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Abstract:
Neural machine translation is known to require large numbers of parallel train-
ing sentences, which generally prevent it from excelling on low-resource lan-
guage pairs. This thesis explores the use of cross-lingual transfer learning on
neural networks as a way of solving the problem with the lack of resources. We
propose several transfer learning approaches to reuse a model pretrained on a
high-resource language pair. We pay particular attention to the simplicity of
the techniques. We study two scenarios: (a) when we reuse the high-resource
model without any prior modifications to its training process and (b) when we
can prepare the first-stage high-resource model for transfer learning in advance.
For the former scenario, we present a proof-of-concept method by reusing a
model trained by other researchers. In the latter scenario, we present a method
which reaches even larger improvements in translation performance. Apart
from proposed techniques, we focus on an in-depth analysis of transfer learning
techniques and try to shed some light on transfer learning improvements. We
show how our techniques address specific problems of low-resource languages
and are suitable even in high-resource transfer learning. We evaluate the poten-
tial drawbacks and behavior by studying transfer learning in various situations,
for example, under artificially damaged training corpora, or with fixed various
model parts.
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1
Introduction

The Babel fish is small, yellow and leech-like, and probably the oddest thing in the
Universe. If you stick a Babel fish in your ear, you can instantly understand anything

said to you in any form of language.
–The Hitchhiker’s Guide to the Galaxy. Douglas Adams

With the spread of technology, people around the world are becoming more
connected than ever before, and the need for seamless communication and
understanding becomes crucial. According to Simons (2018), there are 7097
living languages in the world. However, most of the language pairs have at
most hundreds to thousands of parallel sentences with a limited set of paired
languages. This lack of data is a severe problem for the training of suitable
Machine Translation (MT) systems because both Statistical Machine Translation
(SMT) and Neural Machine Translation (NMT) are data demanding machine
learning approaches.

Before my doctoral study, the primary approach for MT was Phrase-Based
Machine Translation (PBMT) (Koehn et al., 2003; Bojar et al., 2015). However,
a complete paradigm shift with the rise of NMT approaches a few years ago
(Bojar et al., 2016, 2017).

Currently, NMT is a common approach to automatic translation, and accord-
ing to Hassan et al. (2018); Bojar et al. (2018) it starts to reach human parity in
some language pairs. However, it is only valid for high-resource language pairs
where we have plenty of available data – usually dozens of millions of parallel
sentences. The performance with low amounts of data can be dramatically
reduced up to the point where PBMT systems outperform NMT (Koehn and
Knowles, 2017). To some extent, the problem can be mitigated if the NMT model
is scaled down accordingly (Sennrich and Zhang, 2019), but it does not resolve
the data demands.

The goal of this thesis is to study transfer learning techniques to improve
the performance of NMT, especially for translating low-resource language pairs.
In general, transfer learning refers to the use of vaguely related training data
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to improve the performance at the desired task. For instance, in NMT, transfer
learning reuses the model, or its parts, trained for one language pair to improve
the performance in a different language pair.

1.1 Contributions
The main contributions of this work are the proposed transfer learning tech-
niques with a broad analysis. We show several approaches on how to improve
the performance of (not only) low-resource language pairs with a model trained
for a different high-resource language pair. During our analysis, we show that:

• Transfer learning works for both low and high-resource language pairs
and achieves better performance than training from random initialization.

• Transfer learning in NMT does not have negative effects known in other
fields and can be used as an initialization method for NMT experiments.

• We show that the quantity of parallel corpus plays a more important role
in transfer learning than relatedness of language pairs.

• We observe that transfer learning works as a better initialization technique
and improves performance even when no language is shared between
both models.

Apart from the main contributions, we also describe several other research
ideas, starting with our contribution to the development of Czech–English paral-
lel corpora (Bojar et al., 2016a), experiments with pretrained word embeddings
(Kocmi and Bojar, 2017c), word embeddings with subword information (Kocmi
and Bojar, 2016), a neural language identification tool (Kocmi and Bojar, 2017b).
We also contributed to the implementation of a research sequence-to-sequence
framework Neural Monkey (Helcl et al., 2018).

During my doctoral study, we investigated the use of curriculum learning
(Kocmi and Bojar, 2017a), helped to prepare a Neural Training Shared Task at
WMT 2017 (Bojar et al., 2017), and developed a neural abstractive summarization
tool (Straka et al., 2018). Furthermore, we participated in several shared tasks
(Bojar et al., 2016b; Sudarikov et al., 2017; Kocmi et al., 2017, 2018a,b,c; Kocmi
and Bojar, 2019b).

The complete list of publications that I co-authored during my doctoral
study can be found in the List of Publications on page 136. All publications went
through the peer-review process. The only exception is Kocmi and Bojar (2019a)
that is not yet published.

1.2 Structure of the Thesis
In the following chapters, we describe our approach to low-resource transfer
learning in NMT. This thesis consists of two main parts: the description and
evaluation of our transfer learning approaches and a broad analysis of the
approach. The thesis includes results and text snippets from our published
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works. Short textual parts are reused only from works without other co-authors
except for my supervisor. Furthermore, the works used in this thesis are stated
at the beginning of individual sections.

• In Chapter 2, we introduce the definition of low-resource languages and
describe language resource categories for MT. We describe Czech–English
corpus (Bojar et al., 2016a), show the problem with noisy parallel sentences,
and present our tool for neural language identification (Kocmi and Bojar,
2017b). Lastly, we describe the standard approaches to the evaluation of
machine translation.

• In Chapter 3, we describe NMT architectures with a focus on word em-
beddings and segmentation of words. We present our approach to word
embeddings that includes subword information in word representation
(Kocmi and Bojar, 2016).

• In Chapter 4, we present one of the central parts of this thesis: transfer
learning for NMT. We describe two scenarios, which differ in assumed
conditions on the transferred model. We propose several approaches for
both scenarios and evaluate them. This chapter is based mostly on our
two papers: Kocmi and Bojar (2018) and Kocmi and Bojar (2019b).

• Equally important is Chapter 5, where we analyze the gains by transfer
learning and shed some light on the understanding of the underlying
mechanisms.

• We conclude the thesis in Chapter 6.

3
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2
Background

In this chapter, we discuss the definition of low-resource languages, sources,
and quality of parallel corpora in Section 2.1. In Section 2.2, we describe our
language identification tool that is going to be used later in transfer learning
analysis. Then we describe the training data used throughout our work in
Section 2.3. Lastly, we explain how the MT is evaluated in Section 2.4.

2.1 Language Resources
Understanding and collecting the available resources is a crucial step towards
training NMT systems. In general, we can classify resources based on their
domain, their size, and their quality. Another criterion is whether they are
monolingual or parallel.

The availability of parallel sentences is crucial for NMT. It is expensive and
hard to obtain a large number of parallel sentences. On the other hand, it is
easier to obtain a monolingual data by crawling the Internet or from various
online sources. The amount of available monolingual data in the target lan-
guage typically far exceeds the number of parallel sentences. Thus researchers
have been trying to utilize monolingual data for MT and we investigate it in
Section 5.6.

A comparably important criterion to the size of the parallel corpus is its
domain and quality. It is well-known that domain-specific training data are
better for the final performance than some general data. The same holds for the
quality where a large, noisy training set can notably hinder the performance of
an NMT system (e.g. survey by Chu and Wang, 2018).

Throughout the thesis, we use standard shortcuts “k” for thousand and
“M” for million. In the case of a parallel corpus, we often use “sentences” as a
shortcut for “sentence pairs”.

Whenever we talk about a language pair, we use a dash between the lan-
guages, e.g. Czech–English. On the other hand, whenever we talk about actual
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translation direction, we use an arrow to specify a direction from which language
to which we translate, e.g. English→Czech.

In this section, we introduce a definition of an MT domain, followed by
an examination of the quality of parallel corpus and approaches for dataset
cleaning.

2.1.1 Definition of Domain in Machine Translation
The definition of a domain varies among papers. In general, it is considered
any set of instances from a dataset containing a common feature. In most
of the papers concerning domain adaptation, the authors define the domain
as the source of the dataset. This domain is closely related to the topic or
genre of the documents (Hildebrand et al., 2005; Chu et al., 2017; Servan et al.,
2016). Examples of such domains are subtitles, literature, news, medical reports,
patents, IT, and many more. All of them vary in the used vocabulary, style of
writing, and content.

Another feature is the formality or informality of the document, which
is closely related to honorifics in languages like Czech, German, or Japanese
(Sennrich et al., 2016c). It is a way of encoding the relative social status of
speakers to the readers, and for many styles, like official documents, it is an
important feature determining the quality of the translation.

Further, we can distinguish documents based on sentiment. The sentiment
tone of a text can change with machine translation (Glorot et al., 2011; Mo-
hammad et al., 2016) mainly because of language differences and ambiguity.
Another issue with sentiment is that the same information can be written from
a positive, neutral, or negative stance. We can go even further and distinguish
documents based on the writing style of the author or expected style preference
of the reader, as of formality of a speech, specialized vocabulary, or dialects
(Jeblee et al., 2014).

2.1.2 Definition of Low-Resource Languages
Recently, rapid development of NMT systems led to the claims that the human
parity has been reached on high-resource language pairs like Chinese–English
(Hassan et al., 2018) or Czech–English (Bojar et al., 2018). However, NMT sys-
tems tend to be very data-hungry. Koehn and Knowles (2017) have shown that in
the low-resource scenarios, NMT lag behind PBMT approaches. This problem
led to the rise of attention in low-resource NMT in recent years.

A precise definition of language pairs that count as low-resource is a research
question itself. One must consider all aspects of available language resources as
well as the language itself.

One of the aspects is the domain of the parallel corpus. Having a large
amount of domain-specific parallel sentences can be considered high-resource
in the given domain, but low-resource in the general domain, where the perfor-
mance can be terrible. For example, one common source of parallel sentences
for low-resource languages is the Bible, which is translated into hundreds of
languages (Christodouloupoulos and Steedman, 2015). However, it is a highly
domain and style specific text.
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Figure 2.1: Learning curves for various language pairs with various sizes of
parallel corpus. We can see that language pairs with less than 1M data quickly
flatten out or even start overfitting as in the case of Basque→English.
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Highly-inflected languages further complicate the definition of low-resource
by presenting a notable sparsity problem with the various forms of inflected
words and therefore requiring more parallel sentences to reach comparable
performance as the translation of less inflected languages (Denkowski and
Neubig, 2017).

Gu et al. (2018) define the extremely low-resource scenario by the minimal
amount of data needed for NMT to obtain a reasonable translation quality. They
showed that extremely low-resource scenario could be considered up to the
13-28k parallel sentences for English→Romanian translation.

In recent years, researchers have organized several machine translation
shared tasks in the low-resource scenario. Niehues et al. (2018) introduced
a task on Basque→English low-resource translation with an available in-domain
corpus of 6k sentence pairs and 940k out-of-domain sentence pairs. The low-
resource translation tasks in Workshop on Statistical Machine Translation (WMT)
2018 (Bojar et al., 2018) have been Estonian–English with 880k and Turkish–
English with 208k parallel sentences. This year in WMT (Bojar et al., 2019), the
low-resource language was Gujarati–English with 170k parallel sentences and
Kazakh–English with 220k parallel sentences.

Notably, Koehn and Knowles (2017) found out that NMT outperforms SMT
when more than 24.1M words are available, i.e., approximately 1M Spanish–
English parallel sentences. However, we need to add that Sennrich and Zhang
(2019) recently revisited the training condition for low-resource and showed that
current systems outperform SMT even in the low-resource scenario if careful
training is performed.

Thus a usual definition is that language pairs with less than a million training
pairs are deemed low-resource.
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Another point of view, which can be used to delineate low-resources is
behavior during training. Figure 2.1 shows so-called learning curves, i.e., the
performance of a given system on a development set (also called held-out set)
throughout the training. When the curves bend down (e.g. the performance
starts decreasing), it is an indication that the model is overfitted, usually by
memorizing training sentences.

During our experiments, we noticed that low-resource languages often over-
fit or flatten out within first 50-100k of weight updates, which in our setting is
roughly half a day of training on a single GPU. In contrast, the higher-resource
language pairs rarely overfit, usually flatten out after several hundred thousand
steps, see Figure 2.1 for an illustration.

We should also note that a language pair considered low-resource today
might not be considered low-resource in the future: either due to the newly
available data but also due to the improvements in NMT training techniques.

2.1.3 Resource Quality
Language resources for machine translation come in varying degrees of qual-
ity. On the one extreme, there are proper translations made by professional
translators, which result in parallel corpora with more aligned translations
and adherence to sentence-to-sentence alignment. On the other extreme sen-
tences automatically extracted from noisy crawled web pages, which are often
miss-aligned, contain non-word parts, and even sentences in a wrong language.

Another issue with parallel corpora is the phenomenon called translationese
(Gellerstam, 1986). A text translated from one language to the second one has
different linguistic properties than text written in the second language originally.
According to Baker et al. (1993), translated texts are often:

• Simplified – when translators subconsciously simplify the message.

• Normalized – to conform the typical features of target languages up until
a point of a slight change in meaning.

• Explicitated – the notion that structures of text are explained in more
detail due to the rarity of the phenomenon in the target language, for
example, explaining abbreviations. It is, to some extent, an inverse to the
simplification.

Stymne (2017) evaluated the effect of translationese on the MT systems
and found out that the translation direction indeed influences the final quality.
However, as the authors mention, their study would need to be evaluated over
a larger sample of language pairs and MT systems to be more reliable.

2.1.4 Corpus Cleaning
Collecting training data is the first step needed in order to start training machine
translation models. For low-resource languages, crawled data are often one of
the largest sources of parallel sentences. Unfortunately, the resources based on
crawled data are usually noisy. In order to use the crawled data, we need to
clean them first.
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There is a whole field for filtering parallel corpora. Koehn et al. (2018)
prepared a shared task intending to study various techniques of filtering parallel
corpus for NMT to improve its performance by reducing noisy data. Filtering
usually consists of pre-filtering rules, like removing non-word tokens, various
tags or sentences with mismatched lengths. More advanced techniques rely on
various scoring functions.

Furthermore, we can remove short segments of up to a few tokens. These
sentences are often relics of misaligned pairs. A standard is to remove sentences
with less than five tokens (Koehn et al., 2018).

In contrast, we can also think about removing long segments or breaking
them to shorter ones. For practical reasons of batch training on GPU, sentences
within one batch are padded to a fixed length according to the longest sentence
in the batch. Thus in order to increase the batch size, we can remove very
long sentences from the corpus, because they result into large padding of other
sentences in the same batch. However, removing long sentences should be
done only in the case if there are very few of them compared to the size of the
whole corpus so that their removal will not affect the overall number of parallel
sentences. In our papers, we followed the recommendation of Popel and Bojar
(2018) and set the threshold to 100 or 150 tokens as we have not witnessed any
change in the performance, but it allows us to increase the batch size, which is
beneficial for the training (Popel and Bojar, 2018).

Lastly, whenever we are dealing with a corpus that was automatically col-
lected, we may want to check all sentences by automatic language identification
tool in order to remove sentences that are in a different language. Although this
step can remove correct sentences due to errors done by the automatic language
identification, it is usually beneficial since it removes a part of noisy sentences.

We have also contributed to the field of language identification by developing
a neural language identification tool called Language Identification by Neural
Networks (LanideNN). We describe the tool in the following section.

2.2 LanideNN: Language Identification Tool
In language identification, we want to determine the language of some input
text automatically. Monolingual language identification assumes that the given
document is written in a single language. In multilingual language identification,
the document is usually in two or three languages, and we only want their names.
In the task of code-switching identification, where the speaker of one language
uses words from a different second language, we need to tag individual words
or phrases by intended language.

Techniques of language identification can rely on handcrafted rules, usually
of high precision but low coverage, or data-driven methods that learn to identify
languages based on sample texts of sufficient quantity (Cavnar et al., 1994; Yang
and Liang, 2010; Carter et al., 2013).

In Kocmi and Bojar (2017b), we have developed a neural language iden-
tification tool. It focuses on multilingual identification as well as language
identification from short segments. This section includes results and textual
parts of our paper. We use this tool for analysis of transfer learning behavior in
Section 5.1.1.
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Figure 2.2: Illustration of our LanideNN model architecture. The input on top is
processed through the network to get assigned language label at bottom based
on argument maximum.

To our knowledge, and also according to the survey by Garg et al. (2014), we
have been the first1 who approached the language identification with neural
networks, and further, we reached the state-of-the-art in multilingual language
identification in the year 2017 (Kocmi and Bojar, 2017b).

The method we propose is designed for short texts without relying on sen-
tence or document boundaries. If documents are known and if they can be
assumed to be monolingual, this additional knowledge should not be neglected.
However, for the long term, we aim at streamlined processing of noisy data
genuinely appearing in multilingual environments. For instance, our method
could support the study of code-switching in e-mails or other forms of con-
versation, or to analyze various online media such as Twitter, for example, see
Montes-Alcalá (2007).

The model is trained on a character sliding window of input texts. It takes
individual source characters as input and provides a language label for each
of them. Whenever we need to recognize the language of a document, we take
the language assigned by our model to the majority of characters. Our model

1One exception in using Neural Network (NN) for language identification task before our
work is Al-Dubaee et al. (2010), who combine a feed-forward network classifier with wavelet
transforms of feature vectors to identify English and Arabic from the Unicode representation of
words, sentences or whole documents. The benefit of NN in this setting is not very clear to us
because the writing scripts of studied languages can alone distinguish English from Arabic.
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Table 2.1: Results of monolingual language identification. Entries marked
with * are accuracies reported by Lui and Baldwin (2012), the rest are our
measurements.

System Supported languages EuroGov TCL Wikipedia

* LangDetect 53 – .818 .867
* TextCat 75 .941 .605 .706
* CLD 64 .983 .732 .831
Langid.py 97 .987 .931 .913
CLD2 83 .979 .837 .854
Our model 132 .977 .954 .893

operates on a window of 200 characters of input text, i.e. individual characters,
encoded in Unicode. The model classifies each character separately but quickly
learns to classify neighboring characters with the same label.

The architecture consists of a character level embedding layer that is connect-
ed to Bidirectional Recurrent Neural Network (BiRNN). Each unit of BiRNN is
the Gated Recurrent Unit (Cho et al., 2014). The model outputs a probability
distribution over all language tags. In order to determine the language tag of a
character, we take the index of tag in the output layer with the maximum value.
The architecture is illustrated in Figure 2.2.

To prevent overfitting, we use dropout 0.5 (Srivastava et al., 2014) during
model training on the character embeddings. The key idea is to drop connections
randomly. It prevents neurons from co-adapting too much, i.e. starting to
depend on outputs of other neurons too much, which is a typical symptom of
overfitting to training data.

We have collected, and processed training data containing 131 languages,
which is more than other tools can recognize. We also added support to identify
non-linguistic structures such as HTML codes, which are often present in noisy
crawled data. For the final training set, we mixed all sources for a given language
at the line level and removed the end of lines. Thus we artificially created a
large code-switching training dataset.

2.2.1 Monolingual Language Identification
Most of the related research is focused on monolingual language identification,
i.e. recognizing the single language of an input document. We compare our
approach in this setting with several other algorithms on the dataset presented
by Baldwin and Lui (2010). The dataset consists of 3 different testsets, each con-
taining a different number of languages, styles, and document lengths collected
from different sources.

Table 2.1 summarizes the accuracy of several most popular algorithms on the
three testsets (Baldwin and Lui, 2010). For some algorithms, we report values
as presented by Lui and Baldwin (2012) without re-running.

Despite the considerably higher number of languages covered, our model
performs reasonably close to the competitors on EuroGov (testset of 10 lan-
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Table 2.2: Results on our testset for short texts. The first column shows an
accuracy over all 131 languages. The second column shows an accuracy over
languages that all systems have in common.

System All languages Common languages

Langid.py .567 .912
CLD2 .545 .891
Our model .950 .955

guages) and Wikipedia (testset of 67 languages). We reached the best score on
the TCL (testset of 60 languages).

We compare our method with two top language recognizers, Langid.py Lui
and Baldwin (2012) and CLD2.2 We train our model on more languages, and we
do not restrict it to only the languages included in the testset. We did not restrict
LanideNN to recognize only a subset of languages. Thus we may be losing by
recognizing detailed dialect labels. Furthermore, our approach evaluates the
examples on a short span of 200 characters at a time. The final prediction is
based on the average predictions across the document. A different strategy of
breaking the input could improve our results.

2.2.2 Short-Text Language Identification
In order to demonstrate the ability of our method to identify the language of
short texts such as tweets, search queries or user messages, we wanted to use an
existing corpus, such as the one released by Twitter.3 Unfortunately, the corpus
contains only references to the actual tweets, and most of them are no longer
available. We thus have to rely on our testset, as described in Kocmi and Bojar
(2017b), where the average line length of example is 142.3 characters.

Results on short texts are reported in Table 2.2. The two other systems,
Langid.py and CLD2, are trained on texts unrelated to our collection of data and
cover fewer languages. It is therefore not surprising that they perform much
worse when averaged over all languages.

For a fairer comparison, we also report accuracy on a restricted version of
the testset that included only languages supported by all three tested tools.
Both our competitors are meant to be generally applicable, so they should (and
do) perform quite well. Our system nevertheless outperforms them, reaching
the accuracy of 95.5. Arguably, we can be benefiting from having trained on
different texts and different distribution but the same sources as this testset.

2.2.3 Multilingual Language Identification
In multilingual language identification, systems are expected to report the set of
languages used in each input document. The evaluation criterion is thus macro-

2https://github.com/CLD2Owners/cld2
3http://blog.twitter.com/2015/evaluating-language-identification-performance
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Table 2.3: Results of multilingual language identification. All models uses the
same training set, either ALTW2010 or WikipediaMulti. The * identifies results
as reported by Lui et al. (2014).

ALTW2010 WikipediaMulti
System FM Fµ FM Fµ

* Baldwin and Lui (2010) .464 .829 - -
* ALTW2010 winner .699 .932 - -
* SEGLANG .784 .905 .875 .861
* LINGUINI .513 .700 .802 .805
* Lui et al. (2014) .748 .933 .961 .959

Lui et al. (2014) .724 .931 .961 .963
Our model .779 .965 .966 .964

(M) or micro- (µ) averaged precision (P), recall (R) or F-measure (F).4 The main
criterion of the ALTW2010 shared task (Baldwin and Lui, 2010) was to maximize
the micro-averaged F-score (Fµ).

To interpret the character-level predictions by our model for multilingual
identification, we used the ALTW2010 development data to set the threshold
empirically: if a language is predicted for more than 3 % of characters in the
document, we consider the language as one of the document’s languages.

We evaluate our model on two existing testsets for multilingual identification,
ALTW2010 shared task, and WikipediaMulti. Both testsets come with training
data. Thus we retrain our model to test its in-domain performance.

ALTW2010 shared task (Baldwin and Lui, 2010) provided 10000 bilingual
documents divided as follows: 8000 training, 1000 development, and 1000 test
documents. The task is to recognize which two languages are present in the
document.

WikipediaMulti (Lui et al., 2014) is a dataset of artificially prepared multilin-
gual documents, mixed from monolingual Wikipedia articles from 44 languages.
Each of the artificial documents contains texts in 1 ≤ k ≤ 5 randomly selected
languages. The average document length is 5500 bytes. The training set consists
of 5000 monolingual documents, the development set consists of 5000 multi-
lingual documents, and testset consists of 1000 documents for each value of
k.

The results are in Table 2.3. For algorithms SEGLANG and LINGUINI, we
only reproduce the results reported by Lui et al. (2014). We use the system by
Lui et al. (2014) as a proxy for the comparison: we retrain their system and
obtain results similar to those reported by the original authors. The differences
are probably due to the Gibbs sampling used in their approach.

We see that our model outperforms all other models in the task’s main
criterion Fµ. More details and results are in our paper Kocmi and Bojar (2017b).

4Note that for comparability with results reported in other works, macro-averaged F-score is
calculated as average over individual F-scores instead of the harmonic mean of PM and RM .
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Figure 2.3: Illustration of text partitioning. The black triangles indicate true
boundaries of languages. The black part shows probability of detecting the
language labeled in gray color, and the gray part shows complement for the
second language since in this setup we restricted our model to use only the two
languages in question. The misclassification of Italian and German as English in
the last two examples may reflect increased noise in our English training data.

2.2.4 Code Switching Analysis
Lastly, we illustrate the ability of our model to recognize borders between
languages, even on short sentences. Figure 2.3 presents the behavior of our
model on text with mixed languages. The graph represents the probability of
the model to recognize the first language in one color and (1–probability) for
the second languages in the other color.

We have selected very short (50–130 characters) and challenging segments
where the languages mostly share the same script. Finding the boundary be-
tween languages written in different scripts is not difficult, as illustrated by
the first example. Moreover, it can recognize borders even on other examples,
however failing on others. The more robust examination would be needed to
evaluate this performance. Thus we leave it just as an illustration.

2.2.5 Conclusion
We trained language identification tool with a focus on identifying even short
segments such as sentences as they are usually the smallest units gathered for
MT. Furthermore, we focused on the multilingual setting. We were one of the
first to tackle the problem with neural networks. We reached the best result on
one of the three testset in monolingual language recognition. We outperformed
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other tools in the task of short segment identification as well as multilingual
language identification.

We collected a dataset and trained our model to recognize considerably
more languages than other state-of-the-art tools. We have developed a language
identification algorithm based on bidirectional recurrent neural networks and
made it publicly available.5

We use this tool for analysis of transfer learning behavior in Section 5.1.1.

2.3 Training Data
This section summarizes all the datasets we use for training, development,
and test evaluation throughout the whole thesis. We first introduce our high-
resource Czech–English parallel corpora in Section 2.3.1, a core dataset used in
most parts of our work. Then we describe the remaining datasets used in this
thesis.

2.3.1 Czech–English Parallel Corpus
For our work, we have contributed to the development of a high-resource parallel
corpus of Czech–English. The size of the parallel corpus is essential for training
a neural machine translation model, where more data from various domains
generally leads to a better general translation. Therefore, we have extended the
original corpus (Bojar et al., 2012) by collecting over four times more data from
more domains. The corpus contains 62.5 million sentences from various sources:
Subtitles, EU Legislation, Fiction, Parallel Web Pages, Technical Documentation,
Medical, PDFs from Web, News, Project Navajo, and Tweets.

CzEng 1.6 dataset is important for our work for several reasons:

• Czech language has rich morphology, which makes machine translation
hard (Bojar, 2015).

• It allows Czech–English to serve as a high-resource language pair with
62.5 million data.

• It contains data from various domains.

• We understand fluently both languages, which is useful for the manual
error analysis.

After the release, we have noticed that CzEng 1.6 contains a considerable
number of sentence pairs with English sentences in the Czech side of the corpus
or vice versa. We identified the wrong sentence pairs by automatic language
identification. Initially, we wanted to use our LannideNN (see Section 2.2); how-
ever, the implementation is considerably slower than other available tools. Thus
we decided to use Langid.py (Lui and Baldwin, 2012) instead to automatically
check the languages.

Automatic language identification has better results for longer segments.
Fortunately, the CzEng contains information about the original paragraph. We

5https://github.com/tomkocmi/LanideNN
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Table 2.4: Datasets sizes overview. Word counts are from the original corpora,
tokenizing only at whitespace and preserving the case.

Words
Language pair Sentence pairs First language Second language

Odia–EN 27k 604k 706k
Gujarati–EN 173k 1.4M 1.4M
Estonian–EN 0.8M 14M 20M
Basque–EN 0.9M 5M 7M
Finnish–EN 2.8M 44M 64M
German–EN 3.5M 73M 77M
Slovak–EN 4.3M 82M 95M
Russian–EN 12.6M 297M 321M
French–EN 34.3M 1044M 912M
Czech–EN 40.1M 491M 563M
Arabic–Russian 10.2M 243M 252M
French–Russian 10.0M 295M 238M
Spanish–French 10.0M 297M 288M
Spanish–Russian 10.0M 300M 235M

checked the language of each of the paragraphs separately and removed all
paragraphs that were identified as a different language than it should be. We
removed 4M sentence pairs. This way, we filtered mostly the noisy sentences
and avoided removing a large part of clean ones. Therefore the corpus still
contains some noisy sentences.

We published the updated version as CzEng 1.7.6
Furthermore, for our experiments with transfer learning, we filtered the

CzEng even more by removing short sentence pairs of 3 or fewer words, because
these sentences are mostly fragments from subtitles. We also removed the
longest sentences with more than 75 words as they were often only lists of items
or countries7. The final size of the corpus we use in our work is 40.1M sentence
pairs.

2.3.2 Other Datasets

We experiment with various languages across this thesis to show the generality
of proposed methods. For various experiments, we select a representative
subset of languages having various sizes of corpora, relatedness, translation
performance, and writing scripts. Furthermore, the choice of languages was
influenced by various shared tasks, where we participated (see Kocmi et al.,
2018b,c; Kocmi and Bojar, 2019b).

6http://ufal.mff.cuni.cz/czeng/czeng17
7Only 0.5M parallel sentences has been removed due to having the length longer than 75

words.
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Table 2.5: Language family, branch, number of speakers, and the writing script
according to Simons (2018).

Language Lang. family Lang. branch Speakers Script

English Indo-European Germanic 1132M Latin
German Indo-European Germanic 132M Latin
French Indo-European Romance 280M Latin
Spanish Indo-European Romance 534M Latin
Czech Indo-European Slavic 11M Latin
Russian Indo-European Slavic 258M Cyrillic
Slovak Indo-European Slavic 5M Latin
Gujarati Indo-European Indic 61M Brahmic
Odia Indo-European Indic 34M Brahmic
Arabic Afro-Asiatic Semitic 274M Arabic
Estonian Uralic Finnic 1M Latin
Finnish Uralic Finnic 5M Latin
Basque Basque Basque 1M Latin

The main criterion is the size of training corpora. We compare low-resource
and high-resource language pairs spanning several orders of magnitude of
training data sizes. The smallest dataset is the Odia–English with the size of 27k
sentence pairs, and the biggest is the Czech–English with 40.1 million sentences.
The sizes of the training datasets are in Table 2.4.

Although the Basque–English has a comparable number of sentence pairs as
Estonian–English, it has only a third of the total number of words. This is due
to many segments not containing a complete sentence.

The second criterion behind the selection of languages is to include language
pairs reaching various levels of translation quality. This is indicated by automatic
scores of the baseline setups ranging from 3.54 BLEU (English→Odia) to 36.72
BLEU (English→German),8 see Table 4.1 on page 48.

The third criterion is language relatedness. In particular, Estonian and
Finnish (paired with English) are linguistically related. Another pair of lan-
guages is Czech and Slovak, which are closely related languages with more
parallel sentences.

The fourth criterion is the writing script because our methods do not need
transliteration as it was a case of previous approaches. Additionally to Latin,
we use languages written in Cyrillic, Brahmic, and Arabic. We present language
type, number of speakers, and the writing script in Table 2.5.

8The systems submitted to WMT 2018 for English→German translation have better per-
formance than our baseline because we decided not to use Commoncrawl. Thus we made
German–English parallel corpus artificially less resourceful.
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Table 2.6: Corpora used for each language pair in training set, development set,
and the test set. The names specify the corpora from WMT News Task data
except of languages from various papers.

Language pair Trainset Devset Testset

English–Basque IWSLT 2018 IWSLT dev 2018 IWSLT 2018
English–Estonian Europarl, Rapid WMT dev 2018 WMT 2018
English–Finnish Europarl, Paracrawl, Rapid WMT 2015 WMT 2018
English–German Europarl, News commentary, Rapid WMT 2017 WMT 2018
English–Odia Parida et al. (2018) Parida et al. (2018) Parida et al. (2018)
English–Russian News Commentary, Yandex, and UN Corpus WMT 2012 WMT 2018
English–Slovak Galušcáková and Bojar (2012) WMT 2011 WMT 2011
English–French Commoncrawl, Europarl, Giga FREN, WMT 2013 WMT dis. 2015

News commentary, UN corpus
English–Gujarati Bible, Dictionary, Govincrawl, WMT dev 2019 WMT 2019

Software, Wiki texts, and Wiki titles

For most of the language pairs, we use training data from WMT (Bojar
et al., 2018).9 We use the training data without any preprocessing, not even
tokenization.10

We use most of the training, development, and testsets from WMT.11 The
complete list of corpora is in Table 2.6.

For Basque–English, we use all the available data allowed by the organizers
of IWSLT 2018 (Niehues et al., 2018). In addition to the resources suggested by
the organizers, we used the allowed data from OPUS and WMT, specifically,
corpora PaCo2 Basque–English (San Vicente et al., 2012) and QTLeap Batches
1-3 from WMT IT Translation.12

Our Slovak–English experiments use the corpus from Galušcáková and Bojar
(2012), detokenized by Moses.13

The language pairs Arabic–Russian, French–Russian, Spanish–French, and
Spanish–Russian, use UN corpus (Ziemski et al., 2016), which provides over 10
million multi-parallel sentences in 6 languages.

NMT suffers when the training data is not clean (Koehn et al., 2018). Based
on our previous experiments, we exclude the noisiest corpus, i.e. web crawled
ParaCrawl or Commoncrawl. Furthermore, language pairs with training sen-
tences shorter than four words or longer than 75 words on either the source or
the target side are removed to allow for a speedup of Transformer by capping
the maximal length and allowing a bigger batch size. The reduction of training
data is small, and it does not change the performance of the translation model.

In contrast, for French–English we keep all WMT 2018 corpora and perform
a quick cleaning using language detection by Langid.py (Lui and Baldwin, 2012).
We drop all sentences that are not recognized as the correct language. This
cleaning removes 6.5M sentence pairs from the French–English training corpus.

9http://www.statmt.org/wmt18/
10While the recommended best practice in past WMT evaluations was to use Moses tokenizer,

it is not recommended anymore for Tensor2Tensor with own build-in tokenizer.
11http://www.statmt.org/wmt18/
12http://www.statmt.org/wmt16/it-translation-task.html
13https://github.com/moses-smt/mosesdecoder

18

http://www.statmt.org/wmt18/
http://www.statmt.org/wmt18/
http://www.statmt.org/wmt16/it-translation-task.html
https://github.com/moses-smt/mosesdecoder


We often abbreviate English as EN to visibly differentiate it from the second
language.

2.4 Machine Translation Evaluation
In order to evaluate how successful the machine is in translating, we need to
define what is considered a good translation. It inherently leads to defining
when two texts, in a different language, constitute the equivalent meaning. It is
a difficult task, and we would need to delve into complex theoretical questions,
which is out of the scope of this thesis. Thus MT researchers usually evaluate
MT translations by comparing it to the expert human translations.

MT evaluation is usually focusing on two main aspects called fluency and
adequacy. Whenever the system produces syntactically well-formed sentences
(i.e. high fluency) and does not change the semantics, the meaning of the source
sentence (i.e. high adequacy), it is considered as a good translation (Hovy et al.,
2002). Various ways of measuring the fluency have been proposed, and new
metrics are annually evaluated in the WMT shared task (Ma et al., 2018). As
for the adequacy, it is more complicated since multiple correct translations
are possible, and therefore, it is mostly evaluated by conducting the manual
evaluation by humans, which is time-consuming and costly.

Bojar et al. (2013) created a method for the generation of millions of possible
references that could solve the problem with having only a limited number
of references (usually only one). However, their testset is restricted only to 50
prototype sentences.

2.4.1 Manual Evaluation
Manual evaluation campaigns are run each year at Workshop on Statistical
Machine Translation (WMT) to assess translation quality of both academic and
commercial systems. This evaluation is considered a benchmark for identifying
state-of-the-art systems of a given year.

Manual evaluation utilizes human ability to judge what is a good translation
without a rigorous definition. Throughout the years, the WMT manual eval-
uation has changed several times based on findings from previous years. For
example, comparing multiple systems together, binary yes/no decision about
the translation, or by directly rating one translation at a time as is the case of
last three years (Graham et al., 2017). The main idea across the approaches
remains similar: Crowd-sourced judges are asked to rank presented outputs
from various systems based on their intuition.

However, due to the high demand for cost and time, we are not using the
manual score in this thesis. Instead, we rely on automatic metrics that try to
replicate human behavior as closely as possible.

2.4.2 Automatic Metrics
Automatic metrics for MT evaluations are often based on the estimation of simi-
larity between the system output, and a human-produced reference translation.
The most often used metric is the BLEU score (Papineni et al., 2002). It is based
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on comparing n-grams of sentence units, typically words, between the system
output and one or more reference sentences. It is computed as the geometric
mean of n-gram precisions for n = 1...N with penalization for short translations
by brevity penalty, according to the following formula:

BP =

⎧⎨⎩1 if Lsys > Lref

e(1−Lref /Lsys) if Lsys ≤ Lref

(2.1)

BLEU = BP · exp
(

N∑
n=1

wn · log pn

)
(2.2)

where wn is a positive weight summing to one, usually 1
N

. Lref denotes
the length of the reference text that is closest in length to the system output,
Lsys is the length of the system output. The standard value of N for BLEU is 4,
different n-gram lengths are rarely used. The n-gram precision pn is computed by
dividing the number of matching n-gram in the system output by the number
of considered n-grams. The number of n-gram matches are clipped to the
frequency in the reference when n-grams occur multiple times. BLEU is a
document-level metric. Thus the counts of confirmed n-grams are collected
for all sentences in the document (or testset) and then the geometric mean of
n-gram precision is computed from the accumulated counts.

It is more informative to compare system output against several references,
but it is expensive to obtain multiple references. Thus only one reference is used
in most of the testsets.

There is a numerous criticism that has been observed of BLEU. For instance:
• use of a geometric mean, which makes the score 0, when there is no match

at any of the n-gram levels (usually a problem of short testsets);

• gives no credit for synonyms or different inflected forms of the same word;

• does not consider the importance of various n-grams;

• it is too sensitive to tokenization.
There are several studies on the reliability of BLEU (Callison-Burch et al.,

2006; Bojar et al., 2010), which inspired the development of other metrics (Lavie
and Agarwal, 2007; Ma et al., 2018). Despite the criticism and other possible
metrics, BLEU remains the standard metric for automatic evaluation of MT
systems.

There are several implementations of BLEU that differ in various tokeniza-
tion details, case-sensitivity, and other details that lead to different resulting
scores. Post (2018) made a call for clarity in reporting BLEU score and imple-
mented SacreBLEU14 tool for more comparable results. The evaluation script
automatically downloads reference testset and computes performance using
various metrics. In this work, we use SacreBLEU with the same setting whenever
we are reporting numerical results.15

We report BLEU score multiplied by 100 as is it usual in most papers instead
of values on the interval 0 to 1 as originally described by Papineni et al. (2002).

14https://github.com/mjpost/sacreBLEU
15SacreBLEU signature is: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+

version.1.2.1
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2.4.3 Statistical Significance
If two translation systems differ in BLEU performance, it does not necessarily
mean one is significantly better than the other. In order to indicate the actual
quality, Koehn (2004) proposed to use the paired bootstrap resampling method
to compute the statistical significance and validate the superiority of one of the
systems. The method repetitively creates testsets by drawing sentences from the
original testset randomly with repetition and evaluating the automatic score.
Then it computes statistical confidence overall scores comparing various MT
systems.

Whenever we talk about statistical significance in this work, we tested the
compared systems by paired bootstrap resampling with 1000 samples and the
confidence level of 0.05. In the results, we label it with a ‡ symbol and comment
it in the text. We perform significance tests, usually comparing the baseline and
an examined system (if not specified otherwise in the text).

We do the pair-wise statistical testing as is customary in NMT.
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3
Neural Machine Translation

In this section, we describe NMT. In Section 3.1, we explain in detail word
embeddings, NMT part that is crucial for our work. We describe subword repre-
sentation and how NMT handles Out-of-Vocabulary (OOV) words in Section 3.2.
Then we describe the whole NMT architecture in Section 3.3. We describe the
toolkit we used and detailed settings for our model in Section 3.4. Lastly, we
describe how the progress of NMT training is measured and propose stopping
criterion in Section 3.5.

3.1 Word Embeddings

Neural networks work in continuous space. When used for Natural Language
Processing (NLP) tasks, we need to bridge the gap between the world of discrete
units of words and the continuous, differentiable world of neural networks.

Originally, the first step was to use a finite vocabulary, where each word
had a different index, which was then represented as a one-hot vector of the
size equal to the number of items in vocabulary. Sizes of 10–90k words were
used in NLP. However, the one-hot representation, a vector containing only
zeros except at a single position with one, is not continuous and differentiable.
Furthermore, it does not generalize such that similar words are closer together
within the representation.

One way of compressing the one-hot vectors is to assign each word a specific
dense vector through an NN layer can be called lookup tables or word embeddings.

Embeddings (Bengio et al., 2003) are dense vector representations of words
commonly of 100-1000 dimensions. They are trained jointly with the whole
network and learn word-specific features and cluster the words in the space so
that similar words have vectors that are close to each other.

Mikolov et al. (2013) found that word embeddings in language model NN
contain semantic and syntactic information without being trained to do so. An
example of embedding clustering the space of words is in Figure 3.1.
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Figure 3.1: Thirty nearest neighbors in cosine similarity for the word “woman”
visualized in 2D by principal component analysis. The large color clusters were
added manually for better presentation. The representation is from the encoder
BPE subword embeddings of our Czech→English model. This figure shows that
the 30 nearest neighbors are variants of the word “woman”. Interestingly there
are two separate clusters for Czech and English words (blue and pink), which
suggests that NN understands equivalence across languages. Furthermore,
there are clusters dividing words for adult women and young women (green and
orange). Worth of mentioning is the subword “kyně”, which is a Czech ending
indicating the feminine variant of several classes of nouns, e.g. professions. It
appears in the “young women” cluster probably because of the common word
“přítelkyně” (girlfriend).

Womenladiesfemale

women
wom@@

woman

girls
dámy
dáma

Gir@@

girl

děvče

holkaholku
dívka

dívku
kyně

dívky
holky

ženská

ženěženu

žen@@
ženo

manželka
žen Žen@@

žena
ženyženou

Žena
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Table 3.1: Examples from Mikolov et al. (2013) testset question types, the upper
part are semantic questions, the lower part is considered syntactic by Mikolov
et al. (2013).

Question Type Sample Pair

capital-countries Athens – Greece
capital-world Abuja – Nigeria
currency Algeria – dinar
city-in-state Houston – Texas
man-woman boy – girl

adjective-to-adverb calm – calmly
opposite aware – unaware
comparative bad – worse
superlative bad – worst
present-participle code – coding
nationality-adjective Albania – Albanian
past-tense dancing – danced
plural banana – bananas
plural-verbs decrease – decreases

Word embeddings can exhibit an interesting correspondence between lexi-
cal relations and arithmetic operations in the vector space. The most famous
example is the following:

v(king) − v(man) + v(woman) ≈ v(queen)

In other words, adding the vectors associated with the words ‘king’ and ‘woman’
while subtracting ‘man’ should be close to the vector associated with the word
‘queen’. We can also say that the difference vectors v(king)−v(queen) and v(man)−
v(woman) are almost identical and describe the gender relationship.

Mikolov et al. (2013) noticed that such relations emerge without specific
training criteria naturally from training the language model with unannotated
monolingual data.

3.1.1 Lexical Relations Testset
In order to test lexical relations learned by word embeddings, Mikolov et al.
(2013) proposed a testset of question pairs. Each question contains two pairs of
words (x1, x2, y1, y2) and captures relations like “What is to ‘Paris’ (y1) as ‘Czechia’
(x2) is to ‘Prague’ (x1)?”, together with the expected answer ‘France’ (y2). The
model is evaluated by finding the word representation that has the nearest
cosine similarity to the vector vec(Czechia) − vec(Prague) + vec(Paris). If the
nearest neighbor is vec(France), we consider the question answered correctly.

The Mikolov et al. (2013) testset consists of 19544 questions, of which 8869
are called semantic, and 10675 are called syntactic, and further divided into 14
types, see Table 3.1.
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Table 3.2: The statistics of Mikolov et al. (2013)’s and our testset. The size
represents the total number of questions in the testset.

Testset Size Categories Unique words

Mikolov et al. (2013) (syntactic) 10675 9 537
Our testset 8000 8 5424

After a closer examination of the dataset, we found out that it does not test
what the broad terms syntactic and semantic relations suggest. Questions of
only three types cover semantics: predict a city based on a country or a state,
currency name from the country and the feminine variant of nouns denoting
family relations. Vylomova et al. (2016) showed that many other semantic
relationships could be tested, e.g. walk-run, dog-puppy, bark-dog, cook-eat, and
others. For the “syntactic” relations, the testset contains mostly frequent words
that often regularly form morphological variants (e.g. by adding the suffix ‘ly’
to change an adjective into the corresponding adverb), which decreases the
generality of the testset.

We have decided to extend the morphosyntactic relations in the testset by
adding a substantial number of morphological variants. We extended the syn-
tactic questions except for nationality adjectives, which are already completely
covered in the original testset.

We constructed the pairs taking inspiration in the Czech side of the CzEng
corpus (see Section 2.3.1), where explicit morphological annotation allows iden-
tifying various pairs of Czech words (different grades of adjectives, words, and
their negations among others). Word-aligned English words often shared the
same properties. As further sources of pairs, we used various webpages usually
written for learners of English. For example, for verb tense, we relied on a freely
available list of English verbs and their morphological variations. We have
included 100–1000 different pairs for each question set. The questions were
constructed from the pairs similarly as by Mikolov et al. (2013): generating all
possible pairs of relation pairs. All combinations lead to millions of questions,
so we randomly down-sampled to 1000 instances per question set, to keep the
testset in the same order of magnitude as in the original one. Additionally, we
decided to extend the set of questions on opposites to cover not only opposites
of adjectives but also of nouns and verbs.

The comparison of the testsets is provided in Table 3.2. Our testset contains a
similar number of questions per category as the original. However, the number
of unique words is more than ten times higher, which is useful in diagnosing
rare word relations.

Our testset is publicly available. Further details can be found in our paper
Kocmi and Bojar (2016).
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3.1.2 SubGram Representation

The Skip-gram model (Mikolov et al., 2013) uses one-hot representation of a word
in vocabulary as the input vector x. The embedding of a word then corresponds
to the multiplication of the one-hot vector with the trained weight matrix (the
lookup table). Therefore weights wi of the input word i can be directly used as
word embeddings E:

Ej =
|x|∑
i=1

xi ∗ wij = wj (3.1)

In Kocmi and Bojar (2016), we propose a substring-oriented extension of Skip-
gram model that induces vector embeddings from the character-level structure
of individual words. Our approach gives the NN more information about
the examined word reducing the issue of data sparsity and introducing the
morphological information about the word to NN.

Our approach provides the neural network with a “multi-hot” vector rep-
resenting the substrings contained in the word instead of the one-hot vector
representing the whole word.

We use a vocabulary of substrings, instead of words, created in the following
fashion: first, we take all character bigrams, trigrams, tetragrams, and so on up
to the length of the word. This way, even the word itself is represented as one
of the substrings. As an indication of the beginning and the end of words, we
appended the characters ˆ and $ to each word. Here we provide an example of
the segmentation:

‘cat’ = {‘ˆc’, ‘ca’, ‘at’, ‘t$’, ‘ˆca’, ‘cat’, ‘at$’, ‘ˆcat’, ‘cat$’, ‘ˆcat$’}

Using all possible substrings would increase the size of vocabulary beyond
a reasonable size. Thus we select only the most frequent substrings based on
the frequency in the training data.

In order to generate the vector of substrings, we segment the word and
create a multi-hot vector, where “ones” indicate word’s substrings indices in
the vocabulary. In other words, each word is represented as a multi-hot vector
indicating which substrings appear in the word.

The word embedding is created in the same fashion as in the one-hot rep-
resentation: by multiplication of the input vector with the weight matrix. We
have to keep in mind that each word has a different number of substrings. Thus
the embeddings need to be normalized either by sigmoid function or by averag-
ing over the number of substrings. We decided to use the mean value as it is
computationally simpler than sigmoid:

Ej =
∑|x|

i=1 xi ∗ wij∑|x|
i=1 x

(3.2)

where x is the multi-hot vector, and the summation in denominator represents
the number of found substrings of the word.
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Table 3.3: The accuracy (in %) of word embeddings on the word similarity
testsets. The original testset (Mikolov et al., 2013) does not contain many OOV
words, thus the score cannot be computed. Our testset is constructed in a similar
way as the original, although it is more challenging and contains many OOV
question pairs.

Skip-gram SubGram
Testset All Only OOV All Only OOV

Original semantic 47.7 – 0.0 –
Original syntactic 42.5 – 42.3 –
Our testset 9.7 0.0 22.4 1.6

SubGram Results

We conclude this section with the evaluation of the SubGram on the Lexical
relation testsets as described in Section 3.1.1.

Table 3.3 reports the results from our paper (Kocmi and Bojar, 2016). It
compares Skip-gram (Mikolov et al., 2013) with our SubGram. We trained
both with the same framework (Řehůřek and Sojka, 2010) on the same training
data. By comparing both approaches on the original testset, we see that both
algorithms reach overall a similar performance in the syntactic pairs. On the
other hand, SubGram does not capture the tested semantic relations at all.

When comparing models on our testset (see Section 3.1.1), we see that given
the same training set, SubGram significantly outperforms Skip-gram model.
Furthermore, our testset contains many questions with rare words to test the
capability to encode OOV by our SubGram model. The results show that our
model can capture a small fraction (1.6%) of relations on the OOV part of testset
compared to flat zero for Skip-gram. The performance on OOVs is expected to
be lower since the model has no knowledge of syntactic exceptions and can only
benefit from regularities in substrings.

To conclude, our model, compared to Skip-gram, can encode even unseen
words, has a comparable or better performance on syntactic tasks and shows
some performance on the OOV part of the testset. It could be useful for NLP
tasks that do not produce any textual output, for example, sentiment analy-
sis, language identification, or Part-of-Speech (POS) tagging. However, the
approach is not reversible, and there is no simple way to transform embeddings
back to word forms, which would be needed in word generation, such as the
target side of machine translation. However, the inability to decode the embed-
ding back to the word form and the not so high performance on OOVs were the
main reasons why we decided not to test the SubGram in NMT. In the following
section, we describe two approaches for solving the OOV problem that later
became widely used in the NMT.
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Table 3.4: Task performance with various embedding initializations. The higher
the score, the better, except for the LM perplexity. The best results for ran-
dom (upper part) and pretrained (lower part) embedding initializations are
in bold. The * marks comparably performing settings in each category (ran-
dom/pretrained).

NMT LM TAG LEM
Initialization (BLEU) (Perplexity) (%) (%)

N (0, 10) 6.93 76.95 85.2 48.4
N (0, 1) 9.81 61.36 87.9 94.4
Only ones 10.63 62.04 90.2 95.7
* N (0, 0.1) 11.77 56.61 90.7 95.7
* N (0, 0.01) 11.77 56.37 90.8 95.9
* N (0, 0.001) 11.88 55.66 90.5 95.9
* Only zeros 11.65 56.34 90.7 95.9
* He et al. (2015) 11.74 56.40 90.7 95.7
* Glorot and Bengio (2010) 11.67 55.95 90.8 95.9

* Word2Vec 12.37 54.43 90.9 95.7
GloVe 11.90 55.56 90.6 95.5
* Self-pretrain 12.61 54.56 91.1 95.9

3.1.3 Word Embedding Initialization

Initialization of weights for various NN layers is known to be critical for the
final performance of the model. And bad initialization can doom the training
altogether (Glorot and Bengio, 2010; Mishkin and Matas, 2016). The rest of the
thesis is devoted to this topic, and here we start with the earliest part, word
embeddings.

Various studies have provided valuable information on initialization of
weights for various parts of the NN (Glorot and Bengio, 2010; He et al., 2015;
Kumar, 2017). Up until our study Kocmi and Bojar (2017c), there has been a
lack of research examining the initialization of word embeddings, which has
distinctive properties compared to inner NN layers, e.g. it is the first layer of
the network, and its input is a discrete one-hot vector.

Traditionally, word embeddings were initialized either randomly with uni-
form or normal distribution with small variance and a zero mean. Another
option is to take word embeddings from the model trained on the same task’s
training data called “self-pretrain” or on a different task, usually language
modeling, which can be trained on abundant monolingual data.

In practice, random initialization of embeddings is still more common than
using pretrained embeddings, and it should be noted that pretrained embed-
dings are not always better than random initialization (Dhingra et al., 2017).

In our study (Kocmi and Bojar, 2017c), we investigated various random as
well as pretrained initialization of embeddings to determine the best approach
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on four tasks: English→Czech NMT, LM, part-of-speech tagging (denoted TAG),
and lemmatization (LEM). For further details see Kocmi and Bojar (2017c)

The results are presented in Table 3.4. We found out that the embeddings
are not prone to bad random initialization and do not need to be set precisely
to maximize the performance as it is a case for the inner layers (Mishkin and
Matas, 2016). As long as the variance is low, up until 0.1 for normal distribution,
the NN trains ideally and the final performance is comparable.

The most surprising result of our work is that embeddings initialized with
only zeros performed equally well as random initializations. If all the weights in
the NN are initialized with zero, the derivative with respect to loss function is
the same for every weight in each layer. Consequently, the network would train
to be symmetric at each layer and would not be better than the linear model.
However, it is not the case when only embeddings start with zeros, and the rest
of the network is initialized randomly with various distributions.

Our results on the transferring of pretrained word embeddings support
previous findings that these embeddings improve the performance over ran-
dom initialization (Kim, 2014; Lample et al., 2016). However, the pretrained
embeddings have a disadvantage that the model to which they are transferred
has to have the same vocabulary and embeddings dimensions.

To our knowledge, our work was the first that compared various initialization
techniques of the embeddings on multiple tasks. However, our work has been
done on word-level NN. Since then, the research focus shifted the standard
approach from the word-level translation to subword-level translation (Sennrich
et al., 2016b).

Transferring of pretrained word embeddings have proven to be invaluable
for improving performance of natural language tasks that often suffer from lack
of training data (Kim, 2014; Lample et al., 2016), thanks to the utilization of
unsupervised pretraining on a large quantity of monolingual data. However, it
is less common in NMT to utilize the pretrained embeddings, mostly because
the number of available parallel sentences for various language pairs tends
to be several times larger than available annotated data for other NLP tasks
such as Penn Treebank (Marcus et al., 1993) for parsing. However, Qi et al.
(2018) showed that the use of pretrained embeddings dramatically improves
the performance of the model in the low-resource NMT scenario. Especially
for the extremely low-resource languages with less than 20k parallel sentences,
pretrained embeddings help to improve the performance of up to 10 BLEU
points.

Recently, pretrained embeddings have been used in unsupervised NMT,
where the goal is to train an MT system without any parallel sentences (Artetxe
et al., 2018; Lample et al., 2018) with only the monolingual data in both languages.
They used the capability of embeddings to represent the meaning of words
(see Section 3.1), and with the use of linear transformation, they mapped the
embedding spaces of the two languages into the same vector space. Then they
use this mapping to roughly translate the monolingual sentences word-by-word,
and in following steps, they iteratively train the NMT system.

In recent years the research focus has shifted from word-level NMT to
subword-level NMT, which made the use of pretrained embeddings in NMT
obsolete. Although, several notable improvements in language modeling (De-
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vlin et al., 2019; Yang et al., 2019) have appeared recently, which can lead to
restoring a research focus in pretrained embeddings.

3.2 Subword Representation
Traditionally NMT systems relied on a vocabulary to store all words used in
the translation. The capacity of this vocabulary was typically 10–90k words.
However, this is not enough to cover all words in a language. That is why the
first NMT systems used a special OOV symbol as a replacement for remaining
rare words.

The Out-of-Vocabulary (OOV) words are a substantial problem especially for
languages with inflection, agglutination or compounding, where many variants
of a frequent word become rare. For example consider German compound word
‘Abwasser|behandlungs|anlange’ for ‘sewage water treatment plant’ or Czech
‘velko|výroba’ for ‘mass-production’, for which a segmented representation is
more informative than one vector for the whole word.

Increasing the size of the vocabulary in order to reduce the number of OOV
words proportionally increases the training complexity as well as decoding
complexity. Moreover, the NMT systems will not be able to learn good encoding
for uncommon words or word-forms as they are seen only a few times within
the training corpus or not at all.

To overcome the large vocabulary problem and avoid the OOV problem,
translation models need mechanisms that go below the word level. There are two
possible solutions. Either by including more information into the representation
of words or splitting uncommon words and translating on the level of subword
units.

The former approach tries to encode additional information about the word
structure or linguistic classes into the representation of a word. Tamchyna et al.
(2017) removed the inflection by morphologically annotating training sentences
and let the NMT to translate only the lemmas and assigned morphological tags.
Luong and Manning (2016) proposed to use a hybrid approach where first we
get the word embeddings from characters followed by standard NMT on the
computed embeddings. In Kocmi and Bojar (2016), we proposed to include the
substring structure of a word into the word embedding (see Section 3.1.2).

The latter approach breaks uncommon words into subword units that are
handled by the NN as standalone tokens. The trivial approach is to break the
sentence into individual characters, but it needs much longer training times
as the number of tokens per training example is several times higher than the
number of words, and it creates a problem with long-range dependencies in
characters making the character-level translation sub-optimal (Tiedemann, 2009;
Ling et al., 2015). Thus we need to split the words into the least number of
subwords but avoid bloating the size of the subword vocabulary.

In recent years, several segmentation algorithms have been proposed, how-
ever, only the byte pair encoding (Sennrich et al., 2016b) and wordpieces (Wu
et al., 2016) became widely used. We describe both of the methods in the next
sections. For the completeness, Kudo and Richardson (2018) recently devel-
oped a segmentation method called SentencePiece, which shows promising
improvements in performance over them.

31



Figure 3.2: BPE merges learned from a vocabulary {‘old’,‘older’,’wider‘}.

r </w> → r</w>
o l → ol
e r</w> → er</w>
d er</w> → der</w>
w i → wi

3.2.1 Byte Pair Encoding

Using a word-based vocabulary in NMT leads to problems with OOV. Sennrich
et al. (2016b) tackled this problem by segmenting the words into more frequent
subword tokens with the use of byte pair encoding (Gage, 1994).

BPE is a simple data compression algorithm, which iteratively merges the
most frequent pairs of consecutive characters or character sequences. A table of
the merges, together with the vocabulary, is then required to segment a given
input text.

The table of merges is generated in the following way. First, all characters
from the training data are added into the vocabulary plus a special symbol for
the word ending ‘⟨/w⟩’, which is used to restore original segmentation after
the translation. Then we add the ending symbol to all words in the training
set and separate them to individual characters. We iteratively find the most
frequent symbol pairs and replace them with a new single symbol representing
their concatenation. Each merge thus produces a new symbol that represents
a character n-gram. We continue until we have the same number of initial
characters and merges as is our desired size of the vocabulary. By this process,
frequent words become directly included in the vocabulary. A toy example is in
Figure 3.2.

The merges are applied in advance on the training corpus by merging charac-
ters based on learned merges. The BPE segments the words into subword tokens,
which can be used by NMT without any need for architecture modification. In
other words, the NMT model handles subwords as regular words.

In practice, the symbol for the end of the word is not produced during
segmentation. Instead, a ‘@@’ is added to all subword tokens that end in the
middle of a word. For example the word ‘older’ would be segmented into ‘ol@@
der’, see Figure 3.2.

Sennrich et al. (2016b) also showed that using joint merges, generated from
concatenated trainsets for both the source and the target language, is beneficial
for the overall performance of NMT. This improved consistency between the
source and target segmentation is especially useful for the encoding of named
entities, which helps NMT in learning the mapping between subword units.

BPE implementation has several disadvantages. It cannot address well lan-
guages that do not use a space as a separator between words, for example,
Chinese. It fails when encoding characters that are not contained in the vo-
cabulary, for example, foreign words written in a different alphabet. Lastly,
BPE algorithm relies on a tokenizer. Without its use, the punctuation attached
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directly to words would have different word segmentation than when separated.
The wordpiece method (Wu et al., 2016) solves all these problems. We describe
it in the next section.

3.2.2 Wordpieces

Wordpiece is another word segmentation algorithm. It is similar to BPE and is
based on an algorithm developed by Schuster and Nakajima (2012). Wu et al.
(2016) adopted the algorithm for NMT purposes. We describe the algorithm in
comparison to BPE.

The wordpiece segmentation differs mainly by using language model likeli-
hood instead of highest frequency pair during the selection of candidates for
new vocabulary units. Secondly, it does not employ any tokenization leaving it
for the wordpiece algorithm to learn.

The algorithm works by starting with the vocabulary containing units of
characters and building a language model on the segmented training data. Then
it adds a combination of two units from the current vocabulary by selecting
the pair of units that increases the likelihood on the training data the most,
continuing until the vocabulary contains the predefined number of subword
units.

The iterative process would be computationally expensive if done by brute-
force. Therefore the algorithm uses several improvements, e.g. adding several
new units at once per step or testing only pairs that have a high chance to be
good candidates.

The segmentation works in a greedy way when applying. It finds the longest
unit in the vocabulary from the beginning of the sentence, separates it and
continues with the rest of the sentence. This way, it does not need to remember
the ordering of merges; it remembers just the vocabulary. This makes it simpler
than BPE.

The Tensor2tensor (Vaswani et al., 2018) framework slightly improves the
wordpiece algorithm by byte-encoding OOV characters, which makes any Uni-
code character encodable. It uses an underscore instead of ‘⟨/w⟩’ as an indication
of the word endings.

Furthermore, the implementation by Vaswani et al. (2018) optimizes the gen-
eration by counting frequencies for only a small part of the corpus. We extended
it and created vocabularies in this thesis from the first twenty million sentences.
Additionally, (Vaswani et al., 2018) introduce a 1%1 tolerance for the final size
of the vocabulary. Therefore instead of having 32000 subwords,2 the vocabu-
lary has between 31680 and 32320 items, see https://github.com/tensorflow/
tensor2tensor/blob/v1.8.0/tensor2tensor/data_generators/text_encoder.
py#L723.

Whenever we talk about the wordpiece segmentation in this work, we mean
the T2T implementation described in this section.

1The implementation in Tensor2tensor (T2T) tries to create vocabulary several times, and if
it fails to create a vocabulary within this tolerance, it uses the generated vocabulary with the
closest size.

2We use exactly 32000 as a vocabulary size instead of 215 = 32768.
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3.3 Neural Machine Translation Architectures
There were early attempts to use neural networks in machine translation (Waibel
et al., 1991; Forcada and Ñeco, 1997). However, the rise of neural networks
in MT came two decades later, when the hardware resources became able to
handle large models with millions of parameters.

A shift in paradigm in MT happened when NMT end-to-end model scored
higher that previous PBMT models (Jean et al., 2015; Sennrich et al., 2016d).

One of the first end-to-end NMT systems was Sutskever et al. (2014). They
used Long Short-Term Memory cells (LSTM) Recurrent Neural Network (RNN)
model that processes one word at a time until it reads the whole input sentence.
Then a special symbol “<start>” is provided and the network produces the
first word based on its inner state and the previous word. This generated word
is then fed into the network, and the second word is generated. The process
continues until the model generates the “<end>” symbol.

The main disadvantage of the work of Sutskever et al. (2014) is that the
network has to fit the whole sentence into a vector of 300–1000 dimension before
it starts generating the output. Therefore Bahdanau et al. (2014) proposed the
so-called attention mechanism. The attention mechanism gives the network the
ability to reconsider all input words at any stage and use this information when
generating a new word.

Gehring et al. (2017) redesigned the previous architecture with Convolutional
Neural Network (CNN), which handles all input words together, therefore
making the training and inference process faster.

Vaswani et al. (2017) completely redesigned the NMT architecture and in-
troduced Transformer model, which uses feed-forward layers in contrast to
previous architectures that use RNN or CNN structures. We describe this archi-
tecture in detail in the next section.

3.3.1 Transformer Model
In our work, we use the Transformer architecture (Vaswani et al., 2017). Trans-
former architecture consists of an encoder and decoder, similarly as the previous
approaches. The encoder takes the input sentence and maps it into a high-
dimensional state space. Its output is then fed into the decoder, which produces
output sentence. However, instead of going one word at a time from left to
right of a sentence, encoder sees the entire input sequence at once. This makes
it faster in terms of training and inference speed in comparison to previous
neural architectures because it allows better usage of parallelism. The decoder
remains “autoregressive”, i.e. always producing the output symbol with the
knowledge of the previously produced output symbol. Non-autoregressive
models (Libovický and Helcl, 2018) are still an open research question.

Transformer Attention

The idea of attention mechanism (Bahdanau et al., 2014) is to look at the input
sequence and decide which words are important for the generation of a particular
output word. The novel idea of self-attention is to extend the mechanism to the
processing of input sequences and output sentences as well. In other words, it
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helps the model to understand the word it is currently processing with the use
of relevant words from its context.

For example, when processing the sentence “The kitten crawled over the
room because it was hungry.”, NMT needs to know the antecedent of the word
“it”. The self-attention mechanism solves this problem by incorporating the
information into the representation of the word “it” at deeper layers of the
encoder.

In general form, the Transformer attention function uses three vectors: queries
(Q), keys (K) and values (V). The output is a weighted sum of values, where
weights are computed from queries and keys. The attention is defined as follows:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V

where dk is the square root of the dimension of the key vectors, which is
normalization necessary to stabilize gradients.

The intuition behind the attention is that we get a distribution over the
whole sequence using the dot product of queries (which are a hidden state of
all positions in the sequence) and keys followed by softmax. This distribution
is then used to weight the values (which encode a hidden state similarly like
queries). It results in a vector, where relevant words or their features are stressed.

The attention is used separately in encoder and decoder as a self-attention
where all queries, keys, and values come from the previous layer. It is also used
in encoder-decoder attention, where queries and keys come from encoder and
values from the decoder.

Multi-Head Attention

Having only one attention, NMT would focus solely on some positions in the
previous layer, leaving other relevant words ignored or conflating mutually
irrelevant aspects into one overused attention. Transformer model solves this by
using several heads within each layer, each with its own linear transformation,
which leads to the concurrent observation of different parts of the input.

Formally, the multi-head attention is defined as follows:

MultiHead(Q, K, V ) = Concatenate(head1, ..., headh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i )

where the projection matrices W Q/K/V are trainable matrices different for
each attention head and h is the number of heads, sixteen in the “Transformer-
big” model. The concatenation in multi-head attention is then linearly projected
by a matrix W O.

Positional Encoding

With the use of attention mechanism, one thing is missing from the model. It
is the information about the position of each word. This is solved by adding a
special positional encoding to all input words, which helps NMT to identify the
word order.

The absolute position encoding of a word pos is defined as:
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Figure 3.3: Transformer architecture. The image is taken from Vaswani et al.
(2017).

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where i is the dimension in the positional encoding PE, in other words, each
dimension of PE corresponds to a sigmoid.

In Section 3.1, we explained how discrete words are mapped to embedding
vectors. The positional encoding is added to the word embeddings and used as
the input to the first layer of Transformer.

Complete Architecture

The complete architecture is illustrated in Figure 3.3. Except parts mentioned
above, there is a residual connection after each multi-head attention, which sums
input of multi-head attention with its output followed by layer normalization
(Ba et al., 2016) (it is labeled as “add & norm” in Figure 3.3). The model stacks
several layers of multi-head attention on top of each other, with position-wise
feed-forward networks. In the original model, six layers are used.
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The output of the decoder is finally modified by linear transformation fol-
lowed by the softmax function that produces probabilities of words over the
model vocabulary.

For further reading, see the original paper (Vaswani et al., 2017) or various
blog posts describing the model.3

3.4 Neural Machine Translation Model Setting
In our earlier works on NMT, we used the Neural Monkey toolkit and the RNN
model with an attention mechanism. The Neural Monkey has been developed
mainly for quick prototyping, see further details in Helcl et al. (2018).

Vaswani et al. (2017) published their work with the Transformer model,
which showed significant gains in the training time and performance. Further-
more, they published the T2T framework (Vaswani et al., 2018). For the majority
of this thesis, we use the T2T framework.

During our research, T2T has been rapidly developed and improved. There-
fore, we changed to the newer version twice throughout our research. This
means that the results should not be directly compared as any change in the
network architecture or training regime may lead to large changes in the perfor-
mance.

In this thesis, each section uses one of three different settings that we explain
in this section. Each of the settings has been used in our papers, and results are
comparable within each setting. However, the results for same language pair
should not be compared across settings. We use the following setups:

• T2T4 – this setup uses T2T in version 1.4.2. This setting is used in the
“warm-start” experiments in Kocmi and Bojar (2018); Kocmi et al. (2018b,c,a).

• T2T8 – this setup uses T2T in version 1.8.0 and concerns around the “cold-
start” experiments in Kocmi and Bojar (2019a).

• T2T11 – our latest setup uses T2T in version 1.11.0 and is involved in Kocmi
and Bojar (2019b). Furthermore, we use this setup for experiments that
are not yet published.

We use a model based on the “Big single GPU Transformer” setup as defined
by Vaswani et al. (2017) with a few modifications. We set maximal length of a
sentence to 100 wordpieces. We set a length normalization penalty to 1. The
individual versions use additional modifications:

• T2T4 uses Adam optimizer (Kingma and Ba, 2015) with 32000 linear warm-
up steps, and batch size of 2300 tokens.

• T2T8 uses Adafactor optimizer (Shazeer and Stern, 2018) with 8000 linear
warm-up steps, batch size of 2900 tokens, and disabled layer dropout.

• T2T11 uses Adafactor optimizer with 16000 linear warm-up steps, batch
size of 4500 tokens, and disabled “layer dropout”.

For details about individual parameters, see Vaswani et al. (2018).
3http://jalammar.github.io/illustrated-transformer/
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3.5 Measuring Training Progress

The progress of NN training can be measured in various ways. We can measure,
for example, the wall-clock time passed, the number of processed training
examples or the financial cost of the training. Each method is more relevant for
various applications.

The most common approach is to report the number of processed training
steps. It can be reported either by the number of individual seen examples, num-
ber of training epochs or as a number of batches. The individual examples are
preferred in tasks, where each example has the same informative value. In MT,
one training example is usually a sentence pair, which can be of varying length.
Reporting the number of epochs does not rely on the ordering of sentences in
corpus because it is reported after each complete pass over the training corpus.
Lastly, we can report the number of batches, also called training steps, which
specifies the number of updates (error backpropagation) through the network.

The batch size can be either fixed to a given number of sentence pairs (e.g.
in Neural Monkey Helcl et al., 2018) or to a number of subword tokens in all
sentences (e.g. Vaswani et al., 2018). The former definition correlates with
measuring the number of training examples. However, the latter is optimized
for training as it can better use the available GPU memory.

Another option is to measure the time passed to achieve a given result. Popel
and Bojar (2018) use this reporting of wall-clock time and justify it by stating
that time computed as steps per second, fluctuates at most by 2% during the
training. Wall-clock time can be more informative than reporting a number of
seen examples since the training step can contain a variable number of sentences
or tokens. However, the training time is heavily influenced by the hardware and
the other load on a given machine.4

Lastly, practitioners are primarily concerned with the error rate and the cost
they need to pay to achieve that error level. It is referred to as a hardware cost
(Shallue et al., 2018). This cost can be measured by multiplying the number
of training steps by the average price per one step. It heavily depends on the
respective hardware, but the number of training steps is hardware-agnostic and
can be computed for any hardware given the average cost per step.

We run our experiments on various types of hardware. Our department’s
cluster contains three types of GPU cards: NVidia GeForce GTX 1080, the Titan
version 1080Ti and Quadro P5000. We use the T2T framework, which uses
batches of a varying number of sentences but approximately the same number
of tokens. Thus reporting the training time is not comparable due to various
machine setups and the number of examples or epochs is not exact due to
the T2T batching behavior. We report the number of training steps, the actual
updates of the NN.

4The NN research is usually carried out on clusters, where several people run various
processes. Even when the GPU is allocated only for a given job, other shared resources, like
CPU or network disks, can slow down the training process.
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3.5.1 Convergence and Stopping Criterion

Training of NMT models is complicated by the fact that the learning curves,
showing the performance of the model over the learning period on a fixed
development set, usually never fully flatten or start overfitting on reasonably
large datasets. Signs of overfitting5 are noticeable in low-resource settings only,
as discussed in Section 2.1.2. Especially with the recent models trained on a
large parallel corpus, we can get some improvements, usually around tenths of
a BLEU point, even after several weeks of training and the learning curve will
not fully flatten out.

The common practice in machine learning is to use a stopping criterion. One
option is to set the maximum number of training steps or epochs. The second
option is to evaluate the model every X steps (or minutes) on the development
set and stop the training whenever the last N updates do not improve the
performance by at least some small delta.

The former approach relies on an intuition of how long approximately is
enough to train the model. Usually, more complex models need more time to
reach the maximal score, and an incorrectly set number of steps could stop the
training prematurely. The latter approach is sensitive to the number of steps
(and their duration) between individual evaluations: if the evaluations are too
close to each other, the training can stop too early due to the training fluctuations,
and when they are too far apart the training would not stop in a reasonable time
on big datasets.

Many papers do not specify the stopping criteria or only mention an ap-
proximate time or the number of steps for how long the model was trained
(Bahdanau et al., 2014; Vaswani et al., 2017). Presumably, the models are trained
until no apparent improvement is visible on the development set. However, this
stopping criterion is not perfect since the models could be stopped at various
stages of training, and the comparison could be unfair.

In this thesis, we compare low-resource language pairs that converge within
50k steps and high-resource pairs that improve even after 1000k steps. Hence,
to avoid premature stopping, we set a high upper level of maximal steps for
each language pair. The low-resource languages, with less than 500k training
examples, are trained for at most 200k steps. We also evaluate low-resource
languages more often. The rest of the languages are trained at most for the
1000k steps.

However, this stopping criterion usually trains for a much longer time than
necessary. Thus later in our work, we defined a more general convergence crite-
rion. We stop the training earlier whenever there was no improvement bigger
than 0.5% of maximal reached BLEU within the past 50% of evaluations. This
criterion is comparable to stopping after X batch updates without any improve-
ment, and it is less sensitive to the number of steps between evaluations as the
low-resource languages are evaluated up to ten times more often. Importantly,
we set mild conditions for stopping criteria on purpose to prevent the risk of
premature judgments.

5By overfitting we mean the situation, when the performance on the training set is improving,
but the score on the development set is worsening.
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Figure 3.4: Examples of real learning curves. Full dots represent the best perfor-
mance, squares represent our stopping criteria.
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Our stopping criterion is especially useful for low and middle resource
languages. Figure 3.4 presents with square a point where our training stops.
Without any doubt, the model already passed its best performance, and thus the
stopping is valid. We can notice that for high-resource languages, the stopping
criterion does not trigger within 1000k steps.

With the stopping criteria in mind, once the training stops, we take the best
performing model on the development set and report the number of training
steps instead of the last step where the training stopped. Additionally, we
regularly report full learning curves. Thus the readers can judge by themselves
if they would expect any sudden change in the final performance.
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4
Transfer Learning

Humans have the ability to utilize knowledge from previous experience when
learning a new task. It helps us to learn new skills in a shorter time and with
less effort. In fact, the more related a new task is, the faster we learn. In contrast,
machine learning algorithms usually learn the task from random initialization
on isolated data without any prior knowledge. Transfer learning attempts to
change this approach by improving the performance on a new task with the
usage of knowledge obtained for solving other tasks (Bahadori et al., 2014;
Farajidavar et al., 2015; Moon and Carbonell, 2017).

Torrey and Shavlik (2010) describe three ways of how transfer learning can
improve performance. Specifically:

• improving the initial performance at the beginning of training compared
to a randomly initialized model when the tasks are similar;

• shortening the time needed to reach the maximal performance;

• improving the final performance level compared to training the model
without the transfer.

These three potential improvements are illustrated on learning curves in Fig-
ure 4.1.

The success of transfer learning is not always guaranteed. For example, when
transferring from a weakly related task, it may hinder the final performance in
the target task. A phenomenon known as the negative transfer has been well
recognized by the transfer learning community (Pan and Yang, 2010; Wang et al.,
2019). However, there is a lack of research on this phenomenon in the NMT
field, which we investigate in Section 5.1.

In this thesis, we are highlighting various observations expressed in general
way. However, we can only claim that these observations are general under
the specific settings of the individual experiments. We are not claiming their
decisive generality, because proving it across most language pairs, various
experiment settings, and other conditions is out of the scope of this thesis.
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Figure 4.1: Three impacts where transfer learning improves the training pro-
cess. These are real learning curves for warm-start transfer learning on
English→Estonian (see Section 4.7).
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However, we are basing our observations on as broad a set of experiments as is
reasonably possible. The list of all observations is at the end of the thesis in List
of Observations on page 141.

Observation 1: Observations in this thesis can be generalized only to the extent of
our experiment settings.

This chapter is organized as follows. First, we specify the terminology used
across this thesis. In Section 4.2, we briefly describe the domain adaptation
approach, which is a stepping stone for transfer learning. Then in Section 4.3 we
dive into transfer learning, which is categorized into two groups. We investigate
one of the groups in Section 4.4 and introduce two techniques discussed sepa-
rately in Section 4.5 and 4.6. The second group is described in Section 4.7. We
wrap up the chapter with a comparison of the proposed techniques in Section 4.8,
followed by related work in Section 4.9 and the conclusion in Section 4.10.

4.1 Thesis Terminology
The main idea behind transfer learning is to pass on learned knowledge from
one model to another. We denote the first model from which parameters are
transferred as a parent and the designated model as a child.

In literature, we can often find a naming convention of teacher and student,
however, it is more related to the knowledge distillation (Hinton et al., 2014),
where the parent model (the teacher) is used to generate examples instead of
directly sharing parameters. Another terminology is source and target tasks
(Torrey and Shavlik, 2010), which is unsuitable for this thesis as we use these
terms when referring to the source and target language of the language pair.

42



Figure 4.2: The information flows only in one direction from parent to the
child task in transfer learning compared to the multi-task learning, where the
information flows freely among all tasks improving them altogether.
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Notably, in the NMT transfer learning it is customary to use the term “parent-
child” (Zoph et al., 2016; Nguyen and Chiang, 2017), thus we are going to use it
throughout this thesis.

Nonetheless, we use the naming convention of “parent-child” in this thesis
for all scenarios, where there is a precedent model needed for training the
second model regardless of the transferring technique. For example, during the
backtranslation (see Section 5.6), the parent model generates training data for
the child model, but no learned parameters are shared between models. Thus
the child always specifies our designated task or the language pair for which
we are trying to get the best performance. In contrast, we are not interested in
the performance of the parent.

Both parent and child can use different language pair. For the parent model
that translates from language XX to language YY (XX→YY), we recognize three
scenarios:

• Shared-source language – a scenario where the source language is equal
for parent and child. In other words, the child model translates XX→AA.

• Shared-target language – a scenario where the target language is equal,
therefore the child model translates AA→YY.

• No-shared language – a scenario with no language shared, i.e. the child
model translates AA→BB.

4.1.1 Multitask Learning
Multitask learning (Caruana, 1997) is closely related to transfer learning, where
the goal is to solve several tasks simultaneously, as illustrated in Figure 4.2.
Multitask learning differs from transfer learning as it needs to keep the perfor-
mance of all tasks on a high level. In contrast, transfer learning can forget the
knowledge of the parent task and only focuses on the performance of the child
task.

It is possible to extend transfer learning to multiple parent tasks and therefore
solve multi-task learning with techniques from transfer learning. However,
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multitask learning is beyond the scope of this thesis, and we are not investigating
it.

Transfer learning is a broad term used for various approaches not only in
deep learning (Pan and Yang, 2010). In the domain of neural networks, and
especially in the NLP, we can transfer knowledge either by transferring only a
subset of trained parameters or the whole model.

When only the subset of model parameters are transferred, they are of-
ten the embeddings. We discussed transferring of pretrained embeddings
in Section 3.1.3. Transferring all training parameter can be further split into
transferring within the same task only by specializing the parent model or
by transferring knowledge across different tasks. In MT, the former would
correspond to the parent using the same language pair as the child, which is
called domain adaptation described in Section 4.2. The latter case corresponds to
different language pairs.

Despite transfer learning being such a broad term, it most often denotes
transferring knowledge across different tasks. Thus we are going to use the term
of transfer learning only in the scenario when we transfer all model’s trainable
parameters, and the parent and child use different language pair.

4.2 Domain Adaptation
Domain-specific MT systems are in high demand while general MT systems
have limited applications. The general systems usually perform poorly, and
thus it is important to develop MT for specific domains (Koehn and Knowles,
2017).

Domain adaptation is one of the critical issues in MT, where the goal is to spe-
cialize the model for a more specific domain. It is well known that an optimized
model on a specific genre (news, speech, medical, literature, and other) obtains
higher accuracy results than a generic system on the given domain (Gao and
Zhang, 2002; Hildebrand et al., 2005). Specifically, when the training data have
an unbiased distribution over the target domain, the final model will perform
comparably on testing data as it performed during training on the development
set. However, the performance will decrease if the training data comes from a
different domain than the target domain (see Section 2.1.1). For example, when
the training data are from news articles and the test domain is more specific as
medical. Domain adaptation generally encompasses terminology, domain, and
style adaptation.

We often have a large amount of out-of-domain parallel sentences. The
challenge of training a domain-specific model is to improve the translation
performance in the target domain, given only a small amount of additional
in-domain data. This can be treated by fine-tuning (also called continued training)
of the generic model with domain-specific data.

Domain adaptation has been successfully used in both statistical and neural
MT (Gao and Zhang, 2002; Hildebrand et al., 2005; Luong and Manning, 2015;
Pecina, 2017). In-domain gains have been shown with as few as dozens of
in-domain training sentences (Miceli Barone et al., 2017).

In a typical NMT domain adaptation setup (Luong and Manning, 2015;
Servan et al., 2016; Chu and Wang, 2018), we first train a parent model on a
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resource-rich out-of-domain parallel corpus. After the model is trained on the
general model, we exchange the training corpus for the in-domain one and
follow by fine-tuning the parent model. We can view the domain adaptation as
transfer learning from the out-of-domain parent model into the domain-specific
child model.

Freitag and Al-Onaizan (2016) stated two problems of domain adaptation.
First, it is prone to over-fitting due to the limited amount of in-domain data.
Second, the process of fine-tuning the parent model on the in-domain data
leads to deteriorating the performance on the general domain. Freitag and Al-
Onaizan (2016) propose to tackle the problem by ensembling the parent model
with the child model. They showed that the ensembled model improves on the
in-domain testset and preserves its performance on the general domain. Chu
et al. (2017) address these problems by mixed fine-tuning, where they combine
the out-of-domain corpus with oversampled in-domain data before adapting
the general model.

Most researchers investigating domain adaptation assume a scenario where
the domain of the data is given, and the in-domain data exists. However, in real-
life scenarios such as an online translation engine, the domain of the sentences is
not given, and guessing the domains of the input sentences is crucial for proper
translation. A method to address the lack of in-domain data can be tackled by
classifying the domains of individual sentences in the training data followed by
search and selection of training sentences close to the target domain (Farajian
et al., 2017; Li et al., 2018).

This is only one of the approaches for domain adaptation, one which is closest
to transfer learning. However, there are many more, especially in different tasks
than MT (Bruzzone and Marconcini, 2009; Pan et al., 2010).

4.3 Transfer Learning
In the context of NMT, transfer learning as well as domain adaptation (see
Section 4.2) refer to the situation with a mismatch between the train and test
data distribution. In the case of domain adaptation, the parent and child operate
on the same language pair but differ in the domain of data. In contrast, transfer
learning uses a different parent language pair than the child model.

Since the domain adaptation works by fine-tuning the parent model trained
on the same language pair, it does not require any modification in architecture
nor the vocabulary and relies on the continued training process. In comparison,
when we want to retrain the parent with a different language pair than the child,
we need to tackle the problem with vocabulary mismatch between parent and
child languages. There are two groups of approaches to solving the vocabulary
problem based on their application either before training the parent model or
after the training. We discuss these two categories in the next section.

4.3.1 Transfer Learning Categories
We distinguish two categories of transfer learning based on whether we have
training data for the child language pair at the time of training the parent model.
Neubig and Hu (2018) call the approaches warm-start and cold-start. In the
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warm-start approach, we have the child training data available at the time of
training the parent, and we can take steps to prepare the parent model for
transfer learning. In contrast, the cold-start approaches use a general parent
that has not been modified in advance in any way for the child language pair
and apply different modifications before training the child model.

Intuitively, we expect the warm-start to perform better because it can better
handle the child language pair to some extent. However, the additional training
time of the child’s specific parent model can be costly. For example, whenever
researchers compare various language pairs or hyperparameter setting, they
would need to train an individual parent for each such scenario and the time
and hardware cost would considerably increase. Therefore, they can consider a
scenario to train a strong general NMT system only once and use it repetitively
in the cold-start transfer learning. Furthermore, there are situations where the
ability to quickly learn the MT model given only a small amount of training data
can be crucial. For example, when a crisis occurs in a region where people speak
an under-resourced language, quick deployment of the MT system translating
from or to that language can make a massive difference in the impact of the
provided support (Lewis et al., 2011). In such a case, having a strong general
NMT system available for a quick transfer learning of any low-resource language
pair is a great advantage.

We use the same vocabulary whenever the parent and child have the same set
of languages, i.e. disregarding the translation direction and model stage (parent
or child). For example, we use the same vocabulary for English→Estonian model
as well as Estonian→English although new vocabulary could be generated for
each model separately.

Techniques and results in this chapter have been published mainly in two
papers. The cold-start scenario is described in the paper Kocmi and Bojar (2019a),
and warm-start scenario is investigated in the paper Kocmi and Bojar (2018).
This chapter includes results as well as short textual parts from those two papers.

4.4 Cold-Start Transfer Learning
The main problem of transfer learning is the mismatch of parent and child
vocabulary. The cold-start transfer learning tackles the problem after the training
of the parent by modifying the parent model right before transferring parameters
to the child model.

Whenever the parent model uses vocabulary with a high overlap with the
child’s vocabulary, we can ignore the differences and train the child with the
parent’s vocabulary. We call this approach “Direct Transfer”, which we discuss
in Section 4.5. The second option is to transform the parent vocabulary right
before the child’s training in various ways to accommodate the needs of the child
language pair. Approaches from the second group are discussed in Section 4.6.

All cold-start approaches rely on the ability of neural networks to quickly
adapt parent parameters to new conditions, i.e. segmenting words usually to
more tokens than in parent model or remapping parent subwords embeddings
to unrelated child subwords. We show that NMT can quickly adapt and obtain
better performance on a given child language pair than by training from random
initialization.
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The experiments and short textual parts in this section are from our paper
Kocmi and Bojar (2019a) and we use T2T8.

4.4.1 Cold-Start Evaluation

The cold-start approach can be used with any parent model, even one trained
by different researchers. In order to demonstrate that our cold-start methods
are general, not restricted to our laboratory setting and that the results are easily
replicable, we do not train the parent model by ourselves, but for all experiments
regarding the cold-start transfer learning we reuse the winning model from the
WMT 2018 Czech–English translation shared task trained by Popel (2018b). The
model was trained with CzEng 1.7 and several other smaller corpora.

We decided to use this model for several reasons. It is trained to translate
between English and Czech, a high-resource language pair where Czech is
not similar to any of the languages we use.1 It is trained using the state-of-
the-art Transformer architecture as implemented in the popular Tensor2Tensor
framework2 (Vaswani et al., 2018).

We use two parent models: the English→Czech and Czech→English. Where
the parent and child model always use English on the same side. For example,
the English→Russian child has English→Czech as the parent.

To the best of our knowledge, we are the first to use transfer learning on
a model trained by someone else, showing the proof-of-concept for recycling
models in NMT, which reduces the overall training time of NMT. Note that
reusing neural models is more common in other tasks (see Section 3.1).

4.5 Cold-Start Direct Transfer

Subword-based vocabulary can represent any text from any language by break-
ing the words down to characters or bytes.3 We exploit this behavior that a
parent vocabulary can encode any child’s words and use the parent model as is.
We call this approach the “Direct Transfer”.

In the Direct Transfer approach, we ignore the specifics of the child vocabu-
lary and train the child model using the same vocabulary as the parent model.
We take an already trained parent model and use it to initialize parameters for
a child language pair. In other words, we continue the training process of the
parent model on the child trainset without any change to the vocabulary or
hyper-parameters. This applies even to the training meta-parameters, such as
the learning rate or moments.

1From our target language selection (see Section 2.3.2), the linguistically closest language is
Russian, but we do not transliterate Cyrillic into Latin script. Thus the system cannot associate
similar Russian and Czech words based on subword appearance.

2https://github.com/tensorflow/tensor2tensor
3The standard implementation of BPE segmentation by Sennrich et al. (2016b) cannot repre-

sent unknown characters by breaking them to bytes. However, the implementation could be
extended to support encoding of bytes by escaping the byte representation in the same way as
in the wordpieces.
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Table 4.1: “Baseline” is a model trained from random initialization with own
specific vocabulary. “Direct Transfer” is using the parent vocabulary. Models in
the top part of the table use the English→Czech parent model, models in the
bottom part use Czech→English. The scores and difference are in BLEU. The
‡ represents significantly better results based on significance test described in
Section 2.4.3.

Translation direction Baseline Direct Transfer Difference

EN→Odia 3.54 ‡ 0.04 -3.50
EN→Estonian 16.03 20.75 ‡ 4.72
EN→Finnish 14.42 16.12 ‡ 1.70
EN→German 36.72 38.58 ‡ 1.86
EN→Russian 27.81 ‡ 25.50 -2.31
EN→French 33.72 34.41 ‡ 0.69
French→Spanish 31.10 31.55 ‡ 0.45

Estonian→EN 21.07 24.36 ‡ 3.29
Russian→EN 30.31 ‡ 23.41 -6.90

This method of continued training on different data while preserving hyper-
parameters is essentially a domain adaptation technique, where the domain is a
different language pair.

The intuition behind the Direct Transfer is that NN is robust enough that
the vocabulary mismatch can be disregarded altogether as long as there is some
overlap between the child and parent vocabulary. This is mainly due to the
usage of subword tokens, which segment any text into a sequence of allowed
subwords (see Section 3.2). However, Direct Transfer suffers from a deficiency in
the segmentation of child words, which can lead to splitting words to individual
characters or even bytes that are hard for NMT to correctly translate.

Thanks to the simplicity of the Direct transfer, it can be easily applied to
existing training procedures as it does not need any modification to the NN
frameworks.

In the following sections, we discuss automatically assessed translation
quality. We show the results of Direct Transfer in Section 4.5.1, followed by an
analysis of the usage of parent vocabulary in Section 4.5.2 and introduction
of a problem with vocabulary mismatch in Section 4.5.3. We conclude by the
analysis of Direct Transfer drawbacks in Section 4.5.4.

4.5.1 Direct Transfer Results

We start with the results of Direct Transfer method, which uses parent vocabu-
lary without any change. The results of our evaluation are tabulated in Table 4.1.
In comparison to the baseline, the performance of Direct Transfer is significantly
better in both translation directions in all cases except for Odia and Russian,
which use a different writing script and we discuss it later in Section 4.5.4, where
we show that it is primarily a problem of filtering long sentences.
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Importantly, our baseline, trained only on child data, has an advantage over
cold-start transfer learning as it uses child-specific vocabulary. Closer baseline
to our transfer learning setup would be to use the parent vocabulary even for
baseline, which would lead to an even larger difference in the performance.
However, we decided to use the stronger baseline.

The Estonian–English pair confirms that sharing the target language im-
proves performance as previously shown on similar approaches (Zoph et al.,
2016; Nguyen and Chiang, 2017). Moreover, we show that the improvements are
significant for the translation direction from English, an area of transfer learning
neglected in previous studies.

The largest improvement of 4.72 BLEU is for the low-resource language pair
English→Estonian. Furthermore, the improvements are statistically significant
even for a high-resource language such as 0.69 BLEU increase for a high-resource
English→French. To the best of our knowledge, we are the first to show that
transfer learning in NLP can be beneficial also for high-resource languages.
Observation 2: Direct Transfer can significantly improve the performance of the child
model in both directions for both low-resource and high-resource language pairs.

The basic intuition behind the improvements in translation direction into
English is that the models reuse the English language model in the decoder and
therefore the improvements are due to better ability to generate grammatically
correct sentences without the context of the source language. Although better
decoder’s language model could be one of the reasons behind the improve-
ments, it cannot be the only explanation since we see the improvements also for
translation direction where English is the source side, and therefore the decoder
has to learn a language model for the second language.

Furthermore, we get improvements even for child language pairs in the no-
shared language scenario. In our study, we evaluated French→Spanish, which
got a 0.45 BLEU improvement. Although, in this particular case, we need to take
into account that it could be partly due to these languages being linguistically
closer to the parent’s source language English.

In Section 5.2, we discuss that the shared-target language is easier for NMT
than the shared-source language. It is also the main reason why we compare
more systems in the direction from English rather than to English.

The results of such performance boost are even more surprising when we
take into account the fact that the model uses the parent vocabulary and thus
splits words into considerably more subwords, which we carefully analyze in
Section 4.5.3. It suggests that the Transformer architecture generalizes very well
to short subwords and is robust enough to generate longer sentences.

In conclusion, the Direct Transfer learning improves the performance in all
cases except English→Odia, English→Russian and Russian→English. In order
to shed light on the failure of these languages, we need to analyze the parent
vocabulary.

4.5.2 Parent Vocabulary Effect
The problem of OOV words is solved by using subwords segmentation at the
cost of splitting less common words into separate subword units, characters, or
even individual bytes, as discussed in Section 3.2. The segmentation applies
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Figure 4.3: A toy example of using English wordpiece segmentation onto Czech
sentence. For simplicity, we suppose the vocabularies contain all ASCII charac-
ters in addition to the tokens specifically mentioned.

Czech vocabulary: {bude, doma_, end, me_, ví, vík}
English vocabulary: {bud, dom, end, ho, me, week_, will}
Czech Sentence: O víkendu budeme doma.
Segmented by Czech vocab.: O_ vík end u_ bude me_ doma_ ._
Segmented by English vocab.: O_ v \ 2 3 7 ; k end u_ bud e me_ dom a_ ._

deterministic rules on the training corpus to generate the subword segmentation
that minimizes the number of splits for the observed word frequencies to fill up
the vocabulary of a predefined size (see Section 3.2).

However, when using a subword segmentation created for a different lan-
guage pair, the condition of the optimal number of splits is not guaranteed.
Especially more linguistically distant languages that contain only a small num-
ber of common character n-grams need more splits per word.

The example in Figure 4.3 shows that using a vocabulary for a different
language leads to segmenting words to substantially more tokens, especially in
the case when the language contains characters not available in the vocabulary.
This is most crucial as the unknown character is first transformed into byte
representation (“\237;” in Figure 4.3) that is later handled as a standard text.

In Figure 4.3, English vocabulary doubles the number of tokens in the inves-
tigated sentence relative to the Czech vocabulary.

Direct Transfer approach uses the parent vocabulary, which can lead to
segmenting the child training set into many individual tokens that could harm
the MT performance. In order to study this effect, we examine the influence of
using different vocabulary on the training dataset of the child.

We consider the parent Czech–English vocabulary (Popel, 2018b) used in
our experiments and apply it for segmentation of language pairs and compare
the average number of subwords per word. We examine the language pairs and
their training sets that are used in experiments regarding Direct Transfer.

Table 4.2 documents the splitting effect of various vocabularies. When using
the language-pair-specific vocabulary (column “Specific”), the average number
of subword tokens per word (denoted “segmentation rate”) is relatively constant
for the English around 1.2 subwords per word as well as other languages except
for the Odia language with 3.7 tokens per word, which we explain in Section 4.5.2.
This regularity possibly emerges from the size of vocabulary and the number of
words in both languages.

Observation 3: Using a language-specific wordpiece vocabulary has a consistent
segmentation rate around 1.2 subwords per word.

If we use the Czech–English vocabulary on the child dataset (column “EN-
CS”), there is an apparent increase in the average number of subword tokens
per word. For example, German has twice as many tokens per word compared
to the language-specific vocabulary that has 1.3 tokens per word on average.
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Table 4.2: Average number of tokens per word (tokenized on whitespace) when
applied to the training corpora. “Specific” represents the vocabulary created
specifically for the examined language pair. “EN-CS” corresponds to the use
of Czech–English vocabulary. The “First language” represents English, except
of the last row, where it represents French. “Second language” represents the
other language of a given language pair.

First language Second language
Language pair Specific EN-CS Specific EN-CS

EN–Odia 1.2 1.4 3.7 19.1
EN–Estonian 1.2 1.2 1.1 2.3
EN–Finnish 1.2 1.2 1.1 2.6
EN–German 1.2 1.2 1.3 2.5
EN–Russian 1.3 1.4 1.3 5.3
EN–French 1.3 1.4 1.6 2.5
French–Spanish 1.3 2.1 1.2 2.1

Russian has four times more tokens per word due to Cyrillic, similarly for the
Odia script.

Russian Cyrillic alphabet happens to be contained in the parent vocabulary
together with 59 Cyrillic bigrams and 3 trigrams, which leads to 5.3 tokens per
word. The Odia script is not contained in the Czech–English vocabulary at all,
leading to the splitting of each word into individual bytes, which explains the
19.1 tokens per word (see Figure 4.3).

The first language is not affected by the parent vocabulary much (only slightly
for the French-Spanish language pair) because English is shared between both
the child and the parent vocabulary. The second language that differs between
parent and child approximately doubles the number of splits when using parent
vocabulary (see the difference between both columns “EN-CS”).

Observation 4: Wordpiece vocabulary roughly doubles the segmentation rate for
different child languages that use the same script as parent languages.

It is necessary to mention that the datasets have various domains and various
sizes and therefore the average number of tokens could be different on various
domains even for the same language pair. The size of the vocabulary4 is also
crucial as it defines the number of available subwords. Moreover, the length
relation between the source and target sentences influence the final vocabulary.

The use of a different segmentation roughly doubles the number of tokens
per sentence for languages using the same writing script. Therefore the NMT
models that use Direct Transfer have to adapt to different sentence length in
comparison to the parent. However, as we showed in Section 4.5.1, the Direct
Transfer significantly improves the performance over the baseline showing the
robustness of NMT.

4We use vocabulary with 32k subwords in all experiments.
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Odia Subword Irregularity

We try to shed some light, why Odia has, on average, more tokens per word
after subword segmentation even when using a language-specific vocabulary.
The Odia script (also called Oriya script) has 52 characters, which lead to more
character combinations than in English, which we believe is linked to a higher
number of subwords per word.

To confirm our intuition, we investigate the Odia–English vocabulary. The
average length of Odia tokens in the vocabulary is 4.2 characters compared to
the 6.9 characters for English subwords in the same vocabulary. The average
length of a non-segmented word in the Odia–English training set is 6.4 char-
acters for Odia and 5.2 characters for English. With that in mind, Odia has
on average longer words but uses shorter subwords than English, which leads
to the substantially higher average number of tokens per word as reported in
Table 4.2 in comparison to other languages.

This is mainly due to the size of vocabulary, which is not enough for the
Odia–English language pair. Larger vocabulary would contain longer Odia
subwords, thus would make the segmentation less frequent. This fact could be
one of the reasons why the performance of Direct Transfer is worse than baseline
as reported in Section 4.5.1. On the other hand, Odia is a low-resource language,
and having large vocabulary would result in fewer examples per individual
subwords in training data. We investigate the problem in Section 4.5.4.

4.5.3 Vocabulary Overlap

Direct Transfer uses parent vocabulary, and we showed how it increases the
segmentation of the child’s training corpus in Section 4.5.2. Now we examine
what percentage of the parent vocabulary is used by the child language pair
and investigate how large is the part of parent vocabulary that is left unused
with the child language pair.

In order to find tokens from the parent vocabulary that are used by the
child model, we segment the training corpus of the investigated languages with
the Czech–English vocabulary and count how many unique tokens from the
vocabulary appear in the segmented child’s training corpus.

The percentage of used tokens are in Table 4.3. Before examining the results,
we need to mention that the training sets are usually noisy, and some sentences
from other languages can easily appear in them. For example, it is often a case
that part or whole sentence is left untranslated in the parallel corpus. For the
simplicity of our argument, we do not remove any foreign sentences nor ignore
the least used tokens in any way. Therefore, the actual used part of parent
vocabulary by a given language is smaller than presented in Table 4.3.

With that in mind, we can notice that English always uses more tokens from
the vocabulary than the second language. This is caused by English being the
shared language and already present in the vocabulary. Although the reverse is
true for the original dataset of Czech–English where English occupies a smaller
part of the vocabulary (71.1%) than Czech (98.0%). The reason why the total
is not 100% but only 98.8% (see column “Both”) is possibly due to a slightly
different training set as the vocabulary was prepared by Popel (2018b).
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Table 4.3: The percentage of the parent vocabulary tokens used in the child’s
trainset. The vocabulary is shared for both languages. The column “Both”
represents the number of vocabulary tokens used by both languages.

Language pair 1st language 2nd language Both

EN–Czech 71.1% 98.0% 98.8%

EN–Odia 23.3% 0.8% 23.9%
EN–Estonian 54.8% 39.7% 57.0%
EN–Finnish 59.2% 54.5% 60.6%
EN–German 58.4% 52.9% 59.9%
EN–Russian 68.6% 67.0% 71.4%
EN–French 64.6% 64.5% 65.5%
French–Spanish 55.1% 54.0% 57.1%

We can see that the Odia does not use many of available subwords, as con-
cluded in the previous section. Interestingly and contrary to our previous
findings, Russian utilizes a substantial part of the parent vocabulary. After
a closer examination of the training corpus, we noticed that the Russian part
contains many Czech and English sentences. When we counted only subword
tokens that contain at least one Cyrillic character, the used part of vocabulary
dropped to 0.3% for Russian confirming the previous findings with extremely
high segmentation rate than other languages.

The most important result is that most language pairs use around 60% of
parent vocabulary. This means that remaining tokens are left unused and only
slow down the training and inference because the model has to calculate the
softmax over the size of the vocabulary. Thus in Section 4.5.4, we propose a
vocabulary transformation approach that overrides these unused tokens with
child-specific ones.

Observation 5: Child language pair uses roughly 60% of the available parent vocabu-
lary tokens when sharing one language with the parent in Direct Transfer.

4.5.4 Direct Transfer Drawbacks
In this section, we discuss the failure to improve the performance of child models
of English→Odia, English→Russian and Russian→English translation pairs.
Intuitively, Russian and Odia use a different writing script than English, and
therefore the parent vocabulary segments them into many wordpieces as we
discussed in Section 4.5.3, which possibly harms the NMT and fails to adapt
to such long sentences fully. However, we need to take into account another
possible explanation.

The framework T2T drops sentences from training corpus that are too long
in order to allow bigger batch sizes, which lowers the training time. In our ex-
periments, the threshold is set to 100 subwords, which is based on our previous
findings (Kocmi et al., 2018b), where it was enough for most of the languages.
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Table 4.4: The amount of training corpus removed by filtering long sentences
with more than 100 subwords (lower is better). The column “Czech–English”
shows results when parent segmentation is used. The “Child-specific” exploits
vocabulary prepared for each language pair separately, the child-specific vocab-
ulary has been used by the baseline systems.

Language pair Czech–English (%) Child-specific (%)

EN–Odia 98.6 12.0
EN–Estonian 8.7 0.0
EN–Finnish 12.6 0.2
EN–German 4.0 0.3
EN–Russian 58.1 1.7
EN–French 10.8 1.0
French–Spanish 13.9 0.1

NMT translates individual sentences with an average length of 20-30 words.
Thus the average segmentation of 1.2 leads to an average length of a sentence
under 50 tokens. However, the limit was set for a language-pair-specific seg-
mentation, and thus, we investigate the influence of a higher segmentation
rate.

We segmented the training data with both Czech–English and language-
specific vocabulary and compared the percentage of filtered sentences by count-
ing sentences with less than 100 tokens. The percentage of training corpus that
has been filtered out is presented in Table 4.4.

As we have feared, the filtration has removed 98.6% of sentences from the
Odia–English corpus and 58.1% from the Russian–English corpus. Additionally,
other language pairs also have a notable drop in the total amount of training
data. We note that this happens silently on the fly in the T2T framework.
Observation 6: Corpus filtration based on the length of the sentences can drop a
large part of training corpora due to the higher segmentation rate when using a parent
vocabulary.

On the defense of the limit, when using the child-specific vocabulary, the
filtering does not remove many sentence pairs, and therefore, it is justifiable.
However, the limit does not take into consideration the usage of a not-optimized
vocabulary.

These findings mean that the Direct Transfer results have been negatively
affected in comparison to the baseline, and therefore, the actual result could
have been even better. Unfortunately, we had made this analysis after running
all the experiments. Since the Direct Transfer had improved the results over the
baseline for most cases, we decided to avoid rerunning all the experiments with
a different limit. We re-run only the experiments with a higher threshold for
filtering long sentences only for the three systems that scored worse than the
baseline and used a different script than the parent.

We increased the threshold from 100 to 500 tokens per sentence. This filtering
is already high enough to maintain most of the training corpus. Specifically, it
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Table 4.5: Direct Transfer performance with increasing the filtering limit. The
best performance (BLEU) is in bold. The ‡ represents significantly better results
when compared to baseline.

Language pair Baseline Filter 100 Filter 500

EN→Odia 3.54 ‡ 0.04 0.26
EN→Russian 27.81 ‡ 25.50 27.19
Russian→EN 30.31 23.41 30.49

removes only 3.6% sentences from the Odia–English and 0.8% from Russian–
English corpus. Increasing the number of tokens per sentence increases the
nodes in the computation graph. In order to fit the same model on GPU, we run
these experiments on our 16GB GPUs Quadro P5000. Results are in Table 4.5.

We see that with a higher filtering limit, the performance indeed improves
for Russian–English, but not for English→Odia. However, the baseline is still
outperforming the Direct Transfer in English→Odia and Russian→English. It is
an indication that the model cannot adapt to sentences segmented to individual
bytes. However, it can adapt to short n-grams of characters as in Russian.

Interestingly, Russian→English performs on par with the baseline, neither of
the systems being significantly better than the other. This finding suggests that
the model can adapt in the situation when the source language is segmented,
but the target language is not. In this case, the target language is not affected by
a high segmentation rate. Intuitively, it suggests that the shared-target scenario
is easier for transfer learning. In other words, the neural network can utilize
the language model of the parent and adapt it. We analyze it in more depth in
Section 5.2.

Observation 7: Direct Transfer does not improve performance when a child uses
language with a different writing script.

In conclusion, Direct Transfer improves the performance over the baseline
as long as the segmentation due to vocabulary mismatch is reasonably low. An
interesting question is if there is a threshold for segmentation ratio, which would
predict if the model will improve over the baseline or if the Direct Transfer fails,
or if the explanation is because of sentence length mismatch between source
and target sentences. We leave these questions for future work.

In the following section, we discuss a vocabulary transformation technique,
which avoids the segmentation problem and further improves the performance
of cold-start transfer learning.

4.6 Cold-Start Vocabulary Transformation
Direct Transfer relies on the fact that we use subword units that can be used to
encode any textual string. The pre-processing splits unseen words into several
subwords, characters or possibly down to individual bytes. This feature ensures
that the parent vocabulary can, in principle, serve for any child language pair,
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Algorithm 1: Transforming parent vocabulary to contain child subwords
and match positions for subwords common for both of language pairs.

Input: Parent vocabulary (an ordered list of parent subwords) and the
training corpus for the child language pair.

Generate custom child vocabulary with the maximum number of sub-
words equal to the parent vocabulary size;

for subword S in parent vocabulary do
if S in child vocabulary then

continue;
else

Replace position of S in the parent vocabulary with the first
unused child subword not contained in the parent;

end
end
Result: Transformed parent vocabulary

but it can be highly suboptimal, segmenting child words into too many subwords,
where individual subword units do not contain relevant meaning. As expected,
this is most noticeable for languages using different scripts (see the statistics in
Table 4.2). Also, the child does not use the whole vocabulary leaving around
40% unused, which only slows down the training and inference process. In
order to avoid both problems, the unused token positions could be reused to
represent subwords more suitable for the need of the child language pair.

In this section, we propose a vocabulary transformation approach that
changes unused subwords in parent’s vocabulary with child-specific ones. We
show that a straightforward replacement of subwords leads to significant im-
provements in performance.

NMT models associate each vocabulary item with its embedding. When
transferring from the parent to the child, we can remap subwords and their
assigned embedding as trained in the parent model without any modification to
the architecture. The remapped subwords become associated with embeddings
that initially behave as trained for the original subwords and the NMT has first
to retrain them.

The algorithm for vocabulary transformation is explained in Algorithm 1.

4.6.1 Results with Transformed Vocabulary
Direct Transfer significantly outperforms the baseline, trained only on the child
data, whenever the parent vocabulary does not segment the child training
sentences into many tokens. In this section, we evaluate our Transformed
Vocabulary approaches, which remaps unused parent subwords to useful child-
specific ones.

First two columns of Table 4.6 are the same as in Table 4.1. We added a column
with results of Transformed Vocabulary. We see “Transformed Vocabulary”
delivering the best performance for all language pairs except English→Estonian,
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Table 4.6: “Transformed Vocab” has the same setting as Direct Transfer but
merges the parent and child vocabulary as described in Section 4.6. The structure
is the same as in Table 4.1. The baseline uses child-specific vocabulary. The
statistical significance ‡ is measured between Direct Transfer and Transformed
Vocabulary.

Model Baseline Direct Transfer Transformed Vocab

EN→Odia 3.54 0.04 6.38 ‡
EN→Estonian 16.03 20.75 20.27
EN→Finnish 14.42 16.12 16.73 ‡
EN→German 36.72 38.58 39.28 ‡
EN→Russian 27.81 25.50 28.65 ‡
EN→French 33.72 34.41 34.46
French→Spanish 31.10 31.55 31.67

Estonian→EN 21.07 24.36 24.64
Russian→EN 30.31 23.41 31.38 ‡

significantly improving over “Direct Transfer” in most cases. The only exceptions
are Estonian→English, English→French and French→Spanish, where neither
of the systems is significantly better than the other, however, both of them are
significantly better than the baseline.

Furthermore, it confirms that our Transformed Vocabulary successfully tack-
les the problem of Direct Transfer when the child language uses a different
writing script such as English→Odia, English→Russian, and Russian→English.
Observation 8: Transformed Vocabulary is not negatively affected by parent vocabu-
lary segmentation.

We see that cold-start transfer learning is not restricted to the low-resource
scenario as it also improves high-resource language pairs: Finnish–English,
German–English, Russian–English, and French–English.
Observation 9: Our cold-start transfer learning improves the performance of both
low-resource and high-resource language pairs.

Interestingly, the cold-start transfer learning technique improves even the
scenario with no-shared language, in this case French→Spanish.

Furthermore, the positive results imply that the neural network is robust
enough to correct the randomly assigned child-specific embeddings and there-
fore reuse even more capacity of the parent model.

4.6.2 Various Vocabulary Transformations
Our Transformed Vocabulary technique assigns unmatched subwords mostly at
random. However, there are many other variants. We propose several of them
and evaluate them in this section.

We noticed that the vocabulary is structured in stages roughly based on the
frequency of subwords in the corpora. This is due to the vocabulary creation
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Table 4.7: Comparison of various approaches to replacing tokens in parent
vocabulary.

Language pair EN→Estonian Estonian→EN

Frequency-based 20.27 23.32
Everything random 16.41 19.84
Unmatched random 20.28 22.45
Levenshtein distance 20.04 23.66

that adds less frequent subwords in stages until reaching the requested size
of the vocabulary. Therefore, we call the technique from the previous section
“Frequency-based”.

In contrast to frequency, we can assign tokens at random. Either all of them
or only unmatching tokens. We call the former approach “Everything random”.
It is when all subword tokens are first shuffled and then assigned at random.
This approach does not match any tokens. Therefore the NMT needs to learn
even tokens that have been used by the parent model. The latter approach is
called “Unmatched random”. It first assigns subwords that are in parent and
child vocabulary. Then it assigns the remaining child tokens at random.

Last option is the assignment of subwords based on some distance. We select
the Levenshtein distance, which measures the number of edits between two
strings. The vocabulary created by this technique assigns subwords iteratively
by increasing the allowed distance for assignment. In other words, it starts
by assigning all matching subwords (distance 0), then subwords that have a
distance of one edit, then two edits and so on.

The results of comparing various approaches to replacing tokens in par-
ent vocabulary are presented in Table 4.7. All approaches reach comparable
performance except the "Everything random" assignment. Thus we found no
significant differences in the performance as long as subwords common to both
the parent and child keep their embeddings, i.e. are mapped to the same index
in the vocabulary. The subwords unique to the child vocabulary can be assigned
randomly to the unused parent embeddings. A similar result was observed by
Zoph et al. (2016). They show that the random assignment of words in their
approach works as well as an assigning based on lexical similarity.

Observation 10: It is necessary to preserve tokens shared between parent and child
in the same place. The order of assignment for the remaining tokens does not play an
important role.

There is still plenty of space for experiments with more advanced techniques
of vocabulary and embedding mapping, e.g. utilizing multilingual embeddings
like Multivec (Bérard et al., 2016). We leave this for the future work in order
to keep our approach as straightforward as possible and focus more on the
analysis.
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Table 4.8: The number of steps needed for a model to converge. We present
the step where the model has the highest performance on the development step
based on the stopping criterion described in Section 3.5.1.

Language pair Baseline Direct Transfer Transformed vocab

EN→Odia 45k 47k 38k
EN→Estonian 95k 75k 75k
EN→Finnish 420k 255k 270k
EN→German 270k 190k 110k
EN→Russian 1090k 630k 450k
EN→French 820k 660k 720k
French→Spanish 390k 435k 375k

Estonian→EN 70k 30k 60k
Russian→EN 980k 420k 700k

4.6.3 Training Time

Lastly, we also evaluate the total training time needed for cold-start transferred
models to reach the best performance. The times in Table 4.8 represent the
number of steps needed to reach the best performing models from Table 4.6.
The steps are comparable due to the equal batch size. However, due to the
training fluctuations in performance, it is not possible to define the exact step
when the model converged. Therefore, the results should be seen only as a
rough estimate of the training time. We use the stopping criterion as defined in
Section 3.5.1

Both transfer learning approaches converged in a comparable or lower num-
ber of steps than the baseline as we see in Table 4.8. The reduction in the number
of steps is most visible in English→German and English→Russian, where we
got to less than half of the total number of steps.

Observation 11: Cold-start transfer learning converges faster than training from
random initialization.

As mentioned earlier, the results are only approximate. However, based on
the broad range of our experiments where we compared nine language pairs
using various scripts and various training corpora sizes we conclude that both
approaches of transfer learning are faster than training the model from random
initialization.

4.6.4 Conclusion on Cold-Start Transfer Learning

The common practice in NMT is to train models from random initialization,
which makes NMT demanding in terms of training time and hardware resources.
Especially in the deployment where multiple language pairs are used, or we do
not have resources to train all language pairs.
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We proposed and studied two cold-start methods of transfer learning, namely
Direct Transfer and Vocabulary Transformation, which improve the child model
language pair regardless of the original parent training languages.

We achieve better translation quality and shorter convergence times than
when training from random initialization. We showed the results on several lan-
guage pairs as well as both translation directions. Furthermore, we showed the
improvements even for high-resource language pairs such as English→French.
The improvements are significant even in the scenario with no-shared language,
in our case, the French→Spanish pair.

Above all, we showed a proof-of-concept of reusing models trained by others,
thus training the parent model is not necessary, and anyone can use a model
trained by others for transfer learning. The usage of models trained by Popel
(2018b) proves that we could not manipulate the parent model in any way for
transfer learning, for example, by hyperparameter search or using modified
parent training data.

We also showed the robustness of neural networks that works despite the
adverse conditions of randomly assigned child-specific subwords to embeddings
previously trained for parent language pair. NMT have the ability to quickly
retrain pretrained embeddings and obtain even better performance compared
to the Direct Transfer.

The transfer learning technique, as presented in this chapter, is not suitable
for scenarios with various architectures like various sizes of matrices or different
network layouts. Likewise, the size of the parent vocabulary restricts the size
of a child’s vocabulary. As we saw in the example with Odia–English, using a
language-specific vocabulary of 32k subwords leads to a high segmentation rate
of 3.7 (see Table 4.2), and therefore a vocabulary with more subwords would be
necessary to lower the segmentation rate. Although in this case of low-resource
language, it would create other problems as it is better to use smaller vocabulary
when handling low-resource languages (Sennrich and Zhang, 2019).

To conclude, the cold-start transfer learning does not need complicated mod-
ifications to the framework, only the ability to continue training. It improves
performance and shortens the training time. Thus we suggest using transfer
learning, especially the Transformed Vocabulary technique, as a new standard
for model parameter initialization in scenarios where the architecture has not
been changed, e.g. when not experimenting with various sizes of matrix dimen-
sions.

In the following section, we investigate warm-start transfer learning, i.e.
an approach that prepares the parent model with the knowledge of the child
language pair in advance. In our case, we create a parent vocabulary already
prepared for a specific child.

4.7 Warm-Start Transfer Learning
In the previous chapter, we discussed the cold-start scenario, where the parent
model is trained in advance without prior knowledge about the child’s language
pair. The main disadvantage of that method is the need to reuse the parent
vocabulary, which is associated with trained embeddings. The Direct Transfer,
therefore, has a problem with a high segmentation rate and leaving roughly
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Figure 4.4: A process of generation of shared vocabularies: Merged (left) and
Balanced (right) Vocabulary.
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40% of vocabulary unused. The Vocabulary transformation overcame these
problems by randomly assigning child’s subwords to unused embeddings, but
this method restricted the maximal size of child vocabulary to be equal to
the parent’s vocabulary. Furthermore, the randomly assigned child subwords
embeddings first had to be retrained. The warm-start scenario allows us to
overcome such problems by preparing the parent model in advance for the
upcoming transfer learning to the child’s language pair.

The basic idea of how to avoid problems with randomly assigned embed-
dings is to directly use child-specific vocabulary at the time of parent model
training. The use of a child’s vocabulary in the parent model would inevitably
undermine the performance of the parent model because we restrict the parent
vocabulary. We studied this effect on child models in Section 4.5.2, where we
showed that inappropriate vocabulary segments text to an increased number
of tokens. However, in the transfer learning task, we do not pay attention to
the final performance of the parent language pair. Thus we can ignore this
performance drop.

The experiments in this section are mostly from Kocmi and Bojar (2018) and
use T2T4 if not specified otherwise.

4.7.1 Warm-Start Methods

In addition to using the child-specific vocabulary, we propose other variants of
shared vocabulary in order to find the best approach for transfer learning. So
far, we described two options: either to use parent-specific vocabulary (Direct
Transfer) or child-specific vocabulary. Each of them has similar problems, but
either for the parent or the child model. A solution is to create a vocabulary
that is shared between both parent and child language pairs.

We propose two approaches of creating a shared vocabulary. One option of
a shared vocabulary containing both the parent as well as the child subwords
can be created by merging their specific vocabularies. We call this approach
Merged Vocabulary. The second option is to utilize the algorithm for subword
generation (wordpiece or BPE) by applying it to the concatenated corpus of
both parent’s as well as the child’s vocabulary. This way, it prepares a balanced
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vocabulary based on the subword frequency in both corpora. We call the second
approach to Balanced Vocabulary. Both approaches are illustrated in Figure 4.4.

Merged Vocabulary is related to the cold-start Transformed Vocabulary as it
tries to combine two separate vocabularies into one. The process of vocabulary
generation in Merged Vocabulary is as follows: first, we generate vocabulary
for both parent and the child language pair separately, and then we merge both
vocabularies and remove duplicated subwords. Because the vocabularies are
text files where each subword is on an individual line, the merge operation is a
simple concatenation of both vocabularies together. Therefore this approach
applies only to wordpiece-type vocabulary, which is not dependent on the
ordering of the vocabulary such as the BPE algorithm.

The second approach, Balanced Vocabulary, is obtained by concatenating
both parent’s and child’s training corpora into one corpus, which is then used to
generate the vocabulary by the wordpiece (possibly also BPE) algorithm. Note
that this corpus is used only for the vocabulary generation purposes and we are
not using it for training NMT models.

The Balanced Vocabulary method is sensitive to the total size of the cor-
pus. Whenever one of the corpora is bigger, more subwords of that language
pair get into the final vocabulary. Mainly due to our focus on low-resource
language pairs, we try to balance the amount of language-specific subwords in
the vocabulary by randomly selecting an equal number of sentences from both
corpora instead of using all sentences. Thus the mixed corpus contains 25%
sentences from each of the four languages. We need to note that we do not take
into account the number of words per sentence as it differs across corpora and
also languages. Thus we suppose that corpora are usually already segmented
on a sentence level and we disregard the average length of the sentences. We
leave for future work an investigation of different ratios between languages and
balancing the number of words instead of sentences across corpora.

Whenever we obtain the vocabulary by either of the methods, we follow
the transfer learning pipeline that differs from cold-start by the fact that we
need to train the parent model for each child. The training is the following: we
train the parent model with a given vocabulary until convergence, followed
by continued training on the child dataset. We remind the reader that in the
case of warm-start transfer learning, we do not change the vocabulary nor any
other (hyper)parameters when we exchange the training corpora. Therefore
the NN is not forced to completely retrain embeddings when we change the
training corpora from parent to child. It avoids the problem with the cold-start
Transformed Vocabulary approach. Although some subwords have a different
meaning in different languages, hence they need to be retrained even in the
warm-start scenario.

4.7.2 Comparison of Warm-Start Techniques
In this section, we compare the two warm-start techniques proposed earlier with
parent-specific and child-specific vocabularies to figure out which one leads to
the best performance.

We compare the proposed methods using both pairs with both directions
(i.e. two low-resource language pairs, namely Estonian–English and Basque–
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Table 4.9: Results of various warm-start transfer learning approaches. The first
two columns show the performance of the parent model, the third and forth
column is the child model based on the corresponding parent in the same row.
The baseline does not use transfer learning and uses language-pair-specific
vocabulary. Scores are in BLEU and are comparable only within columns.

Parent score Child score
Method EN→CS CS→EN EN→Estonian Basque→EN

Direct Transfer 22.78 27.81 15.55 23.29
Child-specific voc. 21.05 24.93 15.73 22.92
Balanced Vocabulary 22.58 27.93 16.41 23.63
Merged Vocabulary 22.68 ✖ 16.05 ✖

Baseline – – 8.70 19.09

English). In this comparison, we use the parent model that has English on
the same side. Thus English→Czech parent is used for English→Estonian and
Czech→English parent is used for Basque→English.

We compare four different approaches: parent-specific (Direct Transfer),
child-specific, Merged Vocabulary, and Balanced Vocabulary. All setups use the
same layout of transfer learning and training conditions. We trained four parent
models for English→Czech and four parent models for Czech→English, each
with a different vocabulary. The parent training took one million steps before
the transfer learning of the child.

The setups for Basque→English are from Kocmi et al. (2018c). We extend-
ed the evaluation with English→Estonian translation direction, for which we
downsampled the original Estonian–English (see Section 2.3.2) corpus to only
100k sentence pairs. Hence, we artificially created a less resourceful language
pair. The English→Estonian is based on different version of T2T framework
than the rest of the section, namely T2T11.

Merged Vocabulary approach generates a larger vocabulary because merging
two vocabularies of equal size leads to a bigger size of the merged vocabulary.
Moreover, larger vocabulary leads to less comparable results as improvements
could be attributed to different vocabulary size. We want to evaluate all methods
in the closest setting as possible. Thus for Merged Vocabulary, we generate
smaller parent and child-specific vocabularies in the first place in a way that the
final size after merging and removing duplicates is approximately the same as
vocabulary size of other methods, in our experiments 32k subword vocabulary.
Consequently, we define the size of initial two vocabularies experimentally by
iteratively decreasing their size and measuring the size of merged vocabulary
until we obtained the size of merged vocabulary within a 1% tolerance of the
vocabulary size (the 32k subwords). The tolerance is in accordance with the T2T
specific wordpiece implementation, see Section 3.2.2.

We start by investigation of the child model performance (column Child
score) in Table 4.9. All four transfer learning techniques outperform the baseline
trained only on the child language pair, the gains of nearly 8 BLEU points for
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English→Estonian and 4 BLEU points improvement for Basque→English are
significant.

Observation 12: Both Balanced and Merged Vocabulary warm-start techniques
significantly outperform the baseline.

The missing result of Merged Vocabulary in Basque→English is because we
have not conducted a comparison of this technique in Kocmi et al. (2018c).

Both Direct Transfer, or child-specific vocabulary setups, performed worse
than the Merged and Balanced Vocabulary. We assumed that the parent-specific
vocabulary would perform the worst since it introduces segmentation problems
into the child language pair, as discussed in Section 4.5.2. Interestingly, the
child-specific vocabulary is not the best approach even though the vocabulary
is specifically tailored to the child model. Furthermore, the parent score is
significantly lower (1.53–1.73 BLEU) for the child-specific vocabulary when
compared to other variants, which is due to a sub-optimal vocabulary. This
suggests that the translation quality of the parent model plays an essential role
in the transfer model. This is an exciting result, as we usually disregard the
performance of the parent in the transfer learning setup. We study the parent
performance and behavior in Section 5.2.3.

Observation 13: Child-specific transfer learning performs worse than Balanced or
Merged Vocabulary even though its vocabulary contains more child-specific subwords.

Lastly, we want to briefly discuss the ratio of parent vs. child subwords in
the variants of the vocabulary. The parent-specific vocabulary (Direct Transfer)
in general contains no child language pair subwords. On the other hand, child-
specific vocabulary contains only child-specific subwords. In between are both
Merged and Balanced Vocabulary that contain roughly half of the parent’s
subwords and half of the child’s subwords. However, it could be the case that
the best approach would be different, for example, including only 30% of parent
vocabulary and 70% of child vocabulary. If that would be a case, it is most
likely going to be specific for the parent and child language pairs and not being
general for transfer learning. We leave this as an open question for future work.

In conclusion, both Merged and Balanced Vocabulary are better than baseline
and the cold-start Direct Transfer. Furthermore, Balanced Vocabulary leads
to better quality than Merged Vocabulary. However, we are not claiming that
Balanced Vocabulary is strictly better than Merged Vocabulary. Lastly, the
Merged Vocabulary technique is less general as it works only for the wordpiece
segmentation (see Section 4.7.1). Therefore, in the following experiments and
analysis regarding the warm-start transfer learning, we are going to use only
the Balanced Vocabulary technique as the standard technique. We leave the
Merged Vocabulary as an alternative for other work.

4.7.3 Broader Evaluation
In order to prove the generality of the warm-start method, we evaluate it across
various parents and children, comparing linguistically related and unrelated
languages as well as having shared English on the source or target side. We use
language pairs described in Section 2.3.2.
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Table 4.10: Transfer learning with English reused either in source (encoder)
or target (decoder). The baselines correspond to training on one corpus only.
BLEU scores are always reported for the child language pair. The scores are
comparable within lines or whenever the child language pair is the same. The ‡
represents significantly better results.

Balanced Baselines: Only
Parent Child Vocabulary Child Parent

EN→Finnish EN→Estonian 19.74 ‡ 17.03 2.32
EN→Russian EN→Estonian 20.09 ‡ 17.03 0.57
EN→Czech EN→Estonian 20.41 ‡ 17.03 1.42

Finnish→EN Estonian→EN 24.18 ‡ 21.74 2.44
Russian→EN Estonian→EN 23.54 ‡ 21.74 0.80

EN→Czech EN→Slovak 17.75 ‡ 16.13 6.51
Czech→EN Slovak→EN 22.42 ‡ 19.19 11.62

As mentioned earlier, we are going to discuss only the Balanced Vocabulary
approach ignoring the Merged Vocabulary and the child-specific vocabulary.
Thus, whenever we talk about warm-start technique, we consequently mean
the Balanced Vocabulary technique.

Table 4.10 summarizes our results for various combinations of a high-resource
parent and a low-resource child language pairs. All comparisons are with the
English on the same translation side for both parent and child. The baselines
models are trained exclusively on the child or parent parallel corpus. We do not
report parent score on parent testset.

The column with the child baseline is essential as it shows the impact of trans-
fer learning. We see that for all language pairs, the transfer learning significantly
outperform the baseline. However, as we evaluate some linguistically related
languages, for example, Czech and Slovak, we also evaluate the performance of
parent model only on the child’s testset to show that without transfer learning
the performance is strictly worse. For the Czech and Slovak, the parent alone can
roughly translate given sentences and obtain 6.51 BLEU score for direction into
Slovak and 11.62 BLEU for Slovak→English. In contrast, Estonian and Finnish
are not as related as Czech and Slovak. Thus the parent model does not perform
well on the child testset, obtaining only 2.44 BLEU for Estonian→English trans-
lation. This highlights that the improvement brought by our method cannot be
solely attributed to the relatedness of languages.

Earlier works on NMT transfer learning (Dabre et al., 2017; Nguyen and
Chiang, 2017) supposed linguistically related languages. We confirm their
results also with our warm-start transfer learning on linguistically similar
Finnish/Estonian and Czech/Slovak languages. Furthermore, the improve-
ments are not limited only to related languages as Estonian and Finnish. Unre-
lated language pairs like Czech/Estonian or Russian/Estonian work comparably
well.
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Table 4.11: Comparison of various approaches for incorporating the child data
into the parent trainset. All scores are in BLEU, and neither model is significantly
better than any other.

Child model No-Mixing Mix with tag Mix without tag

English→Estonian 20.1 20.1 19.9
Estonian→English 23.4 23.7 23.6

Observation 14: Warm-start transfer learning improves performance even for unre-
lated languages.

The most surprising is the comparison of English→Estonian performance
across various parents. We see that Finnish, the linguistically related language,
improves the performance the least compared to other parents. We reach an
improvement of 3.38 BLEU for English→Estonian when the parent model was
English→Czech, compared to an improvement of 2.71 from English→Finnish
parent. This two improvements are statistically significant and differ from
the conclusion of Zoph et al. (2016), who concluded that the more related the
languages are, the better transfer learning works. We see it as an indication
that the size of the parent training set is more important than relatedness of
the languages as the Czech has 40.1M sentences and the Finnish only 2.8M
sentences.

The results with Russian parent for Estonian child (both directions) show
that transliteration is not necessary for our approach as used in previous works
(Nguyen and Chiang, 2017). Therefore there is no vocabulary sharing between
Russian Cyrillic and Estonian Latin (except numbers and punctuation, see Sec-
tion 4.7.5 for further details), the improvement could be attributed to better
coverage of English; an effect similar to domain adaptation.

We show that our method also works with the shared English on the source
side. Although it is an intuitive result, we have to point out that earlier works
focused only on the scenario with shared-target language (Zoph et al., 2016;
Nguyen and Chiang, 2017). Similarly to cold-start, it supports the idea that
improvements are not due to the better decoder’s language model.

4.7.4 Combining Parent and Child Trainset
In the warm-start transfer learning scenario, we could train the parent model
on a mixture of parent and child training data and then fine-tuning solely on
child training data. We experiment with this setting to find out if the child
performance is influenced by it.

In multilingual learning, Johnson et al. (2017) proposed to use a unique tag
(separate word) “<2lang>” to identify desired target language. By adding this
tag to each source sentence, they could train NMT model on a mix of training
corpora. Another option is to mix the training corpora without any unique tag.

In the following experiment, we compare Balanced Vocabulary approach
with three parent models trained on various trainsets: a standard no-mixing
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Table 4.12: Performance in BLEU of a parent model evaluated on the child
Estonian–English testset. In brackets are results evaluated on individual child
models from Table 4.11.

Parent model Mix with tag Mix without tag

English→(Czech+Estonian) 17.7 (20.1) 2.4 (19.9)
(Czech+Estonian)→English 22.0 (23.7) 21.8 (23.6)

parent-only, a mix of parent and child with added tag, a mix of parent and child
without a tag.

We use the Czech–English language pair as a parent and the Estonian–
English as a child. We use T2T11 setting.

In Table 4.11, we see that mixing corpora is slightly better for shared-target
scenario. However, neither of approaches is significantly better than the others.
Hence we see no difference between approaches. Although, this experiment
could be influenced by the size of training corpora of the parent and the child.

The previous experiment showed that the performance is not largely in-
fluenced whether we mix the child data into the parent training data or not.
However, in that setting, the parent can perform translation of the child lan-
guage pair, because it was trained together with the child trainset. Thus we
evaluate four parent models, trained on the mix of corpora from the previous
experiment, on the child testset.

The performance of individual parent models is reported in Table 4.12. All
of them perform significantly worse than after transfer learning of the child
model. However, for the scenario, where the target language is shared between
Czech and Estonian pair, or when the tag marks the target desired language,
it is interesting that the models’ performances are only slightly lower than for
transfer learning than we would expect.

4.7.5 Balanced Vocabulary Analysis
Our Balance Vocabulary method relies on the vocabulary estimated jointly from
the child and parent model. In the Transformer, the vocabulary is typically
shared by both the encoder and the decoder. We analyzed the vocabulary in
our cold-start scenario in Section 4.5.3, where we found out that around 40% of
parent vocabulary is unused after the transfer.

Balanced Vocabulary is prepared in the following way. We take an equal
part of parent and child corpus and generate a wordpiece vocabulary that is
used both by the parent as well as the child model. With a large overlap, we
could expect a lot of “information reuse” between the parent and the child.

We take the vocabulary of subword units as created for Russian–English
parent and Estonian–English child experiments. This vocabulary contains 28.2k
subwords in total. We then process the training corpus for each of the languages
with this shared vocabulary, ignore all subwords that appear less than 10 times
in each of the languages (these subwords will have little to no impact on the
result of training) and break down the total of 28.2k subwords into overlapping
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Table 4.13: Breakdown of subword vocabulary of experiments involving
Russian–English parent and Estonian–English child.

Estonian English Russian % Subwords

✓ - - 29.93
- ✓ - 20.69
- - ✓ 29.03
✓ ✓ - 10.06
- ✓ ✓ 1.39
✓ - ✓ 0.00
✓ ✓ ✓ 8.89

Reused parent 41.03

classes based on the languages where the particular subword was observed, see
Table 4.13.

We see that the vocabulary is reasonably balanced, with each language
having 20–30% of subwords unique (see the first three rows of Table 4.13).
English and Estonian share 10% subwords not seen in Russian while Russian
shares only 1.39% and 0% of subwords with each of the other languages, possibly
due to the Cyrillic script. Overall, 8.89% of subwords are used in all three
languages.

A particularly interesting subset is the one where parent subwords are used
by the child model. In other words, subwords appearing anywhere in English
and also tokens common to Estonian and Russian. For this set of languages,
this amounts to 20.69+10.06+1.39+0.0+8.89 = 41.03%. We list this number on
a separate row in Table 4.13, as “Reused parent”. These subwords get their
embeddings trained better thanks to the parent model. However, the vocabulary
also contains 29.04% subwords used only by the parent and unused by the child.

Table 4.14 summarizes this analysis for several language sets used in the
warm-start experiments, listing what portion is shared by all the languages
(column “In All”), what portion of subwords benefits from the parent training
(column “Reused from Parent”) and what portion of vocabulary is unused by
the child (column “Unused by Child).

We see a similar picture across the board; roughly 30% of subwords are
unused by the child model. And roughly 50% of subwords are unused whenever
both parent languages are distinct from the child. We remind that in the Direct
Transfer the number was around 40%. We already discussed this problem as
these subwords only slow down the training and inference as they are useless
to the child.

Observation 15: Balanced Vocabulary has 30% of tokens unused by the child in the
vocabulary whenever one language is shared between parent and child.

We list vocabularies used in our main results in Section 4.7.3 as well as
language pairs not containing any shared language between parent and child
(English in our case) with the child as we report in Section 5.1.4.
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Table 4.14: Summary of vocabulary overlaps for the various language sets. The
first column specifies what is the parent language pair. The child language
pair is Estonian–English for all rows. All figures represent percentage of the
vocabulary.

Languages In All Reused Parent Unused by Child

Finnish–EN 19.5 % 49.4 % 26.2 %
Russian–EN 8.9 % 41.0 % 29.0 %
Czech–EN 20.3 % 49.2 % 21.2 %
Arabic–Russian 4.6 % 6.2 % 56.3 %
Spanish–French 18.4 % 34.1 % 28.7 %
Spanish–Russian 6.0 % 21.4 % 45.8 %
French–Russian 6.3 % 23.1 % 44.3 %

The Arabic-Russian-Estonian-English stands out with the very low number
of subwords (6.2%) available already in the parent, mainly due to the scripts of
parent language not using Latin. The parent Arabic-Russian thus offered very
little word knowledge to the child, and yet it leads to a performance gain (21.74
vs. 22.23 BLEU, see Section 5.1.4).

Our observations indicate that the key factor is the size of the parent corpus
rather than vocabulary overlaps. However, the reasons for the gains are yet to
be explained in detail.

4.8 Warm-Start and Cold-Start Comparison

We study two approaches for transfer learning that differ in how the parent
model is treated, specifically by allowing modification to the parent vocabu-
lary before or after the training. In this section, we compare both cold-start
approaches: the cold-start Direct Transform and Transformed Vocabulary with
the warm-start approach of Balanced Vocabulary.

We train four parent models for warm-start approach differing in the vo-
cabulary: two English→Czech and two Czech→English on the same parent
training data. For the cold-start approaches, we used the models trained by
Popel (2018b) similarly as in cold-start experiments (see Section 4.4).

Results are from Kocmi and Bojar (2019a) and we use T2T8.
The results are tabulated in Table 4.15. We see that the warm-start method

reaches in most cases significantly better performance in both directions. The
only exception is the Russian→English and English→Estonian, where neither
warm-start Balanced Vocabulary nor the Transformed Vocabulary is significantly
better than the other.

The cold-start transfer learning improves the performance of high-resource
language pairs (see Observation 9), and the warm-start improve the performance
over the cold-start transfer learning. Hence warm-start should work for high-
resource language pairs. This is confirmed by the Russian–English language
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Table 4.15: The scores (BLEU) for cold-start methods (Direct Transfer and Trans-
formed Vocabulary) with the warm-start method of Balanced Vocabulary.

Child language pair Direct Transfer Transformed Voc. Balanced Voc.

EN→Estonian 20.75 20.27 20.62
EN→Russian 25.50 28.65 29.03 ‡
Estonian→EN 24.36 24.64 26.00 ‡
Russian→EN 23.41 31.38 31.15

pair in Table 4.15 and Slovak–English in Table 4.10. We study it further in the
next Chapter 5.

Observation 16: Both cold-start and warm-start transfer learning improve perfor-
mance of low-resource and high-resource language pairs.

The better performance of the warm-start approach is understandable since
the parent model is already trained with vocabulary prepared to accommodate
a given child language pair. It does not have the high segmentation problem
as the Direct Transfer has, and it does not have to retrain randomly assigned
embeddings as in Transformed Vocabulary.

However, the warm-start approach has one disadvantage over the cold-start:
we cannot reuse any parent model, and we have to train the parent model for
each child language pair separately. With that in mind, we investigate the
number of steps needed to reach the performance as presented in Table 4.15.

Table 4.16 shows the total number of training steps. The cold-start scenarios
show only steps needed for the child model convergence since we did not train
the parent model by ourselves as we are using the model by Popel (2018b). In
contrast, the steps for Balanced Vocabulary show the total number of steps the
parent and the child were training altogether.

By observing the results, we see that due to the parent training, the warm-
start scenario takes more steps to train. However, the total training time of the
parent can vary broadly. Furthermore, in Section 5.4.6, we show that even a
parent model that did not fully converge is a good parent for transfer learning.

In conclusion, the cold-start method has the advantage of not requiring
to train the parent model, it does not need any modification to the training
workflow (in Direct Transfer) or only a trivial modification of vocabulary (in
Transformed Vocabulary) and reaches a better performance than training a
baseline model. This makes it the candidate to most of the current training work-
flows, where researches could start using any model as a parameter initialization
instead of random initialization as it is the current standard.

On the other hand, whenever the time is not a relevant criterion, but we are
focused on the performance of the model, the warm-start scenario would be the
recommended approach.
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Table 4.16: Comparison of the number of steps needed for cold-start and warm-
start methods to converge.

Child language pair Direct Transfer Transformed Voc. Balanced Voc.

EN→Estonian 75k 75k 735k
EN→Russian 630k 450k 1510k
Estonian→EN 30k 60k 700k
Russian→EN 420k 700k 1465k

4.9 Related Work
The idea of transferring knowledge between different algorithms is as old as
machine learning itself, and researchers were trying to reuse previously trained
features on different tasks. Pratt et al. (1991) published a paper properly for-
mulating the transfer learning problem by pretraining a neural network on a
different task.

Firat et al. (2016) studied multitask learning, a scenario closely related to
transfer learning. They propose multi-way multilingual systems, a generaliza-
tion of work by Dong et al. (2015), with the primary goal of reducing the total
number of parameters needed to cater multiple source and target languages.
The system uses individual encoders and decoders for each language, with
only the attention mechanism shared. The model is trained on one language
pair at a time, thus to keep all the language pairs active in the model, a special
training schedule is needed. Otherwise, “catastrophic forgetting” would hinder
the ability to translate among the languages trained earlier. Firat et al. (2016)
experimented with six languages, where the training data were between English
and one of the remaining five languages. They showed that the multilingual set-
up with shared attention outperforms the single-pair baseline on low-resource
languages in all translation directions.

Nevertheless, when using high-resource languages with more than two
million training sentences, experiments yield counter-intuitive results. The
multi-way system outperforms the single-pair baseline whenever English is on
the target side. However, whenever English is on the source side, the baseline
performs on-par or better than the multi-way. The authors did not provide any
explanation for this phenomenon. We discuss it in more depth when evaluating
our results in Section 5.3. We believe that the improvements only for direction
into the English are mainly due to the higher amount of sentences the English
decoder had access to during the training in comparison to single-language-pair
baseline. Therefore, the model can generate better English sentences. Firat et al.
(2016) suggest that transferring knowledge from the language shared between
parent and child is a harder scenario than transferring with the shared language.
We analyze it in Section 5.2.

Johnson et al. (2017) introduce another multilingual approach. They add
a special word (or token) to each sentence, which indicates the desired target
language. Then they mixed together all parallel sentences from all language
pairs together. Thus the NMT could recognize a target language by the token
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“<2lang>” at the beginning of each sentence. The architecture then shares all
parameters between all languages, not only the attention as in Firat et al. (2016).
The model implicitly learns translation between all languages. However, it must
be noted that the performance of their system is worse than the single-pair
baseline. This is due to the same amount of parameters as in the baseline that
is used between several language pairs, thus effectively having less amount
of parameters for each used language. Johnson et al. (2017) support the hy-
pothesis by increasing the size of the multilingual model, which reduces the
performance gap to the baseline. The most interesting result is that the model
can perform zero-shot translation, i.e. translating between languages never seen
in the training set in a language pair.

There are relatively few studies investigating transfer learning in the area
of the NMT. The reasons could be due to the brief history of NMT, which
beginning is dated to the work of Sutskever et al. (2014), who presented the first
end-to-end NMT model and it took until 2016 it became a major paradigm in
MT (Bojar et al., 2016).

Zoph et al. (2016) claims to be the first to apply transfer learning to the low-
resource NMT successfully. They used the word-level RNN translation model
(Sutskever et al., 2014) with separate vocabularies for the source and target
language. Their use shared English only in the scenario of shared-target. They
exploit the cold-start scenario, where in contrast to our work, their approach
required freezing the English embeddings from updating during the child’s
training. As for the second language, they randomly assign child words to the
parent trained embeddings. They showed that their transfer learning improves
the performance of NMT systems in translation from Hansa, Turkish, and Uzbek
into English with the help of a French→English parent model. Unfortunately,
the authors have not experimented with translation direction from English.
Shared-target language scenario is an easier task as we show in Section 5.2.
Furthermore, they got the biggest improvements when using the transferred
model as a re-scorer of SMT approach.

Nguyen and Chiang (2017) build on top of the work of Zoph et al. (2016).
In contrast, they focused on a scenario where both parent and the child are
low-resource and linguistically related. They improved the transfer learning by
using a BPE vocabulary instead of word-level vocabulary as in Zoph et al. (2016).
The vocabulary is prepared in advance from both parent and child training data,
i.e. they use the warm-start scenario. Their approach is similar to our Balanced
Vocabulary with several differences. They used transliteration of Arabic script
in order to normalize training corpora to Latin script and used segmentation to
increase the number of overlapping tokens between languages. Furthermore,
they have not balanced the corpora in any way. With that setup, they show
that linguistic relatedness plays an important role and that transfer learning
also helps in a scenario where both parent and child are low-resource. They
demonstrated that transfer learning works better on subword-level NMT than
on word-level mainly due to the higher overlap of tokens between languages.
Additionally, they showed that freezing parent parameters such as English
embeddings (Zoph et al., 2016) is not necessary for the transfer learning and
can even hurt its performance. Unfortunately, they also evaluated only the
scenario with shared-target language, leaving a place to investigate the effect in
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the more difficult setting with the shared-source language. In Section 4.7.3, we
showed that the relatedness of languages is not necessary for successful transfer
learning.

Kim et al. (2019) solved the problem with mismatching vocabulary in cold-
start approach by applying cross-lingual word embeddings. They trained mono-
lingual word embeddings (Mikolov et al., 2013) for the parent and child source
language and then computed the linear mapping between the two embedding
spaces. The child model then continues the training from the parent model with
modified word embeddings. The linear mapping is applied only to the encoder
embeddings. The method assumes the same target language for parent and
child model.

Lakew et al. (2018) experiment with a cold-start transfer learning in the
multilingual NMT setting. They tackle the problem with vocabulary mismatch
by dynamically adapting the vocabulary in a similar way as our “Vocabulary
Transformation Technique” (see Section 4.6). During the transfer, the parent
vocabulary items that are not used by the child are replaced by random tokens
from the child vocabulary. However, in contrast to our technique, they reset
embedding weights for the randomly assigned words. They evaluate the method
on the multilingual setting of four language pairs, where instead of transferring
from one parent to one child, they transfer parameters consecutively from
one parent to the first child, followed by transferring from first child to the
second child and lastly finishing by transfer learning of the third child. Before
each change of training corpus, the vocabulary is dynamically updated for the
upcoming language pair. They proposed two approaches: either incrementally
add training data to the parent training corpus, thus increasing the number of
training sentences with each consecutive parent or to use only the current child’s
training data. The former approach can prevent worsening the performance of
the child on previous parent testsets. However, the latter approach reaches a
better score on the latest child language pair with the disadvantage of losing
the performance on the earlier parents.

Neubig and Hu (2018) combined the multilingual MT (Johnson et al., 2017)
with transfer learning by Zoph et al. (2016). They train a multilingual general
system that can translate between all investigated language pairs followed by
specializing the model to one high-resource language pair. They trained the
multilingual parent on 58 language pairs. Their main goal is low-resource
languages for which they come up with the technique of using a helper related
language pair, which is mixed into the training set. For example, they mix Slovak
and Czech sentences aligned on the English side. They confirm results from
Johnson et al. (2017) that using a single-pair baseline, in this case, mixing the
related languages, performs better than the multilingual model. However, when
they used the transfer learning technique on the multilingual parent model, the
performance significantly improved over single-pair baseline, which shows the
usefulness of multilingual parent in transfer learning.

4.10 Conclusion
We proved transfer learning to be an effective technique for NMT under low-
resource conditions both by our experiments and the related work. Existing
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methods require a shared-target language, language relatedness, or specific
training tricks and regimes. In contrast, we describe our approach to transfer
learning leveraging these constrains in both cold-start and warm-start setting.
Furthermore, we showed that the relatedness of languages is not critical for
transfer learning, nor we needed transliteration for our methods. Another im-
portant ability of our approaches is to handle language pairs that have different
target language between a parent and child model.

In this chapter, we have explained the transfer learning technique on NMT
and discussed a difference between cold-start and warm-start techniques. We
proposed two techniques: Direct Transfer and Vocabulary Transformation tech-
niques in the cold-start setting, where we investigated the influence of parent
vocabulary on the child language pair. In Section 4.7, we studied the warm-start
scenario and proposed Merged and Balanced Vocabulary techniques. Further-
more, we evaluated these approaches as well as using child-specific vocabulary
for the parent training, which surprisingly performed worse than other tech-
niques. Lastly, in Section 4.8, we compared our approaches and showed that
Balance vocabulary obtains the best performance out of proposed methods.
However, the Transformed Vocabulary needs much less training steps and ob-
tains results similar to Balanced Vocabulary.

Note that all our presented methods are relatively simple to implement with
current frameworks and training procedures, which could be a motivation for the
community for applying them. We believe that our Vocabulary Transformation
technique can replace standard approaches of training models from random
initialization as it reaches better performance in a shorter or comparable number
of training steps relative to the training from random initialization.

We want to analyze what is behind the improvements, and deeper under-
stand the technique. Therefore, in the next chapter, we focus on an extensive
analysis of transfer learning with an ambition to explain how transfer learn-
ing works and if we can use this knowledge to improve the transfer learning
technique.
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5
Analysis

In the previous chapter, we showed the advantages of the transfer learning
technique and the gains it brings. However, neural networks are used without
us rigorously understanding the exact gains behind individual techniques. Thus
neural networks gained the reputation of being a black box.

As Rudin (2018) said, “A black-box model is either a function that is too
complicated for any human to comprehend or a function that is proprietary; it
is a model that is difficult to troubleshoot. Deep learning models, for instance,
tend to be black boxes because they are highly recursive.” In other words, neural
networks are difficult to understand for their deep recursive architecture and
often unpredictable behavior. For example, in image classification, Goodfellow
et al. (2014) showed that NN could be deceived by a slightly modified image,
which is indistinguishable from the original for humans, yet the NN cannot
classify it correctly.

In this chapter, we try to investigate what is really behind the achievements
of transfer learning by analyzing the behavior, training process, and what is
transferred from the parent to the child. We dive into the analysis of transfer
learning.

Although we presented several cold-start and warm-start methods in Chap-
ter 4, we are going to analyze only the warm-start Balanced Vocabulary approach
in order to make the analysis consistent. We decided on this approach as it
reaches the best performance. However, we are convinced that other presented
methods behave similarly.

This chapter is organized into sections that analyze various aspects of transfer
learning. We start by investigating the negative effects of transfer learning in
Section 5.1. In Section 5.2, we discuss the differences between the scenarios
with shared-source and shared-target language. Then in Section 5.3, we try to
answer if the training data size is more important than the language relatedness.
We follow with a discussion if the gains stem from linguistic features or simply
from a better initialization of the neural network in Section 5.4. We conclude
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the results from analysis in Section 5.5. Lastly, in Section 5.6, we perform a case
study an application of transfer learning on backtranslation.

5.1 Negative Transfer
In generic machine learning, transfer learning is also known for its downsides
(Pan and Yang, 2010; Weiss et al., 2016). When transferring knowledge from a less
related task, it may hurt the final performance on the child task in comparison
to the performance obtained without transfer learning only with the use of a
child model. This harmful effect is called “Negative transfer”.

The main reason behind the negative transfer is often the domain mismatch
between the parent and child tasks or even an unrelated parent domain (Pan
et al., 2010; Ge et al., 2014), which prevents the model from the utilization of the
parent model during transfer learning.

Wang et al. (2019) proposed a formal definition of the negative transfer and
evaluated the definition on several transfer learning approaches. They evaluated
the following three critical factors influencing the negative transfer:

1. Divergence between the joint distributions of both tasks is hurting transfer
learning.

2. Effectiveness of transfer learning depends on the size of child data.

3. Transfer learning should be evaluated with the same setting of the neural
network to avoid adding a risk of different setups.

As for the first factor, the ideal transfer learning should figure out and take
advantage of only the similar parts of tasks, however, in the real-life scenario
it often takes into account also the misleading information learned from the
parent task. The second factor elaborates that the less training data is available
in the child domain, the more fragments are preserved from the parent task,
which decreases performance on the child task. On the other hand, when we
have plentiful of child data, a better baseline can be trained, which reaches a
better performance than transfer learning. Thus negative transfer is relatively
more likely to occur. The last factor is to avoid misjudgment by comparing the
performance of transfer learning with a baseline using different parameters. For
example, fine-tuning hyper-parameters separately for the transferred model and
baseline will likely lead to different results due to the hyper-parameter setting.

Transfer learning in the field of NMT emerged recently (Zoph et al., 2016).
Thus there is a lack of research on the negative transfer in this field. Zoph et al.
(2016) have not discovered any problematic behavior of transfer learning. It
could be due to the design of the experiment that avoids the negative transfer
altogether. For example, initial works on transfer learning in NMT examine only
linguistically related language pairs (Nguyen and Chiang, 2017; Neubig and
Hu, 2018). Another possible explanation is that the neural networks are robust
enough that they can re-train any transferred parameters hence avoiding the
negative transfer at all.

In this section, we try to shed some light on the negative transfer in NMT
by evaluating several experiments and identifying the possible downsides of
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Figure 5.1: The graph represent behavior of child model during first 10k training
steps. The blue area represents the ratio of Czech segments in the output of child
model immediately after the transfer learning start. The black curve illustrates
the BLEU score on the English→Estonian development set.
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transfer learning in NMT. In Section 5.1.1, we investigate if the parent target
language leaks to the outputs of the child. Then in Section 5.1.2, we study the
condition of having an extremely low-resource child and if that hurts the transfer
learning success. In Section 5.1.3, we study the reverse effect of having a parent
with less parallel sentences than the child. Wang et al. (2019) mentioned that
another factor negatively influencing transfer learning is a divergence between
parent and child distributions. Thus we investigate the scenario with no-shared
language in Section 5.1.4. Lastly, we conclude in Section 5.1.5.

5.1.1 Traces of Parent Language Pair
Wang et al. (2019) mention as an effect of negative transfer that parent fragments
appear in the child outputs whenever the child task has a low amount of data.
This is mainly because the child has not entirely forgotten the parent task. In
this section, we investigate traces of the parent language pair in child translation,
such as text fragments.

During transfer learning, the neural network is not notified about the change
in the language pair. This means that the NN has to forget the parent task
during the training on child parallel corpus. This can result in fragments of
parent target language appearing in the child model output.

In order to test if there are any traces of the parent language pair in the
output of the child model, LanideNN (see Section 2.2) automatically identifies
the language of transfer learning outputs, and we measure how often does the
parent language pair appear in the child output.

We used our LanideNN as it is trained to recognize language switching
within one sentence instead of labeling the whole sentence by one label; we can
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Table 5.1: Relic words from parent language in the child output. The English
gloss is our (manual) translation of a given Czech word.

Appearances Czech English Gloss

49 kámo buddy
31 Článek Article
20 Podívej Look
17 jasný clear/ok
11 Odpověď Answer
8 strýc uncle
7 Poznámky Notes

get distribution over each character. We calculate the score by labeling each
character in the testset with the language label and then calculating the ratio of
labels for each language in the testset.

We evaluate the model every 250 steps, which is roughly every three minutes
of training. As the parent model we use English→Czech and the child model is
English→Estonian. These language pairs have different target language from
different language family, which should help when automatically recognizing
the language. For this evaluation, we use the English→Estonian development
set and T2T11.

From Figure 5.1, we see that the NMT model quickly forgets generation of
Czech sentences, after just 3k steps the model generates less than 1% of Czech
data. The training time for 3k steps took only 43 minutes. We remind the reader
that the standard time of training even extremely low-resource language pairs
is at least 50k training steps. Therefore it takes only a fraction of time for the
NN to forget the parent target language.

Observation 17: During the training of a child model, the NN almost instantly forgets
the parent target language and adapts to the child target language.

We need to mention that the results are based on an automatic measure and
that LanideNN’s error rate, needs to be taken into account (in a multilingual
setting, the error rate is less than 4%, see Section 2.2.3). We note that this
automatic language detection cannot be reliably used for fine-grained evaluation
to investigate if the child occasionally generates the parent target language.

In order to evaluate how often child model produces parent (Czech) words,
we used the final child model to translate 100k English sentences randomly
selected from the parent training corpus. We chose the parent training corpus as
these sentences could be memorized by NN from the parent model training and
it is thus most likely that the training input sentences could trigger the parent
behavior in the child model. The final child model was trained for 75k steps.

We evaluate the translated sentences both automatically as well as manually.
The automatic evaluation is the same as in the previous analysis and identified
54 Czech sentences. We manually checked these sentences and found out that
a few of them are Czech postal addresses or other named entities, the rest are
Estonian sentences with Czech words inside them. The longest Czech sequence
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without named entities is “u všech čert” (an incomplete idiom “all the hell”).
However, we noticed that the Czech words are often already present in the
source sentence.1

In order to analyze the size of Czech words produced by the child model,
we listed all sentences that use Czech characters not contained in Estonian, e.g.
characters with diacritics. Then we removed sentences, where the source also
contained Czech-only characters. This way, we got 624 out of 100k sentences,
which often contained only one word that we manually identified as Czech.
Altogether these sentences contained 645 words with Czech-only characters (the
evaluated dataset contained 1.4M words). We list few of the most frequently
appearing in Table 5.1.

Despite that we evaluated the child model with parent training data, i.e. the
corpus that the model could have memorized, we found only a few parent relics.
Therefore, we conclude that transfer learning is not negatively affected by the
parent model.

Observation 18: Relic words (i.e. words from the parent target language) are very
rare in NMT transfer learning.

The rapid change in behavior, when only 3000 steps are enough to forget
the parent target language, is one of the results of “catastrophic forgetting”, a
nature of a network to quickly forget or re-train previously learned features. This
phenomenon has been widely studied (Kirkpatrick et al., 2017; Kemker et al.,
2018) as the researchers develop methods to overcome this issue. Furthermore,
we have tackled problems connected with catastrophic forgetting in Kocmi and
Bojar (2017a) when experimenting with curriculum learning (Bengio et al., 2009).

Despite catastrophic forgetting being a problem in machine learning in gen-
eral, in the scenario of transfer learning, we believe it helps to avoid negative
transfer from the parent model by forgetting it. However, we need to keep in
mind that in future, when algorithms become more robust in terms of catas-
trophic forgetting, the negative transfer could emerge as a problem for transfer
learning because we saw some words attributed to the parent language pair.

5.1.2 Extremely Low-Resources Language Pairs

We showed that NMT systems quickly forget the parent language in the low-
resource scenario. Now, we evaluate an extremely low-resource language pair
to find out, if our approach helps in the extremely low-resource scenario (see
Section 2.1.2) or if insufficient data lead to negative transfer as Wang et al. (2019)
described. The results in this subsection are from our paper Kocmi and Bojar
(2018) (T2T4).

We simulate extremely low-resource settings by downscaling the data for
the child model but maintaining the same parent model. It is a common knowl-
edge that gains from transfer learning are more pronounced for child models
with smaller training data. We use the English→Finnish as a parent model
for English→Estonian. We mention that shared-source is the harder transfer
scenario as the model cannot benefit from the parent English language model

1The Czech–English training corpus is noisy, as we discussed in Section 2.3.1.
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Figure 5.2: Maximal score reached by English→Estonian child for decreasing
sizes of child training data, trained off an English→Finnish parent. The baselines
use only the reduced Estonian–English data.
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because the target language changes from Finnish to Estonian (more analysis in
Section 5.2).

The results of downscaling the child training corpus are shown in Figure 5.2.
We see that our approach applies even to extremely low-resource language pairs
with as few as 10k sentence pairs. We see this behavior on the 10k training
corpus, where the baseline reaches 1.95 BLEU. This behavior is in accordance
with observations done by Koehn and Knowles (2017). For such a small amount
of training data, the NMT baseline cannot be properly trained. With transfer
learning, NMT suddenly becomes able to train the model and reaches 12.46
BLEU.
Observation 19: Transfer learning helps NMT to train models for extremely low-
resource language pairs that are not possible to properly train on their own.

Sennrich and Zhang (2019) recently revisited the problem of extremely low-
resource language pairs and showed that it could be tackled with various tricks.
Furthermore, transfer learning could be used as another way of improving the
extremely low-resource language pairs hand in hand with other techniques
mentioned by Sennrich and Zhang (2019).

As Wang et al. (2019) summarized, transfer learning can lower the perfor-
mance of the child task whenever the amount of child training data is too low.
We showed that this is not the case in NMT because transfer learning can help
training the model even when the baseline cannot be trained in the first place.

5.1.3 Low-Resource Parent Language Pair
We showed that transfer learning is not restricted to the low-resource scenarios
and improves the performance even when the child is a high-resource language
pair (see Observation 9 and Observation 16). However, it is in the scenario,
where both the parent and child model are high-resource.
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Table 5.2: The column “Transfer” is our warm-start method, baselines corre-
spond to training on child corpus only. We show the sizes of corpora in millions
sentences. The ‡ represents significantly better results.

Parent Size Child Size Transfer Baseline

EN→Estonian 0.8M EN→Finnish 2.8M 20.07 ‡ 19.50
Estonian→EN 0.8M Finnish→EN 2.8M 23.95 24.40
EN→Slovak 4.3M EN→Czech 40.1M 22.99 23.48 ‡
Slovak→EN 4.3M Czech→EN 40.1M 28.20 29.61 ‡

Wang et al. (2019) summarized that transfer learning is negatively influenced
by the parent model whenever the parent has a low number of training examples.
In this section, we examine this condition in the area of NMT, and we investigate
the scenario where the parent has a lower amount of parallel sentences than the
child model.

Zoph et al. (2016) conclude that the relatedness of languages is the main
factor influencing the success of transfer learning, which we already showed it
is not a necessary condition in Chapter 4. However, we use linguistically related
languages in this experiment, because the secondary goal is to test what plays
a bigger role in transfer learning – the relatedness of languages or the size of
parent data.

Results from Kocmi and Bojar (2018) (T2T4) are presented in Table 5.2. We see
that low-resource parents do not generally improve the performance of sufficient-
ly resourced children. The only exception is the child English→Finnish, where
the child has only 3.5 times more parallel sentences than the English→Estonian
parent.

Observation 20: Transfer learning harms the child performance whenever the parent
has substantially less training data than the child.

Whenever the child has notably more training data, e.g. ten times more for
Czech–English it even (significantly) decreases the child’s performance com-
pared to the baseline. Therefore we conclude that transfer learning is negatively
influenced in scenarios where the parent has substantially less training data. We
suppose it could be due to the initial warm-up steps when the network changes
rapidly, thus low-resource language can skew it. However, more analysis is
needed to study this behavior properly.

Furthermore, we evaluated linguistically related languages where the relat-
edness could help improve the model. For example the Czech and Slovak are re-
lated to such extent that evaluating English→Czech system on English→Slovak
testset output leads to 6.51 BLEU (see Section 4.7.3). However, the relatedness
did seem not to play any role in our experiments, and transfer learning led to
worse performance than training on child parallel corpus only.

Observation 21: For a high-resource child the linguistic relatedness of parent and
child language pairs is less important than the size of the parent training corpus.
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Table 5.3: No-shared language scenario of transfer learning. The child model
is Estonian→English. Each row represents various metrics for measuring MT
performance, where higher number is better for all metrics. The significance ‡
is computed pairwise relative to the baseline “No transfer learning”.

Parent BLEU nPER nTER nWER chrF3 nCharacTER

No transfer learning 21.74 54.33 35.66 32.70 49.87 37.70
Arabic→Russian 22.23 55.05 36.66 33.59 50.86 40.11
Spanish→French 22.24 ‡ 55.32 36.58 33.69 50.88 39.59
Spanish→Russian 22.52 ‡ 55.26 36.85 33.79 51.28 39.92
French→Russian 22.40 ‡ 54.99 36.50 33.39 50.93 39.60

5.1.4 No-Shared Language Scenario

One of the main factors of negative transfer is the divergence in distributions
between parent and child training data (Wang et al., 2019). In NMT, one would
assume that the languages in question are the key element affecting task simi-
larity.

In Section 4.7.3, we showed that the relatedness of the languages is not the
most critical for transfer learning. Moreover, the related English→Finnish parent
performed worse even when compared to a parent that uses a different writing
script, in our case, English→Russian with Cyrillic. Thus we have not detected
any negative transfer when evaluated on less linguistically related languages.

However, our experiments always contained a language shared between
the parent and child, e.g. English, which could work as a connecting bridge
during transfer learning, thus preventing the negative effects. In order to test the
negative transfer in NMT, we experiment with a no-shared language scenario.

We examine the performance of Estonian→English child trained on top of
parents using unrelated languages, specifically Arabic→Russian, Spanish→French,
Spanish→Russian, and French→Russian. The parents are trained with the UN
corpus (Ziemski et al., 2016), which has 10M multi-parallel sentences across six
languages.

The results from Kocmi and Bojar (2018) (T2T4) are shown in Table 5.3. We
see mostly significant gains from transfer learning in all cases. The only non-
significant gain is from Arabic→Russian, which does not share the script with
the child’s Latin at all, only sharing of punctuation and numbers is possible
across all the tested scripts.

Observation 22: Transfer learning improves the performance even for the no-shared
language scenario.

There is no loss of performance in comparison to the baseline. This can be
seen either as the evidence that transfer learning is not negatively affected by
the difference in data distributions between parent and child, or that the mere
distributional properties of all (tested) languages are sufficiently similar to be
useful for transfer learning in NMT.
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Surprisingly, the Spanish→Russian (with a target languages that uses the
Cyrillic script) reached a better performance than the Spanish→French, a target
language that is linguistically closest to the Estonian→English from all four in-
vestigated language pairs. However, neither of these two systems is significantly
better than the other. Furthermore, the gains are quite similar (+0.49 up to +0.78
BLEU), which supports an assumption that the major factor influencing transfer
learning is the size of the parent (here, all parents have 10M sentence pairs). We
are going to discuss this aspect in Table 5.5. This result can also be explained
with a similar domain of parent training set. In comparison, the Czech→English
parent, which has 40.1M sentences from a broader range of domains and has a
shared language (English), improved the performance of Estonian→English by
3.38 BLEU.
Observation 23: The exact parent language pair does not seem to affect the perfor-
mance given a particular domain and parent data size.

In the no-shared language scenario, the gains cannot be attributed to the
language model or model parts such as shared English word embeddings. The
subword vocabulary overlap is mostly due to short subwords or numbers and
punctuation.

In Section 2.4.2, we discuss issues with the BLEU metrics, e.g. ignoring
the importance of various n-grams or high-influence of tokenization. For this
reason, we computed the scores for several other automatic methods. We see
that in all metrics, transferred models perform better than the baseline.

The experiments presented in this section indicate that the parent simply
works as a better model weight initialization in comparison to the random
initialization. We investigate it more in Section 5.4.

5.1.5 Conclusion on Negative Transfer
In this section, we investigated the effect of negative learning. We evaluated
various scenarios and identified two weaknesses of transfer learning. We showed
that the final child model could exhibit relics of the parent target language in
Section 5.1.1. Moreover, in Section 5.1.3, we showed that when the parent has
substantially less training data than the child, transfer learning may hurt the
final performance. In this scenario, the training model without transfer learning
performs better.

Lastly, we reevaluate three critical factors proposed by Wang et al. (2019)
that influence the negative transfer:

1. Bigger divergence between the distributions of both tasks is hurting trans-
fer learning.

2. Effectiveness of transfer learning depends on the size of child data.

3. Negative transfer should be evaluated with the same setting of the neural
network, to avoid adding risk from a different network.

We showed that divergence in distribution does not play a negative role in
NMT transfer learning because even the no-shared language scenario improves
child performance (see Section 5.1.4).
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Table 5.4: Number of steps needed for a model to converge. The size shows the
number of sentences in the corpora of each language. For both child the second
language is English. The results are from Section 4.8 with subtracted time of
parent model training.

Child language Size Shared-source Shared-target

Estonian 0.8M 75k 25k
Gujarati 0.2M 195k 180k
Russian 12.6M 935k 790k

The second factor plays a role only in the case when the parent has less
training data in comparison to the child (see Section 5.1.3).

We used an identical parameter setting for both baseline and transfer learning.
Thus the third factor does not play a role in our evaluation.

In conclusion, we provided an analysis of the negative effects of transfer learn-
ing and discovered two possible issues of transfer learning. We are not aware of
any previous study discussing negative transfer in NMT transfer learning.

5.2 Does Position of Shared Language Influence Trans-
fer Learning?

We noticed that transfer learning has different behavior for the shared-source
and shared-target language scenarios. For example, English→Russian parent
improved the Estonian child more than English→Finnish (20.41 vs. 19.74 BLEU),
however in the opposite direction Russian→English worked as a worse parent
than Finnish→English (23.54 vs. 24.18 BLEU), as we showed in Section 4.7.3.

In this section, we investigate the influence of the position of the shared
language on transfer learning. Moreover, we discuss which of those tasks is
harder for the NMT transfer learning.

5.2.1 Shared Language Position Effect on Convergence Speed
We start with an investigation of the training time needed for each direction
to converge. We recall the results from Section 4.8 (T2T8) in Table 5.4. We
also added the Gujarati–English pair from our paper Kocmi and Bojar (2019b)
(T2T11). We subtracted the number of parent steps needed for the convergence
and showed the results of the child model training in Table 5.4.2

In Table 5.4 we can see that the shared-target language scenario converges
faster for both the low-resource Estonian and the high-resource Russian. In the
case of Gujarati–English, the convergence is only slightly faster for the shared-
target.

2Training steps in Section 4.8 are the sum of parent plus child training steps, but we show
only the child number of steps in Table 5.4.
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Figure 5.3: Learning curves for various language pairs in both directions. The
Y-axis has been scaled for each learning curve by a constant in order to match
their final performance. The bracket specifies the child’s second language that
is paired with English. The convergence is seen only on Gujarati pair as other
languages converged later than within first 30k steps.
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Observation 24: Transfer learning with a shared-target language converges in fewer
steps than with a shared-source language.

We need to mention that the total number of training steps does not always
reflect the convergence speed because the performance usually fluctuates and
thus the model can converge after a different number of steps, which depends
on randomness in training. Moreover, the training time does not explicitly
mean if the task is easier; there are many other factors like shared language, the
noisiness of training data, and other factors.

Therefore we investigate the learning curves and look for a distinctive be-
havior between these tasks.

5.2.2 Shared Language Position Affects Slope of Learning Curve
In Figure 4.1, we described three impacts of transfer learning on the learning
curve – namely, higher start, higher performance, and higher slope. The effect of
higher slope suggests that the model trains faster, therefore we compare learning
curves of shared-source and shared-target scenarios in order to find out which
one learns faster.

We report the learning curve’s Y-axis in BLEU, but any other metric could
be used. The BLEU score has a disadvantage that it cannot be compared across
various languages or even testsets. Therefore, in order to study the slope of the
learning curve, we need to scale it. We scale each learning curves by multipli-
cating the performance (BLEU) by a fixed constant. The constant is selected in
order to align the best-reached performance of both translation directions.
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Figure 5.3 presents the learning curves of three language pairs evaluated in
the previous section on their respective development sets. We investigate only
the first 30k training steps, where the difference in slopes is most visible.

When comparing the learning curves of shared-source and shared-target
scenarios, we see that for all three language pairs, the shared-target has a higher
slope than the shared-source.

Observation 25: Transfer learning with a shared-target language has a higher slope
of the learning curve.

This observation suggests that shared-target, i.e. having shared language
(e.g. English) on the target side, is easier for transferring knowledge from parent
to child. In this scenario, NN reaches higher performance in a shorter time
compared to the shared-source scenario. This behavior is not surprising. From
the neural network’s point of view, it is learning to predict the shared language
through the whole training process. Therefore it can utilize the language model
from a parent with only learning different encoder’s part of the model. We
further analyze the behavior by freezing various parts of a model in Section 5.4.

5.2.3 Parent Performance Drop
In transfer learning, we do not pay attention to the final parent’s performance
as is customary in multi-task learning. In Section 5.1.1, we showed that for
translation direction with shared-source, the child model quickly forgets the
parent target language.

In this section, we investigate how the parent translation deteriorates during
the child’s training phase in both directions, and if the shared-source and shared-
target scenarios behave differently.

We evaluate two scenarios, the shared-source and shared-target under our
English→Gujarati and Gujarati→English child models transferred from Czech–
English parent (Kocmi and Bojar, 2019b) (T2T11).

We evaluate both models each by the corresponding child’s and parent’s
development set. The scores between language pairs are not comparable as they
are for different languages.

Figure 5.4 presents the results of our experiment. The figure starts at a global
step of 2M, the end of the parent models. At this point, all parent models have
the final performance higher than 20 BLEU (not visible in the figure). The
learning curves with the same dashing correspond to the same model evaluated
either on the child or parent development set.

We can see that from the start of the child model’s training, the performance
of the parent largely deteriorates on the parent’s development set and that the
behavior for shared-source and the shared-target is distinct. In the scenario with
shared-source language, the model does not know to which language it should
translate. Therefore it learns to always translate to the child target language.

Interestingly, in the shared-source language scenario, the performance drops
nearly immediately. In contrast, whenever we investigate the shared-target
scenario, the performance is deteriorating slower, and even after finishing the
child’s training, it is still able to translate Czech→English parent language pair
with 15 BLEU accuracy.
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Figure 5.4: Performance of child model on a parent development set. Both child
are Gujarati–English. Learning curves are evaluated on a development set of
analogous language pairs.
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Observation 26: Parent performance deteriorates during the child training at different
speed depending on shared language position. The shared-source language scenario
declines almost instantly. The shared-target language scenario deteriorates slowly.

Figure 5.4 shows that the neural network forgets the parent source language
slower. Thus the phenomenon of critical forgetting is mostly concerned with
the decoder part. If it forgot both of them in the same way, the drop in par-
ent performance would be similar in both directions, i.e. English→XX and
XX→English.

Observation 27: A converged child model in the shared-target scenario can still
translate the parent language pair to some extent. It is not possible in the shared-source
scenario.

This behavior could be a result of an error backpropagation, where the
gradient vanishes as it travels back through the network, thus updates the
encoder layers less than the decoder layers. This is especially true in transfer
learning with shared-target because the network already knows how to generate
the target language, e.g. English. Thus it does not produce sufficient errors that
would modify the encoder. Thus the encoder does not forget the parent task as
quickly. This suggests that the most important part of the model is the decoder
and therefore, transfer learning with the shared-target language is easier to
learn as it already knows how target language should look like.

As future work, we could increase the error backpropagation to the encoder
using ultra-residual connections similar to Emelin et al. (2019) that would con-
nect various layers of the encoder directly with the decoder’s layers. Moreover,
we could add a special tag at the beginning of the source language specifying
the desired target language (Johnson et al., 2017).
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5.2.4 Conclusion
In this section, we investigated if there is a difference between the shared-source
and shared-target scenario. In Section 5.2.1, we showed that shared-target
converges faster than shared-source, which is associated with a higher slope as
demonstrated in Section 5.2.2. Furthermore, we revealed that NMT forgets the
parent model slower in the shared-target scenario in Section 5.2.3.

We cannot compare our findings with other works in the NMT transfer
learning because we are the first to show transfer learning with a shared-target
language. However, we can investigate a closely related task of multi-task NMT.
Firat et al. (2016) trained a multilingual system with six languages and showed
that their model outperforms the single-pair baseline only in case of the shared-
target language. In the case of the shared-source language scenario, the baseline
performs on-par or better than their multilingual system. Johnson et al. (2017)
showed that the many-to-one scenario (shared-target) leads to improvements in
most cases, unlike the one-to-many scenario (shared-source).

In summary, based on previous observations, we conclude that the shared-
target language scenario is a harder task for transfer learning compared to the
shared-source language scenario.

Lastly, there are other scenarios that do not fall into our investigated cate-
gories. We can have the shared language on a different translation side, e.g.
parent of English→XX and child XX→English, which we are going to investigate
in Section 5.4.2. And we already examined a no-shared language scenario in
Section 5.1.4.

5.3 Language Relatedness versus Data Size
Whenever humans learn a new language, it is much easier for them if they
know a related language. Therefore we suppose that similar works for NN
with transfer learning. Zoph et al. (2016) in their transfer learning approach
concluded that "the choice of parent model can have a strong impact on transfer
models, and choosing better [related] parents for our low-resource languages
could improve the final results". Furthermore, the use of related language
pair as a way to improve the performance of a model has been widely studied,
and researchers showed that related language pairs can be used as a source of
improvements (Nakov and Ng, 2009; Nguyen and Chiang, 2017).

However, in Section 4.7.3, we saw that English→Russian is a better parent to
English→Estonian than English→Finnish despite being linguistically related,
moreover having the same script.3 Thus the main difference could be in the num-
ber of parent parallel sentences, where Russian–English has 12.6M sentences,
and Finnish–English has only 2.8M sentences.

Besides, we showed in Section 5.1.4 that entirely unrelated languages still
yields improvements in the child model. On the other side, having less resource-
ful parent can harm the performance of the child as we showed in Section 5.1.3.

These are indications that the relatedness of languages is not the main factor
in transfer learning, and the size of the parent model has a bigger influence on

3We do not transliterate the Cyrillic as done by other works (Nguyen and Chiang, 2017).
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Figure 5.5: Various ways of damaging original sentences. Each column corre-
sponds to the original word. All occurencess of a word type are replaced with
the same string anywhere in the corpus, except for option 1 with shuffled words.

Original: my cat likes playing with my other cats
Option 1: likes playing other cats my cat with my
Option 2: has juggling rather study research has those set
Option 3: tf jha sprlz wshfpun dpao tf vaoly jhaz

child performance. In this section, we investigate the phenomenon of language
relatedness in contrast to the training size of the parent model.

5.3.1 Artificially Related Language Pair
Many factors influence language relatedness: linguistic family, writing script,
grammar phenomena, etc. Therefore it is hard to measure the relatedness
of various languages, especially comparing training data sizes with various
degree of relatedness. In this section, we evaluate the effect of various degree
of relatedness in contrast to various training data sizes. We present artificially
related language where we can influence the degree of the language relatedness
and measure the performance of the child. The artificial language is prepared
by harmful modifications of the original training set.

There are several options on how to prepare artificial related language pair
from the original training data. We can either shuffle words in the sentence,
which creates a language pair with the same vocabulary, but different word order.
The second option is to shuffle words within the language, e.g. “cat” would
always be replaced by “juggling”. The third option is to shuffle individual
characters within each word type based on an exact replacement rule. The
variants are visualized in Figure 5.5.

The first option is prone to the word order, if we would like to have artificial
language with consistent word order we need to rely on some linguistic analysis,
which would add another layer of uncertainty to this experiment, however, we
investigate this option in Section 5.4.3 as a way to study word order). The second
option is problematic as we want the related language to have a property that
similar words behave similarly, for example, a word “cats” should be replaced
with something similar to “juggling”, however this would need an in-depth
analysis of clusters of words and generation of rules which words are mapped
to which. It is very hard, especially for an inflected language such as Czech.
The third option generates a language with the same word order and language
where visually similar words appear in a similar context. However, the language
is unintelligible from the original. Moreover, due to the subword segmentation,
the actual lengths of sentences as seen by NMT vary and thus the NN cannot
learn easy mapping across the sentences.

We decided to create the artificial language pair by the last option of substitut-
ing characters. We mix only the alphabet characters to match real-life conditions
where most languages use the same punctuation and numbers. Furthermore,
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Figure 5.6: An example sentence in various ratio of substitution.

Original: Pardon? Have you seen this cat?
70% related: Pardon? Crnk you seen this tre?
50% related: Irfjwh? Have you ykkh ecsy cat?
30% related: Irfjwh? Crnk bwm seen ecsy cat?
0% related: Irfjwh? Crnk bwm ykkh ecsy tre?

we preserved the capitalization. We modify both source and target language.
Therefore there is no shared unmodified language between parent and child.

In order to scale the relatedness of languages, we randomly select X% of
words from source and target language and substitute characters only in the
remaining words; thus we obtain corpus with X% words unchanged. This way
we get a pseudo related language pair with a varying degree of relatedness
where 0% is almost unrelated, and 100% is identical language. An example is in
Figure 5.6.

In this experiment (T2T11), we use English*→Czech* as a parent model with
various degree of relatedness and various amount of training data. The corpus
is created from CzEng 1.7 (see Section 2.3.1). We experiment with 80%, 50%,
and 0% related corpus and each in 2M, 5M, 10M, and 20M parallel sentences.
We use a warm-start technique where all models use the same vocabulary that
is created from 50% related corpus.

As the child language pair, we use 100k unmodified random sentences from
the same corpus that have not appeared in our parent corpus. The performance
of a child when trained solely on its training data is 7.17 BLEU.

The training process is as follows: train the parent model for 1M training
steps, take the last model, and continue with the training of the child model for
additional 200k steps. The best child model is selected based on the development
data and evaluated against English→Czech testset.

The results in Table 5.5 present an interesting pattern. We can see that having
more data can be more useful than a related language with fewer data. For
example, 50% parent with 2M parallel sentences reached 16.76 BLEU, in contrast,
having ten times more data but 0% related parent yields 18.25 BLEU. On the
opposite, whenever the difference is only double, then the relatedness helps
more with fewer data (19.13 BLEU vs. 18.25 BLEU). With 5M training data, the
50% parent already performs better than 20M with 0% (19.63 BLEU vs. 18.25).

We obtained similar results in real-life experiments as noted in the previous
chapter, where more resourceful language (Czech or Russian) performed better
than related language with less data (Finnish) with the Estonian child.

Observation 28: Language relatedness plays a role in transfer learning. However,
the amount of parent training data can improve performance even more than language
relatedness.

This finding can help when deciding which parent language pair to choose
for a particular child. For example, whenever related language pair does not have
enough training data, we could choose any training corpus with a high number
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Table 5.5: The results of various parent models. Each column specifies the size of
parent training data, which is randomly downsampled from the original. Each
row specifies parent model relatedness. The scores are in BLEU and specify
performance of child model trained from the parent. For models with the star
the performance dropped quickly during child training.

2M 5M 10M 20M

80% related 18.11 *20.46 *21.81 *22.10
50% related 16.76 19.63 19.13 19.61
0% related 15.09 16.83 17.91 18.25

of parallel sentences (for example Czech–English). However, our experiment
is performed on artificially related languages, which could be considered as a
noisy parent model. Moreover, we evaluated only 12 settings of relatedness and
training size.

We noticed that with 80% relatedness the child model (labeled by a star)
performs best without the training on its training data as the performance
quickly deteriorated during the child training.

The language relatedness is not the only criterion or the most important one.
Even unrelated parent can improve the performance of the child. In the next
section, we examine the effect using parent language pair with an artificially
huge number of parallel sentences.

5.3.2 Parent Trained on Large Mix of Languages

We showed that even completely unrelated language can yield improvements
in the child model and that the number of parallel sentences plays an important
role. Therefore we investigate scenario, where we create the biggest possible
training corpus by mixing all corpora we have at hand.

We created artificial training corpus that translates between English and a
mix of languages. Our target child is Estonian–English. Therefore we avoided
the training corpus of this language pair. We collected training corpora of most
languages from WMT 2019, most of them we already used throughout this
thesis. Then we mix them together by aligning the English on one translation
side and putting the other languages together on the other side. This way, we
create Mix–English corpus.

We have not added any target language label as is used in the multi-task
learning (Lu et al., 2018) so our resulting model is not suitable for any practical
translation; it picks a target language at random for every input segment.

We collected following language pairs with various training sizes: German-
EN with 42.2M sentences, Czech-EN with 40.1M, Russian-EN with 14.7M,
Italian-EN with 8.3M, Slovak-EN with 4.3M, Finnish-EN with 2.8M, Dutch-
EN with 2.6M and Basque-EN with 0.6M parallel sentences. The final shuffled
corpus has 117M parallel sentences.
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Table 5.6: The result of Estonian–English child trained off of various parent
models. The ‡ represents significantly better results.

Czech (Warm-start) Mix (Cold-start)

EN→Estonian 20.07 20.72 ‡
Estonian→EN 23.35 24.76 ‡

We trained two models (T2T11): English→Mix and Mix→English for 11.6
million training steps each. For training, we have used multi-GPU training with
8 NVidia GeForce 1080 graphical cards.

We decided to use our cold-start technique in order to leave the vocabulary
selection for the child instead of warm-start transfer learning, which specifies a
vocabulary in advance of parent training.

Before we evaluate transfer learning, we investigate the trained parent mod-
els. We took the Estonian–English testset and translated it with both English→Mix
and Mix→English models. We have noticed that the English→Mix generates
outputs in various languages but never mixes them within a sentence. For ex-
ample, whenever the translation starts with Czech, the entire output is in proper
Czech. Thus we automatically evaluated the translated sentences and count-
ed how many languages appear in the output of translated Estonian–English
testset:

• Mix→English – 80.4% Estonian, 18.2% English and 1.4% others.

• English→Mix – 43.1% German, 26.5% Czech, 22.0% Russian, 3.5% Italian,
1.7% Dutch and 3.2% others.

Mix→English often only copies the source into the target. Therefore it gener-
ates mostly Estonian sentences (sentences copied from the source). English→Mix
on the other hand somewhat randomly select translation language, we can see
it reflects proportions from training corpus, which contains the most sentences
from German and Czech, followed by the Russian and Italian.

Observation 29: NMT reflects the domain (language) distribution of sentences from
the training corpus despite any additional knowledge.

Results of Estonian–English child trained off of Mix–English parent language
pair are in Table 5.6. Before discussing the result, we have to mention that we
are comparing the cold-start direct transfer (column “Mix”) with warm-start
balanced vocabulary (column “Czech”). The reason is that we trained the Mix
model by T2T11 and we realized too late that our cold-start experiments are
trained by T2T8 setup (see the differences in Section 3.4). Thus instead of training
the model again, we are comparing the Mix model with warm-start setup also
trained on T2T11.

Therefore we remind the results from Section 4.8, where we found out that
the warm-start technique always has better performance than the cold-start
direct transfer.
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In Table 5.6 we see that Mix model performs significantly better than the
warm-start technique on Czech. Moreover, based on our findings in Section 4.8
whenever the warm-start technique would train the Mix model, it should obtain
even better performance.

This result is unusual on its own because the parent Mix model is not a
regular MT system as it was trained on a mix of languages and cannot be used
for translating in practice because it generates sentences from various training
languages at random.

Observation 30: More data in the parent model yields better performance of a child
even when the parent model is trained on a mix of languages.

We showed that the parent model does not have to be a model trained on
the same distribution of data, for example, the same language pair or similar
modification of parent training data as in Section 5.3.1.

5.3.3 Conclusion on Language Relatedness
We illustrated that less related language pairs with a higher number of parallel
sentences can improve the performance of the child more than a related language
with less parallel sentences. For example in Section 4.7.3 in Table 4.10 we showed
that English→Czech parent works better for English→Estonian than linguistical-
ly related English→Finnish (20.41 BLEU vs. 19.74 BLEU). Furthermore, even lan-
guages with a different script and more training data such as English→Russian
can improve the performance of the child English→Estonian more than the
related English→Finnish (20.09 BLEU vs. 19.74 BLEU). On the other hand,
whenever the shared language (in our case English) is on the target side, the
more related language Finnish→English is a better parent to Estonian→English
than Russian→English (24.18 BLEU vs. 23.54 BLEU). These examples show that
the relatedness of the parent is important. However, the size of parent corpus
also plays a critical role in transfer learning.

In Section 5.1.4 we experimented with languages that have both parent
languages different from the child. Moreover, they have the same number
of parallel sentences (10M sentences). We observed that the improvements
of the child model have been similar across all four parents, which suggest
that the same amount of training data leads to the same improvements. The
improvements were even for languages that do not share writing script.

In Section 5.3.1 we showed on an artificial parent that language relatedness
plays a role whenever the differences in training data are small (e.g. twice as
much data), however having parent trained on much more parallel sentences
leads to better child performance regardless the relatedness.

Section 5.3.2 we confirmed the observations by training a parent model on a
mix of all training corpora we have available and obtaining improvements in
child performance.

Based on our observations across the thesis, we conclude that although
the relatedness of languages plays a role the size of training corpus seems to
overcome the relatedness whenever the parent can be trained on much more
parallel sentences, even up to the point where the parent model is not useful to
the translation by itself.
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5.4 Linguistic Features versus Better Initialization
Neural networks have the reputation of being a black box. In this section, we
try to understand if the gains can be attributed to some linguistic features or
if the main contribution of transfer learning is simply a better initialization of
weights than random initialization. There are several possible explanations of
what are the reasons for the improvements:

• Knowledge of the shared language, e.g. English.

• General linguistic knowledge transferred from the parent model (e.g. word
order patterns or typical lengths of sentences).

• Better hyper-parameters that are changed after the start (especially learn-
ing rate).

• Better initialization of weights (weights transformed from the parent could
have more suitable distributions than the random initialization).

The main contribution could be due to the shared language between parent
and child, e.g. English. Although it is possibly one of the main aspects, it is
not the only one. In Section 5.1.4, we showed that transfer learning also helps
languages that have both source and target language different from the parent
model, i.e. Spanish→Russian helping Estonian→English.

Zoph et al. (2016) showed that transfer learning does not utilize only the
shared English, but also other parameters from the second language. Thus other
options could lead to the improvements of the child model.

Alternatively, the improvements could yield from linguistic features. For
example, the child could transfer some knowledge about the word order or
the ratio in source and target lengths. On the other hand, the main benefits
could be attributed only to NN layout. If we compare the training model from a
random initialization or a parent model, there are two main differences. The first
difference is in the initial weights, where transfer learning has weights initialized
already in some informed part of the parameter space compared to the random
initialization. The second difference is in the learning rate because we are using
non-constant learning rate depending on the global number of steps it changes
through the training process, which can simply mean that different learning
rate could lead to the same improvements.

In this section, we start by discussing the effect of shared language on the
NMT by analyzing various layers of the network in Section 5.4.1 as well as
investigating the behavior of the model when the shared language changes
position from parent to child in Section 5.4.2. Then we explore some linguistic
features of parent training data and analyze the generated output in Section 5.4.3,
Section 5.4.4 and Section 5.4.5. We conclude the section by analysis of learn-
ing rate influence in Section 5.4.6 and comparing transfer learning to random
initialization in Section 5.4.7.

5.4.1 Freezing Parameters
Thompson et al. (2018) investigated, which parts of a model are responsible
for the gains during domain adaptation. They used the technique of freezing
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Table 5.7: Child BLEU scores when trained with some parameters frozen. Each
row represents a parameter set that was fixed at the pre-trained values of the
Czech→English parent. Best result for frozen parts in each column in bold.

Frozen part EN→Estonian Estonian→EN

All 1.99 1.39
Embeddings 19.79 22.89
Encoder 19.65 20.61
Decoder 18.76 23.95 ‡
Attention 19.73 23.00
None 20.07 23.35

model sub-networks to gain an insight into NMT system behavior during the
continued training.

They segmented the RNN model (Bahdanau et al., 2014) into five sub-
networks: source embeddings, target embeddings, encoder, decoder with at-
tention mechanism and the softmax layer responsible for the generation of
the output. Then they follow standard scenario of domain adaptation (see
Section 4.2).

In this section, we use their technique to evaluate which parts of the neural
network are crucial for transfer learning. In order to analyze transferred pa-
rameters that are the most helpful for the child model and which need to be
updated the most, we follow the strategy by Thompson et al. (2018). We carry
out the analysis on Estonian–English pair with Czech–English parent.

Based on the internal layout of Transformer model parameters in the T2T,
we divided the model into four parts. (i) Word embeddings map each subword
unit to a dense vector representation. The same embeddings are shared between
the encoder and decoder. (ii) The encoder part includes all the six feed-forward
layers converting input sequence to the deeper representation. (iii) The decoder
part is again six feed-forward layers preparing the choice of the next output
subword unit. (iv) The multi-head attention is used throughout encoding as well
as decoding, as self-attention layers interleaved with the feed-forward layers (see
Section 3.3.1). We do not separate the self-attention layers used in the encoder or
decoder, therefore when freezing encoder (resp. decoder) we also freeze some
of the attention layer matrices.

We run two sets of experiments (T2T11): either freeze only one out of the
four parts and leave updating the rest of the model or freeze everything except
for the examined part.

The results are in Table 5.7. Based on the results the most important part of
NN that has to be changed is the decoder for EN→Estonian (resp. encoder for
Estonian→EN) that handles the language that changes from the parent to child.
With this part fixed, the performance drops the most.

The same observation is confirmed in Table 5.8: all the model parts (including
the multi-head attention) can be reused precisely from the parent model as long
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Table 5.8: Child BLEU scores when trained with most parameters frozen.
Each row represents a parameter set that was free to train; all other parameters
were fixed at their pre-trained values. Best result for non-frozen parts in each
column in bold. The results marked with * diverged as the model could not
train anything.

Non-frozen part EN→Estonian Estonian→EN

All 20.07 ‡ 23.35 ‡
Embeddings * *
Encoder * 13.21
Decoder 7.87 5.76
Attention 6.19 10.69
None 1.99 1.39

as the decoder for EN→Estonian (resp. encoder for Estonian→EN) can learn
the new language.

We got a significantly ‡ better score when the decoder was frozen compared
to when all the network were free to train in Estonian→English (23.95 vs. 23.25
BLEU). This shows that at least for examined language pair, the Transformer
model lends itself very well to decoder reuse. However, we do not see the
same in the opposite direction, which confirms that the position of the shared
language makes the task different as we discussed in Section 5.2.

Observation 31: Freezing decoder when the target language is shared during child
training can significantly improve the final performance.

Zoph and Le (2016) needed freezing embeddings for their transfer learning
to successfully work. On the other hand, freezing embeddings is harmful to our
transfer learning.

Other results in Table 5.7 reveal that the architecture can compensate for
some of the training deficiencies. Freezing the encoder (resp. decoder for
Estonian→EN) or attention is not that critical as a frozen decoder (resp. encoder).

Observation 32: Transformer model is robust enough to compensate for some frozen
parts and reach a comparable performance.

Whenever we freeze everything except a particular layer, we get a completely
new picture. Results in Table 5.8 show that the network struggles to change the
behavior from the parent when most of the network is frozen. Especially the
parent embeddings are the least useful for the child because keeping only them
leads to diverged training. The diverging results show that NN is not capable
of providing all the needed capacity for the child, unlike the self-attention.

All in all, these experiments illustrate the robustness of the Transformer
model in that it is able to train and reasonably well utilize parent weights even
when the training is severely crippled. Interestingly, the attention is a crucial
part of the network as it can compensate for the harmful effect to some extent.
We use this knowledge in Section 5.4.3, where we evaluate the parent model
with damaged word order.
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Table 5.9: Results of child following a parent with swapped English side. “Base-
line” is trained on child data only. “Aligned EN” is the more natural setup
with English appearing on the “correct” side of the parent, the numbers in this
column thus correspond to those in Table 4.10. The ‡ represents significantly
better model when comparing “Transfer” and “Baseline”.

Parent Child Transfer Baseline Aligned EN

Finnish→EN EN→Estonian 18.19 ‡ 17.03 19.74
Russian→EN EN→Estonian 18.16 ‡ 17.03 20.09
EN→Finnish Estonian→EN 22.75 ‡ 21.74 24.18
EN→Russian Estonian→EN 23.12 ‡ 21.74 23.54

5.4.2 Direction Swap in Parent and Child

In the previous section, we showed that the side of the network with shared
language is modified the least, and when frozen, it leads to the best performance.

We experimented with scenarios of shared-source, shared-target, and no-
shared language. In this section, we investigate the scenario, where the shared
language is switched to the other side between parent and child in order to
investigate if the technique can transfer other features across various parts of
the network.

In other words, we now allow a mismatch in the translation direction of the
parent and child. The parent XX→English is thus followed by an English→YY
child or vice versa. We use Estonian–English language pair as the child with
various parents. The results are from our paper Kocmi and Bojar (2018) (T2T4).

This way, the child cannot use the parent target language model as languages
on both sides changed. It is important to note that Transformer shares word
embeddings for the source and target side. However, we showed in the previous
section that the word embeddings are not crucial for the training, although
some improvements could be due to better English embeddings.

The results in Table 5.9 document that an improvement can be reached even
when none of the involved languages is reused on the same side. This suggests
that the model can transfer further knowledge across various parts or layers
of the network. Although there are too many factors that could influence it
(language relatedness, parent training size, etc.), thus we cannot make any
definite conclusion.

More importantly, the improvements are better when the shared language
is aligned (column “Aligned EN”), which concludes that the shared language
does play a significant role in transfer learning. This finding could be used
whenever we want to train only one parent, for example, due to the time or
resource restrictions and use it for more children even those with the shared
language on the other side.

However, it cannot be the only source of improvements as we showed in
Section 5.1.4 that the no-shared language scenario improves the performance of
the child.
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Table 5.10: Results of transfer learning with modified parent word order. The
performance is measured in BLEU.

Parent Child Performance Parent Performance

Unmodified parent 20.07 23.48
Shuffle source 19.18 12.63
Shuffle target 19.16 2.78
Shuffle both 18.43 2.23
Sort target 19.45 2.29
Shuffled sentences 0.03 0.00
Baseline 15.80 –

Observation 33: The improvements of transfer learning are partly but not fully
attributed to the shared language between parent and child.

5.4.3 Broken Word Order in Parent Model

We showed that the shared language plays a vital role in transfer learning, now
we attempt to find some particular linguistic features explaining the gains.

Intuitively, the child model could transfer linguistic knowledge from the
parent such as word order, length of the target language sentences, etc. In this
section, we experiment with the somehow modified parent to study the effect
on the transfer of knowledge.

We use the English→Czech as a parent model and the child is English→Estonian.
We used the shared-source language scenario as it is harder for transfer learn-
ing (see Section 5.2), and the improvements cannot be attributed to the shared
English target side as a better language model.

In the first experiment, we change the word order of a parent language pair
in order to find out if the language word order plays an important role in transfer
learning. Both of examined languages have mostly SVO (subject-verb-object)
word order.

The word order is important for the attention mechanism that learns which
parts of the source it should consider most.

We use sorting or shuffling of words (tokenized on whitespace) as a way to
create a broken parent language. We modify only the word order of the parent
model, therefore “shuffle source” means shuffling the source sentences (English
in this experiment) and leaving the target language unmodified.

Additionally, we created an experiment, where we shuffled all sentences
which breaks the sentence pairs (row “Shuffled sentences”). This way, the
parent model could learn to generate random sentences that are not related to
the source sentence. Thus it can mainly learn the decoder’s language model.

Results (T2T11) are tabulated in Table 5.10. The sorting of target side is less
damaging than shuffling. Parent with both source and target side shuffled has
the worst performance. However, it is still a good parent model for transfer
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Table 5.11: Various automatic scores on English→Estonian testset. Scores pre-
fixed “n” reported as (1 − score) to make higher numbers better.

Parent BLEU nPER nTER nCDER chrF3 nCharacTER

Baseline 17.03 47.13 32.45 36.41 48.38 33.23
English→Russian 20.09 50.87 36.10 39.77 52.12 39.39
English→Czech 20.41 51.51 36.84 40.42 52.71 40.81

learning and improves the performance of the child be more than 2 BLEU points
over the baseline.

Interestingly, the neural network has equal performance whenever the source
and the target are shuffled despite the different performance of the parents
(12.63 vs. 2.78 BLEU). We checked the performance of child model by various
automatic metrics, and in all of them, the shuffled source and target reached
similar scores.

This suggests that the word order of the target language is not the main
feature in transfer learning. A better explanation is that the shuffling of either
source or target breaks the attention mechanism in the same way, and then it
needs to retrain on the child data. However, further analysis is needed as there
can be other factors that can cancel each other out.

Observation 34: There is little difference for the final child performance between
shuffled word order of parent’s source or target language.

The poor performance of parent on English→Czech testset is understandable
because the BLEU is computed based on n-grams of words that are heavily
disrupted by shuffling. When we studied the outputs of the parent models, we
noticed that they actually learned to translate and only the shuffle the output
on top of that. The “sorted target” model translates and even alphabetically
sorts the outputs. This documents the high flexibility of Transformer’s skills in
capturing word relations: between source and target, it happily resorts to lexical
relations, and within the target, it easily captures (memorizes) alphabetical
sorting.

We have noticed interesting behavior of “sort target”. The model generates
correct words in alphabetical order. We compute the unigram BLEU score and
get 51.1 (compared to an unmodified model that has 53.8 unigram BLEU). If we
evaluate the BLEU on the sorted target, we obtain 14.77 BLEU (result is not in
the table). This result shows that the model learns to translate without access to
the word order.

Observation 35: NMT models, in general, can learn to some extent in the scenario
with source sentences having broken word order. Although the word order is crucial for
a good performance.

We showed that damaging the word order in the parent model leads to a
slight drop in performance of the child, still staying high above the baseline.
In the next section, we analyze the outputs of the child model and look for

99



Table 5.12: Candidate total length, BLEU n-gram precisions and brevity penalty
(BP). The reference length in the matching tokenization was 36062.

Parent Length BLEU Components BP

Baseline 35326 48.1/21.3/11.3/6.4 0.979
English→Russian 35979 51.0/24.2/13.5/8.0 0.998
English→Czech 35921 51.7/24.6/13.7/8.1 0.996

potential over-estimations of translation quality that could emerge from the
usage of BLEU metrics.

Lastly, “Shuffled sentences” cannot learn anything obtaining 0.03 BLEU. The
parent model learned to generate one sentence for each input, and the child
only changed the sentence into Estonian and generated “See on meie jaoks väga
tähtis.” (MT gloss: “This is very important to us.”).

5.4.4 Output Analysis
We rely on automatic evaluation. Thus we need to prevent some potential over-
estimations of translation quality due to BLEU. For this, we took a closer look at
the baseline English→Estonian model (BLEU of 17.03 in Table 4.10 (T2T4)) and
two English→Estonian children derived from English→Czech (BLEU of 20.41)
and English→Russian parent (BLEU 20.09).

Table 5.11 confirms that the improvements are not an artifact of uncased
BLEU. The gains are apparent with several (now cased) automatic scores.

As documented in Table 5.12, the outputs of transferred models are slightly
longer in terms of words produced. In the table, we also show individual n-
gram precisions and Brevity Penalty (BP) of BLEU. The longer output helps
to reduce the incurred BP, but the improvements are also apparent in n-gram
precisions. In other words, the observed gain cannot be attributed solely to
producing longer outputs.
Observation 36: Transfer learning helps the child model to generate slightly longer
sentences, and there are also clear improvements in produced n-grams.

Table 5.13 explains the gains in unigram precisions by checking words in
the child outputs that were present also in the baseline and/or confirmed by
the reference. We see that about 44+20% of words of child outputs can be seen
as “unchanged" compared to the baseline because they appear already in the
baseline output. (The reference confirms the 44% words.)

The differing words are more interesting: “Neither” denotes the cases when
the child model produced something different from the baseline and also from
the reference. Gains in BLEU are due to “Reference only” words, i.e. words only
in the child output and the reference but not in the baseline. For both parent
setups, there are about 9–9.7 % of such words. We looked at these 3.2k and 3.5k
words, and we have to conclude that these are regular Estonian words; no Czech
or Russian leaks to the output and the gains are not due to simple word types
common to all the languages (punctuation, numbers or named entities). We see
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Table 5.13: Comparison of child outputs vs. the baseline and reference. Each
column shows child trained from different parent either English→Russian or
English→Czech.

Appeared in English→Russian English→Czech

Baseline+Reference 15902 (44.2 %) 15924 (44.3 %)
Baseline only 7209 (20.0 %) 7034 (19.6 %)
Reference only 3233 (9.0 %) 3478 (9.7 %)
Neither 9635 (26.8 %) 9485 (26.4 %)
Total 35979 (100.0 %) 35921 (100.0 %)

nearly identical BLEU gains even if we remove all such simple words from the
child output and references.

5.4.5 Various Lengths of Parent Sentences
In Section 5.4.4, we showed that the child model generates slightly longer sen-
tences than when trained without transfer learning. In this section, we inves-
tigate the effect is visible also when the parents are trained on corpora with
sentences limited to certain length ranges.

In this experiment, we take the Czech–English corpus and randomly select
sentences of various length creating training corpus for different parents. Each of
the parents is trained with the corpus of sentences with lengths in the predefined
range. The length of the source and target sentences are different. Therefore we
use the sum of both lengths as the criterion.

We use four parent models. The first has sentence pairs with the length of
either source or target of at most 10 words (tokenized by spaces). The second
parent uses sentences of length 10 to 20 words. The third parent uses sentences
of length 20 to 40, and the last parent uses sentences of length 40 to 60 words.
We use English→Estonian as the child model in T2T11 setup for this experiment.

We want to make the experiment comparable. Therefore each training corpus
has exactly 300M words. Thus training set with the shortest sentences has the
most sentences altogether.

Table 5.14 shows the results from our experiment. We start by discussing
the parent performance. The parent model is unable to generalize from training
data of different length for the training set. Although it generates sentences with
slightly better length ratios than the training set, however, it cannot generalize the
sentence length well. For example, when training on “1-10 words” it produces
testset sentences with an average length of 10.9, which is more than it saw during
the training. Similarly, “40-60 words” generates sentences of an average length
of 35.5, which is shorter than training sentences.

It is an important finding that shows the need for checking training data in
advance if they have similar length distribution as the target domain.

Observation 37: NMT systems are highly influenced by the lengths of training
sentences, and they are unable to generalize the sentence lengths.
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Table 5.14: Performance and average number of words generated over the testset.
The references have average number of words 15.6 for the Czech testset 15.4 for
the Estonian testset.

Parent Child
Sentence lengths BLEU Avg. words BLEU Avg. words

1-10 words 8.57 10.9 16.57 15.3
10-20 words 16.21 15.4 17.48 15.3
20-40 words 12.59 21.9 17.99 15.3
40-60 words 5.76 35.5 16.80 15.5
1-60 words 22.30 15.3 19.15 15.4

When we discuss the performance of the child, we see that the child model
generates sentences of valid length as the actual distribution over the testset is
15.4 words per test sentence. The performance is reaching 16.57 to 17.99 BLEU
where the best parent model looks like the parent trained on “20-40 words”
corpus. However, training the model on sentences of all lengths (row 1-60
words) leads to the best performance.
Observation 38: Child model is not significantly influenced by the lengths of parent
training sentences and can learn the length distribution by itself from child training
data.

Therefore the finding that child model generates slightly longer sentences
than baseline from Section 5.4.4 is not due to the lengths of sentences in the
parent training set.

In conclusion, it seems that the length of a parent model is not that important
factor behind the performance improvements of the child model.

5.4.6 Parent’s Performance Influence
So far, we discussed features that could be considered linguistic. In the rest of
the section, we examine various attributes that are associated with the neural
architecture.

Transfer learning is, in fact, a way how to initialize weights for the child model
in contrast to random initialization in the baseline. One of the explanations of
the success could be attributed solely to the initialization or learning rate as
these are only two attributes that change with the parent model.

In this section, we study the effect of various learning rates, and final parent
performances on various models trained for a different amount of time in order
to find out if there is a correlation between them and the child performance.
Furthermore, we answer a question if it is necessary to train the parent model
fully or is only a fragment of the training time enough?

In transfer learning, we train the parent model to its maximal performance,
e.g. until convergence on the development set. In the following experiment,
we compare the parent model in various stages of training and investigate the
influence on the performance of the child model.
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Figure 5.7: Learning curves on development set for English→Finnish parent
and English→Estonian child. The child starts training after various number
of parent’s training steps. Black dots specify a performance of the parent at
the moment when the child training started. The colored dots show the best
performance of the child model. The grey curve shows, how the learning rate
depends on the global step number.
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In Kocmi and Bojar (2018) (T2T4), we took English→Finnish as the parent
model and used the warm-start transfer learning of child’s English→Estonian
model after 50k, 100k, 200k, 400k, and 800k of parent’s steps. In order to simplify
notation in this section, we label a child model that started after X parent’s steps
as a “X-child”, e.g. 400k-child is a model trained after 400k parent’s steps.

We conclude based on the learning curves in Figure 5.7 that the child’s per-
formance improvements correlate with the parent’s performance. Furthermore,
we see that only 50k steps are enough to outperform the baseline.

Observation 39: Longer-trained parent model (or model trained until convergence)
leads to a better performing child model.

However, notice that the performance of the 400k-child is equal to the 800k-
child, both having 18.8 BLEU despite the parent’s performance improving from
18.0 to 18.8 BLEU.4 This could be only an anomaly, or it could suggest that the
child’s performance also depends on different factors, which we try to examine
further.

One such factor is the learning rate, which is the only parameter that depends
on the global number step and decreases during the training. As the learning
rate, we use a function of the inverse square root of steps with the warm-up
stage of 16k steps, known as the “Noam” scheme. The steepness of the learning
rate throughout the training is visualized in grey color in Figure 5.7.

4We remind that the BLEU scores of parent and child are not comparable as they are calculated
on different testsets, and also that the scores fluctuate a lot between iterations.

103



Table 5.15: Experiment comparing various stages of parent model and learning
rate. Each row corresponds to the same parent model as saved at given step
(parent). Columns correspond to different learning rate shifts named by the
global step at which it starts. The “0k-child” row is therefore baseline trained
only on the child training set. The column “Parent” represent a performance of
the parent at the step when the child was spawned.

Learning rate at: 0k 50k 100k 200k 400k 800k 1600k Parent

0k-child 8.16 7.55 7.24 6.43 6.09 5.45 4.61 0.0
25k-child 12.02 12.47 12.76 12.95 12.97 12.91 12.98 17.7
50k-child 12.72 13.48 13.71 13.77 13.72 13.58 13.70 19.9
100k-child 13.31 14.01 14.06 14.26 14.64 14.59 14.56 21.6
200k-child 13.70 14.97 14.92 15.22 15.15 15.15 15.67 23.0
400k-child 14.16 15.20 15.89 15.89 16.08 15.83 15.84 23.9
800k-child 13.59 15.64 15.82 16.19 16.23 16.39 16.58 24.8
1600k-child 14.21 15.68 15.86 16.29 16.86 16.61 16.72 25.2

In order examine the factor of the learning rate, we prepare experiment
where we fine-tune the child model on various stages of parent training as in
Figure 5.7 however we investigate various learning rates for each parent step.

Initially, we wanted to fix the learning rate to a constant value. However,
it would add a new factor to the question since even during the parent model
training, the learning rate slowly decreases. Instead, we change the global step
value before starting the child training to pretend that the parent was trained to
a different stage than it actually was. The child learning rate follows the Noam
learning curve. Thus we refer to the learning rate value using the global step
index, e.g. 400k-child with 800k learning rate represent a model that fine-tunes
on the parent model trained for 400k steps, and its learning rate behaves as if
the parent was trained for 800k steps.

We now provide more details in the new experiment with slightly differ-
ent settings. We decided to use the English→Czech as the parent model and
English→Estonian as the child. We artificially downsampled the child training
corpus Estonian–English to 100k sentences. We used Czech as a parent language
pair in contrast to Finnish in Figure 5.7. We have used only 100k compared to
800k of child’s training data in the original experiment. It was motivated to
examine the effect of the less resourceful language. The initial learning rate is
0.2.

The following experiment uses T2T11.
Table 5.15 presents the results of the experiment; all results are evaluated on

the same testset. Thus they are comparable, and we present them in the form of
a heat-map for better visualization. However, the values within columns should
be compared with care as they differ in the parent model that has been trained
for a various number of steps. Note that the learning rate scheme of the parent
model never changed.
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From Table 5.15, we conclude that the learning rate schedule is important
for the training. The 0k-child baseline trained without transfer learning (see the
first row in Table 5.15) has the best performance with learning rate starting at 0k.
Therefore the initial warm-up steps (16k in total) are needed for proper training.
In contrast, resetting learning rate to 0k across all the transfer setups (see the
column “0k”) harms the final child performance.
Observation 40: Warm-up steps and the peak in learning rate are crucial for good
performance of the baseline. However, repeating this peak in child training damages the
performance of transfer learning.

Beyond that, there is not a clear pattern of the best learning rate. For all
transfer learning results it fluctuates between 200k and 1600k learning rate
where the differences in BLEU are mostly not significant, we suppose that it
is due to the shape of learning rate that is close to being constant. Therefore
we conclude that the learning rate is not the primary source of improvements
behind transfer learning.
Observation 41: The improvements by transfer learning cannot be attributed to better
chosen learning rate stage in its warmup-delay scheme.

We see that with a better performing parent, the best performance of the child
grows, contrarily to Figure 5.7 where the child performance has not changed
between 400k-child and 800k-child. Therefore the parent performance plays
an important role in transfer learning. The best child performance of 16.86 is
obtained with the parent trained for 1600k steps, which is around three weeks
of training on one GPU. In comparison, the average training of the child in this
experiment was 50k steps. We use stopping criterion from Section 3.5.1 and saw
all child models started to overfitting.

The improvements for the child model diminish in relation to the parent’s
step, for example, it takes only 400k steps to reach the performance of 16.08,
but additional 1200k steps to improve by 0.72 BLEU. Interestingly, the 25k-child
already outperforms the baseline. The 25k steps were trained for eight hours,
thus proving that the improvements in transfer learning are usable after a short
period of training the parent model.

To answer our initial questions, we conclude that child performance depends
on the performance of the parent model. We showed that the learning rate is
not the main factor of the transfer learning gains, but it can limit the maximum
gains if changed. Moreover, we showed that transfer learning significantly
improves child performance over the baseline, even when the parent has not
been adequately trained.

5.4.7 Same Language Pair in Reverse Direction
We showed that transfer learning can extract knowledge from a parent model
whenever the shared language is on the different translation side as well as
improve the performance whenever both languages are different. In both cases,
it is the additional data from the parent that probably affect the performance
of the model. However, there is yet another explanation of the improvements:
transfer learning improvements could be attributed to the better initialization
of weights.
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Table 5.16: Results of child following a parent with swapped direction. The ‡
represents significantly better results.

Parent Child Transfer Child-only Difference

EN→Estonian Estonian→EN 22.04 ‡ 21.74 +0.30
Estonian→EN EN→Estonian 17.46 17.03 +0.43
EN→Finnish Finnish→EN 20.23 ‡ 19.90 +0.33
Finnish→EN EN→Finnish 14.51 14.25 +0.16
EN→Odia Odia→EN 7.95 ‡ 6.97 +0.98
Odia→EN EN→Odia 3.22 3.19 +0.03
Spanish→French French→Spanish 28.54 ‡ 27.89 +0.65
French→Spanish Spanish→French 27.69 ‡ 27.21 +0.48

When we train the neural network, we have to decide on the initialization
of the whole network. As Glorot and Bengio (2010); Mishkin and Matas (2016)
and we in Section 3.1.3 showed, NNs are sensitive to the variance of random
initialization, and bad initialization can have a huge effect on the final model
performance.

We can perceive transfer learning as a way of finding a better initialization
of weights for the training of the child. Thus it could improve the performance
mainly due to the effect of having weights initialized to better values.

In order to investigate this explanation, we prepare an experiment where
the parent model does not have any additional training data. We train the
parent on reversed training data than the child, in other words, the parent is
XX→YY model, and the child is YY→XX. Thus the child model does not have
access to any new training data. The experiments for Estonian–English are
from our paper Kocmi and Bojar (2018) based on T2T4, the rest are new in this
thesis based on T2T11. We selected languages to cover low-resource languages
(Estonian–English) as well as high-resource languages (Spanish-French).

Table 5.16 shows a particularly exciting result: the parent does not use any
other parallel sentences, but the very same corpus as a child with source and
target side swapped and obtained a performance improvement. We see gains in
both directions, although not always statistically significant.

Observation 42: Transfer learning improves performance even in the scenario, where
no new data are available, and the child is trained on parent training corpus in reverse
direction.

One explanation of the improvements could be that the training corpus is
noisy and often contains English sentences on the wrong side, for example,
in the Estonian part of the corpus. In order to verify it, we ran an automatic
language identification and found out that Estonian part of the corpus contains
only 0.1% English sentences, Finnish contains 3.4%, and Odia contains 0.0% of
English sentences. The Estonian and Odia cannot be attributed to the noisiness
as there is nearly zero English sentences and the 3.4% for Finnish is low that we
do not think it is the main reason behind the improvements.
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The low-resource language as Odia–English reached low performance due
to insufficient data for model training (see Section 4.5.2). In contrast, the high-
resource language pair of French-Spanish reached significant improvements in
both directions.

It is an exciting result. The model did not have access to any new data, yet
it could extract new features from the reverse language pair, which it would
not learn only from the original direction. Similar behavior has been shown in
Niu et al. (2018), where they mixed both directions and added an artificial token
indicating the target language.

The results from this experiment support our alternative explanation that
the main improvements are simply from a better initialization of the model.
Although, we showed that other features further improve the final performance
of the model, such as shared language between parent and child, language
relatedness, or size of parent training data.

5.5 Summarizing Transfer Learning Analysis
In this chapter, we analyzed various aspects of transfer learning. We tried to
shed some light on the behavior of transfer learning as well as to peek inside
the NMT black box. Although we made numerous observations and proposed
several conclusions, we only scratched the surface, and much more work is
needed in order to understand the behavior of the neural network.

At the beginning of the chapter in Section 5.1, we talked about the negative
transfer and its effects on transfer learning in NMT. We found out that in NMT
transfer learning the negative effects are limited in comparison to other fields
where the negative transfer is a problem. We found out that using a parent
model with less training data than the child can hurt the performance more
than training from random initialization. On the other hand, transfer learning
is especially useful for extremely low-resource child languages, and it does not
produce relics from the parent target language.

In Section 5.2, we discussed the influence of the position of a shared language
between parent and child. We found out that the shared-target language scenario
converges faster and has a higher slope of the learning curve than the shared-
source scenario. Both observations suggest that the network can learn more in
the shared-target scenario. Furthermore, in the no-shared language scenario,
the network does not forget the performance as quickly and can perform the
parent translation to some extent, even with the final child model.

What is the relation between language relatedness and the parent training
size was discussed in Section 5.3. We observed that relatedness does improve
the performance of the child. However, the size of parent training data has a
more substantial effect on the final performance of the child and even parent
trained on a gibberish language can improve the performance of child more
than a related language with less parallel sentences. Furthermore, we confirmed
the finding by training the parent model on a vast corpus from mixed languages
and obtained better results than high-resource parent Czech–English.

In the last section, we discussed if the gains can be mainly attributed to some
linguistic features or if it is merely some better initialization of weights. We
observed that the child is generating longer sentences, and we found out that
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word order and parent sentences length play a small role in transfer learning. We
confirmed that the gains are not due to a better learning rate staging. However,
in the last experiment, we showed that the gains are seen even in the scenario,
where the parent does not have any additional training data and is trained in
reverse translation direction. We take it as the main hint that the gains are
simply by a better initialization of the network.

In the next section, we provide a case study of using transfer learning in
backtranslation and show that with our technique, the backtranslation can be
used even on low-resource language pairs.

5.6 Case Study: Transfer Learning with Backtrans-
lation

Let us conclude the analysis with a case study, where we apply transfer learning
to the standard backtranslation approach for a low-resource language. The
backtranslation approach relies on the performance of the initial model, and
whenever the initial model has low performance, the backtranslation is not
suitable, which is the case of low-resource languages. In this section, we show
that transfer learning can help to overcome this problem.

This section is based on our paper Kocmi and Bojar (2019b) (T2T11).

5.6.1 Backtranslation
The number of parallel sentences needed for training MT models is often very
scarce. This is especially true for low-resource languages. However, the mono-
lingual data are often more abundant. Many strategies have been used in MT in
the past for employing resources from additional languages, see e.g. Wu and
Wang (2007), Nakov and Ng (2012), El Kholy et al. (2013), or Hoang and Bojar
(2016).

The approaches of using monolingual data to improve MT date back to SMT
where they were used to improve the language model (Brants et al., 2007) or
the translation model (Schwenk, 2008; Bertoldi and Federico, 2009; Bojar and
Tamchyna, 2011). A similar technique of improving only the target language
model was examined in early NMT (Gulcehre et al., 2015).

Sennrich et al. (2016a) took a different approach. They showed that creat-
ing synthetic parallel sentences by translation of monolingual text and using
this synthetic corpus as a training set leads to significant improvements in per-
formance. This approach quickly gained popularity, and it is considered the
current best practice of using monolingual data in NMT.

The technique of backtranslation, as the method is named, consists of first
training a system in the reverse direction on human-generated “authentic” par-
allel sentences, i.e. target language to source language. This system is then used
to translate monolingual data of a target language. The resulting translations
and their monolingual counterparts are used as additional training data for the
training of the final model in the original translation direction. Thus we can
consider the backtranslation as a way of transferring knowledge learned in one
direction to the reverse direction through generated data.
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Sennrich et al. (2016a) propose two regimes of incorporating synthetic train-
ing data. Either as a fine-tuning a general model or training the model on a
mixed corpus. The former method uses a general model trained on authentic
data that is fine-tuned by 1:1 mix of authentic and synthetic data. The latter
method by training the model from beginning on the mix of the authentic and
synthetic data. The second approach became the standard approach in the
NMT systems, as can be seen annually in the WMT Translation Shared Tasks by
competing systems (Bojar et al., 2019).

Popel (2018a) investigated yet another variation of incorporating synthetic
and authentic data. He proposed to switch iteratively between synthetic and
authentic data without mixing them. This approach, called concat-regime
backtranslation outperformed the training on the mixture.

Furthermore, backtranslation can be used as a domain adaptation when a
limited number of in-domain parallel sentences exists (Chinea-Rios et al., 2017;
Chu et al., 2018), and the in-domain monolingual data are available.

Lastly, Hoang et al. (2018) showed a way of improving the backtranslation by
repeating the backtranslation process. They presented a method of training two
NMT systems in parallel, each in the opposite translation direction of a language
pair, which alternately generate synthetic data for the reverse system to improve.
Hoang et al. (2018) concluded that the second round of backtranslation improves
performance. However, the third round seems not to lead to any significant
improvements.

5.6.2 Backtranslation with Transfer Learning
Backtranslation is helpful mainly in scenarios where the parent model, which is
used to translate monolingual data, has a reasonable performance (Hoang et al.,
2018; Bawden et al., 2019). However, for low-resource language as it is hard to
train any suitable initial model.

We propose to use transfer learning on the low-resource language pair for
training the initial model with a reasonable score. We train two models in
parallel, one for each translation direction. The models iteratively generate
backtranslated data for the other one. We show this approach on two low-
resource languages Gujarati–English and Kazakh–English.

As a parent model we use Czech–English for Gujarati–English and Russian–
English for Kazakh–English. The training procedure is as follows.

First, we train two high-resource parent models for each studied language
until convergence: English→Czech, Czech→English, English→Russian and
Russian→English.

Then we apply transfer learning with the use of an authentic dataset of
the corresponding low-resource language pair. We preserve the English side:
Czech→English serves as the parent to Gujarati→English and English→Czech
to English→Gujarati. The same strategy is used for transfer learning from
Russian to Kazakh.

After transfer learning, we select one of the translation directions to translate
monolingual data (model 1⃝). As the starting system for the backtranslation
process, we have selected the English→Gujarati and Kazakh→English. The deci-
sion for Kazakh–English is motivated by choosing the better performing model,
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Table 5.17: Testset BLEU scores of our setup. Except for the baseline, each
column shows improvements obtained after fine-tuning a single model on
different datasets beginning with the score on a trained parent model. The
circled names points to the systems in the right side of the table.

Training dataset EN→GU GU→EN EN→KK KK→EN

Authentic (baseline) 2.0 1.8 0.5 4.2

Parent dataset 0.7 0.1 0.7 0.6
Authentic (transfer learning) 1⃝ 9.1 9.2 6.2 1⃝ 14.4
Synth generated by model 1⃝ – 2⃝ 14.2 2⃝ 8.3 –
Synth generated by model 2⃝ 3⃝ 13.4 – – 17.3
Synth generated by model 3⃝ – 4⃝ 16.2 – –
Synth generated by model 4⃝ 13.7 – – –
Averaging + beam 8 14.3 17.4 8.7 18.5

see Table 5.17. This is however only a rough estimate because higher BLEU
scores across various language pairs do not always need to indicate better perfor-
mance; the properties of the target language such as its morphological richness
affect the absolute value of the score. For the Gujarati–English, we decided to
start with the model with English source side in contrast to Kazakh→English.

After the backtranslation, we mix the synthetic data with the authentic par-
allel corpus and train the first backtranslated model 2⃝. We repeat this process:
Use the improved system ( 3⃝ and then 4⃝) to backtranslate the monolingual data,
and use this data in order to train the improved system in the reverse direction.
We make two rounds of backtranslation for both directions on Gujarati–English
and only one round of backtranslation on Kazakh–English.

The baseline models in Table 5.17 are trained on the authentic data only, and
it seems that the number of parallel sentences is not sufficient to train the NMT
model for the investigated language pairs (we obtained performance of 0.5 to
4.2 BLEU). The remaining rows show incremental improvements as we perform
the various training stages. The last stage of model averaging takes the best
performing model and averages it with the previous seven checkpoints that are
one and a half hours of training time from each other.

Figure 5.8 above shows the progress of training of Gujarati–English models
in both directions. We can notice that after each change of parallel corpus,
there is a substantial improvement in the performance. The learning curve is
computed on the development data. The corresponding scores for the testsets
are in Table 5.17.

We also run a standard approach of backtranslation without transfer learn-
ing, where we first trained baseline model to translate monolingual data and
then trained a model (in reverse direction) on those synthetic data with concate-
nation with authentic data. We visualize the training with orange in Figure 5.8.
When comparing with a transferred model trained with the first round of back-
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Figure 5.8: Learning curves of Gujarati→English models. Our approach is
combination of four steps. The first is to train the parent model for 2000k steps
(not in the figure), then transfer learning (green curve). Then we continue with
two rounds of backtranslated data (both blue curves). Baseline without transfer
learning and backtraslation is in red. Standard approach of backtranslation
without transfer learning is in orange.
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translation data (light blue), we can see the clear improvement in performance
due to transfer learning.5

Observation 43: Transfer learning can be used as an initial step for the low-resource
NMT training with backtranslation technique to largely improve the performance.

In conclusion, we showed that transfer learning can be used in combination
with other techniques. Furthermore, it can be used to generate a reasonably
good initial model for backtranslation technique in the low-resource scenario,
where it is hard to train the model from random initialization.

5.6.3 Ratio between Authentic and Synthetic
Backtranslation as a way of transferring knowledge through data to the other
direction can be used in theory on as much monolingual data as accessible.
For example, English has billions of monolingual data. Thus we could create a
training corpus for translation from any language to the English with billions
of sentences for all languages. However, this corpus would not contain the
authentic data in 1:1 ratio as proposed by Sennrich et al. (2016a).

Edunov et al. (2018) showed that the shortage of authentic data in the syn-
thetic corpus could be supplemented by oversampling the authentic data.

5Each scenario (orange/light blue) use synthetic data generated by different model from
an equal monolingual corpus. The model generating the synthetic data either used transfer
learning (light blue) or did not (orange).
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Figure 5.9: Comparison of various ratio between the synthetic and authentic
sentences.

19

21

23

25

27

2400 2500 2600 2700

BL
EU

Steps (in thousands)

Synthetic only
Authentic:Synthetic 10:1
Authentic:Synthetic 20:1
Authentic:Synthetic 80:1

Authentic:Synthetic 160:1
Authentic only

Poncelas et al. (2018) investigated the effect of various ratios between au-
thentic and synthetic training data on German→English scenario. The authors
suggest the ratio of 1:2 in favor of synthetic data. The higher ratio of synthetic
data does not help but also does not decrease performance significantly. The
authors have not experimented with oversampling of authentic data.

To conclude their findings, we can use a synthetic corpus of any size as
long as we mix the authentic data into the corpus. In case that we lack a large
quantity of authentic data, we can oversample the available ones. Nonetheless,
they experimented with the high-resource language only. Hence we evaluated
their findings on a low-resource scenario.

We experimented with Gujarati–English language pair, which has only 172k
parallel sentences. We used a warm-start transfer learning and two rounds of
backtranslation as proposed by Hoang et al. (2018). During the second round of
training on the backtranslated data, we evaluated various ratios between the
synthetic and authentic data.

In order to report the ratio between authentic and synthetic, we backtrans-
lated 3.6M English sentences into Gujarati, which is exactly twenty times more
monolingual data than the size of authentic data. Then we oversampled the
authentic data and mixed them to the synthetic corpus to get final training set.
For example, the ratio “authentic:synthetic 10:1” means that the authentic has
been multiplied ten times, which to match half size of the synthetic sentences.

In Figure 5.9, we can see the difference in performance when comparing the
ratio between the amount of synthetic and authentic data. The model learning
curves start at the 2.4M step as a visualization of their previous transfer learning
and the first round of backtranslation (see Figure 5.8).

Using only low-resource authentic parallel sentences drastically damages
the performance of an already good model. Thus the previous training on
synthetic data is necessary. However, the most surprising fact is that adding
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more authentic data damages the performance, which is in contrast to claims of
Poncelas et al. (2018) and Edunov et al. (2018).
Observation 44: Oversampling authentic data to match synthetic data hurts NMT
performance.

To explain this phenomenon, we need to take into account that in order to
match the ratio, we oversampled the authentic data multiple times. For example,
the worst-performing ratio of “160:1” had 160 copies of authentic data within,
which could lead to overfitting on them. Thus we believe that the authentic
data are useful in synthetic corpus only to some extent and after having much
more synthetic data, it is better to use only the synthetic high number of parallel
sentences instead of adding more and more copies of authentic data in order to
match a ratio between authentic and synthetic data. We would like to understand
where the tipping point is and if we can add more monolingual data and obtain
a better performance. However, it is over the scope of this thesis, and we leave
it as an open question.

This experiment once again supported our intuition that the more data NMT
has, the better performance it reaches even though they are artificially created,
even to the extent that the authentic data become useless.

In conclusion, we showed that transfer learning can be combined with other
techniques. It substantially helps when used with backtranslation. Furthermore,
we showed that oversampling authentic data (Edunov et al., 2018) is not useful
for low-resource languages and can lead to obtaining lower performance than
without oversampling.
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6
Conclusion

As stated in the introduction, this thesis had two main parts. The first was the
introduction of various techniques for transfer learning in NMT. The second
was a broad analysis of transfer learning behavior.

We presented methods for both the cold-start and warm-start scenario, where
both of them outperform a baseline that is trained without transfer learning. We
showed that transfer learning helps for low-resource as well as high-resource
languages.

In the cold-start scenario, we presented Direct Transfer, a technique that
trains a child model without any modifications, and Transformed Vocabulary, a
technique that adapts a parent vocabulary for the need of the child by randomly
overriding unused embeddings. Furthermore, we showed a proof-of-concept
of training a model from the parent that has not been trained by us. This
concept opens doors to better replicability of experiments. With this technique,
researchers could “never train their models from scratch ever again”.1

In the warm-start scenario, we proposed two approaches: Merged and Bal-
anced Vocabulary. Both of them prepared vocabulary in advance of the parent
training. We showed significant gains even over the cold-start technique.

The second part of this thesis is the analysis of transfer learning behavior. We
shed some light on transfer learning in NMT. We studied the phenomenon of
negative transfer. We showed that transfer learning behaves differently concern-
ing the position of the shared language. Moreover, we studied various aspects
of transfer learning, and we concluded that the main gains are due to the size of
the parent model. Furthermore, we believe that transfer learning behaves as a
better initialization method to some extent.

All our observations can be found in the List of Observations on page 141.
However, our study is only a small step in understanding transfer learning or
even neural networks.

1This statement is obviously a bit exaggerated.
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Table 6.1: The total amount of time spent, energy consumed, and CO2 emitted
during our transfer learning research. The numbers are only a rough estimate.

GPU type Time spent Energy Consumption CO2 Emissions

Tesla K40c 3658 hours 1.0 GWh 0.5 t
GeForce GTX 1080 2221 hours 0.6 GWh 0.3 t
GeForce GTX 1080 Ti 52227 hours 14.1 GWh 7.2 t
Quadro P5000 14996 hours 3.2 GWh 1.7 t

Total 73102 hours 18.9 GWh 9.8 t

6.1 Ecological Trace

Earlier this year, Strubell et al. (2019) published work on the impact of deep
learning on CO2 emissions. They estimated that a single Transformer architec-
ture hyper-parameter search produced 284 tonnes of CO2.2 Many researchers
pointed out that it reports numbers based on the U.S. energy mix. However,
Google claims that its platform is 100% renewable.3 Moreover, the most carbon-
intensive scenario in the study costs between $1 million and $3 million (Strubell
et al., 2019), which is not an everyday expense.

We believe that it is important to raise awareness of and quantify the poten-
tial CO2 impact of deep learning. Thus we try to calculate the impact of this
study. We roughly calculate the wall-clock time, power consumption, and CO2
emissions.

We start by calculating the total wall-clock time on GPUs. Our cluster saves
information about GPU usage every 10 minutes. We recovered logs from the last
20 months (the time when almost all of our transfer learning experiments have
been done) and calculated how many GPU hours we spent on our experiments.

The average power consumption is harder to calculate. Based on discussion
with our IT department, the average GeForce takes 200W per hour and Quadro
P5000 160W per hour, when entirely in use. We need to take into account also
the air-conditioning of the room, which can be roughly calculated by coefficient
1.3 to 1.4, we take the 1.35 as a middle. With this in mind, we use 270W for Tesla
and GeForce cards and 216W for Quadro P5000.

The last step is the calculation of CO2 emissions. Based on the report by
OECD (2015), the average CO2 emissions during the production of electricity in
the Czech Republic is 516g per kWh (in the year 2015).

Table 6.1 represent the total number of hours, energy consumption and CO2
emissions for our experiments. An important notice is that energy consumption
is very roughly estimated. It is based on GPU in full use, and the effect of air-
conditioning is only estimated. Therefore the numbers are more likely the upper
bound.

2The paper reports numbers in imperial units, for which it was criticized. We recomputed
the numbers for SI units.

3Source: https://cloud.google.com/sustainability/
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Table 6.2: Comparison of CO2 emissions from various sources. The numbers
are from (Strubell et al., 2019).

GPU type CO2 Emissions

Our research 9.8 t
Air travel NY ↔ SF per passenger 0.9 t
Average person production in year 5.0 t
Average American person production in year 16.4 t
Lifetime car consumption 57.2 t

Our experiments produced a similar amount of CO2 as eleven round-trip-
flights from New York to San Francisco for one passenger or as an average person
produces within two years. For more comparisons, see Table 6.2.

Nonetheless, we proposed a way that reduces the total training time. Pri-
marily the cold-start scenario can be used as a technique, which can be used to
improve performance and lower the total training time.

Furthermore, machine learning can help to tackle climate change in var-
ious ways: predicting the electricity demand; flexibly managing household,
commercial or electric vehicle demand; optimizing transportation routes; fore-
casting extreme climate events; modeling disease spreading; and many more as
summarized by Rolnick et al. (2019).

In conclusion, deep learning is energy-intensive, and further research is
needed to find the best ways to minimize the impact. However, restrictions on
research are not the answer to the problem. The main issue is the generation
of electricity, which for most of CO2 emission in the Czech Republic is in coal
power plants. As mentioned earlier, Google claims that its AI cluster is 100%
run by renewable energy; Amazon claims 50%.4

6.2 Final Words
I am fortunate to have gone through an exciting journey of studying NMT
since its early days of becoming the standard approach in MT. And I hope this
dissertation thesis will provide useful background and inspiration for future
research in NMT transfer learning.

Lastly, it would mean a lot to me if you would give me feedback or a short
comment at http://kocmi.tk/thesis/.

4Source: https://aws.amazon.com/about-aws/sustainability/
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