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Abstract 

Astrocytes are the most abundant glial cells in a mammalian brain. They play an important role 

not only under physiological conditions, but also during pathological changes. They are involved in 

miscellaneous functions in a healthy tissue, such as: structural and developmental function, homeostasis 

maintenance, metabolic support for neurons, or reduction of oxidative stress. In a damaged brain, 

however, their activity is altered. The most common astrocytic changes in a diseased or injured 

brain/spinal cord are known as reactive astrogliosis and glial scar formation. Other alterations like 

cellular atrophy, membrane transporters impairments, or over-expression of certain astrocytic proteins 

may occur as well. These morphological and physiological changes often lead to an increased 

excitotoxicity which is one of the factors involved in neurodegeneration. This thesis discusses the 

astrocytic changes during selected neurodegenerative diseases, namely: Alzheimer’s disease, 

amyotrophic lateral sclerosis, Huntington’s disease and Parkinson’s disease. 

Key words: brain, astrocytes, reactive astrogliosis, homeostasis, neurodegeneration, Alzheimer’s 

disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis  



Abstrakt 

Astrocyty jsou nejpočetnějšími gliovými buňkami v savčím mozku. Hrají důležitou roli nejen 

za fyziologických podmínek, ale také při patologických změnách. Jsou zapojeni do různých funkcí ve 

zdravé tkáni, jako jsou: strukturní a vývojová funkce, udržování homeostázy, metabolická podpora 

neuronů nebo redukce oxidačního stresu. V poškozeném mozku se však jejich aktivita mění. Nejčastější 

astrocytické změny v nemocném nebo poraněném mozku/míše jsou známé jako reaktivní astroglióza a 

tvorba gliálních jizev. Mohou se vyskytnout i jiné změny, jako je buněčná atrofie, poruchy 

membránových transportérů nebo nadměrná exprese určitých astrocytických proteinů. Tyto 

morfologické a fyziologické změny často vedou ke zvýšené excitotoxicitě, která je jedním z faktorů 

zapojených do neurodegenerace. Tato práce pojednává o astrocytických změnách během vybraných 

neurodegenerativních onemocnění, a to: Alzheimerovy choroby, amyotrofické laterální sklerózy, 

Huntingtonovy choroby a Parkinsonovy choroby. 

 Klíčová slova: mozek, astrocyty, reaktivní astroglióza, homeostáza, neurodegenerace, Alzheimerova 

choroba, Parkinsonova choroba, Huntingtonova choroba, amyotrofická laterální skleróza 
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Introduction 

A couple of decades ago the neurobiological research was focused almost exclusively on 

neurones. Only recently were the neurocentric concepts compromised by novel views on this matter, 

promoting the importance of glial cells in both physiological conditions and in the course of brain 

pathologies.  

Glia, previously considered only as components with passive, mostly structural functions, are 

now believed to be substantially involved in all sorts of mechanisms accounting for healthy functioning 

of central nervous system (CNS). Astrocytes, in particular, represent cells that play a crucial role in the 

maintenance of brain homeostasis. Furthermore, they are involved in neuronal metabolic support 

(Gandhi et al., 2009), antioxidant protection against oxidative stress (Makar et al., 1994), and provide 

for many other CNS functions. Based on this knowledge we may assume that astrocytes essentially 

contribute to all sorts of pathological events in the CNS, since all neurological defects are basically 

characterised as disruptions of neuronal tissue homeostasis (Verkhratsky & Parpura, 2010). 

Neurodegeneration is a process of progressive neuronal loss leading to extreme cognitive 

defects. The thesis focuses on the role of astrocytes during onset and progression of several 

neurodegenerative disorders, namely Alzheimer’s disease, Amyotrophic lateral sclerosis, Parkinson’s 

disease, and Huntington’s disease. The precise mechanisms underlying the astrocytic behaviour in the 

course of neurodegeneration are only yet to be resolved. Nevertheless, there is a wide range of evidence 

suggesting that the astrocytic morphology and physiology may be altered during the neurodegenerative 

process (Bélanger & Magistretti, 2009). 

The aim of this work is to highlight the importance of astrocytes and to outline their principal 

roles in both physiological and pathophysiological conditions. The second part is dedicated to the 

introduction of the major characteristics of selected neurodegenerative diseases and the description of 

astrocytic changes accompanying the process of neurodegeneration. In the conclusion a comparison of 

the similarities in astrocytic responses to a previously mentioned neurodegenerative disorders is given. 
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Astrocytes 

Neuroglia 

Glial cells are regarded as the most numerous cells of the CNS (Azevedo et al., 2009). This 

broad cell group consists of microglia and macroglia, the latter comprising astrocytes, oligodendrocytes, 

NG2 cells and ependymal cells. They all contribute to maintaining the homeostasis of the CNS and have 

a major role in supporting the neurons (Simard & Nedergaard, 2004). 

The term Neuroglia (Nervenkitt) was first introduced in 1856 by a German pathologist Rudolf 

Virchow. However, his idea of glia was somehow different from the one acknowledged nowadays. He 

ascribed Nervenkitt to a sort of connective tissue functioning only as a substance holding the brain cells 

together (Virchow, 1858). During the next few decades new staining techniques have been developed, 

sheading more light on the categorisation of the glial cells and understanding of the importance of their 

roles in the nervous system (Castellano et al., 1991; Andersen et al., 1992). 

Defining an astrocyte 

It was in the 1890’s when Michael von Lenhossek came with the name „Astrocytes“ to refer to 

the glial cells in the higher vertebrates. By changing the nomenclature from the previous “glia” to 

astrocytes he pointed out the function of these cells and their equality with the nerve cells, since the 

original term (glia) indicated the role of these cells to be only passive, glue-like (Lenhossek, 1891). 

The etymology of the term astrocyte indicates its stellate morphology hence astrocytes could 

also be translated as star-like cells. They are the most abundant glial cells in the CNS and are 

characterised by their leaflet-like processes. Their endfeet forming processes can either give rise to a 

glial membrane on the CNS surface or a perivascular sheet by attachments to the blood vessel (Simard 

& Nedergaard, 2004). 

For a long time the main attributes that helped distinguish the astrocytes from other glial cells 

were considered to be their stellate morphology and the presence of the astrocytic fibrils – consisting of 

glial fibrillary acidic protein (GFAP) (Nolte et al., 2001). As the tools used for identifying astrocytes 

improved the categorization of these cells became less straightforward.  

Despite all the confusions surrounding astrocyte definition, there is one property unifying the 

cells described as the astrocytes. This characteristic resides in their function of maintaining the 

homeostasis of the nervous system. They play a key role in all sorts of processes including blood-brain 

barrier formation (Simard et al., 2003), ion and neurotransmitter regulation (Rothstein et al., 1996), 

mediation of trans-cellular communication via gap-junctions and other (Nagy & Rash, 2003). 
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Classification  

Astrocytes belong to a very diverse and heterogeneous class of cells divided into several 

subclasses depending on various criteria. Based on their location and morphology, astrocytes were 

divided into two subtypes: fibrous and protoplasmic. This classification was first introduced back in 

1890’s by Kolliker and Andriezen (Andriezen & Lond,1893) . 

Protoplasmic astrocytes predominate in the grey matter. In terms of their morphology, they are 

characteristic for the “bushy” structure of their processes also referred to as spongiform. These 

abundantly branched processes facilitate intimate associations with synapses (Bushong et al., 2004; 

Miller & Raff, 1984). The white matter is where fibrous astrocytes can be found. The orientation of their 

fine and poorly branched processes is along the axon tracts (Miller & Raff, 1984; Oberheim et al., 2009). 

Both of these cell subtypes are consistent in making extensive contacts with blood vessels (Marín-

Padilla, 1995). 

There are other types of astrocytes as well. Radial glia, for example, function during the 

development of the brain (Anthony et al., 2004). In the cerebellum these cells are called Bergmann glial 

cells (Grosche et al., 2002). Their function is related to the development of cerebellum while the retinal 

development is associated with Müller glial cells (Bernardos et al., 2007). 

Molecular markers 

The most common astrocytic marker is GFAP. It has been widely used ever since the 

development of the gold chloride-sublimate staining technique in early 20th century (Kálmán & Hajós, 

1989; Vaughn & Pease, 1967). GFAP is an intermediate filament, 8-9 nm in diameter, expressed mainly 

in mature astrocytes. It is involved in structural stabilisation of the astrocytic processes resulting in cell 

motility and shape modulations of the astrocytes (Eng et al., 2000).  

Another molecule widely used as a marker for astrocytes is a calcium and zinc binding protein 

S100B (Ogata & Kosaka, 2002; Baudiers, 1986). Most of the GFAP-positive proliferating astrocytes 

are not immunostained for this protein, suggesting that it is mainly expressed in mature astrocytes. It 

was proved that even multipotent astrocytic stem cells lack its expression (Deloulme et al., 2004). 

Aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) also known as 10-

formyltetrahydrofolate dehydrogenase (FDH) is an astrocytic enzyme playing an important role in the 

cell division and growth. This folate enzyme has been proposed to be an astrocyte specific protein and 

is now used as a relatively new marker for astroglial visualisation (Yang et al., 2011).  

A number of studies have revealed the presence of glutamine synthetase (GS) in the astrocytes. 

Nevertheless, this enzyme converting glutamate to glutamine has not been confirmed to be exclusively 

astrocytic protein, it is considered to be one of their markers (Miyake & Kitamura, 1992). 
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Astrocytic functions 

Developmental function 

Astrocytes were proved to be actively involved in neurogenesis regulation by releasing 

a number of growth factors, interleukins and other proteins with ability to control neuronal maturation 

and survival. Astrocytes also function as brain stem cells – they serve as a source for both neurons and 

glial cells (Song et al., 2002; Ashton et al., 2012; Wilhelmsson et al., 2012). Moreover, they control 

synaptogenesis (Song et al., 2002) and provide a scaffold for cells during neuronal migration (Bozoyan 

et al., 2012; Kaneko et al., 2011).  

Structural function 

The micro-architecture of the grey matter is divided into individual astrocytic domains. Each 

structural unit is established by separate protoplasmic astrocyte and is almost independent. Astrocytes 

provide for extensive connections with neurons, synapses and blood vessels within each astrocytic 

domain (Bushong et al., 2002; Bushong et al., 2004; Halassa et al., 2007). 

There is only slightest overlap between these territories, but these areas are pivotal for further 

interconnections. The individual astrocytic domains are coupled through gap junctions and integrate into 

syncytia. The gap junctions are concentrated in the peripheral astrocytic processes and mediate a transfer 

of the information enabling the inter-glial communication, broad signalling and intercellular transfer of 

glucose and lactate (Nagy & Rash, 2003; Ball et al., 2007; Rouach, 2008). The gap junctions are 

channels composed of two connexons, also called “hemichannels”, localised in the plasma membrane 

of neighbouring cells. Connexins are the structural subunits, which are involved in connexon formation. 

The most prevalent connexins in astrocytes are Cx43 and Cx30 (Nagy & Rash, 2003). It is noteworthy 

that there are immense variations of the gap-junctional connectivity extent of glial cells among the 

individual brain regions and even within one region (Wallraff et al., 2004) 

Homeostatic function 

Astrocytes are extensively involved in homeostasis maintenance in CNS. The properties of the 

astrocytic membrane play an important role in regulating the extracellular ion concentration, pH, brain 

water, and neurotransmitter homeostasis (Figure1) (Verkhratsky & Parpura, 2010). 
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Ion homeostasis  

The concentrations of extracellular ions need to be controlled and maintained to preserve an 

accurate neuronal excitability (Newman et al., 1984). Astrocytes are known to play an important role in 

this process thanks to their unique membrane properties. Even though astrocytic channels and receptors 

do not differ a lot from those expressed in neurons, their proportion and density vary between these cell 

types (Papanikolaou et al., 2019). 

Astrocytes control the level of extracellular K+, which is important for repolarization phase of 

action potential. In the process known as potassium spatial buffering astrocytes disperse local 

extracellular K+ from areas with increased concentrations to sites with low [K+] (Figure 2). This 

mechanism of K+ redistribution through astrocytic syncytium is preceded by K+ uptake mediated by a 

Figure 1: Summarization of the principal homeostatic functions of astrocytes. Pink box: glutamate-

glutamine cycle. Astrocytic uptake of glutamate is mediated by excitatory amino acid transporters (EAATs). 

Glutamine synthetase (GS) converts glutamate into glutamine, which is then resynthesised back to glutamate. 

Violet boxes: lactate shuttle. Na+ entry accompanies glutamate uptake by astrocytes. Increased ADP triggers 

glucose intake from blood vessel through the glucose transporter (GLUT1). Lactate is transferred to neurons 

via monocarboxylate transporters (MCT-1, MCT-2) where it is converted to pyruvate. Yellow box: pH 

buffering. CO2 is broken down to H+ and HCO3
- by carbonic anhydrase (CA). Na+- HCO3

- cotransporter (NBC) 

mediates transport of HCO3
- and Na+ into extracellular space. Orange box: K+ buffering. Astrocytes distribute 

K+ from areas with higher to sites with lower K+ concentration. Green box: Glutathione metabolism. Astrocytic 

γ-glutamyl transpeptidase (γGT) cleaves glutathione (GSH) from astrocytes to CysGly, which is a neuronal 
precursor for GSH (Bélanger, Magistretti, 2009). 
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number of ion channels and transporters. Inwardly rectifying K+ channels (Kir), with their ability to 

favor the influx of K+ to astrocytes, play an important role in spatial buffering (Takumi et al., 1995; 

Higashi et al., 2001). The influx of K+ needs to be accompanied by either efflux of other cations or anion 

influx. Thus, presence of Na+/K+ ATPase pumps (Larsen et al., 2014) and (Na+)/K+/Cl- cotransporters is 

not insignificant and they are considered to be one of the key players in K+ uptake (Lenart et al., 2004). 

Furthermore, astrocytes express calcium and voltage-dependent K+ channels (Quandt & MacVicar, 

1986; Bevan et al., 1985). 

The presence of functional ion channels is not the only factor influencing the ion homeostasis 

in the CNS. The transfer of ions is also interconnected with aquaporin channel-mediated brain water 

transport. The predominant channel enabling the influx of water in astrocytes is aquaporin 4 (AQP4), 

localised in the astrocytic perivascular endfeet and perisynaptic processes, usually in a close proximity 

to potassium channels Kir 4.1 (Figure 2) (Nagelhus et al., 1999; Lunde et al., 2015). It has been shown 

that a decreased level of perivascular AQP4 results in malignant K+ buffering (Eid et al., 2005). 

 

Neurotransmitter homeostasis 

Astrocytic membrane is enriched with numerous transporters taking part in transfer of various 

neurotransmitters like glutamate, γ-aminobutyric acid (GABA), and glycine from the synapses (Bezzi 

et al., 2004; Guastella et al., 1990; Shibasaki et al., 2016). After the uptake by astrocytes, these 

neurotransmitters are enzymatically converted into precursors, which are subsequently recycled to 

synapses for their reconversion into active neurotransmitters (Sibson et al., 1997). 

Figure 2: K+ spatial buffering. The action of K+ buffering is mediated by several subtypes of channels for 

example Kir 4.1 and Kir 4.1/5.1 which are sited in perisynaptic and perivascular astrocytic processes. 

Glutamate and water intake to astrocytes by excitatory amino acid transporters (EAATs) and aquaporin 4 

(AQP4) are both functionally coupled with potassium channels. (Ohno et al., 2018). 
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The principal amino acid engaged in neuronal excitability is glutamate (Ehrhart-Bornstein et al., 

1991). The role of astrocytes is to maintain low extracellular concentrations of the glutamate via its 

uptake (Rothstein et al., 1996). The process is mediated by the two main glutamate transporters: 

excitatory amino acid transporter 1 (EAAT1), known as glutamate-aspartate transporter (GLAST) in 

rodents (Storck, et al., 1992); and excitatory amino acid transporter 2 (EAAT2) also referred to as 

glutamate transporter 1 (GLT1) (Pines et al., 1992). Both transporters are predominantly localized in 

astrocytic processes. The transport of glutamate is an electrogenic process and requires energy of 

transmembrane Na+ gradient. The glutamate transporters exchange one glutamate and three Na+ (or two 

Na+ and one H+) for one K+ and OH- (Illarionova et al., 2014; Cholet et al., 2002). 

Glutamate uptake is followed by conversion of glutamate into non-toxic glutamine, a process 

catalysed by astrocytic enzyme glutamine synthetase. Afterwards, glutamine is transported back to 

presynaptic terminal of a neuron via extracellular space. The final step in glutamate – glutamine shuttle, 

necessary for glutamatergic neurotransmission, is a recycling of glutamine back to glutamate (Figure 1) 

(Ottersen et al., 1992; Sibson et al., 1997). 

pH regulation 

Numerous studies have proven a contribution of astrocytes to pH maintenance in the CNS. A 

constant pH within a brain is one of the essential requirements for the proper protein modifications and 

processing, organelle integrity, cargo directing, and other CNS processes (Carnell & Moore, 1994; 

Chanat & Huttner, 1991; Linstedt et al. 1997, Puri et al., 2002). Various astrocytic transport mechanisms 

take part in proton transfer, these include bicarbonate transporters (Ko et al., 1999), Na+/H+ exchanger 

(Wada et al., 2005), proton ATPase (Philippe et al., 2002), and monocarboxylic transporters (Bröer et 

al., 1997; Mac & Nałęcz, 2002). The reaction of carbonic anhydrase, an enzyme reversibly converting 

carbon dioxide and water into proton and bicarbonate, is the major process preserving the acid-base 

homeostasis (Chen & Chesler, 1992). 

Antioxidant function 

The CNS is notably vulnerable to damages caused by oxidative stress. An imbalance between 

reactive oxygen species (ROS) production and antioxidant processes frequently appears under 

neuropathological conditions (Gegg et al., 2003). Both neurons and astrocytes carry a neuroprotective 

force against oxidative injuries in a form of antioxidant production (Tanaka et al., 1999). A number of 

different antioxidants like glutathione, ascorbate, and vitamin E are present in astrocytes, together with 

a variety of ROS-detoxifying enzymes (Makar et al., 1994). The most significant antioxidant molecule 

in the CNS is glutathione (GSH). Astrocyte-neurone GSH shuttling provides precursors for the neuronal 

synthesis of GSH (Figure1, green box). Astrocytic ectoenzyme γ-glutamyl transpeptidase (γGT) 

converts a GSH, released from astrocytes to extracellular space, into CysGly, which is either directly 
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transferred to neurons or cleaved first into glycine and cysteine and transferred afterwards (Dringen et 

al., 1997; Dringen et al., 1999). 

Metabolic function 

Glycogen functions as a major energy source for the CNS cells. The distribution of brain 

glycogen is uneven throughout the brain, with astrocytes being the primarily sites for its storage. Active 

neurons are provided with energy substrate by astrocytes, which have a substantial location in the CNS 

organization, with processes contacting both blood vessels and neurons (Phelps, 1972; Cruz & Dienel, 

2002; Cataldo & Broadwell, 1986). 

Under the physiological conditions blood glucose is taken up by the astrocytes via glucose 

transporters (GLUT1) and is then converted into pyruvate in the process of aerobic glycolysis (Morgello 

et al., 1995). Lactate is a product (pyruvate being the substrate) of the reaction catalysed by lactate 

dehydrogenase isoenzyme A (LDHA) expressed in astrocytes which is transported into neurons, where 

it serves as a fuel for neuronal processes (Figure 3) (Gandhi et al., 2009). This mechanism has been 

introduced as astrocyte neuronal lactate shuttle hypothesis (ANLSH). This process can be stimulated 

either by glutamate, which increases the uptake of glucose from capillaries or by glycogen breakdown 

(Pellerin et al., 1998; Pellerin & Magistretti; 1994). 

 

Figure 3: Lactate shuttle hypothesis. The transfer of neurotransmitter glutamate into 

astrocytes is mediated by glutamate transporters (GLT-1). It is transformed to glutamine in 

astrocytes. Glycolysis and astrocytic glucose uptake (by glucose transporters GLUT1) are 

both increased as an accompanying processes of glutamate uptake. Lactate dehydrogenase 

isoenzyme A (LDHA) in astrocytes converts pyruvate to lactate which is transported out of 

astrocytes by monocarboxylate transporter 1 or 4  (MCT1/4) for then being imported into 

neurones by MCT2. Lactate is then converted back to pyruvate by another lactate 

dehydrogenase (LDHB) in neurones (Newington et al., 2013). 
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Signalling function 

Regarding the signalling function, astrocytes have the ability to regulate synaptic transmission. 

As it was mentioned previously, the concentration of neurotransmitters in the synapses can be controlled 

via uptake by specific astrocytic transporters. Another way of modulating synaptic transmission is by 

the release of gliotransmitters (Araque et al., 1998). Gliotransmitters are molecules produced by and/or 

stored in glia. They induce rapid responses in nearby cells and play an important role in both 

physiological and pathological processes. Several miscellaneous gliotransmitter release mechanisms 

have been described in astrocytes, such as a release through: volume-regulated anion channels (Li et al., 

2012; Takano et al., 2005), unpaired connexons (hemichannels) (Ye et al., 2003), ionotropic purinergic 

receptors (Duan et al., 2003), cystine-glutamate antiporters (Warr et al., 1999), Ca2+-dependent 

exocytosis, etc. (Parpura et al., 1994). There are two principal categories of gliotransmitters expressed 

in astrocytes. The first category consists of amino acids and their derivates, comprising molecules like 

glutamate (Araque et al., 2000), aspartate (Rutledge et al., 1998), D-serine (Schell et al., 1995), GABA 

(Bowery et al., 1976), taurine (Shain & Martin, 1984); while the second group consists of nucleotides 

and their derivates like ATP (Anderson et al., 2003), UDP-glucose and others (Kreda et al., 2009). 

Ca2+ waves 

Astrocyte signalling across the syncytium is mediated by gap junctions (see “Structural 

function”) and this mechanism is a means of Ca2+ waves spreading. Ca2+ waves are generated either 

spontaneously or as a result of neuronal activity and have an effect on several pathways, including those 

engaged in modulation of synaptic transmission and plasticity (Stout et al., 2002). 

Vascular function 

Blood brain barrier  

The blood brain barrier is a selective physical barrier composed of microvessel endothelial cells 

enclosed by basal lamina and astrocytic endfeet (Simard et al., 2003). Endfeet are astrocytic structures 

adapted for the direct interaction with the vessels (Gordon et al., 2007). Tight junctions between 

endothelial cells play an important role in the permeability of the blood brain barrier (Morita et al., 

1999). Only small lipophilic molecules and gases like oxygen, carbon dioxide (CO2), and ethanol are 

able to penetrate a lipid bilayer of the endothelium. All the other components (small polar solutes, large 

molecules,…) need a specific carrier to transport them into or out of the CNS (Bartus et al., 1996). 

Morover, it is known that astrocytes promote the tight junction formation and tightness (Janzer & Raff, 

1987). 
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Blood flow regulation 

As it was previously mentioned, astrocytes are connected with both neuronal synapses and brain 

vessels. This location represents an excellent position for neurovascular coupling or, in other words, a 

blood flow regulation in response to neuronal changes. Astrocytes are able to control the physiology of 

blood vessels leading to either vasoconstriction (Mulligan & MacVicar, 2004) or vasodilation (Straub 

et al., 2006).  The direction in which a vessel diameter changes depends, on the astrocytic molecular 

mediators produced by the arachidonic acid conversion. This process is also regulated by nitric oxide 

(NO) levels (Gordon et al., 2007). 
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Astrocytes under pathological conditions 

Glial cells, and astrocytes in particular, are significant for their irreplaceable role in the 

maintenance of CNS homeostasis. Thus, the pathological conditions brought about by brain injuries, 

diseases or other impairments have a noticeable impact on astrocytic physiology and morphology. 

Despite all the differences between the individual CNS disorders, there are some common features 

accompanying these diseases, for instance: inflammation, ROS accumulation, excitotoxicity, and 

metabolic failure. Majority of these processes are under astrocytic control in a healthy brain (Bélanger 

& Magistretti, 2009). 

The most common astrocytic response to the physiological changes in a diseased or injured brain 

is undoubtedly the one known as reactive astrogliosis. A wide range of different astrocytic changes and 

reactions has been observed in a process of astrogliosis, some of them being contradictory or only poorly 

explained. However, Sofroniew suggested a model in his review on Molecular dissection of reactive 

astrogliosis and glial scar formation which comprises general characteristics of the process in these four 

points: 

1. Reactive astrogliosis includes a range of astrocytic changes occurring during CNS injury or 

disease of any form and severity. 

2. The changes in astrocytes depend on the nature and the severity of the damage and vary along 

a gradated continuum of progressive alterations in molecular expression, progressive cellular 

hypertrophy and proliferation and scar formation which is the most severe. 

3. The changes accompanying the astrogliosis are regulated by the precise signalling pathways 

with the ability to customize their nature and degree, in a context-specific manner. 

4. Astrocytic activity during reactive astrogliosis is altered through gain and loss of functions that 

have the ability to affect the surrounding cells both positively and negatively (Sofroniew, 2009). 

There is a vast array of factors in astrocytic microenvironment, such as: cytokines, adhesion 

molecules, growth factors, and various signals from glial, neuronal and other cells, all contributing to a 

modulation of astrocyte reaction (Balasingam et al., 1994; Krum et al., 2002). Even though astrogliosis 

represents a gradated continuum of changes it has been categorized into three stages: mild, moderate, 

and severe (Figure 4). All the three present with altered gene expression resulting in GFAP up-regulation 

and cellular hypertrophy. Mild to moderate reactive astrogliosis usually appears during some forms of 

trauma and in bacterial or viral infections, further from focal CNS lesions. Severe reactive astrogliosis 

on the other hand is accompanied by astrocyte proliferation resulting in tissue reorganization and 

astrocyte domain loss. These structural changes result in a so called glial scar formation, isolating the 

area of the tissue damage, necrosis, infection, or inflammation by compact border formation around it. 

Glial scar formation is known to be induced by CNS impairments like invasive infections, chronic 

neurodegenerative changes, neoplasm, trauma and others (Drögemüller et al., 2008; Voskhul et al., 
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2009). Glial scar separates defective brain areas from the healthy tissues, prevents axon regeneration 

and hinders inflammation from spreading. This barrier persists for a long period of time and it requires 

astrocytes with proliferative potential for its formation (Wanner et al., 2013; Silver et al., 1993; Faulkner 

et al., 2004). 

 

  

Whether the impact of reactive astrocytes on CNS is rather positive or negative is a question 

that needs to be further investigated to be resolved properly. There is an evidence of both beneficial and 

deleterious astrocytic responses to CNS insults. A recent study on reactive astrocytes suggests the 

existence of two distinct types of astroglia, one characterised as damaging and the other one supportive, 

named “A1” and “A2” respectively. Neuroinflammation instigates an activation of A1 astrocytes which 

subsequently up-regulate the pathways involved in synapse destruction, unlike the ischemia-induced A2 

astrocytes which implement their protective potential by stimulating neurotrophic factors production 

(Liddelow et al., 2017). 

Figure 4: Visualization of different types of reactive astrocytes from murine cerebral cortex. Astrocytic 

cytoskeleton is visualized via GFAP immunohistochemical staining. (a) Healthy cortex. GFAP is detectable 

only in some astrocytes. (b) Moderately reactive astrocytes with GFAP visible in all astroglial cells, due to 

injection of bacterial antigen lipopolysaccharide (LPS). Astrocytes are hypertrophied. (c) Scar border (SB) 

formed by proliferated reactive astrocytes is easily visible and is formed in the close vicinity of the lesion (L) 

caused by severe traumatic injury. Astrocytes no longer form individual domains but are overlapping with 

intermingled processes. Scale bar520 mm. (Photos courtesy of the Sofroniew laboratory) (Sofroniew, 2009). 

 



 13 

In general, all CNS disorders could be characterised as homeostatic failures. Astrocytes may 

contribute to these imbalances in the homeostasis in various ways, often by altered expression or 

function of transporters and channels (Figure 5). 

 

 

One of the examples of such failures in ion homeostasis is represented by the alterations in 

potassium channel expression and location. Miscellaneous CNS pathologies, either chronic or acute, 

have the ability to trigger defects in K+ channel functions, leading to an impaired K+ spatial buffering. 

As a result of dysfunctional K+ uptake a spreading depression may occur, mediated by extracellular K+ 

accumulation. Disproportion of the ionic distribution leads to depolarization of the astrocytes, which in 

turn inflicts the glutamate transport defects. Together with the affiliation of other proteins like 

aquaporins and connexins the whole process ends up with systemic collapse of homeostasis contributing 

to the neuronal damage (Tong et al., 2014) 

Figure 5: Astrocytic pathophysiology. Astrocytes maintain potassium, glutamate and water homeostasis 

and are involved in signalling. Several types of transporters and channels are involved in the process of the 

homeostasis maintenance. These processes are disrupted under pathological conditions, hence they 

contribute to the brain damage. (Verkhratsky et al., 2012). 
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Another abnormality observed in astrocytic behaviour under pathological conditions is the 

process called astrocyte swelling. An increased uptake of water via AQP4 on astrocytic endfeet impels 

the cells to extend their volume, contributing to a condition described as cytotoxic edema (MacAulay et 

al., 2001; Schneider et al., 1992). 
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Neurodegeneration 

Neurodegeneration is a chronic and progressive process of neuronal death, leading to brain 

atrophy and impairments of CNS connectivity. The onset and progression of neurodegenerative 

disorders can be triggered by miscellaneous factors from traumatic and infectious attacks to genetic 

susceptibility or sporadic errors accumulation.  Astrocytes play a significant role in health of neuronal 

cells, and therefore their contribution to the development of neurodegeneration is critical (Heneka et al., 

2009; Verkhratsky et al., 2013). 

Alzheimer’s disease 

Alzheimer’s disease (AD) is a neurodegenerative disorder manifesting itself by dementia and 

was first described by Alois Alzheimer in 1907 (Alzheimer, 1907; Stelzmann et al., 1995). From all 

types of dementia, Alzheimer’s disease is the most frequent one among the elderly. The clinical 

symptoms of this neuropsychiatric disorder include progressive memory loss and dysfunction of higher 

cognitive domains. Histological features accompanying development of AD are senile/neuritic plaques 

and neurofibrillary tangles (NFT) formation. Neuronal degeneration and death are the consequences of 

these pathological changes (Arriagada et al., 1992). The senile plaques were shown to be formed by an 

extracellular aggregation and deposition of the β-amyloid peptide (Aβ) fibrils (Mawuenyega et al., 

2010). Tau protein is the principal component engaged in NFT formation (Tapiola et al., 1997). 

Alzheimer’s disease occurs in two distinct forms: sporadic and familial. These two forms have 

strong phenotypical similarities and it is often difficult to distinguish between them. Familial form of 

the disease is usually induced by mutations in AD-related genes like amyloid precursor protein, 

presenilin 1 or presenilin 2, which all contribute to Aβ accumulation (Goate et al., 1991; Levy-Lahad et 

al., 1995; Sherrington et al., 1995).  Even though the genetic factors may be involved in the onset and 

progression of the disease, it seems that majority of AD cases are of non-familial origin (Maccioni et 

al., 2001; Selkoe, 2001). 

There are three phases of the disease: pre-symptomatic phase, prodromal phase, and dementia. 

In the first one (pre-symptomatic phase) the cognitive functions are not affected, however, the patients 

may have AD pathological changes (Knopman et al., 2003; Price & Morris, 1999). The prodromal phase 

is also known as mild cognitive impairment. It presents itself with the earliest cognitive symptoms, such 

as episodic memory deficits (Morris et al., 2001).  Dementia is the final and the most severe phase of 

AD and is characterised by extreme impairments in multiple domains causing loss of function (Visser 

et al., 2009). 

Braak stageing is used to distinguish between six distinct pathological stages of AD. Changed 

intraneuronal neurofibrils in AD are found in three forms: neuritic plaques with variable distribution, 
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neurofibrillary tangles and neuropil threads. The latter two are distributed in a specific manner. The 

distribution patterns determine the stageing (Braak & Braak, 1997a; 1997b). 

Astrocytes in Alzheimer’s disease 

One of the most controversial roles of astrocytes in AD, however, seems to be the one they play 

in the metabolism of amyloid β. Various studies have revealed contradictory results on this matter. 

Astrocytes in AD are known to be affected by Aβ aggregates in miscellaneous ways. The changes are 

visible not only on the morphological level but also metabolism and other astrocytic functions are altered 

(Pike et al., 1994; Allaman et al., 2010; Söllvander et al., 2016). It has been proposed that Aβ can be 

generated not only by neurones but also by astrocytes. Thus, astrocytes were suggested to be directly 

implicated in the formation of Aβ aggregates in the course of AD (Zhao et al., 2011). 

A release of gliotransmitters such as glutamate, GABA, ATP, or D-serine during AD is altered 

in reactive astrocytes as well. GABA is a primary gliotransmitter involved in the inhibition of neuronal 

transmission. The activation of microglial and astrocytic GABA receptors during inflammatory 

processes in brain results in a decreased release of proinflammatory cytokines, reducing the 

neurotoxicity (Lee et al., 2011). On the other hand, deleterious effects of the over-expressed astrocytic 

GABA were also reported. Hypertrophy of astrocytes and GABA accumulation, which were observed 

in the AD mouse models, are both occurring in the proximity of amyloid aggregates. Furthermore, a 

contribution of elevated astrocytic GABA release to cognitive decline was proposed (Jo et al., 2014; Wu 

et al., 2014). Another recent study revealed that GABA accumulation in astrocytes appears not only in 

the presence of amyloidosis, but also as a result of neuronal hyperactivity (Brawek et al., 2018). Another 

common gliotransmitter – D-serine was also proposed to be implicated in the process of 

neurodegeneration in the course of AD (Balu et al., 2019).  

As mentioned above, AD occurs predominantly among elderly hence, some of the deleterious 

processes related to aging may contribute to the disease onset and progression. There is an evidence of 

age-associated changes in astrocytic functioning, which subsequently conduce to AD pathogenesis. One 

of such astrocytic dysfunctions results from decreased insulin-like growth factor receptor (IGFR) 

signalling, which then affects aging of neurons and neurodegeneration.  A study on both mouse models 

and astrocyte cultures revealed a number of negative effects of reduced IGFR levels on nervous system, 

such as defective ATP synthesis, increased gliosis, augmented level of mitochondrial ROS, and 

moreover, altered glucose and Aβ uptake by astrocytes (Logan et al., 2018).  
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Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis (ALS) also known as Lou Gehrig’s disease is the third most 

common neurodegenerative disorder after AD and Parkinson’s diseases. It is a fatal idiopathic motor 

neuron disease, which presents with upper and lower motor neuron degeneration and death, localised in 

the brain and spinal cord. The most probable cause of death of amyotrophic lateral sclerosis patients is 

due to respiratory failure (Brown & Al-Chalabi, 2017). Not only motor neurons supplying voluntary 

muscles are affected by ALS, but also lower medullar motor neurons and upper motor neurons in the 

cerebral cortex (Gordon, 2013). 

Population-based studies revealed that ALS is more prevalent among elderly, men being at 

higher risk of developing the disease than women (Moura et al., 2016). Only 5-10% of ALS cases are 

of genetic origin. Thus, a vast majority of the patients is diagnosed with a sporadic form of the disease 

(Chio et al., 2011) . 

Many genes have been proved to be involved in both familial and sporadic ALS; however, 

approximately 20% of cases of fALS and 1% of sALS are related to dominant mutations in the Copper-

Zinc superoxide dismutase (SOD1) gene (Rosen et al., 1993). 

In about 70% of patients the first symptoms of the disease occur in the limbs (usually in the 

arms) and are focal and unilateral. They include foot drop, walking difficulties, hand dexterity loss, and 

weakness in the arms during movements. With the progression of the disease a complete loss of the 

ability to walk may occur. Older women usually present with bulbar-onset of the ALS, which means a 

poorer prognosis for the patients. Speech (dysarthria) and swallowing (dysphagia) difficulties are 

characteristic signs of the bulbar-onset ALS. The possible consequences of these conditions are 

excessive salivation, anarthria and even malnutrition. Furthermore, as a result of axial weakness, 

dropped head and kyphosis may also accompany the disease (Gordon, 2013; Kiernan et al., 2011). 

Astrocytes in amyotrophic lateral sclerosis 

It has been proposed that a loss of adenosine deaminase in defective astrocytes leads to increased 

neurotoxicity (Allen et al., 2019) A functional adenosine deaminase induces deamination of adenosine 

into inosine, which is known to have glioprotective properties (Haun et al., 1996). 

Astrocytes isolated from mice models overexpressing human SOD1, together with human post-

mortem ALS astrocytes and human induced pluripotent stem cell (iPSC)-derived astrocytes were all 

proved to cause motor neuron death in co-cultures (Almad et al., 2016; Harlan et al., 2016). This effect 

results from all sorts of ongoing defective processes in ALS astrocytes. For example altered gap 

junctional coupling was observed in astrocytes derived from SOD1G93A mice. An increased expression 

of astrocytic hemichannel-forming connexin Cx43 is responsible for these alterations, which 
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subsequently bring about elevations in the intracellular calcium levels (Almad et al., 2016). One of the 

options how to diminish an astrocyte-mediated neurotoxicity is by providing an augmented supply of 

nicotine amide dinucleotide NAD+ into ALS astrocytes.  NAD+ is participating in mitochondrial 

metabolism and its increased levels contribute to peroxide toxicity resistance and decreased amounts of 

mitochondrial reactive oxygen species (Harlan et al., 2016). 

Another recent study revealed a correlation between the expression of astrocytic tumour necrosis 

factor receptor 1 (TNFR1) and a neuronal survival. The TNFR1 promotes a release and synthesis of 

glial cell line-derived neurotrophic factor (GDNF), which is recognized as a factor implicated in the 

motor neuron protection. Thus, an astrocytic TNFR1-GDNF axis denotes a new potential therapeutic 

target in ALS (Brambilla et al., 2016). 

Neuroinflammation is also implicated in the progression of ALS. The neuroinflammatory 

processes have both protective and toxic consequences on neurons, and are induced by several cell types, 

such as microglia, T-cells and, of course, astrocytes in a non-cell-autonomous manner. A transforming 

growth factor-1 (TGF1) produced by activated astrocytes is overexpressed during the ALS 

progression, and has a neurotoxic effect, and therefore, it contributes to the degeneration of neurons. 

Furthermore, TGF1 interfere with neuroprotective action of inflammatory molecules produced by 

microglia and T-cells (Figure 6) (Endo et al., 2015). 

 

Figure 6: Excess astrocyte-derived TGF1 contributes to 

disease progression. TGF-1= transforming growth factor 

beta 1, IFN- = interferon  , IL-4= interleukin 4 (Endo et al., 

2015). 
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Parkinson’s disease 

Parkinson’s disease (PD) is a condition characterised by a progressive loss of dopaminergic 

neurons of pars-compacta - a part of midbrain-located substantia nigra- and a region specific aggregation 

of α-synuclein, which functions as a negative regulator of dopamine neurotransmission. (Abeliovich et 

al., 2000). One of the histological hallmarks of PD are structures known as Lewy bodies. These 

intracellular eosinophilic neurofibrillary tangles are suggested to contribute to neuronal death (Gibb & 

Lees, 1989; Greffard et al., 2010). The disease comes with a number of symptoms, among which the 

most significant are tremor, bradykinesia, rigidity and postural instability (Paísan-Ruíz et al., 2004).  

Ageing and genetic predisposition are primary risk factors concerning PD. Other risk factors 

linked to a sporadic form of the disease have been also reported. They include rural living, middle-age 

obesity, injury of head, shortage of exercise, exposure to chemicals (Dick et al., 2007); but they are all 

only of minor importance. Nicotine and caffeine are related to the disease as well, and they both 

contribute to a decreased risk of PD as they induce a dopamine release in striatum. Moreover, cigarette 

smoke has been suggested to inhibit monoamine oxidase, an enzyme producing reactive oxygen species, 

which account for increased risk of neuronal damage. Hence, it is not surprising that non-smokers and 

people with no or very low caffeine intake have higher susceptibility to develop the disease (Fowler et 

al., 1996, Ascherio et al., 2003). 

Astrocytes in Parkinson’s disease 

Substantia nigra, which is affected by the disease in the first place, is a brain region with a lower 

abundancy of astrocytes in comparison to the rest of the brain (Damier et al., 1996). This indicates a 

lack of astroglial support to the neurons, which might play a crucial role in the development of PD 

(Mena et al., 2002).  

Various genes implicated in the PD progression were detected, one of them being a recessive 

familial gene known as DJ-1, which is associated with all sorts of cellular functions (Ashley et al., 2016). 

DJ-1 protein was recognized to be involved in eliminating reactive oxygen species with its antioxidant 

properties, contributing to a protection of the cell (Andres-Mateos et al., 2007). Besides, it functions in 

the maintenance of mitochondria (Cai et al., 2015). Other studies propose its participation as a chaperone 

in -synuclein folding (Shendelman et al., 2004; Zhou et al., 2006). Furthermore, DJ-1 is implicated in 

the death of neurons via regulating the activity of phosphatase and tension homolog (Choi et al., 2014). 

Interestingly, DJ-1 when mutated can even induce aberrations in EAAT2, leading to impaired astroglial 

uptake of glutamate (Figure 7, E) (Kim et al., 2016). Another study showed that mutations in DJ-1 gene 

modify the expression of pro-inflammatory mediators in astrocytes. Dysregulation of these factors may 
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lead to a decreased astroglial protection of the neurons, making them more susceptible to 

neurodegeneration (Ashley et al., 2016).  

One of the possible factors decreasing the expression of DJ-1 is NO. Fortunately, we are able to 

prevent a down-regulation of DJ-1 by supressing the activity of NO, or eventually inducible nitric oxide 

synthase (iNOS). It has been revealed that cinnamon and its metabolite have exactly the effect described 

above. The authors of the study focusing on this matter suggest that oral administration of cinnamon has 

a neuroprotective role (Khasnavis & Pahan, 2014). 

It has been also observed that the depositions of -synuclein in the extracellular space can 

stimulate the astrocytic inflammatory responses mediated by activation of its toll-like receptor 4 (Figure 

7, C) (Rannikko, 2015). 

 

 

Huntington’s disease 

Huntington’s disease (HD) is a progressive genetic disorder with neurodegenerative outcomes, 

emerging from expansion of triplet CAG repeats in a gene for huntingtin. The onset of HD depends on 

length of CAG repeats (Rosenblatt et al., 2006). The primary target of neurodegeneration in HD 

Figure 7: Astrocytic contribution to neurotoxicity. Astrocytes can promote toxicity of 

neurons in different ways: (A) Mislocalisation or disruption of water channels AQP4. (B) 

Reduced release of neurotrophic factors. (C) Inflammatory responses. (D) Diminished 

astrocytic proliferation. (E) Decreased activity of glutamate transporters leading to 

excessive accumulation of  glutamate in the extracellular space. (Booth et al., 2017) 
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progression is a striatum. Clinically the disease presents itself with a variety of symptoms from cognitive 

decline and psychiatric breakdown to a progressive motor dysfunction. The patients diagnosed with HD 

typically struggle with involuntary movements (chorea), overall motoric slowdown (bradykinesia), 

incoordination, and rigidity often preceded by behavioural defects (Ross & Tabrizi, 2011). 

 

Astrocytes in Huntington’s disease 

An increased excitotoxicity which is known to contribute to neurodegenerative processes has 

been observed in HD. One of the most probable reasons for adverse excitatory neurotransmission 

detected in HD patients resides in the altered astrocytic metabolism and glutamine release which in turn 

induce reduced GABA synthesis in neurons. A recent study revealed a down-regulation of EAAT2 

glutamate transporter, GS, and the glutamine transporter sodium-coupled neutral amino acid transporter 

3 in astrocytes. These factors directly induce the excitotoxic glutamate accumulation in the extracellular 

space (Skotte et al., 2018). There is still a lot of data missing concerning the astroglial behaviour in HD 

and a further research would be required to complete a whole picture on the matter. Nevertheless, there 

is an evidence of various astrocytic alterations, which might play a relevant role in HD progression, such 

as: increased calcium-dependent glutamate release (Lee et al., 2013), mitochondrial impairments 

(Oliveira et al., 2007), neuroinflammation mediators’ release (Hsiao et al., 2013), Kir 4.1 channels 

down-regulation (Tong et al., 2014), or abnormal cholesterol production (Valenza et al., 2010). 
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Conclusion 

Astrocytes are a subtype of glial cells and their most important function in CNS is to maintain 

brain homeostasis. Homeostatic disruption occurs during neurodegeneration, suggesting that astrocytes 

can play a vital role in the onset and progression of neurodegenerative diseases, or even contribute to 

their formation. Even though astrocytes are receiving more and more attention from researchers, their 

role in neurodegeneration is still not fully understood.  

Over the past few years, there has been a lot of evidence about both positive and negative effects 

they have on neurons and their environment. The most typical astrocytic response observed in majority 

of neurodegenerative diseases is reactive astrogliosis. It is often accompanied by a change in the 

expression of various genes. A wide range of astrocytic changes occur through different 

neurodegenerative diseases. Alterations in the metabolism of astrocytes accompany the 

neurodegenerative processes. Defective glutamate release is one of the most frequently appearing 

astrocytic changes, observed in most of the neurodegenerative disorders. It is usually caused by down-

regulation of one of the glutamate transporters and results in increased excitotoxicity followed by 

neurodegeneration. Another typical feature of the above mentioned diseases is aberrant ion 

concentrations and modified signalling. Moreover, the inflammatory processes also contribute to 

degeneration of the neurons in the course of all AD, PD, ALS, and HD. Pro-inflammatory mediators, 

however, are produced not only by astrocytes, but by other cell types as well. 

In order to obtain a better understanding of the role of astrocytes in neurodegenerative diseases, 

more detailed investigation and clarification of the processes accompanying reactive astrogliosis is 

required. At the same time, presuming we want to target the treatment of neurodegeneration to 

astrocytes, it is important to examine the pathophysiological processes in the neighbouring cells – both 

neuronal and glial - since the CNS is a dynamic structure, in which an intense communication occurs 

among its individual interacting components. 
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