the Archezoa hypothesis.  

The non-archezoan nature of Archamoebea and Microsporidia was later corroborated by the 

discovery of a novel organelle of mitochondrial origin, the mitosome. Jorge Tovar and 

colleagues discovered the mitosome in 1999 when they investigated expression of the 

previously reported Cpn60 gene in E. histolytica (Tovar, Fischer, and Clark 1999) and the same 

observation was published the same year also by Zhiming Mai and colleagues (Mai et al. 1999). 

Both teams found out that the protein product of the Cpn60 gene is targeted to a previously 

undetected vesicular compartment in the cell of E. histolytica. Furthermore, rescue experiments 

have shown that the organellar import mechanism involved is compatible with the 

mitochondria-targeting signals of aerobic eukaryotes. 

Three years later, Bryony Williams and colleagues reported finding of a similar organelle in the 

microsporidian Trachipleistophora hominis (B. A. P. Williams et al. 2002) (after the presence 

of such organelle was hypothesized based on findings of putatively mitochondrial genes in the 

genome of another microsporidian, Encephalitozoon cuniculi; Katinka et al. 2001). Their 

approach included immunological staining of the Hsp70 protein in both light and electron 

microscopy, which allowed them to observe that the target organelles are surrounded by 

a double membrane, a feature typical for mitochondria and their derivatives. They noted the 

similarities between the organelles of T. hominis and E. histolytica and suggested that such 

relictual mitochondria might be one day discovered also in G. intestinalis.  

This came true only a year later when Jorge Tovar and colleagues not only reported the 

discovery of a mitosome in G. intestinalis, but also identified its function – synthesis of iron-

sulfur clusters by the typically mitochondrial ISC system (Tovar et al. 2003).  

All this evidence against the Archezoa hypothesis led to its gradual abandonment during the 

first years of the 21st century. Martin Embley and colleagues suggested in 2003 that “all 
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eukaryotes might contain an organelle of mitochondrial ancestry” and Cavalier-Smith himself 

completely rejected the idea of Archezoa the same year in an article (Cavalier-Smith 2003) 

where he also presented a new pan-eukaryotic phylogeny and classification, which already 

broadly resembled our current idea about the evolution of eukaryotes (Adl et al. 2018). In this 

classification, Metamonada were expanded to include not only Fornicata and Oxymonadida 

like in previous two decades, but also the entire Parabasalia and the genus Trimastix (current 

genera Trimastix and Paratrimastix), which had been shown to be a sister clade to 

Oxymonadida two years earlier by Joel Dacks and colleagues (Dacks et al. 2001).  

Discovery of the relationship between oxymonads and Trimastix has shown that neither 

oxymonads, the least studied group of the supposed Archezoa, are primitively amitochondriate, 

because species of the genus Trimastix were known to contain hydrogenosome-like organelles 

of likely mitochondrial origin. Joel Dacks and colleagues suggested that the taxon containing 

Trimastix and Oxymonadida, now known as Preaxostyla, may be a useful system for 

investigations into the reductive evolution of mitochondria (Dacks et al. 2001). 

1.1.2. The age of genomics and transcriptomics 

Genomics and transcriptomics, i.e. the study of the entire information content of DNA and 

mRNA molecules in the cell, are powerful tools for understanding non-model organisms, 

especially in cases where unavailability of axenic culturing and/or genetic manipulation 

techniques precludes biochemical investigations and complicates functional and protein 

localization experiments.  

1.1.2.1. Microsporidia 

Microsporidia are a group of obligate intracellular parasites of substantial medical and 

economic importance, which also in some cases have extremely small genome sizes compared 

to other eukaryotes, even on the scale of single megabases (e.g. Biderre et al. 1994; 

Peyretaillade et al. 1998; Keeling and Slamovits 2004). Therefore, it is no surprise that 

a member of Microsporidia became the first eukaryote devoid of aerobic mitochondria to have 

its genomic sequence published. Michaël Katinka and colleagues sequenced, assembled, and 

annotated the genome of the mammal parasite Encephalitozoon cuniculi and published their 

results in 2001 (Katinka et al. 2001). The study used the genomic data for greater understanding 

of multiple aspects of E. cuniculi biology, ranging from the structure of the genome itself, to 

cell biology and also metabolic and physiological features associated with the parasitic lifestyle.  
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What is of special interest to this thesis is the authors’ attempt to reconstruct the features of 

a supposed mitochondrial organelle of E. cuniculi based on the predicted set of putatively 

mitochondrion-targeted proteins encoded in the nuclear genome. Similar analysis was also 

performed on the second member of Microsporidia with a published genome, the honeybee 

pathogen Nosema ceranae in 2009 (Cornman et al. 2009). Now, 10 years later, there are 35 

available genome assemblies of Microsporidia deposited in the specialized database 

MicrosporidiaDB (https://microsporidiadb.org).  

1.1.2.2.  Cryptosporidium  

Genome assemblies of two species of Cryptosporidium, an apicomplexan parasite infecting 

human gut and known not to have an aerobic mitochondrion, were published in 2004: 

C. parvum by Mitchell Abrahamsen, Thomas Templeton, and colleagues (Abrahamsen et al. 

2004), and C. hominis by Ping Xu, Giovanni Widmer, and colleagues (P. Xu et al. 2004). 

Cryptosporidium parvum had been shown to have a reduced mitochondrial organelle (Riordan 

et al. 2003), possibly involved in the synthesis of Fe-S clusters (LaGier et al. 2003), only a year 

before and the genomic studies on both species have identified gene complements consistent 

with these observations.  

Based on the predicted proteins putatively localized in the mitochondrion, the authors have 

reconstructed a picture of an organelle devoid of the TCA cycle and oxidative phosphorylation. 

Other reported findings are related to lineage-specific features (lack of apicoplast, presence of 

apical complex) and to the parasitic way of life (limited biosynthetic capabilities, novel types 

of cell-surface and secreted proteins). The simultaneous availability of genomic data from 

2 Cryptosporidium species allowed the authors to make comparisons between the genomes and 

conclude that they are strikingly similar in both composition and structure, which contrasts with 

significant phenotypic differences observed in the 2 organisms (P. Xu et al. 2004). Another 12 

genome assemblies of the genus Cryptosporidium have been published since then and are 

deposited in the specialized database CryptoDB (https://cryptodb.org).  

1.1.2.3. Archamoebea 

The first archamoebid (and the first amoebozoan) to have its genome sequenced and published 

was Entamoeba histolytica, a human gut symbiont and occasional pathogen. Brendan Loftus 

and colleagues used the genomic data for functional annotation of various cellular systems 

potentially involved in the symbiotic lifestyle and pathogenesis, including virulence factors like 
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lectins, proteases, and amoebapores, as well as vesicle trafficking, signal transduction, and 

oxygen detoxification mechanisms (Loftus et al. 2005). E. histolytica had been previously 

shown to possess a reduced mitochondrial organelle and the genomic data supported the lack 

of an aerobic mitochondrion. However, the authors did not discuss other insights into the nature 

of the organelle. They also conducted a phylogenetic screen for laterally transferred genes in 

the E. histolytica genome and identified 96 LGT candidates with a major impact in energy 

metabolism catabolizing amino acids and carbohydrates. As of now, there are genomic 

assemblies from 8 different E. histolytica strains, as well as 4 other Entamoeba species, 

deposited in the database AmoebaDB (https://amoebadb.org).  

Mastigamoeba balamuthi is a free-living relative of E. histolytica. In 2007 Erin Gill and 

colleagues performed a transcriptomic survey of this archamoebid in order to understand 

metabolic capabilities of its MRO and, by comparing it to the mitosome of E. histolytica, shed 

light on the evolution of mitochondria in Archamoebea (Gill et al. 2007). The predicted MRO 

proteome suggested a much more complex organelle than the mitosome of E. histolytica – 

probably a hydrogenosome with a role in energy and amino acid metabolism. Genomic 

assembly of M. balamuthi, was published in 2013 (Nývltová et al. 2013). Eva Nývltová and 

colleagues sequenced the genome in order to explore cellular localization of an unusual iron-

sulfur cluster assembly system of M. balamuthi. The genomic data was later used to investigate 

the evolutionary history of various hydrogenosomal proteins (Nývltová et al. 2015).  

1.1.2.4. Parabasalia 

The first genome assembly of the best studied parabasalid, the human sexually transmitted 

pathogen Trichomonas vaginalis, was published in 2007 by Jane Carlton and colleagues 

(Carlton et al. 2007). Genome of this organism is surprisingly large and the reason for this 

became one of the questions investigated within the genomic project. The authors identified 

a high number of repetitive sequences with low polymorphism. This, together with an analysis 

of gene families age distribution, led them to conclude that T. vaginalis genome recently 

underwent a period of increased duplication including several large-scale duplications. They 

also reported and discussed annotation of a large number of various cellular systems, often with 

focus on pathogenesis (including surface virulence factors discussed in a separate publication; 

Hirt et al. 2007). Among these is an extensively annotated amino acid metabolism, which was 

hypothesized to have an important role in energy metabolism. Interestingly, many of the amino 
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acid metabolism-related genes were shown to have likely originated via lateral gene transfer 

from bacteria, which is reminiscent of the E. histolytica genome discussed above.  

The authors also identified 138 genes whose protein products are putatively targeted into the 

hydrogenosome, the reduced mitochondrion of T. vaginalis. Annotation of these genes not only 

supported previously reported functions of the hydrogenosome-like ATP production via an 

anaerobic pathway involving hydrogenases and iron-sulfur cluster biosynthesis, but also 

suggested a possible novel role of hydrogenosome in the amino acid metabolism due to the 

presence of components of incomplete glycine cleavage system (GCS) and serine 

hydroxymethyl transferase (SHMT). Identification of multiple copies of hydrogenosome-

targeted ferredoxin gene in the T. vaginalis genome allowed the authors to explain mechanisms 

behind the clinically important resistance to 5-nitroimidazole drug metronidazole.  

Ten years later, in 2017, Tritrichomonas foetus, a parasite of significant veterinary and 

economic importance, became the only other parabasalid to have its genome sequenced and 

published to this day (Benchimol et al. 2017). 

There are also transcriptomic assemblies available for 2 other members of Parabasalia: the 

human bowel parasite Dientamoeba fragilis and the poultry pathogen Histomonas meleagridis. 

The accompanying publications focused mostly on various pathogenesis-related systems of 

these organisms (Klodnicki, McDougald, and Beckstead 2013; Barratt et al. 2015; Mazumdar 

et al. 2017). The hydrogenosomes of both protists were predicted to have protein complements 

and metabolic capabilities similar to those of T. vaginalis. The arginine deiminase pathway was 

predicted to be complete in both.  

1.1.2.5. Fornicata 

A project designed to sequence a complete genome of Giardia intestinalis and directed by 

Mitchell Sogin started already in 1998 (Adam 2000) when it was partially justified by the 

possibility of G. intestinalis being a true archezoan, possibly the most primitive eukaryote alive 

(Knight 2004). However, the results were not published until 2007 (Morrison et al. 2007), when 

the Archezoa hypothesis has already been disproved, as discussed above. Minimalism and 

evolutionary reduction in genome structure, information machinery, cellular structure, and 

metabolism became the main theme of the G. intestinalis genomic publication by Hilary 

Morrison and colleagues (Morrison et al. 2007). These systems are simplified compared not 
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only to aerobic model eukaryotes, but also to E. histolytica and T. vaginalis which exhibit 

comparable anaerobic and endobiotic lifestyles.  

Reconstruction of the amino acid, purine, pyrimidine, and lipid metabolism implies a very 

limited biosynthetic capabilities of G. intestinalis. The authors identified circa 100 LGT 

candidates, many of which are putatively involved in energy metabolism. This is reminiscent 

of the situation in E. histolytica and T. vaginalis. Moreover, several of the LGT candidates were 

shown to have a close phylogenetic affinity to their homologs from these 2 organisms 

specifically. Regarding the mitochondrial organelle of G. intestinalis, the mitosome, the authors 

identified several components of the mitochondrial protein import and maturation machinery, 

as well as the iron-sulfur cluster assembly system. No novel functions of the mitosome were 

suggested based on the genomic project. The subsequent genomic projects performed on other 

isolates of G. intestinalis representing different assemblages (possibly species) of the parasite 

were focused mostly on establishing phylogenetic relationships between the assemblages, as 

well as understanding cellular mechanisms underlying biological and clinical differences 

between them (Franzén et al. 2009; Jerlström-Hultqvist et al. 2010; Adam et al. 2013; Pollo et 

al. 2018). As of now, there are 7 genomic assemblies from various isolates of G. intestinalis 

deposited in the database GiardiaDB (https://giardiadb.org/).  

The second diplomonad lineage to have its genome sequenced and published was Spironucleus 

salmonicida, an economically important parasite causing systemic infections in salmonid fish. 

Feifei Xu and colleagues focused on comparing S. salmonicida genomic data to the previously 

published genome of G. intestinalis in order to illuminate the adaptations behind different 

lifestyles of the two relatively closely related diplomonads (F. Xu et al. 2014). From this 

comparison, almost every cellular system of S. salmonicida comes out as more elaborate and 

complicated than in G. intestinalis. S. salmonicida was predicted to be able to utilize 5 more 

carbohydrates in glycolysis than G. intestinalis.  

Regarding amino acid metabolism, Spironucleus salmonicida can catabolize not only arginine 

(thanks to the arginine deiminase pathway) like G. intestinalis, but also tryptophan for ATP 

production. Amino acid biosynthetic capabilities were also shown to be greater than in 

G. intestinalis, including the capacity to synthesize selenocysteine, which is not present in either 

G. intestinalis or T. vaginalis. Spironucleus salmonicida had been previously shown to harbor 

hydrogenosomes (Jerlström-Hultqvist et al. 2013) and the genomic project supported this 

observation, as well as the probable dual localization of the ATP-producing pyruvate 

metabolism in both the hydrogenosome and cytosol. Spironucleus salmonicida was shown to 
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have a greater complement of metabolite transporters and proteins involved in the oxidative 

stress response than G. intestinalis and T. vaginalis, likely making it better adapted to its less 

predictable environment. Among the S. salmonicida systems newly identified thanks to the 

genomic project were the encystation machinery, hinting at a previously unobserved capability 

of cyst formation, and novel groups of cysteine-rich membrane proteins, possibly analogous to 

the G. intestinalis variant-specific surface proteins.  

G. intestinalis and S. salmonicida are both parasitic and highly derived diplomonads. 

Comparison between their respective genomes can bring insights into the nuances of their 

different lifestyles, but is insufficient to illuminate the larger evolutionary stories, e.g. the 

reduction of mitochondria or adaptations to anaerobiosis and parasitism. For this reason, Goro 

Tanifuji and colleagues sequenced and published the genome of Kipferlia bialata (Tanifuji et 

al. 2018), a free-living relative of diplomonads belonging to a paraphyletic assemblage called 

Carpediemonas-like organisms (CLOs), which is thought to be a better representative of the 

ancestral state of Fornicata. In a global analysis of the K. bialata genome coding capacity and 

a 3-way comparison with the 2 diplomonads, K. bialata showed the greatest diversity of protein 

functions represented by number of unique orthologous groups. This suggest a general 

reduction in cellular functions on the evolutionary path from the free-living CLOs to the 

parasitic diplomonads.  

Hydrogenosome of K. bialata was predicted to possess a greater number of proteins, as well as 

metabolic functions, than the MROs of both G. intestinalis and S. salmonicida, being able not 

only to produce ATP via a T. vaginalis-like hydrogenosomal pathway, but also to catabolize 

the amino acid glycine via glycine cleavage system. In addition to the hydrogenosomal 

pyruvate-dependent ATP production, K. bialata was shown to also have a cytosolic pathway 

depending on a different enzyme catalyzing the last step. One notable exception to the generally 

higher richness of K. bialata protein complement compared to diplomonads are surface-

localized proteins, which likely expanded in diplomonads as an adaptation to the parasitic 

lifestyle, as they mediate interactions with the host, including immune system evasion. Based 

on these observations, the authors proposed an evolutionary scenario in which the transition 

from the free-living CLOs to the parasitic diplomonads was partially facilitated by an expansion 

of the surface proteins, while the resulting reliance on host-supplied metabolites allowed 

diplomonads to lose many other functions and streamline their genomes.  

Another provisional genome assembly of a CLO was produced for Carpediemonas frisia in 

a metagenomic project focused on elucidating the syntrophic interspecies interactions between 
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this protist and a community of prokaryotes (Hamann et al. 2017). Based on a metabolic 

network map inferred from their metagenomic data, Emmo Hamann and colleagues deduced 

that C. frisia stimulates growth of the associated prokaryotic community via excretion of 

partially digested nutrients and molecular hydrogen, while C. frisia itself is benefiting by having 

the waste hydrogen removed from environment, and also by an increased availability of 

prokaryotic prey. The energy metabolism of C. frisia was predicted to take place exclusively in 

cytosol.  

CLOs also became the primary focus of an extensive and ambitious comparative transcriptomic 

project led by Michelle Leger, Martin Kolísko, and Ryoma Kamikawa published in 2017 (Leger 

et al. 2017). Transcriptomic assemblies of 5 CLOs (Ergobibamus cyprinoides, Carpediemonas-

like NY0171, Dysnectes brevis, Carpediemonas membranifera, and Kipferlia bialata), 

2 retortamonads (Chilomastix cuspidate, Chilomastix caulleryi), and 1 trimastigid (Trimastix 

marina PCT) were made available within the scope of this project. The authors used this data 

to reconstruct metabolic functions of the MROs of these organisms and compare them to other, 

previously characterized, metamonad MROs. Based on this comparison, they were able to 

reconstruct a hypothetical evolutionary scenario detailing various aspects of the MROs 

evolution.  

1.1.2.6. Heterolobosea 

Sawyeria marylandensis is a microaerophilic free-living amoeba belonging to 

Psalteriomonadidae, Heterolobosea. Maria José Barberà, Iñaki Ruiz-Trillo, and colleagues 

combined a transcriptome sequencing approach with a PCR survey and ultrastructural 

observations to characterize its MRO and published their results in 2010 (Barberà et al. 2010). 

The reconstructed MRO-localized energy metabolism resembles the situation in 

hydrogenosomes of T. vaginalis. The MRO was also predicted to host several other metabolic 

pathways not known from other hydrogenosomes, mostly related to amino acid metabolism. 

Components of a canonical ISC machinery for iron-sulfur cluster biogenesis was found in the 

transcriptomic data and predicted to be localized in the MRO.  

1.1.2.7. Rhizaria 

Mikrocytos mackini is an economically important causative agent of the Denman island disease 

in oysters (Hine et al. 2001). Its phylogenetic position used to be a total mystery even after its 

SSU rDNA was sequenced. Moreover, there was no evidence of a mitochondrion in the 
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M. mackini cell and it was not known, what kind of mitochondrion, if any, is present. Fabien 

Burki and colleagues used a transcriptomic approach to answer these two questions and 

published their results, together with a transcriptomic assembly, in 2013 (Burki et al. 2013). 

The obtained transcriptomic data allowed the authors to perform a robust phylogenomic 

analysis, which placed M. mackini in Rhizaria and showed an extreme rate of molecular 

evolution in the organism, explaining previous failures to place it using less sophisticated 

phylogenetic approaches. The search for mitochondrial genes revealed only 4 candidates, all 

involved in the ISC machinery for iron-sulfur cluster assembly. This implies that M. mackini 

likely possess a highly derived and reduced MRO analogous to the mitosome of G. intestinalis.  

1.1.2.8. Breviatea  

Pygsuia biforma is a recently described amoeboid flagellate living freely in hypoxic estuarine 

sediments and lacking an aerobic mitochondrion. Phylogenetic analyses of SSU rDNA 

sequences have placed P. biforma in Breviatea, a deep-branching eukaryotic group of then 

uncertain phylogenetic position. The transcriptomic assembly of P. biforma was first used by 

Matthew Brown and colleagues in 2013 for a large scale phylogenomic analysis (Brown et al. 

2013). This project placed Breviatea together with Apusomonadida and Opisthokonta in a new 

eukaryotic clade named Obazoa. The authors also discovered and annotated a nearly complete 

integrin-mediated adhesion complex in the P. biforma transcriptome and discussed the 

implications of this discovery for understanding of the evolution of multicellularity in the 

related Metazoa lineage.  

The transcriptomic data was also used by Courtney Stairs and colleagues to reconstruct the 

proteome and functions of the P. biforma MRO (Stairs et al. 2014). The organelle was predicted 

to have a number of unique features including cardiolipin, amino acid, rhodoquinone, and fatty 

acid metabolism, as well as remnants of the TCA cycle and respiratory chain, making it a very 

complex version of hydrogenosome. The most surprising feature of the MRO is however the 

complete lack of the typical mitochondrial ISC system for iron-sulfur cluster assembly, which 

was apparently replaced by a laterally transferred bacterial SUF system, also localized in this 

organelle.  

1.1.2.9. Stramenopiles 

Cantina marsupialis is a free-living flagellate isolated from anoxic sediments, which represents 

an independent deep-branching lineage of Stramenopiles (Yubuki et al. 2015). Fumiya Noguchi 

https://www.sciencedirect.com/science/article/pii/S0960982214004710?via%3Dihub#!
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and colleagues produced a transcriptomic assembly of C. marsupialis and searched it for 

putatively mitochondrial proteins (Noguchi et al. 2015). The reconstructed MRO metabolism, 

published in 2015, is more complex than that of T. vaginalis hydrogenosome. Aside from 

pyruvate-decarboxylating energy metabolism and ISC system, the MRO also harbors multiple 

amino acid metabolism-related pathways including a complete glycine cleavage system, an 

incomplete TCA cycle, and all the subunits of respiratory chain complex II.  

1.1.2.10. Jakobida 

Stygiella incarcerata is an anaerobic free-living flagellate nested within the aerobic Jakobida. 

The MRO of S. incarcerata became the focus of a transcriptomic project by Michelle Leger 

and colleagues published in 2016 (Leger et al. 2016). They identified a typical hydrogenosomal 

T. vaginalis-like energy metabolism located in the MRO, as well as the ISC machinery. The 

organelle was however predicted to harbor a more diverse set of other metabolic pathways than 

the hydrogenosome of T. vaginalis, including e.g. complete glycine cleavage system, branched-

chain amino acid degradation, and cardiolipin biosynthesis. In this respect, the MRO of 

S. incarcerata seems to resemble MROs characterized in other free-living anaerobes like 

Pygsuia biforma or Cantina marsupialis, rather than those of parasites.  
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Figure 1a: Timeline of publications discussed in the historical overview (1965 – 2004). 
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Figure 1b: Timeline of publications discussed in the historical overview (2005 – 2019). 
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1.2. Selected cellular systems related to anaerobiosis and endobiosis in Metamonada 

Mitochondrion-related organelles, energy metabolism, iron-sulfur clusters assembly, amino 

acid metabolism, and plasma membrane transporters are all significantly altered in various 

anaerobic and endobiotic protists. Following chapters discuss these and other systems in 

representatives of Metamonada, the deep eukaryotic group to which Preaxostyla, the topic of 

the original work presented here, belong. Trichomonas vaginalis, the most studied and best 

understood metamonad, is used as a baseline for introduction of the discussed systems.  

1.2.1.  Mitochondrion-related organelles 

Anaerobic derivatives of mitochondria are traditionally divided into 4 classes (M. Müller et al. 

2012). Anaerobic mitochondria and hydrogen-producing mitochondria retain their genomes, 

relictual cristae, and a rich complement of electron transport chain proteins. Hydrogenosomes 

and mitosomes have no genome and usually no remnants of cristae. Members of Metamonada 

are known to contain hydrogenosomes and mitosomes. However, the distinction between these 

classes is being blurred by recent discoveries of organelles which do not fit perfectly into either 

of these categories, e.g. the reduced hydrogenosomes described in Dysnectes brevis (Leger et 

al. 2017).  

1.2.1.1. Hydrogenosomes of Trichomonas vaginalis 

Arguably the best understood MROs in protists are the hydrogenosomes of T. vaginalis and 

other parabasalids (reviewed in Hrdý, Tachezy, and Müller 2019). Metabolic capabilities of 

these organelles have been studied by biochemical methods since the 1970s and the publishing 

of T. vaginalis genome assembly in 2007 brought support for previous insights and allowed 

more detailed studies of hydrogenosomal protein complement and physiological functions. 

1.2.1.1.1. Energy metabolism 

The signature metabolic pathway of hydrogenosomes is the extended glycolysis, which 

produces acetate, CO2, and H2 from pyruvate, while performing substrate level phosphorylation 

of ADP to ATP (Lindmark and Müller 1973). The pathway uses pyruvate as a substrate, which 

is either directly imported into the hydrogenosome from cytosol or produced within the 

hydrogenosome by decarboxylation of imported malate through activity of malic enzyme (ME), 

the most abundant hydrogenosomal protein (Hrdý, Tachezy, and Müller 2019).  
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Pyruvate is decarboxylated to acetyl coenzyme A and CO2 in a reaction catalyzed by 

pyruvate:ferredoxin oxidoreductase (PFO) (K. Williams, Lowe, and Leadlay 1987). Carbon 

dioxide is then passively excreted from the hydrogenosome. Both the decarboxylation of malate 

by ME and pyruvate by PFO are oxidative processes which release electrons. The final fate of 

the electrons from both reactions lies in the reduction of protons to molecular hydrogen (which 

is then passively excreted from the hydrogenosome), through the activity of [FeFe] 

hydrogenases (HydA) (Payne, Chapman, and Cammack 1993). However, the paths in which 

the electrons reach their destination are different. 

Electrons released by PFO are immediately transferred to a small electron transfer protein 

ferredoxin (Fdx) (K. Williams, Lowe, and Leadlay 1987) and then to HydA. The Fdx is 

reoxidized by HydA and can be again used to carry another electron from PFO. The electrons 

released by ME are first carried by reduced pyridine nucleotide coenzyme NADH (Drmota 

1996) and then transferred to HydA in cooperation with two subunits of the mitochondrial 

respiratory complex I (NuoE, NuoF), possibly by a process called electron bifurcation, where 

the transfer of the electron from NADH is driven by a simultaneous transfer of another electron 

from ferredoxin (Li et al. 2008; Hrdý et al. 2004; M. Müller et al. 2012). 

Decarboxylation of pyruvate results in acetyl-CoA, which includes a high energy thioester 

bond. Energy of this bond is harvested in a subsequent step, composed of two reactions. First, 

the CoA moiety is transferred to succinate by acetate:succinate CoA transferase (ASCT) (van 

Grinsven et al. 2008), releasing acetate, which is then excreted from the hydrogenosome. The 

resulting succinyl-CoA then serves as a substrate for the only present enzyme of the TCA cycle, 

the succinyl-CoA synthetase (SCS) (Jenkins et al. 1991), which cleaves it into succinate and 

CoA, while concurrently forming ATP by substrate-level phosphorylation (Steinbüchel and 

Müller 1986).  

The [FeFe] hydrogenase requires hydrogenase maturases (HydE, HydF, and HydG) for proper 

function and indeed, all the 3 proteins are found in T. vaginalis hydrogenosomes (Pütz et al. 

2006). Adenylate kinase (ADK) is another protein involved in energy metabolism which is 

localized in the hydrogenosomes of T. vaginalis. This enzyme interconverts ATP, AMP, and 

ADP, keeping the cellular energy homeostasis.  
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1.2.1.1.2. Protection against reactive oxygen species and oxygen 

Several of the hydrogenosomal energy metabolism enzymes are sensitive to deactivation by 

molecular oxygen (Lindmark and Müller 1973). Moreover, dangerous reactive oxygen species 

(ROS) can be created from oxygen by activity of the hydrogenosomal enzymes (Docampo, 

Moreno, and Mason 1987). Hydrogenosomes contain multiple enzymes dedicated to 

minimizing this threat by reducing oxygen and ROS to less harmful compounds.  

Molecular oxygen can be reduced to water by a class A flavodiiron protein (FDP), which gains 

the electrons needed for the reaction from reduced Fdx. Oxygen can be reduced also by iron-

sulfur flavoproteins (ISF). However, the end product is hydrogen peroxide, not water. ISF can 

gain electrons from both reduced Fdx and NADH (Smutná et al. 2009).  

Superoxide radicals are converted to hydrogen peroxide by the superoxide dismutase (SOD) 

(Viscogliosi et al. 1998). Interestingly, the most common enzyme able to remove hydrogen 

peroxide, catalase, has not been found in T. vaginalis. The organism likely uses several 

alternative pathways with peroxidase activity for hydrogen peroxide detoxification.  

The simplest one is a single enzyme rubrerythrin (RBR) with a diiron center and a rubredoxin 

domain. RBR likely uses electrons from the reduced NADH (Pütz et al. 2005). The 

peroxiredoxin system consists of 3 enzymes: thioredoxin peroxidase (TrxP), thioredoxin (Trx), 

and thioredoxin reductase (TrxR), which gains electrons from reduces NADPH (Coombs et al. 

2004). The most unique system of T. vaginalis hydrogenosomes with peroxidase activity is the 

OsmC protein working in cooperation with 2 components of the incomplete glycine cleavage 

system: proteins H and L, which transfer electrons from NADH (Nývltová et al. 2016).  

1.2.1.1.3. Amino acid metabolism 

In its complete form, the glycine cleavage system (GCS) consists of 5 proteins: H, L, T, and 

2 subunits of P. This (in eukaryotes) exclusively mitochondrial metabolic pathway is 

functionally connected with serine hydroxymethyltransferase (SHMT) and together they: 

1) interconvert the amino acids serine and glycine, and 2) provide methyl residues into the one 

carbon pool metabolism by folate, and subsequently to multiple biosynthetic pathways 

including the biosynthesis of amino acids and nucleobases (reviewed in Douce et al. 2001). 

Hydrogenosomes of T. vaginalis contain SHMT, which likely serves its canonical purpose of 

interconverting between serine and glycine (Mukherjee, Sievers, et al. 2006), and 2 components 

of GCS: H and L. These alone are unable to perform the activity of GCS and were shown to be 
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involved in ROS detoxification instead, as discussed above (Mukherjee, Brown, et al. 2006; 

Nývltová et al. 2016). 

T. vaginalis hydrogenosomes have also been shown to contain arginine deiminase (ADI) 

catalyzing conversion of arginine to citrulline, the first reaction of the arginine deiminase 

pathway (Morada et al. 2011). Citrulline is further converted to ornithine and carbamoyl 

phosphate by cytosolic ornithine transcarbamylase (OTC). Resulting ornithine is used in 

polyamine biosynthesis, while carbamoyl phosphate is catabolized by cytosolic carbamate 

kinase (CK) while ATP is produced. These 2 other enzymes are cytosolic (Yarlett et al. 1994).  

1.2.1.1.4. Iron-sulfur cluster assembly 

The only physiological function which unites hydrogenosomes with aerobic mitochondria and 

other types of MROs including most of mitosomes is the synthesis of iron-sulfur (FeS) clusters 

via the ISC machinery (reviewed in Lill et al. 2015). Hydrogenosomes of T. vaginalis have been 

shown to be able to perform this function and multiple proteins of the ISC machinery have been 

identified (Tachezy, Sanchez, and Muller 2001; Sutak et al. 2004).  

Cysteine desulfurase IscS provides sulfur by converting cysteine to alanine, while frataxin 

(Fxn) is responsible for delivery of iron. Sulfur and iron are then combined on the scaffold 

protein IscU/IscA to form the cluster. NFU and Ind1 are likely involved in cluster transfer to 

apoproteins. Interestingly, no components of the system responsible for FeS cluster export to 

the cytosol (e.g. the ABC transporter Atm1) were found in T. vaginalis.  

1.2.1.1.5. Protein import and maturation 

Outer hydrogenosomal membrane contains 4 beta-barrel proteins: Tom40, Sam50, Hmp35, and 

Hmp36. Tom40 forms the pore which mediates translocation of proteins across the 

hydrogenosomal outer membrane and is associated with 3 tail-anchored proteins forming the 

translocase of the outer membrane (TOM) complex (Tom22, Tom36, Tom46), some of which 

may serve as TOM receptors. Sam50, which is also physically associated with the TOM 

complex, facilitates insertion of beta-barrel proteins into the outer membrane. Hmp35 and 

Hmp36, which are unique to T. vaginalis, have unknown functions (Rada et al. 2011; Makki et 

al. 2019).  
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Family of small Tims, which work in the intermembrane space and help with transporting 

complicated substrates, are represented by a single type in T. vaginalis: Tim8/9/10/13 (Rada et 

al. 2011).  

Proteins are translocated through the inner hydrogenosomal membrane thanks to a protein 

homologous to the Tim17/22/23 family (Rada et al. 2011). Energy required for translocation of 

proteins across the inner hydrogenosomal membrane is provided by the “presequence 

translocase-associated motor” PAM complex, physically associated with the Tim17/22/23 

family protein. A complete set of PAM complex components (compared with Saccharomyces 

cerevisiae) was discovered in T. vaginalis: Hsp70 (with its partners GrpE and Jac1), Tim44, 

Pam18, and Pam16 (Rada et al. 2011; Schneider et al. 2011).  

After import, the proteins are further processed inside the hydrogenosome. The N-terminal 

presequence, which serves for hydrogenosome targeting, is cleaved off by the dimeric 

mitochondrial processing peptidase (MPP α and β). The proteins are then helped to reach their 

final conformations by a complex of chaperon proteins Cpn60 and Cpn10.  

1.2.1.1.6. Transmembrane transporters 

It was suggested that Tom40 and Hmp35 might be responsible for metabolite and ion transport 

across the outer membrane of the hydrogenosome (Rada et al. 2011). Transport of various 

metabolites across the inner membrane of mitochondria is usually facilitated by the 

mitochondrial carrier (MC) family proteins. There were only 5 MCs found in the 

hydrogenosome of T. vaginalis and all of them are likely belonging to the AAC type responsible 

for transporting ATP and ADP (Rada et al. 2011; Dyall et al. 2000).  

1.2.1.2. Hydrogenosomes in free-living fornicates 

Fornicata is a lineage of metamonads which includes two monophyletic endobiotic taxa 

Retortamonadida and Diplomonadida (although both groups also have free-living members) 

and a paraphyletic assemblage of free-living Carpediemonas-like organisms (CLOs). Features 

shared by CLOs hint at the ancestral state of Fornicata as a whole.  

Deep-branching CLOs Carpediemonas membranifera, Ergobibamus cyprinoides, 

Aduncisulcus paluster, and Kipferlia bialata are predicted to have a similar protein complement 

and corresponding metabolic capabilities of their MROs (Fig. 2), which resemble 

hydrogenosomes of T. vaginalis. The hydrogenosomal energy metabolic pathways consist of 
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PFO, ASCT, SCS, Fdx, HydA (and maturases HydE, -F, -G), NuoE, and NuoF (Leger et al. 

2017).  

Interestingly, the transcriptomes of these organisms also show presence of acetyl-CoA 

synthetase (ACS), enzyme which performs the energy harvesting reaction analogous to ASCT 

and SCS activity in a single step, converting acetyl-CoA to acetate while concomitantly 

generating ATP without the intermediacy of succinate (Sanchez and Müller 1996). Michelle 

Leger, Martin Kolísko, Ryoma Kamikawa, and colleagues (Leger et al. 2017) suggest that ACS 

constitute a second branch of the pyruvate-catabolizing energy metabolism, which does not 

work in the hydrogenosome, but in the cytosol. This is supported by a close phylogenetic 

relationship between the CLOs ACS sequences and the sequence from G. intestinalis, and the 

fact that ACS is located in the cytosol in most studied organisms which possess this enzyme 

(Tielens et al. 2010).  

Iron-sulfur cluster assembly in CLOs is of the canonical mitochondrial type, just as in 

T. vaginalis. Two signature proteins of the ISC system: IscS and IscU were found in all the 

studied CLOs and just like in T. vaginalis, no components of the FeS cluster export machinery 

are present. 

One important difference between the hydrogenosomes of CLOs and T. vaginalis is the 

presence of a complete glycine cleavage system (GCS), together with serine hydroxymethyl 

transferase (SHMT), in the hydrogenosomes of CLOs. This suggests that these organelles are 

capable of interconverting serine and glycine, as well as catabolizing them into one carbon units 

useful for other metabolic pathways. Activity of GCS might be coupled with the production of 

H2 by HydA, as GCS requires supply of NAD+, which could be produced by NuoE/NuoF 

complex, while transferring electrons to HydA (Hampson, Barron, and Olson 1983).  

The hydrogenosomal protein import and maturation machinery in CLOs is very similar to that 

in T. vaginalis. Both Tom40 and Sam50 translocases of the outer membrane are present, as well 

as a single member of the small Tims family, Tim8/9/10/13, and the inner membrane 

translocase Tim23, with the associated proteins Pam18, Pam16, Tim44, and Hsp70. Both 

subunits of the mitochondrial processing peptidase (MPP) and the chaperon Cpn60 were also 

found (Leger et al. 2017).  
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1.2.1.3. Reduced hydrogenosomes of Dysnectes brevis  

Dysnectes brevis is a Carpediemonas-like organism and the closest known free-living relative 

of diplomonads (Takishita et al. 2012; Yubuki, Zadrobílková, and Čepička 2017). This 

phylogenetic position makes it crucial for understanding the evolutionary origin of 

diplomonads, their endobiotic lifestyle, unique cellular architecture, and MROs.  

Based on the protein complement predicted from transcriptomic data, the MRO of D. brevis is 

typical for a CLOs in protein import machinery, ISC, GCS, and the hydrogen producing 

pathway consisting of HydA, -E, -F, -G, Fdx, NuoE, and NuoF. However, the hydrogenosomal 

pyruvate metabolism enzymes ASCT and SCS are missing, while the putatively cytosolic ACS 

is retained (Leger et al. 2017).  

This paints a picture of a mitochondrial organelle which is still capable of hydrogen production 

(hence a hydrogenosome) but without any ATP production. Michelle Leger, Martin Kolísko, 

Ryoma Kamikawa, and colleagues hypothesize that the reason for keeping the hydrogen 

producing pathway intact is the presence of GCS in the organelle, which requires an electron 

sink for its function (Leger et al. 2017).  

Such a reduced hydrogenosome might represent an intermediate step between the canonical, 

more plesiomorphic, hydrogenosomes of other CLOs and the mitosome of G. intestinalis, 

which has lost any role in energy metabolism, as well as GCS and the hydrogen producing 

machinery. The loss of GCS and subsequently the hydrogen producing machinery in 

diplomonads might have been facilitated by their endobiotic lifestyle, which guarantees a steady 

supply of metabolites from the host.  

1.2.1.4. Divergent hydrogenosomes of Spironucleus salmonicida 

The MRO of the salmonid-infecting diplomonad S. salmonicida is a unique type of 

hydrogenosome (Jerlström-Hultqvist et al. 2013). The protein import and maturation machinery 

consists of Tom40, Pam18, Hsp70, GrpE, Jac1, and Cpn60. The ISC iron-sulfur cluster 

assembly machinery consists of Frataxin, IscS, IscU, and NFU. The hydrogen producing 

pathway is retained, consisting of HydA, -E, -F, -G, and Fdx. No NuoE and NuoF, which 

transfer electrons from NADH to HydA, were found. This may be connected to the fact that 

GCS, which requires reoxidation of NADH by the NuoE/NuoF complex, is also absent from 

S. salmonicida. The only amino acid metabolism related enzyme localized to the 

hydrogenosome is SHMT. Also, no ASCT and SCS of the pyruvate metabolism were found. 
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However, even in absence of GCS and ASCT/SCS, there is still an important role for the 

hydrogen producing pathway. S. salmonicida has 2 sets of ACS genes. One (ACS1) is closely 

related to the homologs from G. intestinalis and CLOs and clearly of the same evolutionary 

origin, dating back to a common ancestor of all Fornicata. Second (ACS2) is unique to 

S. salmonicida and is only distantly related to other eukaryotic homologs. These phylogenetic 

differences correspond to a different subcellular localization of the protein products of the ACS 

genes. ACS1 is localized in the cytosol, like its homologs from other Fornicata, but ACS2 is 

uniquely targeted to the MRO.  

Jon Jerlström-Hultqvist and colleagues hypothesize that S. salmonicida has two parallel 

pathways consisting of PFO and ACS, one in cytosol and one in the hydrogenosome (Jerlström-

Hultqvist et al. 2013). The hydrogenosomal pathway is releasing electrons which are then 

transferred by Fdx to HydA and eventually carried away by hydrogen. The ACS2 genes were 

probably gained by lateral gene transfer from a bacterial lineage into an ancestor of 

S. salmonicida.  

1.2.1.5. Mitosomes of Giardia intestinalis 

Mitosomes are the simplest, most reduced, forms of mitochondria. The mitosomes of 

G. intestinalis have no role in energy, nor amino acid metabolism, and do not produce 

hydrogen. The pyruvate-dependent energy metabolism consisting of PFO, ACS, and HydA is 

located in the cytosol (no hydrogenase maturases were found). The glycine cleavage system is 

completely missing, as well as SHMT.  

The only known physiological function of the G. intestinalis mitosomes is the synthesis of iron 

sulfur clusters by the ISC machinery consisting of IscS, IscA, IscU, NFU, Grx5, and BolA. No 

frataxin or transmembrane export components were found (Jedelský et al. 2011). It is also 

unclear, where the mitosomal ISC machinery gets the ATP and reducing equivalents it requires, 

similarly as in Dysnectes brevis.  

The protein import and maturation machinery of G. intestinalis mitosome consists of Tom40, 

Pam16, Pam18, Tim44, Hsp70, Cpn60, and interestingly only the β subunit of MPP (Šmíd et 

al. 2008). The single subunit MPP of G. intestinalis was experimentally confirmed to function 

as a monomer without the help of MPP α. This state possibly coevolved together with the 

shorter mitosome-targeting presequences of G. intestinalis proteins.  
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Figure 2: Putative metabolism of MROs in Fornicata. Free-living organisms are shown in black and endobiotic 

organisms are shown in red. (Leger et al. 2019) 

1.2.1.6. Selected examples of MROs outside Metamonada 

Multiple free-living anaerobic protists are predicted to have hydrogenosomes with broader 

metabolic capabilities than observed in T. vaginalis. MROs of Sawyeria marylandensis 

(Heterolobosea) (Barberà et al. 2010), Cantina marsupialis (Stramenopiles) (Noguchi et al. 

2015), and Stygiella incarcerata (Jakobida) (Leger et al. 2016) have, apart from the canonical 

hydrogenosomal energy metabolism (by PFO, ASCT, SCS, and HydA), ISC machinery, and 

SHMT, also complete GCS, branched-chain amino acid degradation pathway, and alanine and 

aspartate aminotransferases. A similar complement of amino acid metabolism-related enzymes 

can be found in the hydrogenosome of Pygsuia biforma (Breviatea) (Stairs et al. 2014), which 

also contains cardiolipin, folate, and phosphatidylethanolamine biosynthesis pathways.  

Michelle Leger and colleagues (Leger et al. 2016) suggest that similarities between the 

metabolic capabilities of the MROs of these distantly related organisms reflect their shared 

lifestyle of free-living anaerobic protists (endobionts like T. vaginalis do not need these 

pathways thanks to the supply of metabolites from their hosts) and analogous recent 
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evolutionary origins from aerobic ancestors (in contrast to e.g. free-living CLOs nested within 

exclusively anaerobic metamonads; Leger et al. 2016).  

Pygsuia biforma is one of very few eukaryotes to have lost their ISC system for iron-sulfur 

(FeS) cluster biosynthesis, which is usually located in mitochondria and MROs and provides 

FeS clusters for the entire cell (except plastid). The ISC machinery in P. biforma was likely 

replaced by a laterally transferred fusion protein of SufB and SufC, components of the “sulfur 

mobilization” (SUF) machinery, which synthesizes FeS clusters in eukaryotic plastids and some 

lineages of prokaryotes. The SufBC gene is found in Pygsuia in 2 copies and their protein 

products have different cellular localization. One is localized in the cytosol and the other in the 

hydrogenosome (Stairs et al. 2014).  

The P. biforma SufBC is closely related to the same gene in Blastocystis hominis 

(Stramenopiles), a human gut symbiont, which however has retained the canonical ISC 

machinery in its hydrogen producing mitochondrion and employs the SufBC protein 

exclusively in cytosol (Tsaousis et al. 2012). Phylogenetic analysis and architecture of the 

SufBC genes suggest that separate SufB and SufC genes were acquired laterally from 

a Methanomicrobiales archaeon by an ancestor of either B. hominis or P. biforma, then the 

fusion occurred and the fused SufBC gene was again laterally transferred to the other eukaryotic 

lineage.  

Mastigamoeba balamuthi (Archamoebea) is a free-living amoeba from low oxygen freshwater 

environments. The extended glycolysis of M. balamuthi has similar architecture to that of 

S. salmonicida, with 2 parallel pathways consisting of PFO, ACS, and HydA in cytosol and in 

hydrogenosome (Gill et al. 2007). However, in the case of M. balamuthi, both cytosolic and 

hydrogenosomal ACS genes have the same evolutionary history, probably resulting from 

a duplication of a laterally transferred prokaryotic gene (Nývltová et al. 2015). The 

hydrogenosome of M. balamuthi also contains SHMT and GCS and, uniquely, sulfate activation 

pathway. This pathway, consisting of 3 enzymes, converts inorganic sulfate into 

3′-phosphoadenosine-5′-phosphosulfate (PAPS) which further serves as a sulfuryl donor for 

various organic molecules (Patron, Durnford, and Kopriva 2008).  

The ISC system was completely lost in M. balamuthi and replaced by a simple prokaryotic 

“nitrogen fixation” NIF system consisting of 2 enzymes: cysteine desulfurase NifS and scaffold 

protein NifU (Nývltová et al. 2013). The two proteins were shown to have a dual localization 
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to cytosol and the hydrogenosome. NIF system of M. balamuthi was probably acquired by 

lateral gene transfer from epsilon-proteobacteria. 

Entamoeba histolytica is and endobiotic relative of M. balamuthi with highly reduced MROs 

which were the first mitosomes to be described. However, unlike other mitosomes of e.g. 

G. intestinalis or Microsporidia, the mitosomes of E. histolytica likely do not contain any 

pathway involved in FeS cluster biosynthesis. Not only is the ISC pathway lost like in 

M. balamuthi, but even the NIF system, sharing the same evolutionary origin as in 

M. balamuthi, is likely localized exclusively in cytosol. The only remaining function of 

E. histolytica mitosomes seems to be sulfate activation i.e. the production of PAPS (Mi-ichi et 

al. 2009), which was shown to be important for sulfolipid synthesis and cell proliferation 

(Mi-ichi et al. 2011).  

1.2.2. Amino acid metabolism  

1.2.2.1. Amino acid metabolism of Trichomonas vaginalis 

The hypothetical metabolic map of T. vaginalis reconstructed based on the genomic assembly 

shows a potentially important role of amino acids in ATP production (Carlton et al. 2007). 

Multiple amino acids including serine, tryptophan, alanine, threonine, and methionine can be 

degraded to pyruvate or α-ketobutyrate, which both can enter the hydrogenosomal energy 

metabolism. This has been suggested for T. vaginalis already in 1995 based on biochemical 

experiments (Zuo, Lockwood, and Coombs 1995) and later similarly for E. histolytica based on 

reconstructed metabolic pathways (Anderson and Loftus 2005). Other way in which amino 

acids can contribute to energy metabolism in T. vaginalis is the arginine deiminase (ADI) 

pathway (discussed above) which converts arginine to NH3, CO2, and ornithine, while 

producing ATP. The ornithine produced by the ADI pathway can be later converted to either 

putrescine or proline. The energy output of the ADI pathway in T. vaginalis was shown to be 

around 10% of that from glucose metabolism (Yarlett et al. 1996).  

Cysteine can be de novo synthesized from glycolysis intermediates, thanks to cysteine synthase 

(CS), and an LGT candidate (Westrop et al. 2006). Cysteine is believed to be the most important 

reducing agent involved in protection against ROS in T. vaginalis (S. Müller et al. 2003). 

Multiple aminotransferases were identified which likely work in amino acid degradation, but 

possibly may catalyze reversed reactions as well, potentially synthesizing glutamate, aspartate, 

alanine, glutamine, and glycine. Serine, glycine, and threonine can be interconverted thanks to 

serine hydroxymethyltransferase (SHMT) and threonine aldolase (TA). Interestingly, out of the 
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39 enzymes suggested to be involved in amino acid metabolism in T. vaginalis, 10 are LGT 

candidates. Arginine deiminase (ADI) and serine hydroxymethyltransferase (SHMT) are 

localized in the hydrogenosome.  

Trichomonas vaginalis amino acid metabolism was a subject of recent liquid chromatography–

mass spectrometry (LC-MS) studies in comparison to its relative Tritrichomonas foetus and 

under glucose restriction. Metabolic capabilities of the 2 parabasalids were shown to have major 

differences especially in cysteine and methionine metabolism (Westrop et al. 2017), although 

they generally have very similar metabolic profiles. Experiments with T. vaginalis under 

glucose restricted conditions show activation of the (ATP producing) ADI pathway and 

suppression of the (ATP consuming) methionine metabolic pathway, further highlighting the 

role of amino acid metabolism in energy economy of the organism (Huang et al. 2019).  

1.2.2.2. Amino acid metabolism of Spironucleus spp. 

The hypothetical amino acid metabolism of Spironucleus salmonicida containing 18 enzymes 

was reconstructed based on a genomic project (F. Xu et al. 2014). Similarly to T. vaginalis, it 

shows an important role of amino acids in ATP generation both via a complete ADI pathway, 

and conversion of tryptophan and serine to pyruvate. Both putrescine and proline can be 

generated from ornithine, one of the end products of the ADI pathway. Serine and glycine can 

be interconverted thanks to SHMT and serine can be used to synthesize cysteine in a two-step 

pathway consisting of serine O-acetyltransferase (SAT) and cysteine synthase (CS).  

Interestingly and unlike T. vaginalis or G. intestinalis, S. salmonicida is capable of synthesis 

and incorporation of selenocysteine. Seryl-tRNA is phosphorylated by O-phosphoseryl tRNA 

kinase (PSTK) and selenocysteinyl-tRNA is later synthesized from it and selenophosphate by 

the action of O-phosphoseryl-tRNA(Sec) selenium transferase (SEPSECS). Selenocysteine-

specific elongation factor (SelB), which is necessary for insertion of selenocysteine into 

proteins, is also present in S. salmonicida. Selenophosphate can be liberated from 

selenocysteine by a selenophosphate synthetase (SEPHS)-NifS fusion protein, while yielding 

alanine. 

The amino acid metabolism was also investigated by biochemical methods in a related species 

Spironucleus vortens (Millet et al. 2011). Alanine and aspartate were shown to be produced by 

the organism, while lysine, arginine, leucine, and cysteine were consumed. However, the 
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experiments failed to measure any influence of the availability of these amino acids on growth 

rates of S. vortens.  

1.2.2.3. Amino acid metabolism of Giardia intestinalis 

Amino acids are an important energy source for G. intestinalis. Aspartate can be converted to 

malate via oxaloacetate by the activity of aspartate transaminase (AAT). The ADI is also 

present. Unlike T. vaginalis or S. salmonicida, G. intestinalis does not convert ornithine (end 

product of ADI pathway) to putrescine or proline but exports it in exchange for extracellular 

arginine (Schofield et al. 1995). The ADI pathway in G. intestinalis is predicted to produce up 

to 8 times more ATP than the glucose metabolism, making it the most productive energy 

producing pathway in the organism (Schofield et al. 1992). The pathway also plays an important 

role in G. intestinalis pathogenesis via extracellular arginine depletion (Stadelmann et al. 2013).  

Two amino acids were detected to be produced by G. intestinalis: valine and alanine (Paget et 

al. 1993). Alanine is produced from pyruvate by alanine aminotransferase (ALAT) as a by-

product of energy metabolism, especially under strictly anaerobic conditions (Paget et al. 1990). 

Regulation of alanine concentration in the cell is used by G. intestinalis for coping with osmotic 

changes in its environment (Schofield et al. 1995). The presumed biosynthetic pathway 

producing valine is not known in G. intestinalis. Cysteine is not synthesized de novo by 

G. intestinalis (Lujan and Nash 1994), although it plays an important role in protection against 

oxidative stress (Gillin and Diamond 1981). Neither glycine cleavage system or SHMT are 

present in G. intestinalis.  

1.2.3. Transporters across plasma membrane 

Transition from free-living to endobiotic lifestyle in protists is often accompanied by reduction 

in metabolic functions, especially biosynthetic pathways, as many metabolites can be 

scavenged from the stable and predictable environment of the host (reviewed in Dean et al. 

2014). This can be illustrated e.g. by the comparatively low number of amino acids being de 

novo synthesized by the parasitic metamonads as discussed above. The reduction of 

biosynthetic capabilities emphasizes the importance of various plasma membrane-localized 

transporter proteins which facilitate scavenging of nutrients from outside the cell.  

Paul Dean and colleagues reported a general pattern in the nutrient transporters repertoire they 

observed in a broad sample of parasitic protists (Dean et al. 2014). The number of transporter 

families is reduced, possibly thanks to the predictability of the host environment and the 
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selective pressure favoring genome minimalism and reduced antigenicity in parasites. On the 

other hand, the remaining transporter families are functionally diversified, gaining a broader 

substrate range, which might be connected with a large number of individual paralogues. Other 

category of transporters which is expanded in parasites are various exporters specific for toxic 

antimicrobial compounds.  

In T. vaginalis, the largest known group of surface transporters is the ATP-binding cassette 

(ABC) superfamily with 98 paralogues (Kay et al. 2012). These proteins, powered by hydrolysis 

of ATP, serve almost exclusively as exporters in eukaryotes and are often involved in export of 

harmful compounds from the cell (multidrug resistance proteins – MRP; reviewed in Sodani et 

al. 2012). Another large group of ATP-consuming surface transporters in T. vaginalis are the 

P-type ATPases with 33 paralogues (Shah et al. 2002). These ion-transporting pumps and 

phospholipid translocases can be localized either on plasma membrane, or in the endoplasmic 

reticulum.  

Among the secondary transporters (uniporters, symporters, and antiporters) in T. vaginalis are 

very common members of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) flippase 

superfamily with 47 paralogues – exporters of various organic compounds, often antimicrobial 

drugs as in the multi antimicrobial extrusion (MATE) family. Another common secondary 

transporter group in T. vaginalis is the major facilitator superfamily (MFS) (Marger and Saier 

1993) with 57 paralogues. MFS has a broad range of functions including import of sugars (sugar 

porters – SP and GPH:cation symporters – GPH) and amino acids or peptides (proton-

dependent oligopeptide transporters – POT), but also export of drugs and other (Pao et al. 1998). 

The third most abundant group of secondary transporters in T. vaginalis is the amino acid auxin 

permease (AAAP) family with 40 paralogues. These proteins responsible for amino acid import 

are known to have a dramatically different numbers of paralogues in different parasitic protists, 

which likely reflects differences in their mode of nutrition (Bouvier et al. 2004).  

Nucleosides and nucleobases can be imported by the equilibrative nucleoside transporter (ENT) 

family (reviewed in Hyde et al. 2001) with 9 paralogues in T. vaginalis. The imported 

nucleosides and nucleobases can be intracellularly converted to nucleotides and further used in 

metabolism. Choline-transporter-like (CTL) proteins, responsible for import of choline, 

a precursor of phospholipids, were not found in T. vaginalis.  

Other transporters found in T. vaginalis in multiple paralogues are e.g. cation-chloride 

cotransporters (CCC) of the SLC12 family (reviewed in Arroyo, Kahle, and Gamba 2013), 
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drug/metabolite transporter (DMT) superfamily (Jack, Yang, and H. Saier 2001), divalent 

Anion:Na+ Symporters (DASS) of the SLC13 family (Pajor 2014), etc.  

1.3. Preaxostyla 

The phylum Preaxostyla (reviewed in Vladimír Hampl 2017) was created in 2001 when a close 

relationship between 2 seemingly very different groups of protists, Oxymonadida and the genus 

Trimastix (now known to be paraphyletic; Zhang et al. 2015), was uncovered thanks to SSU 

rRNA phylogeny (Dacks et al. 2001). This relationship was later corroborated by further 

phylogenetic and phylogenomic studies (Vladimír Hampl et al. 2009; Zhang et al. 2015). 

Besides molecular phylogeny, there is also an ultrastructural synapomorphy which defines 

Preaxostyla: a paracrystalline lattice-like cytoskeleton element which connects two components 

of the excavate-like mastigont (Simpson 2003) of trimastigids and forms part of a lineage-

specific cytoskeletal structure called preaxostyle in oxymonads.  

Preaxostyla is nested within Metamonada, one of the deepest eukaryotic lineages with an 

uncertain position in the eukaryotic tree of life (Derelle et al. 2015; Brown et al. 2018). 

Metamonada is currently known to be composed of 3 lineages: Fornicata, Parabasalia, and 

Preaxostyla, where Preaxostyla is sister to a clade containing Fornicata and Parabasalia 

(Vladimír Hampl et al. 2005; Vladimír Hampl et al. 2009).  

The inner relationships within Preaxostyla based on molecular phylogeny and ultrastructural 

observations are as follows (Zhang et al. 2015; Treitli et al. 2018). Preaxostyla split into 3 major 

monophyletic lineages: Trimastigidae and Paratrimastigidae (previously grouped in a single 

genus Trimastix) and Oxymonadida. There are 3 described species of Trimastigidae (Trimastix 

marina, T. inaequalis, T. elaverinus), 2 described species of Paratrimastigidae (Paratrimastix 

pyriformis, P. eleionoma), and circa 140 described species of Oxymonadida, which split into 

one clade consisting of the families Polymastigidae and Streblomastigidae and another, weakly 

supported, clade consisting of the families Pyrsonymphidae, Saccinobaculidae, Oxymonadidae, 

and a genus Opisthomitus of uncertain affinity (reviewed in Vladimír Hampl 2017).  

Most insights into cell biology and metabolism of Preaxostyla that we have come from studies 

on Trimastix marina (Trimastigidae), Paratrimastix pyriformis (Paratrimastigidae), 

Monocercomonoides exilis, and Streblomastix strix (Oxymonadida). There are multiple radical 

differences between Trimastigidae and Paratrimastigidae on one side and Oxymonadida on the 
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other. What unites them, apart from the common evolutionary history and the one cytoskeletal 

synapomorphy discussed above, is their anaerobic lifestyle and the absence of peroxisomes.  

1.3.1. Morphology and ultrastructure of Preaxostyla  

Trimastigidae and Paratrimastigidae are free-living bacteriovorous flagellates inhabiting sea 

and freshwater oxygen-poor habitats. Their cells have a typical “excavate” morphology and 

ultrastructure (Zhang et al. 2015) with usually 4 flagella: 1 anterior, 2 lateral, and 1 posterior, 

which passes through a feeding groove on the ventral side of the cell. The posterior flagellum 

has two vanes, with thickened margins in Paratrimastigidae. The cytoskeleton organization of 

Trimastigidae and Paratrimastigidae resembles that in other “excavate” taxa with the exception 

of the lattice-like structure connecting the R2 microtubular root with a thin sheet formed by the 

I fiber. Golgi apparatus is well developed, and hydrogenosome-like MROs are present. Mitosis 

is open.  

Oxymonadida are morphologically and ultrastructurally very diversified. However, the cellular 

organization of the genera Monocercomonoides and Blattamonas is understood to be close to 

the ancestral state of the group (Radek 1994). The cell is oval or pyriform, 5 – 15 μm long. No 

feeding groove is present. There are 4 flagella, 3 anterior and 1 posterior. Basal bodies of the 

4 flagella are organized in two spatially separated pairs. The 2 pairs of basal bodies are 

connected intracellularly by a unique cytoskeletal structure, the preaxostyle consisting of two 

layers, one of which is homologous to the lattice-like structure in Trimastigidae and 

Paratrimastigidae. The other layer consists of short, tightly packed microtubules homologous 

to the R2 microtubular root. A subset of the preaxostylar microtubules is elongated along the 

anterior-posterior axis of the cell and forms the axostyle. This structure is not homologous to 

the axostyle of Parabasalia. The axostyle of Polymastigidae and Streblomastigidae is a stable 

structure, while it is contractile in Pyrsonymphidae, Saccinobaculidae, and Oxymonadidae and 

takes part in locomotion of the organisms. No peroxisomes, stacked Golgi apparatus, or MROs 

are present, with a single possible exception of Saccinobaculus doroaxostylus where 

conspicuous organelles superficially resembling mitochondria were observed (Carpenter, 

Waller, and Keeling 2008).  

1.3.2. Symbioses of Oxymonadida 

All known oxymonads are endobionts, inhabiting digestive tract of tetrapods and arthropods. 

Members of the genus Monocercomonoides are known from a broad range of hosts including 
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mammals, reptiles, millipedes and insects (Treitli et al. 2018). All other known oxymonads 

were isolated from the digestive tract of insects, most often termites and wood-eating 

cockroaches. The nature of symbiosis between oxymonads and their hosts is not known in most 

cases, but there is no indication of pathogenicity. Some members of Pyrsonymphidae, 

Saccinobaculidae, and Oxymonadidae are suggested to have a mutualistic relationship with 

their termite and cockroach hosts in a way similar to the “hypermastigid” Parabasalia: large 

sizes of their cells allow the protists to phagocytize and digest pieces of wood ingested by the 

host. The host is suggested to benefit by gaining access to products of microbial digestion of 

cellulose by the protists and associated bacteria (reviewed in Brune and Ohkuma 2011).  

Oxymonads are often observed to have association with bacteria both extracellularly and 

intracellularly and even inside the nucleus. The nature of these associations is unclear. 

However, presence of a specialized attachment structures formed by the protists, presumably to 

facilitate the association with epibionts, suggests a tight, well-coordinated symbiosis at least in 

some cases (Leander and Keeling 2004). Extreme form of such association is observed in the 

genus Streblomastix (Streblomastigidae) where almost entire surface of the cell, consisting of 

elongated thin lobes of cytoplasm, is covered in epibiotic bacteria of multiple types (Noda et 

al. 2006; Treitli et al. 2019).  

1.3.3. Glycolysis in Preaxostyla 

Many anaerobically living eukaryotes use a modified glycolytic pathway which incorporates 

pyrophosphate (PPi)-dependent instead of ATP-dependent enzymes in certain steps specifically 

PPi-phosphofructokinase (PFP) instead of phosphofructokinase (PFK) in the 3rd step and 

pyruvate-phosphate dikinase (PPDK) instead of pyruvate kinase (PK) in the 10th and last step. 

This alternative form of glycolysis can produce 3 ATP molecules per 1 glucose, in comparison 

to only 2 in the “classical” pathway known from aerobes (reviewed in Mertens 1993).  

Three transcriptomic studies published in 2006 identified multiple alternative glycolytic 

enzymes in members of Preaxostyla (Slamovits and Keeling 2006a; Liapounova et al. 2006; 

Stechmann et al. 2006). The last step of glycolysis in P. pyriformis and M. exilis can be 

catalyzed by both PK and PPDK and the PPDK gene was identified also in Streblomastix strix. 

The 3rd step of glycolysis in M. exilis is catalyzed by the alternative PFP. Other 2 alternative 

glycolytic enzymes were also identified in M. exilis: fructose-bisphosphate aldolase (FBA) 

class II, type B and cofactor independent phosphoglycerate mutase (iPGM). This shows the 
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glycolytic pathway in Preaxostyla as an evolutionary mosaic composed of enzymes of different 

origins, likely acquired in adaptation to the anaerobic lifestyle (Fig. 3). 

 

 

Figure 3: The reconstructed pathway of Monocercomonoides exilis. (Liapounova et al. 2006) 

 

1.3.4. Proteases of Monocercomonoides exilis 

Joel Dacks and colleagues in 2008 used transcriptomic approach to identify and characterize 

cathepsin B cysteine proteases in M. exilis (Dacks et al. 2008). The study was motivated by 

need to characterize this group of enzymes in a broader phylogenetic sample of eukaryotes 

outside traditional models like humans or trypanosomatids and by a recent discovery of 

2 cathepsin B cysteine protease genes in another oxymonad, S. strix (Slamovits and Keeling 

2006b). There were 11 different homologues of cathepsin B identified in the transcripts of 

S. strix and interestingly, no cathepsin L which are known to be often more numerous in other 

eukaryotes. The cathepsins are likely involved in excystation but may also have a role in 

lysosomal degradation and signaling.  
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1.3.5. Molecular genetics of Oxymonadida 

Patrick Keeling and Brian Leander demonstrated in 2003 that S. strix uses a non-canonical 

genetic code where the canonical stop-codons TAA and TAG are repurposed to encode 

glutamine, while TGA is the only used stop-codon (Keeling and Leander 2003). The same 

modification of genetic code was later shown by Audrey De Koning and colleagues (De Koning 

et al. 2008) also in another oxymonad, an unidentified member of Polymastigidae, possibly 

Monocercomonoides globus, while Saccinobaculus ambloaxostylus (Saccinobaculidae) was 

shown to use the canonical genetic code (De Koning et al. 2008). This suggests the origin of 

the non-canonical genetic code in an ancestor of the lineage unifying Polymastigidae and 

Streblomastigidae.  

Streblomastix strix was shown by Slamovits and Keeling in 2005 to have a relatively high 

density of spliceosomal introns (Slamovits and Keeling 2006b) compared to other studied 

members of Metamonada (e.g. Vaňáčová et al. 2005). Moreover, the position of more than half 

of the identified introns is conserved with regard to other eukaryotes, hinting at an ancient 

origin. This suggests that spliceosomal introns were abundant in the last common ancestor of 

Metamonada and were subsequently dramatically reduced in lineages leading to T. vaginalis 

and G. intestinalis.  

1.3.6. MRO of Paratrimastix pyriformis 

Potential mitochondrial organelles in Paratrimastix pyriformis (prev. Trimastix pyriformis, 

T. convexa) were reported based on ultrastructural studies (Brugerolle and Patterson 1997; 

O’Kelly, Farmer, and Nerad 1999). They are 0.5 to 1 μm in diameter, spherical or dumbbell-

shaped, surrounded by a double membrane, and often associated with endoplasmic reticulum. 

However, the inability to culture P. pyriformis (or any other Preaxostyla) axenically precluded 

biochemical studies which would discern the metabolic roles of these organelles.  

A transcriptomic survey by Vladimír Hampl and colleagues in 2008 uncovered 19 possibly 

mitochondrial or hydrogenosomal genes in Paratrimastix pyriformis (Paratrimastigidae) 

(Vladimír Hampl et al. 2008). Among these were energy metabolism-related components of the 

anaerobic extended glycolysis: PFO, [FeFe] hydrogenase (HydA), and 2 of the 3 hydrogenase 

maturases (HydE, HydG), as well as aconitase, a mitochondrial enzyme of the TCA cycle. Also 

3 genes coding for proteins involved in mitochondrial protein import and maturation were 

detected: Tom40, Cpn60, and MPP subunit α. Among other potentially MRO-localized proteins 
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were all components of the glycine cleavage system (GCS H, L, T, P1, and P2), pyridine 

nucleotide transhydrogenase (PNT) and lipoyltransferase – enzymes involved in metabolism of 

cofactors, and 3 mitochondrial carrier (MC) family proteins likely responsible for translocation 

of metabolites across the MRO inner membrane.  

The set of potentially MRO-localized proteins of P. pyriformis was broadened in a subsequent 

transcriptomic study by Zuzana Zubáčová and colleagues (including author of this thesis) 

published in 2013 (Zubáčová et al. 2013). The 3rd hydrogenase maturase was found (HydF) as 

well as new components of the protein import and maturation machinery (Sam50, Tim17, and 

Pam18) and new members of mitochondrial carrier (MC) family and enzymes potentially 

involved in amino acid metabolism (SHMT, OTC). Experimental evidence was presented for 

the MRO localization of GCS H protein, making the glycine cleavage system the only known 

function of the P. pyriformis MRO.  
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2. Aims 

• To generate the genomic assembly of oxymonad Monocercomonoides exilis, perform 

automatic and manual prediction and annotation of protein-coding genes. To evaluate 

the completeness and quality of the genomic assembly by annotating various cellular 

systems. To thoroughly search for genes of mitochondrial origin.  

• To search for genes coding for enzymes of the arginine deiminase (ADI) pathway in 

a broad sample of eukaryotes in silico. To explore the evolutionary history of the 

pathway in eukaryotes by molecular-phylogenetic methods.  

• To search for genes coding for components of iron-sulfur cluster assembly systems in 

a broad sample of Preaxostyla. To explore the evolutionary history of these systems in 

Preaxostyla by molecular-phylogenetic methods.  

• To annotate various cellular systems of Monocercomonoides exilis based on the 

previously obtained genomic assembly. To explore how these systems might have 

contributed to the loss of mitochondria, or how they responded to it, by comparing the 

results to other studied anaerobic protists. 
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4. Summary 

4.1. Genome of Monocercomonoides exilis and the loss of mitochondria 

A draft genome assembly of Monocercomonoides exilis was produced using the 454 whole-

genome shotgun sequencing technology (Karnkowska et al. 2016). The 75 Mb genome was 

assembled into 2,095 scaffolds at circa 35× coverage. A set of 16,629 protein-coding genes was 

predicted, with circa 1.9 introns per gene. Completeness of the genome assembly was estimated 

by multiple ways. An independently acquired transcriptome was mapped to the genome with 

96.9% success. The Core Eukaryotic Genes Mapping Approach (CEGMA) (Parra, Bradnam, 

and Korf 2007) estimated the genome completeness at 90% level. Also, 77 out of 78 families 

of eukaryotic ribosomal proteins (Lecompte et al. 2002) were identified in the genome. These 

analyses show that the genome assembly is nearly complete.  

4.1.1. The search for mitochondria 

No trace of mitochondrial DNA was found in the assembly. Genes of mitochondrial origin were 

searched in the assembly by BLAST and HMMER tools using manually selected queries, as 

well as the MitoMiner database reference set (Smith, Blackshaw, and Robinson 2012) and no 

were found. TargetP, MitoProt, TMHMM (Emanuelsson et al. 2007), and other tools were used 

to search for candidate genes with sequence motives characteristic for mitochondrial proteins. 

The resulting candidates were manually inspected, and no were found to be genuinely 

mitochondrial proteins.  

Similarly to mitochondria, no Golgi apparatus has ever been reported in Monocercomonoides. 

However, numerous Golgi-associated proteins were identified in the genome assembly. This 

suggests that the Golgi-specific functions are conserved in Monocercomonoides, only in 

different ultrastructural architecture to other eukaryotes. The same, however, cannot be said 

about mitochondria, as no mitochondria-associated proteins were found.  

Taken together, these thorough and exhaustive analyses of the Monocercomonoides genome 

indicate that the mitochondrion, i.e. the subcellular compartment as well as its numerous 

functions, was indeed completely lost in Monocercomonoides. This makes 

Monocercomonoides exilis the first known eukaryotic organism completely devoid of 

mitochondria. The absence of mitochondria most likely represents a secondary loss, as 

Paratrimastix pyriformis, a close relative of Monocercomonoides (Dacks et al. 2001), was 

shown to have a reduced mitochondrial organelle resembling hydrogenosomes (Vladimír 

Hampl et al. 2008; Zubáčová et al. 2013).  
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4.1.2. Life without mitochondria 

Extended glycolysis of M. exilis was shown to be analogous to that in mitosome-bearing protists 

Giardia intestinalis or Entamoeba histolytica, consisting of cytosolically localized PFO, ACS, 

and HydA. No hydrogenase maturases were found, just like in the protists with mitosomes. 

Besides the sugar-catabolizing extended glycolysis, M. exilis is likely able to generate ATP also 

from amino acids, thanks to a complete ADI pathway.  

No genes of the mitochondrial ISC system responsible for iron-sulfur clusters assembly were 

found in M. exilis. Instead, components of the prokaryotic SUF system were identified: SufB, 

SufC, and fused SufD, SufS and SufU. Presence of the SUF system in M. exilis was first 

identified by the author of this thesis. Presence of spliceosomal introns together with 

fluorescence in situ hybridization (FISH) experiments and a presence of related genes in 

Paratrimastix pyriformis (data discussed in Supplement I) confirm that these SUF components 

are indeed encoded by the protists genome and do not represent a prokaryotic contamination. 

Phylogenetic analyses of the genes do not support their close relationship to their plastidal 

homologues in phototrophic eukaryotes, nor the genes in Pygsuia biforma or Blastocystis 

hominis and rather suggest their origin in an independent LGT event from and unknown group 

of Bacteria.  

These observations can be explained by a following evolutionary scenario: A common ancestor 

of Monocercomonoides exilis and Paratrimastix pyriformis possessed a type of mitochondrion 

or MRO with the functional ISC system and in addition to this, gained the SUF system by lateral 

gene transfer from bacteria. The SUF system genes were incorporated into the eukaryotic 

nuclear genome and their protein products were recruited for FeS cluster production in the 

cytosol. This resulted in two redundant sources of FeS clusters in the cell, one in the 

mitochondrion and other in the cytosol, easing the selective pressure for retention of the 

mitochondrion. The lineage leading to M. exilis experienced no other pressure for 

mitochondrion retention (possibly thanks to its endobiotic lifestyle characteristic for 

oxymonads) and so the mitochondrion was gradually reduced and eventually lost completely 

(Fig. 4).  
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Figure 4: Reductive evolution of mitochondria in metamonads. (Karnkowska et al. 2016) 

4.1.3. Deep dive into the Monocercomonoides exilis genome 

A large number of various cellular systems in M. exilis was later annotated and reconstructed 

based on the genome assembly in order to better understand the evolutionary history and cell 

biology of the organism (Karnkowska et al. 2019).  

4.1.3.1. Genome maintenance, cytoskeleton, and endomembrane system 

All or nearly all conserved components of the various machineries responsible for genome 

maintenance and gene expression were found in M. exilis. These include e.g. histones, origin 

recognition complex, replication machinery, topoisomerase, various DNA repair pathways, 

general transcription factors, translation initiation factors, etc. All of these systems are 

comparable in complexity to mitochondriate organisms and some of them are more complex 

than in other studied metamonads.  

Complement of cytoskeleton-related genes in M. exilis is similar to that in other studied 

metamonads, including some well-known metamonad-specific losses like myosin-based 

motility and the dynactin complex. On the other hand, it has a more complete set of actin-related 

proteins than other metamonads.  

Endomembrane system seems to be similar to other metamonads based on the repertoire of 

associated genes identified in the genome. Interestingly, among the endomembrane system-

related proteins identified in M. exilis are Vps13 and Vps39, which are involved in the 
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interaction of mitochondria with other membranous structures in cells of other organisms. Their 

presence in the amitochondriate M. exilis poses a unique opportunity to study their function.  

Monocercomonoides exilis contains 3 genes which are involved in mitochondrial dynamics in 

other organisms, including 2 dynamin-related proteins (DRP), which it shares with other 

metamonads, and surprisingly also MSTO1 protein, not present in either T. vaginalis or 

G. intestinalis. These proteins had other, non-mitochondrion related, functions, reported in 

other organisms.  

4.1.3.2. Metabolism  

An expanded repertoire of genes involved in oxygen stress response was identified in M. exilis, 

including rubrerythrin, nitroreductase, flavodiiron protein, catalase, and hemerythrin. Many of 

these genes were acquired by LGT from bacteria. This enlarged set of oxygen stress response-

related genes may reflect the loss of mitochondrion, or it may be a more general response to the 

lifestyle of the organism, comparable to other anaerobic protists.  

Based on the hypothetical metabolic map of the amino acid metabolism reconstructed by the 

author of this thesis (Fig. 5), M. exilis may be able to synthesize at least alanine, serine, cysteine, 

and selenocysteinyl-tRNA, and possibly glutamate and glutamine as well. Amino acids can be 

also used to generate ATP, either via the ADI pathway from arginine, or via catabolism of 

tryptophan, cysteine, serine, threonine, and methionine. The activity of tryptophanase, a rare 

enzyme among eukaryotes, can generate indole, which may play a role in the interaction of 

M. exilis with its host. Neither glycine cleavage system (GCS), nor SHMT, known to be 

localized in MROs of some anaerobic protists, are present. As first suggested by the author of 

this thesis, the loss of the GCS (this system is present in the mitochondriate relative of M. exilis 

– P. pyriformis; Zubáčová et al. 2013) may be intimately connected to the loss of the 

mitochondrion itself, representing either a prerequisite for the organelle loss, or a result of it. 

The reconstructed amino acid metabolism of M. exilis is more complex than in mitosome-

bearing protists like G. intestinalis, E. histolytica, or C. parvum, yet less complex than in the 

hydrogenosome-bearing T. vaginalis.  
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Figure 5: Putative amino acid related biochemical pathways in Monocercomonoides exilis. (a) Amino acid 

metabolism. (b) Reactions putatively involved in ATP production by amino acids catabolism. Brown color 

indicates enzymes possibly involved in amino acid biosynthesis pathways. Red color indicates enzymes possibly 

involved in ATP production. (Karnkowska et al. 2019) 
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Fatty acid metabolism is present but reduced in a way similar to G. intestinalis and 

E. histolytica: shorter chain fatty acid biosynthesis and fatty acid degradation pathways are 

missing. Only the non-oxidative phase of the pentose-phosphate pathway (PPP) is present. This 

has also been reported in E. histolytica. NADPH, usually synthesized by the oxidative phase of 

PPP, may be synthesized by NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase 

(GAPN), an LGT candidate in M. exilis genome.  

Purines or pyrimidines cannot be de novo synthesized, nor catabolized by M. exilis, and the 

organism relies on salvage of external nucleotides from the environment of the host. Unlike 

other metamonads, M. exilis does not rely on the salvage of deoxyribonucleotides, because it 

can convert ribonucleotides to deoxyribonucleotides thanks to ribonucleoside-triphosphate 

reductase.  

Autophagy machinery is reduced similarly as in T. vaginalis. Specifically, the autophagy 

related 1 complex is almost entirely missing. However, M. exilis is likely capable of generating 

autophagosomes. No mitophagy-specific components were identified. They were likely lost 

with the loss of the mitochondrion.  

In summary, practically none of the studied cellular systems are significantly altered relative to 

mitochondriate eukaryotes. Many of the systems are either similar in complexity, or even more 

complex than in other metamonads, especially G. intestinalis. The only significant changes 

connected with the loss of mitochondria seem to be the replacement of the mitochondrial ISC 

system for FeS cluster assembly with the bacterial SUF system, the loss of the mitochondrial 

glycine cleavage system, and the loss of mitophagy-specific proteins.  

4.2. Distribution and evolutionary history of the ADI pathway in Eukaryota 

Complete ADI pathway, which was previously known among eukaryotes only from members 

of Parabasalia and Fornicata, was discovered in Monocercomonoides exilis (Preaxostyla). This 

implies a question whether the pathway was present already in a common ancestor of all 

Metamonada, and whether it can be found also elsewhere in eukaryotes. Publicly available gene 

databases of NCBI, JGI, and Marine Microbial Eukaryote Transcriptome Sequencing Project, 

as well as unpublished genomic and transcriptomic data from multiple laboratories were 

searched for homologues of the ADI pathway genes in order to sample as broad eukaryotic 

diversity as possible (Novák et al. 2016).  
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The individual genes composing the pathway (ADI, OTC, and CK) were found in all major 

lineages of eukaryotes and the complete set, suggesting a functional pathway, was identified 

not only in most studied metamonads, but also in Harpagon schusteri (Heterolobosea, 

Discoba), Mastigamoeba balamuthi (Archamoebea, Amoebozoa), Pygsuia biforma (Breviatea, 

Obazoa), and Chlorella variabilis and Coccomyxa subellipsoidea (Chlorophyta, 

Archaeplastida) (Fig. 6). Interestingly, all these organisms are either anaerobes, 

microaerophiles, or aerobes tolerant to prolonged periods of anaerobic conditions (Kessler 

1974; Chávez, Balamuth, and Gong 1986; Cavalier-Smith 2003; Pánek et al. 2012; Stairs et al. 

2014; Atteia et al. 2013; Lepère et al. 2016). 

4.2.1. Phylogenetic analyses of the ADI pathway genes in Eukaryota 

To investigate the evolutionary histories of the individual enzymes in eukaryotes, we preformed 

single-gene phylogenetic analyses of all 3 using RAxML (Stamatakis 2014) and IQ-TREE 

(Nguyen et al. 2015) tools. The eukaryotic sequences of ADI formed a single, moderately 

supported clade. The eukaryotic sequences of OTC split into 3 well-supported clades branching 

on different positions between prokaryotic sequences. One of these clades contains sequences 

from all the organisms supposedly harboring the complete pathway excluding the 2 algae. 

A sequence originating from the archaeon Lokiarchaeum sp., which is known to be one of the 

closest prokaryotic relatives of eukaryotes (Spang et al. 2015), is also included in this clade on 

an unsupported position among the eukaryotes. The eukaryotic sequences of CK split into 

multiple clades. One of these clades includes sequences from Parabasalia, Fornicata, 

Mastigamoeba balamuthi, and Pygsuia biforma, while the sequences from Preaxostyla and 

Chlorella variabilis plus Coccomyxa subellipsoidea branch separately on different positions 

among prokaryotes.  

In summary, the sequences originating from the organisms with the complete ADI pathway 

tend to branch together in single-gene phylogenetic trees, which suggests that they had 

a common evolutionary history, possibly being inherited vertically from a common ancestor, 

which, in case of these particular lineages, would very likely be also the common ancestor of 

all eukaryotes.  

In other words, the complete ADI pathway might have been present already in the LECA, the 

last eukaryotic common ancestor. To test this, we performed series of phylogenetic analyses on 

the 3 genes in concatenation. As predicted by the hypothesis of vertical inheritance from 

a common ancestor, the phylogenetic tree constructed from a concatenation of the genes, which 
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1) come from organisms with a complete set and 2) branch together in the single-gene trees, 

showed a well-supported eukaryotic clade branching inside Archaea.  

These results show that the ADI pathway is clearly ancestral in Metamonada and possibly also 

in Eukaryota. History of the individual enzymes in some organisms is, however, less clear. The 

CK genes of Preaxostyla are likely a result of LGT from prokaryotes, which replaced the 

original metamonad CK. The OTC and CK from Chl. variabilis and C. subellipsoidea probably 

have different origin than the genes in metamonads, H. schusteri, P. biforma, and M. balamuthi. 

These conclusions are also supported by the approximately unbiased (AU) (Shimodaira 2002) 

and expected likelihood weight (ELW) (Strimmer and Rambaut 2002) statistical tests of 

topology performed on the datasets. 

4.2.2. Subcellular localization of the ADI pathway in Preaxostyla 

Subcellular localization of the ADI pathway proteins in Preaxostyla was investigated by 

heterologous expression experiments. HA-tagged OTC and CK genes from Paratrimastix 

pyriformis and ADI, OTC, and CK genes from Monocercomonoides exilis were expressed in 

T. vaginalis and the localization of their products in the cell was determined using fluorescence 

microscopy. All the proteins were shown to have a cytosolic localization, meaning they do not 

have any signal sequence recognizable by the T. vaginalis hydrogenosomal protein import 

machinery.  
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Figure 6: Distribution of enzymes of the arginine deiminase pathway across eukaryotic diversity. Arginine 

deiminase (ADI), ornithine transcarbamylase (OTC), carbamate kinase (CK). Taxon names in boldface indicate 

lineages containing at least one representative with a sequenced nuclear genome. Numbers in brackets indicate 

number of sequences from the given taxon included in our analyses. (Novák et al. 2016) 
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4.3. Distribution and evolutionary history of the SUF pathway in Preaxostyla 

Lateral gene transfer of the genes coding for the SUF pathway from prokaryotes into an ancestor 

of Monocercomonoides exilis was a crucial moment for the eventual loss of mitochondria. It is 

therefore important to understand the evolutionary history of this pathway in a broader 

phylogenetic context. Genomic and transcriptomic data from 10 species of Preaxostyla: 

7 species of oxymonads, 2 species of trimastigids, and 1 paratrimastigid were searched for 

components of 4 systems responsible for FeS cluster assembly in eukaryotes: CIA, ISC, SUF, 

and NIF (Vacek et al. 2018).  

4.3.1. FeS cluster assembly systems in Preaxostyla 

No components of the mitochondrial ISC pathway, nor the NIF pathway known from 

Archamoebea (Nývltová et al. 2013), were found in any of the Preaxostyla. On the other hand, 

there were identified components of two other iron-sulfur cluster assembly systems in all the 

organisms. The cytosolic CIA pathway is a known in all studied eukaryotes, but it is unable to 

synthesize FeS clusters de novo on its own and needs cooperation of another pathway: ISC, and 

presumably also NIF or SUF. Apparently, the SUF system plays this role in all the studied 

members of Preaxostyla.  

The SUF system in Preaxostyla consists of 3 genes: SufB, SufC, and often fused SufD + SufS 

+ SufU. It is possible that the SufDSU fusion is present in all Preaxostyla, especially because it 

was identified in all 4 organisms for which a genomic assembly is available (Paratrimastix 

pyriformis, Blattamonas nauphoetae, Monocercomonoides exilis, and Streblomastix strix), 

while the non-fused genes come from, inherently incomplete, transcriptomic assemblies 

(Fig. 7). 

4.3.2. Evolutionary history of the SUF system in Preaxostyla 

Phylogenetic analysis was performed on a concatenated dataset of the SufB, SufC, SufD, and 

SufS genes using IQ-TREE (Nguyen et al. 2015). The resulting tree has shown a single, well-

supported clade of all the sequences originating from Preaxostyla. This strongly suggests an 

origin of the SUF system in a common ancestor of the entire Preaxostyla. The phylogenetic 

analysis was unable to pinpoint a specific prokaryotic lineage from which the genes were 

transferred. However, the composition of the Preaxostyla SUF system, as well as the 

conspicuous fusion, hint at a possible origin in Firmicutes, Thermotogae, Spirochaetes, 

Proteobacteria, or Chloroflexi groups of Bacteria.  
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Figure 7: Inventory of SUF proteins in Preaxostyla. The scheme shows SUF genes/transcripts identified in the 

members of Preaxostyla. For organisms in bold, genomic data were investigated, in others transcriptomic or single 

cell transcriptomic data sets were used. Completeness of a gene/transcript is indicated by the length of the arrow. 

Gene fusions are marked by fused arrows. At the bottom are given schematics of typical SUF gene operons in 

selected representatives of prokaryotic groups. (Vacek et al. 2018) 

4.4. Conclusions 

The original work presented in this thesis has resulted in publishing a good quality genome 

assembly of Monocercomonoides exilis, which was used to provide a compelling evidence of 

a complete loss of mitochondria in M. exilis and to annotate a large number of cellular systems 

in this organism. Following studies investigated distribution and evolutionary histories of 

2 pathways which were crucial for evolution of M. exilis and its adaptation to the 

amitochondriate, anaerobic, endobiotic lifestyle: the ADI pathway and the SUF system. This 

work has brought M. exilis (and whole Preaxostyla) into spotlight of protistological research 

and emphasized the importance of understudied protistan lineages for our understanding of the 

evolutionary history of eukaryotes. Further research is needed in order to understand M. exilis 

adaptations in a broader phylogenetic context (preliminary results discussed in supplement I) 

and to establish new experimental procedures for study of this organism and its relatives. 
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5. List of abbreviations 

1P5CD 1-pyrroline-5-carboxylate dehydrogenase 

AAAP Transmembrane amino acid transporter 

AAT Aspartate aminotransferase 

ABC ATP-binding cassette transporter 

AcnB Aconitase 

ACS Acetyl-CoA synthetase 

ACY Aminoacylase 

ADI Arginine deiminase 

ADK Adenylate kinase 

ADP Adenosine diphosphate 

ADSL Adenylosuccinate lyase 

ADSS Adenylosuccinate synthase 

ALAT Alanine transaminase 

AS Asparagine synthase 

ASCT Acetate:succinate CoA transferase 

ASNA Asparagine synthetase 

ASPG L-asparaginase 

Atm1 ABC transporter Atm1 

ATP Adenosine triphosphate 

AU Approximately unbiased test 

BCAT Branched-chain amino acid aminotransferase 

BLAST Basic local alignment search tool 

BolA DNA-binding transcriptional regulator BolA 

CaCA Ca2+:Cation Antiporter 

CBL Cystathionine beta-lyase 
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CCC Cation-chloride cotransporter 

CDF Cation diffusion facilitator 

cDNA Complementary DNA 

CEGMA Core eukaryotic genes mapping approach 

CIA Cytosolic iron-sulfur cluster assembly 

CK Carbamate kinase 

CLO Carpediemonas-like organism 

CoA Coenzyme A 

Cpn10 10 kDa chaperonin 

Cpn60 60 kDa chaperonin 

CTL Choline-transporter-like protein 

CYS Cysteine synthase 

CysJ NADPH-dependent sulfite reductase 

DASS Divalent Anion:Na+ Symporter 

DCAM Adenosylmethionine decarboxylase 

DCDA Diaminopimelate decarboxylase 

DCOR Ornithine decarboxylase 

DHE Glutamate dehydrogenase 

DHFR Dihydrofolate reductase 

DNA Deoxyribonucleic acid 

DRP Dynamin-related protein 

EF Elongation factor 

EMP Embden–Meyerhof–Parnas pathway 

ENO Enolase 

ENT Equilibrative nucleoside transporter 

FBA Fructose-bisphosphate aldolase 
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Fd Ferredoxin 

FDP Flavodiiron protein 

FeFe Iron-iron 

FeS Iron-sulfur 

FISH Fluorescence in situ hybridization 

Fld-Fd Flavodoxin-ferredoxin fusion protein 

FolC Folylpolyglutamate synthase 

FolD 
Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate 

cyclohydrolase 

FTCD Glutamate formimidoyltransferase 

Fxn Frataxin 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GAPN NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase 

GCAT Glycine C-acetyltransferase 

GCS Glycine cleavage system 

GCSH Glycine cleavage system protein H 

GCSL Glycine cleavage system protein L 

GCSP1 Glycine cleavage system protein P1 

GCSP2 Glycine cleavage system protein P2 

GCST Glycine cleavage system protein T 

gDNA Genomic DNA 

GFPT Glutamine-fructose-6-phosphate aminotransferase 

GGH Gamma-glutamyl hydrolase 

GLNA Glutamine synthetase 

GPH Glycoside-pentoside-hexuronide:cation symporter 

GPI Glucose-6-phosphate isomerase 
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GrpE GroP-like gene E 

Grx5 Monothiol glutaredoxin-5 

HA Human influenza hemagglutinin 

HMMER Biosequence analysis using profile hidden Markov models 

HMP Hydrogenosomal membrane protein 

HSP Heat shock protein 

HUTI Imidazolonepropionase 

HXK Hexokinase 

HydA [FeFe] hydrogenase 

HydE Hydrogenase maturase HydE 

HydF Hydrogenase maturase HydF 

HydG Hydrogenase maturase HydG 

Ind1 Iron-sulfur protein IND1 

iPGM 2,3-bisphosphoglycerate independent phosphoglycerate mutase 

ISC Iron sulfur cluster 

ISF Iron-sulfur flavoproteins 

Jac1 J-type co-chaperone JAC1 

JGI Joint Genome Institute 

LAM Lysine 2,3-aminomutase 

LC-MS Liquid chromatography–mass spectrometry 

LECA Last eukaryotic common ancestor 

LGT Lateral gene transfer 

LipB Lipoyltransferase 

MATE Multi antimicrobial extrusion 

MC Membrane carrier 

ME Malic enzyme 
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MetH Methionine synthase 

METK S-adenosylmethionine synthetase 

MFS Major facilitator superfamily transporter 

MGL Methionine gamma-lyase 

MPPa Mitochondrial-processing peptidase alpha subunit 

MPPb Mitochondrial-processing peptidase beta subunit 

MRO Mitochondrion-related organelles 

mRNA Messenger RNA 

MRP Multidrug resistance-associated protein 

MSTO1 Misato homolog 1 

MTHFD1 Formate-tetrahydrofolate ligase 

MTHFR Methylenetetrahydrofolate reductase 

mtHSP70 Heat shock protein 70, mitochondrial 

NAD Nicotinamide adenine dinucleotide 

NADH Reduced nicotinamide adenine dinucleotide 

NADP Nicotinamide adenine dinucleotide phosphate 

NADPH Reduced nicotinamide adenine dinucleotide phosphate 

NCBI National Center for Biotechnology Information 

NFU Iron-sulfur cluster scaffold-like protein NFU 

NIF Nitrogen fixation 

NuoE NADH-quinone oxidoreductase subunit E 

NuoF NADH-quinone oxidoreductase subunit F 

NuoG NADH-quinone oxidoreductase subunit G 

OAT Ornithine aminotransferase 

OCD Ornithine cyclodeaminase 

OsmC Osmotically inducible protein C 
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OTC Ornithine transcarbamylase 

P5CR Pyrroline-5-carboxylate reductase 

PAM Presequence translocase-associated motor 

Pam16 Presequence translocase-associated motor 16 kDa subunit 

Pam18 Presequence translocase-associated motor 18 kDa subunit 

PAPS 3′-phosphoadenosine-5′-phosphosulfate 

pATPase P-type ATPase 

PCR Polymerase chain reaction 

PEPCK Phosphoenolpyruvate carboxykinase 

PepD Aminoacyl-histidine dipeptidase 

PFK Phosphofructokinase 

PFO Pyruvate:ferredoxin oxidoreductase 

PFP Pyrophosphate:fructose 6-phosphate phosphotransferase 

PGDH Phosphoglycerate dehydrogenase 

PGK Phosphoglycerate kinase 

PGM Phosphoglucomutase 

PISD Phosphatidylserine decarboxylase 

PK Pyruvate kinase 

PMM Phosphomannomutase 

PotE b(0,+)-type amino acid transporter 

PPDK Pyruvate phosphate dikinase 

PRAC Proline racemase 

PSAT Phosphoserine transaminase 

PSS Phosphatidylserine synthase 

PSTK O-phosphoseryl-tRNASec kinase 

RAxML Randomized axelerated maximum likelihood 
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RBR Rubrerythrin 

RFC Reduced folate carrier 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

rRNA Ribosomal RNA 

SAHH S-adenosyl-L-homocysteine hydrolase 

SAM Sorting assembly machinery 

Sam50 Sorting assembly machinery 50 kDa subunit 

SAT Serine acetyltransferase 

SBP2 SECIS-binding protein 2 

SCS Succinyl-CoA synthetase 

SDH L-serine ammonia-lyase 

SECIS Selenocysteine insertion sequence 

SelB Selenocysteine-specific elongation factor 

SEPHS Selenide, water dikinase / selenophosphate synthase 

SEPSECS O-phosphoseryl-tRNA(Sec) selenium transferase 

SHMT Serine hydroxymethyltransferase 

SOD Superoxide dismutase 

SP Sugar porter 

SpeB Agmatinase 

SpeE Spermidine synthase 

SPNS Sphingolipid transporter 

SSU Small subunit 

SUF Sulphur utilization factor 

SufB Iron-sulfur cluster assembly protein SufB 

SufC Iron-sulfur cluster assembly protein SufC 
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SufD Iron-sulfur cluster assembly protein SufD 

SufDS Iron-sulfur cluster assembly fusion protein SufD-SufS 

SufDSU Iron-sulfur cluster assembly fusion protein SufD-SufS-SufU 

SufS Iron-sulfur cluster assembly protein SufS 

SufU Iron-sulfur cluster assembly protein SufU 

TA Threonine aldolase 

TauE Sulfite exporter TauE/SafE family protein 

TCA Tricarboxylic acid 

TDH Threonine dehydrogenase 

THDH Threonine ammonia-lyase 

THRC Threonine synthase 

Tim14 Inner membrane translocase subunit 14 kDa subunit 

Tim17 Inner membrane translocase subunit 17 kDa subunit 

TMHMM Hidden Markov model for predicting transmembrane helices 

TNAA Tryptophanase 

TOM Translocase of outer mitochondrial membrane 

Tom40 Translocase of outer mitochondrial membrane 40 kDa subunit 

TPI Triosephosphate isomerase 

TRK K+ Transporter 

Trx Thioredoxin 

TrxP Thioredoxin peroxidase 

TrxR Thioredoxin reductase 

TYDC Tyrosine decarboxylase 

 



65 

 

6. References 

Abrahamsen, Mitchell S, Thomas J Templeton, Shinichiro Enomoto, Juan E Abrahante, Guan 

Zhu, Cheryl A Lancto, Mingqi Deng, et al. 2004. “Complete Genome Sequence of the 

Apicomplexan, Cryptosporidium Parvum.” Science (New York, N.Y.) 304 (5669): 441–45. 

https://doi.org/10.1126/science.1094786. 

Adam, Rodney D., Eric W. Dahlstrom, Craig A. Martens, Daniel P. Bruno, Kent D. Barbian, 

Stacy M. Ricklefs, Matthew M. Hernandez, et al. 2013. “Genome Sequencing of Giardia 

Lamblia Genotypes A2 and B Isolates (DH and GS) and Comparative Analysis with the 

Genomes of Genotypes A1 and E (WB and Pig).” Genome Biology and Evolution 5 (12): 

2498–2511. https://doi.org/10.1093/gbe/evt197. 

Adam, Rodney D. 2000. “The Giardia Lamblia Genome.” International Journal for 

Parasitology 30 (4): 475–84. https://doi.org/10.1016/S0020-7519(99)00191-5. 

Adl, Sina M., David Bass, Christopher E. Lane, Julius Lukeš, Conrad L. Schoch, Alexey 

Smirnov, Sabine Agatha, et al. 2018. “Revisions to the Classification, Nomenclature, and 

Diversity of Eukaryotes.” Journal of Eukaryotic Microbiology 66 (1): jeu.12691. 

https://doi.org/10.1111/jeu.12691. 

Akhmanova, Anna, Frank Voncken, Theo van Alen, Angela van Hoek, Brigitte Boxma, 

Godfried Vogels, Marten Veenhuis, and Johannes H.P. Hackstein. 1998. “A 

Hydrogenosome with a Genome.” Nature 396 (6711): 527–28. 

https://doi.org/10.1038/25023. 

Anderson, Iain J, and Brendan J Loftus. 2005. “Entamoeba Histolytica: Observations on 

Metabolism Based on the Genome Sequence.” Experimental Parasitology 110 (3): 173–

77. https://doi.org/10.1016/j.exppara.2005.03.010. 

Arroyo, Juan Pablo, Kristopher T. Kahle, and Gerardo Gamba. 2013. “The SLC12 Family of 

Electroneutral Cation-Coupled Chloride Cotransporters.” Molecular Aspects of Medicine 

34 (2–3): 288–98. https://doi.org/10.1016/J.MAM.2012.05.002. 

Atteia, Ariane, Robert Van Lis, Aloysius G M Tielens, and William F. Martin. 2013. 

“Anaerobic Energy Metabolism in Unicellular Photosynthetic Eukaryotes.” Biochimica et 

Biophysica Acta - Bioenergetics. https://doi.org/10.1016/j.bbabio.2012.08.002. 

Barberà, Maria José, Iñaki Ruiz-Trillo, Julia Y A Tufts, Amandine Bery, Jeffrey D Silberman, 



66 

 

and Andrew J Roger. 2010. “Sawyeria Marylandensis (Heterolobosea) Has a 

Hydrogenosome with Novel Metabolic Properties.” Eukaryotic Cell 9 (12): 1913–24. 

https://doi.org/10.1128/EC.00122-10. 

Barratt, Joel L.N., Maisie Cao, Damien J. Stark, and John T. Ellis. 2015. “The Transcriptome 

Sequence of Dientamoeba Fragilis Offers New Biological Insights on Its Metabolism, 

Kinome, Degradome and Potential Mechanisms of Pathogenicity.” Protist 166 (4): 389–

408. https://doi.org/10.1016/J.PROTIS.2015.06.002. 

Benchimol, Marlene, Luiz G P de Almeida, Ana Tereza Vasconcelos, Ivone de Andrade Rosa, 

Maurício Reis Bogo, Luiza Wilges Kist, and Wanderley de Souza. 2017. “Draft Genome 

Sequence of Tritrichomonas Foetus Strain K.” Genome Announcements 5 (16). 

https://doi.org/10.1128/genomeA.00195-17. 

Benchimol, Marlene, Roger Durand, and João Carlos Aquino Almeida. 1997. “A Double 

Membrane Surrounds the Hydrogenosomes of the Anaerobic Fungus Neocallimastix 

Frontalis.” FEMS Microbiology Letters 154 (2): 277–82. https://doi.org/10.1111/j.1574-

6968.1997.tb12656.x. 

Biagini, Giancarlo A., Anthony J. Hayes, Marc T.E. Suller, Carole Winters, Bland J. Finlay, 

and David Lloyd. 1997. “Hydrogenosomes of Metopus Contortus Physiologically 

Resemble Mitochondria.” Microbiology 143 (5): 1623–29. 

https://doi.org/10.1099/00221287-143-5-1623. 

Biderre, C., M. Pages, G. Metenier, D. David, J. Bata, G. Prensier, and C. P. Vivares. 1994. 

“On Small Genomes in Eukaryotic Organisms: Molecular Karyotypes of Two 

Microsporidian Species (Protozoa) Parasites of Vertebrates.” Comptes Rendus de 

l’Academie Des Sciences - Serie III 317 (5): 399–404. 

http://www.ncbi.nlm.nih.gov/pubmed/7994619. 

Bouvier, León A., Ariel M. Silber, Camila Galvão Lopes, Gaspar E. Canepa, Mariana R. 

Miranda, Renata R. Tonelli, Walter Colli, Maria Júlia M. Alves, and Claudio A. Pereira. 

2004. “Post Genomic Analysis of Permeases from the Amino Acid/Auxin Family in 

Protozoan Parasites.” Biochemical and Biophysical Research Communications 321 (3): 

547–56. https://doi.org/10.1016/J.BBRC.2004.07.002. 

Brown, Matthew W, Aaron A Heiss, Ryoma Kamikawa, Yuji Inagaki, Akinori Yabuki, 

Alexander K Tice, Takashi Shiratori, et al. 2018. “Phylogenomics Places Orphan Protistan 



67 

 

Lineages in a Novel Eukaryotic Super-Group.” Genome Biology and Evolution 10 (2): 

427. https://doi.org/10.1093/GBE/EVY014. 

Brown, Matthew W, Susan C Sharpe, Jeffrey D Silberman, Aaron A Heiss, B Franz Lang, 

Alastair G B Simpson, and Andrew J Roger. 2013. “Phylogenomics Demonstrates That 

Breviate Flagellates Are Related to Opisthokonts and Apusomonads.” Proceedings. 

Biological Sciences / The Royal Society 280 (1769): 20131755. 

https://doi.org/10.1098/rspb.2013.1755. 

Brugerolle, Guy, and David Patterson. 1997. “Ultrastructure of Trimastix Convexa Hollande, 

an Amitochondriate Anaerobic Flagellate with a Previously Undescribed Organization.” 

European Journal of Protistology 33 (2): 121–30. https://doi.org/10.1016/S0932-

4739(97)80029-6. 

Brune, Andreas, and Moriya Ohkuma. 2011. “Role of the Termite Gut Microbiota in Symbiotic 

Digestion.” In Biology of Termites: A Modern Synthesis, 439–75. Dordrecht: Springer 

Netherlands. https://doi.org/10.1007/978-90-481-3977-4_16. 

Burki, Fabien, Nicolas Corradi, Roberto Sierra, Jan Pawlowski, Gary R. Meyer, Cathryn L. 

Abbott, and Patrick J. Keeling. 2013. “Phylogenomics of the Intracellular Parasite 

Mikrocytos Mackini Reveals Evidence for a Mitosome in Rhizaria.” Current Biology 23 

(16): 1541–47. https://doi.org/10.1016/j.cub.2013.06.033. 

Carlton, Jane M., Yves Van De Peer, Robert P. Hirt, Joana C. Silva, Arthur L. Delcher, Michael 

Schatz, Qi Zhao, et al. 2007. “Draft Genome Sequence of the Sexually Transmitted 

Pathogen Trichomonas Vaginalis.” Science (New York, N.Y.) 315 (5809): 207–12. 

https://doi.org/10.1126/science.1138294. 

Carpenter, Kevin J, Ross F Waller, and Patrick J Keeling. 2008. “Surface Morphology of 

Saccinobaculus (Oxymonadida): Implications for Character Evolution and Function in 

Oxymonads.” Protist 159 (2): 209–21. https://doi.org/10.1016/j.protis.2007.09.002. 

Cavalier-Smith, Thomas. 1983. “Endocytobiology II.” In “Intracellular Space as Oligogenetic 

Ecosystem,” 265–79. de Gruyter Berlin. 

———. 1987. “Eukaryotes with No Mitochondria.” Nature 326 (6111): 332–33. 

https://doi.org/10.1038/326332a0. 

———. 1991. “Archamoebae: The Ancestral Eukaryotes?” BioSystems 25 (1–2): 25–38. 



68 

 

https://doi.org/10.1016/0303-2647(91)90010-I. 

———. 1998. “A Revised Six-Kingdom System of Life.” Biological Reviews of the Cambridge 

Philosophical Society 73 (3): 203–66. http://www.ncbi.nlm.nih.gov/pubmed/9809012. 

———. 2003. “The Excavate Protozoan Phyla Metamonada Grassé Emend. (Anaeromonadea, 

Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa Emend. (Jakobea, 

Malawimonas): Their Evolutionary Affinities and New Higher Taxa.” International 

Journal of Systematic and Evolutionary Microbiology 53 (6): 1741–58. 

https://doi.org/10.1099/ijs.0.02548-0. 

Čerkasov, J, A Čerkasovová, J Kulda, and D Vilhelmová. 1978. “Respiration of 

Hydrogenosomes of Tritrichomonas Foetus. I. ADP-Dependent Oxidation of Malate and 

Pyruvate.” The Journal of Biological Chemistry 253 (4): 1207–14. 

http://www.ncbi.nlm.nih.gov/pubmed/624725. 

Chávez, L A, W Balamuth, and T Gong. 1986. “A Light and Electron Microscopical Study of 

a New, Polymorphic Free-Living Amoeba, Phreatamoeba Balamuthi n. g., n. Sp.” The 

Journal of Protozoology 33 (3): 397–404. http://www.ncbi.nlm.nih.gov/pubmed/3746722. 

Cheissin, E M. 1965. “Ultrastructure of Lamblia Duodenalis 2. The Locomotory Apparatus, 

Axial Rod and Other Organelles.” Arch. Protistenkd 108: 8–18. 

Clark, C G, and A J Roger. 1995. “Direct Evidence for Secondary Loss of Mitochondria in 

Entamoeba Histolytica.” Proceedings of the National Academy of Sciences of the United 

States of America 92 (14): 6518–21. https://doi.org/10.1073/pnas.92.14.6518. 

Coombs, Graham H., Gareth D. Westrop, Pavel Suchan, Gabriela Puzova, Robert P. Hirt, T. 

Martin Embley, Jeremy C. Mottram, and Sylke Müller. 2004. “The Amitochondriate 

Eukaryote Trichomonas Vaginalis Contains a Divergent Thioredoxin-Linked 

Peroxiredoxin Antioxidant System.” Journal of Biological Chemistry 279 (7): 5249–56. 

https://doi.org/10.1074/jbc.M304359200. 

Cornman, R. Scott, Yan Ping Chen, Michael C. Schatz, Craig Street, Yan Zhao, Brian Desany, 

Michael Egholm, et al. 2009. “Genomic Analyses of the Microsporidian Nosema Ceranae, 

an Emergent Pathogen of Honey Bees.” PLoS Pathogens 5 (6). 

https://doi.org/10.1371/JOURNAL.PPAT.1000466. 

Dacks, Joel B., Teklu Kuru, Natalia A. Liapounova, and Lashitew Gedamu. 2008. 



69 

 

“Phylogenetic and Primary Sequence Characterization of Cathepsin B Cysteine Proteases 

from the Oxymonad Flagellate Monocercomonoides.” Journal of Eukaryotic 

Microbiology 55 (1): 9–17. https://doi.org/10.1111/j.1550-7408.2007.00296.x. 

Dacks, Joel B., Jeffrey D. Silberman, Alastair G. B. Simpson, Shigeharu Moriya, Toshiaki 

Kudo, Moriya Ohkuma, and Rosemary J. Redfield. 2001. “Oxymonads Are Closely 

Related to the Excavate Taxon Trimastix.” Mol. Biol. Evol. 18 (6): 1034–44. 

http://mbe.oxfordjournals.org/cgi/content/abstract/18/6/1034. 

Dean, Paul, Peter Major, Sirintra Nakjang, Robert P. Hirt, and T. Martin Embley. 2014. 

“Transport Proteins of Parasitic Protists and Their Role in Nutrient Salvage.” Frontiers in 

Plant Science 5 (April): 153. https://doi.org/10.3389/fpls.2014.00153. 

Derelle, Romain, Guifré Torruella, Vladimír Klimeš, Henner Brinkmann, Eunsoo Kim, Čestmír 

Vlček, B Franz Lang, and Marek Eliáš. 2015. “Bacterial Proteins Pinpoint a Single 

Eukaryotic Root.” Proceedings of the National Academy of Sciences of the United States 

of America 112 (7): E693-9. https://doi.org/10.1073/pnas.1420657112. 

Docampo, R, S N Moreno, and R P Mason. 1987. “Free Radical Intermediates in the Reaction 

of Pyruvate:Ferredoxin Oxidoreductase in Tritrichomonas Foetus Hydrogenosomes.” The 

Journal of Biological Chemistry 262 (26): 12417–20. 

http://www.ncbi.nlm.nih.gov/pubmed/3040744. 

Douce, Roland, Jacques Bourguignon, Michel Neuburger, and Fabrice Rébeillé. 2001. “The 

Glycine Decarboxylase System: A Fascinating Complex.” Trends in Plant Science 6 (4): 

167–76. https://doi.org/10.1016/S1360-1385(01)01892-1. 

Drmota, T. 1996. “Iron-Ascorbate Cleavable Malic Enzyme from Hydrogenosomes of 

Trichomonas Vaginalis: Purification and Characterization.” Molecular and Biochemical 

Parasitology 83 (2): 221–34. https://doi.org/10.1016/S0166-6851(96)02777-6. 

Dyall, S. D., C. M. Koehler, M. G. Delgadillo-Correa, P. J. Bradley, E. Plumper, D. 

Leuenberger, C. W. Turck, and P. J. Johnson. 2000. “Presence of a Member of the 

Mitochondrial Carrier Family in Hydrogenosomes: Conservation of Membrane-Targeting 

Pathways between Hydrogenosomes and Mitochondria.” Molecular and Cellular Biology 

20 (7): 2488–97. https://doi.org/10.1128/mcb.20.7.2488-2497.2000. 

Edlund, Thomas D., Jing Li, Govinda S. Visvesvara, Michael H. Vodkin, Gerald L. 

McLaughlin, and Santosh K. Katiyar. 1996. “Phylogenetic Analysis of β-Tubulin 



70 

 

Sequences from Amitochondrial Protozoa.” Molecular Phylogenetics and Evolution 5 (2): 

359–67. https://doi.org/10.1006/MPEV.1996.0031. 

Emanuelsson, Olof, Søren Brunak, Gunnar von Heijne, and Henrik Nielsen. 2007. “Locating 

Proteins in the Cell Using TargetP, SignalP and Related Tools.” Nature Protocols 2: 953–

71. https://doi.org/10.1038/nprot.2007.131. 

Embley, Martin, Mark van der Giezen, David S. Horner, Patricia L. Dyal, and Peter Foster. 

2003. “Mitochondria and Hydrogenosomes Are Two Forms of the Same Fundamental 

Organelle.” Philosophical Transactions of the Royal Society of London. Series B: 

Biological Sciences 358 (1429): 191–203. https://doi.org/10.1098/rstb.2002.1190. 

Fahrni, J. F., Ignacio Bolivar, Cédric Berney, Elena Nassonova, Alexey Smirnov, and Jan 

Pawlowski. 2003. “Phylogeny of Lobose Amoebae Based on Actin and Small-Subunit 

Ribosomal RNA Genes.” Molecular Biology and Evolution 20 (11): 1881–86. 

https://doi.org/10.1093/molbev/msg201. 

Felsenstein, J. 1978. “Cases in Which Parsimony or Compatibility Methods Will Be Positively 

Misleading.” Systematic Biology 27 (4): 401–10. https://doi.org/10.1093/sysbio/27.4.401. 

Flegel, T. W., and Tirasak Pasharawipas. 1995. “A Proposal for Typical Eukaryotic Meiosis in 

Microsporidians.” Canadian Journal of Microbiology 41 (1): 1–11. 

https://doi.org/10.1139/m95-001. 

Franzén, Oscar, Jon Jerlström-Hultqvist, Elsie Castro, Ellen Sherwood, Johan Ankarklev, 

David S. Reiner, Daniel Palm, Jan O. Andersson, Björn Andersson, and Staffan G. Svärd. 

2009. “Draft Genome Sequencing of Giardia Intestinalis Assemblage B Isolate GS: Is 

Human Giardiasis Caused by Two Different Species?” PLoS Pathogens 5 (8): e1000560. 

https://doi.org/10.1371/journal.ppat.1000560. 

Germot, Agnès, Hervé Philippe, and Hervé Le Guyader. 1996. “Presence of a Mitochondrial-

Type 70-KDa Heat Shock Protein in Trichomonas Vaginalis Suggests a Very Early 

Mitochondrial Endosymbiosis in Eukaryotes.” Proceedings of the National Academy of 

Sciences of the United States of America 93 (25): 14614–17. 

http://www.pnas.org/cgi/content/abstract/93/25/14614. 

———. 1997. “Evidence for Loss of Mitochondria in Microsporidia from a Mitochondrial-

Type HSP70 in Nosema Locustae.” Molecular and Biochemical Parasitology 87 (2): 159–

68. https://doi.org/10.1016/S0166-6851(97)00064-9. 



71 

 

Gill, Erin E, Sara Diaz-Triviño, Maria José Barberà, Jeffrey D Silberman, Alexandra 

Stechmann, Daniel Gaston, Ivica Tamas, and Andrew J Roger. 2007. “Novel 

Mitochondrion-Related Organelles in the Anaerobic Amoeba Mastigamoeba Balamuthi.” 

Molecular Microbiology 66 (6): 1306–20. https://doi.org/10.1111/j.1365-

2958.2007.05979.x. 

Gillin, Frances D., and Louis S. Diamond. 1981. “Entamoeba Histolytica and Giardia Lamblia: 

Effects of Cysteine and Oxygen Tension on Trophozoite Attachment to Glass and Survival 

in Culture Media.” Experimental Parasitology 52 (1): 9–17. https://doi.org/10.1016/0014-

4894(81)90055-2. 

Grinsven, Koen W. A. van, Silke Rosnowsky, Susanne W. H. van Weelden, Simone Pütz, Mark 

van der Giezen, William Martin, Jaap J. van Hellemond, Aloysius G. M. Tielens, and 

Katrin Henze. 2008. “Acetate:Succinate CoA-Transferase in the Hydrogenosomes of 

Trichomonas Vaginalis.” Journal of Biological Chemistry 283 (3): 1411–18. 

https://doi.org/10.1074/jbc.M702528200. 

Hamann, Emmo, Halina E Tegetmeyer, Dietmar Riedel, Sten Littmann, Soeren Ahmerkamp, 

Jianwei Chen, Philipp F Hach, and Marc Strous. 2017. “Syntrophic Linkage between 

Predatory Carpediemonas and Specific Prokaryotic Populations.” The ISME Journal 11 

(5): 1205–17. https://doi.org/10.1038/ismej.2016.197. 

Hampl, Vladimír. 2017. “Preaxostyla.” In Handbook of the Protists, 1139–74. Cham: Springer 

International Publishing. https://doi.org/10.1007/978-3-319-28149-0_8. 

Hampl, Vladimír, David S. Horner, Patricia Dyal, Jaroslav Kulda, Jaroslav Flegr, Peter G. 

Foster, and T. Martin Embley. 2005. “Inference of the Phylogenetic Position of 

Oxymonads Based on Nine Genes: Support for Metamonada and Excavata.” Molecular 

Biology and Evolution 22 (12): 2508–18. https://doi.org/10.1093/molbev/msi245. 

Hampl, Vladimír, Laura Hug, Jessica W Leigh, Joel B Dacks, B Franz Lang, Alastair G B 

Simpson, and Andrew J Roger. 2009. “Phylogenomic Analyses Support the Monophyly 

of Excavata and Resolve Relationships among Eukaryotic ‘Supergroups’.” Proceedings of 

the National Academy of Sciences of the United States of America 106 (10): 3859–64. 

https://doi.org/10.1073/pnas.0807880106. 

Hampl, Vladimír, Jeffrey D Silberman, Alexandra Stechmann, Sara Diaz-Triviño, Patricia J 

Johnson, and Andrew J Roger. 2008. “Genetic Evidence for a Mitochondriate Ancestry in 



72 

 

the ‘Amitochondriate’ Flagellate Trimastix Pyriformis.” PLoS ONE 3 (1): 9. 

https://doi.org/10.1371/journal.pone.0001383. 

Hampson, RK, LL Barron, and MS Olson. 1983. “Regulation of the Glycine Cleavage System 

in Isolated Rat Liver Mitochondria.” The Journal of Biological Chemistry 258 (5): 2993–

99. https://europepmc.org/abstract/med/6402507. 

Hine, PM, SM Bower, GR Meyer, N Cochennec-Laureau, and FCJ Berthe. 2001. 

“Ultrastructure of Mikrocytos Mackini, the Cause of Denman Island Disease in Oysters 

Crassostrea Spp. and Ostrea Spp. in British Columbia, Canada.” Diseases of Aquatic 

Organisms 45 (3): 215–27. https://doi.org/10.3354/dao045215. 

Hinkle, G, D D Leipe, T A Nerad, and M L Sogin. 1994. “The Unusually Long Small Subunit 

Ribosomal RNA of Phreatamoeba Balamuthi.” Nucleic Acids Research 22 (3): 465–69. 

https://doi.org/10.1093/nar/22.3.465. 

Hirt, R.P., C.J. Noel, T. Sicheritz-Ponten, J. Tachezy, and P-L. Fiori. 2007. “Trichomonas 

Vaginalis Surface Proteins: A View from the Genome.” Trends in Parasitology 23 (11): 

540–47. https://doi.org/10.1016/j.pt.2007.08.020. 

Horner, D. S., R. P. Hirt, S. Kilvington, D. Lloyd, and T. M. Embley. 1996. “Molecular Data 

Suggest an Early Acquisition of the Mitochondrion Endosymbiont.” Proceedings of the 

Royal Society B: Biological Sciences 263 (1373): 1053–59. 

https://doi.org/10.1098/rspb.1996.0155. 

Hrdý, Ivan, Robert P Hirt, Pavel Dolezal, Lucie Bardonová, Peter G Foster, Jan Tachezy, and 

T Martin Embley. 2004. “Trichomonas Hydrogenosomes Contain the NADH 

Dehydrogenase Module of Mitochondrial Complex I.” Nature 432: 618–22. 

https://doi.org/10.1038/nature03149. 

Hrdý, Ivan, Jan Tachezy, and Miklós Müller. 2019. “Metabolism of Trichomonad 

Hydrogenosomes.” In , 127–58. Springer, Cham. https://doi.org/10.1007/978-3-030-

17941-0_6. 

Huang, Kuo-Yang, Seow-Chin Ong, Chih-Ching Wu, Chia-Wei Hsu, Hsin-Chung Lin, Yi-Kai 

Fang, Wei-Hung Cheng, Po-Jung Huang, Cheng-Hsun Chiu, and Petrus Tang. 2019. 

“Metabolic Reprogramming of Hydrogenosomal Amino Acids in Trichomonas Vaginalis 

under Glucose Restriction.” Journal of Microbiology, Immunology and Infection 52 (4): 

630–37. https://doi.org/10.1016/J.JMII.2017.10.005. 



73 

 

Hyde, Ralph J., Carol E. Cass, James D. Young, and James D. Stephen A. Baldwin. 2001. “The 

ENT Family of Eukaryote Nucleoside and Nucleobase Transporters: Recent Advances in 

the Investigation of Structure/Function Relationships and the Identification of Novel 

Isoforms.” Molecular Membrane Biology 18 (1): 53–63. 

https://doi.org/10.1080/09687680118799. 

Jack, Donald L., Nelson M. Yang, and Milton H. Saier. 2001. “The Drug/Metabolite 

Transporter Superfamily.” European Journal of Biochemistry 268 (13): 3620–39. 

https://doi.org/10.1046/j.1432-1327.2001.02265.x. 

Jedelský, Petr L, Pavel Doležal, Petr Rada, Jan Pyrih, Ondřej Smíd, Ivan Hrdý, Miroslava 

Sedinová, et al. 2011. “The Minimal Proteome in the Reduced Mitochondrion of the 

Parasitic Protist Giardia Intestinalis.” PloS One 6 (2): e17285. 

https://doi.org/10.1371/journal.pone.0017285. 

Jenkins, T M, T E Gorrell, M Müller, and P D Weitzman. 1991. “Hydrogenosomal Succinate 

Thiokinase in Tritrichomonas Foetus and Trichomonas Vaginalis.” Biochemical and 

Biophysical Research Communications 179 (2): 892–96. https://doi.org/10.1016/0006-

291x(91)91902-o. 

Jerlström-Hultqvist, Jon, Elin Einarsson, Feifei Xu, Karin Hjort, Bo Ek, Daniel Steinhauf, Kjell 

Hultenby, Jonas Bergquist, Jan O. Andersson, and Staffan G. Svärd. 2013. 

“Hydrogenosomes in the Diplomonad Spironucleus Salmonicida.” Nature 

Communications 4 (1): 2493. https://doi.org/10.1038/ncomms3493. 

Jerlström-Hultqvist, Jon, Oscar Franzén, Johan Ankarklev, Feifei Xu, Eva Nohýnková, Jan O 

Andersson, Staffan G Svärd, and Björn Andersson. 2010. “Genome Analysis and 

Comparative Genomics of a Giardia Intestinalis Assemblage E Isolate.” BMC Genomics 

11 (October): 543. https://doi.org/10.1186/1471-2164-11-543. 

Kamaishi, Takashi, Tetsuo Hashimoto, Yoshihiro Nakamura, Fuminori Nakamura, Shigenori 

Murata, Norihiro Okada, Ken-ichi Okamoto, Makoto Shimizu, and Masami Hasegawa. 

1996. “Protein Phylogeny of Translation Elongation Factor EF-1α Suggests 

Microsporidians Are Extremely Ancient Eukaryotes.” Journal of Molecular Evolution 42 

(2): 257–63. https://doi.org/10.1007/BF02198852. 

Karnkowska, Anna, Sebastian C Treitli, Ondřej Brzoň, Lukáš Novák, Vojtěch Vacek, Petr 

Soukal, Lael D Barlow, et al. 2019. “The Oxymonad Genome Displays Canonical 



74 

 

Eukaryotic Complexity in the Absence of a Mitochondrion.” Molecular Biology and 

Evolution. https://doi.org/10.1093/molbev/msz147. 

Karnkowska, Anna, Vojtěch Vacek, Zuzana Zubáčová, Sebastian C Treitli, Romana 

Petrželková, Laura Eme, Lukáš Novák, et al. 2016. “A Eukaryote without a Mitochondrial 

Organelle.” Current Biology : CB 26 (10): 1274–84. 

https://doi.org/10.1016/j.cub.2016.03.053. 

Katinka, M D, S Duprat, E Cornillot, G Méténier, F Thomarat, G Prensier, V Barbe, et al. 2001. 

“Genome Sequence and Gene Compaction of the Eukaryote Parasite Encephalitozoon 

Cuniculi.” Nature 414 (6862): 450–53. https://doi.org/10.1038/35106579. 

Kay, Christopher, Katharine D. Woodward, Karen Lawler, Tim J. Self, Sabrina D. Dyall, and 

Ian D. Kerr. 2012. “The ATP-Binding Cassette Proteins of the Deep-Branching Protozoan 

Parasite Trichomonas Vaginalis.” PLoS Neglected Tropical Diseases 6 (6). 

https://doi.org/10.1371/JOURNAL.PNTD.0001693. 

Keeling, Patrick J. 1998. “A Kingdom’s Progress: Archezoa and the Origin of Eukaryotes.” 

BioEssays 20 (1): 87–95. https://doi.org/10.1002/(SICI)1521-

1878(199801)20:1<87::AID-BIES12>3.0.CO;2-4. 

Keeling, Patrick J., and W. F. Doolittle. 1996. “Alpha-Tubulin from Early-Diverging 

Eukaryotic Lineages and the Evolution of the Tubulin Family.” Molecular Biology and 

Evolution 13 (10): 1297–1305. https://doi.org/10.1093/oxfordjournals.molbev.a025576. 

Keeling, Patrick J., and Brian S. Leander. 2003. “Characterisation of a Non-Canonical Genetic 

Code in the Oxymonad Streblomastix Strix.” Journal of Molecular Biology 326 (5): 1337–

49. https://doi.org/10.1016/S0022-2836(03)00057-3. 

Keeling, Patrick J, and Claudio H Slamovits. 2004. “Simplicity and Complexity of 

Microsporidian Genomes.” Eukaryotic Cell 3 (6): 1363–69. 

https://doi.org/10.1128/EC.3.6.1363-1369.2004. 

Kessler, E. 1974. “Hydrogenase, Photoreduction, and Anaerobic Growth.” Botanical 

Monographs Oxford 10: 456–73. 

Klenk, Hans-Peter, Wolfram Zilllg, Martin Lanzendorfer, Bernd Grampp, and Peter Palm. 

1995. “Location of Protist Lineages in a Phylogenetic Tree Inferred from Sequences of 

DNA-Dependent RNA Polymerases.” Archiv Für Protistenkunde 145 (3–4): 221–30. 



75 

 

https://doi.org/10.1016/S0003-9365(11)80317-9. 

Klodnicki, M. E., L. R. McDougald, and R. B. Beckstead. 2013. “ A Genomic Analysis of 

Histomonas Meleagridis Through Sequencing of a CDNA Library .” Journal of 

Parasitology 99 (2): 264–69. https://doi.org/10.1645/ge-3256.1. 

Knight, Jonathan. 2004. “Not so Special, after All?” Nature 429 (6989): 236–37. 

https://doi.org/10.1038/429236a. 

Koning, Audrey P. De, Geoffrey P. Noble, Aaron A. Heiss, Jensen Wong, and Patrick J. 

Keeling. 2008. “Environmental PCR Survey to Determine the Distribution of a Non-

Canonical Genetic Code in Uncultivable Oxymonads.” Environmental Microbiology 10 

(1): 65–74. https://doi.org/10.1111/j.1462-2920.2007.01430.x. 

LaGier, M. J., Jan Tachezy, Frantisek Stejskal, Katerina Kutisova, and Janet S. Keithly. 2003. 

“Mitochondrial-Type Iron-Sulfur Cluster Biosynthesis Genes (IscS and IscU) in the 

Apicomplexan Cryptosporidium Parvum.” Microbiology 149 (12): 3519–30. 

https://doi.org/10.1099/mic.0.26365-0. 

Leander, Brian S., and Patrick J. Keeling. 2004. “Symbiotic Innovation in the Oxymonad 

Streblomastix Strix.” The Journal of Eukaryotic Microbiology 51 (3): 291–300. 

https://doi.org/10.1111/j.1550-7408.2004.tb00569.x. 

Lecompte, Odile, Raymond Ripp, Jean Claude Thierry, Dino Moras, and Olivier Poch. 2002. 

“Comparative Analysis of Ribosomal Proteins in Complete Genomes: An Example of 

Reductive Evolution at the Domain Scale.” Nucleic Acids Research 30 (24): 5382–90. 

https://doi.org/10.1093/nar/gkf693. 

Leger, Michelle M., Martin Kolisko, Ryoma Kamikawa, Courtney W. Stairs, Keitaro Kume, 

Ivan Čepička, Jeffrey D. Silberman, et al. 2017. “Organelles That Illuminate the Origins 

of Trichomonas Hydrogenosomes and Giardia Mitosomes.” Nature Ecology and 

Evolution 1 (4): 0092. https://doi.org/10.1038/s41559-017-0092. 

Leger, Michelle M., Martin Kolísko, Courtney W. Stairs, and Alastair G. B. Simpson. 2019. 

“Mitochondrion-Related Organelles in Free-Living Protists.” In , 287–308. Springer, 

Cham. https://doi.org/10.1007/978-3-030-17941-0_12. 

Leger, Michelle M, Laura Eme, Laura A Hug, and Andrew J Roger. 2016. “Novel 

Hydrogenosomes in the Microaerophilic Jakobid Stygiella Incarcerata.” Molecular 



76 

 

Biology and Evolution 33 (9): 2318–36. https://doi.org/10.1093/molbev/msw103. 

Lepère, Cécile, Isabelle Domaizon, Mylène Hugoni, Agnès Vellet, and Didier Debroas. 2016. 

“Diversity and Dynamics of Active Small Microbial Eukaryotes in the Anoxic Zone of a 

Freshwater Meromictic Lake (Pavin, France).” Frontiers in Microbiology 7: 130. 

https://doi.org/10.3389/fmicb.2016.00130. 

Li, Fuli, Julia Hinderberger, Henning Seedorf, Jin Zhang, Wolfgang Buckel, and Rudolf K. 

Thauer. 2008. “Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with 

NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium 

Kluyveri.” Journal of Bacteriology 190 (3): 843–50. https://doi.org/10.1128/JB.01417-07. 

Liapounova, Natalia A, Vladimír Hampl, Paul M K Gordon, Christoph W Sensen, Lashitew 

Gedamu, and Joel B Dacks. 2006. “Reconstructing the Mosaic Glycolytic Pathway of the 

Anaerobic Eukaryote Monocercomonoides.” Eukaryotic Cell 5 (12): 2138–46. 

https://doi.org/10.1128/EC.00258-06. 

Lill, Roland, Rafal Dutkiewicz, Sven A. Freibert, Torsten Heidenreich, Judita Mascarenhas, 

Daili J. Netz, Viktoria D. Paul, et al. 2015. “The Role of Mitochondria and the CIA 

Machinery in the Maturation of Cytosolic and Nuclear Iron-Sulfur Proteins.” European 

Journal of Cell Biology 94 (7–9): 280–91. https://doi.org/10.1016/j.ejcb.2015.05.002. 

Lindmark, D G, and M Müller. 1973. “Hydrogenosome, a Cytoplasmic Organelle of the 

Anaerobic Flagellate Tritrichomonas Foetus, and Its Role in Pyruvate Metabolism.” The 

Journal of Biological Chemistry 248 (22): 7724–28. 

http://www.ncbi.nlm.nih.gov/pubmed/4750424. 

Lloyd, David, and Janine C Harris. 2002. “Giardia: Highly Evolved Parasite or Early Branching 

Eukaryote?” Trends in Microbiology 10 (3): 122–27. https://doi.org/10.1016/S0966-

842X(02)02306-5. 

Loftus, Brendan, Iain Anderson, Rob Davies, U. Cecilia M. Alsmark, John Samuelson, Paolo 

Amedeo, Paola Roncaglia, et al. 2005. “The Genome of the Protist Parasite Entamoeba 

Histolytica.” Nature 433 (7028): 865–68. https://doi.org/10.1038/nature03291. 

Lujan, Hugo D., and Theodore E. Nash. 1994. “The Uptake and Metabolism of Cysteine by 

Giardia Lamblia Trophozoites.” The Journal of Eukaryotic Microbiology 41 (2): 169–75. 

https://doi.org/10.1111/j.1550-7408.1994.tb01491.x. 



77 

 

Mai, Zhiming, Sudip Ghosh, Marta Frisardi, Ben Rosenthal, Rick Rogers, and John Samuelson. 

1999. “ Hsp60 Is Targeted to a Cryptic Mitochondrion-Derived Organelle (‘Crypton’) in 

the Microaerophilic Protozoan Parasite Entamoeba Histolytica .” Molecular and Cellular 

Biology 19 (3): 2198–2205. https://doi.org/10.1128/mcb.19.3.2198. 

Makki, Abhijith, Petr Rada, Vojtěch Žárský, Sami Kereïche, Lubomír Kováčik, Marian 

Novotný, Tobias Jores, Doron Rapaport, and Jan Tachezy. 2019. “Triplet-Pore Structure 

of a Highly Divergent TOM Complex of Hydrogenosomes in Trichomonas Vaginalis.” 

PLoS Biology 17 (1): e3000098. https://doi.org/10.1371/journal.pbio.3000098. 

Marger, Michael D., and Milton H. Saier. 1993. “A Major Superfamily of Transmembrane 

Facilitators That Catalyse Uniport, Symport and Antiport.” Trends in Biochemical 

Sciences 18 (1): 13–20. https://doi.org/10.1016/0968-0004(93)90081-W. 

Mazumdar, Rounik, Lukas Endler, Andreas Monoyios, Michael Hess, and Ivana Bilic. 2017. 

“Establishment of a de Novo Reference Transcriptome of Histomonas Meleagridis 

Reveals Basic Insights About Biological Functions and Potential Pathogenic Mechanisms 

of the Parasite.” Protist 168 (6): 663–85. https://doi.org/10.1016/J.PROTIS.2017.09.004. 

Mertens, E. 1993. “ATP versus Pyrophosphate: Glycolysis Revisited in Parasitic Protists.” 

Parasitology Today 9 (4): 122–26. https://doi.org/10.1016/0169-4758(93)90169-G. 

Mi-ichi, Fumika, Takashi Makiuchi, Atsushi Furukawa, Dan Sato, and Tomoyoshi Nozaki. 

2011. “Sulfate Activation in Mitosomes Plays an Important Role in the Proliferation of 

Entamoeba Histolytica.” PLoS Neglected Tropical Diseases 5 (8): e1263. 

https://doi.org/10.1371/journal.pntd.0001263. 

Mi-ichi, Fumika, Mohammad Abu Yousuf, Kumiko Nakada-Tsukui, and Tomoyoshi Nozaki. 

2009. “Mitosomes in Entamoeba Histolytica Contain a Sulfate Activation Pathway.” 

Proceedings of the National Academy of Sciences of the United States of America 106 

(51): 21731–36. https://doi.org/10.1073/pnas.0907106106. 

Millet, Coralie O M, David Lloyd, Michael P. Coogan, Joanna Rumsey, and Joanne Cable. 

2011. “Carbohydrate and Amino Acid Metabolism of Spironucleus Vortens.” 

Experimental Parasitology 129 (1): 17–26. 

https://doi.org/10.1016/j.exppara.2011.05.025. 

Morada, Mary, Ondřej Šmíd, Vladimír Hampl, Robert Sutak, Brian Lam, Paola Rappelli, 

Daniele Dessì, Pier L Fiori, Jan Tachezy, and Nigel Yarlett. 2011. “Hydrogenosome-



78 

 

Localization of Arginine Deiminase in Trichomonas Vaginalis.” Molecular and 

Biochemical Parasitology 176 (1): 51–54. 

https://doi.org/10.1016/j.molbiopara.2010.10.004. 

Morin, L, and J P Mignot. 1995. “Are Archamoebae True Archezoa? The Phylogenetic Position 

of Pelomyxa Sp., as Inferred from Large Subunit Ribosomal RNA Sequencing.” Eur J 

Protistol 31: 402. 

Morrison, Hilary G, Andrew G McArthur, Frances D Gillin, Stephen B Aley, Rodney D Adam, 

Gary J Olsen, Aaron A Best, et al. 2007. “Genomic Minimalism in the Early Diverging 

Intestinal Parasite Giardia Lamblia.” Science (New York, N.Y.) 317 (5846): 1921–26. 

https://doi.org/10.1126/science.1143837. 

Mukherjee, Mandira, Mark T Brown, Andrew G McArthur, and Patricia J Johnson. 2006. 

“Proteins of the Glycine Decarboxylase Complex in the Hydrogenosome of Trichomonas 

Vaginalis.” Eukaryotic Cell 5 (12): 2062–71. https://doi.org/10.1128/EC.00205-06. 

Mukherjee, Mandira, Stuart A. Sievers, Mark T. Brown, and Patricia J. Johnson. 2006. 

“Identification and Biochemical Characterization of Serine Hydroxymethyl Transferase in 

the Hydrogenosome of Trichomonas Vaginalis.” Eukaryotic Cell 5 (12): 2072–78. 

https://doi.org/10.1128/EC.00249-06. 

Müller, Miklós, Marek Mentel, Jaap J van Hellemond, Katrin Henze, Christian Woehle, Sven 

B Gould, Re-Young Yu, Mark van der Giezen, Aloysius G M Tielens, and William F 

Martin. 2012. “Biochemistry and Evolution of Anaerobic Energy Metabolism in 

Eukaryotes.” Microbiology and Molecular Biology Reviews : MMBR 76 (2): 444–95. 

https://doi.org/10.1128/MMBR.05024-11. 

Müller, Sylke, Eva Liebau, Rolf D Walter, and R Luise Krauth-Siegel. 2003. “Thiol-Based 

Redox Metabolism of Protozoan Parasites.” Trends in Parasitology 19 (7): 320–28. 

http://www.ncbi.nlm.nih.gov/pubmed/12855383. 

Nguyen, L.-T., H. A. Schmidt, A. von Haeseler, and B. Q. Minh. 2015. “IQ-TREE: A Fast and 

Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies.” 

Molecular Biology and Evolution 32 (1): 268–74. 

https://doi.org/10.1093/molbev/msu300. 

Noda, Satoko, Tetsushi Inoue, Yuichi Hongoh, Miho Kawai, Christine A Nalepa, Charunee 

Vongkaluang, Toshiaki Kudo, and Moriya Ohkuma. 2006. “Identification and 



79 

 

Characterization of Ectosymbionts of Distinct Lineages in Bacteroidales Attached to 

Flagellated Protists in the Gut of Termites and a Wood-Feeding Cockroach.” 

Environmental Microbiology 8 (1): 11–20. https://doi.org/10.1111/j.1462-

2920.2005.00860.x. 

Noguchi, Fumiya, Shigeru Shimamura, Takuro Nakayama, Euki Yazaki, Akinori Yabuki, 

Tetsuo Hashimoto, Yuji Inagaki, Katsunori Fujikura, and Kiyotaka Takishita. 2015. 

“Metabolic Capacity of Mitochondrion-Related Organelles in the Free-Living Anaerobic 

Stramenopile Cantina Marsupialis.” Protist 166 (5): 534–50. 

https://doi.org/10.1016/j.protis.2015.08.002. 

Novák, Lukáš, Zuzana Zubáčová, Anna Karnkowska, Martin Kolisko, Miluše Hroudová, 

Courtney W. Stairs, Alastair G. B. Simpson, et al. 2016. “Arginine Deiminase Pathway 

Enzymes: Evolutionary History in Metamonads and Other Eukaryotes.” BMC 

Evolutionary Biology 16 (1): 197. https://doi.org/10.1186/s12862-016-0771-4. 

Nývltová, Eva, Tamara Smutná, Jan Tachezy, and Ivan Hrdý. 2016. “OsmC and Incomplete 

Glycine Decarboxylase Complex Mediate Reductive Detoxification of Peroxides in 

Hydrogenosomes of Trichomonas Vaginalis.” Molecular and Biochemical Parasitology 

206 (1–2): 29–38. https://doi.org/10.1016/j.molbiopara.2016.01.006. 

Nývltová, Eva, Courtney W. Stairs, Ivan Hrdý, Jakub Rídl, Jan Mach, Jan Paɥes, Andrew J. 

Roger, and Jan Tachezy. 2015. “Lateral Gene Transfer and Gene Duplication Played a 

Key Role in the Evolution of Mastigamoeba Balamuthi Hydrogenosomes.” Molecular 

Biology and Evolution 32 (4): 1039–55. https://doi.org/10.1093/molbev/msu408. 

Nývltová, Eva, Robert Šuták, Karel Harant, Miroslava Šedinová, Ivan Hrdy, Jan Paces, Čestmír 

Vlček, and Jan Tachezy. 2013. “NIF-Type Iron-Sulfur Cluster Assembly System Is 

Duplicated and Distributed in the Mitochondria and Cytosol of Mastigamoeba Balamuthi.” 

Proceedings of the National Academy of Sciences of the United States of America 110 

(18): 7371–76. https://doi.org/10.1073/pnas.1219590110. 

O’Kelly, C J, M A Farmer, and T A Nerad. 1999. “Ultrastructure of Trimastix Pyriformis 

(Klebs) Bernard et Al.: Similarities of Trimastix Species with Retortamonad and Jakobid 

Flagellates.” Protist 150 (2): 149–62. https://doi.org/10.1016/S1434-4610(99)70018-0. 

Paget, Timothy A., Mary L. Kelly, Edward L. Jarroll, Donald G. Lindmark, and David Lloyd. 

1993. “The Effects of Oxygen on Fermentation in Giardia Lamblia.” Molecular and 



80 

 

Biochemical Parasitology 57 (1): 65–71. https://doi.org/10.1016/0166-6851(93)90244-R. 

Paget, Timothy A., Michael H. Raynor, Donald W.E. Shipp, and David Lloyd. 1990. “Giardia 

Lamblia Produces Alanine Anaerobically but Not in the Presence of Oxygen.” Molecular 

and Biochemical Parasitology 42 (1): 63–67. https://doi.org/10.1016/0166-

6851(90)90113-Z. 

Pajor, Ana M. 2014. “Sodium-Coupled Dicarboxylate and Citrate Transporters from the SLC13 

Family.” Pflugers Archiv European Journal of Physiology 466 (1): 119–30. 

https://doi.org/10.1007/s00424-013-1369-y. 

Pánek, Tomáš, Jeffrey D. Silberman, Naoji Yubuki, Brian S. Leander, and Ivan Cepicka. 2012. 

“Diversity, Evolution and Molecular Systematics of the Psalteriomonadidae, the Main 

Lineage of Anaerobic/Microaerophilic Heteroloboseans (Excavata: Discoba).” Protist 163 

(6): 807–31. http://www.sciencedirect.com/science/article/pii/S1434461011001209. 

Pao, S S, I T Paulsen, M H Saier, and Jr. 1998. “Major Facilitator Superfamily.” Microbiology 

and Molecular Biology Reviews : MMBR 62 (1): 1–34. 

http://www.ncbi.nlm.nih.gov/pubmed/9529885. 

Parra, Genis, Keith Bradnam, and Ian Korf. 2007. “CEGMA: A Pipeline to Accurately Annotate 

Core Genes in Eukaryotic Genomes.” Bioinformatics 23 (9): 1061–67. 

https://doi.org/10.1093/bioinformatics/btm071. 

Patron, Nicola J, Dion G Durnford, and Stanislav Kopriva. 2008. “Sulfate Assimilation in 

Eukaryotes: Fusions, Relocations and Lateral Transfers.” BMC Evolutionary Biology 8 

(1): 39. https://doi.org/10.1186/1471-2148-8-39. 

Payne, M J, A Chapman, and R Cammack. 1993. “Evidence for an [Fe]-Type Hydrogenase in 

the Parasitic Protozoan Trichomonas Vaginalis.” FEBS Letters 317 (1–2): 101–4. 

https://doi.org/10.1016/0014-5793(93)81500-y. 

Peyretaillade, E, C Biderre, P Peyret, F Duffieux, G Méténier, M Gouy, B Michot, and C P 

Vivarès. 1998. “Microsporidian Encephalitozoon Cuniculi, a Unicellular Eukaryote with 

an Unusual Chromosomal Dispersion of Ribosomal Genes and a LSU RRNA Reduced to 

the Universal Core.” Nucleic Acids Research 26 (15): 3513–20. 

https://doi.org/10.1093/nar/26.15.3513. 

Philippe, Hervé, and Agnès Germot. 2000. “Phylogeny of Eukaryotes Based on Ribosomal 



81 

 

RNA: Long-Branch Attraction and Models of Sequence Evolution.” Molecular Biology 

and Evolution 17 (5): 830–34. https://doi.org/10.1093/oxfordjournals.molbev.a026362. 

Pollo, Stephen M. J., Sarah J. Reiling, Janneke Wit, Matthew Workentine, Rebecca A. Guy, G. 

William Batoff, Janet Yee, Brent R. Dixon, and James D. Wasmuth. 2018. “MinION Re-

Sequencing of Giardia Genomes and de Novo Assembly of a New Giardia Isolate.” 

BioRxiv, 343541. https://doi.org/10.1101/343541. 

Pütz, Simone, Pavel Dolezal, Gabriel Gelius-Dietrich, Lenka Bohacova, Jan Tachezy, and 

Katrin Henze. 2006. “Fe-Hydrogenase Maturases in the Hydrogenosomes of Trichomonas 

Vaginalis.” Eukaryotic Cell 5 (3): 579–86. https://doi.org/10.1128/EC.5.3.579-586.2006. 

Pütz, Simone, Gabriel Gelius-Dietrich, Markus Piotrowski, and Katrin Henze. 2005. 

“Rubrerythrin and Peroxiredoxin: Two Novel Putative Peroxidases in the 

Hydrogenosomes of the Microaerophilic Protozoon Trichomonas Vaginalis.” Molecular 

and Biochemical Parasitology 142 (2): 212–23. 

https://doi.org/10.1016/j.molbiopara.2005.04.003. 

Rada, Petr, Pavel Doležal, Petr L. Jedelský, Dejan Bursac, Andrew J. Perry, Miroslava 

Šedinová, Kateřina Smíšková, et al. 2011. “The Core Components of Organelle Biogenesis 

and Membrane Transport in the Hydrogenosomes of Trichomonas Vaginalis.” PLoS ONE 

6 (9): e24428. https://doi.org/10.1371/journal.pone.0024428. 

Radek, Renate. 1994. “Monocercomonoides Termitis n. Sp., an Oxymonad from the Lower 

Termite Kalotermes Sinaicus.” Archiv Für Protistenkunde 144 (4): 373–82. 

https://doi.org/10.1016/S0003-9365(11)80240-X. 

Riordan, Christina E., Jeffrey G. Ault, Susan G. Langreth, and Janet S. Keithly. 2003. 

“Cryptosporidium Parvum Cpn60 Targets a Relict Organelle.” Current Genetics 44 (3): 

138–47. https://doi.org/10.1007/s00294-003-0432-1. 

Roger, Andrew J., C. Graham Clark, and W. Ford Doolittle. 1996. “A Possible Mitochondrial 

Gene in the Early-Branching Amitochondriate Protist Trichomonas Vaginalis.” 

Proceedings of the National Academy of Sciences of the United States of America 93 (25): 

14618–22. https://doi.org/10.1073/pnas.93.25.14618. 

Roger, Andrew J., Staffan G. Svärd, Jorge Tovar, C. Graham Clark, Michael W. Smith, Frances 

D. Gillin, and Mitchell L. Sogin. 1998. “A Mitochondrial-like Chaperonin 60 Gene in 

Giardia Lamblia: Evidence That Diplomonads Once Harbored an Endosymbiont Related 



82 

 

to the Progenitor of Mitochondria.” Proceedings of the National Academy of Sciences of 

the United States of America 95 (1): 229–34. https://doi.org/10.1073/pnas.95.1.229. 

Sanchez, Lidya B., and Miklós Müller. 1996. “Purification and Characterization of the Acetate 

Forming Enzyme, Acetyl-CoA Synthetase (ADP-Forming) from the Amitochondriate 

Protist, Giardia Lamblia.” FEBS Letters 378 (3): 240–44. https://doi.org/10.1016/0014-

5793(95)01463-2. 

Schneider, Rachel E., Mark T. Brown, April M. Shiflett, Sabrina D. Dyall, Richard D. Hayes, 

Yongming Xie, Joseph A. Loo, and Patricia J. Johnson. 2011. “The Trichomonas Vaginalis 

Hydrogenosome Proteome Is Highly Reduced Relative to Mitochondria, yet Complex 

Compared with Mitosomes.” International Journal for Parasitology 41 (13–14): 1421–

34. https://doi.org/10.1016/j.ijpara.2011.10.001. 

Schofield, Philip J, M R Edwards, G Grossman, and E A Tutticci. 1995. “Amino Acid Exchange 

Activity of the Alanine Transporter of Giardia Intestinalis.” Experimental Parasitology 80 

(1): 124–32. https://doi.org/10.1006/expr.1995.1014. 

Schofield, Philip J, Michael R Edwards, Jacqueline Matthews, and Justine R Wilson. 1992. 

“The Pathway of Arginine Catabolism in Giardia Intestinalis.” Molecular and Biochemical 

Parasitology 51 (1): 29–36. https://doi.org/10.1016/0166-6851(92)90197-R. 

Shah, Preetam H, Jonathan K Stiles, Richard W Finley, William B Lushbaugh, and John C 

Meade. 2002. “Trichomonas Vaginalis: Characterization of a Family of P-Type ATPase 

Genes.” Parasitology International 51 (1): 41–51. 

http://www.ncbi.nlm.nih.gov/pubmed/11880226. 

Shimodaira, Hidetoshi. 2002. “An Approximately Unbiased Test of Phylogenetic Tree 

Selection.” Systematic Biology 51 (3): 492–508. 

https://doi.org/10.1080/10635150290069913. 

Simpson, Alastair G B. 2003. “Cytoskeletal Organization, Phylogenetic Affinities and 

Systematics in the Contentious Taxon Excavata (Eukaryota).” International Journal of 

Systematic and Evolutionary Microbiology 53 (6): 1759–77. 

https://doi.org/10.1099/ijs.0.02578-0. 

Slamovits, Claudio H, and Patrick J Keeling. 2006a. “Pyruvate-Phosphate Dikinase of 

Oxymonads and Parabasalia and the Evolution of Pyrophosphate-Dependent Glycolysis 

in Anaerobic Eukaryotes.” Eukaryotic Cell 5 (1): 148. https://doi.org/10.1128/EC.5.1.148-



83 

 

154.2006. 

———. 2006b. “A High Density of Ancient Spliceosomal Introns in Oxymonad Excavates.” 

BMC Evolutionary Biology 6 (April): 34. https://doi.org/10.1186/1471-2148-6-34. 

Šmíd, Ondřej, Anna Matušková, Simon R. Harris, Tomáš Kučera, Marián Novotný, Lenka 

Horváthová, Ivan Hrdý, et al. 2008. “Reductive Evolution of the Mitochondrial Processing 

Peptidases of the Unicellular Parasites Trichomonas Vaginalis and Giardia Intestinalis.” 

PLoS Pathogens 4 (12): e1000243. https://doi.org/10.1371/journal.ppat.1000243. 

Smith, Anthony C., James A. Blackshaw, and Alan J. Robinson. 2012. “MitoMiner: A Data 

Warehouse for Mitochondrial Proteomics Data.” Nucleic Acids Research 40 (D1): D1160-

7. https://doi.org/10.1093/nar/gkr1101. 

Smutná, Tamara, Vera L. Gonçalves, Lígia M. Saraiva, Jan Tachezy, Miguel Teixeira, and Ivan 

Hrdý. 2009. “Flavodiiron Protein from Trichomonas Vaginalis Hydrogenosomes: The 

Terminal Oxygen Reductase.” Eukaryotic Cell 8 (1): 47–55. 

https://doi.org/10.1128/EC.00276-08. 

Sodani, Kamlesh, Atish Patel, Rishil J Kathawala, and Zhe-Sheng Chen. 2012. “Multidrug 

Resistance Associated Proteins in Multidrug Resistance.” Chinese Journal of Cancer 31 

(2): 58–72. https://doi.org/10.5732/cjc.011.10329. 

Spang, Anja, Jimmy H Saw, Steffen L Jørgensen, Katarzyna Zaremba-Niedzwiedzka, Joran 

Martijn, Anders E Lind, Roel van Eijk, Christa Schleper, Lionel Guy, and Thijs J G 

Ettema. 2015. “Complex Archaea That Bridge the Gap between Prokaryotes and 

Eukaryotes.” Nature 521 (7551): 173–79. https://doi.org/10.1038/nature14447. 

Stadelmann, Britta, Kurt Hanevik, Mattias K Andersson, Oystein Bruserud, and Staffan G 

Svärd. 2013. “The Role of Arginine and Arginine-Metabolizing Enzymes during Giardia 

- Host Cell Interactions in Vitro.” BMC Microbiology 13 (1): 256. 

https://doi.org/10.1186/1471-2180-13-256. 

Stairs, Courtney W, Laura Eme, Matthew W Brown, Cornelis Mutsaers, Edward Susko, 

Graham Dellaire, Darren M Soanes, Mark van der Giezen, and Andrew J Roger. 2014. “A 

SUF Fe-S Cluster Biogenesis System in the Mitochondrion-Related Organelles of the 

Anaerobic Protist Pygsuia.” Current Biology : CB 24 (11): 1176–86. 

https://doi.org/10.1016/j.cub.2014.04.033. 



84 

 

Stamatakis, Alexandros. 2014. “RAxML Version 8: A Tool for Phylogenetic Analysis and Post-

Analysis of Large Phylogenies.” Bioinformatics (Oxford, England) 30 (9): 1312–13. 

https://doi.org/10.1093/bioinformatics/btu033. 

Stechmann, Alexandra, Manuela Baumgartner, Jeffrey D Silberman, and Andrew J Roger. 

2006. “The Glycolytic Pathway of Trimastix Pyriformis Is an Evolutionary Mosaic.” BMC 

Evolutionary Biology 6 (January): 101. https://doi.org/10.1186/1471-2148-6-101. 

Steinbüchel, Alexander, and Miklós Müller. 1986. “Anaerobic Pyruvate Metabolism of 

Tritrichomonas Foetus and Trichomonas Vaginalis Hydrogenosomes.” Molecular and 

Biochemical Parasitology 20 (1): 57–65. https://doi.org/10.1016/0166-6851(86)90142-8. 

Strimmer, Korbinian, and Andrew Rambaut. 2002. “Inferring Confidence Sets of Possibly 

Misspecified Gene Trees.” Proceedings. Biological Sciences / The Royal Society 269: 

137–42. https://doi.org/10.1098/rspb.2001.1862. 

Sutak, Robert, Pavel Dolezal, Heather L. Fiumera, Ivan Hrdy, Andrew Dancist, Maria 

Delgadillo-Correa, Patricia J. Johnson, Miklós Müller, and Jan Tachezy. 2004. 

“Mitochondrial-Type Assembly of FeS Centers in the Hydrogenosomes of the 

Amitochondriate Eukaryote Trichomonas Vaginalis.” Proceedings of the National 

Academy of Sciences of the United States of America 101 (28): 10368–73. 

https://doi.org/10.1073/pnas.0401319101. 

Tachezy, Jan, Lidya B. Sanchez, and Miklos Muller. 2001. “Mitochondrial Type Iron-Sulfur 

Cluster Assembly in the Amitochondriate Eukaryotes Trichomonas Vaginalis and Giardia 

Intestinalis, as Indicated by the Phylogeny of IscS.” Mol. Biol. Evol. 18 (10): 1919–28. 

http://mbe.oxfordjournals.org/cgi/content/abstract/18/10/1919. 

Takishita, Kiyotaka, Martin Kolisko, Hiroshi Komatsuzaki, Akinori Yabuki, Yuji Inagaki, Ivan 

Cepicka, Pavla Smejkalová, et al. 2012. “Multigene Phylogenies of Diverse 

Carpediemonas-like Organisms Identify the Closest Relatives of ‘Amitochondriate’ 

Diplomonads and Retortamonads.” Protist 163 (3): 344–55. 

http://www.sciencedirect.com/science/article/pii/S1434461012000181. 

Tanifuji, Goro, Shun Takabayashi, Keitaro Kume, Mizue Takagi, Takuro Nakayama, Ryoma 

Kamikawa, Yuji Inagaki, and Tetsuo Hashimoto. 2018. “The Draft Genome of Kipferlia 

Bialata Reveals Reductive Genome Evolution in Fornicate Parasites.” PLoS ONE 13 (3). 

https://doi.org/10.1371/JOURNAL.PONE.0194487. 



85 

 

Tekle, Yonas I., O. Roger Anderson, Laura A. Katz, Xyrus X. Maurer-Alcalá, Mario Alberto 

Cerón Romero, and Robert Molestina. 2016. “Phylogenomics of ‘Discosea’: A New 

Molecular Phylogenetic Perspective on Amoebozoa with Flat Body Forms.” Molecular 

Phylogenetics and Evolution 99 (June): 144–54. 

https://doi.org/10.1016/J.YMPEV.2016.03.029. 

Tielens, Aloysius G.M., Koen W.A. van Grinsven, Katrin Henze, Jaap J. van Hellemond, and 

William Martin. 2010. “Acetate Formation in the Energy Metabolism of Parasitic 

Helminths and Protists.” International Journal for Parasitology 40 (4): 387–97. 

https://doi.org/10.1016/J.IJPARA.2009.12.006. 

Tovar, Jorge, Anke Fischer, and C. Graham Clark. 1999. “The Mitosome, a Novel Organelle 

Related to Mitochondria in the Amitochondrial Parasite Entamoeba Histolytica.” 

Molecular Microbiology 32 (5): 1013–21. https://doi.org/10.1046/j.1365-

2958.1999.01414.x. 

Tovar, Jorge, Gloria León-Avila, Lidya B Sánchez, Robert Sutak, Jan Tachezy, Mark van der 

Giezen, Manuel Hernández, Miklós Müller, and John M. Lucocq. 2003. “Mitochondrial 

Remnant Organelles of Giardia Function in Iron-Sulphur Protein Maturation.” Nature 426 

(6963): 172–76. https://doi.org/10.1038/nature01945. 

Treitli, Sebastian C., Martin Kolisko, Filip Husník, Patrick J. Keeling, and Vladimír Hampl. 

2019. “ Revealing the Metabolic Capacity of Streblomastix Strix and Its Bacterial 

Symbionts Using Single-Cell Metagenomics .” Proceedings of the National Academy of 

Sciences 116 (39): 19675–84. https://doi.org/10.1073/pnas.1910793116. 

Treitli, Sebastian C., Michael Kotyk, Naoji Yubuki, Eliška Jirounková, Jitka Vlasáková, Pavla 

Smejkalová, Petr Šípek, Ivan Čepička, and Vladimír Hampl. 2018. “Molecular and 

Morphological Diversity of the Oxymonad Genera Monocercomonoides and Blattamonas 

Gen. Nov.” Protist 169 (5): 744–83. https://doi.org/10.1016/j.protis.2018.06.005. 

Tsaousis, Anastasios D, Sandrine Ollagnier de Choudens, Eleni Gentekaki, Shaojun Long, 

Daniel Gaston, Alexandra Stechmann, Daniel Vinella, et al. 2012. “Evolution of Fe/S 

Cluster Biogenesis in the Anaerobic Parasite Blastocystis.” Proceedings of the National 

Academy of Sciences of the United States of America 109 (26): 10426–31. 

https://doi.org/10.1073/pnas.1116067109. 

Vacek, Vojtěch, Lukáš V F Novák, Sebastian C Treitli, Petr Táborský, Ivan Čepička, Martin 



86 

 

Kolísko, Patrick J Keeling, Vladimír Hampl, and Iñaki Ruiz-Trillo. 2018. “Fe-S Cluster 

Assembly in Oxymonads and Related Protists.” Molecular Biology and Evolution. 

https://doi.org/10.1093/molbev/msy168. 

Vaňáčová, Štěpánka, Weihong Yan, Jane M Carlton, and Patricia J Johnson. 2005. 

“Spliceosomal Introns in the Deep-Branching Eukaryote Trichomonas Vaginalis.” 

Proceedings of the National Academy of Sciences of the United States of America 102 

(12): 4430–35. https://doi.org/10.1073/pnas.0407500102. 

Vávra, Jiří. 1976. “Structure of the Microsporidia.” In Biology of the Microsporidia, 1–84. 

Boston, MA: Springer US. https://doi.org/10.1007/978-1-4684-3114-8_1. 

Viscogliosi, Eric, Pilar Delgado-Viscogliosi, Delphine Gerbod, Manuel Dauchez, Sylvie 

Gratepanche, Alain J.P Alix, and Daniel Dive. 1998. “Cloning and Expression of an Iron-

Containing Superoxide Dismutase in the Parasitic Protist, Trichomonas Vaginalis.” FEMS 

Microbiology Letters 161 (1): 115–23. https://doi.org/10.1111/j.1574-

6968.1998.tb12936.x. 

Viscogliosi, Eric, Herve Philippe, Anne Baroin, Roland Perasso, and Guy Brugerolle. 1993. 

“Phylogeny of Trichomonads Based On Partial Sequences of Large Subunit Rrna and On 

Cladistic Analysis of Morphological Data.” Journal of Eukaryotic Microbiology 40 (4): 

411–21. https://doi.org/10.1111/j.1550-7408.1993.tb04935.x. 

Vivares, C., C. Biderre, F. Duffieux, E. Peyretaillade, P. Peyret, C. Metenier, and M. Pages. 

1996. “Chromosomal Localization of Five Genes in Encephalitozoon Cuniculi 

(Microsporidia).” The Journal of Eukaryotic Microbiology 43 (5): 97S-97S. 

https://doi.org/10.1111/j.1550-7408.1996.tb05021.x. 

Vossbrinck, Charles R., J. V. Maddox, S. Friedman, B. A. Debrunner-Vossbrinck, and C. R. 

Woese. 1987. “Ribosomal RNA Sequence Suggests Microsporidia Are Extremely Ancient 

Eukaryotes.” Nature 326 (6111): 411–14. https://doi.org/10.1038/326411a0. 

Vossbrinck, Charles R., and Carl R. Woese. 1986. “Eukaryotic Ribosomes That Lack a 5.8S 

RNA.” Nature 320 (6059): 287–88. https://doi.org/10.1038/320287a0. 

Westrop, Gareth D., Gordon Goodall, Jeremy C. Mottram, and Graham H. Coombs. 2006. 

“Cysteine Biosynthesis in Trichomonas Vaginalis Involves Cysteine Synthase Utilizing O 

-Phosphoserine.” Journal of Biological Chemistry 281 (35): 25062–75. 

https://doi.org/10.1074/jbc.M600688200. 



87 

 

Westrop, Gareth D., Lijie Wang, Gavin J. Blackburn, Tong Zhang, Liang Zheng, David G. 

Watson, and Graham H. Coombs. 2017. “Metabolomic Profiling and Stable Isotope 

Labelling of Trichomonas Vaginalis and Tritrichomonas Foetus Reveal Major Differences 

in Amino Acid Metabolism Including the Production of 2-Hydroxyisocaproic Acid, 

Cystathionine and S-Methylcysteine.” PLOS ONE 12 (12): e0189072. 

https://doi.org/10.1371/journal.pone.0189072. 

Williams, Bryony A.P., Robert P Hirt, John M Lucocq, and T Martin Embley. 2002. “A 

Mitochondrial Remnant in the Microsporidian Trachipleistophora Hominis.” Nature 418 

(6900): 865–69. https://doi.org/10.1038/nature00949. 

Williams, K, P N Lowe, and P F Leadlay. 1987. “Purification and Characterization of Pyruvate: 

Ferredoxin Oxidoreductase from the Anaerobic Protozoon Trichomonas Vaginalis.” The 

Biochemical Journal 246 (2): 529–36. https://doi.org/10.1042/bj2460529. 

Xu, Feifei, Jon Jerlström-Hultqvist, Elin Einarsson, Ásgeir Ástvaldsson, Staffan G. Svärd, and 

Jan O. Andersson. 2014. “The Genome of Spironucleus Salmonicida Highlights a Fish 

Pathogen Adapted to Fluctuating Environments.” PLoS Genetics 10 (2): e1004053. 

https://doi.org/10.1371/journal.pgen.1004053. 

Xu, Ping, Giovanni Widmer, Yingping Wang, Lulz S Ozaki, Joao M Alves, Myrna G Serrano, 

Daniela Pulu, et al. 2004. “The Genome of Cryptosporidium Hominis.” Nature 431 (7012): 

1107–12. https://doi.org/10.1038/nature02977. 

Yamamoto, Ayako, Tetsuo Hashimoto, Emiko Asaga, Masami Hasegawa, and Nobuichi Goto. 

1997. “Phylogenetic Position of the Mitochondrion-Lacking Protozoan Trichomonas 

Tenax, Based on Amino Acid Sequences of Elongation Factors 1α and 2.” Journal of 

Molecular Evolution 44 (1): 98–105. https://doi.org/10.1007/PL00006127. 

Yarlett, Nigel, Donald G Lindmark, Burt Goldberg, M Ali Moharrami, and Cyrus J Bacchi. 

1994. “Subcellular Localization of the Enzymes of the Arginine Dihydrolase Pathway in 

Trichomonas Vaginalis and Tritrichomonas Foetus.” Journal of Eukaryotic Microbiology 

41 (6): 554–59. https://doi.org/10.1111/j.1550-7408.1994.tb01516.x. 

Yarlett, Nigel, Martha P. Martinez, M. Ali Moharrami, and Jan Tachezy. 1996. “The 

Contribution of the Arginine Dihydrolase Pathway to Energy Metabolism by Trichomonas 

Vaginalis.” Molecular and Biochemical Parasitology 78 (1–2): 117–25. 

https://doi.org/10.1016/S0166-6851(96)02616-3. 



88 

 

Yubuki, Naoji, Tomáš Pánek, Akinori Yabuki, Ivan Čepička, Kiyotaka Takishita, Yuji Inagaki, 

and Brian S. Leander. 2015. “Morphological Identities of Two Different Marine 

Stramenopile Environmental Sequence Clades: Bicosoeca Kenaiensis (Hilliard, 1971) and 

Cantina Marsupialis (Larsen and Patterson, 1990) Gen. Nov., Comb. Nov.” Journal of 

Eukaryotic Microbiology 62 (4): 532–42. https://doi.org/10.1111/jeu.12207. 

Yubuki, Naoji, Eliška Zadrobílková, and Ivan Čepička. 2017. “Ultrastructure and Molecular 

Phylogeny of Iotanema Spirale Gen. Nov. et Sp. Nov., a New Lineage of Endobiotic 

Fornicata with Strikingly Simplified Ultrastructure.” Journal of Eukaryotic Microbiology 

64 (4): 422–33. https://doi.org/10.1111/jeu.12376. 

Zhang, Qianqian, Petr Táborský, Jeffrey D Silberman, Tomáš Pánek, Ivan Čepička, and Alastair 

G B Simpson. 2015. “Marine Isolates of Trimastix Marina Form a Plesiomorphic Deep-

Branching Lineage within Preaxostyla, Separate from Other Known Trimastigids 

(Paratrimastix n. Gen.).” Protist 166 (4): 468–91. 

https://doi.org/10.1016/j.protis.2015.07.003. 

Zubáčová, Zuzana, Lukáš Novák, Jitka Bublíková, Vojtěch Vacek, Jan Fousek, Jakub Rídl, Jan 

Tachezy, Pavel Doležal, Čestmír Vlček, and Vladimír Hampl. 2013. “The Mitochondrion-

Like Organelle of Trimastix Pyriformis Contains the Complete Glycine Cleavage 

System.” PLoS ONE 8 (3): e55417. https://doi.org/10.1371/journal.pone.0055417. 

Zuo, X., B. C. Lockwood, and G. H. Coombs. 1995. “Uptake of Amino Acids by the Parasitic, 

Flagellated Protist Trichomonas Vaginalis.” Microbiology 141 (10): 2637–42. 

https://doi.org/10.1099/13500872-141-10-2637. 



Article

A Eukaryote without a Mitochondrial Organelle

Graphical Abstract

Highlights

d Monocercomonoides sp. is a eukaryotic microorganism with

no mitochondria

d The complete absence of mitochondria is a secondary loss,

not an ancestral feature

d The essential mitochondrial ISC pathway was replaced by a

bacterial SUF system

Authors

Anna Karnkowska, Vojtech Vacek,
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SUMMARY

The presence of mitochondria and related organelles

in every studied eukaryote supports the view that

mitochondria are essential cellular components.

Here, we report the genome sequence of a microbial

eukaryote, the oxymonad Monocercomonoides sp.,

which revealed that this organism lacks all hallmark

mitochondrial proteins. Crucially, the mitochondrial

iron-sulfur cluster assembly pathway, thought to be

conserved in virtually all eukaryotic cells, has been

replaced by a cytosolic sulfur mobilization system

(SUF) acquired by lateral gene transfer from bacteria.

In the context of eukaryotic phylogeny, our data

suggest that Monocercomonoides is not primitively

amitochondrial but has lost the mitochondrion

secondarily. This is the first example of a eukaryote

lacking any form of a mitochondrion, demonstrating

that this organelle is not absolutely essential for the

viability of a eukaryotic cell.

INTRODUCTION

Mitochondria are organelles that arose through the endosymbi-

otic integration of an a-proteobacterial endosymbiont into the

proto-eukaryote host cell. During the course of eukaryotic evolu-

tion, the genome and proteome of the mitochondrial compart-

ment have been significantly modified, and many functions

have been gained, lost, or relocated [1]. In extreme cases, the

derivatives of mitochondria in anaerobic protists had become

so modified that they had been overlooked [2] or not recognized

as homologous to the mitochondrion [3]. Indeed, in the 1980s,

the Archezoa hypothesis [4] proposed that some microbial eu-

karyotes primitively lacked mitochondria, peroxisomes, stacked

Golgi apparatus, spliceosomal introns, and sexual reproduction.

However, over the following decade, double-membraned organ-

elles were identified in all investigated putative Archezoa. The

final nail in the coffin of the Archezoa hypothesis was the demon-

stration that these organelles all contain some mitochondrial

marker proteins, such as those involved in the iron-sulfur cluster

(ISC) Fe-S clusters biogenesis system, translocases, maturases,

and/or molecular chaperones known to facilitate the import of

proteins into mitochondria. It is now widely accepted that mito-

chondria or mitochondrion-related organelles (MROs) are essen-

tial compartments in all contemporary eukaryotes and that mito-

chondrial endosymbiosis took place before radiation of all extant

eukaryotes [5].

Metamonada, originally part of the Archezoa, are now classi-

fied as one of the main clades of the eukaryotic ‘‘super-group’’

Excavata [6] and are comprised of microaerophilic or anaerobic

unicellular eukaryotes that are often specialized parasites or

symbionts. Detailed cell and molecular biological studies,

including genome sequencing, have been undertaken only for

three parasitic species from two metamonad lineages—Giardia

intestinalis [7] and Spironucleus salmonicida [8] (Fornicata) and

Trichomonas vaginalis [9] (Parabasalia), which have provided

important information regarding the functions of their MROs.

The third lineage of metamonads, Preaxostyla, contains the

basal paraphyletic free-living trimastigids and the derived endo-

biotic oxymonads [10]. The presence of mitochondrial homologs

has been convincingly demonstrated in Paratrimastix (formerly

Trimastix) pyriformis, although the biochemical functions of

these organelles are largely unknown [11]. Endobiotic oxymo-

nads belong to the least-studied former Archezoa. Here, we

describe the first complete genome sequence analysis of an

oxymonad, Monocercomonoides sp. PA203. We find that

although this organism is a standard eukaryotic cell in other re-

spects, it completely lacks any traces of a mitochondrion.

RESULTS AND DISCUSSION

Genome Characteristics

Using the 454 whole-genome shotgun sequencing methodol-

ogy, we generated a draft genome sequence of the oxymonad

Monocercomonoides sp. PA203, assembled into 2,095 scaf-

folds at 353 coverage (see Experimental Procedures). The

estimated size of the genome ( 75 Mb) and the number of pre-

dicted protein-coding genes (16,629) is intermediate between

what is found in diplomonads and T. vaginalis (Table 1). Almost

67% of predicted protein-coding genes contain introns ( 1.9 in-

trons per gene on average; Table 1). The assembly contains

genes encoding tRNAs for all 20 amino acids, and 50 ribosomal
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DNA units were identified on small contigs outside the main as-

sembly (see Supplemental Experimental Procedures). To esti-

mate completeness of the genome sequence, we performed

transcriptome mapping, in which 96.9% of transcripts mapped

to the genome (see Supplemental Experimental Procedures),

and checked the representation of core eukaryotic genes. Using

the Core Eukaryotic Genes Mapping Approach (CEGMA) [12],

we recovered 63.3% of core eukaryotic genes, a greater fraction

than in the G. intestinalis genome (46.6%). However, when we

excluded genes encoding mitochondrial proteins from the

CEGMA dataset and used manually curated Monocercomo-

noides sp. gene models, the percentage of recovered genes

increased to 90% (Table S1). For another set of 163 conserved

eukaryotic genes used for phylogenomic analyses, the percent-

age of recovered genes exceeded 95% (Table S2). As the last

measure of completeness, we identified 77 out of 78 conserved

families of cytosolic eukaryotic ribosomal proteins [13] (Table

S3), with the single exception of L41e, which is very short, diffi-

cult to detect, and has not been identified in other Metamonada

genomes. Phylogenomic analysis (Figure 1) confirmed the rela-

tionship of Monocercomonoides sp. to P. pyriformis and other

Metamonada and demonstrated that the Monocercomonoides

lineage forms a much shorter branch relative to parabasalids

and diplomonads. All these measures suggest that the assem-

bledMonocercomonoides sp. genome sequence is nearly com-

plete and its encoded proteins are, on average, less divergent

than those of G. intestinalis and T. vaginalis.

With the first oxymonad genome sequence in hand, we

focused our attention on one of the most puzzling aspects of

their biology—the elusive nature of their mitochondrion.

Absence of Mitochondrial Proteins

No genes that are typically encoded on mitochondrial genomes

(mtDNA) of other eukaryotes were found among the assembled

scaffolds, suggesting that, like other metamonads, Monocerco-

monoides sp. lacks mtDNA. Next, we searched for homologs

of nuclear genome-encoded proteins typically associated with

mitochondria or MROs in other eukaryotes. The homologous

core of the protein import machinery is regarded as strong evi-

dence for the common origin of all mitochondria [14, 15]. As

such, the presence of components of the translocases of the

outer membrane (TOM) and inner membrane (TIM), sorting and

assembly machinery (SAM) complex, and mitochondrial molec-

ular chaperones (Hsp70 and Cpn60) in hydrogenosomes, mito-

somes, and other MROs demonstrates that these organelles

are related to mitochondria [16, 17]. While we were able to iden-

tify homologs of cytosolic chaperonins in the Monocercomo-

noides sp. genomic sequence, we were unable to identify homo-

logs of any component of the mitochondrial import machinery

(Figure 2A; Experimental Procedures; Tables S3 and S4).

All MROs, with the exception of the G. intestinalis mitosome

[18], are known to export or import ATP and other metabolites

typically using transporters from the mitochondrial carrier family

(MCF) or, in mitosomes of the microsporidian Encephalitozoon

cuniculi [19], by the bacterial-type (NTT-like) nucleotide trans-

porters. We did not identify in the Monocercomonoides sp.

genome any homologs of genes encoding known mitochondrial

metabolite transport proteins (Figure 2A; Table S4).

Fe-S clusters are essential biological cofactors associated

with many different proteins and are therefore synthesized de

novo in every organism across the tree of life [20]. In eukaryotes,

this is done mostly by the mitochondrial ISC assembly system

and the cytosolic iron-sulfur assembly (CIA) system [21]. Ana-

lyses of theMonocercomonoides sp. genome revealed the pres-

ence of a CIA system but a complete lack of components of the

ISC system (Figure 2A; Table S3; Experimental Procedures).

We could not identify either of two possible enzymes involved

in the synthesis of cardiolipin, a phospholipid specific for energy-

transducingmembranes [22]. Themajority of eukaryotes synthe-

size cardiolipins, and the process is localized to mitochondria,

but a complete lack of cardiolipin has been experimentally shown

for G. intestinalis, T. vaginalis, and E. cuniculi [22]. Furthermore,

we could not identify any component of the endoplasmic

reticulum (ER)-mitochondria encounter structure (ERMES; Fig-

ure 2A) [23].

We identified only two orthologs of the set of proteins pre-

dicted to localize to the mitochondrion-related compartment of

the closely related P. pyriformis [11]: aspartate/ornithine carba-

moyltransferase family protein and pyridine nucleotide transhy-

drogenase. Neither protein has an exclusively mitochondrial

localization in eukaryotes [24, 25], and theMonocercomonoides

sp. orthologs do not contain predicted mitochondrial targeting

sequences.

To complement the targeted homology-based searches, we

also performed an extensive search for putative homologs of

known mitochondrial proteins using a pipeline based on the

Mitominer database [26], which was enriched with identified

mitochondrial proteins of diverse anaerobic eukaryotes with

MROs (Experimental Procedures). The search recovered 76

Monocercomonoides sp. proteins as candidates for functions

in a putative mitochondrion (Figure 2B; Table S5). Similarly to

G. intestinalis, T. vaginalis, and E. histolytica, used as controls,

the selected candidates were mainly proteins that are obviously

not mitochondrial (e.g., histones) or for which the annotation

is too general (e.g. ‘‘kinase domain-containing protein’’), indi-

cating that the specificity of the pipeline in organisms with

Table 1. Overview of Metamonada Genomes

Taxa Size (Mbp)

Guanine-Cytosine

Content (%)

Protein-Coding

Loci

Repetitive

Regions

No. of

Introns

Monocercomonoides sp. PA 203 75 36.8 16,629 38% 32,328

Trichomonas vaginalis isolate G3 [9] 160 32.7 60,000 65% 65

Giardia intestinalis WB-C6 [7] 11.7 49 6,480 9% 4

Spironucleus salmonicida ATCC 50377 [8] 12.9 33.4 8,076 5.2% 3

See also Tables S1 and S3.
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divergent mitochondrion is low. However, unlike all other control

organisms, in which the search always recovered at least a few

mitochondrial hallmark proteins, the set of 76 Monocercomo-

noides sp. candidates did not contain any such proteins. Only

11 of the Monocercomonoides candidates fall in the GO cate-

gory ‘‘metabolism,’’ but they do not assemble any obviousmeta-

bolic pathway. In summary, this approach (Table S5) failed to

reveal any credible set of mitochondrial protein in Monocerco-

monoides sp.

As an alternative to homology searches, we have also attemp-

ted to identify mitochondrial proteins by searching for several

types of signature sequences. The matrix proteins of mitochon-

dria and MROs are expected to contain conserved N-terminal

targeting signals needed for the targeted import into MROs

[14]. We performed in silico prediction of mitochondrial targeting

signals in the predicted Monocercomonoides sp. proteome and

identified 107 candidate proteins (Figure 2A; Experimental Pro-

cedures; TableS6A). Thepresenceof a predicted targeting signal

by itself does not prove the targeting, as such amino acid se-

quences can also appear at random [27]. Functional annotation

revealed that a majority of proteins recovered by this search fall

into the Kyoto Encyclopedia of Genes and Genomes (KEGG)

category ‘‘genetic information processing.’’ Given the absence

of a mitochondrial genome, or organellar translation machinery,

it is unlikely that these proteins function in an MRO. Only eight

candidates were assigned to the KEGG category ‘‘metabolism,’’

and they are part of several different metabolic pathways. Finally,

only three proteins were predicted to have a mitochondrial
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Figure 1. Unrooted Phylogeny of Eukaryotes Inferred from a 163-Protein Supermatrix

The tree displayed was inferred using PhyloBayes (CAT + Poisson substitution model). A maximum-likelihood (ML) tree inferred from the same supermatrix using

RAxML (not shown) was very similar to the PhyloBayes tree, with the topological differences in the poorly resolved area comprising Chloroplastida, Cryptophyta,

Glaucophyta, and Haptophyta, and in the position of Metamonada, in the ML tree placed sister (with strong bootstrap support) to Discoba. The branch support

values shown are posterior probabilities (>0.95) from the PhyloBayes analysis and bootstrap values (>50%) from the ML analysis. Three branches are shown

shortened to the indicated percentage of their actual length to fit them on the page. See also Table S2.
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targeting signal and homology to a Mitominer protein (hydro-

lase-like family protein MONOS_10795, cytosolic TCP-1/cpn60

chaperonin family protein MONOS_13132, and ribonuclease

Z MONOS_6181). This also suggests that both pipelines failed

to recover specific sets of mitochondrial proteins but instead

detected only low-specificity ‘‘noise.’’

A

B

Figure 2. Search Strategies for Proteins Functionally Related to the Mitochondrion in Monocercomonoides

(A) Search strategies for mitochondrial proteins and for protein-localization signatures in a canonical eukaryotic cell (details are given in Supplemental Experi-

mental Procedures): (1) mitochondrial outer membrane (MOM)-targeted tail-anchored (TA) proteins (Table S6B), (2) proteins with a mitochondrial targeting signal

(Table S6A), (3) b-barrel MOM proteins, (4) 41 mitochondrial hallmarks proteins (Table S4), components of TOM and TIM translocases, cpn60, ERMES complex,

ISC pathway components, cardiolipin synthase (CL).

(B) Semiautomatic pipeline for retrieving homologs of mitochondrial proteins from proteomes. We used a custom database for homology searching of mito-

chondrial proteins in the predicted proteomes of Monocercomonoides sp., Giardia intestinalis, Entamoeba histolytica, Trichomonas vaginalis, Blastocystis sp.

subtype 7, and Saccharomyces cerevisiae (Table S5).

See also Tables S4, S5, and S6.
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The outer mitochondrial membranes accommodate two spe-

cial classes of proteins, b-barrel and tail-anchored (TA) proteins,

which are devoid of the N-terminal targeting signals and instead

use specific C-terminal signals [28, 29]. We have identified 32

candidates for TA proteins in the predicted proteome, several

of which appeared to be ER-targeted proteins. None of these

had the hallmark characteristics of proteins targeted to the mito-

chondrial outer membrane (Figure 2A; Experimental Procedures;

Table S6B). We also failed to identify any credible candidates for

b-barrel outer membrane proteins (BOMPs) (Figure 2A; Experi-

mental Procedures).

In summary, our comprehensive examination of theMonocer-

comonoides sp. genome based on homology searches and

searches for specific N-terminal and C-terminal signals failed

to recover proteins typically associated with MROs, including

mitochondrial translocases, metabolite transporters and the

ISC system for Fe-S cluster synthesis, ERMES, and enzymes

responsible for cardiolipin synthesis.

In order to verify that our inability to find any reliable mitochon-

drial proteins is not caused by possible unprecedented diver-

gence of Monocercomonoides sp. proteins or a failure of our

methods, we searched for hallmark proteins of another cellular

system, so far not observed in Monocercomonoides sp.—the

Golgi complex. In this case, using homology-based searches,

we detected numerous Golgi-associated proteins, including

components of the COPI, AP-1, AP-3, AP-4, COG, GARP,

TRAPPI, and Retromer complexes and Rab GTPases regulating

transport to and from the Golgi (Table S3). This suggests the

presence of Golgi-like compartments in oxymonads [30], despite

the absence of a cytologically discernible Golgi apparatus.

The specific absence of mitochondria-associated proteins

in Monocercomonoides sp. implies the legitimate absence of a

mitochondrial compartment. If so, then how does the Monocer-

comonoides cell function without this organelle?

Energy Metabolism without a Mitochondrion

In order to compare the metabolism ofMonocercomonoides sp.

with anaerobic protists retaining mitochondrial compartments,

we performed manual annotation of proteins of core pathways

of energy metabolism normally associated with the presence

and function of a MRO. As with many other organisms with

secondarily reduced mitochondria, the Monocercomonoides

sp. genome does not encode any enzymes for aerobic energy

generation (e.g., TCA cycle or electron transport chain proteins).

We did identify a complete set of glycolytic enzymes, including

the alternative enzymes for anaerobic glycolysis [31], as well

as the anaerobic fermentation enzymes pyruvate:ferredoxin

oxidoreductase (PFOR) and [FeFe]-hydrogenases (Table S3).

[FeFe]-hydrogenase maturases were absent, which is not un-

precedented as they are also missing from G. intestinalis and

E. histolytica, anaerobic parasites that are both capable of cyto-

solic H2 production [32, 33]. Neither PFOR nor [FeFe]-hydroge-

nase has a predicted mitochondrial targeting sequence, and

heterologous expression in T. vaginalis suggests a cytosolic

localization of PFOR (Figure S1). In summary, Monocercomo-

noides sp. glucosemetabolism appears to produce ATP via sub-

strate-level phosphorylation steps in an extended glycolysis

pathway, and the reduced co-factors are re-oxidized by fermen-

tation, ultimately producing acetate and ethanol, or by [FeFe]-hy-

drogenase producing hydrogen gas. The situation in Monocer-

comonoides sp. is virtually identical to G. intestinalis and

E. histolytica, which independently reduced their mitochondria

to mitosomes and all the ATP production occurs in the cytosol

[34–36].

In addition to extended glycolysis, Monocercomonoides sp.

contains a complete set of three genes for enzymes involved in

arginine deiminase pathway—arginine deiminase, ornithine car-

bamoyltransferase, and carbamate kinase. This pathway may

also be used for ATP production by arginine degradation as in

T. vaginalis and G. intestinalis [37, 38]. In G. intestinalis, this

pathway produces eight timesmore ATP than sugarmetabolism.

Fe-S Cluster Assembly without a Mitochondrion

Every eukaryotic cell contains a CIA machinery, which assists

the final stages of the assembly of Fe-S clusters in proteins

functioning in the eukaryotic cytosol and nucleus. Eight proteins

were shown to be involved in the CIA pathway in yeast and

humans: Cfd1, NUBP1 (Nbp35), NARFL (Nar1), CIAO1 (Cia1),

Dre2, Tah18, Cia2, and MMS19. Four of them (i.e., Nbp35,

Nar1, Cia1, and Cia2) [21] are conserved among eukaryotes

and also present in the Monocercomonoides sp. genome

(Table S3). We did not identify Cfd1 and MMS19, which are

missing from many other eukaryotes, and Dre2 and Tah18,

which are missing from the anaerobic protists containing

MROs (including E. histolytica, Mastigamoeba balamuthi,

T. vaginalis, G. intestinalis, and Blastocystis sp.) [21].

Despite the presence of the CIA pathway, it is commonly sug-

gested that mitochondria and related organelles are essential to

eukaryotic cells because the mitochondrial ISC system plays a

critical role in the initial phase of the formation of cytosolic Fe-

S clusters [20]. Although the ISC system is a near-universally

conserved pathway in eukaryotes and seems to be the unifying

feature of mitochondria and related organelles, genes encoding

proteins of the mitochondrial ISC pathway have not been de-

tected in the Monocercomonoides sp. genome. The functional

replacement of the ISC system has been reported for only two

lineages, Pygsuia biforma (Breviatea) and Archamoebae. A

methanoarcheal sulfur mobilization (SUF) system [39] or a bacte-

rial nitrogen fixation (NIF) [40] has apparently replaced the ISC

system in the P. biforma and the Archamoebae lineages, respec-

tively. Conflicting data exist on the localization of the NIF system

in E. histolytica [41, 42]; however, inM. balamuthi, the NIF system

localizes in the cytosol and the MRO [43].

The major issue remains: how does Monocercomonoides sp.

form Fe-S clusters? Unexpectedly, we identified genes encoding

four subunits of the SUF system: SufB, SufC, and fused SufS and

SufU (Table S3). SufS is a ‘‘two-component’’ cysteine desulfur-

ase, and its activity might be enhanced by SufE or SufU [44,

45]. In Monocercomonoides sp., SufS is fused with SufU, which

is a unique feature. SufB and SufC can form a scaffold complex

in prokaryotes, and SufB2C2 complex is capable of binding and

transferring 4Fe-4S clusters to a recipient apoprotein [46]. All

identified SUF system proteins apparently retain all important

catalytic sites (Figure S2) andmay perform de novo Fe-S clusters

biogenesis by themselves or in concert with the CIA machinery.

The SUF system for Fe-S cluster synthesis is found in plastids,

bacteria, and archaea and has also been found in two microbial

eukaryotes P. biforma [39] and Blastocystis sp. [47]. The

1278 Current Biology 26, 1274–1284, May 23, 2016



A

B

C

(legend on next page)

Current Biology 26, 1274–1284, May 23, 2016 1279



presence of spliceosomal introns in the putative SufC and SufSU

of Monocercomonoides confirms that these proteins are not

prokaryotic contamination. Furthermore, fluorescence in situ hy-

bridization (FISH) with sufB and sufC gene probes demonstrated

their presence in the Monocercomonoides sp. nucleus (Fig-

ure S3). Importantly, homologs of these proteins were detected

in the P. pyriformis genome, the closest sequenced relative to

Monocercomonoides. The SUF system components of both

Monocercomonoides sp. andP. pyriformis do not contain recog-

nizable mitochondrial targeting signals, and our experiments

with heterologous expression of Monocercomonoides sp. SufB

and SufC proteins in T. vaginalis (Figure 3A) and SufC protein

in yeast (Figure 3B) support a cytosolic localization. Phylogenetic

analyses indicate that this SUF system was acquired by an

ancestor of Monocercomonoides and Paratrimastix by lateral

gene transfer (LGT) from bacteria independently of all other

SUF-containing eukaryotes (Figure 3C). We propose that the

acquisition of a cytosolic SUF system made the ancestral ISC

system in the mitochondrion dispensable, which led to its loss

and, in the Monocercomonoides lineage, to the complete loss

of MROs (Figure 4).

Conclusions

Mitochondria and related organelles are currently considered to

be indispensable components of eukaryotic cells. The genome

sequence of Monocercomonoides sp. reported here suggests

that this is not the case. Despite extensive searches, no mito-

chondrial marker proteins such as membrane protein translo-

cases and metabolite transporters were identified. Crucially,

themitochondrion-specific ISC pathway for Fe-S cluster biogen-

esis is absent and apparently was replaced by a bacterial SUF

system that functions in the cytosol. On the other hand, genes

encoding other features once thought to be absent from these

divergent eukaryotic cells, i.e., the Golgi body, were readily iden-

tifiable. The genome also contains genes for essential cytosolic

pathways of energymetabolism, althoughwe did observe exam-

ples of metabolic streamlining characteristic of other anaerobic

or microaerophilic eukaryotes.

Figure 3. Heterologous Expression ofMonocercomonoides sp. SUF System Proteins and Phylogeny of Concatenated SufB, SufC, and SufS

Homologs

(A) Heterologous expression of Monocercomonoides sp. SufB and SufC proteins in Trichomonas vaginalis. Monocercomonoides sp. proteins with a C-terminal

HA tagwere expressed in T. vaginalis and visualized by an anti-HA antibody (green). The signal of the anti-HA antibody does not co-localize with hydrogenosomes

stained using an anti-malic enzyme antibody (red). The nucleus was stained using DAPI (blue). Scale bar, 10 mm.

(B) Heterologous expression of Monocercomonoides sp. SufC protein in Saccharomyces cerevisiae. Monocercomonoides sp. proteins tagged with GFP were

expressed in S. cerevisiae (green). The GFP signal does not co-localize with the yeast mitochondria stained by Mitotracker (red). Scale bar, 10 mm.

(C) Unrooted ML tree of concatenated SufB, SufC, and SufS sequences. Bootstrap support values above 50 and posterior probabilities greater than 0.75 are

shown. Monocercomonoides sp. and Paratrimastix pyriformis are shown in red, eukaryotic plastids and cyanobacteria in green, Blastocystis sp. and Pygsuia

biforma in orange, bacteria in gray, and archaea in blue.

See also Figures S1–S3.

Figure 4. Reductive Evolution of Mitochondria in Metamonads

Transition to an anaerobic lifestyle occurred in a common ancestor of metamonads andwas followed by reduction ofmitochondria toMROs, accompanied by the

loss of cristae and genome, and the transition to anaerobic metabolism. The ISC pathway for Fe-S cluster synthesis was present in a metamonad common

ancestor. Further reduction to a mitosome took place in the Giardia intestinalis lineage. We propose that in the common ancestor of Paratrimastix pyriformis and

Monocercomonoides, a SUF system acquired through LGT from bacteria substituted the MRO-localized ISC system. Subsequently, the MRO was lost

completely in the lineage leading to Monocercomonoides sp. Localization of the SUF pathway in P. pyriformis is unknown.
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Reduction of mitochondria is known from various eukaryotic

lineages adapted to anaerobic lifestyle [48]. Mitosomes in

Giardia, Entamoeba, and Microsporidia represent the most

extreme cases of mitochondrial reduction known to date,

and yet they still contain recognizable mitochondrial protein

translocases and usually an ISC system. The specific absence

of all these mitochondrial proteins in the genome of Monocer-

comonoides sp. indicates that this eukaryote has dispensed

with the mitochondrial compartment completely. In principle,

we cannot exclude the possibility that a mitochondrion exists

in Monocercomonoides sp. whose protein composition has

been altered entirely. However, such a hypothetical organelle

could not be recognized as a mitochondrion homolog by any

available means. Without any positive evidence for the latter

scenario, we suggest that the complete absence of mito-

chondrial markers and pathways points to the bona fide

absence of the organelle. Because all known oxymonads are

obligate animal symbionts, and mitochondrial homologs are

present in the close free-living sister lineage Paratrimastix,

the absence of mitochondrion in Monocercomonoides sp.

must be secondary. We hypothesize that the acquisition of

the SUF system predated the loss of the mitochondrial ISC

system in the common ancestor of Preaxostyla and allowed

for the complete loss of the organelle in Monocercomonoides

sp. lineage, the first known truly secondarily amitochondriate

eukaryote.

EXPERIMENTAL PROCEDURES

Genome and Transcriptome Sequencing

All experiments were performed on the Monocercomonoides sp. PA203

strain. The culture (2 L with a cell density of approximately 4 3 105 cells/

mL) was filtered to remove most of the bacteria before isolation of DNA

(culturing and filtration details in Supplemental Experimental Procedures).

DNA was isolated using DNeasy Blood and Tissue Kit (QIAGEN). Total

genomic DNA was sequenced using a Genome Sequencer 454 GS FLX+

with XL+ reagents. A total of seven sequencing runs were performed,

including four shotgun runs on libraries with the average fragment length of

500 to 800 and three runs on a 3-kb paired-end library. Two RNA sequencing

(RNA-seq) experiments were performed using 454 and Illumina sequencing

platforms. Details of sequencing are given in Supplemental Experimental

Procedures.

Roche’s assembler Newbler v.2.6 was used to generate a genome

sequence assembly from 454 single and pair end reads. The final assembly

consisted of 2,095 scaffolds spanning almost 75 Mb of the genome. The

N50 scaffold size is 71.4 kb. Transcriptome assembly of the 454 data was

performed by Newbler v.2.8 with default parameters, and Illumina-generated

transcriptomic data were assembled using Trinity [49] (details in Supplemental

Experimental Procedures). The CEGMA [12] was used to estimate the number

of conserved eukaryotic genes in the Monocercomonoides sp. genome as-

sembly (Table S1) and presence of cytosolic ribosomal eukaryotic proteins

as an additional measure of completeness (Table S3).

Genome Annotation and Gene Searching

For the structural annotation, Augustus v.2.7 [50, 51], PASA2 [52], and EVM

[53] were used. Gene models of particular interest were manually evaluated

with the help of RNA-seq data or considering conservation with homologs

(details in Supplemental Experimental Procedures).

Functional annotation was assigned to genes by similarity searches of

predicted proteins using BLASTP [54] against the NCBI non-redundant protein

database [55] and HMMER3 [56] searches of domain hits in the Pfam protein

families database [57]. Additional annotation was performed using the KEGG

automatic annotation server [58]. Annotation files are available at theweb page

http://www.protistologie.cz/hampllab/data.html.

tRNA genes were predicted with tRNAscan-SE [59]; rDNA sequences were

not present in the original main assembly, but they were identified in contigs

not assembled into scaffolds and added to the main assembly.

The Monocercomonoides sp. genome database was searched using the

TBLASTN [54] algorithm, and Monocercomonoides proteome database and

six-frame translation of the genomic sequence were searched using the

BLASTP [54] algorithm or the profile hidden Markov model (HMM) searching

method phmmer from the HMMER3 [56] package. We used a wide range of

queries described in Supplemental Experimental Procedures.

Phylogenetic Analyses

We performed a number of maximum-likelihood and Bayesian phylogenetic

analyses: (1) phylogenomic analyses of eukaryotes based on 163 genes and

70 taxa; (2) phylogenetic analyses of genes for SUF pathway enzymes; and

(3) individual gene trees to support functional annotation of genes (details in

Supplemental Experimental Procedures).

Subcellular Localization Prediction

Subcellular localization prediction for the Monocercomonoides sp. proteome

was performed using TargetP v.1.1 [60] and MitoProt II v.1.101 [61]. TA pro-

teins were identified and analyzed based on presence of a transmembrane

domain (TMD) of moderate hydrophobicity flanked by positively charged res-

idues [29, 62] (details in Supplemental Experimental Procedures). BOMPs

were identified based on the presence of a conserved C-terminal b-signal,

using a previously described pipeline [63].

Mitochondrial Protein Searching Using a Mitominer-Based

Database

We prepared a custom database of mitochondrial proteins to search for

genes encoding proteins with putative mitochondrial localization. The custom

database was based on the MitoMiner database [26] reference set containing

12,925 proteins from 11 eukaryotic mitochondrial proteomes, which was

enriched by known or predicted MRO-localized proteins of E. histolytica,

G. intestinalis, P. biforma, S. salmonicida, T. vaginalis, and P. pyriformis.

Homologs of proteins from this database were searched in the predicted

proteome of Monocercomonoides sp. and in the predicted proteomes of

Blastocystis sp., E. histolytica, G. intestinalis, S. cerevisiae, and T. vaginalis,

which were used as control datasets. While searching the control datasets,

the proteins of the searched organism were removed from the custom data-

base. In the last step, only those candidates were kept whose first hit in the

NCBI database [55] contained a predictable mitochondrial targeting signal

(score > 0.5 in TargetP v.1.1 [60] and MitoProt II v.1.101 [61]). Further details

are given in Supplemental Experimental Procedures.

FISH

We performed FISH experiments with labeled probes to determine whether

the genes for SUF system proteins physically reside in the Monocercomo-

noides sp. genome or represent bacterial contamination. Details on prepara-

tion of labeled probes are given in Supplemental Experimental Procedures.

One liter ofMonocercomonoides sp. culture was filtered to remove bacteria,

and the cells were pelleted by centrifugation for 10 min at 2,000 3 g at 4 C.

FISH with digoxigenin-labeled probes was performed according to a previ-

ously described procedure [64] omitting the colchicine procedure. Cell nuclei

and the probes were denatured under a coverslip in a single step in 50 mL of

50% formamide in 23 SSC at 70 C for 5 min. Preparations were observed us-

ing an IX81microscope (Olympus) equipped with an IX2-UCB camera. Images

were processed using Cell software (Olympus) and ImageJ 1.42q.

Heterologous Protein Expression and Microscopy in Trichomonas

vaginalis

The T. vaginalis transfection system was used to assess subcellular locali-

zation of SufB, SufC, and PFOR proteins. Monocercomonoides sp. cDNA

preparation was performed as described for transcriptome sequencing (Sup-

plemental Experimental Procedure). Constructs with the hemagglutinin (HA)

tag fused to the 30 end of the coding sequences of the studied genes were

prepared and expressed in T. vaginalis, an anaerobic protist related to

Monocercomonoides sp. and bearing a hydrogenosome (details are given in

Supplemental Experimental Procedures). Monocercomonoides sp. proteins
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expressed in T. vaginalis cells were visualized using standard techniques [14]

(details are given in Supplemental Experimental Procedures).

Saccharomyces cerevisiae Heterologous Expression System

This expression system was used to confirm the results from the T. vaginalis

expression system for SufC protein. The procedure was analogous to the one

described in [11]. Details are given in Supplemental Experimental Procedures.

ACCESSION NUMBERS

Sequence data for the genome reads (experiment number SRX1470187),

the 454 transcriptome reads sequenced using the 454 platform (experiment

number SRX1453820), and the Illumina transcriptome reads sequenced using

the Illumina platform (experiment number SRX1453675) have been deposited

to the NCBI Sequence Read Archive under accession number SRA:

SRP066769. The accession number for the Monocercomonoides sp. PA203

genome reported in this paper is GenBank: LSRY00000000. The accession

number for the 454 transcriptome project reported in this paper is GenBank:

GEEG00000000. The accession number for the Illumina transcriptome project

reported in this paper is GenBank: GEEL00000000. The versions described in

this paper are versions LSRY01000000, GEEG01000000, andGEEL01000000.

Further additional information on the genome analysis can be found at http://

www.protistologie.cz/hampllab/data.html.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and six tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2016.03.053.
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51. Stanke, M., Schöffmann, O., Morgenstern, B., andWaack, S. (2006). Gene

prediction in eukaryotes with a generalized hidden Markov model that

uses hints from external sources. BMC Bioinformatics 7, 62.

52. Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Jr.,

Hannick, L.I., Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D., et al.

(2003). Improving the Arabidopsis genome annotation using maximal tran-

script alignment assemblies. Nucleic Acids Res. 31, 5654–5666.

53. Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White,

O., Buell, C.R., and Wortman, J.R. (2008). Automated eukaryotic gene

structure annotation using EVidenceModeler and the Program to

Assemble Spliced Alignments. Genome Biol. 9, R7.
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Abstract

Background: Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production

by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with

only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the

complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map

the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies.

Results: We have found genes for the complete pathway in almost all examined representatives of Metamonada, the

anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of

the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments

suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs

rarely, nevertheless, it was found in representatives of most major eukaryotic clades.

Conclusions: Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-

derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain

possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be

related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single

protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene

losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.

Keywords: Arginine deiminase, Ornithine transcarbamylase, Carbamate kinase, Phylogeny, Metamonada,

Preaxostyla, Protists

Background
The arginine deiminase pathway (ADI pathway, syn.: argin-

ine dihydrolase pathway) catalyzes a conversion of argin-

ine to ornithine, ammonium, and carbon dioxide, while

generating ATP from ADP and phosphate. The enzymes

involved in the three steps of the pathway are arginine dei-

minase (ADI, EC 3.5.3.6), ornithine transcarbamylase

(OTC, EC 2.1.3.3), and carbamate kinase (CK, EC 2.7.2.2).

The first reaction, catalyzed by ADI, is the deamination of

arginine to yield citrulline and NH4
+. OTC then catalyzes

the conversion of citrulline and inorganic phosphate into

carbamoyl-phosphate and ornithine. Finally, CK catalyzes

the hydrolysis of carbamoyl phosphate to form CO2 and

NH4
+, while the phosphate group is used to regenerate

ATP from ADP.

The ADI pathway is widely distributed among bacteria,

where it is often a major means of energy production [1].

However, the ammonium produced by this pathway has

also been implicated in protecting some bacteria from the

harmful effects of acidic environments [2, 3]. The pathway

has been also described in Archaea [4]. This pathway has

only been characterized in a few species of anaerobic eu-

karyotes namely the parabasalids Trichomonas vaginalis

[5] and Tritrichomonas foetus [6], and the diplomonads
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Giardia intestinalis [7], Hexamita inflata [8], and Spironu-

cleus salmonicida [9]. All these species belong to Metamo-

nada (Excavata), a clade of anaerobic protists with

substantially modified mitochondria designated as hydro-

genosomes or mitosomes. Metamonada consists of three

lineages – Fornicata (e.g., Giardia and Spironucleus), Para-

basalia (e.g., Trichomonas and Tritrichomonas), and finally

Preaxostyla (Trimastix, Paratrimastix [10], and oxymo-

nads) [11]. Currently, there is no information about the

ADI pathway in Preaxostyla.

In Trichomonas vaginalis the ADI pathway generates up

to 10 % of the energy produced by glucose fermentation

[12]. OTC and CK were shown to be cytosolic, while ADI

was described as membrane-associated in both Trichomo-

nas vaginalis and Tritrichomonas foetus [6]. The ADI of

Trichomonas vaginalis was later shown to be localized in

hydrogenosomes and an in situ pH buffering function has

been proposed [13]. The ADI pathway of Giardia intestina-

lis is completely cytosolic and produces up to 8 times more

ATP than sugar metabolism [7]. Besides this energy-

producing function, it has been proposed that the enzymes

play an important role in the pathogenesis of Giardia intes-

tinalis and Trichomonas vaginalis. The protists secrete ADI

and OTC from their cells causing arginine depletion thus

reducing the ability of the infected tissue to produce anti-

microbial nitric oxide [14, 15]. Other known effects of these

parasite's ADI pathway enzymes include growth arrest of

intestinal epithelial cells [16], inhibition of T cell prolifera-

tion [15], and alteration of the phenotype and cytokine pro-

duction of dendritic cells [17]. Another diplomonad with a

characterized ADI pathway, the free-living Hexamita

inflata, inhabits environments with varying levels of dis-

solved oxygen. It has been suggested that the ADI pathway

may contribute to the metabolic flexibility of this organism,

producing a significant amount of ATP under oxygen-

limited conditions, while glycolysis is the main energy

source under oxic or microoxic conditions, however the

oxygen relationship might be incidental or secondary [8].

Of the three enzymes, only ADI itself is considered to

be specific to the ADI pathway. CK has an additional role

in purine and nitrogen metabolism and OTC may catalyze

synthesis of citrulline as a nitrogen reservoir in plants [18]

or be a part of ornithine-urea cycle in animals, diatoms

and dinoflagellates [19, 20]. Therefore, the presence of

ADI in organisms where no ADI pathway is known is

intriguing and deserves further investigation. For example,

within the chlorophytes the ADI gene was found in three

species of Chlorella [21, 22] and Chlamydomonas rein-

hardtii [23] And ADI activity has been reported in mul-

tiple species of Chlorodendrophyceae, Trebouxiophyceae,

Chlorophyceae, and Ulvophyceae [24], that is, in all classes

of the “crown group” of Chlorophyta [25].

The first known sequence of a eukaryotic ADI, from

Giardia intestinalis, showed no specific relationship to any

bacterial or archaeal clade [26]. Later analyses included se-

quences from Trichomonas vaginalis, Spironucleus vortens,

Sp. barkhanus, and Sp. salmonicida (Metamonada), Euglena

gracilis and 'Seculamonas' sp. (Discoba), Chlamydomonas

reinhardtii and Chlorella sp. (core Chlorophyta [27]), and

Mastigamoeba balamuthi and Dictyostelium discoideum

(Amoebozoa). All the eukaryotic sequences formed a well-

supported clade related to Archaea, consistent with a single

origin of ADI in the eukaryotic domain [9, 13].

Due to its involvement in other pathways, it is not sur-

prising that OTC is more widespread among eukaryotes

compared to the other ADI pathway enzymes. The phylo-

genetic analysis of OTC by Zúñiga et al. [26] recovered

two distinct eukaryotic clades branching in different posi-

tions among bacteria, one comprising sequences from

Embryophyta and other composed of metazoan and fungal

sequences. The only eukaryote outside these two clades

was Giardia intestinalis, which was also the only one with

a characterized ADI pathway. The sequence from Giardia

intestinalis branched among bacterial sequences without

close relationship to any other eukaryotic clade. Later ana-

lyses demonstrated that Spironucleus salmonicida and

Trichomonas vaginalis OTC sequences formed a well-

supported clade with Giardia intestinalis [9], suggesting

the existence of a third independent group of eukaryotic

OTCs present in Metamonada and potentially involved in

the ADI pathway. The same analysis also showed two

stramenopile sequences branching clearly inside the

Metazoa-Fungi group.

Sequences of CK from Giardia intestinalis, Hexamita

sp., and Trichomonas vaginalis formed a relatively well-

supported clade not closely related to any bacterial or ar-

chaeal sequences [26]. The monophyly of eukaryotic CKs

was later questioned after adding sequences from Spironu-

cleus salmonicida and Carpediemonas membranifera, with

the Trichomonas vaginalis sequence branching separately

from other eukaryotes, although statistical support for this

topology was very low [9].

In summary, the complete set of ADI pathway enzymes

has been found in representatives of two out of three

major lineages of Metamonada: Parabasalia and Fornicata.

All the metamonad enzymes appear to be closely related

to each other. This raises several questions about the evo-

lutionary history of the pathway among eukaryotes. Is it

present also in the third and least investigated lineage of

metamonads, Preaxostyla? Was it present in the common

ancestor of the Metamonada? Do representatives of other

eukaryotic lineages possess the ADI pathway as well? If so,

do all the eukaryotic enzymes involved in the ADI pathway

originate from the same source or do they represent inde-

pendent acquisitions?

Here, we take advantage of the recent progress in

genome and transcriptome sequencing of less studied

protists to perform an up-to-date survey and
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phylogenetic analysis of ADIs, OTCs, and CKs. This

survey focuses on elucidating the evolutionary history

of the arginine deiminase pathway in eukaryotes, with

special emphasis on Metamonada. In addition to

phylogenetic studies, we determine the subcellular

localization of these enzymes in two members of Pre-

axostyla, Paratrimastix pyriformis and oxymonad

Monocercomonoides sp. PA203.

Results
Distribution of ADI, OTC, and CK across eukaryotes

Our survey revealed the presence of ADI, OTC, and CK

in the three main eukaryotic clades defined by Adl et al.,

2012 [28] (Fig. 1). The first and presumably the most

specific enzyme of the pathway, i.e. without any role out-

side the ADI pathway reported so far, is ADI itself. This

was found in 40 taxa, as shown on the schematic tree in
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Fig. 1 Distribution of enzymes of the arginine deiminase pathway across eukaryotic diversity. Arginine deiminase (ADI), ornithine transcarbamylase (OTC),

carbamate kinase (CK). Taxon names in boldface indicate lineages containing at least one representative with a sequenced nuclear genome. Numbers in

brackets indicate number of sequences from the given taxon included in our analyses. Colored rectangles indicate major eukaryotic groups as follows: dark

brown – Metamonada; light brown – Discoba; violet – Opisthokonta; blue – Amoebozoa; cyan – Breviatea, green – Archaeplastida; orange – Cryptophyta;

yellow – Haptophyta; red – SAR. Excavata, Amorphea, and Diaphoretickes are names of the 3 putative largest clades of eukaryotes as proposed in Adl et al.,

2012; relationships between them are not resolved
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Fig. 1, and these taxa represent most eukaryotic super-

groups (highlighted by colored backgrounds). Of these,

16 species (most metamonads, Harpagon, Mastiga-

moeba, Pygsuia, Chlorella, and Coccomyxa) encoded all

three enzymes, while the other species encoded only one

or two enzymes. ADI was not detected in any represen-

tative of the clades Metazoa, Fungi, Embryophyta, Cryp-

tophyta, and Haptophyta, nor in Sar [28], with the single

questionable exception of Gregarina niphandrodes (see

below). OTC was the most widespread enzyme, being

found in 131 taxa including the major multicellular

groups of Metazoa, Fungi, and Embryophyta. CK was

detected in all the investigated metamonads, multiple

Bacillariophyceae, Dinoflagellata and 8 other species.

Please note that the given numbers do not represent the

actual quantity of eukaryotic species with the particular

gene since several groups, e.g. Metazoa, Bacillariophy-

ceae, are represented by only a limited number of ran-

domly selected sequences.

Phylogenetic analyses

Arginine deiminase

Compared to the previous analyses we present a more ro-

bust analysis including 40 eukaryotic species (Fig. 1). The

phylogenetic tree (Fig. 2) shows two clearly separated

(RAxML bootstrap support/IQ-TREE bootstrap support:

100 %/100 %) clans of ADIs, one comprising all bacteria

and one isolated eukaryote, Gregarina niphandrodes, in a

highly nested but poorly resolved position, and the second

composed of clans of Archaea plus a few Bacteria (64 %/

97 %) and Eukaryota (51 %/81 %). The topology within the

eukaryotic branch is poorly resolved overall, however, a few

clades of lower-than-supergroup rank were recovered with

strong support (i.e. bootstrap support > 80 %). These are

Parabasalia, Diplomonadida, Oxymonadida, Chlorophyta,

and Dictyosteliida.

Ornithine transcarbamylase

Our analysis included sequences from selected representa-

tives of Metazoa, Fungi, and Embryophyta and 110 se-

quences from 103 other eukaryotes (Fig. 1). Several

bacterial sequences of aspartate transcarbamylase, a protein

closely related to OTC, were included to provide an out-

group for rooting the tree. Our analysis of OTC phylogeny

(Additional file 1) supports the existence of three large

groups and two separately-branching eukaryotic OTCs.

The first large clade is strongly supported (100 %/100 %)

and contains Metazoa, Fungi, Oomycota, Bacillariophyceae

(i.e. diatoms), a few lineages of other Stramenopiles

(Nannochloropsis, Vaucheria, Ectocarpus, Heterosigma and

Ochromonas), the holozoan Capsaspora, and one single

excavate, the trypanosomatid Herpetomonas muscarum,

which branches among Fungi.

The second eukaryotic group, already indicated in the

analysis by Andersson et al. [9], is well supported (83 %/

100 %) and includes all Metamonada, Harpagon shusteri,

Naegleria gruberi, Reticulomyxa filosa, Pygsuia biforma,

Mastigamoeba balamuthi, and many representatives of

autotrophic groups, namely dinoflagellates, cryptophytes,

euglenophytes, chlorarachniophytes, and stramenopiles like

Aureococcus, Aureoumbra, Pelagococcus, Pelagomonas, and

Pseudopedinella. The monophyly of Parabasalia is well sup-

ported. A sequence from a recently described archaeon

Lokiarchaeum sp. is also included in this group, however at

an unsupported position.

The third group is composed of euglenophytes, green

algae with green plants, red algae, and haptophytes, with

haptophytes branching inside red algae. A clade of

mostly Desulfobacteraceae bacterial sequences branches

inside this group of eukaryotic sequences.

The only two eukaryotes outside these three large clades

are the choanoflagellate Salpingoeca rosetta (sequence ob-

tained from the genome), which branches as sister to

Microgenomates bacterium (78 %/100 %), and the rhizarian

Paulinella chromatophora (red star in Additional file 1) in-

side Cyanobacteria with good statistical support (100 %/

100 %). Since the Paulinella sequence originates from the

genome of the chromatophore, not the Paulinella nucleus,

it actually represents a cyanobacterial OTC.

Carbamate kinase

We have included 47 sequences from 44 eukaryotic species

in our analysis (Fig. 1). Our tree (Additional file 2) shows

eukaryotes falling into several separate clusters. One of two

substantial groups is an unsupported clan of Fornicata,

Parabasalia, Harpagon schusteri, Pygsuia biforma, and Mas-

tigamoeba balamuthi. A well-supported Preaxostyla clade

(96 %/100 %) branches at a different place among bacteria,

as a sister group to Hadesarchaea archaeon and Anaeroli-

neae bacterium (96 %/100 %). The second large eukaryotic

clan (100 %/100 %) is composed of all the dinoflagellate se-

quences, as well as sequences from diatoms, Pedinella and

Aureococcus. Dinoflagellata form a well-supported group

within this clan. Three sequences from diatoms do not

branch together with other ochrophytes (the photosynthetic

Stramenopiles), and instead form a separate well-supported

clan (100 %/100 %) among bacteria. This may represent a

second form of the enzyme, since Thalassiosira pseudo-

nana appears in both diatom groups. The only two known

CKs from green plants (Chlorella and Coccomyxa) branch

together (97 %/99 %) but separated from other eukaryotes.

The Reticulomyxa CK sequence is also isolated from the

rest of eukaryotes.

Concatenation

We also performed a phylogenetic analysis of a concat-

enation of all three enzymes. In the first step, we have
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prepared an alignment supermatrix in which we have in-

cluded all eukaryotes and representatives of prokaryotes

that contain a complete set of the three enzymes, and may

use the ADI pathway. In order to detect potential incon-

gruities between gene partitions caused by lateral gene

transfer we have performed a phylogenetic analyses of the

individual gene partitions from this supermatrix. Based on

these gene trees (Additional file 3) we removed taxon-

gene sequences that branched with bootstrap support

higher than 50 % within a clan of sequences outside its

own domain (e. g. eukaryotic sequence outside Eukaryota)

from the concatenated alignment – namely CKs from
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Fig. 2 Phylogenetic tree of ADI sequences. The tree based on a 257 positions long protein alignment of 152 sequences was constructed in RAxML

using the LG4X + Γ model of substitution. Eukaryotic taxa are highlighted in different colors according to the major group they belong to. The color

code is the same as in Fig. 1. The values at nodes represent RAxML bootstrap support/IQ-TREE bootstrap support. Only values above 50 % are shown.

Black circles indicate support of 100 %/100 %. Vertical black bars indicate well-supported eukaryotic clades: Pa – Parabasalia; Di – Dictyosteliida; Ch –

Chlorophyta; Ox – Oxymonadida; Dip – Diplomonadida. Species with multiple sequences included: Euglena gracilis 1 – GI 109790819; Euglena gracilis 2

– GI 109784514; Eutreptiella gymnastica-like 1 – CAMPEP 0200414012; Eutreptiella gymnastica-like 2 – CAMPEP 0200422928; Trichomonas vaginalis 1 –

TVAG 183850; Trichomonas vaginalis 2 – TVAG 344520. The tree is unrooted
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Monocercomonoides sp., Pyrsonympha sp., Chlorella var-

iabilis, and Coccomyxa subelipsoidea. We also removed

OTCs from Chlorella variabilis, and Coccomyxa subelipsoi-

dea because in the large single gene tree (Additional file 1)

they branch within a clade which is sister to Chlorobi

Bacteria with 100 % IQ-TREE bootstrap support.

The analysis performed on the alignment after removal

of these sequences (Additional file 4) revealed a strong

bipartition (100 %/100 %) grouping Eukaryota and Ar-

chaea to the exclusion of Bacteria and within this part of

the tree the eukaryotes formed a well-supported (100 %/

100 %) clan sister to the archaeon Candidatus Korarch-

aeum cryptofilum. In order to recover the relationships

within the Eukaryota–Archaea group without the dis-

turbing long branch of Bacteria we repeated the analysis

without the bacterial sequences (Fig. 3). In this unrooted

tree Eukaryota are grouped with Candidatus Korarch-

aeum cryptofilum to the exclusion of the rest of Archaea

with high support (97 %/98 %). We also performed a

Eukaryota-only analysis of the concatenated dataset for

the purpose of hypotheses testing (Additional file 5).

Hypotheses testing

We used approximately unbiased (AU) and expected like-

lihood weight (ELW) tests to assess whether the inferred

phylogenies are in a significant conflict with the mono-

phyly of eukaryotes, metamonads and with the expected

eukaryotic species tree. The results are summarized in

Table 1. The AU tests rejected monophyly of metamonads

in the OTC and CK trees and monophyly of expected

eukaryotic phylogeny in concatenation. The ELW tests

rejected the monophyly of metamonads in the OTC tree,

the monophyly of both clades in the CK and monophyly

of metamonads and the expected eukaryotic phylogeny in

the concatenation tree.

Localization of ADI pathway enzymes in Preaxostyla

Another aim of this work was to infer the subcellular

localization of ADI pathway enzymes in members of the

poorly studied Preaxostyla clade. Genomic and transcrip-

tomic projects have revealed the presence of all three

enzymes in Monocercomonoides sp. and Pyrsonympha sp.,

while only OTC and CK enzymes were detected in Tri-

mastix marina and Paratrimastix pyriformis. We have

chosen Monocercomonoides sp. PA203 and Paratrimastix

pyriformis for further study.

We investigated the presence of mitochondrion-targeting

signals in the enzymes of interest (Additional file 6) using

the signal prediction software TargetP 1.1 [29] and Mitoprot

II v1.101 [30]. TargetP did not predict any targeting signals.

Mitoprot II predicted a single mitochondrion-targeting sig-

nal, for the OTC sequence of Paratrimastix pyriformis.

To validate the results of mitochondrion-targeting signal

prediction we used the Trichomonas vaginalis T1
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Fig. 3 Phylogenetic tree of concatenated ADI, OTC, and CK sequences with Bacteria removed. The tree based on a 750 positions long protein

alignment of 23 sequences was constructed in RAxML using LG4X + Γ model. Eukaryotic taxa are highlighted in different colors according to the

major group they belong to. The color code is the same as in Fig. 1. The values at nodes represent RAxML bootstrap support/IQ-TREE bootstrap

support. Only values above 50 % are shown. Black circles indicate support 100 %/100 %. The tree is unrooted

Novák et al. BMC Evolutionary Biology  (2016) 16:197 Page 6 of 14



heterologous expression system, with the assumption that

an undetected mitochondrion-targeting signal may none-

theless be recognized by the Trichomonas hydrogenosomal

import machinery. We transfected Trichomonas vaginalis

cells with plasmids containing HA-tagged OTC and CK

from Paratrimastix pyriformis and ADI, OTC, and CK

from Monocercomonoides sp. In all cases fluorescence mi-

croscopy showed that the heterologously expressed proteins

do not co-localize with the signal from the hydrogenosomal

marker protein (malic enzyme), but instead formed a

diffuse pattern all over the cell (Fig. 4). This demonstrates

that the inserted proteins are not recognized as

hydrogenosomal-import targets in Trichomonas vaginalis.

The results of these experiments are consistent with the

fact that most ADI pathway enzymes in eukaryotes are

localized in the cytosol.

Discussion

ADI pathway enzymes are widespread in eukaryotes

Before this study, only two closely related lineages of eu-

karyotes had been conclusively shown to possess a

complete ADI pathway. These were Parabasalia and

Diplomonadida, both being members of Metamonada, a

subgroup of Excavata. Our survey has shown the presence

of all three enzymes in ten other eukaryotic species.

Among these are other members of Metamonada – in-

cluding free-living members of Fornicata related to the

predominantly parasitic diplomonads (Ergobibamus cypri-

noides, Chilomastix cuspidata, Carpediemonas membrani-

fera), and members of the third metamonad lineage,

Preaxostyla (Monocercomonoides sp. and Pyrsonympha

sp.). The ADI pathway was also identified in non-

metamonads including the heterolobosean Harpagon

schusteri, the amoebozoan Mastigamoeba balamuthi, the

breviate Pygsuia biforma, and the green algae Chlorella

variabilis and Coccomyxa subelipsoidea. Further func-

tional studies are needed to determine whether these en-

zymes function within an ADI pathway in these species. It

is possible that the possession of the complete pathway is

connected with their anaerobic lifestyle since most of

these organisms are anaerobes, microaerophiles or aer-

obes able to live for long periods under anaerobic condi-

tions [31–37].

Many investigated eukaryotes possessed incomplete

sets of ADI pathway enzymes. The presence of OTC or

CK on their own is not surprising, as they are known to

be involved in other biochemical processes including the

ornithine-urea cycle or purine biosynthesis. The pres-

ence of ADI on its own was unexpected, yet we identi-

fied ADI in a broad spectrum of eukaryotic lineages

without complete pathway. The apparent absence of

OTC or CK may be due to the incompleteness of tran-

scriptome or genome data, nevertheless, our observation

suggests that ADI may also function outside the context

of the ADI pathway in some eukaryotes.

Phylogenetic histories of enzymes

None of the enzyme phylogenies is completely consistent

with the expected species relationships. In single gene

trees, eukaryotes are always dispersed in multiple clades,

suggesting complicated evolutionary histories. The back-

bone topologies were generally weakly supported, and

many of these incongruences are probably the result of

low phylogenetic signal. Nevertheless, some conflicts with

species phylogeny are better supported and some were

confirmed by phylogenetic tests. These can potentially be

attributed to lateral gene transfers (LGTs, also known as

horizontal gene transfers – HGTs) or endosymbiotic gene

transfers (EGTs). The sister relationship of Preaxostyla

and Spirochaeta in the CK tree, and the position of Gre-

garina within Bacteria in the ADI tree are two such exam-

ples of potential LGT, albeit the latter may also represent

a contamination. Since haptophytes are known to harbor

secondary plastids of potentially red algal origin [38], the

position of haptophytes within a red algal clade in the

OTC analysis, might represent a potential EGT. Con-

versely, many moderately and robustly supported

eukaryotic clades are taxonomically reasonable, indicating

the important role of vertical inheritance.

The taxon sampling in the concatenation analyses was

lower, because the analyses included only those taxa that

may utilize the arginine deiminase pathway and not those

that use individual enzymes for other purposes. The reso-

lution of the concatenation tree was higher than the indi-

vidual gene trees and strongly supported the monophyly of

eukaryotes (99 %/100 %) and their close relationship to Ar-

chaea. The clade of eukaryotes branched with Archaea

(100 %/100 %) as a sister to Candidatus Korarcheum cryp-

tophylum. Increased support of these nodes should partly

be ascribed to the lower number of taxa but it also suggests

that the phylogenetic signal regarding these deep nodes for

this narrow set of taxa and after exclusion of obvious cases

of LGT is largely congruent.

Table 1 Results of approximately unbiased (AU) and expected

likelihood weights (ELW) tests

Data set – hypothesis AU test ELW test

ADI – Metamonada monophyly. 0.64 0.10

OTC – Eukaryota monophyly 0.64 0.5

OTC – Metamonada monophyly 0 0

CK – Eukaryota monophyly 0.12 0

CK – Metamonada monophyly 0 0

Euk. Conc. – Metamonada monophyly 0.17 0

Euk. Conc. – expected euk. phylogeny 0 0

The tests were performed for 4 sets of taxa – ADI: ADI dataset (as in Fig. 2),

OTC: OTC dataset (as in Additional file 1), CK: CK dataset (as in Additional file

2), Euk. Conc.: concatenation dataset without prokaryotic sequences (as in

Additional file 5)
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ADI pathway is ancestral in Metamonada

The presence of the complete ADI pathway is wide-

spread in metamonads, protists that specifically inhabit

low-oxygen environments. In most of the phylogenies,

metamonad taxa branch close to each other, but they never

form an exclusive clade. In CK trees there is a well-

supported relationship between Preaxostyla (Paratrimastix,

Monocercomonoides, and Pyrsonympha) sequences and a

prokaryotic clan of Hadesarchaea archaeon and Anaeroli-

neae bacterium. Metamonada do not appear monophyletic

even in the concatenation trees and their monophyly was

rejected by ELW test. Taking together all this information

we propose that the complete arginine deiminase pathway

was present already in the common ancestor of Metamo-

nada and was vertically inherited by the extant metamonad

lineages, with a few exceptions. The exceptions are the pu-

tative losses of ADI in Trimastix marina and Paratrimastix

pyriformis and the putative replacement by a bacterial CK

in the Preaxostyla. It is also possible that some enzymes or

the whole pathway were laterally transferred from metamo-

nads to other eukaryotes, which would disrupt the mono-

phyly of Metamonada on trees.

Our localization experiments suggest that all en-

zymes in both Paratrimastix pyriformis and Monocer-

comonoides sp. are localized in the cytosol, like the

enzymes in Giardia intestinalis but unlike the ADI in

Trichomonas vaginalis. We therefore conclude that

cytosolic localization of the pathway is an ancestral

trait of all metamonads. It should be noted, however,

that the cytosolic localization of ADI in

PA203 ADI

PA203 OTC

PA203 CK

Pp OTC

Pp CK

Fig. 4 Localisation of Monocercomonoides and Paratrimastix enzymes in Trichomonas vaginalis cells. Immunofluorescence micrographs of Trichomonas

vaginalis, in which the HA-tagged versions of enzymes were expressed. Green signal from anti-HA antibody does not localize to hydrogenosomes of

Trichomonas vaginalis, which are marked by red anti-malic enzyme antibody. Blue signal indicates DAPI-stained nuclei. Abbreviations: PA203

– Monocercomonoides sp. PA203; Pp – Paratrimastix pyriformis; ADI – arginine deiminase; OTC – ornithine transcarbamylase; CK –

carbamate kinase
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Monocercomonoides sp. may not be informative, since

this protist does not contain mitochondrion [39].

Paratrimastix pyriformis harbors an organelle similar

to the hydrogenosome, but no ADI-coding gene has

been found in its transcriptome to test its

localization.

ADI pathways in other eukaryotes

Besides Metamonada, five other species contain a complete

ADI pathway and all branch within the eukaryotic clade on

the concatenation tree (Fig. 3). These represent four differ-

ent supergroups of eukaryotes; only Harpagon is from the

same supergroup as Metamonada (supergroup Excavata),

and even then it belongs to a different sub-branch (Dis-

coba). Moreover, Excavata are likely not monophyletic at all

[40] and the root of eukaryotes may be situated inside the

group. Harpagon, Mastigamoeba, and Pygsuia ADI path-

way enzymes branch close to Metamonada in all three gene

trees, and so it is very probable that the pathway in these

three species was derived from the same source as the

pathway in Metamonada.

The situation in Chlorella variabilis and Coccomyxa sub-

elipsoidea is less clear. These organisms are the only green

algae known to contain all three ADI pathway enzymes.

Their ADIs and OTCs branch together with other green

algae and plants in the individual gene trees (while no other

Plantae have CK), supporting the presence of the complete

set in the last common ancestor of Chlorophyta. However,

Chlorophyta did not branch in a common eukaryotic clade

with Metamonada, Harpagon, Mastigamoeba and Pygsuia

in OTC and CK phylogenies, suggesting that these two en-

zymes in Chlorophyta may have independent origins. In the

concatenation tree, Chlorella variabilis and Coccomyxa

subelipsoidea represented only by ADI sequences branch

together with other eukaryotes. Presence of the ADI path-

way in the last common ancestor of Chlorophyta would be

consistent with the ADI enzymatic activity previously re-

ported from members of Chlorodendrophyceae, Trebouxio-

phyceae, Chlorophyceae, and Ulvophyceae [24]. However,

the function of the other enzymes in a typical ADI pathway

is questionable, since the OTCs from Chlorella autotro-

phica, Chlorella saccharophila (Trebouxiophyceae), and

Dunaliella tertiolecta (Chlorophyceae) were found to have

no measurable activity in the direction of the ADI pathway,

i.e. conversion of citrulline to ornithine [24]. It is therefore

possible that the two Chlorophyta species with all three en-

zymes nonetheless do not use the ADI pathway.

Origin of the eukaryotic ADI pathway

The simplest explanation of the fact that the complete sets

of ADI pathway enzymes from several eukaryotic lineages

are related is that they are inherited from their common

ancestors. The taxonomic composition of the eukaryotic

clade in the concatenation tree is so broad that their

common ancestor must have been either the last

eukaryotic common ancestor (LECA) or its close descend-

ant. This assumption is reasonable even if we would not

consider Chlorella and Coccomyxa. An alternative explan-

ation for the close relationships of ADI pathways would

be that the genes were acquired more recently by one

eukaryotic lineage (perhaps Metamonada, where it is most

common), and then spread from this lineage into others

via eukaryote-to-eukaryote lateral gene transfers.

Based on our data we are unable to decide which alter-

native is more likely. Vertical inheritance of the ADI path-

way from LECA would be consistent with the sisterhood

of the eukaryotic clade and the archaeon Candidatus

Korarchaeum cryptofilum in the concatenation tree (Fig. 3,

Additional file 4), since recent studies indicate Korarch-

aeota are indeed closely related to the eukaryotes [41].

Moreover, OTC sequences from Lokiarchaeum sp., which

is the closest known relative to eukaryotes [42], are related

to the Metamonada-containing eukaryotic clade. CK se-

quence of this archaeon branches outside eukaryotes sister

to a proteobacterium Desulphobacula toluolica (97 %/

100 %), but nodes separating these two from Metamonada

did not receive strong support. ADI sequence from

Lokiarcheum is not available, and so this organism was

not included in the concatenation analysis. We must also

take into account that the position of the root of the

eukaryotic tree is still an unresolved question [40, 43, 44].

If the root falls outside Amorphea + Discoba (position of

Metamonada relative to the root is not known), then our

results do not necessarily uncover the condition of LECA.

The later acquisition of the pathway by Metamonada and

its spread to unrelated eukaryotes by eukaryote-to-

eukaryote transfer is supported by the fact that the

concatenation trees are incongruent with the expected

relationships of taxa.

Conclusions
Our broad survey of the arginine deiminase pathway en-

zymes has shown that they are present in representatives of

all major lineages of eukaryotes. Sixteen protists (most

metamonads, Harpagon, Mastigamoeba, Pygsuia, Chlorella,

and Coccomyxa) contain the complete set of the three en-

zymes, while other organisms contain incomplete sets. The

enzyme ADI is present in several species without the

complete arginine deiminase pathway, suggesting its in-

volvement in other cellular processes. The topology of indi-

vidual gene trees is generally not very well supported and

particularly in OTC and CK trees the eukaryotic enzymes

form multiple clearly unrelated clades consisting of mix-

tures of eukaryotic supergroups. This indicates that mul-

tiple prokaryote-to-eukaryote and eukaryote-to-eukaryote

LGT events took place in the history of these enzymes. It is

possible that in some groups the enzyme acquisition was
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connected with its involvement in novel biochemical pro-

cesses like the ornithine-urea cycle.

Based on the presence of the complete pathway in

most metamonads and based on the phylogenetic affinity

of metamonad enzymes, we conclude that the ancestor

of metamonads already possessed this pathway. The

concatenation analyses suggest that eukaryotes with the

complete ADI pathway, including Metamonads, Harpa-

gon, Mastigamoeba and Pygsuia (and possibly Chlorella

and Coccomyxa), may have acquired the genes from a

single, archaeon-related source. One intriguing possibil-

ity is that the acquisition of the pathway may date back

as deep as to LECA, but other scenarios involving LGT

events are also plausible. To resolve the last issue, it will

be necessary to obtain data from a more diverse set of

prokaryotes and eukaryotes, especially those branching

close to the root of the eukaryotic tree and close to the

root of major eukaryotic lineages.

Methods

Obtaining sequences

The majority of eukaryotic sequences included in the sur-

vey were obtained from the NCBI database (Release 68),

JGI database [45], or Marine Microbial Eukaryote Tran-

scriptome Sequencing Project [46]. Initial searches were

performed using BLASTp and tBLASTn algorithms [47]

with Giardia intestinalis, Trichomonas vaginalis, and

several bacterial sequences as queries. The searches of

public databases were then repeated several times while

restricted to a particular major eukaryotic lineage (e.g.

Cryptophyta, Alveolata) and with a phylogenetically clos-

est available sequence as a query. All the eukaryotic

sequences with E-value lower than 10−3 were downloaded

and used in subsequent analyses.

The prokaryotic sequences included in the survey were

retrieved from the NCBI database using the same query

as in the search for eukaryotic sequences. The search

was also repeated several times with varying taxonomic

restrictions to ensure that all the bacterial and archaeal

phyla containing the particular enzyme are represented

in the analysis. We used all archaeal sequences with E-

value lower than 10−3 and a limited number of bacterial

sequences with E-value lower than 10−3 and annotated

as the protein of interest. It is important to note that the

set of bacterial sequences used in our analyses is not ex-

haustive and therefore we do not infer any evolutionary

hypotheses about Bacteria in this study.

In order to mitigate the risk of missing prokaryotic data

influencing the relationships between eukaryotic groups

we enriched our datasets with the closest prokaryotic ho-

mologs to each of the eukaryotic sequences by searching

the NCBI database using BLASTp with each eukaryotic

sequence as a query and downloaded the prokaryotic se-

quence with the lowest e-value from each search.

We investigated whether those eukaryotic sequences

which were not branching within eukaryotic clades repre-

sent bona fide eukaryotic sequences or contamination of

the data sets. Nucleotide sequences obtained from tran-

scriptomic data were checked for similarity with sequences

deposited in NCBI and those that were identical or very

similar to bacterial genomes (bit score higher than 200 and

similarity along the entire length of the sequence) were ex-

cluded. In the case of sequences obtained from genomes,

the entire gene content of the contiguous sequence scaffold

was used as a query for BLAST search of the NCBI data-

base in order to identify any known sequences with high se-

quence similarity along the entire length of the sequence,

indicating possible contamination. Furthermore, candidate

sequences and neighboring genes were investigated for the

presence of introns and the origin and annotation of sur-

rounding genes. These steps should identify some se-

quences originating from contamination, however, others

could still remain due to the lack of data from the source of

the contamination or incorrect assembly of genomic data

resulting in chimerical sequences.

The sequences downloaded from public databases were

combined with sequences extracted from genomic and

transcriptomic projects performed in the laboratories of

co-authors. Brief information on the generation of these

data sets is given below. Details of the Monocercomonoides

sp. PA203 genome and transcriptome project are given in

Karnkowska et al. [39]. Details of the Paratrimastix pyri-

formis transcriptome project are given in Zubáčová et al.

[48]. Partial cDNA sequences corresponding to Paratri-

mastix pyriformis OTC and CK obtained in the transcrip-

tome project were completed at their 5` ends by RACE

using FirstChoice RLM-RACE kit (Life Technologies,

AM1700). Amplifications by PCR were carried out using

Takara Hot-Start ExTaq DNA Polymerase (Takara,

RR006A) in 50 μl reactions. Outer 5` RLM-RACE PCR

was done using the 5` RACE outer primer supplied in the

kit and the following 5` RACE gene-specific outer

primers: TpOTCout: CCAGCAGGAAGAGAAGGAGG

and TpCKout: GCTTGCCGTAGTTGATGATG. Inner 5`

RLM-RACE PCR was done using the 5` RACE inner pri-

mer supplied in the kit and the following 5` RACE gene-

specific inner primers: TpOTCinn: AAGAGCTCGT-

GATCTGGAAG and TpCKinn: GCCAGAGGCGATGA-

CAATGA (here and elsewhere, all primers reported in the

5’ to 3’ direction). The following touchdown program was

used for each of the two PCRs: 95 °C (5 min), 15 cycles of

95 °C (1 min), 60 °C to 45 °C (35 s.) and 72 °C (2 min),

20 cycles of 95 °C (1 min), 45 °C (35 s.) and 72 °C (2 min),

then a final polymerization step at 72 °C for 6 min. PCR

products were cloned into pGEM-T Easy plasmid vector

(Promega, A1360) and sequenced.

Sequences from Lacusteria cypriaca (strain LAI), an un-

identified free-living trichomonad (strain LAGOS2D) and
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Pyrsonympha sp. were mined from RNA-seq data sets

generated using the llumina MiSeq sequencing platform.

Sequences from Trimastix marina, Carpediemonas mem-

branifera, Chilomastix cuspidata, Mastigamoeba bala-

muthi, and Pygsuia biforma were mined from RNA-seq

data sets generated using the Illumina HiSeq sequencing

platform. Sequences from Harpagon schusteri were mined

from RNA-seq data obtained using the 454 sequencing

platform and sequences of Ergobibamus cyprinoides were

mined from data sets generated by combination of Sanger

and 454 sequencing platforms. The assembled sequences

were submitted to GenBank under accession numbers

KT883858-KT883885.

Phylogenetic analyses

Inferred amino acid sequences were aligned using MAFFT

version 7 [49] and the resulting alignments were manually

trimmed. Highly variable misaligned sections of several

eukaryotic sequences, possibly results of sequencing er-

rors, were removed from the alignment manually. The

concatenated alignment was constructed from the single

gene alignments using SequenceMatrix [50]. The final

alignments can be downloaded from our web page: http://

protistologie.cz/hampllab/NovakData.zip [51]. Phylogen-

etic inference was performed using substitution models

suggested by ProtTest 2.4 server [52] – LG4X + Γ model.

Maximum Likelihood trees were inferred using RAxML-

HPC2 version 8 available on CIPRES [53], with 10 starting

trees and also using IQ-TREE v1.4.2 [54] under the LG +

C20 + F +G4 model for the single gene trees and LG +

C40 + F +G4 model for concatenated datasets. The model

that best fits the data was determined by IQ-TREE accord-

ing to the Bayesian information criterion (BIC). The LG

matrix was combined to an amino acid class frequency

mixture model with 20 (for single gene trees) and 40 (for

concatenated datasets) frequency component profiles.

Statistical support for branches was assessed by multipara-

metric bootstrapping (1000 replicates) in RAxML and by

the ultrafast bootstrap approximation (UFboot) with 1000

replicates in IQ-TREE.

Topology tests

Phylogenetic hypotheses were tested by an approximately

unbiased (AU) test [55] and expected likelihood weights

(ELW) method [56] implemented in IQ-TREE 1.4.2 [54].

For all datasets we tested whether their ML phylogeny is in

significant conflict with the monophyly of Metamonada. In

the case of OTC and CK, we also tested whether the phyl-

ogeny is in significant conflict with the monophyly of eu-

karyotes. In the case of the concatenated dataset, we tested

whether their ML phylogeny is in significant conflict with

the monophyly of Metamonada as well as whether the rela-

tionships within the eukaryotic clade (Additional file 5) sig-

nificantly conflicts with a user-defined expected species tree

(Additional file 7). For the latter two tests we used a

concatenated dataset without prokaryotic sequences to

eliminate the influence of relationships among prokaryotes

and position of the eukaryotic root. The ADI sequence at-

tributed to Gregarina niphandrodes was excluded from all

tests including ADI data, as this clearly represents contam-

ination or very recent LGT.

To perform AU and ELW tests, a set of 1003 topologies

was created, containing the unconstrained ML topology in-

ferred by RAxML, 1000 topologies inferred by RAxML dur-

ing bootstrapping, and the best trees inferred by RAxML

under the selected constraints (eukaryotic monophyly,

Metamonada monophyly or eukaryotic phylogeny). Site

likelihoods for topologies were calculated by IQ-TREE

using the LG+C20 + F +G4 model. The sets of site likeli-

hoods were then compared using the AU test in IQ-TREE,

with 10 000 replicates.

Cloning of ADI pathway genes

ADI pathway genes were amplified from Paratrimastix

and Monocercomonoides cDNAs by PCR. Paratrimastix

pyriformis and Monocercomonoides sp. PA203 cDNAs

were prepared from 100 mL of bacterized culture and

1000 mL of culture filtered according to Hampl et al. [57],

respectively. Isolations of total RNA were performed using

TRI Reagent RNA Isolation Reagent (Sigma, T9424). Ex-

tractions of eukaryotic mRNA from total RNA were done

using a Dynabeads mRNA Purification Kit (Life Technolo-

gies, 61006). The SMARTer PCR cDNA Synthesis Kit

(Clontech, 634925) was used for cDNA synthesis follow-

ing by cDNA amplification with an Advantage 2 PCR Kit

(Clontech, 639207) using 21 cycles (Paratrimastix) and

19 cycles (Monocercomonoides) of amplification.

The following primers were used for amplifications of

full-length cDNAs of the ADI pathway genes of Paratri-

mastix and Monocercomonoides (restriction sites NdeI,

VspI, and BamHI are in bold): Tp OTC-F (TAACA-

TATGCCTCGCCACCTTACCAAGAT), Tp OTC-R (T

AAGGATCCGTCAAGGAGGGGCTGGCCCA), Tp CK-

F (TAACATATGCGTATCCTCATCGCTCTCG), Tp CK-

R (TAAGGATCCGGCGACAATGTGGGTACCAG), PA

203 ADI-F (TAACATATGATGCAAGATATTCACGTT

CC), PA203 ADI-R (TAAGGATCCCTGATTTCCCAGA-

GATGCTA), PA203 OTC-F (ATCATTAATATGTCCGC

TCCCGTTAGACA), PA203 OTC-R (TAAGGATCCCT-

CAATGGTCATTTTCTTGT), PA203 CK-F (CACTTCA-

CATTACATATGGTGAGAATTTTAATTGCTC), PA203

CK-R (CGTATGGGTAGGATCCTGGAACAATGTGAG

TTCCTT). For transfection of Trichomonas vaginalis, the

genes were cloned into TagVag2 plasmid vector [58] using

restriction digestion and ligation, or directly using the In-

fusion HD Cloning Kit (Clontech, 639648) in the case of

Monocercomonoides CK. Lab-grown chemically
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competent Escherichia coli XL1 cells were used for

transformations with ligation mixtures, whereas Stellar

competent cells (Clontech, 636763) were used for

transformation with the in-fusion reactions. Bacterial

clones were checked by colony PCR for the presence of

the plasmids followed by sequencing of isolated

plasmids.

Selectable transfection of Trichomonas vaginalis

Despite extensive efforts, we did not achieve either stable

or transient transfection of Paratrimastix pyriformis and

Monocercomonoides sp. PA203 with plasmid vectors spe-

cifically prepared for those two organisms (data not

shown). Therefore, the Trichomonas vaginalis heterol-

ogous expression system was used to infer the subcellular

localizations of the Paratrimastix and Monocercomonoides

enzymes. Versions of ADI pathway genes with a C-

terminal 2xHA-tag were electroporated into Trichomonas

cells according to the protocol described by Sutak et al.

[59]. Briefly, 250 mL of Trichomonas vaginalis T1 culture

(strain kindly provided by Michaela Marcinčiková, Dept.

of Parasitology, Charles University) was used for two elec-

troporations performed for each of the genes. Cells were

electroporated with 30 μg of TagVag2 plasmid isolated

using the Wizard Plus Midipreps DNA Purification Sys-

tem (Promega, A7640). The exponential protocol (350 V,

975 μF, ∞ Ω, 4 mm cuvette) of the GenePulser Xcell Elec-

troporation System (Biorad, 165–2660) was used for each

transfection. Trichomonads were selected with 200 μg/ml

of G418 (ZellBio, G-418-5) for at least five passages. Ex-

pression of the proteins was analyzed by Western blotting

of cell homogenates (data not shown) and immunofluor-

escence microscopy with antibody.

Immunofluorescence microscopy

ADI pathway proteins of Paratrimastix and Monocercomo-

noides were identified in Trichomonas cells using an anti-

HA rat monoclonal antibody (Roche, 11867423001). An

antibody raised against malic enzyme, a hydrogenosomal

marker in Trichomonas vaginalis [60], was used for double-

labeling (antibody kindly provided by prof. Jan Tachezy,

Dept. of Parasitology, Charles University). Alexa Fluor-488

goat anti-rat (green) and Alexa Fluor-594 goat anti-rabbit

(red) (Life Technologies, A-11006 and A-11037) were used

as secondary antibodies. Immunostaining was done accord-

ing to Sagolla et al. [61] on superfrost microscopic slides

coated with poly-L-lysine (Sigma, P8920). Preparations

were counterstained with DAPI in Vectashield mounting

medium (Vector Laboratories, H – 1200) and observed

using a IX81 fluorescent microscope (Olympus) equipped

with an IX2-UCB camera. Images were processed using

CellR software (Olympus) and ImageJ 1.42q.

Additional files

Additional file 1: Phylogenetic tree of OTC sequences. The tree based on a

242 positions long protein alignment of 444 sequences was constructed in

RAxML using the LG4X + Γ model of substitution. Eukaryotic taxa are

highlighted in different colors according to the major group they belong to.

The color code is the same as in Fig. 1. The values at nodes represent RAxML

bootstrap support/IQ-TREE bootstrap support. Only values above 50 % are

shown. Black circles indicate support of 100 %/100 %. Species with multiple

sequences included: Alexandrium tamarense 1 – CAMPEP 0186340278;

Alexandrium tamarense 2 – CAMPEP 0186191854; Alexandrium tamarense 3 –

CAMPEP 0186247540; Durinskia baltica 1 – CAMPEP 0200033980; Durinskia

baltica 2 – CAMPEP 0200081736; Euglena gracilis 1 – c20598 g1 i1; Euglena

gracilis 2 – c34673 g1 i6; Eutreptiella gymnastica-like 1 – CAMPEP 0200420840;

Eutreptiella gymnastica-like 2 – CAMPEP 0200409666; Karenia brevis 1 –

CAMPEP 0188881430; Karenia brevis 2 – CAMPEP 0188950444; Karlodinium

micrum 1 – CAMPEP 0200795676; Karlodinium micrum 2 – CAMPEP

0200767534. The tree is rooted with sequences of bacterial aspartate

carbamoyltransferase (ATC; EC 2.1.3.2). (PDF 506 kb)

Additional file 2: Phylogenetic tree of CK sequences. The tree based on a

251 positions long protein alignment of 256 sequences was constructed in

RAxML using the LG4X+ Γ model of substitution. Eukaryotic taxa are

highlighted in different colors according to the major group they belong to.

The color code is the same as in Fig. 1. The values at nodes represent RAxML

bootstrap support/IQ-TREE bootstrap support. Only values above 50 % are

shown. Black circles indicate support of 100 %/100 %. Vertical black bars

indicate well-supported eukaryotic clades: Ch – Chlorophyta; Din –

Dinoflagellata; Dip – Diplomonadida; Pa – Parabasalia; Pr – Preaxostyla.

Species with multiple sequences included: Giardia intestinalis 1 – GSB 16453;

Giardia intestinalis 2 – GL50803 16453; Thalassiosira pseudonana 1 – GI

223995860; Thalassiosira pseudonana 2 – GI 224000745; Trichomonas vaginalis

1 – TVAG 420500; Trichomonas vaginalis 2 – TVAG 261970; Trichomonas

vaginalis 3 – TVAG 420510. The tree is unrooted. (PDF 482 kb)

Additional file 3: Phylogenetic trees of gene partitions used for

concatenation. The values at nodes represent maximum likelihood bootstrap

percentages. Eukaryota highlighted in grey. Red taxon names indicate

removed sequences. Positions of the particular genes in the alignment: ADI 0–

257, OTC 258–499, CK 500–750. The trees are unrooted. (PDF 270 kb)

Additional file 4: Phylogenetic tree of concatenated ADI, OTC, and CK

sequences. The tree based on a 750 positions long protein alignment of 67

sequences was constructed in RAxML using LG4X + Γ model. Eukaryotic taxa

are highlighted in different colors according to the major group they

belong to. The color code is the same as in Fig. 1. The values at nodes

represent RAxML bootstrap support/IQ-TREE bootstrap support. Only values

above 50 % are shown. Black circles indicate support 100 %/100 %. The tree

is unrooted. (PDF 272 kb)

Additional file 5: Phylogenetic tree of concatenated ADI, OTC, and CK

sequences with Bacteria and Archaea removed. The tree based on a 750

positions long protein alignment of 15 sequences was constructed in

RAxML using LG4X + Γ model. The tree is unrooted. (PDF 2 kb)

Additional file 6: The probability of mitochondrial localization of ADI

pathway enzymes in Monocercomonoides sp. PA203 and Paratrimastix

pyriformis as predicted by TargetP and MitoProt II. (DOCX 12 kb)

Additional file 7: Topology of the expected species tree of eukaryotes.

The tree is unrooted. (PDF 2 kb)
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Abstract

The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the

mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the
acquisition of the SUF Fe–S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dis-

pensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, com-

posing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe–S cluster
biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, com-

posed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last

common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome
of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme com-

position of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes,

Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with
that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the

downstream process of maturation of cytosolic and nuclear Fe–S proteins.

Key words: Preaxostyla, SUF, amitochondriate, CIA, oxymonads.

Iron–sulfur clusters are small inorganic prosthetic groups,

which are among the most ancient and versatile cofactors.

Their main function is mediating electron transport, which

makes them a key part of many important processes such as

photosynthesis, respiration, DNA replication and repair, and

regulation of gene expression (Rudolf et al. 2006; Fuss et al.

2015; Paul and Lill 2015).
There are three pathways for the Fe–S clusters synthesis

known in prokaryotes—NIF (nitrogen fixation), ISC (iron sul-

fur cluster), and SUF (sulfur utilization factor). The basic pro-

cess of the Fe–S cluster biogenesis is similar in all three (Roche

et al. 2013 ). Sulfur (S2–) is provided by cysteine desulfurase

(NifS, IscS, SufS). The source of iron (Fe2þ) is unclear, however,

for the mitochondrial ISC pathway frataxin is expected to be

the provider (Pastore and Puccio 2013; Yoon et al. 2015). The

sulfur and iron ions are first combined into a cluster on a

scaffold protein (NifU, IscU, SufB–SufD complex), fromwhich

the cluster is transferred onto an apoprotein.
In eukaryotic cells, three compartments have distinct path-

ways for Fe–S cluster synthesis.Mitochondria typically use the

ISC pathway, which was inherited from the alphaproteobac-

terial endosymbiont (Tachezy et al. 2001; Braymer and Lill

2017). This holds also for most mitochondrion-related organ-

elles including the mitosomes of Giardia intestinalis (Tovar

et al. 2003) and microsporidia (Katinka et al. 2001; Goldberg

et al 2008), and hydrogenosomes of Trichomonas vaginalis

(Sutak et al. 2004). Exceptions to this rule are found in

mitochondrion-related organelles of Pygsuia biforma,

Mastigamoeba balamuthi, and Entamoeba histolytica (Ali

et al. 2004; van der Giezen et al. 2004; Mi-ichi et al. 2009;

Nyvltova et al. 2013; Stairs et al. 2014), which contain SUF,

NIF, or possibly none of these pathways, respectively.

Eukaryoticplastids contain the SUFpathway,whichwas inher-

ited from the cyanobacterial ancestor (Balk and Pilon 2011).
In the eukaryotic cytosol, the Fe–S cluster-containing pro-

teins are formed by a cytosolic iron–sulfur cluster assembly

(CIA), which is also responsible for maturation of nuclear Fe–

S proteins. In yeast and human, the pathway contains at least

eleven essential proteins (Sharma et al. 2010; Netz et al. 2014;

Lill et al. 2015). CIA is unique to eukaryotes and most of its

components do not have prokaryotic homologs, apart from

Nbp35 (Boyd et al. 2009) and Cia2 (Tsaousis et al. 2014). It has

been experimentally shown that the mitochondrial ISC path-

way is necessary for the function of the CIA, probably because

it synthesizes and transports an uncharacterized sulfur con-

taining precursor to the cytosol (Kispal et al. 1999; Gerber

et al. 2004; Biederbick et al. 2006; Pondarre et al. 2006).

Dependency on ISC is interpreted as a major reason for the

retention of mitochondrion-related organelles in anaerobic

eukaryotes (Williams et al. 2002). Maturation of the cytosolic
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Fe–S proteins by the CIA pathway starts with the formation

of [4Fe–4S] cluster on the Cfd1-Nbp35 scaffold (Hausmann

et al. 2005; Netz et al. 2012), transfer of electrons from

NADPH is mediated by Dre2 and diflavin reductase Tah18

is required for this process (Zhang et al. 2008; Netz et al. 2010).

The [4Fe–4S] cluster from Cfd1-Nbp35 is transferred to a

target apoprotein by Nar1 and the late-acting CIA compo-

nents Cia1, Cia2, and Met18, which form the so-called CIA-

targeting complex (Lill et al. 2015).
A unique combination of the Fe–S cluster assembly

enzymes has been found in a flagellate Monocercomonoides

exilis (strains PA203; Treitli et al. 2018) from the group of

Oxymonadida (Karnkowska et al. 2016).Monocercomonoides

exilis contains the CIA pathway, however, the ISC pathway is

absent together along with all other mitochondrial proteins.

As there is no microscopic evidence for the existence of a

mitochondrion, this is interpreted as showing the mitochon-

drion has been lost altogether (Karnkowska et al. 2016), which

makes this oxymonad unique among eukaryotes. Instead of

ISC,M. exilis contains SUF pathway, which is slightly reduced

compared with bacterial pathways, containing only three

proteins—SufB, SufC, and SufSU. SufSU represents a fusion

of SufS (cysteine desulfurase) and SufU (an enhancer of SufS

in prokaryotes; Albrecht et al. 2010, 2011; Riboldi et al. 2011;

Karnkowska et al. 2016).
The M. exilis SUF proteins are not specifically related to

plastid homologues, or homologues from any other micro-

bial eukaryotes, but rather to enzymes found in eubacteria,

and to homologues in the transcriptome of Paratrimastix

pyriformis, a sister taxon of oxymonads (Zhang et al. 2015;

Karnkowska et al. 2016). It has been proposed that the

pathway was acquired by horizontal gene transfer (HGT)

from a eubacterium in the common ancestor of

Monocercomonoides and Paratrimastix. This apparently pre-

ceded the loss of mitochondria in M. exilis, because P. pyr-

iformis retains a mitochondrion-related organelle (Hampl

et al. 2008; Zubacova et al. 2013). Localization of the SUF

pathway in P. pyriformis is unknown and in M. exilis heter-

ologous localizations in Saccharomyces cerevisiae and T. vag-

inalis suggest cytosolic localization (Karnkowska et al. 2016).
Oxymonads and P. pyriformis are classified into the group

Preaxostyla within phylum Metamonada (supergroup

Excavata; Hampl et al. 2009; Adl et al. 2012). All representa-

tives of two other Metamonada lineages (Parabasalia and

Fornicata) contain the ancestral ISC pathway and no genes

for enzymes in the SUF pathway have been observed in these

lineages, indicating that this modification of Fe–S cluster as-

sembly is specific to Preaxostyla. This may have served as a

precondition for the mitochondrial loss in oxymonads. To

further reveal the evolutionary history of this unique evolu-

tionary switch, we investigated genomes and transcriptomes

of 16 members of Preaxostyla for presence of genes and/or

transcripts involved in Fe–S cluster synthesis.

Results and Discussion

The following Preaxostyla data sets were investigated in

this study: genomic assemblies of M. exilis strain PA203

(Karnkowska et al. 2016), Blattamonas nauphoetae strain
NAU3, and P. pyriformis strain ATCC 50935, single cell ge-
nome assembly of Streblomastix strix, three single cell tran-
scriptome assemblies of Saccinobaculus doroaxostylus (SD1,
SD2, SDN), three single cell transcriptome assemblies of
Saccinobaculus ambloaxostylus (Amblo-1, Amblo-5, Amblo-
5), one single cell transcriptome assembly of Oxymonas sp.,
two single cell transcriptome assemblies of Streblomastix sp.
(Streblo-1, Streblo-4), one single cell transcriptome assembly
of Pyrsonympha sp., transcriptome assembly of Trimastix ma-
rina strain PCT (Leger et al. 2017), and transcriptome assem-
bly of trimastigid “MORAITIKA”.Quality and coverage varied
extremely between data sets, which was probably the main
reason for the lack of some genes/transcripts especially in the
single cell genomes and transcriptomes.

The data were searched for all known components of ISC,
SUF, CIA, andNIF pathways. In all examined data sets, wewere
unable to identify any gene involved in the ISC and NIF path-
ways, but we identified genes or gene fragments for proteins
involved in the SUF and CIA pathways in all examined organ-
ismswith exceptionof “Streblo-4” (figs. 1 and2).Mitochondrial
targeting peptides were not predicted in any complete SUF
proteins (supplementary table S1, Supplementary Material
online), indicating cytosolic localization of these proteins.

Contaminants among the CIA proteins were not expected,
because they have no close prokaryotic homologues. To filter
prokaryotic contamination of SUF genes/transcripts and to
exclude those that were severely truncated, sequences with
>70% nucleotide similarity to prokaryotic sequences in NCBI
and also sequences shorter than 65 aa were not included in
further analyses. Phylogenetic trees were then constructed for
individual SUF components (supplementary figs. S1–S4,
Supplementary Material online). Every protein tree resolved
a major Preaxostyla clade (shown in green in supplementary
figs. S1–S4, Supplementary Material online). Sequences de-
rived from the genomic assemblies were present only in this
major clade, suggesting that this clade represents bona fide

Preaxostyla genes. Species composition of this clade in every
protein tree suggests that it was acquired prior to the last
common ancestor of Preaxostyla.

Some sequences branched robustly (ML bootstrap>90%)
outside this major clade (shown in red in supplementary figs.
S1–S4, Supplementary Material online). Origin of these
sequences is unclear, they may result from prokaryotic con-
taminations or more recent lineage specific HGT. For this rea-
son, these sequences were not included in the concatenation
analysis. Such outlying SUF proteins were especially common
in the data set of Oxymonas sp. (supplementary figs. S1–S4,
Supplementary Material online). These were all unique to
Oxymonas and no closely related orthologues were found in
any other oxymonad, suggesting that this data set contains
high level of prokaryotic contamination. In contrast, we iden-
tified six closely related SufS genes from S. doroaxostylus isolate
SDN, Streblomastix sp. (Streblo-1), S. ambloaxostylus (Amblo-
5), and trimastigid “MORAITIKA.” They formed a well-
supported clade (ML bootstrap 100) that was deeply nested
in a clade containingmixture of Archaea and Eubacteria (sup-
plementary fig. S4, Supplementary Material online). These
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sequencesmay represent contaminants from closely related

prokaryotes, but it is also possible given the fact that these

genesdonot shareahigh level of identity andwere found in a

larger number of species, that they represent a second and

independent acquisition of SufS by a subset of Preaxostyla. It

should be noted, however, that these homologues were

identified only in transcriptomes with overall low quality

and high level of contamination, and most critically that

FIG. 1. Inventory of SUF proteins in Preaxostyla. The scheme shows SUF genes/transcripts identified in the members of Preaxostyla. The

relationship within this groups is indicated by the tree. For organisms in bold, genomic data were investigated, in others transcriptomic or single

cell transcriptomic data sets were used. Completeness of a gene/transcript is indicated by the length of the arrow. The order of Preaxostyla genes

does not reflect their order in the genome. Gene fusions aremarked by fused arrows. At the bottom are given schemes of typical SUF gene operons

in representatives of prokaryotic groups, see supplementary figure S5, Supplementary Material online for broader prokaryotic representation.

FIG. 2. Inventory of CIA proteins in Preaxostyla. Scheme shows the presence (black) or absence (white/gray) of CIA genes/transcripts in Preaxostyla

with reference to Metamonada represented by G. intestinalis and T. vaginalis. White/grey shading indicates that the gene was not identified in

available genome/transcriptome, respectively. The gene inventory of T. vaginalis and G. intestinalis was taken from Pyrih et al. 2016. Question

marks indicate uncertain orthology to Tah18.
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the sequences putatively ascribed to Streblomastix do not

contain evidence of the alternative genetic code typical for

this oxymonad (Keeling and Leander 2003).
A concatenated tree of SufB, SufC, SufD, and SufS was con-

structed including sequences from “green clades” with reliable

Preaxostyla origin (fig. 3). In this tree, all Preaxostyla formed a

single and well-supported clade (RaxML/MrBayes support

100/1) with an internal topology consistent with the relation-

shipsamongPreaxostyla (Treitli et al. 2018).This result strongly

suggests that the whole pathway originated in their common

ancestor and was inherited vertically since then.
Three proteins of the pathway (SufD, S, and U) are fused

(SufDSU) inM. exilis, B. nauphoetae, S. strix, and P. pyriformis.

The homology of theN-terminal part of this proteinwith SufD

has not been recognized previously (Karnkowska et al. 2016).

Similar fusion is also present in the transcriptomeofT.marina,

where we identified a fusion of SufSU but SufD is on an inde-

pendent contig.No fusionswere evident in other data sets, but

this may be a result of the fragmented nature of the data,

making fusions hard to detect. A scheme of the detected

SUF genes/transcripts and their fusions is shown in figure 1

(see supplementary fig. S5, Supplementary Material online for

broader representationofprokaryotes).ThephylogenyofSUFs

(fig. 3) was unable to resolve the position of Preaxostyla

sequences within prokaryotes. However, the arrangement of

SUF operons in sequenced prokaryotic genomes suggests

Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or

Chloroflexi as probable donors. Operons in these groups are

consistent with the SUF pathway composition as well as the

SufDSU gene order found in Preaxostyla fusion genes.
The inventory of the CIA genes in Preaxostyla is in general

very similar to that of other metamonads, including Nbp35,

FIG. 3. Phylogenetic analysis of concatenated SufB, C, D, and S proteins. The topology of the tree was calculated byML in IQ-TREE using partition-

specific models. Numbers at nodes represent statistical support in regular ML bootstraps/Bayesian posterior probabilities. The support 99/0.99

and higher is indicated by filled circles, values <50 and 0.5 are not shown.
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Cia1, Nar1, and Cia2 (Pyrih et al. 2016; fig. 2). Preaxostyla lack

proteins associatedwith themitochondrion (Erv1 andAtm1),

and proteins Dre2 and Tah18. Their absence is not surprising

as the Dre2 is often missing in anaerobes (Basu et al. 2014;

Tsaousis et al. 2014) and neither Erv1 nor Atm1 was found in

other metamonads (Pyrih et al. 2016). The primary function

of Tah18 is to provide electrons for Dre2 (Netz et al. 2010), so

in the absence of Dre2 it is reasonable that Tah18 was prob-

ably lost as well. We were not able to identify MMS19 in any

of the studied oxymonads, but protein containing N-terminal

MMS19 domain was present in P. pyriformis (fig. 2). The

conserved inventory of CIA proteins in Preaxostyla contrasts

with the major switch of the upstream Fe–S cluster assembly

pathway in this group and indicates functional robustness of

the CIA pathway.

Materials and Methods

For single cell transcriptomes (S. doroaxostylus, S. ambloaxos-

tylus, Oxymonas sp., Streblomastix spp., and Pyrsonympha),

cells were manually picked by micropipette, washed 1–2

times, and then deposited directly into single cell lysis buffer

and frozen in –80 C freezer. Single cell cDNA was then am-

plified following Picelli et al. (2014) and Kolisko et al. (2014)

protocols. Illumina Nextera XT protocol was used for se-

quencing library construction. Transcriptomes were assem-

bled by Trinity 2.0.6 (Grabherr et al. 2011) and for quality

trimming trimmomatic0.32 (Bolger et al. 2014) with default

settings was used.
The trimastigid “MORAITIKA” wasmaintained as amono-

eukaryotic polyxenic culture in the ATCC medium 1525 at

room temperature. Total RNA was isolated from 300ml of

culture using TRI Reagent (Sigma). Isolated RNA was purified

by Qiagen RNeasy Mini Kit (Qiagen) and RNase-Free DNase

Set (Qiagen) according to the manufacturer’s protocol. Total

RNA was sent to EMBL where the libraries were prepared.

Contigs were assembled by Trinity 2014-04-13p1 (Grabherr

et al. 2011), quality trimming was done by fastx version 0.0.13

(fastq_quality_filter -Q33 -q 20 -p 70), contigs shorter than

200nt were discarded.
The single cell of S. strix was manually picked by micropi-

pette from gut content of the termite Zootermopsis angustic-

olis, three times washed in Trager U media, then DNA was

isolated and the whole genome was amplified using illustra

Single Cell GenomiPhi DNA Amplification Kit (GE

Healthcare) according to the manufacturer’s protocol. The

amplified DNA was purified using Agencourt AMPure XP

(Beckman Coulter), and sequencing libraries were prepared

using Illumina TruSeq DNA PCR-Free (Illumina) for HiSeq

2500 or with Ligation Sequencing Kit 1D (Oxford Nanopore

Technologies) for Oxford Nanopore sequencing. Draft ge-

nome was assembled as a hybrid assembly using SPAdes

3.10.0 (Bankevich et al. 2012; Antipov et al. 2016). Binning

of the assembled data and separation of the eukaryotic ge-

nome from bacterial sequences was done using tetranucleo-

tide frequencies using tetraESOM method (Dick et al. 2009),

together with blast analysis of the assembled data.

Blattamonas nauphoetae strain NAU3 was grown as a
monoeukaryotic polyxenic culture inmodified TYSGMmedia
(Diamond 1982) without gastric mucin. The genomic DNA
was sequenced using Illumina MiSeq (coverage 62x) and
Oxford Nanopore MinIon (coverage 2x) technology and as-
sembled using the SPAdes 3.7.1 (Bankevich et al. 2012;
Antipov et al. 2016) followed by scaffolding with SSPACE
basic V2 (Boetzer et al. 2011) using the Illumina mate-pair
reads.

Paratrimastix pyriformis was grown in a monoeukaryotic
polyxenic culture on rye grass cerophyll infusion (Sonneborn’s
Paramecium medium, ATCC #802) at room temperature.
The genomic DNA was isolated using DNeasy Blood &
Tissue Kit (Qiagen). The P. pyriformis draft genome sequence
was sequenced and assembled from raw genomic reads pro-
duced by 454, Illumina HiSeq (coverage 894x), and PacBio
(coverage 11x) sequencing technologies using SPAdes 3.11.1
(Bankevich et al. 2012; Antipov et al. 2016) assembly toolkit.
Automatic gene prediction for the S. strix, B. nauphoetae and
P. pyriformis draft genomes was done using Augustus 3.2.3
(Stanke and Waack 2003).

Nucleotide data sets predicted proteins were searched by
TBLASTN algorithms; six-frame translations of the transcrip-
tomes and predicted proteomes were searched by BLASTP.
Proteins not identified by BLAST were searched for by
HMMER. In the BLAST searches, we have used full gene in-
ventories of M. exilis, Escherichia coli, and Bacillus subtilis for
the SUF pathway, S. cerevisiae, T. vaginalis, G. intestinalis, and
E. coli for the ISC pathway, Azotobacter vinelandii, E. histoly-
tica, andM. balamuthii for the NIF pathway and S. cerevisiae

and human for the CIA pathway. HMMER searches were
performed by HMMER 3.1b2 (Eddy 2011) using curated
Pfam and custom created models for the aforementioned
genes. Sequences of SUF and CIA pathway genes/proteins
retrieved from unpublished data sets were deposited in
GenBank under accession numbers MH608120–MH608208.

Sequences were aligned by MAFFT v. 7.222 (Katoh et al.
2002) and trimmed with BMGE 1.12 software (Criscuolo and
Gribaldo 2010) using blosum30 matrix. Gene fragments orig-
inating from different assemblies of the same species (namely
SufC—SDN_lcljTR24651jc0_g1_i1 and SDN_lcljTR10532jc0_
g1_i1, SufS—SD1_lcljTR11348jc0_g2_i1 and SD1_lclj
TR17340jc0_g1_i1) were concatenated to increase phyloge-
netic resolution. Alignments are available upon request.
Phylogenetic trees were constructed by IQ-TREE v 1.6.1
(Nguyen et al. 2015) using the best fitting models according
to Bayesian information criterion predicted by ModelFinder
(Kalyaanamoorthy et al. 2017)—LG4M for SufS and SufD, C20
for SufC, and EX_EHO for SufD. For analysis of the
concatenated alignment, gene-partition-specificmodels given
above were used. Bayesian analysis was performed for
concatenated data set using MrBayes 3.2 (Ronquist et al.
2012) with two runs, each of four chains of 10 mil. genera-
tions, sampling frequency 500 generations and uniform
WAG+gamma+covarion model for the whole concatenate.
The value of the average standard deviation of split frequen-
cies did not drop below the 0.01; however, both chains have
shown stable plateau of likelihood values after 1 106

Vacek et al. . doi:10.1093/molbev/msy168 MBE
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generations. Tree from first 1 106 generations were dis-

carded as burn-in before consensus tree calculation.

Supplementary Material

Supplementary data are available at Molecular Biology and

Evolution online.
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Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R.
2014. Full-length RNA-seq from single cells using Smart-seq2. Nat
Protoc. 9(1):171–181.

Pondarre C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM,
McDonald A, Han AP, Medlock A, Kutok JL, et al. 2006. The mito-
chondrial ATP-binding cassette transporter Abcb7 is essential in
mice and participates in cytosolic iron–sulfur cluster biogenesis.
Hum Mol Genet. 15(6):953–964.

Pyrih J, Pyrihova E, KolıskoM, Stojanovova D, Basu S, Harant K, Haindrich
AC, Dolezal P, Lukes J, Roger A, et al. 2016. Minimal cytosolic iron–
sulfur cluster assembly machinery of Giardia intestinalis is partially
associated with mitosomes. Mol Microbiol. 102(4):701–714.

Riboldi GP, Larson TJ, Frazzon J. 2011. Enterococcus faecalis sufCDSUB
complements Escherichia coli sufABCDSE. FEMS Microbiol Lett.
320(1):15–24.

Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. 2013. Reprint
of: iron/sulfur proteins biogenesis in prokaryotes: formation,

regulation and diversity. Biochim Biophys Acta-Bioenergy.
1827(8–9):923–937.

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S,
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Abstract

The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organ-

elles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of

this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of theM. exilis

genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in

complexity to other eukaryotes and less “reduced” than genomes of some other protists from the Metamonada group

to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and

biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the

loss of mitochondria was the acquisition of the SUF system for Fe–S cluster assembly and the loss of glycine cleavage

system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident

with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the

mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully

elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in

the absence of mitochondria.

Key words: amitochondrial eukaryote, cell biology, Monocercomonoides, oxymonads, protist genomics.

Introduction

Mitochondria are core features of the eukaryotic cell. In
addition to their signature role in ATP generation, they
are integrated in diverse cellular processes including the
biosynthesis and catabolism of amino acids, lipids, and
carbohydrates, environmental stress tolerance, and the reg-
ulation of cell death. Despite the many independent trans-
formations of the mitochondria into metabolically reduced
and modified versions present in anaerobic organisms
(Roger et al. 2017), mitochondria or mitochondrion-
related organelles (MROs) were considered indispensable
due to their essential core function(s) such as the biosyn-
thesis of Fe–S clusters (Williams et al. 2002; Gray 2012; Lill
et al. 2012).

However, the discovery of the first truly amitochondriate
eukaryote,Monocercomonoides sp. PA203 (Karnkowska et al.

2016) showed that the outright loss of mitochondria is pos-
sible. This organism, now classified as Monocercomonoides
exilis (Treitli et al. 2018), remains the only deeply inspected
amitochondriate eukaryote, although the same status may
hold true for its relatives, based on the limited cytological
data from other oxymonads (Hampl 2017). Importantly,
the ancestor of this lineage must have possessed a mitochon-
drial organelle, given the well-documented presence ofMROs
in relatives of oxymonads (Zubacova et al. 2013; Leger et al.
2017). By studyingM. exilis, we can determine howmitochon-
drial loss affects the rest of the cell and affords a unique
opportunity to examine cellular systems that are normally
integrated with mitochondria in a context where the organ-
elle is absent.

Monocercomonoides exilis is a bacterivorous tetraflagellate
living as a putative commensal in the intestine of caviomorph
rodents (fig. 1a and b) (Treitli et al. 2018). Like all oxymonads,
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M. exilis has a single long microtubular rodlike axostyle that
originates from the nuclear region and is connected to the
basal bodies by a characteristic fiber (i.e., the preaxostyle)
consisting of a sheet of microtubules and a nonmicrotubular
layer. Electron microscopic imaging ofM. exilis showed that it
lacks any conspicuous Golgi apparatus and mitochondria
(Treitli et al. 2018).

Monocercomonoides exilis is a representative of a broader
group of endobiotic protists called the oxymonads, which
together with the free-living trimastigids, constitute the clade
Preaxostyla, one of the three principal lineages of
Metamonada (Leger et al. 2017; Adl et al. 2019) (fig. 1c).
Metamonada comprise solely anaerobic/microaerophilic uni-
cellular organisms with a diverse array of MRO types (Leger
et al. 2017). Many metamonads are also parasites of

agricultural or medical importance, three of which have be-
come subject of in-depth genomic investigations: the para-
basalid Trichomonas vaginalis (Carlton et al. 2007), the
diplomonads Giardia intestinalis (Morrison et al. 2007), and
Spironucleus salmonicida (Xu et al. 2014). A draft genome
sequence has been reported for a free-living representative
of the Fornicata, Kipferlia bialata (Tanifuji et al. 2018). OurM.
exilis genome project has complemented this sampling by
targeting a nonparasitic endobiont and the first representa-
tive of Preaxostyla. However, the initial genomic analysis ofM.
exilis was tightly focused on demonstrating mitochondrial
absence (Karnkowska et al. 2016). Here, we present an in-
depth analysis of the M. exilis draft genome sequence that
addresses the genomic and cellular impact of mitochondrial
loss in the context of metamonad evolution.

FIG. 1. The overall morphology ofMonocercomonoides exilis and phylogeny of Metamonada. (a) A living cell ofM. exilis PA203 under differential

interference contrast (DIC). (b) TEM micrograph ofM. exilis PA203 (credit Naoji Yubuki). (c) Relationships within Metamonada inferred from a

phylogenomic data set (Leger et al. 2017); organisms with sequenced genomes are in bold.
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2293

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

-a
b
s
tra

c
t/3

6
/1

0
/2

2
9
2
/5

5
2
5
7
0
8
 b

y
 g

u
e
s
t o

n
 2

9
 O

c
to

b
e
r 2

0
1
9

Deleted Text: -
Deleted Text: -
Deleted Text: <italic>M.</italic>
Deleted Text: -


Results and Discussion

Focused Ion BeamScanning ElectronMicroscope (FIB-
SEM) Tomography of the Cell
To supplement the genomic analyses, corroborate the ab-
sence of mitochondria and Golgi stacks, and address several
other predictions from the genomic information, we probed
the M. exilis cell architecture by FIB-SEM tomography. We
sectioned major parts of two cells fixed by two different
protocols (supplementary videos S1 and S2, Supplementary
Material online). The data obtained are consistent with pre-
vious transmission electron microscopy (TEM) investigation
(Treitli et al. 2018). Importantly, although we acknowledge
that the resolution of the microscopy could still allow for
undetected highly reduced mitosomes, we did not observe
any conspicuous mitochondria or MROs in this systematic
examination of the M. exilis cells.

Genome and Predicted Proteome Features
The draft genome of M. exilis (Karnkowska et al. 2016,
BioProject: PRJNA304271) is assembled into 2,095 scaffolds
with an estimated genome size of 75 Mb and an average
GC content 36.8% (with coding regions and intergenic regions
represented by 41.3% and 29% GC, respectively; table 1). By
mapping sequencing reads onto the consensus genome as-
sembly, we observed 5,150 of potential single nucleotide poly-
morphisms (SNPs), with the average SNP density of 0.04 per
kb. The vast majority of alternative bases have a frequency
<20% (supplementary fig. S1, Supplementary Material on-
line) suggesting that M. exilis cells are monoploid and most
polymorphisms represent sequencing errors. This is consis-
tent with previous fluorescence in situ hybridization (FISH)
results that revealed a single signal for SUF genes in most
nuclei (Karnkowska et al. 2016).

Extensive sequence diversity in terminal telomeric repeats
has been found across eukaryotes where the most common,
and likely ancestral, repeat type is TTAGGG (Fulneckova et al.
2013). InM. exilis, we identified this TTAGGG repeat element
in 13 telomeric regions with at least 5 telomeric repeats at the
beginning/end of the scaffold. FISH analyses with probes
against telomeric repeats support the sequencing results
demonstrating an average of 13 telomeric puncta inM. exilis
nuclei (supplementary fig. S2, Supplementary Material on-
line), suggesting the presence of 6 or 7 chromosomes. The
length of telomeric regions estimated by the terminal restric-
tion fragment method (Kimura et al. 2010) varied from 300
bases to 9 kb with a mean telomeric length of 2.1 kb (sup-
plementary fig. S2, Supplementary Material online).

Manual curation of the previously reported M. exilis ge-
nome annotation (Karnkowska et al. 2016) led to many
changes including corrections of gene models and addition
of new models for genes missed by the automated method
originally employed. In total, 831 genes were manually cu-
rated in this study, which, together with previously curated
genes (Karnkowska et al. 2016), yields a total of 1,172 manu-
ally curated genes in the current annotation release (supple-
mentary table S1, Supplementary Material online). Three
scaffolds—01876, 01882, and 01991—were recognized as

probable contaminants and removed from the new version
of assembly. The revised number of protein-coding genes in
the M. exilis genome is 16,768. Homology-based approaches
assigned putative functions to 6,476 (39%) M. exilis protein-
coding genes, including 2,753 geneswith domain annotations.
This percentage is comparable with othermetamonads, rang-
ing from 15% of functionally annotated genes for T. vaginalis
G3 (TrichDB Release 35) to 45% for G. intestinalis assemblage
BGS (GiardiaDB Release 35). The annotated genome assembly
and predicted genes for M. exilis will be available in the next
release of GiardiaDB (https://giardiadb.org; last accessed 30
June, 2019).

The predicted proteins encoded by M. exilis, other
metamonads and the heterolobosean Naegleria gruberi
were clustered to define putative groups of orthologs
(orthogroups) (fig. 2). Of the 2,031 orthogroups repre-
sented in M. exilis, the highest number (1,688, i.e., 83%) is
shared with N. gruberi, which was previously suggested to
be overrepresented, relative to other eukaryotes, in ances-
tral eukaryotic proteins (i.e., proteins that were present in
the last eukaryotic common ancestor [LECA]) (Fritz-Laylin
et al. 2010). The degree of orthogroup overlap was lower
with T. vaginalis (1,564, i.e., 77%) and even more limited
with diplomonads (1,057 for G. intestinalis and 1,065 for S.
salmonicida, i.e., 52%). This pattern suggests that M. exilis
has lost fewer ancestral eukaryotic proteins than other
metamonads. Therefore, despite the absence of mitochon-
dria, the proteome ofM. exilis is likely more representative
of the proteome of ancestral metamonads than that of
either diplomonads or parabasalids.

The largest gene family in the M. exilis genome encodes
protein tyrosine kinases (supplementary table S2,
Supplementary Material online). The vast majority (320 out
of 332 predicted tyrosine kinases) belong to the diverse tyro-
sine kinase-like group (supplementary table S3,
Supplementary Material online). Although this group is also

Table 1. Summary of the Monocercomonoides exilis Genome
Sequence Data.

Feature Value

Genome

Size of assembly (bp) 74,712,536

G1 C content (%) 36.8

No. of scaffolds 2,092

N50 scaffold size (bp) 71,440

Protein-coding genes

No. of predicted genes 16,768

No. of genes with introns 11,124

Mean gene length (bp) 2,703.8

Gene G1 C content (%) 41.3

Mean length of intergenic regions (bp) 870.5

Intergenic G 1 C content (%) 29

Introns

No. of predicted introns 31,693

Average no. of introns per gene 1.9

Intron G1 C content (%) 25.2

Mean intron length (bp) 124.3

Noncoding RNA genes

No. of predicted tRNA genes 153

No. of predicted 18S-5.8S-28S rDNA units 50

Karnkowska et al. . doi:10.1093/molbev/msz147 MBE
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expanded in T. vaginalis (Carlton et al. 2007), neither classical
tyrosine kinases (TK group) nor members of the related ty-
rosine kinase-like group were identified in G. intestinalis
(Manning et al. 2011), and only one occurs in S. salmonicida
(Xu et al. 2014). Other abundant families in M. exilis include
the Ras superfamily GTPases, cysteine proteases, and thiore-
doxins (see below) (supplementary table S2, Supplementary
Material online).

Intron Gain and Loss in the M. exilis Lineage
Parasitic metamonad genomes sequenced so far are charac-
terized by a scarcity of introns. Only 6 cis-spliced introns and 5
unusual split trans-spliced introns were found inG. intestinalis
(Kamikawa et al. 2011; Franzen et al. 2013), 4 cis-spliced
introns in S. salmonicida (Xu et al. 2014; Roy 2017), and 65
in T. vaginalis (Carlton et al. 2007). In contrast, we previously
reported over 32,000 introns in the genome of M. exilis
(Karnkowska et al. 2016). Sequencing of the free-living meta-
monad K. bialata revealed >120,000 introns, the highest
number noted in metamonads so far (Tanifuji et al. 2018).
We were unable to compare the M. exilis and K. bialata
genomes because we completed our analyses prior to the
release of the Kipferlia data.

With additional manual curation of gene models, the cur-
rent estimate of the number of spliceosomal introns in M.
exilis genome is 31,693, with an average number of 1.9 and 0.8
introns per gene and per kb of coding sequence, respectively.
The high intron density is consistent with the previous report
of introns in the oxymonad Streblomastix strix (Slamovits and
Keeling 2006) and comparable with other free-living protists
(e.g.,Dictyostelium discoideum) (Eichinger et al. 2005) andwell
within the range exhibited by conventional eukaryotic
genomes (Rogozin et al. 2012; Irimia and Roy 2014). The
ubiquity of canonical GT-AG and lack of AT-AC boundaries
indicates that only the major (U2-dependent) introns are
present, which is consistent with the absence of minor
(U12-dependent) spliceosome components (supplementary
table S1, Supplementary Material online). The large number

of introns in this organism increases the energetic cost of gene
expression (Lynch and Marinov 2015). Clearly, sufficient ATP
is produced inM. exilis by substrate-level phosphorylation to
meet these costs in the absence of aerobically respiring mi-
tochondria (Hampl et al. 2019).

To understand the origin and evolution of introns in M.
exilis, we performed an analysis of the relative contribution of
retention of ancestral introns and insertion of lineage-specific
introns in theM. exilis genome.We analyzed introns in a set of
100 conserved eukaryotic genes with well-established ortho-
logs in 34 reference species across representative lineages of
eukaryotes (fig. 3). In total, these genes and species comprised
3,546 intron positions, 201 of them represented in M. exilis
homologs. We used Dollo parsimony to reconstruct intron
gains and losses along the eukaryote phylogeny using three
alternative root positions. With one of the root positions, the
LECA is inferred to have harbored 432 introns in this gene set,
65 of which have been retained in M. exilis (fig. 3a). This
accounts for more than 30% of theM. exilis introns analyzed,
a proportion similar to other eukaryotes (fig. 3b). The other
two root positions give similar estimates (supplementary fig.
S3a and b, SupplementaryMaterial online). The absence of the
remaining ancestral introns from the M. exilis genome could
be explained by massive intron loss along the stem lineage of
Metamonada, that is, before the split of the lineages leading to
M. exilis on one side and the diplomonads plus T. vaginalis
clade on the other (fig. 3a). However, it is to be noted that the
recently sequenced genome of the diplomonad relative K.
bialata is reported to include >120,000 introns (Tanifuji
et al. 2018), so it is possible that many of these losses are in
fact specific for Preaxostyla or oxymonads. Likewise, although
our analysis suggests substantial acquisition of new introns in
theM. exilis lineage (fig. 3a and supplementary fig. S3a and b,
Supplementary Material online), the new data from K. bialata
make it likely that many of these gains are more ancient
(having occurred already in the metamonad stem lineage).

Genome Maintenance and Expression in M. exilis
Given the extraordinary absence of mitochondrial organelles
from M. exilis, we examined genes encoding components of
other cellular systems to assess whether they were similarly
reduced or unusual.

We first investigated the systems responsible for mainte-
nance and expression of the M. exilis nuclear genome. We
identified all expected universally conserved genes encoding
nucleus-functioning proteins (Iyer et al. 2008). For example,
M. exilis encodes all four core histones (H2A, seven variants;
H2B, three variants; H3; two variants; and H4, one variant) as
well as the linker histone H1 (supplementary table S1,
Supplementary Material online).

All essential components involved in DNA unwinding,
primer synthesis, and DNA replication were also present in
theM. exilis genome (supplementary table S1, Supplementary
Material online). The origin recognition complex of G. intes-
tinalis and T. vaginalis each containORC1 andORC4, whereas
S. salmonicida relies on a CDC6 complex. InM. exilis, we were
only able to identify ORC1. In terms of replication machinery,
most metamonads do not encode replication protein A

FIG. 2. Venn diagram of orthologous clusters shared and unique to

Monocercomonoides exilis, other metamonads, and Naegleria gruberi.

Oxymonad Genome Displays Canonical Eukaryotic Complexity . doi:10.1093/molbev/msz147 MBE

2295

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

-a
b
s
tra

c
t/3

6
/1

0
/2

2
9
2
/5

5
2
5
7
0
8
 b

y
 g

u
e
s
t o

n
 2

9
 O

c
to

b
e
r 2

0
1
9

Deleted Text: TKL
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
Deleted Text: g
Deleted Text: l
Deleted Text: l
Deleted Text: six 
Deleted Text:  
Deleted Text: five 
Deleted Text: four 
Deleted Text:  
Deleted Text: <italic>ipferlia</italic> 
Deleted Text:  
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
Deleted Text:  
Deleted Text: s
Deleted Text:  
Deleted Text: last eukaryotic common ancestor (
Deleted Text: )
Deleted Text: u
Deleted Text: s
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
Deleted Text: i.e.
Deleted Text:  
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
Deleted Text: m
Deleted Text: e
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
Deleted Text: while 


heterotrimeric complex or have a drastically reduced complex
consisting of only one protein in the case of diplomonads
(Morrison et al. 2007; Xu et al. 2014). Surprisingly, we identi-
fied all subunits of the replication protein A heterotrimeric
complex inM. exilis (supplementary table S4, Supplementary
Material online). In addition, similar to eukaryotes in general
(Forterre et al. 2007),M. exilis employs two different types of
topoisomerase I, Topo IB and Topo III, whereas parabasalids
and fornicates have retained only the latter type (supplemen-
tary table S4, Supplementary Material online).

We similarly identified most of the components of various
DNA repair pathways including base excision repair, nucleo-
tide excision repair, and mismatch repair pathways (Costa
et al. 2003; Kunkel and Erie 2005; Almeida and Sobol 2007;
Fukui 2010) (supplementary tables S1 and S4, Supplementary
Material online). The mismatch repair pathway appears to be
complete in all other sequenced metamonads, whereas the
base excision repair and nucleotide excision repair pathways
are most complete in M. exilis, especially when compared
with G. intestinalis or S. salmonicida (Marchat et al. 2011)
(supplementary table S4, Supplementary Material online).
The nonhomologous end joining pathway involved in repair-
ing double-strand breaks is missing in M. exilis, similarly to
other metamonads (Carlton et al. 2007; Morrison et al. 2007).
However, the homologous recombination repair pathway for
double-strand breaks repair is encoded in the M. exilis ge-
nome (supplementary table S4, Supplementary Material

online) and looks more complete in M. exilis than in other
metamonads.

We also investigated the complement of general transcrip-
tion factors in M. exilis and identified subunits of all general
transcription factors known to be highly conserved among
eukaryotes (Orphanides et al. 1996; Latchman 1997; de
Mendoza et al. 2013) (supplementary table S1,
Supplementary Material online). Notably, M. exilis possesses
both subunits of TFIIA, the primary function of which is sta-
bilization of the preinitiation complex and assistance in the
binding of TBP to the TATA box in promoters (Tang et al.
1996). The presence of TFIIA is in agreement with the pres-
ence of TATA-like motifs in 52% of M. exilis promoter
regions (3,374/6,509 genes with predicted UTR) (supplemen-
tary fig. S4, Supplementary Material online). In contrast, T.
vaginalis lacks TFIIA, and anM3motif has replaced the TATA
box in this lineage (Smith et al. 2011).

Regarding the translation machinery, we identified 30 pro-
teins in the M. exilis genome annotated as eukaryotic initia-
tion factors or their associated factors (supplementary table
S1, Supplementary Material online). This set is nearly com-
plete compared with the mammalian translation machinery
and it is almost identical to the sets of eukaryotic initiation
factors present in the genomes of T. vaginalis and G. intesti-
nalis (Kanehisa et al. 2014) (supplementary table S1,
Supplementary Material online). Of note is the presence in
M. exilis of enzymes responsible for the formation of

FIG. 3. Intron gains and losses along the eukaryote phylogeny. (a) Intron gains and losses along the eukaryote phylogeny as reconstructed by Dollo

parsimony. The numbers are derived from an analysis of 3,546 intron positions in a reference set of 100 groups of orthologous genes of 34

phylogenetically diverse species. Root of the eukaryote phylogeny was considered between Amorphea and the remaining eukaryotes included in

the analysis. (b) Numbers of ancestral (i.e., inherited from the LECA) and nonancestral (i.e., lineage-specific) introns in different eukaryotes. Derived

from the analysis described in (a).
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diphthamide (supplementary table S1, Supplementary
Material online), a modified histidine residue present in ar-
chaeal and eukaryotic elongation factor 2 and important for
its proper function (Su et al. 2013). The retention of this
modification inM. exilis contrasts with the situation in para-
basalids recently shown to have lost diphthamide biosynthe-
sis genes (Narrowe et al. 2018).

Actin and Tubulin Cytoskeleton
The extensive cytoskeletal apparatus, including the hallmark
oxymonad axostyle, is one of the better-described fascinating
aspects of the cellular architecture of Monocercomonoides
(Radek 1994; Treitli et al. 2018). Like many other cellular
systems of Monocercomonoides, the actin and tubulin cytos-
keletons of diplomonads and parabasalids depart in various
ways from the general picture seen in other eukaryotes. The
metamonad actin cytoskeleton is reduced andmodified (sup-
plementary tables S1 and S5, SupplementaryMaterial online),
with the highest reduction in G. intestinalis (Morrison et al.
2007; Paredez et al. 2014). Monocercomonoides exilis shares
some of the unusual modifications with other metamonads,
as it, for example, lacks proteins containing the myosin head
domain, a trait that has so far only been reported from some
rhodophytes, T. vaginalis, and diplomonads (Sebe-Pedros
et al. 2014; Brawley et al. 2017). On the other hand, it stands
out by possessing a more complete set of actin family pro-
teins (including actin-related proteins; ARPs) than other
metamonads. Specifically, it has retained ARP4 and ARP6,
important nuclear ARPs serving in several chromatin-remod-
eling complexes (Oma and Harata 2011), and also a gene for
the actin-binding protein villin. However, its actual repertoire
of proteins associated with the actin cytoskeleton is less com-
plex than that of T. vaginalis (Kollmar et al. 2012) (supple-
mentary tables S1 and S5, Supplementary Material online).

Monocercomonoides exilis encodes a conventional set of
tubulins that is similar to those found in other metamonad
organisms. All metamonads analyzed contain at least one
complete gene for alpha-, beta-, gamma-, delta-, and
epsilon-tubulin. The sixth ancestral eukaryotic paralog, zeta-
tubulin, has frequently been lost during eukaryote evolution
(Findeisen et al. 2014) and is also missing from metamonads
including M. exilis (supplementary tables S1 and S5,
Supplementary Material online). All metamonads also con-
tain multiple members of both groups of motor proteins
associated with microtubules, that is, kinesins (primarily me-
diating plus end-directed transport) and dyneins (mediating
minus end-directed transport and flagellar motility). Our
comprehensive phylogenetic analysis (supplementary fig. S5,
Supplementary Material online) showed that the family of
kinesins is well represented in metamonads. Of the 17 previ-
ously defined kinesin families with wide taxonomic distribu-
tion (Wickstead et al. 2010), only 3 are missing from
metamonads as a whole, albeit others may be only patchily
distributed in the group (supplementary table S5,
Supplementary Material online).

Dyneins are large multi-subunit complexes consisting of
one or more dynein heavy chains (DHC) and a variable num-
ber of intermediate chains, light intermediate chains, and light

chains. Interestingly, eukaryotes use just a single dynein com-
plex (called cytoplasmic dynein 1) for nearly all cytoplasmic
minus end-directed transport (Roberts et al. 2013). In accor-
dance with the previous reports for G. intestinalis and
T. vaginalis (Wickstead and Gull 2012), M. exilis lacks two
important components of the cytoplasmic dynein 1 complex,
namely the specific intermediate (DYNC1I1) and light inter-
mediate (DYNC1LI) chains, while keeping the heavy chain
(DHC1) that constitutes the center of the complex. In eukar-
yotes, the presence of the cytoplasmic dynein 1 is coupled to
the presence of the dynactin complex, a large multisubunit
protein complex that enhances the motor processivity and
acts as an adapter between themotor complex and the cargo.
Trichomonas vaginalis and G. intestinalis have been reported
as rare examples of eukaryotes lacking the dynactin complex
in the presence of cytoplasmic dynein 1 (Hammesfahr and
Kollmar 2012). Here, we show that all subunits specific to the
dynactin complex are also missing from M. exilis, suggesting
the absence of the complex from metamonads in general.
The set of the axonemal dyneins is nearly complete in meta-
monads including M. exilis (supplementary fig. S6,
Supplementary Material online). We are the first to report
the dynein intermediate chain WDR34, a specific component
of the intraflagellar transport dynein in metamonads.

The conservation ofmicrotubule-dependent chromosome
separation across extant eukaryotes strongly suggests that
this feature was present in LECA. Microtubules and chroma-
tids are connected by the kinetochore, a multiprotein struc-
ture that is assembled on centromeric chromatin. Based on
comparative studies, orthologs of 70 kinetochore proteins
have been identified in various eukaryotes suggesting that
LECA had a complex kinetochore structure (van Hooff
et al. 2017). However, the metamonads that have been stud-
ied to date have closed or semiopen mitosis (Ribeiro et al.
2002; Sagolla et al. 2006) and their kinetochores are divergent
and degenerated in comparison to kinetochores of model
organisms such as human or yeast (van Hooff et al. 2017).
Of the 70 kinetochore orthologs, we have identified 15 in M.
exilis, a comparable number to those identified in G. intesti-
nalis (16), and slightly fewer than in T. vaginalis (27) (supple-
mentary table S6, Supplementary Material online). Although
the kinetochore is reduced, all investigatedmetamonads pos-
sess the most conserved components including Skp1, Plk,
Aurora, or CenA suggesting the presence of a functional ki-
netochore in these species.

Overall, our analyses suggest that except for dispensing
withmyosin-basedmotility and the dynactin complex—traits
shared by all metamonads for which genome data is available
to date—M. exilis has a relatively canonical complement of
cytoskeletal proteins.

Standard and Unconventional Aspects of the
Endomembrane System
The endomembrane system is a critical interface between an
organism and its extracellular environment, and it underpins
host-parasite interactions in many microbial eukaryotes. The
M. exilis endomembrane systemnoticeably lacks any reported
morphologically recognizable Golgi bodies (Radek 1994;
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Treitli et al. 2018) prompting suggestions of organelle absence

similar to mitochondria. From our FIB-SEM data (supplemen-

tary videos S1 and S2, supplementary fig. S7, Supplementary

Material online), we note that the cells contain a well-

developed endoplasmic reticulum (ER), which sometimes

forms stacks superficially resembling Golgi. However, these

ER structures can clearly be distinguished by the ribosomes

attached to their surfaces. Golgi stacks were not observed. On

the other hand, our previous genomic analyses identified 84

genes that serve as indicators of Golgi presence, starkly con-

trasting with the absence of mitochondrial hallmark proteins

(Karnkowska et al. 2016). To better characterize the endo-

membrane system of M. exilis, we have expanded our geno-

mic analysis of membrane-trafficking machinery.
Monocercomonoides exilis has a relatively canonical com-

plement of endomembrane system proteins (fig. 4) encod-
ing most of the basic eukaryotic set (Koumandou et al.
2007). It shows neither extensive reduction nor expansion
of this set as observed in the G. intestinalis (Morrison et al.
2007) and T. vaginalis (Carlton et al. 2007) genomes, respec-
tively. For several protein membrane-trafficking complexes,
we observed multiple versions of some components, but the
lack of others. The retromer complex transports internalized
plasma membrane receptors from endosomes to the trans-
Golgi network (Seaman 2004). Although the cargo-
recognition subcomplex was identified in M. exilis, neither
membrane-deforming sorting nexin proteins nor the con-
ventional cargo protein, Vps10, could be found. This is un-
usual, but not unprecedented, in eukaryotes (Koumandou
et al. 2011). We found an expanded set of components for
ESCRT II, III and IIIa subcomplexes, but a lack of all but
Vps23 of the ESCRT I subunits. ESCRT complexes are best
known for their role in protein degradation at the multi-
vesicular body (MVB) and functional MVBs have been iden-
tified in Tetrahymena which also possesses only Vps23 as its
ESCRT I (Leung et al. 2008; Cole et al. 2015). The genomic
data predict that MVBs should exist in M. exilis, and indeed
candidate MVBs—that is, single-membrane bound small
compartments with internal vesicles—were frequently ob-
served in the FIB-SEM images (supplementary fig. S7). The
presence of this organelle could be significant as these com-
partments are the source of exosomes which are implicated
in host-endobiotic interactions (Schorey et al. 2015). Finally,
we observed at least two sets of all components of the
HOPS complex that acts at the late endosome, but we
were unable to identify any of the subunits that are specific
to the CORVET complex that acts upstream at the early
endosomes. Intriguingly, the Vps39, a HOPS-specific compo-
nent has been recently shown to function in vacuole-
mitochondria contact sites (vCLAMP), with Tom40 as the
direct binding partner on mitochondria (Gonzalez Montoro
et al. 2018). This highlights the potential to use M. exilis to
disentangle nonmitochondrial functions of this protein
without the indirect effect on mitochondria. Similarly,
Vps13, has been proposed to be present in several mem-
brane contact sites, including endosome–mitochondrion
contacts (Park et al. 2016) and proven to influence

mitochondrial morphology in human cells (Yeshaw et al.
2019). Four Vps13 paralogs are encoded in the M. exilis
genome.

We observed multiple paralogs of subunits in some
endosomal-associated complexes potentially indicating diver-
sified endolysosomal pathways. Some of the paralog expan-
sions were small, such as the adaptor protein complexes,
Rab11, and endosomal Qa-SNAREs together with their inter-
acting SM proteins. Other complexes were more extensively
expanded, including four paralogs of Syn6, EpsinR, Vps34, and
TBC-F, five SMAP paralogs, and eight VAMP7 R-SNAREs. It is
particularly striking that, despite encoding a single copy of the
Rab7-specific GEFs Mon1 and CCZ1 (supplementary fig. S8
and supplementary table S1, Supplementary Material online)
like other eukaryotes, M. exilis has an expanded set of Rab7
paralogs, including nine “conventional” Rab7 paralogs and a
clade of nine additional very divergent Rab7-like (Rab7L)
paralogs not found in other eukaryotes so far (supplementary
fig. S9, Supplementary Material online). Some Rab7L loci are
apparently nonfunctional (with coding sequences disrupted
by mutations), indicating birth-and-death evolution of this
gene group. Hence, we speculate that the Rab7L clade is in-
volved in a novel, rapidly evolving endocytic process in
M. exilis. Consistent with the observed diversified comple-
ment of endolysosomal membrane-trafficking machinery,
we also noted that the cytoplasm contains numerous vesicles
with electron lucent matrix some of them containing food
particles (putative phagosomes), and others resembling
endosomes of various shapes and sizes (supplementary fig.
S7, Supplementary Material online). The conspicuous dark
round globules observed in supplementary video S1,
Supplementary Material online, are very likely glycogen gran-
ules observed also under classical TEM (Treitli et al. 2018).

Expanded Set of Proteolytic Enzymes
Proteases are important virulence factors for parasites and are
known to degrade the host’s extracellular matrix during the
invasion (Sajid and McKerrow 2002). We identified 122 pro-
tease homologs, divided into 4 catalytic classes (cysteine,
metallo, serine, and threonine) and 14 families according to
Merops protease classification (Rawlings et al. 2008) (supple-
mentary table S7, Supplementary Material online). The ex-
pansion of cysteine proteases is consistent with the expanded
complement of Cathepsin B cysteine proteases previously
observed in M. exilis (Dacks et al. 2008). We confirmed that
theM. exilis genome encodes 44 Cathepsin B paralogs but no
Cathepsin L genes (supplementary fig. S10). The high number
of cysteine proteases is surprising because M. exilis is consid-
ered a commensal rather than a parasite. The large number of
cysteine proteases previously reported for parasitic metamo-
nads are often thought to be involved in tissue destruction or
host defense (Carlton et al. 2007; Xu et al. 2014).

Salvage of Nucleotides from the Gut Environment
Gut symbionts often lose the ability to biosynthesize cellular
building blocks like nucleotides, andM. exilis appears to be no
exception. Monocercomonoides exilis lacks enzymes for de
novo synthesis and catabolism of purines or pyrimidines
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(supplementary table S1 and supplementary fig. S11,
Supplementary Material online). This implies that the cell
depends on external sources of these compounds that are
incorporated into the nucleotide pool by salvage pathways in
a manner similar to T. vaginalis, G. intestinalis, and several
trypanosomatids (de Koning et al. 2005) (supplementary ta-
ble S8, Supplementary Material online). However, there are
some notable differences to other metamonads in the set of
enzymes that may be used for salvaging of nucleotides
(Aldritt et al. 1985; Munagala and Wang 2002; Munagala
and Wang 2003). Probably the most crucial difference is
that M. exilis, unlike T. vaginalis and G. intestinalis, does not
rely on the salvage of deoxyribonucleotides (Wang and Cheng
1984; Baum et al. 1989), as it can convert ribonucleotides to
deoxyribonucleotides by the action of ribonucleoside-
triphosphate reductase.

Is the Absence of Mitochondrion Reflected in
Modifications of Any Cellular System?
Mitochondria are tightly integrated into various systems/
pathways in typical eukaryotic cells (Roger et al. 2017). It is
therefore of interest to investigate how these systems are af-
fected by the loss of mitochondria inM. exilis. Changes related
to mitochondrial loss can be divided into three categories: 1)
preadaptations, which subsequently made mitochondria dis-
pensable, 2) functions lost concomitantly with mitochondria,
and 3) postadaptations that evolved to compensate for the
absence ofmitochondria. Only specific changes inM. exilis not
present in other Metamonada should be considered, but one
should always keep in mind that even M. exilis-specific fea-
tures may reflect adaptation to anaerobiosis or endobiotic
lifestyle with no direct link to mitochondrial loss.

Like many anaerobic protists, M. exilis cannot synthesize
ATP by oxidative phosphorylation; instead, the ATP is syn-
thesized via glycolysis in the cytosol (Karnkowska et al. 2016).
Coupled with the loss of oxidative phosphorylation, M. exilis
does not encode genes for any of the tricarboxylic acid cycle
enzymes (Karnkowska et al. 2016).

In some anaerobic organisms, glycolysis-derived pyruvate is
oxidized to acetyl-CoA by pyruvate:ferredoxin oxidoreductase
with the concomitant reduction of ferredoxin, which, in turn,
serves as an electron donor for hydrogen evolution via an
[FeFe]-hydrogenase (HYD). In G. intestinalis and Entamoeba
histolytica, the resulting acetyl-CoA can be fermented to eth-
anol, catalyzed by the bifunctional aldehyde/alcohol dehydro-
genase E (ADHE), or is converted to acetate by acetyl-CoA
synthetase (ADP-forming) (Ginger et al. 2010). The latter
reaction produces onemolecule of ATP.We identified homo-
logs of PFO, HYD, ADHE, and acetyl-CoA synthetase in the
M. exilis genome (fig. 5 and supplementary table S1,
Supplementary Material online). Acetate may be further fer-
mented to aldehyde and ethanol by aldehyde dehydrogenase
and ADHE suggesting that ethanol may be the final fermen-
tation product in M. exilis.

As we reported previously, M. exilis possesses a complete
arginine deiminase pathway that enables it to produce ATP
by conversion of arginine to ornithine, NH3, and CO2 (Novak
et al. 2016). Further analyses of its genome suggest that M.
exilis can generate ATP by metabolizing other amino acids,
including tryptophan, cysteine, serine, threonine, and methi-
onine (fig. 6a and b, Supplementary Material online), as was
previously reported in other protists (Anderson and Loftus
2005).One notable aspect of the amino acid catabolism inM.
exilis is the presence of tryptophanase, an enzyme which
occurs rarely in eukaryotes and has been found so far only

FIG. 4. Results of bioinformatic analysis of membrane-trafficking machinery inMonocercomonoides exilis. The presence of membrane-trafficking

compartments and pathways is hypothesized as shown, based on the complement of trafficking machinery identified, and the function of their

homologs inmodel systems. Selectedmembrane-trafficking proteins and protein complexes identified in the genomeofMonocercomonoides exilis

are shown. Several genes for membrane-trafficking proteins appear to have undergone lineage-specific duplications, and these are shown in bold

font.
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in anaerobic protists T. vaginalis, Tritrichomonas foetus,
Mastigamoeba balamuthi, Blastocystis spp., Pygsuia biforma,
and E. histolytica (Eme et al. 2017). Among the products of
tryptophan degradation by tryptophanase is indole, a signal-
ing molecule important, for example, for interactions be-
tween mammalian host and enteric bacteria, and indeed,

Ma. balamuthi was shown to produce significant amounts
of indole (Nyvltova et al. 2017). The pentose-phosphate path-
way (PPP) is integrated with the main metabolic energy gen-
erating pathways. PPP is involved in the generation of NADPH
and pentose sugars and has an oxidative and a nonoxidative
phase. We were unable to find homologs of the enzymes for

FIG. 5. Carbon and energy metabolism in Monocercomonoides exilis. Glucose metabolism (brown), pyruvate metabolism (red), and pentose-

phosphate metabolism (green). Abbreviations and Enzyme Commission numbers are given in supplementary table S1, Supplementary Material

online.
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the oxidative phase but identified those for the nonoxidative
one (fig. 5 and supplementary table S1, Supplementary
Material online). We propose that the oxidative phase is likely
absent in M. exilis, which is not unusual, as a truncated PPP
has also been observed in E. histolytica (Loftus et al. 2005). The
dehydrogenase reactions of the oxidative PPP are considered

as one of the primary cellular sources of NADPH; therefore,
NADPH must be synthesized via an alternative route in M.
exilis. One such NADPH-generating enzyme might be the
putative NAD(P)-dependent glyceraldehyde-3-phosphate de-
hydrogenase (GAPN) identified in theM. exilis genome (sup-
plementary table S1, Supplementary Material online). It was

FIG. 6. Putative amino acid related biochemical pathways in Monocercomonoides exilis. (a) Amino acid metabolism. (b) Reactions putatively

involved in ATP production by amino acids catabolism. Abbreviations and Enzyme Commission numbers are given in supplementary table S1,

Supplementary Material online. Brown color indicates enzymes and products of putative amino acid biosynthesis pathways. Red color indicates

enzymes putatively involved in ATP production by amino acids catabolism. Question marks indicate alternative pathways for cysteine and serine

biosynthesis. “SAM MTases” stands for various S-adenosyl-methionine-dependent methyltransferases.
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proposed that GAPN plays an important role in NADPH
generation in bacteria and archaea (Spaans et al. 2015).
Interestingly, the M. exilis GAPN was identified as a lateral
gene transfer (LGT) candidate (supplementary table S9,
Supplementary Material online). In summary, the NAD(P)H
and ATP generation pathways in M. exilis resemble those
reported for mitosome-bearing anaerobes, and so there is
no indication that they were affected by the complete loss
of mitochondria.

An essential function ofmitochondria andMROs in eukar-
yotes is the synthesis of Fe–S proteins. The ISC pathway,
otherwise considered to be an essential house-keeping path-
way in eukaryotes, was functionally replaced in all examined
Preaxostyla by the SUF pathway (Vacek et al. 2018). We have
argued previously that this replacement was a preadaptation
for the subsequent loss of mitochondria in this lineage
(Karnkowska et al. 2016). This unprecedented event appar-
ently did not influence the number of Fe–S proteins in the
cell, as we identified 70 candidates for such proteins in
M. exilis, with no essential Fe–S protein missing (supplemen-
tary table S10, Supplementary Material online). With the ex-
ception of xanthine dehydrogenase containing a 2Fe–2S
cluster, all other proteins, for which the type of cluster can
be estimated, appear to have 4Fe–4S clusters. Similarly, 4Fe–
4S clusters are more abundant than 2Fe–2S clusters in other
anaerobes (Andreini et al. 2017). The presence of the full array
of essential Fe–S proteins inM. exilis suggests that its cytosolic
SUF and CIA systems are fully capable of satisfying cellular Fe–
S cluster needs.

In most eukaryotes, fatty acid metabolism is integrated
between the mitochondria, ER and peroxisomes.
Monocercomonoides exilis possesses all the proteins necessary
for the synthesis of diacylglycerol and for the interconversion
of phosphatidylcholine, phosphotidylethanolamine, and
phosphatidylserine from phosphatidate. It also possesses a
suite of putatively ER-localized fatty acid biosynthesis proteins
for very long fatty acid elongation by using malonyl-CoA
(supplementary table S1, Supplementary Material online).
However, we were unable to identify components for shorter
chain fatty acid biosynthesis or fatty acid degradation path-
ways. Reduction of the fatty acid synthesis complex is also
known from other microaerophilic protists such as G. intesti-
nalis (Morrison et al. 2007) and E. histolytica (Loftus et al.
2005), both mitosome-possessing gut parasites. Given the
lack of some lipid biosynthetic and degradation pathways,
and the lack of anyMRO inM. exilis, we searched for evidence
of peroxisomes, an organelle that has long been predicted as
also absent due based on microscopic evidence. Loss of per-
oxisomes (and peroxins) has been confirmed in several
groups across the tree of eukaryotes and is often associated
with the reduction of mitochondria (Zarsky and Tachezy
2015; Gabaldon et al. 2016).We searched theM. exilis genome
for peroxin homologs, but only Pex19, a cytosolic receptor for
proteins targeted to the peroxisomal membrane, was found.
This suggests thatM. exilis lacks peroxisomes and that reten-
tion of Pex19 reflects a peroxisome-independent function of
the protein, possibly associated with the ER (Yamamoto and
Sakisaka 2018). This result is also consistent with our failure to

identify any of the ER-localized Dsl1 complex subunits, as
losses of peroxisomes and Dsl1 subunits are correlated
(Klinger et al. 2013). As the peroxisomes are lost in many
anaerobes, their absence cannot be attributed to the loss of
mitochondria.

A second key role of both mitochondria and peroxisomes
is the oxidative stress response. Lack of oxygen-dependent
mitochondria and their reduction to MROs reduce the im-
pact of the organelle on the production of reactive species in
anaerobic and microaerophilic protists. However, many of
them are transiently exposed to oxygen and have evolved a
variety of strategies to cope with oxygen stress. Intracellular
proteins and low-molecular-weight thiols are the main cellu-
lar antioxidants present in anaerobic protists (Müller et al.
2003). In the M. exilis genome, we identified superoxide dis-
mutase responsible for the radical anion (O2 .) detoxification
to O2 and H2O2. We also found candidates for catalase and
peroxiredoxins, which are involved in reduction of H2O2 to
O2 and H2O, and hybrid cluster protein and rubrerythrin,
which decompose H2O2 to H2O (supplementary fig. S12
and supplementary table S1, Supplementary Material online).
Peroxiredoxins must be recharged by reduction in reaction
with thioredoxin, which also have been identified in the M.
exilis genome (supplementary fig. S12 and supplementary
table S1, Supplementary Material online). In other metamo-
nads such as G. intestinalis or S. salmonicida, the main non-
protein thiol is cysteine (Brown et al. 1993; Stairs et al. 2019);
the putative ability ofM. exilis to synthesize cysteine suggests
that cysteine might be also the main nonprotein thiol in this
organism.

Our analysis of theM. exilis genome revealed an expanded
repertoire of genes involved in oxygen stress response, mainly
acquired by LGT from bacteria (supplementary table S9,
Supplementary Material online). Monocercomonoides exilis
genome encodes homologs of not only ruberythrin, nitro-
reductase, and flavodiiron protein but also rare among eu-
karyotic microaerophiles, of catalase, and hemerythrin, an
enzyme involved in the protection of Fe–S cluster-
containing proteins from oxidative damage in microaero-
philic bacteria (Kendall et al. 2014) (supplementary table S9,
Supplementary Material online). This enlarged set of proteins
involved in oxygen stress response might be related to the
complete loss of mitochondria. However, as many microaer-
ophilic/anaerobic protists are also known to possess an ex-
panded set of oxygen stress response proteins, this feature of
M. exilis may instead just be reflective of its ecological niche.

Amino acid biosynthesis is another canonical mitochon-
drial function. Monocercomonoides exilis seems to be able to
synthesize at least alanine, serine, cysteine, and selenocysteine,
and, assuming availability of 2-oxoglutarate, also glutamate
and glutamine (relevant biosynthetic pathways are
highlighted in brown in fig. 6a). The crucial first step seems
to be the synthesis of serine from a glycolysis intermediate 3-
phosphoglycerate by a pathway consisting of three reactions.
A gene encoding the enzyme catalyzing the third reaction,
phosphoserine phosphatase, was not conclusively identified
in M. exilis genome, but a possible candidate is the protein
MONOS_5832 which is similar to the phosphoserine
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phosphatase recently characterized in E. histolytica (Kumari

et al. 2019). Alternatively, it has been shown that the conver-

sion of phosphoserine to cysteine can be catalyzed by cysteine

synthase in T. vaginalis (Westrop et al. 2006); this might also

be the case for M. exilis. The reconstructed amino acid met-

abolic network (fig. 6a, supplementary table S1,

Supplementary Material online) of M. exilis is more complex

than those reported forG. intestinalis (Morrison et al. 2007), E.

histolytica (Loftus et al. 2005), and Cryptosporidium parvum

(Abrahamsen et al. 2004), but less complex than the amino

acid metabolism of T. vaginalis (Carlton et al. 2007).

Monocercomonoides exilis also lacks the glycine cleavage sys-

tem (GCS) and serine hydroxymethyltransferase (SHMT),

which are both present in its close relative Paratrimastix

pyriformis, where they localize into the MRO (Hampl et al.

2008; Zubacova et al. 2013). Related to amino acid metabo-

lism and translation is the finding that the M. exilis genome

encodes components of selenium utilization machinery, in-

cluding enzymes responsible for the synthesis of

selenocysteinyl-tRNA and the translation factor SelB required

for selenocysteine incorporation into proteins during transla-

tion (supplementary table S1, Supplementary Material on-

line). Trichomonas vaginalis and G. intestinalis do not utilize

selenium, but certain Spironucleus species possess selenopro-

teins and selenocysteine biosynthesis machinery, with pre-

dicted roles in oxygen defense (Stairs et al. 2019). The latter

proteins are related to the proteins we identified in M. exilis

(Roxström-Lindquist et al. 2010). Out of the 49 genes encod-

ing the 34 enzymes putatively involved in amino acid metab-

olism discussed above, 17 are of prokaryotic origin

(supplementary table S9, Supplementary Material online)

and were likely acquired via LGT. For comparison, the recon-

structed amino acid metabolism of T. vaginalis contains 36

enzymes, 9 of which were identified as LGT candidates

(Carlton et al. 2007). In summary, only the absences of GCS

(a strictly mitochondrial complex) and SHMT are directly

related to the absence of mitochondria. The loss of these

enzymes, which might have accompanied the transition to

an endobiotic lifestyle, removed another essential function

from the MRO of the M. exilis ancestor, preadapting it for

loss of the organelle.
In model systems, the mitochondrion is involved in the

regulation of calciumhomeostasis in the cell. The calcium flux
is regulated by opening of Ca2þ channels on the cytoplasmic
membrane and by pumping of Ca2þ into extracellular space
and into the internal Ca2þ stores. The ER, mitochondria, and
other endomembrane vesicles function as these stores
(Contreras et al. 2010; Garcıa-Sancho 2014). In M. exilis, we
identified five paralogs of the plasma membrane calcium-
cation exchangers which are responsible for the regulation
of the intracellular Ca2þ concentration (Yu and Choi 1997).
Additionally, we identified seven paralogs of P-type Ca2þ-
ATPases which also transport Ca2þ ions across the plasma
membrane (Schatzmann 1966) and the ER membrane
(Vandecaetsbeek et al. 2011). For comparison, T. vaginalis
possesses four and six of these respective paralogs (not
shown). This suggests that there were no obvious changes

in the inventory of Ca2þ transporters associated with the loss
of mitochondria.

The final systems we specifically examined were related to
autophagy and cell death. While analyzing the membrane-
trafficking system, we noted the presence of seven homologs
of Rab32, including representatives of both main ancestral
paralogs in this family (Rab32A and Rab32B; Elias et al.
2012). In mammalian cells, Rab32 proteins are associated
with specialized lysosome-derived compartments, ER, mito-
chondria, and autophagosomes. We hypothesized that some
aspects of the extended endolysosomal machinery described
above, especially the multiple paralogs of Rab32, in the ab-
sence of mitochondria, could be related to the autophagoso-
mal machinery. We therefore further examined the
autophagosomal machinery encoded in theM. exilis genome
(fig. 7 and discussed below).

Autophagy, the process by which large cellular compart-
ments and cytosolic complexes are degraded, involves the
mitochondria, as well as the ER, via the regulation of calcium,
reactive oxygen-species, and physical association (Gomez-
Suaga et al. 2017). Approximately 30 proteins, found broadly
conserved across eukaryotes, are involved in the initiation,
formation, and function of the autophagosomes (Gomez-
Suaga et al. 2017). Interestingly, the AuTophaGy related 1
complex (Atg1; mammalian ULKs 1, 2, and 3) is almost en-
tirely missing in M. exilis, T. vaginalis, and N. gruberi. The
exceptions are a single divergent Atg11 homolog in M. exilis
and Atg1 homologs in the other two protists. As this complex
plays a role in the early steps of autophagosome formation, its
absence suggests an alternative mechanism for membrane
nucleation, as many other core autophagy proteins are pre-
sent in these organisms. Phagosomal membrane nucleation
and elongation downstream of Atg1 occurs by activation of
the class III phosphatidylinositol 3-kinase (PtdIns3K) complex,
which appears to be present inM. exilis. Membrane expansion
is mediated by the Atg8 and Atg12 ubiquitinlike conjugation
systems. Although the Atg8 complex is present, we did not
identify components of the Atg12 Ubl conjugation system in
M. exilis. As Atg12 is found in both T. vaginalis and N. gruberi,
this pathway may be in the process of being lost in M. exilis,
suggesting that the Atg8 complex is capable of membrane
elongation alone. Indeed, several proteins known to support
the function of Atg8, but not considered core autophagy
machinery, are present in M. exilis, including sequestosome-
1 (p62), which binds to Atg8 to facilitate degradation of
ubiquitinated proteins, and HOG1, which enhances the sta-
bility of Atg8. Retrieval of proteins involved in autophago-
some formation is mediated by the Atg9-Atg18 complex,
both of which are present in M. exilis. However, the Atg18-
interacting protein Atg2, whichmodulates lipid droplet size, is
not found in M. exilis or T. vaginalis. The genomic comple-
ment identified suggests that M. exilis should be capable of
generating autophagosomes, despite some canonical compo-
nents not being identified. Consistent with this, we observed
membranes that resembled the beginning structures of auto-
phagosomes, the Omegasome (supplementary fig. S7 and
supplementary videos S1 and S2, Supplementary Material
online). However, confirming the identity of this structure,

Oxymonad Genome Displays Canonical Eukaryotic Complexity . doi:10.1093/molbev/msz147 MBE

2303

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

-a
b
s
tra

c
t/3

6
/1

0
/2

2
9
2
/5

5
2
5
7
0
8
 b

y
 g

u
e
s
t o

n
 2

9
 O

c
to

b
e
r 2

0
1
9

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
Deleted Text: <italic>M.</italic>
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
Deleted Text: <italic>T.</italic>
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
Deleted Text: )
Deleted Text: ue
Deleted Text: ue
Deleted Text: ndoplasmic 
Deleted Text: eticulum
Deleted Text: ue
Deleted Text: s
Deleted Text: ue
Deleted Text: (
Deleted Text: )
Deleted Text: ue
Deleted Text: -
Deleted Text: While
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz147#supplementary-data


and of the putative MVBs mentioned above, must await de-
velopment of a transfection system inM. exilis for tagging and
localization of the relevant molecular components. As might
be expected, we could not find any orthologs of the proteins
specifically involved in mitophagy (i.e., SLT2, UTH1, PTC6,
FUNDC1, BNIP3, and BNIP3L) or pexophagy (i.e., PINK1,
PARK2, PEX3, and PEX14) encoded in the M. exilis genome.
Although a comprehensive analysis of the mitophagy-specific
machinery, with deep sampling of eukaryotic genomes, has
not been performed, analyses have shown that at least some
of the machinery is conserved across the breadth of eukar-
yotes (Wu et al. 2017). Therefore, the loss of mitophagy pro-
teins represents an example of a system likely lost together
with mitochondria.

As the final step in the search for proteins involved in
specific adaptations to the loss of mitochondria, we carefully
inspected the list of genes that are unique to M. exilis, as
recovered by Orthofinder (fig. 2). We could ascribe a function
to 1,126 of these genes; another 196 genes probably function
in trans- or retro-position or are derived from integrated vi-
ruses (supplementary table S11, Supplementary Material on-
line). We have not found any example of gene(s) clearly
related to the loss of mitochondrial function.

In summary, we have previously suggested that the signif-
icant reorganization of Fe–S cluster assemblymachinery inM.
exilis represented the key preadaptation for the loss of mito-
chondria (Karnkowska et al. 2016) and here we add that
another such preadaptation could have been the loss of
GCS and SHMT, which took place after the split from the
P. pyriformis lineage. We have not found any clear case of
function lost concomitantly with mitochondrion besides
mitophagy. All other cellular systems remained relatively ca-
nonical or appear unusual probably due to involvement of
host–endobiont interactions and no clear postadaptations to
the amitochondriate cell organization were revealed.

Proteins Mediating Mitochondrial Dynamics Are
Present in M. exilis
Mitochondria are organelles that constantly undergo re-
peated fission and fusion in order to maintain their number
and quality. These dynamics are coordinated with the funda-
mental functions of mitochondria (Santos et al. 2018). Even

reduced mitochondria, such as MROs, undergo dynamics,
and many aspects of this process are shared with conven-
tional mitochondria. Given the absence of the mitochondrial
organelle in M. exilis, proteins involved in mitochondrial fis-
sion and fusion are expected to be absent, too. However,
many of them are involved in other cellular processes than
mitochondria dynamics. We searched M. exilis proteome for
homologs of proteins annotated into Gene Ontology (GO)
categories: mitochondrion localization (GO:0051646; any pro-
cess in which a mitochondrion or mitochondria are trans-
ported to, and/or maintained in, a specific location within the
cell) andmitochondrial organization (GO:0007005). Out of 24
identified candidates, only three appeared to be related to
mitochondrial dynamics (supplementary table S12,
Supplementary Material online). Two of these are dynamin-
related protein (DRP) Dnm1 paralogs in M. exilis that are
closely related to each other and fall phylogenetically to a
broader subgroup of DRPs (class A; fig. 8) that includes pro-
teins involved in mitochondrial (and peroxisomal) fission and
proteins that seem to have been independently recruited to
serve in various parts of the endomembrane system (Praefcke
and McMahon 2004; Purkanti and Thattai 2015). In the ab-
sence of a mitochondrion, the two M. exilis DRPs are pre-
dicted to have a role in the dynamics of the endomembrane
system, perhaps in endocytosis (in analogy to “true” dyna-
mins and other endocytic DRPs that evolved independently
in multiple eukaryotic lineages [Purkanti and Thattai 2015]).
Indeed, the single DRP of G. intestinalis (also a member of the
class A dynamins) seems to be involved in endocytosis
(Zumthor et al. 2016), whereas its role in the mitosome dy-
namics remains unsettled (Rout et al. 2016; Voleman et al.
2017). On the other hand, at least one of the eight DRPs
present in T. vaginalis contributes to the fission of the hydro-
genosomes (Wexler-Cohen et al. 2014), indicating that MRO
division in metamonads ancestrally depends on the dynamin
family. It is interesting to note that MRO-possessing relatives
of M. exilis—the trimastigids Trimastix marina and P.
pyriformis—possess two different forms of class A DRPs,
one apparently orthologous to the M. exilis DRPs and the
other without an M. exilis counterpart (fig. 8). Since the last
common ancestor of trimastigids was probably also the an-
cestor of oxymonads (Zhang et al. 2015; Leger et al. 2017), the

FIG. 7. Autophagy proteins in Monocercomonoides exilis, Trichomonas vaginalis, and Naegleria gruberi. Homologs of autophagy machinery

identified by BlastP and pHMMER. Filled squares indicate presence of the component, whereas numbers indicate multiple paralogs. Missing

squares indicate that the component could not be identified using thesemethods. Gray squares indicate a putative homolog whose identity could

not be confirmed by reverse BLAST. Categories defined as in Duszenko et al. (2011).
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absence of this second DRP form in M. exilis must be due to
secondary loss. It is tempting to speculate that this second
DRP form is involved in MRO fission in trimastigids and its
absence in M. exilis reflects the loss of MROs.

Surprisingly, and in contrast to parabasalids and diplomo-
nads, M. exilis also encodes an ortholog of MSTO1 (misato)
protein. The MSTO1 function has been studied in humans;
the protein was shown to be involved in the regulation of
mitochondrial distribution and morphology and was pro-
posed to be required for mitochondrial fusion and

mitochondrial network formation (Gal et al. 2017).
However, in Drosophila melanogaster the protein has a non-
mitochondrial role, controlling the generation of mitotic
microtubules by stabilizing the TCP-1 tubulin chaperone
complex (Palumbo et al. 2015). The MSTO1 of M. exilis
may have a similar nonmitochondrial function.

Conclusions

In this article, we have performed a far more extensive study
of the genome of M. exilis in comparison to Karnkowska et

FIG. 8. Phylogenetic analysis of dynamin family showing the position of metamonad dynamins. Clades of Opa1, Mgm1, and Dynamin class C

(labeled Other Dynamins) are collapsed since they do not include any metamonad dynamins. Topology is based on phylogenetic tree computed

by ML method in RAxML version 8.2.11 (500 rapid bootstraps, PROTGAMMALG4X model). Branch supports were assessed by RAxML rapid

bootstraps (500 replicates, only values>70 are shown) and IQ-Tree ultrafast bootstraps (5,000, only values>95 are shown). IQ-Tree 1.5.5 was run

under LGþR8 model (based on model test). The final alignment contains 176 sequences and 548 amino acid positions.
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al. (2016) and have characterized many additional cellular
systems and functions, including 831 new manually curated
genes. Our goal was to determine how the loss of mitochon-
dria impacts eukaryotic cell complexity. To our surprise,
none of the newly examined cellular systems, including
the cytoskeleton, kinetochore, membrane trafficking,
autophagy, oxidative stress response, calcium flux, energy,
amino acid, lipid, sugar, and nucleotide metabolism, are
significantly altered relative to eukaryotes with mitochon-
dria. The large number of introns, elaborate cytoskeleton,
endomembrane system, and biosynthetic pathways, all re-
quiring ATP, suggest that M. exilis is capable of providing
enough ATPwithout a specialized ATP generating organelle.
As such, M. exilis serves as living evidence that complex
amitochondriate eukaryotic cell is a viable cell type and
that such complex cells could have evolved during the evo-
lutionary process of eukaryogenesis before the acquisition of
the mitochondrion (Hampl et al. 2019).

From a cell biological perspective, M. exilis constitutes a
unique experimental model in which to study
mitochondrion-integrated systems. With the complete ab-
sence of the organelle, such systems can now be interrogated
by knock-down or deletion experiments, without the con-
founding effects of mitochondrion-related functions.
Autophagy is one example of such a system, but the same
can be said for the functions of dynamins, membrane contact
site proteins Vps13 and Vps39, misato protein, calcium flux
regulatory proteins, Fe–S cluster assembly andmore. The com-
prehensive and high-quality curated predicted proteome pro-
videdhere,alongwiththebiological insights intovariouscellular
functionsofM.exilis, should facilitate such future investigations.

Materials and Methods

FIB-SEM Tomography
Soft pellets of cell cultures were fixed in 2.5% glutaraldehyde
and 1% formaldehyde in 0.1M cacodylate buffer for one hour
at room temperature (RT), postfixed by reduced 2% (for cell
1) or 1% (for cell 2) osmium tetroxide and 1.5% K3(FeCN)6 in
0.1M cacodylate buffer for 1 h on ice (cell 1) or 30min at RT
(cell 2). The cell 1 was further incubated in thiocarbohydra-
zide for 20min at RT and in 2% nonreduced osmium tetrox-
ide (in ddH2O) for 30min at RT, the cell 2 was incubated in
1% nonreduced osmium tetroxide (in 0.1M cacodylate
buffer) for 30min at RT. The cells were contrasted by incu-
bating 1 h (cell 1) or 30min (cell 2) in 1% uranyl acetate at RT,
dehydrated in ethanol (cell 2) or ethanol/acetone series (cell
1) and embedded in EPON hard. Serial pictures were taken
with FEI Helios NanoLab G3 UC–FIB-SEM microscope with
Through lens, In Column and Mirror detectors (TLD, ICD,
MD). Raw data were processed in Amira 6 software. First view
through the cell in the video is made up of pictures taken
with the microscope, whereas the others are calculated sub-
sequently in Amira software.

Ploidy Estimation from M. exilis Sequencing Data
The genomic DNA (gDNA) of a clonal culture of M. exilis
previously sequenced using a Genome Sequencer 454 GS

FLXþ at 35 coverage (Karnkowska et al. 2016) was
used to the ploidy estimation. Genomic sequencing reads
subjected to linker and quality trimming were mapped
onto the previously assembled genome using CLC
Genomics Workbench v. 9.5.2 with the following parameters:
mismatch cost, 2; insertion cost, 3; deletion cost, 3; length
fraction, 0.96; and similarity fraction, 0.96. Duplicate read re-
moval and local realignment were performed using the same
software. The resulting readmapping was used as an input for
SNP calling with Platypus v. 0.8.1 with a minimum read cov-
erage cut-off of 3 (Rimmer et al. 2014). For ploidy inference,
allele frequency distribution at biallelic SNP loci in M. exilis
was compared with the theoretical distributions in organisms
with different ploidy levels (Yoshida et al. 2013).

Protein-Coding Gene Annotation
The previously reported set of gene models predicted by a
combination of automated algorithms and manual curation
(Karnkowska et al. 2016) was subjected to additional refine-
ment concerning gene categories specifically targeted in the
present study. This included incorporation of newly created
models for previously missed genes and modification of exist-
ing models by changing exon–intron boundaries (sometimes
resulting in genemodel splitting/fusion) as suggested by tran-
scriptomic evidence and/or sequence conservation within
respective gene families. In addition, nine models were re-
moved, since it turned out that the respective scaffolds (scaf-
fold01876, scaffold01882, and scaffold01991) are most likely
bacterial contaminants (based on high sequence similarity at
the nucleotide level to bacterial genomes).

The automatic functional annotation was performed by
similarity searches using BLAST (e-value ¼< 1e 20) against
the NCBI nr protein database and HMMER (http://hmmer.
org/; last accessed 30 June, 2019) searches of domain hits from
the PFAM protein family database (Finn et al. 2014).
Additional annotation was performed using the KEGG
Automatic Annotation Server (Moriya et al. 2007) which
compares predicted genes to the manually curated KEGG
Genes database (Kanehisa et al. 2014). Gene product names
were assigned based on significant BlastP and domain
matches. For cases, where there was no significant BLAST
or domain hit, the gene was automatically assigned as a
“hypothetical protein.” GFF3 format was used for storing
the annotation information. A set of 1,137 genes of interest
was manually curated (supplementary table S1,
Supplementary Material online). A locus tag identifier in
the format MONOS_XXXXX was assigned to each predicted
gene. Approximately 60% of the gene models remained as
hypothetical proteins.

Ortholog clustering of translated proteins from annotated
draft genome of M. exilis was performed with Orthofinder
(Emms and Kelly 2015) using predicted proteomes from
T. vaginalis, G. intestinalis, S. salmonicida, and N. gruberi.

Tyrosine kinases annotation was performed based on ho-
mology searches with kinase database (http://kinase.com; last
accessed 30 June, 2019). For analysis of proteases theMEROPS
database (Rawlings et al. 2016) was used to carry out a BlastP
search of all M. exilis predicted proteins. Four hundred and
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forty-three proteins with an e-value ¼< 1e 10 were further
analyzed and 122 were checked against MEROPS and con-
firmed with PFAM. For prediction of Fe–S-cluster-containing
proteins the MetalPredator (Valasatava et al. 2016) was used.
MetalPredator predicted that proteome of M. exilis contains
about 54 [Fe–S] proteins. Another [Fe–S] proteins were pre-
dicted using BlastP (Altschul et al. 1997) against custom data-
base of experimentally confirmed [Fe–S] proteins from
Escherichia coli and Saccharomyces cerevisiae followed by
the reciprocal BLAST against the NCBI nr database. Results
were searched against InterPro database (Finn et al. 2017) to
confirm presence of [Fe–S] cluster binding motif. TATA-like
motif (A/G)TATTT(T/C/G) was searched in the genome as-
sembly of M. exilis with the DREME algorithm (Bailey 2011).
TATA-like motif was searched among annotated genes with
predicted 50 UTR in the region located 45 nucleotides up-
stream of the transcription start site.

Gene Searching and Identification
As queries for gene searching, published proteins from various
organisms were used, most often from Arabidopsis thaliana
from www.phytozome.net, Dictyostelium discoideum AX4
from NCBI, G. intestinalis WB from GiardiaDB.org, Homo sa-
piens from NCBI, N. gruberi v1.0 from genome.jgi-psf.org, P.
pyriformis from NCBI, T. vaginalis G3 from TrichDB.org,
Trypanosoma brucei TREU927 from eupathdb.org, and
Saccharomyces cerevisiae RM11-1a from www.broad.mit.edu
and S288C from NCBI. Monocercomonoides exilis hits were
BLASTed back against the genome of the query protein and
against NCBI nr database.

For identification of rapidly evolving proteins that may be
difficult to detect with BLAST, more sensitive searches of the
predicted M. exilis proteome were carried out using
HMMER3.1 package (http://hmmer.org/; last accessed 30
June, 2019). Query HMMswere prepared using the hmmbuild
program and input alignments of reference sequences, usually
adopted from the Pfamdatabase (seed alignments defined for
the families of interest). Positive hits were evaluated as pos-
sible orthologs of the query proteins by blasting them against
the NCBI protein sequence database.

We performed phylogenetic analyses and generated indi-
vidual gene trees to support annotation process. Sequences
were aligned using MAFFT (Katoh and Standley 2013) or
MUSCLE (Edgar 2004), visually inspected andmanually edited
whenever necessary, and eventually trimmed with BMGE
(Criscuolo and Gribaldo 2010) or manually. Maximum likeli-
hood (ML) phylogenetic analyses were performed using one
or more methods: RAxML 8.0.23 (Stamatakis 2014), IQ-TREE
1.3.11.1 (Nguyen et al. 2015), Phylobayes v4.1 (Lartillot et al.
2009), or MrBAYES v3.2.2 (Ronquist et al. 2012).

Intron Analyses
The history of intron gains and losses was studied for 100
groups of orthologous genes conserved in M. exilis and 33
additional representatives of different phylogenetic lineages
of eukaryotes. The genes analyzedwere a subset of 163 groups
of orthologous genes used in a previously published phyloge-
nomic analysis (Karnkowska et al. 2016). For the intron

analyses, we excluded all species with only transcriptomic
data available and two more species (Reticulomyxa filosa
and Chondrus crispus) with poor representation of genes in
the original data set. For Acanthamoeba castellanii and
S. salmonicida 8 and 21 orthologs, respectively, missing in
the original data set were identified by reciprocal blast
searches of databases at NCBI and added to the alignments.
Finally, groups of orthologs that lacked genes frommore than
one of the 34 species retained in the analysis were excluded.
Information on the exon–intron structure of the genes for
most species was obtained from the respective gene records
in the GenBank or RefSeq databases at NCBI. For Bigelowiella
natans and Phytophthora ramorum, the information was
extracted from GFF files downloaded from the respective
genome databases at the Joint Genome Institute (http://jgi.
doe.gov/; last accessed 30 June, 2019). For five genes from
A. castellanii, the respective models were not available in
any database, so their exon–intron structure was recon-
structed manually. MAFFT v7.271 with auto option (Katoh
and Standley 2014) was used to align sets of orthologous
protein sequences for subsequent intron mapping and defi-
nition of homologous intron positions. These analyses were
performed using theMalin software (Csuros 2008). To restrict
the analysis to confidently homologized introns, we filtered a
total of 5,711 intron positions by keeping only those that were
flanked in the protein sequence alignment by four nongap
amino acid positions on both sides and that exhibit conser-
vation of a particular amino acid in at least a half of the
protein sequences aligned (i.e., “Minimum unambiguous
characters at a site” was set to 17). This setting left 3,546
positions for further analyses. We then used the intron table
created by Malin and a custom Python script to define an-
cestral introns, that is, those presumably occurring in the
LECA. These were defined by intron positions represented
in at least one species of Amorphea and at least one species
from the remaining eukaryotic groups included in the analysis
(i.e., assuming the position of the root of the eukaryote phy-
logeny as depicted in fig. 3a). The proportion of ancestral
introns to the total number of introns was then plotted for
each species (fig. 3b). Reconstruction of intron gain and loss
was done in Malin using Dollo parsimony and three different
species trees, using the unrooted topology as defined by our
phylogenetic analysis reported previously and assuming three
alternative placements of the root of the eukaryote phylog-
eny: between Amorphea and the remaining eukaryotes in-
cluded in the analysis (fig. 3a); between Amorphea þ

Metamonada and the remaining eukaryotes included in the
analysis (supplementary fig. S4a, Supplementary Material on-
line); and between Metamonada and the remaining eukar-
yotes included in the analysis (supplementary fig. S4b,
Supplementary Material online).

LGT Pipeline
In order to retrieve putative homologs of M. exilis proteins,
the 16,629 predicted protein sequences (i.e., the version of the
M. exilis proteome reported in Karnkowska et al. [2016]) were
used as BlastP queries against the nr database at the NCBI (e-
value cut-off: 10 10 and a maximum of 1,000 hits). Only data
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sets containing at least four sequences were kept (4,733).
Probable M. exilis in-paralogs (and their homologs retrieved
by BlastP) were assembled in a single data set using an in-
house Perl script that gathered data sets containing at least
50% of identical sequences. After this step, only 2,146 data
sets remained. Since we were interested in LGT specifically
from prokaryotes, we discarded data sets containing no pro-
karyotic homologs. This resulted in set of 824 protein data
sets that were further considered for phylogenetic analyses.

A round of preliminary phylogenetic analyses was carried
out in order to reduce unnecessary sequence redundancy in a
reproducible fashion, and decrease computational time, thus
allowing more rigorous downstream analyses. For this, each
protein data set was aligned using the “MAFFT” algorithm
(default parameters) from theMAFFT package v6.903 (Katoh
et al. 2002). Regions of doubtful homology between sites were
removed from the alignments using BMGE with default
parameters, except for the substitution matrix, which was
set to BLOSUM40 (“-m BLOSUM40”), and the gap threshold
to 40% (“-g 0.4”) (Criscuolo and Gribaldo 2010). At this step,
we discarded alignments for which<80 sites were kept after
trimming (154 alignments).

Preliminary phylogenetic trees were reconstructed for the
remaining 670 protein alignments using FastTree 2.1.4 (with
default parameters) (Price et al. 2010). An in-house Perl/
Bioperl script was then used to parse these trees and auto-
matically remove unnecessary sequence redundancy in order
to reduce the size of each tree. Ourmethod identifies sequen-
ces from closely related organisms (i.e., belonging to the same
genus) that form a monophyletic clade and keeps only one
representative per clade, except forM. exilis, for which all (in-)
paralogs were kept.

A second round of phylogenetic analyses was performed
using more thorough methods. Reduced protein data sets
were realigned using the MAFFT-L-INS-i method of the
MAFFT package, and then trimmed with BMGE (settings as
previously described). ML trees were computed using RAxML
8.0.23 (Stamatakis 2014) with the LG4Xmodel (Le et al. 2012)
and statistical support was obtained from 100 rapid boot-
strapping (rBS) replicates. Alignments and trees are available
upon request.

An automated pipeline was developed, in-house, using
Perl/Bioperl to parse phylogenetic trees and screen for LGT
candidates using the following criteria: 1) M. exilis must
branch within a clade containing no other eukaryotes with
a few defined exceptions (fornicates, parabasalids, oxymo-
nads, P. pyriformis, N. gruberi, E. histolytica, Ma. balamuthi,
and Blastocystis sp.). These exceptions were allowed because
we were interested not only in LGTs specific to M. exilis but
also in cases of more ancient LGTs (e.g., at the various internal
branches of excavate phylogeny). Similarly, we were inter-
ested in identifying genes of prokaryotic origin that are shared
byM. exilis and other anaerobic protists. This clade containing
prokaryotes and M. exilis (and possibly some of the allowed
lineages) must have been supported by a bipartition with the
rBS > 70%.

The resulting 174 candidate cases of LGTs were examined
by eye taking into account all information contained in each

BLAST result, alignment, sequence domain composition (see
below), and phylogeny to exclude as many false positives as
possible. Seventy-one genes were eventually removed from
the list, leaving 103 M. exilis genes likely acquired by LGT
(supplementary table S9, Supplementary Material online).
Protein functional domains for each homolog in a given
data set were identified using the HMMER 3 package
(http://hmmer.org/; last accessed 30 June, 2019) against the
PFAM 26.0 database (Punta et al. 2012) and were mapped
onto phylogenetic trees with the ETE2 Python toolkit
(Huerta-Cepas et al. 2010).

Fluorescence In Situ Hybridization
Unlabeled telomeric probes were generated using the primer
dimer extensionmethod described in Ijdo et al. (1991), but we
used PrimeSTAR Max DNA polymerase (Clontech, R045A)
instead of Taq polymerase for the PCR step. The purified PCR
products were labeled with digoxigenin-11-dUTP, alkali sta-
bile (Roche, 11093088910) using the DecaLabel DNA Labeling
Kit (Thermo Scientific, K0621). The labeled probes were pu-
rified using columns from the QIAquick Gel Extraction Kit
(Qiagen, 28704) and eluted into the final volume of 50ml.

One liter ofM. exilis culture was filtered to remove bacteria
and the cells were pelleted by centrifugation for 10min at
1,200 g at 4 C. FISH with digoxigenin-labeled probes was
performed according to the previously described procedure
(Zubacova et al. 2011) except that the culture was not treated
with colchicine and the stringency washes were performed at
45 C. For probe detection, we used DyLight 594 Labeled
Anti-Digoxigenin antibody (Vector Laboratories, DI-7594).
Preparations were observed using an IX81 microscope
(Olympus) equipped with an IX2-UCB camera. Images were
processed using Cell-R software (Olympus) and Image J 1.42q.
The number of signals from each nucleus was manually
counted and the average number of signals was estimated
from at least 50 nuclei.

Southern Blot Analysis of Telomeres
A Southern blot was performed withM. exilis gDNA isolated
from 3,000ml of filtered cell culture using DNeasy Blood &
Tissue Kit (Qiagen, 69504). Estimation of the average telo-
mere length was based on the method described in Kimura
et al. (2010), with slight modifications. Briefly, 5mg of gDNA
was digested overnight in total volume 200ml containing five
units of the HinfI (NEB, R0155S) and five units of RsaI (NEB,
R0167S) restriction enzymes. DNA was purified by ethanol
precipitation and resuspended in 15ml of nuclease-free water.
After restriction enzyme treatment, the gDNA samples were
run on a 0.8% agarose gel at 80V for 5 h. The DNA was
transferred onto a Hybond-N membrane (GE Healthcare)
using vacuum blotting. The Southern blot hybridization
was performed using the same probe which was used in
the FISH procedure. Probe detection was done using the
DIG-High Prime DNA Labelling and Detection Starter Kit II
(Roche, 11585614910) according to the manufacturer’s
instructions. Digital images of hybridization signals were
obtained using the ImageQuant LAS 4000 (GE Healthcare
Life Sciences).
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Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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1. Supplement I: Genomics of Paratrimastix pyriformis (work in progress) 

Here is included an excerpt from a comparative genomic project in progress, which includes 

only work by the author of this thesis, i. e. assembly and annotation of the 

Paratrimastix pyriformis genome. The data and analyses shown here are therefore necessarily 

incomplete. This work was performed in coordination and cooperation with 

Sebastian C. Treitli, M.Sc. 

1.1. Introduction 

So far there has been only one species of eukaryotes known to science which has completely 

lost its mitochondria, the chinchilla gut symbiont Monocercomonoides exilis (Oxymonadida, 

Preaxostyla, Metamonada). The amitochondriate status of M. exilis has been thoroughly 

corroborated by a genomic project which failed to identify any mitochondrion-associated genes, 

while showing multiple other eukaryotic cellular systems to be completely represented 

(Karnkowska et al. 2016). 

Following exhaustive functional annotation of various cellular system has shown, that the loss 

of mitochondria had little to no impact on the overall functioning of the M. exilis cell, which 

exhibits a conventional eukaryotic complexity comparable to other anaerobic protists 

(Karnkowska et al. 2019). Existence of such organism implies that mitochondria are not 

necessary for thriving of complex eukaryotic organisms, which informs our thinking about the 

origin of eukaryotes (Hampl, Čepička, and Eliáš 2019). 

Oxymonadida contains, besides M. exilis, approximately 140 species of morphologically 

divergent and diverse flagellates exclusively inhabiting digestive tract of metazoans, none of 

which was clearly shown to possess a mitochondrion (Hampl 2017). It is therefore possible, 

that the entire Oxymonadida is an amitochondriate taxon. Sister to Oxymonadida are 

Paratrimastigidae, and sister to these two taxa are Trimastigidae, both of which include free-

living, anaerobic, bacteriovorous flagellates with typical “excavate” morphology and 

ultrastructure (Treitli et al. 2018). Paratrimastix pyriformis (Paratrimastigidae) has been shown 

to possess a mitochondrion-related organelle (MRO) possibly resembling a hydrogenosome 

(Hampl et al. 2008; Zubáčová et al. 2013). 

Transcriptomic and genomic assemblies of 5 members of Preaxostyla are available to us: 

Trimastix marina (Trimastigidae), Paratrimastix pyriformis (Paratrimastigidae), 

Monocercomonoides exilis, Blattamonas nauphoetae, and Streblomastix strix (Oxymonadida). 
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The transcriptome of T. marina (Leger et al. 2017), genome of M. exilis (Karnkowska et al. 

2016), and single-cell metagenome of S. strix (Treitli et al. 2019) have been already published. 

The genomes of P. pyriformis and B. nauphoetae (data not shown here) are reported here for 

the first time. Comparative functional annotation of these datasets is used to map out events of 

the reductive evolution of mitochondria in Preaxostyla and to illuminate the adaptations 

connected to amitochondriality, anaerobiosis, and endobiosis in this group of protists. 

1.2. Methods 

1.2.1.  Paratrimastix pyriformis cultivation and harvesting 

Monoeukaryotic, xenic culture of P. pyriformis (strain RCP-MX, ATCC 50935) was 

maintained in the Sonneborn's Paramecium medium ATCC 802 at room temperature by serial 

transfer of 1 ml of well-grown culture (approximately 5x105 cells in 1 ml) into a 15 ml test tube 

containing 10 ml of fresh, bacterized medium every 7 days. The medium was bacterized 24 

hours before the transfer. Large volumes of the culture needed for DNA extraction were 

obtained by serial transfer of a well-grown culture into increasingly larger containers with 

a fresh bacterized medium over two weeks, resulting in 2 l of well-grown culture per 10 ml of 

the initial inoculum.  

A two-step filtration of the culture was used in order to increase the concentration of 

P. pyriformis cells and reduce the bacterial contamination. First, the culture was filtered through 

the Macherey-Nagel MN 617 ¼ Folded Filter Paper and the flow-through was collected. 

Second, the flow-through was filtered through the Whatman Nuclepore Track-Etched 

Membrane (pore size: 3 μm) and washed twice with 3% LB medium. After the last wash, 

several milliliters of the liquid remaining above the filter and containing the concentrated 

P. pyriformis cells were collected. The liquid containing the cells was constantly manually 

stirred using plastic transfer pipettes during the filtration and washing in order to fasten the 

process.  

1.2.2.  RNA and DNA extraction and sequencing 

The RNA for Illumina transcriptome sequencing was isolated from 10 l of a well-grown culture 

of P. pyriformis using the TRI reagent procedure (Chomczynski and Mackey 1995). The 

eukaryotic mRNA was purified based on the poly A residues using the Dynabeads mRNA 

Purification Kit for mRNA Purification from Total RNA preps (Thermo Fisher Scientific). The 

cDNA was synthesized by the SMARTer PCR cDNA Synthesis Kit (Takara Bio Group). 
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Sequencing of the cDNA was performed using the Illumina HiSeq 2000 sequencer at the 

company BGI Tech Solutions Co., Ltd. 

The gDNA samples for PacBio, Illumina HiSeq, and Illumina MiSeq sequencing were each 

isolated from approximately 15 l of a well-grown culture of P. pyriformis using the Qiagen 

DNeasy Blood & Tissue Kit. The isolated gDNA was further ethanol-precipitated (using 

sodium acetate for neutralization) in order to increase the concentration and remove 

contaminants. The final concentration of gDNA used for PacBio sequencing (measured using 

the NanoDrop ND-1000 UV-Vis spectrophotometer) was 107 ng/μl in the volume of 5 μl. The 

PacBio sequencing was performed using the PacBio RSII sequencer at the company SEQme 

s.r.o. The Illumina sequencing was performed using the Illumina HiSeq and MiSeq sequencers 

at the Institute of Molecular Genetics of the ASCR, v. v. i. 

The gDNA for MinION sequencing was isolated from 7 l of a well-grown culture of 

P. pyriformis using the Qiagen MagAttract HMW DNA Kit. The isolated gDNA was further 

ethanol-precipitated (using sodium acetate for neutralization) in order to increase the 

concentration and remove contaminants. The final concentration of gDNA (measured using the 

Promega Quantus Fluorometer) was 40 ng/μl in the volume of 300 μl. 

Libraries for MinION sequencing were prepared using the Oxford Nanopore Technologies 

SQK-LSK108 Ligation Sequencing KiW 1D. Sequencing was performed using the Oxford 

Nanopore Technologies 9.4 MinION Flowcells. Adapter sequences on the ends of the raw reads 

were trimmed using Porechop v0.2.3 (https://github.com/rrwick/Porechop).  

1.2.3.  Genome assembly and processing 

The raw reads produced by the MinION and PacBio runs were assembled using Canu v1.7.1 

assembler (Koren et al. 2017). The prokaryotic contamination was removed from the draft 

genomic assembly first semi-automatically using tetranucleotide frequencies based on the 

Emergent Self-Organizing Maps (ESOM) pipeline (Haddad et al. 2009) and later manually 

using BLASTn and BLASTp searches against the NCBI databases. After the decontamination, 

the first round of correcting (or “polishing”) was performed using Nanopolish with the 

MinION-acquired raw reads (Loman, Quick, and Simpson 2015). The assembly was improved 

(or “scaffolded”) using Rascaf (RnA-seq SCAFfolder) (Song, Shankar, and Florea 2016) with 

the raw RNA-seq reads in order to get longer and more continuous scaffolds and more complete 
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gene models. The resulting scaffolds were again corrected, now using 12 runs of Pilon v1.21 

with the Illumina HiSeq and MiSeq raw reads (Walker et al. 2014).  

1.2.4.  Gene prediction 

The raw transcriptomic reads were aligned to the genomic assembly using the Burrows-Wheeler 

Aligner BWA-MEM algorithm (Li and Durbin 2009) and inspected in the Integrative Genomics 

Viewer (IGV) (Robinson et al. 2011) in order to manually identify protein-coding gene 

sequences and their intron/exon boundaries. In total, 708 protein-coding gene models were 

manually prepared and stored in the Generic Feature Format 3 (GFF3, 

http://gmod.org/wiki/GFF3) text files.  

The manually prepared gene models were used to train the Augustus v3.2.3 automatic gene 

predictor (Stanke et al. 2004). The raw transcriptomic reads were aligned to the genomic 

assembly using Bowtie 2 (Langmead and Salzberg 2012) and TopHat2 (Kim et al. 2013) 

aligners. The Augustus script bam2hints was used to prepare intron hints from this alignment. 

Gene models were automatically predicted using trained Augustus, incorporating the intron 

hints. Second set of gene models was produced using the Program to Assemble Spliced 

Alignments (PASA) pipeline v2.0.2 (Haas et al. 2003).  

Repetitive elements in the genomic assembly were identified using RepeatModeler v1.0.11 

(Tarailo-Graovac and Chen 2009). Only those models which were identified as members of 

known repeat families were kept. The final gene models were produced using the 

EVidenceModeler (EVM) v1.1.1 (Haas et al. 2008), combining the gene models produced by 

Augustus and PASA, and the models of repetitive sequences produced by RepeatModeler. 

Completeness of the predicted gene set was estimated using the Benchmarking Universal 

Single-Copy Orthologs (BUSCO) v3 with the eukaryota_odb9 dataset (Simão et al. 2015).  

1.2.5. Gene annotation 

Automatic gene annotation was performed on the whole set of predicted genes using KAAS 

search (Moriya et al. 2007) against the KEGG database (Kanehisa et al. 2014), InterProScan 

(Zdobnov and Apweiler 2001), and BLAST search against the NCBI nr database. Manual 

search and annotation were performed by searching the predicted proteome using BLAST and 

HMMER (Finn, Clements, and Eddy 2011) tools with manually selected genes of interest from 

other organisms. The candidate genes were then validated by reciprocal BLAST against NCBI 

nr database and eventually by TMHMM Server v. 2.0 (Krogh et al. 2001) in case 
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transmembrane helices were expected. Gene models of the confirmed annotated genes were 

manually validated and improved if necessary. The resulting validated and annotated gene 

models were deposited in a Generic Feature Format 3 (GFF3, http://gmod.org/wiki/GFF3) text 

file. A list of all manually annotated genes can be downloaded here: 

https://lukasnovak.eu/phdthesis/ 

1.3. Results and discussion 

1.3.1. Genome characteristics 

Paratrimastix pyriformis genome was assembled into 650 contigs spanning 56,722,987 base 

pairs, with N50 = 268,802 base pairs and N75 = 113,394 base pairs and 2137 N’s. The largest 

contig is 1,707,755 base pairs long. The overall guanine-cytosine content of the assembly is 

60.92%. The manual and automatic gene prediction resulted in 13,533 predicted protein-coding 

genes. From these, 4,605 genes were assigned a functional annotation in the automatic 

annotation step. BUSCO v3 eukaryota_odb9 completeness of the predicted proteome is 82.1%.  

1.3.2.  MRO and energy metabolism 

All the previously identified (Zubáčová et al. 2013) components of the P. pyriformis 

mitochondrion protein import and maturation machinery were found in the predicted proteome: 

the β-barrel outer membrane translocases Tom40 and Sam50, the inner membrane translocase 

Tim17 and its associated protein Pam18, the α subunit of the mitochondrial processing 

peptidase (MPP) and the chaperone protein Cpn60. In addition to these, new components were 

identified: the β subunit of MPP, and Cpn10, the co-chaperone of Cpn60. The mitochondrial 

carrier (MC) proteins were again recovered in number of 4. 

All components of the glycine cleavage system (GCS), previously shown to be localized in the 

MRO of P. pyriformis (Zubáčová et al. 2013), were confirmed: GCS-H, -L, -T, -P1, and -P2, 

as well as 3 paralogues of [FeFe]hydrogenase and 3 hydrogenase (HydA) maturases: HydE, 

HydF, HydG.  

In addition to these previously reported “simple” hydrogenases, we also discovered 

3 paralogues of [FeFe]hydrogenase fused to an N-terminal NADH-quinone oxidoreductase 

(NuoG) and a C-terminal NADPH-dependent sulfite reductase (CysJ). Similar “fused” 

hydrogenases have been previously reported in Trichomonas vaginalis (Tachezy and Doležal 

2007), Pygsuia biforma (Stairs et al. 2014), and Stygiella incarcerate (Leger et al. 2016) and 
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were hypothesized to possibly catalyze NAD(P)-dependent formation of H2 (Tachezy and 

Doležal 2007).  

Hydrogenases in anaerobic protists often provide electron sink for the 1st reaction of the 

extended glycolysis catalyzed by pyruvate:ferredoxin oxidoreductase (PFO) and indeed, there 

were 5 homologues of PFO identified in the P. pyriformis genome.  

Ferredoxin (Fd), found in 2 copies, may serve as an intermediate between PFO and HydA. In 

addition to Fd, 1 copy of a unique flavodoxin-ferredoxin fusion protein (Fld-Fd) was identified 

in the genome.  

The second reaction of the extended glycolysis can be either catalyzed by a 2-enzyme system 

ASCT+SCS like in Trichomonas vaginalis, or by a single enzyme acetyl-CoA synthetase 

(ACS), e.g. in Giardia intestinalis. There were 2 paralogues of ACS found in the genome and 

no ASCT or SCS.  

The glycolytic pathway was previously reported to include several alternative enzymes in 

P. pyriformis, however, no enzyme catalyzing the 3rd step of glycolysis was found (Stechmann 

et al. 2006). Here, we report identification of both the ATP-dependent phosphofructokinase 

(PFK) and the pyrophosphate-dependent pyrophosphate:fructose 6-phosphate 

phosphotransferase (PFP), both in 1 copy, in the genome, finalizing the mapping of the 

P. pyriformis glycolytic pathway.  

Other identified enzymes involved in sugar metabolism are: NAD(P)-dependent 

glyceraldehyde-3-phosphate dehydrogenase (GAPN, 3 paralogues), phosphoglucomutase 

(PGM, 2 paralogues), phosphomannomutase (PMM), and phosphoenolpyruvate carboxykinase 

(PEPCK).  

Based on the predicted proteome, previous localization experiments (Zubáčová et al. 2013), 

and comparison with other metamonads (Leger et al. 2017), we propose a following 

hypothetical arrangement of the mitochondrial and energy metabolism in P. pyriformis (Fig. 

S1). Energy metabolism takes place completely in the cytosol and consists of glycolysis, 

employing both canonical and alternative (pyrophosphate-dependent) enzymes, and extended 

glycolytic steps catalyzed by PFO and ACS.  

The MRO contains a complete GCS which catabolizes glycine into CO2 and NH3, while 

methylating tetrahydrofolate. The electron sink necessary for GCS function is provided by 

MRO-localized hydrogenase(s), cooperating with MRO-localized hydrogenase maturases. The 
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electron transport mechanism between GCS and hydrogenases is unclear, as no components of 

the mitochondrial respiratory complex 1 (NuoE, NuoF) were found. One possible candidate for 

the intermediate is the Fld-Fd fusion protein. Similar arrangement has been suggested for 

Dysnectes brevis (Fornicata). However, D. brevis has NuoE and NuoF (Leger et al. 2017). 

Alternatively, this process may be performed by the newly reported “fused” hydrogenases, as 

suggested for T. vaginalis (Tachezy and Doležal 2007). Further protein localization 

experiments, and biochemical experiments are needed to support or refute these hypotheses. 

 

Figure S1: Hypothetical energy metabolism and MRO functions in Paratrimastix pyriformis. Reactions of 

glycolysis simplified. Bold outline indicates alternative glycolytic enzymes. For discussion of individual glycolytic 

enzymes and comparison with M. exilis see (Liapounova et al. 2006) or page 40. Question mark indicates an 

unknown intermediate between GCS and HydA responsible for presumed electron transfer.  

1.3.3. Amino acid metabolism 

We have identified 42 enzymes putatively involved in amino acid metabolism and 7 more 

enzymes putatively involved in folate metabolism and folate cycle, which are closely connected 

to the amino acid metabolism. This is higher number than in Trichomonas vaginalis, which has 

the most complex amino acid metabolism predicted among studied metamonads, containing 39 

enzymes (Carlton et al. 2007).  
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We reconstructed a hypothetical metabolic map of the amino acid metabolism based on the 

metabolic maps in the KEGG database (Kanehisa et al. 2014) and catalytic activities of enzymes 

reported from other metamonads. The reconstructed metabolism (Fig. S2) shows a possibility 

of de novo biosynthesis for at least 8 protein-building amino acids: cysteine, alanine, serine, 

glycine, threonine, glutamate, glutamine, and selenocysteine. Methionine can be regenerated 

thanks to the methionine cycle. The selenocysteine biosynthesis pathway is notable, as capacity 

to synthesize this amino acid has been so far reported only in Spironucleus salmonicida among 

all metamonads (Xu et al. 2014).  

Unlike many other metamonads (Novák et al. 2016), P. pyriformis is unable to utilize arginine 

for ATP production, as the enzyme catalyzing the first reaction of the arginine deiminase 

pathway – the arginine deiminase (ADI) itself is missing. Other amino acids can still be used 

in energy metabolism: cysteine, serine, and tryptophan can be converted to pyruvate, and 

methionine to α-keto-butyrate, which can both enter the extended glycolysis (Anderson and 

Loftus 2005).  

The presence of a complete glycine cleavage system (GCS) may be connected to the presence 

of complete folate metabolism, folate cycle, and methionine cycle. The methyl residue liberated 

from glycine by the activity of GCS enters the connected folate and methionine cycles and can 

be later utilized in a multitude of metabolic pathways requiring one-carbon units (reviewed in 

Ducker and Rabinowitz 2017). The transsulfuration pathway, often associated with the folate 

and methionine cycles, was not found in P. pyriformis.  
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Figure S2: Hypothetical map of amino acid metabolism in Paratrimastix pyriformis. Brown color indicates 

enzymes possibly involved in amino acid biosynthesis pathways. Red color indicates enzymes possibly involved 

in ATP production. For comparison with M. exilis see (Karnkowska et al. 2019) or page 50. 

1.3.4.  Transporters across plasma membrane 

Just like in Trichomonas vaginalis, the most numerous group of putative plasma membrane 

transporters (Tab. S1) identified in P. pyriformis is the ATP-binding cassette (ABC) 

superfamily. The multidrug resistance proteins (MRP), known for their role in export of harmful 
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compounds out of the cell, are represented by 9 paralogues. The ion transporting P-type 

ATPases have 16 paralogues and the phospholipid-transporting P-type ATPases have 3.  

Another type of transporters responsible for extrusion of harmful compounds is the multi 

antimicrobial extrusion (MATE) family of the MOP flippase superfamily. There are 4 MATE 

paralogues in P. pyriformis.  

The major facilitator superfamily (MFS) in P. pyriformis counts 7 uncharacterized members, 

1 glycoside-pentoside-hexuronide:cation symporter (GPH), 2 sphingolipid transporters 

(SPNS), 1 reduced folate carrier (RFC) responsible for uptake of folate cofactors (reviewed in 

Matherly and Hou 2008), and interestingly no sugar porters (SP).  

Amino acids can be imported by the transmembrane amino acid transporters (AAAP), 

represented by 7 genes in P. pyriformis, or the b(0,+)-type amino acid transporter (PotE) with 

a single paralogue.  

The equilibrative nucleoside transporter (ENT) family responsible for transporting nucleosides 

and nucleobases is represented by 1 paralogue in P. pyriformis, just like the choline-transporter-

like protein (CTL) which imports choline, a precursor of phospholipids.  

The inorganic ions transporters in P. pyriformis are represented by 4 paralogues of the cation-

chloride cotransporter (CCC), 2 paralogues of the K+ transporter (TRK), 3 paralogues of the 

Ca2+:cation antiporter (CaCA), 3 paralogues of the cation diffusion facilitator (CDF), 

4 paralogues of the divalent anion:Na+ symporter (DASS), and 2 paralogues of the sulfite 

exporter TauE/SafE family (TauE).  

Name  Abbrev. # paralogues 

Ion transporting P-type ATPases pATPase 16 

Multidrug resistance proteins  MRP 9 

Transmembrane amino acid transporter AAAP 7 

Major facilitator superfamily (uncharacterized) MFS 7 

Cation-chloride cotransporter CCC 4 

Divalent anion:Na+ symporter DASS 4 

Multi antimicrobial extrusion family MATE 4 

Ca2+:cation antiporter CaCA 3 

Cation diffusion facilitator CDF 3 

Phospholipid-transporting P-type ATPases pATPase 3 
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Sulfite exporter TauE/SafE family TauE 2 

K+ transporter TRK 2 

Choline-transporter-like protein CTL 1 

Equilibrative nucleoside transporter ENT 1 

Glycoside-pentoside-hexuronide:cation symporter GPH 1 

b(0,+)-type amino acid transporter PotE 1 

Reduced folate carrier RFC 1 

Sphingolipid transporter SPNS 1 

 

Table S1: Transporters across plasma membrane identified in Paratrimastix pyriformis. For comparison with 

Trichomonas vaginalis see (Dean et al. 2014) or page 36 and further.  

1.4. Preliminary conclusions 

Using Oxford Nanopore MinION, PacBio, and Illumina MiSeq and HiSeq sequencing 

technologies, we have produced a good quality, 56.7 mega base pairs long genome assembly 

of Paratrimastix pyriformis (Preaxostyla) and predicted 13,533 protein-coding genes. We have 

manually reconstructed the putative proteome of the mitochondrion-related organelle, which 

we hypothesize to functionally resemble the organelle of Dysnectes brevis (Fornicata) in the 

absence of ATP generation and presence of the glycine cleavage system and the hydrogen-

producing machinery. The energy metabolism, consisting of glycolysis and its extension via 

PFO and ACS enzymes, is predicted to be localized in the cytosol. The reconstructed 

hypothetical amino acid metabolism is more complex than in Trichomonas vaginalis 

(Parabasalia) in number of enzymes as well as the ability to synthesize selenocysteine and 

provide one-carbon units to the cell metabolism via the glycine cleavage system and SHMT. 

On the other hand, P. pyriformis is unable to generate energy via the arginine deiminase 

pathway. Complement of putative plasma membrane transporters is less numerous than in 

Trichomonas vaginalis, which may reflect differences between the parasitic versus free-living 

lifestyles. Results of these and further analyses will be later compared to analogous results 

generated for 4 other Preaxostyla species in order to map the emergence and loss of various 

cellular systems and functions during the evolutionary history of this group of anaerobic 

protists.  
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2. Supplement II: Outreach 

Author of this thesis has written and published 2 popular-science articles covering 2 of the 

scientific papers included in this thesis during his Ph.D. study.  

The article “Living without mitochondria: the downfall of one textbook truth” covers the paper 

“A Eukaryote without a Mitochondrial Organelle” and was published in 2016 on the popular-

science website TheScienceBreaker. It can be accessed here: 

https://thesciencebreaker.org/breaks/evolution-behaviour/living-without-mitochondria-the-

downfall-of-one-textbook-truth.  

The article “Fool’s gold inside us, microbes, and jumping genes” covers the paper “Fe S Cluster 

Assembly in Oxymonads and Related Protists” and was published in 2018 on the website of the 

International society for evolutionary protistology. It can be accessed here:  

https://www.isep-protists.com/blog/fool-s-gold-inside-us-microbes-and-jumping-genes-guest-

post-by-lukas-novak.  

2.1. Living without mitochondria: the downfall of one textbook truth 

It was the greatest leap in evolution since the emergence of life on Earth. So-called eukaryotic 

cells, the building blocks of all multicellular organisms like you and me, animals, plants, fungi, 

and also a whole zoo of single-celled protists, evolved from a common ancestor more than 

a billion years ago. This ancestor resembled current-day prokaryotes, i.e. bacteria and archaea. 

These organisms populated all imaginable habitats and developed a plethora of wildly diverse 

means of obtaining their energy. However, the simple structure of their cells limited their size 

and complexity of interactions. With time, our ancestor developed a series of innovations that 

are nowadays defining characteristics of the eukaryotic cell. How this process went through, 

what was its driving force, and in what order those particular steps took place still remains 

a question provoking lively discussions among scientists. However, regardless of the details, 

among the most crucial steps in forming a eukaryote was undoubtedly the acquisition of 

a mitochondrion. 

Today, mitochondria are small organelles within our cells that form complex and ever-changing 

networks. The sausage-shaped mitochondria constantly split, merge, and move around in order 

to provide all cellular regions with a life-giving chemical energy. This energy, produced on the 

inner surface of mitochondria, is produced by reactions between the nutrients we get from food 
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and the oxygen we breathe in. Cells can produce energy also without the help of mitochondria 

and many organisms which live in oxygen-poor environment indeed do so, but the 

mitochondrial energy production is more than ten times more efficient. Mitochondria have also 

many other roles including production of various compounds, which will be important later in 

our story. 

Once an independent bacterium, the ancestor of mitochondria somehow found itself inside 

another cell, survived against all odds, and developed a relationship of interdependence with its 

new host. Importantly, this interaction added a new trick to the repertoire of our ancestors: the 

above-mentioned unprecedentedly efficient way of producing energy which enabled an 

explosion of new, more complex and diverse life forms. To better understand this evolutionary 

process, scientists were searching for a missing link: a eukaryote lacking mitochondria. The 

search came up empty. All hot candidates, mostly parasitic protists, were shown to possess 

a simplified mitochondrion. By studying their mitochondria, researchers found out that no 

matter how small and simplified the organelle is, it always retains one function: the synthesis 

of iron-sulfur clusters. These inorganic compounds are essential components of many vital 

proteins and no cell can live without them. More and more examples accumulated over time 

supporting two textbook truths: first, there are no ancient amitochondriate eukaryotes living 

today and second, eukaryotes can never completely lose mitochondria, particularly because 

they need the iron-sulfur clusters that mitochondria produce. 

This is where our work comes in. Among all those false alarms of seemingly amitochondriate 

protists, one candidate group remained unexplored: Oxymonads. These anaerobic protists are 

largely neglected as they cause no health issues and have no economic potential whatsoever. 

Most oxymonads live in the gut of termites, while others, like our research subject 

Monocercomonoides, inhabit a wider range of hosts - we isolated our specimen from feces of 

a chinchilla. To date, nothing in the oxymonad cell has been found that resembles 

a mitochondrion although it is clear that their ancestors must have had one because it is present 

in their closest free-living relatives. We decided to investigate this case further. By using 

various experimental methods, we searched for traces of mitochondria and failed. Not only the 

physical organelle seemed to be missing but also all the proteins that are usually associated with 

it. 

To be absolutely sure, we sequenced all the genetic material of Monocercomonoides in a futile 

search for a trace of mitochondria. We found everything we would expect from such an 

organism, but all the mitochondrion-associated genes were missing, including the genes for 
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producing the iron-sulfur clusters. Could Monocercomonoides survive without these 

molecules? Not so fast! This creature had a surprise for us: a completely different kind of iron-

sulfur cluster production system, apparently recently borrowed from bacteria by a process 

called horizontal gene transfer. So Monocercomonoides freed themselves from their 

dependence on mitochondria by finding a new way to produce the essential iron sulfur clusters 

on their own. This is the first report of a eukaryote that completely lost its mitochondria. 

2.2. Fool’s gold inside us, microbes, and jumping genes  

The mineral pyrite, iron sulfide gemstone also known as fool’s gold for its gold-like appearance, 

used to be a favorite material for alchemists in their futile struggles to create precious metals. 

Since antiquity it is also combined with silver in the so-called marcasite jewelry, popular 

especially in the 19th century, and until today pyrite is used for production of sulfur dioxide for 

various industrial applications. Whether you are alchemist, Victorian lady, chemical engineer, 

or anybody else for that matter, you always have a bit of pyrite with you, or rather inside you. 

The iron-sulfur (FeS) clusters are molecules composed of iron and sulfur atoms arranged in 

a pattern resembling pyrite crystal structure, which function as cofactors – small molecular 

“plug-ins” – in a vital group of proteins involved in such important tasks as electron transfer or 

DNA repair. FeS clusters are found in all living cells and are indispensable for life as we know 

it. Their ubiquity and importance even led to formulation of a hypothesis saying that pyrite and 

similar minerals played a crucial role in the very origin of life. 

In eukaryotic cells – building blocks of animals, plants, fungi, and microbial protists – FeS 

clusters are typically produced by two different metabolic pathways. One set of enzymes (ISC) 

works in mitochondria. The other (CIA), localized in cytoplasm, provides FeS clusters to all 

the other parts of the cell including the nucleus. The cytoplasmic pathway doesn’t work on its 

own, but depends on a, yet unidentified, product of the mitochondrial one. Mitochondria are 

therefore usually essential for the cell and even their most simplified forms tend to have at least 

this function intact. And so, production of FeS clusters became a central question for our team 

after we described the first known eukaryote completely devoid of mitochondria, a chinchilla 

gut-inhabiting protist Monocercomonoides. How can the cytoplasmic pathway build FeS 

clusters if mitochondria, together with their pathway, were lost? It turns out the answer is lateral 

gene transfer – sharing of genetic material between unrelated organisms. The ancestors of 

Monocercomonoides gained another pathway for FeS cluster synthesis, called SUF, from 

bacteria and recruited it for work instead of the lost mitochondrial one. 
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We investigated the evolutionary history of this gene transfer. When did it happen? What other 

organisms share it? And how did the bacterial SUF pathway change in its new home? We 

sampled a broad diversity of Monocercomonoides’ relatives constituting a group called 

Preaxostyla. All of them are single-celled microbes which shun oxygen just like 

Monocercomonoides, but that’s where the similarity ends. For example, Streblomastix 

resembles a bundle of snuggly packed symbiotic bacteria, only held together by a network of 

thin lobes – the actual protist cell. Another one, Saccinobaculus, looks like a bag with a snake 

inside, which constantly wriggles around. The “snake” is in fact a structure of cellular skeleton 

that helps the cell to move. Preaxostyla are wonderfully weird creatures indeed! We sequenced 

10 species, chosen to cover all major lineages, and found the genes for the SUF pathway in each 

of them, even those species which, unlike Monocercomonoides, still retain mitochondria. Also, 

none of the organisms harbored the mitochondrial ISC pathway.  

All the 5 genes constituting the SUF pathway in Preaxostyla show the same evolutionary 

history. That means they must have come in one gene transfer event from bacteria, which 

happened before all the species split – more than 100 million years in the past. This happened 

before the mitochondrion vanished, possibly representing the final nail in its coffin. When the 

mitochondrial pathway was replaced with a new substitute, the microbes simply lost any 

remaining motivation for keeping the costly organelle and got rid of it. We also found out that 

3 of the 5 genes are fused together in Preaxostyla, likely producing a large chimeric protein, 

a situation not observed in bacteria. 

Our findings are most interesting from the evolutionary point of view. They show another 

strong evidence of lateral gene transfer having a dramatic effect on eukaryotes, a notion which 

is still controversial. However, they might also have a broader impact in the future. The 

interesting fusion of 3 genes may indicate that the protein products of these particular genes 

may be closely cooperating, providing a hint on the general functioning of the SUF pathway. 

Also, remember that still mysterious connection between mitochondrial and cytoplasmic 

pathways for FeS cluster production in most eukaryotes including humans? Well, now we have 

a system where both pathways are in cytoplasm and no mitochondrion is involved. Cross-

examination of these different arrangements might help us finally identify the elusive link. 

Maybe one day, microscopic inhabitants of animal guts will help us uncover the secrets of the 

gems inside us. 
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