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ABSTRACT 

 
Nuclear DNA content (genome size) is one of the basic characteristics of living organisms. In 

the Angiosperms, the range of genome size is 2,300-fold, which raises questions about the 

causes and consequences of this tremendous variation. This thesis deals with genome size in 

plants from the level of intraspecific homoploid variation, through intraspecific ploidy 

variation, to interspecies comparisons. On various study systems we investigated the dynamics 

and ranges of genome size variation, tried to reveal possible associations between genome size 

and selected biological traits, and assessed the extent to which differences in genome size are 

manifested at the ecological and evolutionary level. 

 As a means of estimating genome size we applied flow cytometry (FCM). In 

Taraxacum stenocephalum we conducted a detailed study of its enormous genome size 

variation. We carried out crossings of parents with various genome sizes and compared these 

parental genome sizes with those of F1 offspring. We also attempted to reveal the association 

of genome size with various growth traits. In Galium valdepilosum and Arabidopsis arenosa 

we carried out an extensive flow-cytometric ploidy level screening and compared the 

distribution and ecological preferences of detected cytotypes. We studied the Andean genus 

Lasiocephalus growing in different habitats spanning a wide range of elevations. Using FCM 

we determined both relative and absolute genome size across the genus, and, with the use of 

ITS sequencing, attempted to identify the sources of genome size variation within it. On the 

set of allien species we studied the relationship of genome size and invasiveness.  Last but not 

least, we attempted to overcome the need for fresh samples in flow-cytometric genome size 

measurements. We modified the protocol of nuclei preservation in glycerol and verified the 

new protocol in a time-scale laboratory experiment and a field experiment. 

 We have confirmed the existence of substantial genome size variation within the 

species Taraxacum stenocephalum and found a strong correlation between parental and F1 

genome size. We have also found correlations between genome size and certain biological 

traits that might influence the establishment of populations. The two ploidy-variable species 

under study differ in the ecological preferences of their cytotypes. In Lasiocephalus the main 

factor determining genome size variation is phylogeny. We found the association of genome 

size and invasiveness. We designed a new protocol for the preservation of nuclei which 

enables to estimate genome size in samples from remote areas. 

 This thesis unambiguously shows that genome size is associated with various aspects 

of the lives of plants and that it therefore represents a useful marker in plant studies. Genome 

size can not only indicate important species-forming processes, such as polyploidization, 

selection and hybridization, but it can also help us better understand the evolution of taxa. The 

effect of genome size differs from species to species and at different levels (e.g. anatomical, 

morphological, phenological or ecological), and to answer particular questions it is necessary 

to select a suitable model system and to meaningfully set the scope of the study. 
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ABSTRAKT 
 

Velikost genomu je jednou ze základních charakteristik živých organizmů. U krytosemenných 

rostlin dosahuje rozsahu pěti řádů, což vždy fascinovalo vědce a vyvolávalo mnoho otázek. 

Tato práce se zabývá různými aspekty velikosti genomu u rostlin. Počínaje detailním studiem 

na homoploidní vnitrodruhové úrovni, přes studium ploidně variabilních druhů až 

po srovnávání velikosti genomu mezi druhy, jsme se snažili zjistit, jaký vztah má velikost 

genomu k biologickým vlastnostem rostlin, stanovit dynamiku a rozsah variability velikosti 

genomu a detekovat dosah velikosti genomu až do úrovně ekologické a evoluční. 

Stěžejní metodou stanovení velikosti genomu v celé práci je průtoková cytometrie 

(FCM). U druhu Taraxacum stenocephalum vykazujícího extrémní variabilitu velikosti 

genomu jsme provedli opylovací experiment, kde jsme křížili rodiče s různou velikostí 

genomu. Porovnali jsme velikost genomu rodičů a F1 generace. U potomků jsme také 

sledovali souvislost velikosti genomu a růstových charakteristik. U ploidně variabilních druhů 

Galium valdepilosum a Arabidopsis arenosa jsme se zabývali rozšířením zjištěných cytotypů a 

jejich ekologickými nároky. Na souboru druhů andského rodu Lasiocephalus jsme studovali 

relativní i absolutní velikost genomu, provedli jsme ITS sekvenování a otestovali možné 

hlavní příčiny této variability. Na souboru nepůvodních druhů jsme porovnáním s jejich 

neinvazními příbuznými testovali vztah velikosti genomu a invazivnosti rostlin. Protože 

cytometrické stanovení velikosti genomu má i svá omezení, snažili jsme se najít způsob, jak se 

vypořádat s potřebou čerstvých vzorků a otestovali protokol v laboratoři i v terénu. 

Potvrdili jsme výjimečnou vnitrodruhovou variabilitu v rostlinách Taraxacum 

stenocephalum a ukázali, že velikost genomu potomstva je u tohoto druhu zřejmě určená 

průměrnou hodnotou velikostí genomu rodičů. Objevili jsme vztah mezi velikostí genomu a 

některými růstovými vlastnostmi. Studované cytotypy ploidně variabilních druhů se liší ve 

svých ekologických preferencích podle druhu, ke kterému patří. U rodu Lasiocephalus jsme 

zjistili, že velikost genomu koreluje s fylogenezí skupiny. Potvrdili jsme souvislost mezi 

velikostí genomu a invazivností. A podařilo se nám sestavit laboratorní protokol fixace jader, 

který umožňuje zpracovávat vzorky i ze vzdálených oblastí.  

Tato práce přináší důkazy o tom, že velikost genomu může ovlivnit různé stránky 

života rostlin, a je proto důležitým markerem ve studiu rostlin. Velikost genomu nám 

například může poukazovat na různé evoluční procesy jako polyploidie či hybridizace. Její 

vliv a význam se ale liší u jednotlivých skupin rostlin a také podle úrovně studia (buňky, 

fenotyp, ekologie). Je proto vždy nutné přesně definovat otázky a vybrat si k jejich 

zodpovězení vhodný předmět studia. 
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INTRODUCTION 

Genome size variation and its origin in plants 

Genome size (hereafter GS) expressed as the total amount of nuclear DNA in 

picograms (pg) or number of base pairs (Mbp) – 1 pg = 978 Mbp – is among the basic 

characteristics of living organisms. The whole DNA content of a whole chromosome 

complement is called holoploid genome size and it is usually expressed as a C-value. The term 

1C-value refers to the amount of DNA in the unreplicated reduced nucleus whereas 2C-value 

corresponds with the DNA content of the unreplicated non-reduced nucleus. Monoploid 

genome size is the averaged DNA content of one chromosome set with the chromosome base 

number x. The term Cx-value is used for monoploid genome size (2C-value divided by the 

ploidy level); in diploids 1Cx is identical with 1C-value (Greilhuber et al. 2005). C-values 

vary from 106 bp in Protists to 1011 in plants. Based on the tremendous variation of C-value 

in many different groups of organisms, Gregory (2001) formulated the term C-value enigma, 

which relates to the amount of non-coding DNA in nuclear genomes. In  eukaryotes we have 

data only for a small fraction of species (about 10,000 species) and the variation in genome 

size ranges up to 66,000-fold (Pellicer et al. 2010). This enormous variation has fascinated 

scientist and gives rise to two questions: (i) How is it generated? and (ii) Why does it exist and 

how is it maintained? Despite the tremendous amount of studies that have been published and 

theories which have been formulated, some aspects of genome size have not been studied 

sufficiently or the studies have brought contradictory results. Many questions about genome 

size therefore still remain unanswered. This chapter summarizes the existing knowledge about 

the GS in flowering plants. 

In angiosperms the range of genome size variation reaches up to more than 2,300-fold 

(Dodsworth et al. 2015). The smallest DNA content in angiosperms has been found up to now 

in tiny carnivorous plant Genlisea tuberosa – 61 Mbp (1C = 0.0624 pg) of DNA from the 

eudicot Lentibulariaceae family (Fleischmann et al. 2014). The largest genome size was 

revealed so far in Paris japonica – c. 150,000 Mbp (1C = 152.23 pg) from the monocot family 

Melanthiaceae (Pellicer et al. 2010) and it represents the largest eukaryotic genome at the 

same time. There is no direct proportional correlation of genome size, chromosome number or 

ploidy level with the complexity of organisms or even their taxonomic or phylogenetic 

position in the system (Gregory 2001). Although this variation in genome size is huge, it is not 

continuous and distinct patterns can be found between major evolutionary lineages. At the 

lower taxonomical level, genome size can be suitable means for distinguishing of closely 

related species, genera or families (e.g. Bureš et al. 2004, Chrtek et al. 2009, Prančl et al. 

2014) and for revealing of evolutionary processes (e.g. polyploidy, introgression, 

hybridization, genome downsizing), which are not recognizable at first glance (e.g. Vítová et 

al. 2015). With increasing application of molecular sequencing, genome size has become an 

important value (Kelly et al. 2012). 

The staggering GS variation is caused by changes at the chromosomal as well as 

molecular level. Genome size is determined by deletions of parts or the whole chromosomes, 

but polyploidy has a bigger impact at the chromosomal level. Polyploids are defined as 
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organisms with more than two complete chromosome sets (Otto & Whitton 2000, Comai 

2005). From genomic point of view, genome doubling has occurred at least once during the 

evolutionary history of all angiosperms (Wendel et al. 2016), so polyploidy has affected all 

plants and represents the main driver of sympatric speciation in plants (Otto & Whitton 2000) 

and the major evolutionary force in plant diversification (Soltis et al. 2009, Weiss-

Schneeweiss et al. 2013). The other process which contributes to genome enlargement is the 

activity of repetitive DNA, mainly LTR retrotransposons (SanMiguel et al. 1996, Vicient et al. 

1999, reviewed in Bennetzen 2000, 2005, Neumann et al. 2006). Conversely, unequal 

homologous recombination, illegitimate recombination and deletion-biased double strand 

break (DSB) repair pathways cause the shrinking of genomes by small deletions (Shirasu 

2000, Devos et al. 2002, Wicker et al. 2003, Bennetzen et al. 2005, Schubert & Vu 2016, 

Wendel et al. 2016). Some authors take the view that for organisms the loss of genome has 

greater significance than genome amplification, and this has been demonstrated in several 

species – Laupala cricket (Petrov et al. 2000), Arabidopsis thaliana (Devos et al. 2002, Ma et 

al. 2004, Bennetzen et al. 2005), five angiosperms (Vitte & Bennetzen 2006). 

 

Nucleotypic theory and its manifestation in biological traits 

From the fifties and sixties of the twentieth century, GS has become the subject of 

many studies considering its possible influence on plant life. This has lead to the formulation 

of the nucleotypic theory (Bennett 1972), which says that the nucleotype (i.e. nuclear mass 

itself) can influence the phenotype regardless of the information in the DNA. This theory has 

triggered further research testing the validity of the theory. The impact of nuclear DNA 

content, which is directly proportional to the nucleus volume, is most evident at the cellular 

level during the developmental stages of organisms and in conditions when the development is 

the slowest (Bennett 1972). Bennett has shown that genome size is associated with cell cycle 

time, meiotic duration and minimum generation time as a consequence of nuclei size, cell size 

and the cost of division. He studied the duration of the cell cycle and genome size in 31 

angiosperms. Annuals, which had smaller genome size, had significantly lower mean cycle 

time than perennials with larger genome size. Moreover, ephemerals had significantly lower 

genome size than other annuals. Large-genome plants were obligate perennials whereas small-

genome plants were represented in all life history strategies. Interestingly, facultative 

perennials did not differ from annuals. The study by Šímová & Herben (2012) tested how it 

works at the cellular level. The authors show that the relationship GS-cell size is determined 

by geometrical constraints, with the exponent 1/3 for the relationship between GS and cell 

diameter. For cell cycle duration, they distinguished two phases – GS-dependent S phase 

duration with exponent 1/3 and GS-independent G1 and G2 phase duration, which does not 

have the expected exponent. 

Many of further studies testing the nucleotypic theory followed, revealing GS 

reflection also into minimum generation time (or time to flowering) (Leitch and Bennett 

2007), seed characteristics (Grotkopp et al. 2004, Beaulieu, Moles, et al. 2007, Krahulcová et 

al. 2017) growth rate of seedlings (Grotkopp et al. 2004), specific leaf area (Morgan & 

Westoby 2005, Beaulieu, Leitch, et al. 2007), stomatal size and density (Beaulieu et al. 2008, 
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Hodgson et al. 2010), pollen size (Knight et al. 2010), flower size (Meagher & Vassiliadis 

2005). Knight & Beaulieu (2008) tried to generalize the relationship between genome size and 

phenotype. They studied eight traits of different phenotypic scale – cell size (guard and 

epidermal), stomatal density, seed mass, leaf mass per unit area (LMA), wood density, 

photosynthetic rate and, finally, maximum plant height. They included 100–1,222 species of 

angiosperms and gymnosperms to test the significance of particular trait. The authors found 

that genome size affects the phenotype at the cellular level; there was a significant positive 

correlation of guard cell length and epidermal cell area and a significant negative correlation 

of GS and stomatal density. The rate of photosynthesis was weakly negatively correlated with 

genome size in gymnosperms, but there was no significant correlation across the angiosperms. 

At the higher phenotypic scale, the weaker association of genome size with the phenotypic 

traits. For LMA and seed mass, only a weak correlation was found and no correlation for 

wood density was recorded. Testing of maximum plant height showed that there is a 

significant negative relationship within the angiosperms. Nevertheless, small-genome 

angiosperm can reach large height whereas large-genome angiosperms have never been 

associated with large height (although the association of GS and plant height was significant in 

regression analyses and not in the case of independent contrast). The study shows the need for 

independent contrast statistics, which incorporate phylogenetic relationships of study species 

when different species are compared. Without these robust comparative methods, the authors 

would get an incorrect common result for all species pool, although there is opposite 

relationship for gymnosperms and angiosperms in some traits. Generally, small-genome 

species usually exhibit wide variation in phenotypic traits whereas large-genome species tend 

to have limited ranges of trait values. This has been verified, for example, in the cases of seed 

size, photosynthetic rate and SLA (Knight et al. 2005). 

Strong correlations of genome size with traits can be found at the cellular level, but on 

the higher phenotype level they disappear (Knight & Beaulieu 2008), which can produce 

contradictory results. Indeed, some studies did not reveal a negative correlation of genome 

size with flowering period (e.g. Ohri & Pistrick 2001 – in 75 species in Allium – but all the 

Allium species under study have relatively large genomes, so the reason could be that no small 

genomes were included). The nucleotypic effect is exhibited even at the homoploid level 

(Loureiro et al. 2010), but it is the most apparent when different ploidy levels are compared. 

Snodgrass et al. (2017) studied the nucleotypic effect in diploid and allotetraploid Gossypium 

and they found positive correlation of GS with guard cell length, EPC surface area, and pollen 

grain diameter. However, not all research reached the same results. Tsukaya (2013) studied the 

size of cells of the leaf mesophyll, petal epidermis and pollen grains in diploids and tetraploids 

of Arabidopsis thaliana, and he did not reveal any correlation. However, this study was done 

on mutants and transgenic material in unnatural conditions, so it is a question whether 

selection did not play a role and sort out only some individuals in nature. Francis et al. (2008) 

carried out a more extensive survey of cell cycle times in root apical meristems and DNA 

content in 110 species of angiosperm (monocots as well as eudicots). They found positive 

correlation of GS and cell cycle time regardless of the ploidy level for all species as well as for 

the monocot group and the eudicot group. 
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Methodological problems of genome size estimation 

Reliable assessment of genome size is a basic prerequisite of GS research. For many 

years we did not have a precise methodology and uniform stringent rules for GS estimation. In 

the past, Feulgen microdensitometry was the main means of plant DNA content estimation. 

This slide-based quantitative procedure quantifies the amount of light absorbed by isolated 

nuclei quantitatively stained with a DNA-specific dye (usually the Schiff’s reagent) 

(Greilhuber & Temsch 2001). Over the last decades, the situation has changed and flow 

cytometry has started to prevail. Flow cytometry (FCM) is an effective and high-throughput 

method of analysing optical parameters of particles, which have been stained with fluorescent 

dye (Shapiro 2004). The particles individually pass in suspension through a narrow light beam 

which excites the stain, and the emitted light is captured with specific filters and converted to 

a digital signal. The amount of emitted light is directly proportional to the amount of stain or 

DNA, respectively (Shapiro 2004). After the introduction of flow cytometry into botany, this 

method became dominant for ploidy determination as well as absolute GS estimation, and the 

use of flow cytometry has increased dramatically in last decades (Doležel & Bartoš 2005; 

Greilhuber et al., 2007; Leitch & Bennett, 2007). Methodological comparative studies 

(Doležel et al. 1998, Vilhar et al. 2001) have revealed that FCM is more precise and that there 

are not many critical points during the procedure which could influence the results. Many old 

studies using Feulgen microdensitometry brought contradictory results and many of them have 

been refuted (see Greilhuber 2005). Greilhuber & Temsch (2001) studied the basic aspects of 

Feulgen densitometry and they critically revised some older studies and summarized the 

critical points of the Feulgen procedure (Greilhuber 2005, 2008). On the other hand, the big 

advantage of Feulgen microdensitometry is the possibility to visually check nuclei and its 

applicability for single nuclei. 

Flow cytometry is nowadays more popular for GS estimation because it is a fast 

method with a simple protocol allowing for extensive population screenings. However, 

although flow cytometry is an efficient, high throughput and cheap method (Doležel 1991), it 

has also several limitations. Only differences greater than approximately 1.04-fold can be 

unambiguously detected as double peaks (Doležel & Göhde 1995), which means that we are 

still not able to reveal the full extent of GS variation. To detect reliably even small variation it 

is necessary to use the same internal standard during measurements, to use different stains 

(intercalating propidium iodide as well as AT-specific DAPI), to repeat measurements on 

different days and during the different seasons, and to use different machines if possible, and 

the best way how to prove the discovered variation is to produce double peaks by 

simultaneously running samples (Greilhuber 2005, Doležel et al. 2007, Greilhuber et al. 2007). 

Moreover, the choice of internal standards can influence the accuracy of measurements 

(Doležel et al. 2003, Doležel & Bartoš 2005). GS estimation also varies because of the 

presence of metabolic compounds, that affect the staining of DNA (Noirot et al. 2000, 2005, 

Price et al. 2000,(Price et al. 2000)(Price et al. 2000) Loureiro et al. 2006, Walker et al. 2006, 

Greilhuber et al. 2007, Temsch et al. 2008). Generally, it is necessary to use the best practice 

protocol (Doležel & Bartoš 2005), and for tiny differences in genome size make all 

measurements in single laboratory using the same standard (Doležel et al. 1998, 2007). 

The big advantage of flow cytometry is the small amount of material needed. This 

make this method non-destructive, applicable even on endangered species or small seedlings 
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at the early ontogenetic stage (Doležel 1991). One disadvantage of FCM is the requirement of 

fresh material for best-practice FCM (Doležel & Bartoš 2005, Doležel et al. 2007). This 

condition cannot be met during long field trips to remote areas, where it is not possible to keep 

the material fresh until it is transported to the laboratory with a cytometer. One solution is to 

work with seeds – flow cytometry is applicable to germinating seedlings as well as to resting 

seeds. In many cases, however, genome size (including ploidy) of offspring is not identical 

with parental ones because of hybridization, introgression or production of unreduced 

gametes. Therefore, seeds can be used only for certain purposes, e.g. the study of reproductive 

pathways (Matzk et al. 2000). Another possibility is to use fixed plant material. Nuclei, cell or 

tissues can be fixed in ethanol (Jarret et al. 1995), ethanol:acetic acid or in formaldehyde. 

Hülgenhof et al. (1988) analysed cereal nuclei fixed in a 1:1 mixture of a 0.9% NaCl solution 

with ethanol and samples processed with ethidium bromide and olivomycine staining. For 

longer preservation the nuclei preserved in 30% glycerol and stored at 20°C were used 

(Chiatante et al. 1990). The modified protocol was used by Hopping (1993). Reasonable FCM 

histograms can also be achieved by analysing rapidly frozen plant tissues (Dart et al. 2004; 

Nsabimana and Van Staden 2006; Halverson et al. 2008; Cires et al. 2009), which can also be 

problematic in the field without electricity. However, none of these protocols has become 

familiar and they are not used for FCM of plants. 

Rapid desiccation of plant tissues in silica gel appeared to be an effective method for 

relative GS estimation and thus for ploidy studies (Suda & Trávníček 2006a,b), and it has been 

used in many studies – e.g. for ploidy screening in Senecio carniolicus (Suda et al. 2007). But 

in most species it is not applicable to absolute GS estimation, because a shift of fluorescence 

can be present (Suda & Trávníček 2006a, Bainard et al. 2011). The use of herbarium vouchers 

works only for relatively fresh vouchers (only several years old) and it gives high-quality 

histograms only in some species; it was also successfully applied to mosses (Voglmayr 2000). 

C-values are accumulated in the Plant DNA C-value database (Bennett & Leitch 

2012), which also provides information about data source as well as an estimation method 

(Feulgen densitometry vs FCM or others). Up to date this database contains information about 

genome size for 8,510 plant species (7,135 angiosperms), which represents only about 2 % of 

currently known plant species (374,000  – Christenhusz & Byng 2016). Because of the 

mentioned methodological problems, data from the database should be used critically, as it 

also contains old data obtained using different protocols. Therefore, the data are not suitable 

for revealing intraspecific GS variation or for comparisons of small differences. The database 

is a useful tool mainly for extensive comparative studies revealing general trends at higher 

taxonomic levels. 

 

Intraspecific genome size variation 

Reliable detection of very small differences in GS and knowledge of intrapopulation 

GS dynamics is essential for understanding the early phases of the diversification of genome 

size among related species (Loureiro et al. 2010). Intraspecific variation is quite rare in plants 

(Loureiro et al. 2010) and most previous studies have been refuted because they used an 

incorrect methodological procedure. More than 200 papers have been published about 

intraspecific GS variation (Šmarda & Bureš 2010), but the vast majority of studies did not 

report real variation and demonstrated only artefacts. Only few studies adhering to stringent 
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methodological rules plausibly demonstrate GS variation within species and reasonably test its 

correlations. Recently, with the application of a best-practice FCM protocol and extensive 

screenings of genome size, the number of reliable records has increased. 

Here are several examples of real GS variation at the homoploid level: Anthoxanthum 

(Chumová et al. 2015), Arabidopsis thaliana (Schmuths et al. 2004), Curcuma (Leong-

Škorničková et al. 2007), Dasypyrum villosum (Obermayer & Greilhuber 2005), Fagus 

sylvatica (Paule et al. 2018), Festuca pallens (Šmarda & Bureš 2006), Lollium perenne 

(Sugiyama et al. 2002), Senecio carniolicus (Suda et al. 2007), Picris hieracioides (Slovák et 

al. 2009), Taraxacum stenocephalum (Trávníček et al. 2013) and Zea mays (Díez et al. 2013). 

Most studies have only revealed existing variation at the homoploid level and did not 

study the GS variation itself. However, detailed studies of Festuca pallens populations 

represent ones of the most detailed recent studies of intraspecific GS variation and its aspects 

in wild population (Šmarda et al. 2007, 2010, Šmarda, Bureš, Horová & Rotreklová 2008). 

They studied Festuca pallens (Poaceae), a perennial grass with two ploidy levels. Both of 

them – diploid and tetraploid – exhibit GS variation at the inter- as well as intrapopulation 

level. The progeny in one tetraploid wild population exhibits large variation in genome size. In 

562 seedlings from 17 mother plants, 1.188-fold variation was revealed. The genome size of 

seedlings was correlated with maternal genome size, but the offspring variation was even 

greater. The authors also searched for association of genome size with developmental traits in 

F1 seedlings. They counted leaves as a measure of developmental rate (Nemoto et al., 1995; 

McMaster 1997, 2005) and found correlation with genome size, which considered to be 

opposite to the nucleotypic theory (Bennett 1972). Šmarda et al. (2010) conducted, also on 

Festuca pallens,  a competition experiment which proved the existence of stabilizing selection 

on genome size. They grew the seedlings in conditions with or without strong competition and 

estimated the genome size of individuals which survived. In pots with high competition there 

was significantly lower genome size variation where both extremes of the genome size 

distribution were eliminated. The authors assume that genome size may be under direct 

selection, which in this case is weak yet evolutionarily important process. 

Extraordinary intraspecific GS variation was also reported in Taraxacum 

stenocephalum (Asteraceae) (Trávníček et al. 2013). The authors reported variation in DNA 

content of more than 20% at the inter- and intrapopulation level. They used a best-practice 

FCM protocol and checked the number of chromosomes, but did not reveal the real source of 

this variation. The authors assumed that this variation could be caused by the presence of 

homeologous chromosomes of different sizes as a consequence of retrotransposons activity 

(Šmarda & Bureš 2010). 

 

Polyploidy and genome size 

Polyploidy, or whole-genome duplication (WGD), is a process that directly affects 

genome size. It leads to the diversification of species and is an important mode of speciation in 

some groups. Taking into account that the nucleotypic effect is apparent even at the level of 

homoploid species, in polyploids the effect must be enhanced. Together with the proliferation 

of transposable elements and activity of small RNAs molecules, which are responsible for 

regulatory processes, multiple  occurrences of polyploidy are responsible for the enormous 

genome size variation in angiosperms (Wendel et al. 2016). 
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Genomic research has made great progress over the last two decades and brought new 

insights into the role of polyploidy in genome architecture. We already know that WGS has 

occurred at least once during the evolutionary history of all angiosperms (Wendel et al. 2016). 

Many groups have even undergone multiple instances of polyploidy during their evolutionary 

history. Polyploidization is accompanied by changes in the genome, ranging from an 

immediate response at the DNA level (e.g. gene loss or recombination) to expression-level 

changes influencing the functioning of genes, and these changes can happen over millions of 

years (Wendel et al. 2016). Polyploidy is always followed by genome rearrangements (Leitch 

and Bennett, 2004), often accompanied by genome reduction (diploidization), which is 

sometimes followed by a further polyploidization event that can counteract the loss of 

indispensable genes during genome downsizing (Vu et al. 2015). Each plant genome is 

therefore at a different stage of genome development. 

Genome size varies in polyploids depending on their age: In young polyploids 

genome size corresponds to the sum of their progenitors’ genome sizes (Rebernig et al. 2012; 

Soltis et al. 2012) whereas in old polyploids it is significantly lower because of genome 

downsizing (e.g. Clarkson et al. 2005, Mandáková et al. 2010). Post-polyploidization 

processes leading to speciation are determined also by the origin of the polyploid. Polyploids 

that have originated via doubling of a single diploid genome (i.e. within an individual or after 

the hybridization of closely related individuals), are referred to as autopolyploids. Polyploids 

resulting from the hybridization of two or more different species are referred to as 

allopolyploids (Barker et al. 2016). A new gene combination created by hybridization 

determines many differences between the hybrid and the parental species. Allopolyploids face 

the fact that they possess at least two unequal genomes, which inevitably leads to genomic 

rearrangements that can have a wider consequences than the increase in genome size alone. 

Polyploidy then often goes hand in hand with species diversification, which is necessary for 

the establishment of a new polyploid entity. Every new polyploid faces obstacles such as 

various reproductive barriers (Husband 2004). Therefore, within-species ploidy variation 

might be a more suitable study system for investigating the effects of GS enlargement. In the 

cases of many species we do not know whether they are auto- or allopolyploid, but it has been 

estimated that these two types of polyploidy occur with similar frequency in nature (Barker et 

al. 2016). 

Differences between plants of different ploidy levels stem from a whole array of 

changes, be it genetic, genomic, morphological or ecological, so it is difficult to separate the 

effect of genome size. However, even without hybridization, polyploidy is linked with genetic 

and phenotypic novelties (Levin 1983, Flagel & Wendel 2009; Hegarty et al. 2013) and is 

likely to be associated with changes in gene functioning (Soltis et al. 2014, Van De Peer et al. 

2017, Wendel et al. 2016). 

Some studies have explored the nucleotypic effect across species and genera differing 

in ploidy level and revealed positive correlations between genome size and cell size (e.g. 

Knight et al. 2005, Beaulieu et al. 2008, Knight & Beaulieu 2008, Hodgson et al. 2010, Veselý 

et al. 2012). They have also revealed negative  correlations of GS with stomatal density 

(Beaulieu et al. 2008, Knight & Beaulieu 2008). Within species or genera, some direct 

correlations have been found at the cellular level, but the associations differ depending on the 

type of cells (Katagari et al. 2016). For example, a strong correlation between guard cell 
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length and pollen grain diameter has been found iare often tightly correlated with n 

Gossypium. However, in the case of epidermal pavement cell surface area the association was 

not so strong (Snodgrass et al. 2017). 

Differences in ploidy level are are often tightly correlated with differences in 

reproductive traits (Husband et al. 2013) and fitness (Parisod et al. 2010), and polyploids often 

have different ecological niches and can occupy different regions (e.g. Hijmans et al. 2007, 

Ramsey 2011, Paule et al. 2017). Contact zones between new polyploids and their progenitors 

offer good opportunities for studying the effects of polyploidy (Husband 2004), and in mixed-

ploidy populations it is possible to directly compare plants having different ploidy levels (and 

genome size) in the same environmental conditions. 

 

 

Evolutionary and ecological consequences of genome size variation 

With the increasing number of genome size studies, there is no doubt that GS 

variation has ecological and evolutionary consequences (Biémont 2008). Although such 

variability in genome size is huge, most plants have small genomes; the distribution of 

genome size is distinctly right-skewed (Dodsworth et al. 2015). The asymmetric GS 

distribution in angiosperms raises the question as to why small genome size is preferred in 

evolution or, converesly, why large genome sizes are disadvantaged in evolution. Knight et al. 

(2005) formulated the large genome constraint hypothesis, which says that large genomes are 

constrained because of the cost of possessing a larger genome consisting of unnecessary ‘junk’ 

DNA. They looked for support for this theory at three levels – evolution, ecology and 

phenotype. They found that genera with large genomes are likely to have smaller species 

diversity. Genome size influences average rates of diversification and extinction risk 

(Vinogradov 2003), but this relationship is not linear (Knight et al. 2005). At the ecological 

level, the hypothesis is supported by the fact that large-genome species are under-represented 

in extreme environments, while small-genome species occur in a wide range of habitats. Large 

genomes were also found to be rare in  environments polluted by heavy metals (Vidic et al. 

2009). Reduced maximum photosynthetic rates were found in species with large genomes. The 

phenotype level they investigated further in detail – see above and Knight & Beaulieu (2008). 

In general, sophisticated statistical methods are needed to reveal the real influence of genome 

size at the phenotypic and ecological level, and especially quantile regression methods 

represent a useful tool for uncovering these levels of complexity  (Knight et al. 2005). 

The large genome constraint hypothesis cleverly explains the manifestations of 

phenotypic properties at the level of ecology. The large-genome species has larger seeds, 

which limits their dispersal ability and their inability to occupy extreme habitats could make it 

harder to survive in long-term isolation and decrease the likelihood of allopatric speciation 

(Knight et al. 2005). Relationships between GS and temperature, precipitation, latitude and 

elevation of habitats have been reported with contradictory results (reviewed in Knight & 

Ackerly, 2002). The authors show that for elevation and latitude, all possibilities of 

relationship with genome size (positive, negative, non-significant) have been published, but 

most likely the northern latitudinal range limit tends to be negatively correlated with genome 

size (Bennett, 1987; Grotkopp et al., 2004; Knight et al., 2005). For precipitation, only 

positive or non-significant studies exist, temperature was negatively correlated in the sole 
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existing study, and seed size was positively correlated with genome size in all studies. Using 

data from the Plant DNA C-value database and quantile regression, the authors found out that 

small-genome species occur in all environments whereas large-genome species are more 

common with decreasing annual precipitation and prefer environments with intermediate mean 

July maximum  temperatures (unimodal distribution of GS and July maximum temperature) 

(Knight et al. 2005). A recently published study about Zea mays reported a negative 

correlation of genome size with altitude (Díez et al. 2013). 

Further impact of genome size has been detected in species occurrence and 

distribution. Endangered (rare) species have larger genomes than common species 

(Vinogradov 2003). Herben et al. (2012) reported an association between genome size and 

regional abundance, which is a consequence of an effect of GS on seed size, which is inversely 

proportional to the number of seeds, which in turn determines population growth rates in 

annuals. As DNA is composed mainly of nitrogen and phosphorus, the relationship between 

genome size and plant communities with different contents of these elements was studied 

(Šmarda et al. 2013, Guignard et al. 2016). Indeed, large-genome species are less competitive 

and can dominate only in communities rich in nitrogen and phosphorus, which shows that 

genome size is projected into level of plant communities. 

The association of GS and life strategy (e.g. weed, invasive species) was also studied. 

A negative correlation of GS with weediness was found in 156 species (Bennett 1987). The 

association of genome size and invasiveness is based on the assumption that small genomes 

have faster division and therefore faster growth and minimum generation time (Bennett 1972), 

which are the advantageous properties for invasive species (see te Beest et al. 2012, Suda et al. 

2015 for review). In addition, the ability of plants with small genome size to produce many 

light seeds and to establish rapidly (Rejmánek 1996) indicates that genome size could be 

related to plant invasiveness. Bennett (1987) also showed that small genomes are advantaged 

in time-limited environments. For these reasons, genome size has been considered one of the 

most important factors in plant invasiveness (Rejmánek 1996, 2000, Rejmánek et al. 2005). 

This association has been confirmed in the genera Pinus (Wakamiya et al. 1993, Grotkopp et 

al. 2002, 2004), Senecio (Lawrence 1985) and Acacia (Mukherjee and Sharma 1990). Another 

study revealed a negative correlation between genome size and invaded spread in three species 

of Briza (Rejmánek 1996). In addition, more extensive studies with interspecific  comparisons 

show that small genomes favour invasiveness (Bennett et al., 1998; Knight & Ackerly, 2002; 

Kuester et al., 2014; Pandit et al. 2014). Furthermore, genome size-related differences can 

further influence the the rate of colonization, which was studied at the within-species level in 

Phalaris arundinacea (Lavergne et al. 2010). Finally yet importantly, Pyšek et al. (2018) 

showed that the amount of DNA in the cell nucleus can also be used to distinguish between 

native and invasive populations in Phragmites australis. They compared the North American 

wild population with invasive populations established by plants that originated in Europe, and 

monoploid genome size separated these populations. Plants from invasive populations 

generally possess more traits that enable them to be successful invaders (long rhizomes, early 

emerging abundant shoots, resistance to aphid attack, and a low C:N ratio). The role of 

genome size in plant invasiveness is a hot topic in invasion biology and it deserves further 

research because it might have even practical implications in the fight against invasive species. 

 The asymmetric distribution of genome size (Dodsworth et al. 2015) has evoked the 

suggestion that a large gnome on the one hand is a limitation and on the other that small 
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genome size constitutes an evolutionary advantage. Large genomes are rare in all eukaryotes 

(Gregory 2005) and many studies have presented theories about this asymmetry, suggesting 

that large genomes are selectively removed (Vinogradov 2003, 2004; Knight et al. 2005). 

Several comprehensive studies have already been published about GS evolution (Soltis et al. 

2003, Bennetzen et al. 2005, Leitch et al. 2005, Dodsworth et al. 2015, Pellicer et al. 2018) 

submitting different scenarios for GS evolution, and there is still no clear opinion regarding 

the role of natural selection in relation to genome size. 

 The study by Oliver et al. (2007) demonstrates that the skewed distribution of 

eukaryotic genome size can be explained with a simple proportional model of evolution. The 

authors suggest that evolutionary changes in GS are less pronounced in small genomes than in 

large genomes. Therefore, it is more difficult for small genomes to become and stay large and 

easier for large genomes to become and stay small. This model shows that there is no need to 

invoke natural selection to explain the distribution of GS in eukaryotes. Studies in the 

Brassicaceae demonstrate that neutral evolution through random and passive changes may also 

be important in shaping genome size (Lysak et al. 2009). Another study claims that GS in 

angiosperms does not correlate with effective population size (Whitney et al. 2010). 

Presuming that effective population size is related to selection, this is another indication that 

selection does not play a big role in genome size evolution. Though the particularly 

noteworthy study of Oliver et al. (2007) presented a reasonable explanation, further studies are 

being conducted to reveal the correlation of genome size with phenotypic consequences, 

which is the logical way how to find out if the suggested model is true. 

The large genome constraint hypothesis (Knight et al. 2005) assumes that genome size 

is adaptive based on interspecific comparison. On the other hand, the study of intraspecific GS 

variation have shown that genome size is not always adaptive (Šmarda et al. 2007), wherein 

no difference was found in GS variation in spatial distribution in a highly variable population. 

The authors conclude that genome size in this case is non-adaptive and not affected by 

selection. 

The association between genome size and phylogeny has been well documented. 

Another aspect of genome size is its relationships to the phylogenies of taxa under study. In 

Orobanche, differences in genome size correspond with main phylogenetic lineages (Weiss-

Schneeweiss et al. 2006). In Hieracium subgenus Hieracium, two groups of taxa possessing 

different genome sizes are  congruent with two phylogenetic groups (Chrtek et al. 2009). In 

Chrysanthemum, too, a correlation of genome size with phylogenetic groups has been reported 

(Luo et al. 2017). Anyway, phylogenetic signal can blur the association of genome size with 

biological parameters and it is necessary to make phylogenetic corrections when comparing 

different taxa. 

Ecological and evolutionary processes are intertwined, the relationships evolve over 

time. A noteworthy study conducted by (Jordan et al. 2015) demonstrates that environmental 

adaptation, and not genome size, has determined the stomatal size in the Proteaceae. The 

authors suggest that ancient changes in GS affected stomatal size during the species’ evolution 

but that adaptation to the environment altered the stoma-GS association. However, GS studies 

also face another obstacle: When revealing relationships between genome size and certain 

traits, a significant relation between genome size and some trait can be overshadowed by a 
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third factor (Beaulieu, Leitch, et al. 2007). Generally, considering the impact of genome size, 

the different time scale might have to be taken into account. On a developmental/ecological 

time scale, genome size could have a direct effect whereas over the long-term course of 

evolution there should be a selective feedback loop from traits to genome size (Herben et al. 

2012), which makes the issue even more complicated. 
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OBJECTIVES AND STUDY SYSTEMS 

 
The main objective of this thesis was to clarify the significance of genome size for plant life 

and demonstrate the importance of this marker in botanical studies. Summarized below are the 

main topics and questions touched in the articles composing this dissertation: 

 

1) Dynamics of genome size in natural systems 

How is genome size variation transferred between generations? How heritable is parental 

divergence in genome size? 

What is the range of variation at the homoploid and heteroploid levels within species? 

 

2) Genome size and its association with phenotype 

Which biological traits or processes are associated with genome size? 

Do morphological and phenological correlations with genome size exist at the intra- and 

interspecific levels? 

 

3) Ecological and evolutionary consequences of genome size 

What are the ecological and evolutionary consequences of genome size variation? How is 

genome size associated with invasiveness? Is genome size determined by phylogeny? 

 

4) Limits of FCM genome size estimation 

How to overcome the need for fresh samples during the collection of samples in remote areas 

or on long field trips? 

All these questions mingle in the six case studies, which were focused on the importance of 

genome size in different groups of plants at different taxonomic levels (intraspecific, 

intrageneric, interspecific), studying genome size at different levels of complexity 

(intraspecific genome size vs ploidy levels), various  associations of genome size with plant 

traits, different ecological correlations and consequences (distribution range, habitats, 

invasiveness), and also addressing possible methodological obstacles (the need for fresh 

material and combining of different protocols). 

 Some of the included case studies did not deal exclusively with genome size. Below is 

an overview of the aspects of genome size each study explored, the model systems studied and 

the methods used. 

 

I. Lučanová M., Loureiro J., Suda J. (manuscript): Genome size variation correlates with 

fitness indicators in Taraxacum stenocephalum (Asteraceae) 

- Taraxacum stenocephalum (Asteraceae) 

- 775 seedlings from 25 mother plants 
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- intraspecific genome size variation – its range, heritability, dynamics and correlation with 

developmental traits 

- absolute genome size 

- flow cytometry, karyology, crossing experiment 

 

II. Kolář F., Lučanová M., Koutecký P., Dortová M., Knotek A., Suda J. (2014): Spatio-

ecological segregation of diploid and tetraploid cytotypes of Galium valdepilosum in 

central Europe. – Preslia 86: 155–178 

 

- Galium valdepilosum (Rubiaceae) 

– studying ploidal distribution and different ecological preferences of cytotypes 

- relative DNA genome size screening 

- interspecific variation in absolute DNA 

- flow cytometry 

 

III. Kolář F., Lučanová M., Záveská E., Fuxová G., Mandáková T., Španiel S., Senko D., 

Svitok M., Kolník M., Gudžinskas Z., Marhold K. (2016): Ecological segregation does 

not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of 

the Arabidopsis arenosa group (Brassicaceae). – Biological Journal of the Linnean Society 

119: 673–688 

 

- Arabidopsis arenosa group (Brassicaceae) 

- more than 2,900 individuals from 194 populations 

- testing of ecological segregation of parapatrically distributed 2x and 4x 

- relative DNA genome size screening 

- homoploid differentiation in DNA content 

- flow cytometry 

 

IV. Dušková E., Kolář F., Sklenář P., Rauchová J., Kubešová M., Fér T., Suda J. & 

Marhold K. (2010): Genome size correlates with growth form, habitat and phylogeny in 

the Andean genus Lasiocephalus (Asteraceae). – Preslia 82: 127–148 

 

- Lasiocephalus (Asteraceae) 

- 20 species, 189 individuals from 101 populations 

- correlation with growth form, habitat, altitude, and phylogeny 

- absolute genome size 

- relative genome size 

- flow cytometry, karyology, ITS sequencing 

 

V. Kubešová M., Moravcová L., Suda J., Jarošík V. & Pyšek P. (2010): Naturalized 

plants have smaller genomes than their non-invading relatives: a flow cytometric 

analysis of the Czech alien flora. – Preslia 82: 81–96 

 

-  93 alien species from 32 families naturalized in the Czech Republic 

- comparison of absolute genome size of naturalized plants and non-invading congeners 
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- absolute genome size 

- flow cytometry 

 

VI. Kolář F., Lučanová M., Těšitel J., Loureiro J. & Suda J. (2012): Glycerol-treated 

nuclear suspensions – an efficient preservation method for flow cytometric analysis of 

plant samples. – Chromosome Research 20(2): 303–315 https://doi.org/10.1007/s10577-

012-9277-0 

 

- new protocol for nuclei preservation in glycerol 

- time-scale laboratory experiment – 6 species from 5 families 

- in situ application of glycerol preservation – 21 species from 12 families 

- relative and absolute genome size estimation 

- flow cytometry 
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Abstract 

Intraspecific variation in plant genome size has only rarely been rigorously documented, mainly 

due to methodological issues, and its potential adaptive value remains a matter of debate. We tested 

for the heritability of genome size and its consequences for plant fitness in Taraxacum 

stenocephalum, a sexual tetraploid exhibiting remarkable variation in genome size in its wild 

populations. 

Using flow cytometry complemented with karyology we assessed the range of genome size 

variation among 150 individuals of the study species. We then carried out controlled crossings of 

25 mother plants and 22 pollen donor plants, and estimated the genome sizes of 775 seedlings of 

the F1 generation. In a common garden experiment we examined several proxies of fitness of 

progenies varying in nuclear DNA content. 

We recorded a strong correlation between parental and F1 offspring genome size. The genome size 

variation of F1 seedlings was greater than that of parental plants. During chromosome counting we 

observed the presence of satellite chromosomes of various sizes. The largest satellites occurred 

only in plants with large genomes, suggesting that they contribute to the genome size variation 

observed. The analyses revealed correlations of several traits with genome size of F1 plants. Mid-

sized genomes were associated with the best fitness. 

This study demonstrates that genome size is a heritable trait exhibiting a pattern of segregation that 

correlates with certain indicators of fitness. Mid-sized genomes correspond with phenotypes 

exhibiting the greatest fitness, suggesting the occurrence of balancing selection for mid-sized 

genomes. Genome size variation can be important in early ontogeny, possibly influencing offspring 

survival and population phenotype display. 

 

 

Key words: crossing, fitness, flow cytometry, genome size, heritability, intraspecific variation, 

nuclear DNA content 
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Introduction 

Genome size is one of the basic characteristics of living organisms. In the different 

kingdoms of life it exhibits massive variation, which in the Angiosperms spans a 2,300-fold range 

(Dodsworth et al. 2015). This tremendous variation is caused mainly by polyploidy and by the 

activity of repetitive DNA elements, mainly LTR retrotransposons (SanMiguel et al. 1996, Vicient 

et al. 1999, SanMiguel & Bennetzen 1998; Bennetzen 2000, 2005; Neumann et al. 2006, Wendel et 

al. 2016), which lead to increases in genome size. Processes like unequal homologous 

recombination and illegitimate recombination are also involved; however, through small deletions, 

these mechanisms cause the shrinking of genomes (Shirasu 2000, Devos et al. 2002, Wicker et al. 

2003, Bennetzen et al. 2005). 

Genome size can affect the phenotypes of plants. According to the so-called nucleotypic 

theory (Bennett 1972) it is known to influence the duration of cell division, the size of the nucleus, 

and thus the whole cell and its minimum generation time (Bennett 1972, Bennett 1973, Edwards & 

Endrizzi 1975, Cavalier-Smith 1985). Many correlative studies have shown that genome size can 

be viewed as an adaptive trait influencing minimum generation time or time to flowering (Leitch 

and Bennett 2007), seed characteristics (Grotkopp et al. 2004, Beaulieu, Moles, et al. 2007, 

Krahulcová et al. 2017), relative growth rates of seedlings (Grotkopp et al. 2004), specific leaf area 

(Morgan & Westoby 2005, Beaulieu, Leitch, et al. 2007), stomatal size and density (Beaulieu et al. 

2008, Hodgson et al. 2010), pollen size (Knight et al. 2010) and flower size (Meagher & 

Vassiliadis 2005), as well as their relations with environmental gradients (Knight & Ackerly 2002), 

including invasiveness (Suda et al. 2015) and their association with phylogeny (Chrtek et al. 2009, 

Luo et al. 2017). However, most studies deal with the interspecific level and only little is known 

about the role of genome size in driving phenotypic and possibly fitness changes within particular 

species with homoploid genome size variation between generations. 

This lack of information is caused mainly by the fact that, within a species, variation in 

homoploid genome size is usually low (Loureiro et al. 2010), and intraspecific variation is 

considered a rare phenomenon in wild plant species (reviewed in Šmarda & Bureš 2010). 

Moreover, earlier studies were hindered by methodological obstacles (for reviews see Greilhuber 

2005, Šmarda & Bureš 2010), and the only studies that have reliably documented true intraspecific 

or even intrapopulation variation in genome size using rigorous methodology have been published 

in the last two decades, for example in Anthoxanthum (Chumová et al. 2015), Arabidopsis thaliana 

(Schmuths et al. 2004), Curcuma (Leong-Škorničková et al. 2007), Dasypyrum villosum 

(Obermayer & Greilhuber 2005), Fagus sylvatica (Paule et al. 2018), Festuca pallens (Šmarda & 

Bureš 2006), Lollium perenne (Sugiyama et al. 2002), Hieracium sub-genus Pilosella (Suda, 

Krahulcová, et al. 2007), Senecio carniolicus (Suda, Weiss-Schneeweiss, et al. 2007), Picris 

hieracioides (Slovák et al. 2009) and Taraxacum stenocephalum (Trávníček et al. 2013). Most 

studies published to date report low intraspecific genome size variation (but see Šmarda, Bureš, 

Horová, & Rotreklová 2008, Trávníček et al. 2013), raising further questions about the significance 

of genome size variation. Nevertheless, these studies have shown that the study of intraspecific 

variation in genome size may provide key clues towards understanding the mechanisms driving 

genome size variation in wild plant populations. From this point of view, the detailed studies by 

Šmarda, Bureš, Horová & Rotreklová (2008) and Šmarda et al. (2010) were pioneering. These 

authors studied genome size dynamics in highly variable populations of Festuca pallens and found 

a correlation between the genome size of offspring and that of mother plants, assuming that 



 

 

29 

 

genome size is a heritable trait. Unfortunately, the authors did not determine the genome size of 

pollen donor plants, as they worked with fruits collected in wild populations. 

One rare case of a species with large intraspecific variation in nuclear DNA content that 

has been rigorously documented is the Eurasian dandelion Taraxacum stenocephalum Boiss & 

Kotschy ex. Boiss. (Asteraceae, Lactuceae; Trávníček et al. 2013). A detailed flow-cytometric 

survey, following the best practices (Doležel & Bartoš 2005), of two natural populations 

documented 1,223-fold differences, with karyological analyses ruling out differences in 

chromosome numbers as an explanation for the observed pattern. Unlike most species of this 

genus, T. stenocephalum is a sexual tetraploid (Kirschner et al. 1994) with rapid ontogenetic 

development, which makes it an ideal study system for unravelling the dynamics of intraspecific 

variation in genome size. 

The main objectives of this study were to disentangle the dynamics of genome size 

variation between generations of T. stenocephalum and to unveil possible correlations between 

nuclear DNA content and fitness traits. In particular, using flow cytometry, karyology, crossing 

experiments and fitness analyses of F1 plants, we aimed to further our understanding of how 

parental genome size is projected into successive generations and how, if at all, it influences the 

fitness of seedlings. The meeting of these objectives allowed us to address the following questions: 

(i) To what extent is genome size heritable? In particular, is there a correlation between the genome  

sizes of parental individuals and their offspring?; (ii) Which karyological traits, if any, underpin 

genome size variation; and, (iii) Does genome size affect any phenotypic or fitness traits of F1 

individuals? 

 

 

Materials and methods 

Plant material 

The present article is based on the study of 150 individuals of Taraxacum stenocephalum 

collected by Jan Kirschner and Frederick Rooks from nine wild subpopulations in two regions of 

Georgia (Lesser Caucasus – Trialetis Range, Greater Caucasus – Tergi River and Kazbegi). For 

details see Supplementary Table S1 and Trávníček et al. (2013). The individuals were cultivated 

from rhizomes collected in the field in the experimental garden at the Institute of Botany in 

Průhonice, Czech Republic. 

 

Genome size estimations using flow cytometry 

Absolute genome size of plant material was ascertained by flow cytometry using a proven 

two-step protocol (Doležel et al. 2007). Approximately 0.5 cm2 of fresh tissue of the sample 

material was chopped together with the same amount of the internal reference standard Glycine 

max cv. Polanka with a sharp razor blade in 0.5 ml of ice-cold Otto I buffer and incubated for 

approximately 10 min at room temperature. The nuclear solution was filtered through a 42-µm-pore 

nylon mesh and a 1 ml of Otto II buffer supplemented with propidium iodide (PI), RNase (both at 

the final concentration of 50 µg/ml) and 2-mercaptoethanol (at the final concentration of 2 µl/ml). 

After 10 min of incubation, each sample was run through a Partec CyFlow SL flow cytometer 

(green laser with the central wavelength of 532 nm, Partec GmbH, Münster, Germany), and data on 
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5,000 particles were acquired. Only intraindividual measurements which differed by less than 2% 

from other measurements of the individual were accepted.  

To verify the genome size of the internal reference standard with the use of our flow 

cytometer, the genome size of Glycine max cv. Polanka was recalculated against that of Pisum 

sativum cv. Ctirad (2C = 9.09 pg of DNA, Doležel et al. 1998) on three different days. According 

with this evaluation, the genome size of the reference standard was estimated to be 2C = 2.39 pg 

instead of the value reported by Doležel et al. (1994), i.e. 2C = 2.50 pg. Therefore, values of 

holoploid genome size (sensu Greilhuber et al. 2005) of Taraxacum samples were calculated as the 

ratio of PI fluorescence of sample vs standard G1 peaks, multiplied by 2.39. 

According to the results of genome size analyses, the cultivated (parental) individuals of 

Taraxacum stenocephalum were divided into five categories for the purpose of further crossings 

and the obtainment of an F1 generation. Specifically, we determined the entire genome size range 

for all individuals and divided the set of plants by 20%, giving us five groups (I – very small, II – 

small, III – medium, IV – large, V – very large genome size). Leaves of sterile rosettes of the 

resulting offspring were analysed following the same procedure as above. One measurement of 

genome size was made and only the minimum and maximum values were checked by the second 

and the third replications on different days. In total, the genome size of 559 seedlings (Set 1) raised 

from seeds from 30 fruit heads (one fruit head is from one parental combination, hereafter referred 

to as a family), which corresponded to the different types of crossings, was assessed for 10 to 56 

individuals per offspring family (19 on average). In addition, 300 achenes (Set 2) were sown for the 

assessment of fitness and an estimation of genome size of the plants that survived until the adult 

stage was obtained (216 individuals in total). The nuclear DNA content of these plants was 

measured on three different days and, as above, when the difference between the three 

measurements was greater than 2%, the most extreme value was excluded and new analyses were 

carried out. 

The aforementioned differences in nuclear DNA content were further confirmed by the 

presence of double peaks obtained by simultaneous analyses of individuals where such differences 

were detected. To this end, and in order to obtain G1 peaks with the maximum possible resolution, 

each sample was prepared as above, but the Otto II buffer was enriched with DAPI (at the final 

concentration of 4 µg/ml) and 2-mercaptoethanol (at the final concentration of 2 µl/ml). These 

samples were then run until the acquisition of 5,000 data points through a Partec CyFlow ML 

machine (Partec GmbH, Münster, Germany) equipped with a UV LED diode with the output 

wavelength of 365 nm. Histograms were evaluated using FloMax Software (version 2.6, Partec). 

Karyological analyses 

The karyotypes of 27 F1 individuals that resulted from 10 different crossings (I × I, I × II, 

II × II, II × V, III × II, III × V, IV × IV, IV × I, V × III, V × IV) of 12 mother plants, covering all 

genome size categories, were investigated. Karyological accessions were obtained from the roots of 

seedlings. Because this technique is destructive, it was not possible to estimate the genome sizes of 

individuals which were used for the karyological analyses. The seedlings were pretreated in 

0.002M 8-hydroxyquinoline (2.5 hours in the dark at room temperature and 2.5 hours at 4°C). The 

washed seedlings were fixed in an ethanol:acetic acid solution (3:1) and stored at −20°C until 

further processing. Before the making of chromosome preparations, the seedlings were macerated 

in 5N HCl for 30 min. Schiff’s reagent was then added and the material was incubated in the dark 

for one hour at room temperature. The material was then transferred on to a microscopic slide in a 

drop of 60% acetic acid, non-meristematic tissues were removed, and the meristem was covered 
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with a coverslip and squashed. The preparations were examined under a ZEISS Axioplan 2 

epifluorescence microscope (Zeiss), and digital images were acquired with a cooled CCD camera 

and further processed with AxioVision analysis software (Zeiss). Only slides where at least five 

mitoses were found were considered. 

 

 

Crossing experiments (Set 1) 

In the flowering season (June – July), flower buds of parental plants were bagged in non-

woven fabric to exclude flower visitors. Open flowers throughout the inflorescences of plants 

belonging to each of the five genome size categories were pollinated reciprocally. Mother plants 

belonging to each genome size category were pollinated by pollen from donor plants belonging to 

all genome size categories, yielding a total of 25 crossing combinations. Each pollination was 

repeated on two subsequent days if the flowers re-opened. In total, 443 F1 crosses were carried out, 

comprising on average 17 F1 crosses (between 7 and 54 F1 crosses) for each combination of 

genome size categories. Besides, 236 bagged plants were left without a crossing treatment and 

served as controls for apomixis or autogamy. In 11 cases, an autogamy test was done by 

reciprocally crossing two inflorescences within the same plant. In addition, three plants were 

emasculated to exclude apomixis. Bags containing mature achenes were collected at the end of the 

fruiting season, the fruits were sorted, and the success of the crossing experiment was assessed. A 

subset of the fruits from 30 crossings of 25 mother and 22 donor plants was sowed, and the 

resulting seedlings (Set 1) were grown in the greenhouse on commercial garden substrate until the 

rosette stage. 

 

 

Growth experiments (Set 2) 

Another subset of the fruits was used to study the association between genome size and 

growth traits in F1 seedlings (Set 2). To this end, 300 fruits representing the offspring of crossings 

involving plants with the smallest and the largest genomes (I × I, I × II, IV × V, V × V) were 

individually weighed on a pair of Mettler AE 163 scales, soaked in potassium permanganate for 3 

min, then sowed on to damp filter paper in Petri dishes and left to germinate. In one month the 

seedlings were large enough to be transplanted into pots with sterile commercial soil. The pots 

were placed at random positions in the experimental garden. In winter the pots were transferred to a 

greenhouse with better controlled conditions. Over the whole duration of the experiment, the 

positions of the pots were regularly re-randomized. 

At regular intervals for 13 months, the following growth traits were recorded: beginning of 

germination, number of leaves, length of the longest leaf and beginning of flowering. After the last 

measurement, the total aboveground biomass of each individual was ascertained by drying the 

plants for 24 hours at 80°C and weighing the dried material on a pair of Mettler AE 163 scales. 

 

 

Statistical analyses 

In analysis of Set 1 we tested the relationship between mean parental and offspring 

genome sizes using linear regression. The difference in the distribution of successful and 
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unsuccessful pollinations between crossing types was tested by a t-test for dependent samples. The 

correlations of genome size with time to germination, time to flowering, weight of achenes and 

weight of aboveground biomass were tested in analysis of Set 2 also with linear regression. 

In analysis of Set 2, the dependency in the number of offspring leaves in relation to 

genome size and time was fitted with generalized linear mixed-effect models (‘lme4’ R package, R 

Core Team 2017) and tested with a likelihood ratio test. First, a model considering the interaction 

of time and genome size was tested to evaluate whether genome size-related differences change 

over time. This model was fitted using all 23 measurements taken over the course of the 

observation period. Afterwards, genome size and time were entered as quantitative predictors, 

individuals were considered a factor with random effect, and the number of leaves was considered 

a dependent variable with an assumed Poisson distribution of unexplained variation. 

In analysis of Set 2, the progression of offspring leaf lengths was fitted with a linear 

mixed-effect model (‘lme4’ package) with log-transformed leaf length. First, the same model as 

above was tested to analyse the interaction between time and genome size. Then, genome size and 

time were entered as quantitative predictors, individuals as a factor with random effect and leaf 

length as a dependent variable. Based on the identified genome size-related changes in leaf length, 

we fitted the effect of genome size with a second-order polynomial term. We used only the first 12 

data points for leaf length, as this variable represented the period of increasing leaf length (see Fig. 

S1 in the supplementary material). 

The associations between fruit weight and aboveground biomass and between leaf length 

and aboveground biomass at the end of the growth experiment were tested in analysis of Set 2 

using linear regressions. 

Statistical analyses were performed in R (R Core Team 2017) or, alternatively or in addition, in 

STATISTICA 13 (StatSoft Inc., 2015). 

 

Results 

Genome size variation and its dynamics 

The nuclear DNA content of the parental plants used in the crossings ranged from 3.785 to 

4.469 pg/2C, constituting a 1.181-fold variation in genome size (see Supplementary Table S2 for 

individual values). The genome size variation among 559 successfully germinated seedlings 

originating from 30 crossings between 25 mothers and 22 pollen donors was slightly greater 

(1.228-fold), ranging from 3.707 to 4.553 pg/2C (Set 1, Supplementary Table S2). This genome 

size variation has to be considered genuine because we acquired similar results repeatedly and on 

different days, as proved by the presence of double peaks in histograms from simultaneous analyses 

of individuals with distinct genome sizes (Fig. 1). 
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Fig. 1 Flow-cytometric histograms of simultaneous analyses of offspring using DAPI. A.  Seedlings 

from crossings between the genome size categories I and IV, coefficient of variation 1.22 and 1.3 for the 

first and second peak, respectively. B. Seedlings from crossings between the genome size categories I × 

I  and III × V, coefficient of variation 1.13 and 1.78 for the first and second peak, respectively. 

 

The mean genome sizes of offspring families were significantly positively correlated with 

theoretically expected values (averages for each parental pair – r2 = 0.84, F(1,28) = 143.47, p < 

0.001, Fig. 2). To reveal possible deviations of genome size from expected values derived from 

differences between parents, we examined the standard deviations of genome sizes of offspring 

families but only weak and statistically insignificant relationship was found (r2 = 0.10, F(1,28) = 

3.11, p = 0.089, Fig. 3). This indicates that the observed genome sizes vary in accordance with the 

expected values and that the genome size of the mother or the pollen donor caused no detectable 

shift. Generally, the nuclear DNA content of offspring differed from the mean parental genome size 

approximately by a maximum of 3% in both directions (Fig. 4). The overall variation in genome 

size among all seedlings even exceeded that observed in parental plants (3.785 to 4.469 pg/2C, 

1.181-fold). Within seedling families (from 10 to 56 individuals per family) genome size varied 

1.019 to 1.113-fold. The greatest difference between two parental plants was 1.17-fold. 
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Fig. 2 Mean 2C-values (pg) of parental pairs and mean 2C-values (pg) of offspring families. The 

relationship is fitted with linear regression. 

 

 

 

     
 

Fig. 3 Standard deviations of offspring genome sizes and differences between parents (in absolute 

units). 

 



 

 

35 

 

 
 

Fig 4. Scatterplot of 2C DNA content of 30 offspring heads (squares) and mean parental genome size 

(circles). Box = mean, whisker = mean ± 2 SD. 

 

We found no differences in the distribution of crossing combinations between successful 

and unsuccessful pollinations (t-test for dependent samples, t = 0, d.f. = 24, p = 1), which indicates 

the absence of a reproductive barrier between plants having different genome sizes. The genome 

seizes of the 216 F1 seedlings (Set 2) which survived until the end of the experiment ranged from 

3.772 to 4.678 pg/2C, amounting to a 1.24-fold variation in genome size. Once again, this range of 

variation is broader than that observed in parental plants, which ranged from 3.796 to 4.503 pg/2C, 

i.e. a 1.19-fold difference. The correlation between parental and offspring genome size was tested 

with linear regression (r2 = 0.769, F(1,214) = 714.15, p < 0.001), which revealed a significant 

positive correlation: the greater the mean parental genome size, the greater the genome size of the 

offspring. 

The mean coefficient of variation of G1 peaks of samples and the internal standard was 

2.78 % and 3.52 %, respectively, and the mean difference in genome size between three analyses 

performed on different days was 1.18%. 

 

 

Sources of genome size variation 

The chromosome number of Taraxacum stenocephalum was confirmed to be consistently 

2n = 4x = 32 (Fig. 5) in 108 successfully scored mitotic figures from meristem tissue of 27 

individuals. However, we observed satellite chromosomes of different size in 67 mitotic figures 

(62% of individuals, see Supplementary Table S3). 
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Fig 5. Mitotic chromosomes 2n = 32 from the root tips of  seedlings from the crossing of parents 

belonging to the II x II category (2C mother plant = 4.19 pg, 2C donor plant  = 4.19 pg). Arrows point to 

satellite chromosomes. 

 

We examined the possible correlation between the presence of satellite chromosomes of 

different size and plant genome size. As it was not possible to flow cytometrically estimate the 

genome sizes of seedlings used for chromosome counting, because they were too small, we 

calculated their potential genome size as the arithmetic mean of their parents’ nuclear DNA 

content. This was justified by the fact that we observed a strong correlation between the genome 

sizes of parents and their offspring (see below). Large satellite chromosomes were only present in 

plants with potentially large genome size (above 4.22 pg), so they probably contribute to the 

observed genome size variation. By contrast, small satellites occurred in seven samples that 

represented the full range of potential genome sizes (3.91–4.35 pg), indicating the lack of an 

association between the presence of small satellite chromosomes and genome size. 

 

 

Genome size and offspring fitness 

To assess possible correlations between fitness and genome size, we analysed Set 2 to 

search for a possible correlation between the genome sizes of the 216 surviving individuals and 

several of their growth traits. 

Time to germination was weakly positively correlated with genome size (r2 = 0.0196, 

F(1,214) = 4.285, p = 0.0396) (Fig. 6). On the other hand, there was a moderate negative 

correlation between achene weight and genome size (r2 = 0.269, F(1,214) = 78.723, p < 0.001). The 

linear regression of time to germination and achene weight turned out to be non-significant (r2 = 

0.00264, F(1,269) = 0.712, p = 0.399). No correlation was detected between the number of leaves 

and genome size, as both genome size and the time*genome size interaction were non-significant 

(GS – 2
1=0, n.s.; time:GS – 2

1=1.4644, n.s.). 
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Fig 6. Linear regression of genome size and days to germination. 

There was a unimodal dependency of leaf length on genome size over the whole 

observation period (poly(GS,2): 2
2 = 8.32, p = 0.0156; Fig. 7). The addition of an interaction 

between the (polynomial) effect of genome size and time significantly improved the model (2
2 = 

12.497, p=0.0019), providing evidence for an effect of genome size over time. The obtained results 

also demonstrate that genome size affected the growth of leaves, with the mid-sized genome size 

category exhibiting the maximum values both for the number and length of leaves. 
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Fig 7. Length of leaves of individuals with varying genome size (2C /pg) at six time points covering the 

whole study period. 

 

As regards flowering, 69 out of the 216 plants that survived (32 %) started to flower 

during the experiment. There were significant differences in genome size between flowering and 

non-flowering plants (t = −12.4, d.f. = 214, p < 0.001) (Fig. 8), with flowering plants exhibiting a 

smaller mean genome size (2C = 3.968 ± 0.114 pg) than non-flowering plants (2C = 4.203 ± 0.137 

pg). Flowering plants also differed in the number of days they took to start flowering, plants with 

smaller genome sizes having an earlier onset of flowering than plants with larger genome sizes 

(Fig. 9). 
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Fig 8. Differences in genome size between flowering and non-flowering plants. 

 

 

Fig 9. Number of days to the onset of flowering in plants with varying genome size, fitted with a linear 

regression line. The linear regression equation is shown in the graph. 

 

Finally, aboveground biomass was significantly positively correlated with genome size. 

Polynomial regression provided better results than linear regression (r2 = 0.145, F(1,213) = 19.3, p 

< 0.001) (Fig. 10), revealing that plants with intermediate genome size produced the most 

aboveground biomass. Aboveground biomass and leaf length were strongly positively correlated (r2 

= 0.468, F(1,214) = 188.5, p < 0.001), which indicates that leaf length can be considered a good 

proxy of biomass when applied to the determination of growth rates. 
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Fig 10. Scatterplot of total aboveground biomass and 2C DNA content fitted with a polynomial curve. 

 

 

Discussion 

Data reliability 

Because of inappropriate methodological practices, numerous studies describing 

intraspecific genome size variation are gradually being refuted (for a review see Šmarda & Bureš 

2010). Current studies attempting to prove actual variation in genome size of plant species should 

stringently observe certain methodological rules (Doležel and Bartoš 2005; Doležel, Greilhuber, 

and Suda 2007; Šmarda, Bureš, Horová, Foggi, et al. 2008; Šmarda and Bureš 2006, Walker et al. 

2006, Greilhuber 2008). Based on these recommendations, and to fully assure that any observed 

genome size variation was real, we adhered to stringent rules for estimating genome size. In 

particular, we constantly used the same internal standard, preformed repeated measurements on 

different days until the variation for an individual was less than 2%, obtained double peaks in 

simultaneous analyses, and used alternative fluorescent dyes (PI and DAPI) and different flow 

cytometers. 

 

 

Range and heritability of genome size variation 

The genome size variation observed among all seedlings of Taraxacum stenocephalum 

under study (1.262-fold variation among 775 seedlings), confirmed the exceptional variation 

initially reported by Trávníček et al. (2013) (1.223-fold). The genome size variation among F1 

seedlings was even greater than that among their parents. Similar results were attained by 

pollination experiments with Microseris douglasii (Asteraceae) reported by Price et al. (1983) or in 

the study of seedlings and mothers of Festuca pallens (Šmarda, Bureš, Horová, & Rotreklová 2008, 

Šmarda et al. 2010). In addition, as observed in F. pallens, the genome size variation within 

offspring families from parents with similar genome size was greater than that of parental 

individuals. 
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We observed no strict reproductive barrier between the genomes size categories of 

T. stenocephalum. Šmarda, Bureš, Horová, & Rotreklová (2008) suggested that the genome size 

variation in F. pallens, which is generated continuously, can be maintained by means of 

segregation of homoeologous chromosomes of different size during gametogenesis, and our results 

support this suggestion. However, the considerably greater proportion of viable fruits produced by 

mother plants with mid-sized genomes, together with the smaller dimensions of fruits produced by 

mother plants with very small, small and very large genomes, might indicate possible problems 

with the pairing of chromosomes with highly dissimilar lengths. 

 The larger genome size variation of F1 individuals compared to parental plants from wild 

populations might indicate that new variation is generated between generations; however, the 

prevalence of balanced selection might be responsible for keeping the species’ genome size more 

or less constant. Nevertheless, further studies of subsequent generations and backcrosses will be 

necessary to fully confirm this assumption. 

 

 

Karyological investigation 

Chromosome counts for Taraxacum stenocephalum were previously reported by Kirscher 

et al. (1994) and Trávníček et al. (2013). Kirschner et al. (1994) investigated 13 seedlings from 

three mother plants collected from one Caucasian population and published karyotypes of T. 

stenocephalum showing variability in the presence of satellite chromosomes. Trávníček et al. 

(2013) used 16 mature plants with estimated DNA content and detected no satellite chromosomes 

in plants with small and large genomes. As the detection of satellites or secondary constrictions 

(NORs) is highly dependent on the condensation of chromosomes or of the squash, the presence of 

these chromosomes may have gone unnoticed in the work of Trávníček et al. (2013). In the present 

study, chromosome spreads obtained from 27 seedlings from crossings of plants with 1.18-fold 

variation in genome size contained up to three pairs of satellite chromosomes varying in size. The 

largest satellite fragments were only recorded in seedlings with the largest expected genome sizes, 

so we presume that satellite chromosomes contribute somewhat to the largest genome sizes. 

Similarly to the authors of previous studies on T. stenocephalum, we detected neither aneuploidy 

nor B chromosomes. 

 

 

Association of genome size with growth and fitness traits 

 

Correlations of genome size with leaf length, time to germination, time to flowering, 

aboveground biomass and achene weight suggest that genome size affects the phenotype and that 

this might have fitness consequences for T. stenocephalum individuals. Our results show that, in 

the study species, time to germination and time to flowering correspond with the nucleotypic theory 

(Bennett 1972), which postulates that genome size by itself can influence cell size and the duration 

of cell division, so it can be assumed to influence relative growth rates during early ontogeny. On 

the other hand, we fitted the relation between leaf length and genome size with a polynomial curve 

showing that individuals with mid-sized genome size exhibited the best growth rates. The non-

linear distribution of genome size is quite often source of contradictory results (Knight & Beaulieu 
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2008) in different species. However, we did not find the number of leaves, which is usually used as 

a marker of seedling developmental rate (McMaster 1997, 2005, Šmarda, Bureš, Horová, & 

Rotreklová 2008),  to be correlated with genome size. Šmarda, Bureš, Horová, & Rotreklová 

(2008) found positive correlations between genome size and developmental rates, which is at odds 

with the nucleotypic theory. These different results indicate that the relationship is more complex 

and that factors such as cell type and loccation (Katagiri et al. 2016), rather than merely the rate of 

division, may be involved.  

In addition, we found a strong negative correlation between fruit weight and nuclear DNA 

content. In Taraxacum, fruit mass is directly related to seed mass. Considering that many previous 

studies trying to search for associations between genome size and seed mass, revealed a positive 

correlation (Bennett 1987; Dąbrowska 1992; Grotkopp et al. 2004; Knight et al. 2005; Knight and 

Beaulieu 2008; Kim et al. 2015), our results are not in line with the most expected trend. Seeming 

contradiction of relation of genome size and seed size in Aesculus which has relatively large 

genome and extremely large seeds, was found across the genus (Krahulcová et al. 2017), but using 

phylogenetic correction the authors found positive correlation of larger genome size and larger 

within individual clades. However, as has been shown by Beaulieu et al. (2007), this relationship is 

curvilinear and concave. Their survey of 1,222 species shows that species with small genomes have 

a wide range of seed mass, while large genome are associated with large seeds. 

In conclusion, based on the correlations we observed, it appears that genome size 

variation, such as that present in T. stenocephalum, possibly plays an important role during the 

establishment of populations in new or unstable environments, where genome size might be a 

crucial factor affecting the probability of seedling survival. 
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SUPPLEMENTARY MATERIAL 

 

 
 

Fig S1. Leaf length during the whole period of the experiment. 

 

 
 

Fig. S2. Number of leaves during the whole period of the experiment. 
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Abstract 

The Galium pusillum agg. (Rubiaceae), with four species native to the Czech Republic, is a 

taxonomically challenging complex. Of these, G. valdepilosum is particularly interesting because 

this relict species shows both ploidy (the incidence of diploid and tetraploid cytotypes) and habitat 

differentiation (occurrence on different soil types, including serpentines). With the aid of DNA 

flow cytometry, analysis of vegetation samples and a hydroponic cultivation experiment we 

addressed the cytogeographic pattern, ecological preferences of different cytotypes both across the 

entire range of distribution and in the contact zone and the plant’s response to serpentine edaphic 

stress. Ploidy distribution in G. valdepilosum is parapatric, with a narrow contact zone in southern 

Moravia. Neither triploids nor mixed 2x-4x populations were found, which together with the 

restriction of the species to isolated relict habitats, suggest the static character of the contact zone. 

In general, tetraploids occupied a wider range of habitats and colonized larger geographic areas. 

Diploids typically occurred in open low-competitive oak-pine forests on acidic soils while their 

tetraploid counterparts were also able to survive in open basiphilous grasslands with a 

comparatively higher competitive pressure. Serpentines did not play an important role in ecological 

sorting of the cytotypes. Cultivation experiments showed that G. valdepilosum is likely to be 

constitutively tolerant to serpentine chemical stress. Relative genome size and ecological data 

indicate that the serpentine populations from western Bohemia, traditionally referred to as G. 

sudeticum, differ from the type subalpine populations from the Krkonoše Mts and suggest their 

merger with G.valdepilosum. 

 

 

Keywords: central Europe, contact zone, cytogeography, ecological sorting, flow cytometry, 

Galium sudeticum, Galium valdepilosum, ploidy distribution, polyploidy, serpentine 

 

 

Introduction 

Polyploidy, the possession of three or more complete chromosome sets per nucleus, is a 

prominent and recurring transition in the evolution of eukaryotic organisms, including land plants 

(Otto & Whitton 2000). Although polyploidization is often associated with species diversification 
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due to the barriers to gene flow that results from chromosome multiplication, ploidy variation is 

commonly observed also within taxonomic species (Husband et al. 2013). Many studies of 

heteroploid species note that different cytotypes have distinct distributions (Suda et al. 2007, 

Šafářová et al. 2011, Dančák et al. 2012, Krejčíková et al. 2013a). The pattern of ploidy 

distribution is shaped by the interplay between adaptive and non-adaptive ecological processes 

(Husband et al. 2013). The adaptive scenario assumes that polyploidy contributes to the acquisition 

of new genetic, morphological, physiological and/or ecological characteristics (reviewed in Levin 

2002) that may modify competitive ability, fitness or ecological tolerance of polyploids compared 

to their diploid progenitors and ultimately lead to new responses to environmental conditions. As a 

consequence, different cytotypes can sort along abiotic and/or biotic environmental gradients, both 

contemporary and past (Husband et al. 2013). Although ecological sorting is widely acknowledged 

as the key mechanism driving geographic segregation of different cytotypes, several non-adaptive 

(i.e. environmentally independent) processes can also play a role in shaping ploidy distribution. 

Among others, spatial segregation of cytotypes can be governed through frequency-dependent 

mating success, in polyploid systems traditionally referred to as the “minority cytotype 

disadvantage” (Levin 1975). Present-day ploidy distribution can also reflect the dynamics of 

genome duplication (e.g. the frequency of unreduced gamete formation) or different dispersal 

abilities of the cytotypes; for example, widespread cytotypes may have been superior colonizers of 

habitats that appeared after the retreat of ice shields or due to human activities such as deforestation 

and agricultural practices (Stebbins 1985, Sonnleitner et al. 2010). However, adaptive and non-

adaptive scenarios could not be distinguished on the basis of distributional patterns but the 

cytotypes should be subjected to a detailed evaluation of their ecological preferences and important 

biological traits (e.g. vegetation analyses, crossing and transplant experiments, cultivation under 

manipulated environmental characteristics). 

Spatial relationships between cytotypes within species can be categorized as sympatric, 

parapatric or allopatric, depending on whether they are geographically intermixed, adjacent or 

disjunct, respectively. When polyploids first arise, they by necessity occur in sympatry with their 

diploid/lower-polyploid progenitors. Subsequent cytotype expansion or retreat will result in 

parapatric or allopatric distributions. Contact zones can be quite narrow, eventually comprising 

only a few populations, as reported in Chamerion angustifolium (Husband & Schemske 1998) or 

Ranunculus adoneus (Baack 2004). Cytotype mixtures extending over large areas seem to be less 

frequent and occur for example in Galax urceolata (Burton & Husband 1999), Solidago altissima 

(Halverson et al. 2008) and Allium oleraceum (Duchoslav et al. 2010). However, the immediate 

contact of different cytotypes (i.e. the incidence of mixed-ploidy populations) is often limitedeven 

in species with geographically extensive and diffuse contact zones, illustrative examples being 

Knautia arvensis (Kolář et al. 2009), Vicia cracca (Trávníček et al. 2010), Aster amellus (Castro et 

al. 2012) or Odontites vernus (Koutecký et al. 2012). While most contact zones are formed by two 

ploidy levels, the last years have seen much more complex population structures, with up to five 

different co-existing cytotypes (Sonnleitner et al. 2010, Trávníček et al. 2011b, 2012). 

Investigations into the adaptive significance of ploidy shift first require assessment of potential 

relationship between intraspecific ploidy variation and environmental factors of occupied sites. 

Detected associations of ploidy levels with both abiotic (Duchoslav et al. 2010, Sonnleitner et al. 

2010, Manzaneda et al. 2012) and biotic (Krejčíková et al. 2013b) parameters provide important 

clues for explaining the observed cytogeographic patterns. 
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Published studies addressing cytogeographic patterns and underlying mechanisms in 

heteroploid species in central Europe usually deal with species of semi-ruderal habitats (Allium 

oleraceum: Duchoslav et al. 2010, Šafářová & Duchoslav 2010, Šafářová et al. 2011; Knautia 

arvensis: Kolář et al. 2009; Pilosella officinarum: Mráz et al. 2008; Spergularia echinosperma: Kúr 

et al. 2012; Vicia cracca: Trávníček et al. 2010) or nonrelict natural sites (Aster amellus: 

Mandáková & Münzbergová 2006, Castro et al. 2012; Molinia caerulea agg.: Dančák et al. 2012), 

whereas species restricted to isolated relict sites, i.e. low-competition habitats with species 

assemblages usually persisting from the early Holocene, have been largely neglected (but see Suda 

& Lysák 2001, Suda et al. 2004). Due to their supposed closer association with local environmental 

conditions, insular-like distribution and long periods of isolation of individual populations, relict 

species with multiple cytotypes provide novel insights into the structure and dynamics of contact 

zones between different cytotypes. 

A suitable candidate for such an investigation is Galium valdepilosum H. Braun 

(Rubiaceae), a diploid-tetraploid member of the G. pusillum aggregate (Ehrendorfer 1960, 

Ehrendorfer et al. 1976). This group, which in central European literature is sometimes treated in a 

narrower sense as G. pumilum aggregate, encompasses four native species in the Czech Republic 

(Krahulcová & Štěpánková 1998, Štěpánková 2000, Danihelka et al. 2012): (i) widespread 

octoploid (2n = 8x = 88) G. pumilum Murray, (ii) tetraploid (2n = 4x = 44) G. austriacum Jacq. 

restricted to limestone outcrops in Pavlovské vrchy in southern Moravia, (iii) endemic tetraploid G. 

sudeticum Tausch, which has a very unusual distribution pattern, being reported from basiphilous 

subalpine areas (glacial cirques) in the Krkonoše Mts (historically also from the Hrubý Jeseník 

Mts) and from comparatively low-lying serpentine outcrops in the Slavkovský les Mts (western 

Bohemia), and (iv) ploidy-variable G. valdepilosum, which includes diploid (2n = 2x = 22) and 

tetraploid (2n = 4x = 44) populations inhabiting different relict sites (dry grasslands, open forests) 

on both serpentine and non-serpentine soils. A previous study of the aggregate using conventional 

chromosome counts (Krahulcová & Štěpánková 1998) provided a rough picture of ploidy 

distribution in the Czech Republic and its close surroundings and concluded that ploidy variation is 

not associated with serpentine vs non-serpentine sites. The origin of the tetraploid cytotype (auto- 

vs allopolyploid) is unclear. Although overall morphological similarities(but with certain 

quantitative differentiating traits;Štěpánková 2000) and close monoploid genome sizes of both 

cytotypes (Kolář et al. 2013) would favour autopolyploidy, reticulate patterns of morphological 

characters, high plasticity and great taxonomic complexity of the whole G. pusillum group indicate 

the need for a multi-species molecular investigation. 

The present study builds on our previous research on the G. pusillum agg. in deglaciated 

areas of northern Europe (Kolář et al. 2013) and the karyological investigations in eastern central 

Europe of Krahulcová & Štěpánková (1998). Using DNA flow cytometry, analysis of habitat 

preferences and a hydroponic cultivation experiment we addressed the following questions:(i) 

Whatare the ranges of diploid and tetraploid G. valdepilosum and where is the contact zone 

between these cytotypes located? (ii) Do both cytotypes co-occur in ploidymixed populations? (iii) 

Do diploid and tetraploid cytotypes differ in their habitat preferences both across the entire range of 

distribution and in the zone of ploidy contact? (iv) Are there any ploidy-specificdifferences in 

growth response of G. valdepilosum to serpentinechemicalstress? (v) What is the variation in 

nuclear DNA content within the tetraploid G. valdepilosum? Do taxonomically uncertain serpentine 

populations in western Bohemia, traditionally referred to as G. sudeticum, share genome size 

values with plants of G. sudeticum from subalpine type populations or with G. valdepilosum? 
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Materials and methods 

Field sampling 

Plant material was collected from 2009 to 2013 in Austria (12 sites), the Czech Republic 

(70 sites), Germany (13 sites) and Poland (nine sites). We covered the entire range of G. 

valdepilosum except for populations in central Denmark that are referred to as an endemic subsp. 

slesvicense(Sterner ex Hylander) Ehrendorfer. In addition to the nominate subspecies of G. 

valdepilosum (94 populations), we also included for comparative purposes four serpentine 

populations from western Bohemia [traditionally determined as G. sudeticum, but showing some 

morphological differences from typical subalpine populations (Štěpánková 2000), which are 

ecologically close to G. valdepilosum], five highaltitude populations of G. sudeticum from the 

Krkonoše Mts and one taxonomically uncertain population from limestone outcrops in the Králický 

Sněžník Mts (further referred to as G. pusillum agg.; see Appendix 1 for details of individual 

localities). Whenever possible with respect to population size, shoots from at least 10 plants per 

population were collected and stored in plastic bags in cold conditions until used in the FCM 

analysis. To avoid collecting the same genet, the distance between the individuals sampled was at 

least 0.5 m. Herbarium vouchers are deposited in the Herbarium of Charles University in Prague 

(PRC). 

Floristic composition and selected environmental conditions recorded at 52 localities were 

characterized using vegetation samples (phytosociological relevés), including those of 46 localities 

of G. valdepilosum (covering the entire range of distribution: 7 and 15 diploid-inhabited sites in 

Lower Austria and Moravia, respectively, and 10, 1, 2, 6, and 5 tetraploid-inhabited sites in 

Bavaria, Lower Austria, Bohemia, Moravia and Poland, respectively), two serpentine localities of 

putative G. sudeticum, three subalpine localities of G. sudeticum and one locality of a 

taxonomically uncertain member of the G. pusillum agg. One vegetation sample per locality was 

usually recorded, exceptions being three ecologically diverse sites where two samples from distinct 

vegetation units were recorded; each sample covered an area of 3 × 3 m in areas with an abundance 

of Galium plants (Electronic Appendix 3). In each plot, relative cover of all vascular plant species 

was quantified using a modified nine-point Braun-Blanquet scale (Braun-Blanquet 1964) and the 

following environmental parameters were recorded: total vegetation cover, cover of each 

vegetation layer, slope inclination and orientation, and proportion of bare rock. At 49 localities 

(Electronic Appendix 5), mixed rhizosphere soil samples were collected at five microsites within 

the area of the vegetation sample; pH and concentrations of selected elements (C, N, K, Ca, and 

Mg) were determined in the Analytical Laboratory of the Institute of Botany, Průhonice, CZ (see 

Kolář et al. 2013 for methodology details). 

 

Flow cytometry 

Relative fluorescence intensities of isolated nuclei were estimated using DNA flow cytometry 

(FCM) following the simplified two-step protocol with DAPI staining and Bellis perennis as 

internal reference standard as detailed in Kolář et al. (2013). In six selected populations (Appendix 

1), one individual per population was subjected to more stringent analysis of relative DNA content 

(following Kolář et al. 2013). For comparative purposes DNA content values of another 17 

individuals (from 17 populations) were taken from Kolář et al. (2013). Galium accessions with 

distinct fluorescence intensities were analysed simultaneously in order to confirm between-plant 
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differences observed in runs with an internal standard. Chromosome-counted individuals (Kolář et 

al. 2013) were used as a reference for the interpretation of FCM histograms. 

 

Hydroponic cultivation 

Eight populations were subjected to a hydroponic cultivation experiment aimed at assessing the 

effects of the major chemical factors associated with serpentine conditions (i.e. low Ca/Mg ratio 

and high Ni concentrations; Brady et al. 2005, Kazakou et al. 2008) on seedling performance. Due 

to the acidic pH of G. valdepilosum-inhabited serpentine stands (mean pH of 5.5) their responses 

were compared with those of four acidophilous non-serpentine populations. Two diploid and two 

tetraploid populations were represented in each group (Fig. 1; see Appendix 1 for details). Mature 

achenes collected along transects at the original sites were germinated on moist filter paper over a 

period of three weeks. Vital, undamaged seedlings were then carefully fixed to a floating plastic 

disc (14 cm in diameter) so that there was an equal distance between each of the experimental 

plants. There were eight plants (one per population) on each disc, which was placed in a 1-L 

lightimpermeable container filledwith a standard nutrient solution as described in Huss-Danell 

(1978), with a slight modification: Co(NO3)2 was used instead of CoSO4 as a cobalt source. The 

seedlings were grown in this nutrient solution for 11 days prior to the start of the experiment. They 

were then placed into experimental solutions with manipulated concentrations of Mg2+ and Ni2+ for 

the next 22 days (MgSO4 and NiSO4 were used as sources of Mg and Ni, respectively; the pH was 

approx. 7 during the whole experiment). The solutions were replaced every three days with freshly 

prepared solution and the plants cultivated in a controlled-environment growth cabinet at the 

Faculty of Science, University of South Bohemia, Czech Republic (for details see Kolář et al. 

2014). 

To test the individual and combined effects of Ni and Mg on G. valdepilosum populations 

differing in soil type (factor ‘substrate at origin’) and ploidy level (factor ‘ploidy’), we used a 

mixed-effect full-factorial experimental design. Four experimental treatments were applied: the 

control (standard nutrient solution), high Ni2+, high Mg2+, and high Ni2+ and Mg2+. Based on a 

preliminary cultivation experiment, the concentrations of Ni2+ were set to 0 μM (control) and 30 

μM, while the concentrations of Mg2+ were set to 0.55 mM (control) and 5.5 mM (i.e. Ca/Mg ratio 

of 2 and 0.2, respectively). Each experimental unit (= plastic container filled with one of the four 

experimental solutions) consisted of eight seedlings, one seedling per population. There were eight 

replicates of each treatment, resulting in 32 experimental units and 256 seedlings. Total root length 

was used as a proxy of the plant’s response to different experimental treatments; the values were 

obtained from measurements recorded at the beginning and the end of the experiment (following 

the method described in Kolář et al. 2014). 

 

Statistical analyses 

Differences in relative DNA contents were tested in R version 2.15.2 using one-way 

ANOVA with post-hoc comparisons (Tukey HSD test). 

Habitat preferences were based on the species composition of vegetation samples and 

recorded biotic and abiotic characteristics of the sites. Ellenberg indicator values (EIV), which 
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Fig. 1. – Geographic location of populations of Galium valdepilosum across the entire study area (A) and in 

the contact zone in southwestern Moravia (B). Red and blue denote diploids and tetraploids, respectively. 

Black, light blue and green borders indicate acid, basic and serpentine soils, respectively. The arrow indicates 

the location of taxonomically reclassified serpentine populations from western Bohemia traditionally referred 

to as G. sudeticum. 

Populations marked by a black dot were cultivated hydroponically. 
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provide estimates of environmental characteristics inferred from species composition data 

(Ellenberg 1992), were calculated in JUICE 7.0 (Tichý 2002) based on presence/absence data of 

herbaceous species of plants. Separate analyses were done for (i) all available vegetation samples 

of G. valdepilosum covering the entire distribution range of the species, and (ii) a subset of 

vegetation samples from the contact zone between di- and tetraploid cytotypes (i.e. within a radius 

of 50 km around the town of Brno where immediate contact of both ploidies was recorded). Both 

unconstrained (using the detrended correspondence analysis, DCA) and constrained (using the 

canonical correspondence analysis, CCA, with forward selection of environmental variables) 

ordinations in Canoco for Windows, ver. 4.5 (Lepš & Šmilauer 2003) were used to describe the 

overall vegetation patterns of the G. valdepilosum sites studied. Differences in vegetation 

composition among vegetation samples recorded at sitesof diploid vs tetraploid G. valdepilosum 

were testedin a separate CCA with ‘ploidy level’ as the only predictor variable. In order to reveal 

associations of di- vs tetraploid G. valdepilosum plants with other plant species, ten co-occurring 

species with the strongest marginal effects were analysed using the Monte Carlo permutation test 

(999 permutations, with Bonferroni correction for multiple tests) during the forward-selection 

linear discriminant analysis in which species abundances (log-transformed) were treated as 

predictor variables and Galium ploidy level as a response (see Lepš & Šmilauer 2003 for details). 

The biotic characteristics inferred from species composition data (i.e. EIV, species diversity, layer 

cover) were omitted as predictors in constrained analyses. 

Differences in root growth (log-transformed) of G. valdepilosum seedlings in response to 

high concentrations of Mg2+ and Ni2+ were tested using a hierarchical ANOVA. The effects of 

substrate at origin, ploidy, Mg and Ni treatments, and all their interactions were tested using a 

linear model where the experimental container (nested in Mg and Ni treatment interaction) and 

population of origin (nested in substrate at origin and ploidy interaction) were treated as random 

and fixed factors, respectively. For comparative purposes, we also performed an analysis aimed at 

identification of the overall differences in serpentine tolerance among G. valdepilosum populations 

differing in ploidy / soil conditions. A similar ANOVA model was used for this purpose, but with 

the population of origin (again nested in substrate at origin and ploidy interaction) treated as a 

factor with random effect. The ANOVA analyses were calculated in Statistica 8 (StatSoft 2007). 

Note that Statistica uses Satterthwaite’s method of denominator synthesis, which finds linear 

combinations of sources of random variation that serve as appropriate error terms for testing the 

significance of the respective effect of interest;for this reason the synthesized error mean squares 

and synthesized error degrees of freedom are also presented. 

 

 

Results 

Cytogeography and variation in relative nuclear DNA content 

The FCM analysis of 874 plant samples revealed two different DNA ploidy levels: diploid 

(338 individuals from 46 localities) and tetraploid (536 individuals from 58 localities). All diploids 

corresponded to G. valdepilosum and were restricted to southern Moravia and Lower Austria. The 

zone of contact between the plants of the two ploidy levels is located near the town of Brno, where 

tetraploids in the north-east give way to diploids in the south-west (Fig. 1). Only the tetraploid 

cytotype of G. valdepilosum was recorded in Bohemia, Germany and Poland. One tetraploid 

population occurred in northern Austria in an area otherwise dominated by diploids. Subalpine 
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populations of G. sudeticum in the Krkonoše Mts were uniformly tetraploid as also were serpentine 

populations in western Bohemia and a taxonomically-uncertain population on the Polish side of the 

Králický Sněžník Mts. 

While fluorescence intensities of all diploid samples were uniform, there was significant 

variation in the relative amounts of nuclear DNA (F3,25 = 23.15, P < 0.001) at the tetraploid level. 

Two groups were identified. The first group encompassed all populations determined as G. 

valdepilosum, four serpentine populations in western Bohemia traditionally referred to as G. 

sudeticum and one calcicolous mountain population in the Králický Sněžník Mts (Fig. 2). The 

second group with higher fluorescence intensities (mean difference 4.3%) consisted of subalpine 

populations of G. sudeticum in the Krkonoše Mts. Simultaneous FCM analysis (Fig. 3) confirmed 

the differences in the relative DNA contents of individuals of the putative G. sudeticum that 

originated from the two disjunct geographic areas (western Bohemia and the Krkonoše Mts). 

 

 

Fig. 2. – Variation in relative nuclear DNA content of Galium valdepilosum (23 individuals from 23 

populations across the entire range of distribution), G. sudeticum from the Krkonoše Mts (four populations), 

plants inhabiting serpentine sites in western Bohemia traditionally referred to as G.sudeticum (four 

populations) and one taxonomically uncertain G. pusillum agg. population from the Králický Sněžník Mts. 

Fluorescence intensity of Bellis perennis was set to a unit value. Each plant was measured three times on 

different days. Letters indicate significantly different groups at  = 0.05. The values represented by lines, boxes 

and whiskers are median, quartiles and range (min-max), respectively. 
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Fig. 3. – Flow cytometric histogram documenting 3.8% divergence in relative nuclear DNA content among 

simultaneously processed and DAPI-stained accessions of Galium sudeticum from the Krkonoše Mts (pop. 

G172) and plants from serpentine outcrops in western Bohemia traditionally referred to as G. sudeticum (pop. 

G032). 

 

Ecological preferences of different cytotypes 

Subalpine populations of G. sudeticum in the Krkonoše Mts and the taxonomically 

uncertain population in the Králický Sněžník Mts are ecologically very distinct from all other 

populations of G. valdepilosum analysed as wellas from populations inhabiting serpentine sites in 

western Bohemia traditionally referred to as G. sudeticum (Electronic Appendix 1) and therefore 

omitted from the following statistical analyses. In contrast, the western Bohemian populations do 

not ecologically differ from those of G. valdepilosum and both groups were therefore merged and 

included in subsequent analyses. 

Floristic composition of sites inhabited by G. valdepilosum is primarily shaped by soil pH, 

concentration of Ca, organic C content and serpentine-specific Ca/Mg ratio (Monte Carlo test, P = 

0.001). At these sites five other environmental parameters (concentration of Mg, cover of rocks, 

tree/shrub and moss layers, and altitude) were marginally significant (i.e. P < 0.05 yet not passing 

the significance level defined by Bonferroni correction). 

Sites of di- and tetraploid cytotypes significantly differed in floristic composition both 

across the entire range of their distribution and in the contact zone (Monte Carlo test, both P = 

0.001). Despite this differentiation, linear discriminant analysis revealed only a few species that 

were significantly associated with a particular cytotype of G. valdepilosum. Arrhenatherum elatius, 
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Genista pilosa and Pimpinella saxifraga were associated with diploids while juvenile Rubus idaeus 

and Galium album with tetraploids (in vegetation samples from the entire range and contact zone, 

respectively). 

Diploids of G. valdepilosum mostly occurred in open forests on nutrient-poor acidic or 

serpentine soils and, in general, had a narrower ecological niche than their tetraploid counterparts 

(Fig. 4). Tetraploids were ecologically more divergent and occupied two major types of habitats 

across their entire distribution: (i) acidic or serpentine sites and (ii) baserich non-forested sites such 

as relatively species-rich rocky/continental grassland (see also Table 1). Although both di- and 

tetraploids grow on serpentine soils the environmental conditions where tetraploids grow differ. 

Ecological segregation of both cytotypes was more pronounced in the zone where they come into 

contact (Fig. 4). While diploids usually occurred in acidophilous open forests (including serpentine 

sites), tetraploids preferred lime-rich stands with a dense herbaceous cover. 

 

Response to serpentine chemical stress 

At high concentrations of Mg the roots of seedlings of G. valdepilosum grew significantly 

less, whereas the effect of high Ni was obvious only in its interaction with Mg (slightly better 

growth at a high Mg + Ni concentration than at a high concentration of Mg; Table 2). In general, 

Galium plants of serpentine vs non-serpentine origin and of different ploidy levels responded to Mg 

and Ni stress in a similar way (Table 2). The root growth of the two serpentine tetraploid 

populations was better than that of both their diploid and non-serpentine counterparts, irrespective 

of the actual concentrations of Mg and/or Ni in the solution (Fig. 5; see also Electronic Appendix 2 

for response of individual populations). However, the effects of ploidy level (F1,207 = 2.34, P = 

0.20) and substrate at origin (F1,207 = 6.83, P = 0.06) were not significant in the ANOVA model 

with population treated as a randomeffect factor, which makes generalizing about this difference 

tenuous. 

 

 

Discussion 

This study increased our understanding of the karyological and ecological differentiation 

of the G. pusillum agg. in central Europe, particularly that of G. valdepilosum, which is a declining 

species restricted to various relict habitats, whose centre of distribution is in the Czech Republic. In 

addition to providing adetailed pictureof thedistributions of individuals with different ploidy levels 

at various spatial scales, the data also provides the first evidence that the taxonomic relationships of 

some populations may need to be reassessed. 

 

Fig. 4. – Habitat preferences of di- and tetraploid cytotypes of Galiumvaldepilosum. The patterns in floristic 

composition of 50 vegetation samples are visualized using detrended correspondence analysis (the first and 

second ordination axes explain 5.4% and 3.8% of the total variation, respectively). (A) Diploid (red) and 

tetraploid (blue) localities within the contact zone (filled symbols) and beyond (empty symbols). (B) 

Vegetation samples labelled according to the major soil type (base-rich: blue, acidic: white, and serpentine: 

green) as determined by geological bedrock, soil pH and Ca/Mg ratio (diploid: circle, tetraploid: square). The 

contour lines depict pH values modelled by loess smoother from the measured values of individual vegetation 

samples. (C) Environmental variables significantly (red lines) and marginally significantly (blue lines) 

influencing floristic composition of Galium sites, and variables inferred from species composition data (black 
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lines) passively projected on the plot. Serpentine populations from western Bohemia traditionally referred to as 

G. sudeticum are marked by an arrow.  
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Table 1. – Ploidy levels, relative amounts of nuclear DNA and habitat preferences of the 

taxa/populations of Galium pussilum agg. investigated. Relative DNA content is given as 

mean±SD; fluorescence intensity of Bellis perennis (internal reference standard) was set to a unit 

value. Nomenclature of vegetation units follows Chytrý et al. (2007, 2013). 

 

 

Taxon/population 

No. of 

popu-

lations 

Ploidy 

level 

Ralative 

DNA 

content* 

Geological substrate Associated vegetation 

G. valdepilosum H. Braun 46 2x 0.259±0.006  various silicate 

rocks, serpentine, 

rarely basic 

conglomerate and 

limestone 

Quercion petraeae, 

Quercion roboris, 

Dicrano-Pinion 

sylvestris, rarely Erico 

carneae-Pinion (on 

serpentines) 

  48 4x 0.506±0.005 various silicate 

rocks, serpentine, 

limestone, rarely 

chalk (Poland) and 

vulcanite 

Quercion roboris, 

Quercion petraeae, 

Dicrano-Pinion 

sylvestris, rarely 

Diantho lumnitzeri-

Seslerion, Cirsio-

Brachypodion pinnati 

(in Poland), Erico 

carneae-Pinion (in 

Bavaria) 

G. pusillum agg. from 

serpentines in western 

Bohemia traditionally 

referred to as G. 

sudeticum 

4 4x 0.505±0.004 serpentine Dicrano-Pinion 

G. sudeticum Tausch 5 4x 0.528±0.008 base-rich substrates 

in glacial cirques 

(erlan, carbonate) 

Agrostion alpinae 

G. pusillum agg. from the 

Králický Sněžník Mts 

1  4x 0.500 limestone cf. Tilio platyphyli-

Acerion 
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Table 2. – The effects of different concentrations of Mg and Ni, ploidy level and soil from which 

the plants originated (serpentine vs non-serpentine) on the total root length of Galiumvaldepilosum 

plants in hydroponic cultivation. Statistically significant results are in bold: *P < 0.05, ***P < 

0.001. Dependent variables were log transformed prior to the analysis. 

Factor/Interaction Effect 
Effect 

df 

Synthesized 

error df 
MS 

Synthesized 

error MS 
F 

Experimental container random 28 207 0.191 0.108 1.77* 

Population fixed 4 207 0.635 0.108 5.89*** 

Mg fixed 1 28 1.303 0.191 6.82* 

Ni fixed 1 28 0.065 0.191 0.34 

Ploidy fixed 1 207 1.489 0.108 13.80*** 

Substrate at origin fixed 1 207 4.339 0.108 40.22*** 

Mg × Ni fixed 1 28 1.199 0.191 6.27* 

Ploidy × Mg fixed 1 207 0.003 0.108 0.03 

Ploidy × Ni fixed 1 207 0.005 0.108 0.05 

Substrate at origin × Mg fixed 1 207 0.044 0.108 0.4 

Substrate at origin × Ni fixed 1 207 0.039 0.108 0.36 

Ploidy × Substrate at origin fixed 1 207 2.054 0.108 19.04*** 

Ploidy × Mg × Ni fixed 1 207 0.111 0.108 1.03 

Substrate at origin × Mg × Ni fixed 1 207 0.338 0.108 3.13 

Ploidy × Substrate at origin × Mg fixed 1 207 0.025 0.108 0.23 

Ploidy × Substrate at origin × Ni fixed 1 207 0.022 0.108 0.2 

Ploidy × Substrate at origin × Mg × 

Ni 
fixed 1 207 0.014 0.108 0.13 

Error   207   0.108     

 

 

Fig. 5. – Differences recorded in the growth of the root system of diploid and tetraploid seedlings of 

Galium valdepilosum originating from serpentine vs non-serpentine soil when grown in low and 

high concentrations of Mg. Symbols and vertical bars denote unweighted means and standard errors 

of the mean, respectively. 
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Cytogeography of Galium valdepilosum and the underlying mechanisms 

The overall cytogeographic pattern inferred from the FCM analysis of nearly 100 

populations spread across the entire distribution of G.valdepilosum corresponds well with the 

incidence of different  ploidy levels based on the conventional karyological counts of Krendl 

(1993) and Krahulcová & Štěpánková (1998). This is slightly different from that in the review of 

Ehrendorfer (1962), partly because he includes chromosomal data of M. Piotrowicz (published in 

Skalińska et al. 1961), which includes diploid populations from Małopolska upland in southern 

Poland. In contrast, our thorough investigation of the same geographic area (including searches for 

all the populations reported by M. Piotrowicz) revealed either only tetraploid individuals or failed 

to confirm the occurrence of the species. We can only speculate about the reasons for this 

discrepancy, which include species misidentification, incorrect chromosome counting (other 

chromosome counts from that area detected only tetraploids; Kucowa & Mądalski 1964) or even 

extinction of diploid cytotypes in situ (the species seems to be strongly declining particularly at 

localities with xerothermous grassland; see also Zarzycki & Kaźmierczakowa 2001 and Grulich 

2012). The map in Ehrendorfer (1962) also shows a few diploid populations in central Bohemia. 

However, these records cannot be verified and should be treated with caution because neither exact 

localities nor references are provided in the original work. 

Ploidy distribution in G. valdepilosum can best be described as parapatric, i.e. with closely 

adjacent but not overlapping ranges. Despite intensive sampling in the contact zone (the majority of 

Galium tufts was checked for ploidy in large populations while all individuals were examined in 

smallpopulations), we did not find any mixed 2x-4x populations or a minority cytotype such as a 

triploid. This suggests very low rates of neopolyploid formation and/or establishment, leaving very 

little room for inter-ploidy interactions. Consequently, the contact zone seems to be a non-dynamic 

system, which contrasts with many other recently investigated intraspecific heteroploid systems in 

central Europe that frequently comprised cytotype-mixed populations and odd ploidies (e.g. Allium 

oleraceum: Duchoslav et al. 2010; Gymnadenia conopsea: Trávníček et al. 2011b; and Hieracium 

echioides: Trávníček et al. 2011a). The static character of the contact zone is further underlined by 

the overall species’ preferences for open relict stands, in which populations of such heliophilous 

and competitively weak plants are spatially isolated, possibly for many generations (in extreme 

cases since the spread of closed forests in the middle Holocene; Ložek 1973, Lang 1994). 

Geographic segregation of different cytotypes is widely considered to be the most important 

prezygotic reproductive barrier, with many examples described in the literature (see Husband & 

Sabara 2004, Kron et al. 2007, Šafářová & Duchoslav 2010, Husband et al. 2013). 

The analysis of environmental conditions recorded at the localities showed that, despite 

being restricted to relict habitats, G. valdepilosum can grow in a wide range of different soils 

(including acidic, basic and serpentine soils; Electronic Appendix 5) and different types of 

vegetation (floristic composition of which is also largely determined by soil parameters). Although 

we found no evidence for strong inter-ploidy niche divergence (either across the 

entirerangeofthespecies’distributionorinthecontactzone),someecologicaltrendscanbe discerned. In 

particular, while diploids typically occurred in open low-competitive oak-pine forests on acidic 

soils, their tetraploid counterparts were also able to survive in open basiphilous grasslands with 

comparatively high competitive pressure. In general, tetraploids occupied a wider range of habitats 

and also colonized larger geographic areas. 
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Serpentines do not play an important role in inter-ploidy niche segregation and 

serpentine/non-serpentine differentiation merely reflects colonization history (i.e. diploids occur on 

serpentines in 2x-dominated areas and vice versa). Serpentine and non-serpentine G. valdepilosum 

populations also do not differ morphologically (Štěpánková 1997). In addition, the results of our 

cultivation experiment (populations responded in a similar way irrespective of the type of soil they 

normally grow in) indicate that response to serpentine chemical stress seems to be a constitutive 

trait common for both serpentine and non-serpentine diploid and tetraploid populations of G. 

valdepilosum. Such constitutive tolerance to serpentine stress implies that the species appears to be 

somehow “preadapted” to the principal chemical challenges of serpentine substrates such as low 

Ca/Mg ratio and high Ni content. Our hypothesis of serpentine “preadaption” of G. valdepilosum is 

supported by the high number of spatially isolated serpentine localities (almost all large areas of 

serpentine on the Hercynian massif) inhabited by the species, which most likely were 

independently colonized from nearby nonserpentine areas.The absence of local adaptation to high 

heavy metal toxicity is documented for several plant complexes, including Silene dioica 

(Westerbergh1994), Thlaspi goesingense (Reeves & Baker 1984) and Th. montanum (Boyd & 

Martens 1998). Moreover, even plants that do not grow on serpentines can tolerate extremely low 

Ca/Mg ratios, such as Phacelia dubia var. georgiana, which is restricted to dry and nutrient poor 

granite outcrops (Taylor & Levy 2002), i.e. similar areas to those inhabited by G. valdepilosum. In 

summary, serpentine sites seem to have served as an easily colonized refugium for G. 

valdepilosum, but had no influence on the ecological sorting of its cytotypes. This is in marked 

contrast with another thoroughly investigated central European di-tetraploid complex, Knautia 

arvensis, which includes a distinct serpentine-tolerant genetic lineage comprising diploid and local 

autotetraploid populations (Kolář et al. 2012, 2014). 

 

Taxonomic implications 

The taxonomy of the G. pusillum species complex in Europe is challenging due to the high 

number of phenotypically similar taxa and small differences in the diagnostic characters, mainly in 

their fruit (Ehrendorfer et al. 1976). Misidentifications are common and literature records not 

accompanied by herbarium vouchers are likely to be unreliable (Štěpánková 2000). 

Galium sudeticum described from the Krkonoše Mts (Tausch 1835) is traditionally 

reported from two other geographic areas in the Czech Republic (Ehrendorfer et al. 1976, 

Štěpánková 2000): (i) the glacial cirque Velká Kotlina in the Hrubý Jeseník Mts (not recently 

rediscovered despite repeated intensive searches, including our own), and (ii) serpentine outcrops 

in the Slavkovský les in western Bohemia (first referred to as G. sudeticum by Ehrendorfer 1956). 

Its peculiar distribution (high-altitude habitats in the Sudeten Mts vs comparatively lower-lying, 

more than 200 km distant serpentine sites) has been long noted and considered comparable to some 

other arcto-alpine species that occur in isolated serpentine areas (Krahulcová & Štěpánková 1998). 

Nevertheless, certain morphological differences between subalpine and serpentine populations of 

the putative G. sudeticum (Štěpánková 2000) require further detailed study. 

This paper contributed to clarifying the taxonomic status of isolated western Bohemian 

populations traditionallyreferred to as G. sudeticum. Currently the availableevidence supports the 

merger of these serpentine populations with G. valdepilosum. First, serpentine plants in western 

Bohemia share the same nuclear DNA C-values with all the other samples determined as G. 

valdepilosum analysed but differ significantly from those of individuals of G. sudeticum in the 

Krkonoše Mts. Genome size is usually stable at low taxonomic levels and intraspecific variation 
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often indicates taxonomic heterogeneity (Kron et al. 2007, Loureiro et al. 2010). Consequently, 

genome size has repeatedly proved to be a useful marker for circumscribing species/subspecies and 

resolving complex low-level taxonomies (Ekrt et al. 2010, Suda et al. 2010). Another clue comes 

from the study of their ecological preferences. Environmental conditions at serpentine localities in 

western Bohemia are virtually identical to those at neighbouring Bavarian serpentines, which host 

plants invariably identified as G. valdepilosum (Noack 1983). In addition, recent morphological 

investigations(F. Ehrendorfer, pers. comm.) also support the placing of western Bohemian 

serpentine populations in G. valdepilosum. Available data thus suggest that the name G. sudeticum 

should be applied only to subalpine populations currently restricted to the Krkonoše Mts and 

formerly also occurring in the Hrubý Jeseník Mts. Phenotypic and genome size (Kolář et al. 2013) 

analyses further indicate that the subalpine populations of G. sudeticum are closely related to the 

highly polymorphic G. anisophyllon Villars, which inhabits various neutral to basiphilous 

subalpine areas in the Alps and Carpathians (Ehrendorfer 1958, Ehrendorfer et al. 1976). The 

precise taxonomic assignment of serpentine Galium populations traditionally referred to as G. 

sudeticum should therefore wait for a detailed assessment of their morphological variation and 

genetic relationships to other high-altitude taxa. 

Finally, we found one distinct but taxonomically uncertain population on a limestone 

outcrop in the Králický Sněžník Mts in Poland. Although these tetraploid plants are geographically 

close to the historical G. sudeticum occurrence in the Hrubý Jeseník Mts they are ecologically 

closest to the Alpine-Carpathian species G. anisophyllon (note that the Carpathian species Sesleria 

tatrae also occurs on the same outcrop; Fabiszewski 1989). Nevertheless, these plants clearly differ 

from both G. anisophyllon and G. sudeticum in their relative genome sizes, and their taxonomic 

status remains to be clarified. 

 

See http://www.preslia.cz for Electronic Appendices 1–5. 
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Abstract 

Detailed knowledge of the geographic distribution of cytotypes is a prerequisite for any 

experimental or molecular study of ploidy-variable plant systems. The Arabidopsis arenosa group, 

an intricate di-tetraploid complex from the plant model genus Arabidopsis, has remained largely 

neglected regarding the distribution and habitat associations of its cytotypes. Using flow cytometry, 

we conducted a large population-level cytological screen across the A. arenosa group range, 

involving more than 2900 individuals from 194 populations. We characterized a largely parapatric 

distribution of the diploid (Southeast Europe) and tetraploid (Northwest Europe) cytotypes with 

two contact zones – a narrow contact zone in the Slovenian Forealps and a diffuse contact zone 

across the Carpathians. In addition, a previously unknown isolated diploid lineage with distinct 

ecology was revealed from sandy areas of the southeastern Baltic coast. We also recorded several 

adult triploid individuals for the first time in wild Arabidopsis arenosa. Particularly in the Western 

Carpathians, the diploid and tetraploid populations are largely intermingled, and both cytotypes are 

spread along the whole lowland-alpine gradient of habitats, exhibiting no signs of ploidy-linked 

habitat differentiation. In contrast with the complexity at the landscape scale, the within-population 

cytological homogeneity and the rare occurrence of triploids indicate that the contact zone is rather 

stable. 
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Introduction 

The Arabidopsis arenosa group, a diploid-tetraploid species complex, represents one of 

the closest relatives of the prominent plant model Arabidopsis thaliana (Clauss & Koch, 2006). 

Polyploidization is a major diversification force in the complex, generating an intricate mixture of 

diploid populations and their tetraploid derivatives. Importantly, origin of the tetraploid populations 

solely from diploid representative(s) of the A. arenosa group is suggested by the cytotype 

distribution pattern, morphological similarities (Měsiček, 1970), close AFLP multilocus 

phenotypes (Schmickl et al., 2012) and overall similarity in genome scans (Et al.). The close 

relationships among diploid and tetraploid A. arenosa cytotypes represent a unique feature within 

Arabidopsis, as other wild polyploid members are of allopolyploid (hybrid) origin, based on more 

distantly related parents (A. suecica, Jakobsson et al., 2006; A. lyrata subsp. petraea, Schmickl & 

Koch, 2011; A. kamchatica, Shimizu-Inatsugi et al., 2009). The Arabidopsis arenosa group thus 

emerges as a highly promising system for addressing general questions on polyploidy in natural 

plant populations. Indeed, the first studies dealing with general evolutionary questions in this group 

have emerged recently, addressing the evolution of meiotic stability in polyploids (Hollister et al., 

2012; Yant et al., 2013) and speciation processes (Jørgensen et al., 2011; Schmickl & Koch, 2011). 

The A. arenosa group comprises up to nine taxa (species or subspecies, partly still not 

formally described) spanning a wide ecological range from coastal sand dunes to high-alpine 

environments with a principal diversity centre most likely situated in the Carpathian Mountains in 

eastern Central Europe (Měsíček, 1998; Měsíček & Goliašová, 2002; Schmickl et al., 2012). 

Available cytological data indicate that the Carpathian mountain arch harbours a complex mixture 

of diploid and tetraploid populations [chromosome counts by Měsíček (1970), F. Krendl and A. 

Polatschek (published in Schmickl et al., 2012)]. In particular, the Western Carpathians appear to 

be a hotspot of ecological and taxonomic diversity of the whole species complex. There, 

populations of both diploid and tetraploid representatives of the A. arenosa group co-occur along 

the entire altitudinal gradient, from dry and warm steppes in the foothills (150 m a.s.l.) via shady 

rocks and screes on various substrates to alpine vegetation on the highest summits (2600 m a.s.l., 

Měsíček & Goliašová, 2002). This extensive cyto- and eco-geographical variation is remarkable 

both in general and particularly in the Carpathians, where the largest cytotype mixture of the A. 

arenosa group is found. 

In the Carpathians, the few large-scale cytotype screens published to date are inconclusive 

with respect to general cytogeographic patterns. They range from near cytological homogeneity 

(Vicia cracca, Trávníček, Eliášová & Suda, 2010; Alyssum montanum, Španiel et al., 2011) through 

the absence of geographical patterns and extensive intrapopulation cytotype mixture (Phleum 

pratense agg.; Perný et al., 2008) to a relatively strong altitudinal differentiation (Sesleria calcarea 

– S. tatrae species complex, Lysak & Doležel, 1998; Senecio jacobaea, Hodálová et al., 2007; 

Pilosella officinarum, Mráz et al., 2008; Knautia arvensis agg., Kolář et al., 2009). However, none 

of these studied species spans the entire altitudinal range of habitats. 

A prerequisite for any ecological and/or molecular study of a ploidy-heterogeneous plant 

system is knowledge of the geographic distribution of cytotypes. Cytogeographic data complement 

phylogenetic and experimental data and serve as a foundation for addressing questions of frequency 
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of polyploid formation, ecological differentiation of cytotypes, and the genetic background of 

polyploid evolution. For comprehensive evaluation of the true extent of diversity and dynamics of 

ploidy-mixed plant systems (e.g., detection of minority-represented cytotypes such as triploids), a 

sufficiently large and geographically wide flow cytometric screen is essential (Duchoslav, Šafářová 

& Krahulec, 2010; Trávníček et al. 2011a,b; Krejčíková et al. 2013, see Kron, Suda & Husband, 

2007 for review). Despite an increasing interest in evolutionary, ecological, and genomic studies of 

the A. arenosa group, we still have only fragmentary knowledge on its karyological diversity and 

habitat associations. Most of the published records on the ploidy distribution are based on 

traditional lowthroughput chromosome counting (allowing ploidy determination of a few 

individuals per population) and/or focus on the uniform tetraploid-inhabited regions of Western and 

Northern Europe (Měsíček, 1970; Schmickl et al. 2012). 

In this study, we employed a high-throughput technique for ploidy estimation – flow 

cytometry – complemented with chromosome counts to assess ploidy level and homoploid genome 

size diversity over the entire distribution range of the A. arenosa group. Considering the intricate 

and still unresolved relationships within this group, our study addressed only general patterns 

across the whole species complex and did not aim to resolve its internal taxonomic structure. 

Specifically, we addressed the following questions: (1) What is the pattern of ploidy distribution, 

especially of the so far undersampled diploids, and where are the cytotype contact zones located? 

(2) What is the ploidy level variation within populations? Are there any indications of recent 

polyploidization events and/or inter-ploidy gene flow? (3) What is the level of variation in DNA 

content at the homoploid level and, if present, is this variation geographically structured? (4) Are 

there any indications for substantial niche differentiation between the cytotypes along large-scale 

environmental gradients (altitude, climatic niche, substrate, disturbance levels)? If so, is the 

differentiation stronger in the areas where both cytotypes co-occur in sympatry (Western 

Carpathians)? 

 

Material and methods 

Field sampling  

In total, 2963 individuals from 194 populations were collected across the entire range of 

the Arabidopsis arenosa group from 2011 to 2013. The sampling covered all currently recognised 

species and subspecies of the complex (except for the geographically, morphologically and 

ecologically distinct diploid stenoendemic A. croatica), namely Arabidopsis arenosa (L.) Lawalrée 

subsp. arenosa, A. arenosa subsp. borbasii (Zapał.) O’Kane & Al-Shehbaz, A. carpatica nom. 

prov., A. neglecta (Schult.) O’Kane & Al-Shehbaz subsp. neglecta nom. prov., A. neglecta subsp. 

robusta nom. prov., A. nitida nom. prov., A. petrogena (A. Kern.) V.I. Dorof. subsp. petrogena 

nom. prov., A. petrogena subsp. exoleta nom. prov. The above-mentioned provisional names on the 

level of species and subspecies were introduced in the genus Cardaminopsis by Měsíček (1970, 

1998 and unpublished manuscript), but they were never validly published. Valid publication of 

these names requires further studies, and we are using them solely for a reference to other papers 

using this nomenclature (corresponding names are also used in the locality list in Table S1). 

Whenever possible, fresh tissues (preferably parts of stems with flowers) mostly from 1 to 20 (up to 

51) individuals per population (15 individuals on average) were collected and placed in cold 

storage until flow cytometric evaluation. In selected populations, we also collected seeds for direct 

counts of chromosome numbers. We recorded GPS co-ordinates and altitude and characterized the 
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environmental conditions of each site using the following parameters: habitat type, geological 

substrate and natural/anthropogenic character. Localities were considered anthropogenic only in 

cases of heavily humandisturbed or entirely human-created habitats (wall crevices, railway tracks, 

gravel deposits, etc.). Nevertheless, these taxa often colonise such sites as a result of accidental 

spreading from adjacent natural stands (e.g., road bank below a rock). To differentiate between 

such short-distance spontaneous colonization and long-distance anthropogenic spread, we further 

divided the anthropogenic stands into those close (less than approximately 1 km) to a natural 

habitat and those occupying purely anthropogenic habitats far from any potential natural locality 

(typically road banks and railway tracks). For locality details, see supplementary Table S1. 

 

Flow cytometry 

DNA ploidy level (Suda et al., 2006) was inferred from nuclear DNA content 

determined by flow cytometry following the simplified two-step protocol (Doležel, Greilhuber & 

Suda, 2007). Approximately 10 square millimetres of fresh leaf tissue or one fresh petal from 

each plant to be analysed was chopped together with an appropriate volume of the internal 

reference standard (Solanum pseudocapsicum, 2C = 2.59 pg, Temsch, Greilhuber & Krisai, 2010; 

the same individual was used for all measurements) using a sharp razor-blade in a Petri dish 

containing 0.5 mL of icecold Otto I buffer (0.1 M citric acid, 0.5% Tween 20). The suspension 

was filtered through 42-µm nylon mesh and incubated for 10 min at room temperature. Isolated 

nuclei were stained with 1 mL of Otto II buffer (0.4 M Na2HPO4·12H2O) supplemented with 4,6-

diamino-2-phenylindole (DAPI) at 4 µg mL−1 and β-mercaptoethanol at 2 µg mL−1. After 1 min of 

incubation, the sample was run for 3000 particles in a Cyflow ML flow cytometer (Partec, 

Münster, Germany) equipped with the UV-led lamp. The histograms were evaluated with FloMax 

FCS 2.0 software (Partec, Münster, Germany). Fresh petals were preferred over vegetative parts 

for these analyses due to the absence of endopolyploidy (Galbraith, Harkins & Knapp, 1991). For 

petal samples, we analysed up to five individuals in a pooled sample to reduce the analysis costs 

and time demand. Our previous experiments showed that such practice enables reliable detection 

of minority cytotypes present even at a low proportion (20%). Nevertheless, each plant was 

separately re-analysed if mixed samples were suspected, peaks were asymmetrical, or the 

coefficient of variance of the Arabidopsis peak exceeded 5%. The same approach was applied for 

pooled leaf samples of tetraploids (a potential diploid or triploid individual would be clearly 

identified as an additional peak with lower fluorescence intensity); however, vegetative parts 

from diploid individuals were analysed individually in any case due to the presence of the 

tetraploid endopolyploid peak. In ten (5%) populations where fresh tissue was not available, we 

used samples dried with silica gel for ploidy estimation using the same protocol (see Table S1). 

For genome size estimation, one individual per selected population (see Table S1) was run 

on a CyFlow SL flow cytometer (Partec, Münster, Germany) equipped with a green (532 nm) solid-

state laser. The sample preparation followed the methodology described above, with the only 

modification being that the stain solution consisted of Otto II buffer enriched with propidium 

iodide and RNase (both at 50 µg mL−1) and β-mercaptoethanol at 2 µg mL−1. The analyses were run 

for 5000 particles. We applied the following stringent criteria to obtain precise and stable estimates 

of genome size: (i) only analyses with the coefficient of variation of the sample peak below 3% 

were taken into account, (ii) each sample was measured at least three times on different days to 

minimise potential random instrumental drift (Doležel & Bartoš, 2005), and (iii) the between-day 

variation was defined to not exceed 3%; otherwise, the most remote value was discarded and the 
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sample was re-analysed. The reliability of flow cytometric measurements (i.e., between-plant 

differences) was repeatedly confirmed in simultaneous runs of Arabidopsis accessions with distinct 

genome sizes (Greilhuber, 2005). 

 

Chromosome preparations 

Plants for chromosome counts were selected such that they covered the entire sampling 

area. Plants were grown from seeds in plastic Petri dishes on sieved potting soil in a phytotron with 

long day illumination (16 h light at 20 °C, 8 h dark at 15 °C). Young inflorescences were fixed in 

ethanol/acetic acid (3 : 1, v/v) fixative for 24 h at 4 °C. The fixative was replaced with 70% 

ethanol, and the material was stored at −20 °C until further use. Chromosome spreads were 

prepared as described by Mandáková, Marhold & Lysak, (2014). Slides were examined under 

phase contrast for the presence of suitable mitotic metaphase spreads. Selected preparations were 

stained with 2 mg mL−1 DAPI in Vectashield anti-fade mounting medium (Vector Laboratories, 

Burlingame, CA, USA) and photographed using an Olympus BX-61 epifluorescence microscope 

and a CoolCube camera (MetaSystems, Altlussheim, Germany). Individual images were processed 

with Photoshop CS software (Adobe Systems, San Jose, CA, USA). 

 

Data analyses 

Spatial segregation of cytotypes across the entire range (except for the spatial outlier 

Scandinavian populations) and separately within the Western Carpathian contact zone was analysed 

using the Mantel test implemented in the ade4 R package (Dray & Dufour, 2007). A correlation 

coefficient (rM) was calculated for: (i) the matrix of mutual geographic distances among 

populations; and (ii) the binary matrix of ploidy levels, and it was compared to the distribution of 

coefficients obtained from matrices generated by random rearrangements (9999 permutations) of 

the original matrices. Only the majority ploidy level of the population was considered (i.e., rare 

triploid cytotypes were omitted). In addition, Mantel tests were used for testing the spatial 

autocorrelation of homoploid genome size by comparing a matrix of geographic distances with 

genome size distance matrix for a particular cytotype (diploid and tetraploid accessions were 

analysed separately). 

Differences among the cytotypes in associations with anthropogenic stands and geological 

substrates (assessed only for non-anthropogenic populations) were assessed using the chi-squared 

test in contingency tables (P-values were assessed using 200 replicates). General linear models 

were used for testing the association of cytotypes with altitude as well as for the relationships 

among homoploid genome size and the following environmental predictors: (non)anthropogenic 

character of the original habitat, altitude, and substrate type (the last one only for natural localities). 

Unless stated otherwise, all analyses were performed in R 2.15.2 (R Development Core Team, 

2013). 

To capture the interrelationship of environmental predictors and ploidy level in 

sufficiently detailed scale, it was necessary to use background climatic and landscape data, which 

are long-term averages and provide seasonal variability. Primary data layers that included air 

temperature, solar radiation, and terrain (elevation, horizon) were obtained from the SolarGIS data, 

version 1.9 (the high-resolution climate database operated by GeoModel Solar, Bratislava, 

Slovakia). Data on air temperature at 2 m (in °C) were derived from the Climate Forecast System 

Reanalysis and Global Forecast System databases (National Centers for Environmental Prediction, 
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Suitland, Maryland, USA) for the period from 1994 to 2011, recalculated to 15-minute values. The 

data were spatially enhanced to 1-km resolution to reflect variability induced by high-resolution 

(dissected) terrain. Solar radiation was calculated from the satellite and atmospheric data. The 

sources were: (i) Meteosat First and Second Generation (PRIME and Indian Ocean Data Coverage 

Regions, European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, 

Germany) in 15-min or 30-min values, (ii) outputs from the Monitoring Atmospheric Composition 

and Climate (European Centre for Medium-Range Weather Forecasts, Reading, UK) for the decade 

from 2003 to 2013, and (iii) atmospheric models from Global Forecast System database (National 

Oceanic and Atmospheric Administration, Silver Spring, Maryland, USA) for the period from 1994 

to 2013. Solar radiation represents annual (total) and monthly long-term averages of global 

irradiation: (i) without (global horizontal irradiation, GHI), and (ii) with impinging on local terrain 

accounting for the slope and azimuth of the terrain (GTI) (in kWhm−2) and annual (total) and 

monthly long-term averages of photosynthetically active radiation (PAR) (400–700 nm in 

kWhm−2). Monthly long-term averages of precipitation were obtained from WorldClim, version 1.4 

(Hijmans et al. 2005). For the purpose of this study, the hourly data on air temperature and solar 

radiation were integrated into long-term monthly averages. These averages were further spatially 

enhanced by disaggregation, based on the correlation between terrain altitude and climatic 

variables. The disaggregated monthly and yearly averages created from this reanalysis were 

validated against selected ground measurements (from the meteostations flagged with quality codes 

2, 3, 6, 7; see list of quality codes from the National Climatic Data Center). Based on 

disaggregation and validation, which was calculated individually for each pixel (smallest grid unit), 

these data (rasters) in the GIS (Geographic Information System) environment represent annual 

trends, seasonality and extremes for particular areas. Morphometry of the terrain (terrain slope, 

terrain azimuth) was developed via elevation [altitude above sea level; source SRTM3 data (The 

Shuttle Radar Topography Mission, available at http://srtm.usgs.gov/) up to the latitude 60°N]. We 

calculated distances from the Equator (northing) and the prime meridian (easting) in kilometres to 

account for spatial gradients and autocorrelation. For these calculations, we used 

PostGIS/PostgreSQL, version 1.5.1, released under the GNU/GPL license. 

Distribution of the major ploidy levels (diploids and tetraploids) was modelled using 

generalized linear models (GLM) with binomial error distribution and the logit link function (i.e., 

logistic regression). A range of GIS-derived data was used as environmental explanatory variables 

(see Table S2 for a complete list of variables and abbreviations of variable names). Northing and 

easting were used as spatial predictors to detect possible geographic gradients. Prior to the 

analyses, distribution of variables and correlations among them were assessed. To avoid a 

multicollinearity, elevation was excluded from modelling due to its strong correlation with mean 

annual temperature (r = –0.94). Intrinsically strong positive correlations were found among 

monthly values and annual summary characteristics of temperature (Fisher weighted mean r = 

0.98), precipitation (r = 0.82), GHI (r = 0.85), GTI (r = 0.92) and PAR (r = 0.85); thus, only annual 

characteristics were pre-selected for further analyses. However, annual GTI, GHI and PAR were 

highly correlated with each other (r = 0.98). Consequently, only PAR was employed as a predictor 

in the analyses because this quantity is intuitively understandable and is a frequently used measure 

of radiation. The remaining variables did not show considerable skewness or intercorrelations and 

were used in the modelling procedure as predictors (see Table S3 for a list of predictors). Separate 

GLMs were built for the whole dataset and the Western Carpathian contact zone. Initially, full 

models were fitted to the data, including all spatial and environmental predictors. The full models 
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were simplified following backward stepwise deletion associated with likelihood-ratio tests. Only 

those variables for which the conditional effect was significant at α= 5% were retained in the final 

models. Spatial correlograms were used to check for autocorrelation in the residuals of the final 

models. Because the final models showed significant positive autocorrelation at short distances, the 

data were re-fitted using generalized mixed effect models (GLMM) (Dormann et al. 2007) to 

prevent biased estimates of model coefficients and the inflation of type I errors. GLMMs with 

Gaussian spatial correlation structure were fitted using penalised quasi-likelihood (Venables & 

Ripley, 2002). Final GLMMs are presented graphically as a series of effect plots (Fox, 2003). The 

ability of the final models to discriminate between sites with diploids and those with tetraploids 

was assessed by means of classification tables (cut-off value: 0.5) and Somers’ Dxy rank 

correlations (Newson, 2006) between observed incidences of cytotypes and predicted probabilities. 

 

 

Results 

Ploidy level variation and cytogeography 

Three different DNA ploidy levels (diploid – 2x, triploid – 3x, and tetraploid – 4x) were 

detected among 2963 individuals from 194 populations belonging to the A. arenosa group (Fig. 1). 

The tetraploid individuals [1588 (54%) individuals in 107 (55%) populations] only slightly 

prevailed over their diploid counterparts [1369 (46%) individuals in 88 (45%) populations]. The 

triploid cytotype was extremely rare (six individuals, 0.2%) and it was in all cases represented by a 

single individual each in otherwise diploid populations. Despite cytotype co-occurrence in several 

areas and a large within-population sampling (15 individuals per population were sampled on 

average), the vast majority of the populations (96%) were detected as cytotype uniform, i.e., either 

diploid or tetraploid. Only a single di-tetraploid mixed-ploidy population was found in the Tatry 

Mts. (Western Carpathians, AA170) in addition to diploid-triploid mixtures recorded at six sites 

across the diploid cytotype range (see Table S1, for locality details). Chromosome counts 

confirmed the estimated ploidy levels and revealed 2n = 2x = 16 in 17 accessions from the 

Carpathians (AA018, AA023, AA070, AA084, AA090, AA091, AA123, AA157), Dinaric Alps 

(AA054, AA124, AA125, AA126, AA127, AA128), Pannonian lowland (AA110), and southern 

Baltic coast (AA153, AA200) and 2n = 4x = 32 in 10 accessions from the Carpathians (AA015, 

AA067, AA082, AA087, AA088), southern and eastern Alps (AA049, AA149), southern Poland 

(AA059), Scandinavia (AA181) and Luxembourg (AA190) (Fig. 2, Table S1). Neither dysploidy, 

aneuploidy nor accessory chromosomes were observed in the karyologically investigated 

accessions. 
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Figure 1. Flow cytometric histograms of suspensions of DAPI-stained nuclei isolated from diploid (A, C, D) 

and tetraploid (B) accessions of the Arabidopsis arenosa group. A + C, Analysis of nuclei of identical diploid 

individuals (pop. AA084) isolated from either fresh petal (A) or stem leaf (C). B, Pooled sample of five 

tetraploid individuals (pop. AA117, nuclei isolated from fresh petal tissue). D, Simultaneous analysis of two 

diploid accessions from pop. AA090 documenting within-population divergence in nuclear DNA contents 

(difference in fluorescence intensity, 14%; nuclei from both samples were simultaneously isolated, stained, 

and analysed). Letters denote peaks of nuclei corresponding to different phases of the cell cycle (G0–G2) 

and/or levels of endopolyploidy (E); the internal standard Solanum pseudocapsicum used in analyses A-C is 

marked by an asterisk 

 

 

 

 

 

                    relative fluorescence                                               relative fluorescence 

 

 



 

 

79 

 

 

 

     A                                             B                                             C                                            D  

 

      

 

 

 

 

 

     

     E                                            F                                             G                                            H 

 

 

      

 

 

 

 

 

 

Figure 2. DAPI-stained mitotic chromosome spreads from flower bud tissue of the Arabidopsis arenosa 

group. A, A. arenosa s.l. AA200 (Lithuania, coastal sands; 2n = 2x = 16). B, A. arenosa s.l. AA124 (Serbia, 

dry rocks; 2n = 2x = 16). C, A. arenosa s.l. AA070 (Romania, dry rocks; 2n = 2x = 16). D, A. neglecta AA084 

(Slovakia, alpine scree; 2n = 2x = 16). E, A. carpatica AA023 (Slovakia, limestone outcrop in middle 

altitudes; 2n = 2x = 16). F, A. arenosa AA181 (Norway, secondary gravel; 2n = 4x = 32). G, A. neglecta 

subsp. robusta AA087 (Slovakia, alpine rocks; 2n = 4x = 32). H, A. petrogena subsp. exoleta AA082 

(Romania, limestone rocks; 2n = 4x = 32). See Table S1 for locality details. Scale bars = 10 µm. 

 

 

Diploid and tetraploid cytotypes exhibited a largely parapatric distribution; a weak but significantly 

nonrandom spatial differentiation of cytotypes was also supported by the Mantel test (rM = 0.06, 

P<0.001). Tetraploids dominate in the northwestern half of the A. arenosa group range 

(Scandinavia, Germany, Alps, Hercynian massif) whereas diploids occupy mainly southeastern 

areas (most of the Carpathians, Pannonian basin, Dinaric Alps, Fig. 3). In addition, four spatially 

isolated diploid populations were found along southern shores of the Baltic Sea. They grew 

exclusively in coastal sand dunes and in adjacent open forests and thus occupied distinct 

environments from their spatially closest tetraploid counterparts that were found exclusively in 

human-disturbed habitats (Table S1). Natural populations of both cytotypes meet at the landscape 

scale in two contact zones, a smaller and rather abrupt one situated in Slovenia (less than 100 km 

wide) and a large and diffuse zone across the Carpathian mountain arch (Fig. 4). In the Romanian 

Carpathians, the tetraploids occupy the northern half of the Eastern Carpathians and the Apuseni 

Mts., whereas diploids dominate in Southern Carpathians and in the southern half of the Eastern 

Carpathians (the only exceptions in this area are two tetraploid populations, AA065 and AA067, 

occupying alpine screes and a limestone canyon, respectively). In contrast, in the Western 

Carpathians, the diploid and tetraploid populations were largely spatially intermingled throughout 

the landscape (Fig. 4) although the cytotypes still exhibited weak but significant spatial 

associations (Mantel test, rM = 0.06, P = 0.013). 
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Homoploid differentiation in DNA content 

In addition to ploidy variation, the accessions of the A. arenosa group also exhibited a 

considerable variation in DNA content at the homoploid level as the di- and tetraploid accessions 

varied 1.17-fold and 1.21-fold, respectively. Nevertheless, this range included two diploid 

individuals and one tetraploid individual with abruptly higher genome sizes (9–13% higher than the 

average, see Fig. S1). After exclusion of these three individuals, the variation dropped to 1.12-fold 

and 1.14-fold in diploids and tetraploids, respectively. Homoploid genome size was not spatially 

structured, as evidenced by non-significant Mantel tests (rM = −0.11, P = 0.88 and rM = 0.07, P = 

0.19, for diploid and tetraploid accessions, respectively). In addition, a comparable 1.14-fold 

difference was found among five individuals from one exceptionally highly variable population 

from the alpine zone of the Western Carpathians (pop. AA090, see also Fig. 1D). The genome size 

variation was correlated neither with (non)-anthropogenic habitat character (F1,31 = 0.92, P = 0.34 in 

tetraploids; diploids were not tested due to the negligible proportion of anthropogenic populations, 

see the next section) nor with altitude, substrate type and/or their interaction (F3,30 = 0.61, P = 0.613 

and F3,20 = 1.37, P = 0.28 in diploids and tetraploids, respectively). Mean monoploid DNA content 

(after exclusion of the individuals with exceptionally high values) was similar among all three 

ploidy levels, though it was not entirely identical (average ratio to internal standard divided by 

ploidy level was 0.068, 0.070, and 0.073 for 2x, 3x, and 4x, respectively: the tetraploid value was 

on average 7.6% higher than that of diploids). 

 

Niche differentation 

Distribution of ploidy levels through the entire investigated area was significantly 

correlated to a west/east gradient (easting), total annual PAR and total annual precipitation (Table 

1). Probability of tetraploid occurrence decreased toward the east and also with increasing PAR and 

precipitation (Fig. S2). Considering contact zone data, only a south/north gradient appeared 

significant (Fig. S3). Generally, the cytotypes occupied somewhat different climatic niches as 

revealed by the moderately high discriminatory power of the models. Nevertheless, the particular 

climatic factors strongly reflected by the spatial gradients and only two environmental predictors 

(total annual PAR and total annual precipitation) significantly improved the GLMM with 

incorporated geographical predictor in the entire A. arenosa group area. No environmental 

predictors were shown to be significant in the contact zone (Table 1). 

Almost no significant differences in substrate requirements and/or altitudinal ranges of the 

diploids or tetraploids were detected, whether across the entire area or in the densely sampled zone 

of sympatry in the Western Carpathians. The only exception was a significant association of 

tetraploids with anthropogenic stands (Table 2). Although both cytotypes were able to grow in 

habitats created or disturbed by man in close proximity to the natural stands (14 vs. 10 localities for 

tetraploids and diploids, respectively), the tetraploids were significantly more frequent (22 vs. 4 

localities) in anthropogenic stands distant from natural localities, i.e., showing stronger potential 

for anthropogenic spread. Nevertheless, this difference was not apparent within the Western 

Carpathian contact zone because tetraploids occupied the anthropogenic stands in other parts of the 

distributional range (mainly in the northern part, i.e., Scandinavia, Poland, northern Germany, and 

northern Czech Republic). 
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Figure 3. Distribution and ploidy level of the 194 studied populations of the Arabidopsis arenosa group in 

Europe (red – diploid, blue – tetraploid, asterisk – triploid, 2963 individuals investigated in total). The 

continuous distribution range of the whole species complex is marked by the orange outline (following 

Hoffmann, 2005). 
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Figure 4. Detail of the contact zone of cytotypes of the Arabidopsis arenosa group in the Western Carpathians 

(red circle – diploid, blue square – tetraploid, pink triangle – mixed di-tetraploid population, asterisk – 

triploid; based on 1374 individuals from 79 populations). 

 

 

Table 1. Summary of the final logistic generalized mixed effect models (GLMMs) testing the effects of spatial 

gradients (northing, easting) and the environmental correlates (total annual PAR, total annual precipitation; 

only those with the conditional effect significant at = 5% are presented) on the distribution of diploid and 

tetraploid populations of the Arabidopsis arenosa group in the entire range of the group and in the Western 

Carpathian contact zone 

 

 

  Whole model       Model parameters       

Data set χ2 P 
class 

(%) 

Somers’Dxy 

(95% CL) 
  

Predictor 

(unit) 
B SE χ2(1) P 

Whole 

data set 
36.7 0.001 71.2 0.59 (0.45, 0.71) 

 
Easting (km) –0.0036 0.0007 23.7 0.001

      

Total annual 

PAR 

(kWh.m−2) 

–0.0196 0.0038 27.6 0.001

      

Total annual 

precipitation 

(mm) 

–0.0014 0.0007 4.47 0.035 

Contact 

zone 
4.17 0.041 59 0.29 (0.05, 0.54)   Northing (km) 0.0123 0.0061 4.17 0.041 

 

Characteristics of the final models: χ2, test statistics; P, probabilities; class and Somers’ Dxy, classification 

success. Characteristics of particular parameters: B, estimates of model coefficients; SE, standard error of 

estimates; χ2
(1)  and P, results of likelihood-ratio tests. 
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Table 2. Differences among diploid and tetraploid populations of the Arabidopsis arenosa group from the 

entire distribution area and from the contact zone in the Western Carpathians in the investigated habitat  

characteristics (significant results are in bold) 

 
2x 4x Test 

Anthropogenic stands+ 

Whole range 74/14 36/70 χ2 = 8.19, P* = 0.003 

W Carpathians only 37/8 26/8 χ2 = 0.40, P* = 0.579 

Anthropogenic spread†+ 

Whole range 84/4 84/22 χ2 = 10.88, P* = 0.001 

W Carpathians only 42/2 34/0 χ2 = 1.59, P* = 0.510 

Geology (calcareous vs. 

siliceous-neutral + volcanic) 

Whole range 46/37 46/35 χ2 = 0.01, P* = 1 

W Carpathians only 25/17 23/11 χ2 = 0.53, P* = 0.490 

Geology (calcareous vs. 

siliceous-neutral vs. volcanic) 

Whole range 46/25/12 45/31/4 χ2 = 4.6, P* = 0.111 

W Carpathians only 25/9/8 23/8/3 χ2 = 1.59, P* = 0.505 

Altitude 

Whole range m (1–1950 m) m (1–2269 m) 

F(1,192) = 0.008, P = 

0.927 

W Carpathians only m (161–1950 m) m (251–2031 m) F(1,77) = 1.14, P = 

0.289 

*The P-value was estimated using 2000 simulations. 

†Only purely anthropogenic habitats far from any potential natural locality were considered as a distinct factor 

level in this analysis (see Methods). 

+Number of positive and negative cases are before and after slash, respectively. 

Discussion 

We present the first large-scale evaluation of withinand among-population cytotype 

diversity of the Arabidopsis arenosa group, an important ploidyvariable species complex from the 

plant model genus. 

Our study extends the knowledge of cytotype distribution across the range of this group 

particularly by: (i) expanding sampling efforts to mostly neglected regions (the Balkans, 

Carpathians, Baltic coast), (ii) a thorough sampling in the zone of spatial contact between cytotypes 

(Carpathians), and (iii) by a substantial increase of total sample size [over 2900 individuals in total, 

on average 15 per population in the current dataset vs. 730 and 273 individuals, on average five and 

two per population, in the previous surveys by Měsíček (1970) and Schmickl et al. (2012), 

respectively]. In addition, we present an overview of genome size variation within each ploidy 

level of the A. arenosa group. 

 

Geography correlates with ploidy level distribution, but not with homoploid DNA content variation 

Globally, the diploid and tetraploid populations of the A. arenosa group exhibit a 

parapatric distribution with two zones of cytotype spatial overlap, in the Slovenian Forealps and in 

the Carpathians. Although tetraploids were the prevailing cytotype, the diploid cytotype spans 

through more than one third of the total area, which is much larger than previously assumed (see 
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Fig. 3). In addition, the diploid populations are relatively common in some areas, occupying a 

variety of habitats, and in certain regions such as the Pannonian basin and the Dinaric Alps, they 

represent the only cytotype. This is in strong contrast to another di-tetraploid member of the genus 

in Central Europe, Arabidopsis lyrata subsp. petraea, which is represented by a few diploid 

populations isolated in cryptic Holocene refugia and by the locally more common hybridogenous 

tetraploid cytotype (Polatschek, 1966; Schmickl & Koch, 2011). The differentiation into diploid-

dominated southern vs. tetraploiddominated northern (partly even formerly glaciated) regions 

represents a common cytogeographic pattern in the European flora that most likely reflects 

environmental changes during past climatic oscillations (Ehrendorfer, 1980; van Dijk & Bakx-

Schotman, 1997; Weiss-Schneeweiss et al. 2013). 

In addition, a previously unknown and ecologically distinct group of diploid populations 

has been found along the southern Baltic Sea coast, in the previously glaciated region at least 600 

km from the closest diploid populations in the Western Carpathians. The recent introduction of 

these populations is not likely because the A. arenosa diploids generally do not show long-distance 

spreading in man-made habitats (see Table 2) and because the Baltic diploids exclusively occupy 

natural coastal sandy areas (searches in PR, PRC, W, and WU herbaria, plants from such habitats 

were found likely to occur from eastern Denmark to Estonia, F. Kolář, unpublished). Considering 

the large areas currently unfavourable for A. arenosa survival in northern Central Europe (forested 

or cultivated flatlands), a long-term isolation of the Baltic diploids from the main diploid range is 

probable, at least since the earlier phases of the Holocene. The presence of several geographically 

distinct and ecologically variable groups of diploid populations (at least two disjunct areas, with a 

wide range of habitats along a 0–2600 m altitudinal gradient) implies that their tetraploid 

derivatives, possibly combining several of the distinct diploid gene pools, should show 

considerable levels of genetic variation. Schmickl et al. (2012) did, indeed, detect large genetic 

variation among tetraploid populations of this group (even in the previously glaciated areas) and 

attributed it to the combined effects of several periglacial refugia, the absence of large bottlenecks 

and possible introgression from other sympatric Arabidopsis species. We hypothesise that recurrent 

origins of tetraploids from distinct gene pools and/or subsequent 2x →4x introgression might have 

added another level of complexity to the A. arenosa group. In conclusion, the complicated 

cytogeographic pattern together with the most likely intricate internal sub-structuring of the species 

complex requires careful consideration in any ecological, genetic or genomic study employing taxa 

of the A. arenosa group as a model. 

In addition to distinct ploidy levels, the plants studied here also exhibited a small but still 

considerable variation in genome size within each cytotype (up to 1.21-fold). The observed 

differences in DNA content might represent a combination of several causes of both biological and 

methodological origin. First, aneuploidy is usually responsible for larger abrupt differences in 

genome size (Roux et al. 2003; Šmarda & Bureš, 2006), and it also appears to be a plausible 

explanation for the exceptionally high DNA content values detected in both diploid and tetraploid 

accessions of the A. arenosa group (Fig. S1). Both aneuploidy and dysploidy is not rare in 

Brassicaceae and may be almost a rule in certain polyploid complexes such as those of the genus 

Cardamine [Cardamine pratensis group, Urbanska-Worytkiewicz & Landolt, (1974), Marhold 

(1994), Mandáková et al. (2013); or C. yezoensis and related taxa, Marhold et al. (2010)]. In 

addition, high levels of aneuploidy were also observed in karyological analyses of Arabidopsis 

seedlings (Měsíček, 1970; M. Kolník and K. Marhold, unpublished). Second, different intensity of 

genomic processes, such as non-coding repetitive DNA proliferation, unequal crossing-over and 
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illegitimate recombination, are considered major causes for gradual homoploid variation in DNA 

content within a species (Devos, Brown & Bennetzen, 2002; Bennetzen, Ma & Devos, 2005; Leitch 

& Leitch, 2013). Finally, methodological bias resulting from instrumental shifts and the influence 

of secondary metabolites could not be ruled out as we analysed different tissues (leaf, stem or petal) 

of plants that originated from ecologically distinct sites, collected in different parts of the season. 

Recent investigations have shown that, for instance, seasonal variation, choice of particular 

instrument or isolation buffer could result in up to 10% variation in fluorescence intensities 

(Bainard et al. 2011). However, we checked for artificial shifts by performing repeated analyses of 

the same accession on at least three different days, keeping the between-day variation below 3%. In 

addition, we demonstrated the genuine basis of the larger genome size differences by the presence 

of double peaks in simultaneous analyses of the individuals with distinct genome size values 

(which is considered to be the best evidence for true genome size differentiation, Greilhuber, 2005; 

Fig. 1D). 

Small genuine differences in DNA contents are usually explained either as a result of 

neutral processes (random within- and across-population fluctuations or random accumulation of 

changes in spatially isolated areas/genetic lineages, Šmarda & Bureš, 2010; Oliver, McComb & 

Greene, 2013) or as an evolutionary constraint imposed by the surrounding environment and/or 

biological traits of the organism (e.g., rapid lifecycle and various traits relate to invasiveness; 

Greilhuber & Leitch, 2013). Our data favour the first, neutral scenario because we found no 

correlation of genome size in the entire A. arenosa group with any major geographic, altitudinal or 

environmental gradient. In contrast, a geographycorrelated 10% variation in genome size has 

been recently found among Swedish genome-sequenced accessions of A. thaliana, but the selective 

background for such variation remains unconfirmed (Long et al. 2013). 

 

High cytogeographical complexity in the Carpathians contrasts with intrapopulation cytotypes 

uniformity 

Spatial relationships between cytotypes within species can be categorised as sympatric, 

parapatric or allopatric, depending on whether they are geographically intermixed, adjacent or 

disjunct, respectively. When polyploids first arise, they necessarily occur in sympatry with their 

diploid progenitors. Subsequent cytotype expansion or retreat results in parapatric or allopatric 

distributions. Two types of ploidy contact are recognised depending on their evolutionary history 

(Petit, Bretagnolle & Felber, 1999): (i) primary, when polyploids arise de novo from local diploids/ 

lower polyploids, and (ii) secondary, when different cytotypes regain contact after a phase of 

spatial separation. The Arabidopsis arenosa group most likely combines both scenarios at different 

spatio-temporal scales. The mixed diploid-triploid populations could be regarded as the primary 

cytotype contacts in which triploids originated recurrently via union of reduced (n) and unreduced 

(2n) gametes of the diploid. The alternative scenario, of triploid origin via inter-ploidal 

hybridization (favoured by Měsíček, 1970), seems improbable in light of our cytogeographic data. 

In all cases, only a single triploid plant was found in otherwise purely diploid populations; 

moreover, such populations were mostly found in exclusively diploidinhabited areas (e.g., in the 

Dinaric Alps). Since the advance of large-scale ploidy screening studies enhanced by flow 

cytometry, the occurrence of odd cytotypes within multiple ploidy species is more the rule than the 

exception (Husband, Baldwin & Suda, 2013), and rare (auto)triploids have been found even in 

otherwise purely diploid species (Slovák et al. 2009; Dušková et al. 2010). Our records represent 
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the first adult triploid individuals of A. arenosa detected in the wild. The extremely low frequency 

of adult triploids in our dataset (0.2%) in contrast with rather frequent triploid incidence in 

karyologically investigated seedlings (M. Kolník, unpublished) indicate strong yet still incomplete 

selection against the triploid progeny. Formation of viable triploid individuals in natural 

populations is an important prerequisite for incipient autopolyploid speciation (via triploid bridge, 

Husband, 2004) and thus shows important evolutionary potential for recurrent polyploidization 

within the A. arenosa group. 

The two large areas of the diploid and tetraploid cytotype contact in the Carpathians and 

the Slovenian Forealps most likely represent secondary contact zones. This is indicated by the 

prevailing separate distribution of the cytotypes in the remaining areas and the intrapopulation 

cytotype uniformity (only one di-tetraploid population was found throughout the area studied). We 

will further discuss the origin and dynamics only of the sufficiently sampled zone in the Western 

Carpathians. This area hosts a complex landscape mosaic of spatially intermingled diploid and 

tetraploid populations that is in striking contrast with the within-population ploidy uniformity. 

Interestingly, both cytotypes occupy various substrates and climatic niches, and they occur from the 

lowland steppes up to high-alpine habitats. The absence of altitudinal differentiation is particularly 

interesting because it has been the only trend found repeatedly among the other investigated 

Carpathian taxa to date (Lysak & Doležel, 1998; Hodálová et al., 2007; Mráz et al., 2008). In 

addition, no general trend in cytotype-specific associations with geological substrates has been 

detected, although substrate specificity represents a major driver of plant spatial distributions and is 

also the principal speciation trigger among European mountain plants (Alvarez et al., 2009; Moore 

& Kadereit, 2013) as well as in Arabidopsis (Hunter & Bomblies, 2010; Schmickl & Koch, 2011). 

Collectively, we argue that ecological factors appear to play a minor role in the cytotype 

segregation; instead, random processes such as colonization history and genetic drift should be 

taken into account. 

The marked prevalence of the cytotype-pure populations even within the Carpathian 

contact zone could be attributed to the demographic processes in the presumably strongly isolated 

populations. Both diploid and tetraploid populations of the A. arenosa group prefer open primary 

habitats with low competition, such as rocks, screes, sparse grasslands, and subalpine stands 

(Holocene cryptic refugia, Birks & Willis, 2008, see Table S1 for details on occupied habitats). In 

such sites isolated from each other, the processes of neutral evolution (random fluctuations in 

cytotype frequencies) complemented with frequencydependent selection against the rare cytotype 

(i.e., minority cytotype exclusion; Levin, 1975) could have occurred, ultimately leading to 

cytologically pure populations even from the hypothetical ploidy-mixed populations. Such a 

scenario involving dynamic changes in cytotype frequencies is supported by the short lifespan of 

the studied plants, which have no special adaptations for long-distance dispersal and very limited 

clonal growth and vegetative persistence (F. Kolář, M. Lučanová, personal observation). In contrast 

with Arabidopsis, other plant systems in the Western Carpathians investigated at comparable detail 

exhibit frequent within-population cytotype mixtures. Nevertheless, in both cases, the plants are 

long-living clonal perennials either with frequent asexual reproduction (Pilosella officinarum, Mráz 

et al., 2008) or preferring sites under strong human impact (Phleum pratense agg., Perný et al., 

2008). However, another example of the almost complete absence of cytotype-mixed populations 

comes from the Brassicaceae family; although diploid, tetraploid and rare hexaploid populations of 

perennial Alyssum montanum are spatially intermingled on a large scale in Central Europe, they are 

cytotype uniform (Španiel et al., 2011, 2012). 
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It should be noted that other evolutionary processes such as recurrent in situ 

polyploidization and/or local adaptation may also have contributed to the observed pattern in 

certain areas, and further detailed molecular investigations are needed. For example, the spatially 

isolated occurrence of tetraploids (admixed in the only ploidy-mixed population AA170) among 

purely diploid populations suggests a local autopolyploid origin. In summary, current evidence 

suggests that areas with co-occurring diploid-tetraploid A. arenosa represent a rather stabilized 

secondary contact zone, at least on a coarse spatial scale. 

 

Large niche overlap among cytotypes 

Polyploidy can have a profound effect on various morphological, anatomical and 

physiological plant traits that further translate into distinct ecological requirements of cytotypes 

(reviewed in Levin, 2002). However, the general validity of shifts in climatic niche of diploids and 

their polyploid relatives has been recently questioned because no correlation was found in the 

majority of the thoroughly investigated closely related diploid–(auto)polyploid species groups 

(Glennon, Ritchie & Segraves, 2014). Our results further support the latter opinion because we 

found mostly no association or only a weak association between ploidy level and the environment 

in the Arabidopsis arenosa group. With the exception of higher tendency of tetraploids for 

spreading across anthropogenic stands, both cytotypes occur virtually along the entire range of 

habitats occupied by the species complex. Both cytotypes could be found on calcareous and acidic 

substrates, and both span from lowlands to alpine habitats. The climatic niche of the cytotypes is 

also largely similar, with the only differences caused by spatially correlated factors, reflecting the 

prevailing non-overlapping distribution ranges of the cytotypes. The absence of polyploidy-linked 

extension of realized climatic niches has previously been suggested for Arabidopsis, although 

dramatic changes in the realized climatic niche contributed to the evolution of the whole genus 

(Hoffmann, 2005). In addition, no traces of selection towards the ecological separation have been 

found: the levels of ecological differentiation were comparable in the areas where the cytotypes co-

occur (Western Carpathians) and throughout the distribution area. 

Nevertheless, it should be emphasised that our study focused on the Arabidopsis arenosa 

group as a whole, and some genetic lineages with distinct ecological and/or geographical 

associations may be found within each cytotype. For example, the ecologically and partly also 

morphologically distinct populations on railway tracks and other secondary habitats that prevail in 

northern Europe (but reach as far as southern Germany and Switzerland) might represent such 

distinct lineages, thus explaining the observed overall preference of tetraploids for anthropogenous 

stands. 

 

See additional Supporting Information in the online version of this article at the publisher’s web-

site. 
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Abstract 

Variation in genome size in a particular taxonomic group can reflect different evolutionary 

processes including polyploidy, hybridization and natural selection but also neutral evolution. 

Using flow cytometry, karyology, ITS sequencingand field surveys, the causes of variation in 

genomesize in the ecologically and morphologically diverse high-Andean genus Lasiocephalus 

(Asteraceae, Senecioneae) were examined. There was a 1.64-fold variation in holoploid genome 

size (C-values) among 189 samples belonging to 20 taxa. The most distinct was a group of plants 

with large genomes corresponding to DNA triploids. Disregarding the DNA triploids, the 

remaining samples exhibited a pronounced (up to 1.32-fold) and rather continuous variation. Plants 

with the smallest genomes most likely represent intergeneric hybrids with the closely related and 

sympatric Culcitium nivale, which has a smaller genome than Lasiocephalus. The variation in 

genome size in samples of diploid Lasiocephalus was strongly correlated with several 

environmental and life history traits (altitude, habitat and growth form). However, all these factors, 

as well as genome size itself, were correlated with phylogeny (main split into the so-called ‘forest’ 

and ‘páramo’ clades), which most probably represents the true cause of the differentiation in 

intrageneric genome size. In contrast, relationships between genome size and phylogeny were not 

apparent at lower divergence levels. Instead, here we suggest that ecological conditions have 

played a role in driving shifts in genome size between closely related species inhabiting different 

environments. Collectively, this study demonstrates that various evolutionary forces and processes 

have shaped the variation in genome size and indicates that there is a need for multi-approach 

analyses when searching for the causes and consequences of changes in genome size. 

 

 

 

Keywords: Andes, Compositae, flow cytometry, genome size, growth form, habitat preference, 

hybridization, Lasiocephalus, nuclear DNA amount, nucleotypic effect, phylogeny, polyploidy 

 

 



 

 

95 

 

Introduction 

One of the current challenging questions in plant evolutionary biology is the functional 

significance of the approximately 2000-fold variation in genome size among angiosperms (Leitch 

& Bennett 2007). This tremendous variation is largely caused by different proportions of non-

coding repetitive DNA, such as transposable elements, satellite DNA, introns, and pseudogenes 

(Bennett & Leitch 2005). Several mechanisms, both at the chromosomal and molecular levels, are 

thought to be capable of generating genome size changes (Bennetzen 2005). Polyploidy, 

chromosome gain, presence of supernumerary or sex chromosomes, amplification of 

retrotransposons and genomic duplications are included among the processes that cause genome 

expansion. Counterbalancing mechanisms involve the loss of entire chromosomes, illegitimate 

recombination, unequal intrastrand homologous recombination or a higher overall rate of 

nucleotide deletion over insertion (reviewed in Bennett & Leitch 2005). While chromosome-level 

events typically cause sudden and marked changes in genome size, molecular mechanisms are 

more gradual with each event producing only slight modifications in genome size. 

Variation in genome size has been interpreted in relation to various phenotypic and/or life-

history traits. Classical observations documenting a positive relationship between genome size and 

cell size and duration of cell division (reviewed by Leitch & Bennett 2007) were followed by 

studies that revealed correlations between genome size and seed mass, leaf mass per unit area, 

growth rate and/or photosynthetic rate (Knight & Beaulieu 2008). In addition, genome size can also 

have significant consequences at the ecological level, influencing the range of environmental 

conditions a plant can tolerate (the so-called “large genome constraint hypothesis”; Knight et al. 

2005). Over the years, relationships between genome size and temperature, water availability, 

latitude and altitude of the habitats have been reported (reviewed by Knight & Ackerly 2002). 

However, variation in genome size may not always be adaptive as documented for instance in a 

highly variable population of Festuca pallens (Šmarda et al. 2007). 

Recent studies have also emphasized the importance of phylogeny in variation in genome 

size. For example, genome size in Hieracium subg. Hieracium was strongly correlated with the two 

major phylogenetic groups (Chrtek et al. 2009) and congruency between genome size and 

evolutionary lineages is also found in the holoparasitic Orobanche (Weiss-Schneeweiss et al. 

2005). If phylogeny is not considered, the role of other factors (e.g. environmental conditions) in 

shaping genome size may be overemphasized. Therefore, when searching for the causes of 

variation in genome size, both adaptive and non-adaptive components need to be taken into 

account. 

Knowledge of the patterns and dynamics of variation in genome size is largely based on 

the analysis of European and North American floras, and species from the world’s main centres of 

plant diversity are neglected. One of the geographic regions that hosts an extremely-rich plant biota 

is the Andes of South America, which rank among the most conspicuous physiographic features on 

Earth (Vuilleumier & Monasterio 1986, Luteyn 1999, Young et al. 2002). Andean plant diversity 

largely resulted from the adaptive radiation of numerous plant groups, such as Espeletia, Huperzia, 

Lupinus and Valeriana (Cuatrecasas 1986, Wilkström et al. 1999, Bell & Donoghue 2005, Hughes 

& Eastwood 2006). Most researchers relate the adaptive radiation to the final uplift of the 

mountains and emergence of high-altitude non-forest habitats (páramo) about 5–3 mya and the 

PlioPleistocene climatic oscillations. Although there is an increasing number of phylogenetic 

studies on Andean plants (e.g. Young et al. 2002, Struwe et al. 2009) the role of genomewide 
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evolutionary processes (such as polyploidization and genome size change) in species radiation is 

largely unknown. 

Lasiocephalus Willd. ex Schltdl. (Asteraceae, Senecioneae) is a neotropical highAndean 

genus of ca 30 species distributed from Venezuela to Bolivia, with the highest species richness in 

Ecuador (Cuatrecasas 1978). Two main growth forms are recognized in the genus: (i) the broad-

leaved suffrutescent climbers of montane forests and the tree-line ecoton, and (ii) erect and 

ascending narrow-leaved herbaceous plants to subshrubs of the high-altitude páramo. These growth 

forms plausibly reflect adaptive changes that occurred during the colonization of the páramo 

habitats (Cuatrecasas 1978). It is likely that Lasiocephalus is a monophyletic group nested within 

Senecio s. str. with the high-Andean genus Culcitium as a sister taxon (Pelser et al. 2007). The high 

number of species along with the variation in growth forms and their altitudinal distribution make 

Lasiocephalus a suitable candidate for studying the evolutionary outcomes associated with adaptive 

radiation. 

We use Lasiocephalus as a representative example of a group that has radiated in the 

Andes to address general questions concerning the extent and possible sources of the variation in 

DNA content. Flow cytometry, karyology and ITS sequencing were employed to address the 

following specific questions: (i) Does genome duplication play a role in the diversification of 

Lasiocephalus? Which cytotypes are found in this genus? Are there any mixed-ploidy populations? 

(ii) What is the variation in genome size (C- and Cx-values)? (iii) How does the observed pattern in 

DNA ploidy and variation in genome size correlate with growth forms and habitat preferences? (iv) 

How does the observed pattern in DNA ploidy and variation in genome size correlate with the 

phylogeny of the group? 

 

 

Materials and methods 

Plant material 

Plants were collected between 2007 and 2009 in Bolivia, Ecuador and Venezuela (see 

Electronic Appendix 1 for locality details). In total, 189 individuals from 101 populations 

corresponding to 20 species of Lasiocephalus sensu Cuatrecasas (1978) were sampled (Table 1). 

Species were identified according to Cuatrecasas (1978) and by comparison with herbarium 

vouchers deposited at AAU, COL, G, MERF, NY, P, PRC, QCA, S and VEN. Seven distinct 

morphotypes of Lasiocephalus, which could not be assigned to any hitherto described species, were 

treated as separate morphospecies and referred to as Lasiocephalus sp. 1 to 7 (Table 1). GPS 

coordinates and altitude (WGS 84 system), habitat type and growth form of the plants were 

recorded at each locality. Young intact leaves were collected and quickly desiccated for DNA 

analyses using silica gel. The following plant material was sampled for flow cytometry: (i) fresh 

tissue (stems and leaves) of adult plants stored in plastic bags at 58 °C until analyses (up to 14 

days), (ii) silica-dried leaf tissue of adult plants, and (iii) achenes from which seedlings were raised. 

In addition, three samples of closely related and often sympatric Culcitium nivale were also 

collected and analyzed for comparative purposes. Herbarium vouchers are deposited in PRC, QCA, 

QCNE and VEN. 
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Table 1. – Nuclear DNA contents of 13 species and seven unidentified morphospecies of Lasiocephalus 

and the closely related Culcitium nivale. Samples analysed = no. of populations/no. of individials. 

Values are mean±SD. Vicia faba ‘Inovec’ (2C = 26.9 pg) served as an internal reference standard. In the 

Grouping columns, different letters indicate groups of taxa that are significantly  

 

Species Genome size ('fresh' dataset)   

 

Samples 

analysed 

2C-value             

(pg of DNA) 

Grouping  

Lasiocephalus campanulatus (Sch. Bip. ex Klatt) Cuatrec. – – –   

Lasiocephalus cuencanus (Hieron.) Cuatrec. – – – 
 

Lasiocephalus decipiens (Benoist) Cuatrec. 2.2 16.10±0.08 ef 
 

Lasiocephalus heterophyllus (Turcz.) Cuatrec. – – – 
 

Lasiocephalus involucratus (Kunth) Cuatrec. 5.5 15.63±0.10 def 
 

Lasiocephalus lingulatus Schltdl. – 2x 3.3 15.07±0.15 bc 
 

Lasiocephalus lingulatus Schltdl. – 3x 1.1 22.69 – 
 

Lasiocephaluslongipenicillatus(Sch.Bip.exSandw.)Cuatrec. – – – 
 

Lasiocephalus mojandensis (Hieron.) Cuatrec. – – – 
 

Lasiocephalus otophorus (Wedd.) Cuatrec. 3.3 16.10±0.47 f 
 

Lasiocephalus ovatus Schltdl. – 2x 3.3 14.99±0.04 bc 
 

Lasiocephalus ovatus Schltdl. – DNA 3x 1.1 22.45 – 
 

Lasiocephalus patens (Kunth) Cuatrec. 5.6 17.27±0.15 g 
 

Lasiocephalus pichinchensis (Cuatrec.) Cuatrec. 1.1 15.2 bcd 
 

Lasiocephalus sodiroi (Hieron.) Cuatrec. 1.1 14.58 ab 
 

Lasiocephalus L. sp. 1 (liana) 4.6 15.59±0.08 de 
 

Lasiocephalus L. sp. 2 (shrub) 1.2 17.27±0.42 g 
 

Lasiocephalus L. sp. 3 (shrubby liana) 1.1 15.70 cdef 
 

Lasiocephalus L. sp. 4 (cf. L. ledifolius (Kunth) C. Jeffrey) 2.2 13.82±0.10 a 
 

Lasiocephalus L. sp. 5 (L. involucratus-like) – – – 
 

Lasiocephalus L. sp. 6 (L. sodiroi-like) – 2x – – – 
 

Lasiocephalus L. sp. 6 (L. sodiroi-like) – DNA 3x – – – 
 

Lasiocephalus L. sp. 7 (L. sodiroi-hairy) – – – 
 

Culcitium nivale Kunth 3.3 12.35±0.10 –   
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different at α = 0.05 using Tukey’s HSD multiple comparison test. DNA-triploids were excluded from 

statistical comparison. ITS clade: CN = ‘C. nivale’ clade; F = ‘forest’ clade; P = ‘paramo’ clade. Growth 

form: BH = broad-leaved herb; L = liana; NH = narrow-leaved herb; S = shrub. Habitat type: F = 

Andean forest; G = grass paramo; SB = subparamo; SP = superparamo. 

 

Relative DNA content ('silica' dataset) ITS clade 
Growth 

form 
Habitat type 

Samples 

analysed 

Sample/ 

standard ratio 

Grouping 

   
2.2 0.667±0.000 fghi F L F 

2.4 0.705±0.013 i F L F 

1.1 0.646 cefghi – L F 

2.8 0.665±0.012 gh F L F 

9.18 0.628±0.019 ef F L SB 

6.15 0.620±0.018 de P NH G 

2.2 0.855±0.031 – P NH G 

4.7 0.661±0.021 g F NH SP 

2.6 0.617±0.026 ce – BH G 

1.1 0.671 efghi F L SB 

7.19 0.596±0.011 bc P NH SP 

3.4 0.860±0.057 – P NH SP 

4.14 0.688±0.023 hi F L F 

10.21 0.612±0.016 ce F + P NH G 

2.3 0.599±0.003 bcd P NH SP 

4.5 0.622±0.011 cef – L SB 

– – – – S SB 

1.2 0.602±0.012 bce – L SB 

4.6 0.535±0.007 a CN NH SP 

1.6 0.626±0.010 def F L SB 

1.2 0.556±0.024 ab – NH G 

1.2 0.771±0.009 – – NH G 

1.4 0.545±0.007 a – NH SP 

1.1 0.494 – CN NH SP 
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Flow cytometry 

DNA ploidy levels (Suda et al. 2006) were determined using flow cytometry and a Partec 

PA II instrument (Partec GmbH) equipped with a HBO mercury arc lamp. Genome sizes (Cand Cx-

values; Greilhuber et al. 2005) were determined using CyFlow SL instrument (Partec GmbH, 

Münster, Germany) equipped with a green solid-state laser (Cobolt Samba, 532 nm, 100 mW). 

Sample preparation generally followed the simplified two-step procedure using Otto buffers 

(Doležel et al. 2007). Briefly, intact leaf tissue of the Lasiocephalus plant to be analyzed and an 

internal reference standard (Vicia faba ‘Inovec’, 2C = 26.9 pg; Doležel et al. 1998) were mixed 

together and chopped with a sharp razor blade in a Petri dish containing 0.5 ml of ice-cold Otto I 

buffer (0.1 M citric acid, 0.5% Tween 20; Otto 1990). The suspension was filtered through a 42-μm 

nylon mesh and incubated for approx. 30 min at room temperature. The staining solution consisted 

of 1 ml of Otto II buffer (0.4 M Na2HPO4·12 H2O), β-mercaptoethanol (final concentration of 2 

μl/ml) and a fluorochrome. Propidium iodide (PI) and RNase IIA (both atfinalconcentrations of 50 

μg/ml) were used to determine the genome size in absolute values (pg of DNA) in fresh samples, 

while AT-selective DAPI (4',6-diamidino-2-phenylindole) at a final concentration of 4 μg/ml was 

used for estimating the DNA content in relative units in silica-dried samples. Samples were stained 

for 10 min at room temperature and run on the flow cytometer. Isolated nuclei were excited either 

with a laser (for PI staining) or a mercury arc lamp (for DAPI staining) and the fluorescence 

intensity of 5000 particles recorded. 

Two distinct datasets were produced and treated separately in subsequent statistical 

analyses. Firstly, relative DNA content was determined for 152 silica-dried Lasiocephalus and one 

Culcitium nivale sample (further referred to as the ‘silica’ dataset) using DAPI flow cytometry. The 

desiccated samples were not more than 18 months old when analyzed. DAPI was chosen because it 

is less sensitive to secondary metabolites and chromatin arrangement, which allowed a high-

resolution analysis even of dehydrated plant tissues (Suda & Trávníček 2006). Only histograms 

with coefficients of variation (CVs) of the G0/G1 peak of the analyzed sample below 5% were 

considered. Secondly, absolute values of genome size of a subset of 37 fresh accessions of 

Lasiocephalus and three accessions of Culcitium nivale (‘fresh’ dataset) were determined using PI 

flow cytometry. More stringent criteria for the quality of the flow analysis were applied in this 

case: (i) peaks of both the sample and the internal standard of approximately the same height, (ii) 

CV of G0/G1 peak of the analyzed sample below 4%, (iii) three replicates of each sample on 

different days to minimize potential random instrumental drift, and (iv) the between-day variation 

in fluorescence intensity below 3%; otherwise, the most extreme value was discarded and the 

sample re-analyzed. The reliability of FCM measurements (i.e. between-plant differences) was 

repeatedly confirmed by simultaneous analyses of Lasiocephalus samples with distinct genome 

sizes (Fig. 1). 
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Fig. 1. – Fluorescence histograms for Lasiocephalus samples analyzed using flow cytometry. (A) 

Simultaneous analysis of propidium iodide stained nuclei isolated from fresh tissue of L. sp. 1 (2C = 

15.59 pg, pop. no. P2) and L.patens (2C= 17.27 pg, pop. no. P12),which reveal interspecific differences 

in genome size. (B) Analysis of relative DNA content of silica gel preserved samples of L. campanulatus 

(pop. no. C1A). Isolated nuclei were stained with DAPI and fresh leaf tissue of Vicia faba was used as an 

internal reference standard. See Electronic Appendix 1 for population details. 

 

The presence of two distinct peaks in analyses of co-processed samples is considered the most 

convincing evidence for genuine differences in nuclear DNA content (Greilhuber 2005). 

To assess relationships between DAPI (AT-selective fluorochrome) and PI (intercalating 

fluorochrome without base bias) staining, a subset of thirteen fresh DNA diploid Lasiocephalus 

accessions covering the whole range of monoploid genome sizes was analyzed using both PI and 

DAPI flow cytometry concurrently. The analyses followed the above-defined stringent criteria with 

three independent replicates for each sample and each stain. 

Chromosome counts 

To confirm the FCM results, three individuals covering the whole genome size range at 

the diploid level (Table 1, Electronic Appendix 1) were subjected to conventional karyological 

counts using rapid squash methods. The apical root meristem of young seedlings was pre-treated 

with p-dichlorbenzene for 3 h, fixed in ice-cold 3 : 1 ethanol : acetic acid for 12–14 h, macerated 

for 1 min in 1 : 1 ethanol : hydrochloric acid, and stained with lacto-propionic-orcein (Dyer 1963). 

 

ITS cloning and sequencing 

Sequences of the nuclear ribosomal internal transcribed spacer (ITS) region were analyzed 

for 13 Lasiocephalus taxa (Table 1). Total genomic DNA was extracted from silicadried material 

using the Invisorb Spin Plant Mini Kit (Invitek) according to the manufacturer’s instructions. The 

ITS1-5.8S rDNA-ITS2 region of the nuclear ribosomal DNA was amplified using the primers ITS5 

(White et al. 1990) and ITS_Lasio (5’AGTCGRAGCATCGTCATGAGA-3’). PCR amplifications 

were done in 22 μl reaction containing 0.18 mM of each dNTP (Fermentas), 0.23 mM of each 

primer (Sigma), 0.5 units of JumpStart REDTaq polymerase (Sigma), 1 × PCR buffer for 

JumpStart REDTaq (Sigma) and 5 ng of genomic DNA. An initial denaturation step at 94 °C for 1 

min was followed by 35 cycles of denaturation (94 °C for 50 s), annealing (53 °C for 50 s) and 

extension (72 °C for 1 min) steps and a final extension at 72 °C for 10 min. Each sample was 
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amplified in two separate reactions. Both PCR products were mixed and purified using JETQUICK 

PCR Product Purification Spin Kit (Genomed). The purified ITS templates were ligatedto the 

pGEM-T Easy vector (Promega) following the manufacturer’s protocol but downscaled to half 

volume reactions and subsequently transformed into competent cells. After an overnight culture at 

37 °C on the LB ampicillin/IPTG/X-gal selective plates, colonies carrying the ITS insert were 

identified by colour. 10–12 colonies from each reaction were selected for colony PCR using the 

same conditions as in the first PCR reaction. PCR products were purified using JETQUICK PCR 

Product Purification Spin Kit (Genomed) and subsequently sequenced (Macrogen, lll) using the 

ITS5 primer. 

 

 

Phylogenetic and statistical analyses 

Chromatograms of the cloned sequences were inspected by eye using Finch TV sequence 

viewer. In addition, direct GenBank sequences of nine species identified as putative closest 

relatives of Lasiocephalus by Pelser et al. (2007) were included as an outgroup reference. Initial 

sequence alignment was done with ClustalW algorithm incorporated in BioEdit v5.0.6 (Hall 1999) 

and manually improved. The same program was used for further manual editing. Autapomorphies 

that were found only in one clone within the whole dataset were considered to be polymerase errors 

and discarded (Popp et al. 2005). Two sequences of a highly ribotype-variable species L. 

pichinchensis, which combined apomorphies of the two main clades (see Results), were identified 

as chimeras and therefore omitted from analyses. Sequences were submitted to GenBank 

(GU289931 – GU290036). Bayesian analysis (MrBayes v3.1.2; Huelsenbeck & Ronquist 2001, 

Ronquist & Huelsenbeck 2003) was run on the complete dataset with GTR model of nucleotide 

substitutions, gamma model of rate heterogeneity and variable proportion of invariable sites. This 

model was found in hierarchical likelihood ratio tests as the model of molecular evolution best 

fitting the data as implemented in Modeltest v3.5 (Posada & Crandall 1998). Two parallel runs with 

four chains each were used, sampling every 1000th tree for 3 million generations until 

convergence. The first 750 trees per run were discarded as burn-in and the remaining 2251 trees per 

run were summarized.  

Correlation between DAPI and PI measurements of the same accessions was examined in 

Statistica 8. Differences in nuclear DNA contents were tested using an analysis of variance 

(ANOVA) and further assessed by Tukey’s HSD multiple comparisons incorporated in the R 

software 2.9.2 (R Development Core Team 2009). The differences between growth forms and 

preferred habitat types were assessed by ANOVA with species identity considered as a factor with 

random effect (nested in the particular factor) in order to avoid pseudoreplication. The relationship 

between DNA content and altitude was tested by linear mixed-effect model (species identity treated 

as a factor with random effect) incorporated in the nlme package in R (Lindstrom & Bates1990). In 

all analyses the random effect was modelled only for the intercept, as was suggested by the 

likelihood ratio test (only non-significant improvement when a more complex model taking into 

account also the effect of the random factor for the slope was considered). 

The relationships between genome size and phylogeny were examined by testing the 

association of nuclear DNA content with the two main clades detected (i.e. the ‘páramo’ and the 

‘forest’ clade; see Results). Due to non-homogeneity of variances (indicated by highly significant 

Bartlett test: P < 0.002 in both datasets), differences in DNA content (mean values per species) 
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between clades were tested by the non-parametric Mann-Whitney test implemented in Statistica 8 

(StatSoft 2007). Species for which there was no sequence information were omitted from this kind 

of analysis. Within the ‘forest’ clade, differences in relative genome size (the ‘silica’ dataset) 

among the three main subclades (Table 1) were tested using the Kruskal-Wallis test implemented in 

Statistica 8. The relationship between DNA content and altitude was assessed separately for each of 

the two main clades (Table 1) using the same procedure as in the whole dataset (see above). 

In order to quantify the correlation between environmental factors (habitat and growth form) and 

phylogeny (split into two main clades), variation partitioning based on three-way ANOVA with 

sequential (Type I) sum of squares was done in Statistica 8. Mean DNA content values of each 

species were subjected to six three-way ANOVAs with different input sequence of factors and 

model sums of squares used as variance component measures. 

 

 

Results 

DAPI versus PI staining 

A highly linear DAPI/PI correlation was observed across the whole range of genome sizes 

of the 13 selected fresh diploid Lasiocephalus samples (the relationship was: DAPI fluorescence = 

1.126 × PI fluorescence, R2 = 0.99, P < 0.001). This indicates a constant AT/GC content within the 

genus and enables a reliable conversion and interpretation of the estimated values. 

Chromosome counts 

Karyological analyses of three putatively diploid plants with markedly different genome 

sizes [Lasiocephalus sp. 4 (cf. L. ledifolius)], pop. G18, 2C = 13.82 pg; Lasiocephalus sp. 3, pop. 

no. 11567, 2C = 15.70 pg; and shrubby Lasiocephalus sp. 2, pop. no. 11584, 2C = 17.27 pg) 

confirmed the diploid number of chromosomes (2n = 2x = 40) in all samples (Fig. 2). 

 

DNA ploidy levels 

The analysis of 37 fresh and 152 silica-dried Lasiocephalus samples revealed a large variation in 

nuclear DNA content within this genus, spanning 1.64-fold range (2C = 13.82–22.69 pg) and 1.60-

fold range (sample/Vicia ratio = 0.535–0.860), respectively (Table 1). In each dataset, two well-

defined genome size groups (separated by a distinct gap) were detected. The fluorescence values of 

the two groups differed by ~1.5-fold, indicating that DNA diploids and DNA triploids were 

involved (Table 1). DNA triploids were represented by ten samples belonging to three species (L. 

lingulatus, L. ovatus and L. sp. 6) and occurred in eight populations (~8% of all sampled 

populations). In most cases, DNA triploids grew in sympatry with more abundant diploid plants. 
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Fig. 2. – Mitotic chromosomes of Lasiocephalus sp. 3 (shrubby liana, pop. no. 11567), 2n = 40. Scale 

bar = 10 μm (photo V. Jarolímová). 

 

 

Genome size variation 

Disregarding the DNA triploids, the remaining Lasiocephalus accessions still exhibit a 

pronounced variation in genome size. Mean 2C-values of fresh accessions ranged from 13.82 pg in 

Lasiocephalus sp. 4 (cf. L. ledifolius) to 17.27 pg in shrubby Lasiocephalus sp. 2 and L. patens, 

(1.25-fold variation). The variation in silica-dried samples was 1.32-fold, with L. sp. 4 (cf. L. 

ledifolius) possessing the smallest and L. cuencanus the largest genomes (Table 1, Fig. 3). The 

closely related Culcitium nivale possessed a smaller genome than any species of Lasiocephalus 

(mean 2C = 12.35 pg; Table 1). 

In both datasets, samples with the smallest genome sizes formed a discrete group (Fig. 3). 

This group consisted of two taxa of putative hybrid origin – Lasiocephalus sp. 4 (cf. L. ledifolius) 

(a putative intergeneric hybrid between L. ovatus and Culcitium nivale) and Lasiocephalus sp. 7 (a 

putative hybrid between L. sodiroi and C. nivale). DNA content values of suspected hybrids were 

intermediate between values of their putative parents. 

A continuous variation in nuclear DNA content was observed in the remaining samples. 

Nevertheless, this variation was sorted according to the growth form and preferred habitat (Fig. 3). 

Analysis of variance supported significant differences in genome size among the different habitats 

(F3,23 = 7.16, P = 0.01 and F3,125 = 9.38, P = 0.001 for ‘fresh’  
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Fig. 3. – Variation in holoploid genome size of putatively diploid Lasiocephalus. (A) Absolute genome 

sizes (2C values) in pgDNA of35accessions of13Lasiocephalusspecies (‘fresh’ dataset, stainingwith 

propidiumiodide). (B) Relative fluorescence intensity (expressed as a ratio of the sample and the internal 

reference standard, Vicia faba) in 144 accessions of 19 Lasiocephalusspecies (‘silica’ dataset, stained 

with DAPI). Different symbols refer to different habitat types (growth forms correlate with the habitat 

types, see Table 1). Circles depict putative hybrids between Lasiocephalus spp. and Culcitium nivale. 

Note the generally increasing DNA content in species inhabiting different habitats in the sequence: 

superpáramo < grass páramo < subpáramo < Andean forest. 
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and ‘silica’ datasets, respectively) and growth forms (F2,23 = 6.23, P = 0.02 and F2,125 = 5.10, P = 

0.02 for ‘fresh’ and ‘silica’ datasets, respectively). Generally, the genome size of the Lasiocephalus 

species analyzed increased with decreasing altitude as documented by the following habitat 

sequence: 1) superpáramo plants (mean 2C = 14.53 pg, mean sample/standard ratio = 0.591), 2) 

grass páramo plants (mean 2C = 15.06 pg DNA, mean sample/standard ratio = 0.616), 3) 

subpáramo plants (mean 2C = 15.71 pg, mean sample/standard ratio = 0.626) and 4) forest plants 

(mean 2C = 16.97 pg DNA, mean sample/standard ratio = 0.681). Similarly, a progressive increase 

in DNA content was observed among different growth forms. The narrow-leaved herbaceous plants 

had the lowest mean DNA values (2C = 14.74 pg, sample/standard ratio = 0.603), followed by 

broad-leaved herbaceous plants (sample/standard ratio = 0.617), lianas (2C = 16.15 pg, 

sample/standard ratio = 0.652) and a shrub (2C = 17.27 pg). The only exception was L. 

longipenicillatus, a narrow-leaved superpáramo herbaceous plant, with a distinctly higher genome 

size than other species of the same growth form and habitat (see Fig. 3). It should, however, be 

noted that the negative correlation between genome size and altitude was statistically supported 

only by the ‘silica’ dataset (F1,124 = 7.611, P = 0.007) but not by the less representative dataset of 

fresh samples (F1,22 = 0.001, P = 0.996). 

 

 

ITS phylogeny and genome size 

Bayesian phylogenetic analysis of ITS sequences run on a subset of 13 Lasiocephalus 

species revealed two well-supported lineages (Fig. 4), referred to as ‘forest’ and ‘páramo’ clades 

because of the markedly different habitat preferences of their members. 

The ‘forest’ clade consists almost entirely of lianas inhabiting Andean forest and subpáramo 

habitats (see Table 1). The only exception was L. longipenicillatus, a superpáramo herbaceous plant 

from Venezuela. The ‘forest’ clade appears to be further subdivided into three sub-clades: (i) forest 

+ superpáramo taxa (sub-clade ‘a’ at Fig. 4), (ii) entirely forest species (sub-clade ‘b’), and (iii) 

forest + subpáramo taxa (sub-clade ‘c’). 

The ‘páramo’ clade is composed of four exclusively grass páramo and superpáramo 

narrow-leaved herbaceous plants with unresolved relationships. The closely related Culcitium 

nivale and one putatively hybrid taxon Lasiocephalus sp. 4 (cf. L. ledifolius) with similargrowth 

form and habitatpreferences, are a sistergroup to the ‘páramo’ clade. 

One species (L. pichinchensis) possessed ITS ribotypes characteristic of both major clades 

(Fig. 4); sequences were similar to L. otophorus and L. ovatus from the ‘forest’ and ‘páramo’ 

clades, respectively, and were isolated from a single cloned individual. For this reason, L. 

pichinchensis was omitted from subsequent tests of correlation between genome size and 

phylogeny. Our data do not support the monophyly of the genus Lasiocephalus sensu Cuatrecasas 

(1978) because of the polytomy at the base of the whole group, which also includes several species 

of the closely related genus Culcitium (Fig. 4). 

The two main clades differ markedly in DNA ploidy and DNA content variation. DNA 

triploids were entirely confined to the ‘páramo’ clade (polyploids accounted for 17% of all samples 

in this clade) whereas the ‘forest’ clade was ploidy-uniform. In addition, diploid species from the 

‘páramo’ clade have significantly smaller genome sizes than their ‘forest’ counterparts based on 

both the ‘fresh’ (Mann-Whitney Z = 2.121, P = 0.034; mean 2C = 14.97 and 16.43 pg, respectively) 
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and ‘silica’ datasets (Z = 2.717, P = 0.007; mean sample/standard ratio = 0.606 and 0.658, 

respectively). 

Relationships between DNA content and growth form, habitat preferences and altitudinal 

range within each of the two main clades were further analyzed in the more representative ‘silica’ 

dataset. Species occupying different habitats also differed significantly in their DNA content values 

both within the ‘forest’ clade (F2,52 = 12.681, P = 0.011) and within the ‘páramo’ clade (F1,34 = 

170.16, P = 0.048). On the other hand, C-values in the ‘forest’ clade were not associated with 

different growth forms (F1,52 = 0.013, P = 0.915); this test was not performed for the ‘páramo’ clade 

because all species were narrow-leaved herbaceous plants. The DNA content of ‘forest’ clade taxa 

increased with decrease in altitude (F1,51 = 4.342, P = 0.042) while no such association was found 

within the ‘páramo’ clade (F1,33 = 0.048, P = 0.828). In addition, a clear phylogenetic structure 

within the ‘forest’ clade was subjected to further analysis. However, only non-significant 

differences in fluorescence values among the three subclades (Fig. 4) were detected (Kruskal-

Wallis H = 0.125, P = 0.939). 

 

Relations among the explanatory variables 

Variation partitioning provided a better insight into the relations among habitat, growth 

form and phylogeny that were selected as possible explanatory variables for the intrageneric 

variation in genome size in Lasiocephalus. Strong correlations among the variables were obtained 

(Fig. 5). A large proportion of the variation was explained by a combination of all three factors 

(71% and 48% for ‘fresh’ and ‘silica’ datasets, respectively). Habitat seemed to be the single most 

important explanatory factor, although this result may be biased due to an unequal number of 

degrees of freedom for different variables (3 for habitat type versus 1 for ITS clade and 2 for 

growth form). 
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Fig. 4. – Phylogenetic analysis of ITS sequences of thirteen Lasiocephalus species and their closest 

relatives in the Senecio s.l. group.A Bayesian 50% probabilityconsensus tree of 4502trees is shown with 

posterior probabilities indicated above the branches. (A) Basal part of the tree and ‘páramo’ clade. (B) 

‘forest’ clade further divided into three subclades (designated by a, b and c letters). Mean 2C-values for 

‘forest’ and ‘páramo’ clades were 16.43pg and 14.97pg DNA, respectively. Different patterns of the 

branches indicate different habitat preferences of the respective accession/lineage. 

 

 

 

 

 

 



 

 

109 

 

Discussion 

This study aimed at addressing the role of different evolutionary forces in shaping genome 

sizein a diverse plant group. We estimatedrelative or absolute genome sizevalues in a 

representative sample set of the high-Andean genus Lasiocephalus (20 taxa, 189 samples) and 

interpreted the results in the light of the phylogenetic relationships, growth form and ecological 

preferences. 

 

DNA ploidy level variation 

Polyploidy is widely acknowledged as the key force in angiosperm evolution with recent 

or ancient genome duplication being detected in virtually all angiosperms (Soltis et al. 2009). 

Although no polyploids have previously been reported in Lasiocephalus, our FCM data provide 

clear evidence for intrageneric cytotype polymorphism. The most parsimonious explanation for the 

existence of two discrete groups of genome sizes (differing by ~1.5-fold) is the incidence of diploid 

and triploid plants. Because exact chromosome counts for putatively triploid individuals are not 

available we refer to these large-genome accessions as DNA triploids (Suda et al. 2006). 

DNA triploids are most probably of autopolyploid origin as suggested by their: (i) close 

morphological similarity with diploid individuals of the corresponding species, and (ii) regular 

sympatric growth of 2x and 3x cytotypes in the same populations. Indeed, no population for which 

several samples were analyzed was composed entirely of DNA triploids (but triploids were 

detected in two populations of L. lingulatus for which only one individual was analyzed). Most 

likely, triploids originated recurrently in each population as a result of fusion of reduced and  

 

 

 

 

Fig. 5. – Partitioning of variance in genome size of Lasiocephalus samples explained by habitat, growth 

form and phylogeny. (A) ‘fresh’ dataset, (B) ‘silica’ dataset. The numbers represent percentages of 

explained variance (which was 96% and 83% of the total variance in A and B, respectively). The relative 

importance of a particular factor or factor combination is distinguished by different shades of grey. Note 

the strong correlation of all three factors. High proportion of variance explained solely by the habitat 

may be related to the higher number of degrees of freedom for this variable. Differences in the 

percentages of explained variance between both datasets reflect unequal sample sizes. 

 



M. Lučanová – Genome size studies in plants 

110 

 

 

unreduced gametes of diploids, such as in Picris (Slovák et al. 2009) and Quercus (Dzialuk et al. 

2007). 

Interestingly, all ten DNA triploids belonged to only three narrow-leaved Lasiocephalus 

taxa, namely L. lingulatus, L. ovatus and L. sp. 6 (resembling L. sodiroi). All of them grow in the 

high-altitude grass páramo or superpáramo and are a part of the ‘páramo’ clade (Lasiocephalus sp. 

6 was not sequenced but is believed to belong to this clade because of close phenotypic similarities 

to another clade member, L. sodiroi). Genome duplication thus seems to be restricted to a small 

group of closely related taxa inhabiting the highest and most stressful environments. This pattern 

can be explained by the higher viability of polyploids in harsh conditions and/or by the higher 

frequency of unreduced gamete formation in a stressful and fluctuating climate(regular frost, high 

solar radiation, etc.; Sarmiento 1986). Relatively higher incidence of triploid plants at high altitudes 

is also recorded for instance in the Cardamine pratensis group (C. rivularis; Marhold 1994). 

 

Genome size variation at diploid level 

The three chromosome counts (2n = 40) determined in this study confirm the previous 

numbers recorded for Venezuelan Lasiocephalus longipenicillatus and Ecuadorian L. involucratus, 

L. patens and Culcitium nivale (Powell & Cuatrecasas 1970, Robinson et al. 1997). Despite quite a 

high number of somatic chromosomes, allthese counts are regarded as diploid based on x = 20. 

This number seems to be the base chromosome number also in some other representatives of the 

widely conceived genus Senecio (see also Suda et al. 2007), although some authors suggest x = 10 

(e.g. Hodálová et al. 2007 and references therein). Because the karyologically-confirmed diploid 

plants are distributed across the entire range of genome sizesthatremain after the exclusion of DNA 

triploids (Table 1), the 1.32-fold difference was interpreted as a genuine variation in monoploid 

genome size. It is likely that amplification or deletion of non-genic repetitive DNA (transposable 

elements in particular), among other mechanisms, drive this variation (Bennetzen et al. 2005, 

Cavalier-Smith 2005, Piegu et al. 2006). 

 

Genome size and homoploid hybridization 

Genome size is mostly stable at the species level, while it often shows considerable 

differences even among closely related species (Greilhuber et al. 2005, Leong-Škorničková et al. 

2007, Ekrt et al. 2009, Loureiro et al. 2010). As such, genome size can be used as a supportive 

species-specific characteristic and is also a helpful marker for investigating interspecific 

hybridization. The value of genome size data lies in the fact that both heteroploid and homoploid 

hybrids can be identified based on intermediate DNA amounts (e.g. Šiško et al. 2003, Mahelka et 

al. 2005, Yahata et al. 2006, Kron et al. 2007, but see Bureš et al. 2004). 

In this study, two different intergeneric hybrids between Lasiocephalus spp. and closely 

related Culcitium nivale were assumed on the basis of field observations and plant phenotypes. In 

both cases, FCM data confirmed our expectation. The average genome size of Lasiocephalus sp. 4 

(cf. L. ledifolius) (2C = 13.82 pg), a putative hybrid between L. ovatus (2C = 14.99 pg) and C. 

nivale (2C = 12.35 pg), closely matched the theoretical DNA amount of the F1 hybrid (13.67 pg). 

Putative crosses showed intermediate morphological characteristics with respect to the size and 

shape of leaves, type of indumentum, capitula diameter, etc. Further support for their hybrid origin 

comes from the fact that only a small number of often non-flowering individuals scattered among 



 

 

111 

 

abundant and spatially intermingled putative parents was observed at all the localities sampled. An 

analogous situation exists in a mixed population of C. nivale and another páramo species, L. 

sodiroi. The population of plants provisionally called Lasiocephalus sp. 7 (no. 11088 in Electronic 

Appendix 1) is comprised of morphologically transient individuals with fluorescence values (mean 

sample/standard ratio of 0.545) intermediate between the values of putative parents (0.494 and 

0.599, respectively). 

In contrast to the FCM results, the ITS sequences did not provide direct evidence 

supporting the hybrid origin of Lasiocephalus sp. 4 (cf. L. ledifolius). All clones isolated from two 

L. sp. 4 individuals originating from two different populations were clearly assigned to the 

Culcitium nivale lineage (most of them fell directly among the C. nivale accessions). The absence 

of L. ovatus-type ribotypes can be explained by at least two non-exclusive hypotheses: (i) the L. 

ovatus-belonging paralogues were not sampled due to either the limited number of clones (10 

clones in total) or because of biased PCR amplification (Wagner et al. 1994, Kanagawa 2003), (ii) 

concerted evolution could have homogenized the paralogues in putative hybrid accessions towards 

a C. nivale copy. Rapid homogenization of rDNA in several generations is reported for instance in 

allopolyploid Nicotiana (Kovarik et al. 2004) and Tragopogon (Kovarik et al. 2005). Ongoing 

molecular work aims to shed more light on the evolutionary history of Lasiocephalus sp. 4 (cf. L. 

ledifolius). 

 

Genome size and phylogeny 

The recent burst of phylogeny-based studies on genome size variation revealed a strong 

phylogenetic component in this trait at various taxonomic levels, from seed plants as a whole 

(Leitch et al. 2005), through family (Leitch et al. 2007) and (sub)genus (Weiss-Schneeweiss et al. 

2005, Garcia et al. 2008, Chrtek et al. 2009) up to the intraspecific level (Popp et al. 2008). Neutral 

evolution (i.e. random and passive changes in genome size) may often be as important as selective 

processes in shaping genome size (Lysak et al. 2009). 

Two main clades were identified in the Lasiocephalus accessions analyzed (Fig. 4) – one 

containing lianas from the Andean forest and subpáramo habitats (plus one superpáramo species, L. 

longipenicillatus) (‘forest’ clade) and the other exclusively grass páramo and superpáramo narrow-

leaved herbaceous plants (‘páramo’ clade). Interestingly, both clades differed significantly in 

genome size, with smaller genomes recorded in the ‘páramo’ clade. On the other hand, genome size 

in Lasiocephalus did not appear to be affected so much by phylogeny at the lower divergence 

levels as documented by the non-significant differences in genome size between the three subclades 

within the ‘forest’ clade. 

Any further considerations of the ancestral state and possible direction of genome size 

evolution in the two main clades are, however, largely obscured by a polytomy at the base of the 

whole group that involves several Culcitium species. Moreover, C. nivale appears to be more 

closely related to the Lasiocephalus ‘páramo’ clade than to other members of its own genus (Fig. 

4). Thus the data indicate that in order to re-establish the group as monophyletic C. nivale, at least, 

has to be included in Lasiocephalus. Nevertheless, at this stage of the investigation it is not possible 

to exclude that the closeness of the relationship between Lasiocephalus and C. nivale is 

overestimated due to the incidence of hybridization and introgression. In addition, only direct non-

cloned sequences of other Culcitium species were obtained from the GenBank (Pelser et al. 2007). 

As noted by Soltis et al. (2008), the use of direct ITS sequences could mislead the phylogenetic 
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inference especially in paralogue-rich groups. We also admit that the explanatory value of the 

current phylogenetic tree may be limited by the incomplete taxon sampling (only 13 out of 20 

FCM-analyzed Lasiocephalus taxa were included). On the other hand, the sequenced dataset is 

sufficiently representative. It covers the whole range of estimated genome sizes and all major types 

of growth forms and habitats (perhaps with a single exception of the broad-leaved herbaceous L. 

mojandensis). A multi-marker molecular analysis applied to a larger dataset is currently in progress 

in order to draw more robust conclusions regarding the phylogenetic relationships between 

Culcitium and Lasiocephalus. 

 

Genome size and environmental correlates 

The influence of environmental factors on genome size evolution has been debated for 

years and is still a matter of controversy. Significant correlations of genome size with various 

ecological factors (see Leitch & Bennett 2007 for a review) differ when different model systems 

are compared. For example, of the correlations of genome size with altitude for 24 genera, 

approximately one third are positive, one third negative and one third not significant (Knight et al. 

2005). Similarly, while Suda et al. (2003) report correlations between genome size and altitude, 

average annual temperature, rainfall and/or humidity in a number of Macaronesian genera, these 

relationships disappear when the sampling is more representative (Suda et al. 2005). In addition, 

rigorous studies on variation in genome size at the lowest divergence levels (within species or even 

within population) often fail to detect any link between genome size and environmental conditions 

(Šmarda et al. 2007). 

Significant correlations between genome size and growth form, habitat and altitude were 

also found in Lasiocephalus. On average, species from high-altitude harsh environments 

(superpáramo) have the smallest genomes while their counterparts from lower altitudes and more 

favourable conditions (Andean forest) have the largest genomes, which accords with the ’large 

genome constraint’ theory (Knight et al. 2005). Different growth forms are associated with 

different altitudes: narrow-leaved herbaceous plants on the superpáramo and lianas in forests. 

However, itshould be noted thatallthese variables were strongly correlated with the major 

phylogenetic split in Lasiocephalus (i.e. the division into two lineages referred to as ‘páramo’ and 

‘forest’ clades; Fig. 4, see also Fig. 5). Although we do not apriori reject that environmental factors 

may have somehow shaped the genome size, we are convinced that phylogenetic relationships were 

the key determinant of the observed divergence in genom size a tthe highest divergence levels. This 

assumption is strongly supported by the fact that the only superpáramo herbaceous plant, L. 

longipenicillatus with a large genome, was included in the ‘forest’ clade. These findings emphasize 

that for the correct interpretation of the environmental correlates of genome size it is crucially 

important to incorporate phylogenetic information into analyses (Grotkopp et al. 2004, Jakob et al. 

2004, Chase et al. 2005, Beaulieu et al. 2007, Chrtek et al. 2009). 

Environmental factors seem to be more important in shaping the genome size of 

Lasiocephalus at lower divergence levels. While the three main sub-clades within the ‘forest’ clade 

do not significantly differ from each other in terms of genome size, the variation is structured 

according to the habitat preferences of the respective species (as also reflected by the negative 

correlation between genome sizeand altitude). Even within the sub-clades, high-altitude species 

have smaller DNA C-values than their low-altitude counterparts. Similar patterns are observed, for 
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example, in the genus Hordeum where the environmental variable (length of vegetation period) is 

correlated with genome size only at the lowest taxonomic levels (Jakob et al. 2004). 

 

Conclusions 

This study is the first attempt to assess genome size variation in a radiating plant group in 

the tropics and interpret the results in the light of ecological conditions, life history traits and 

phylogeny. It indicates that the genome size in high-Andean Lasiocephalus has been shaped by 

different evolutionary processes, including polyploidy, hybridization and gradual changes at the 

molecular level. The variation in genome size at the higher divergence level primarily reflects 

phylogenetic effects, while ecological factors are more important in shaping genome size at the 

lower divergence levels. This highlights the need to always evaluate ecological and phenotypic 

correlates of genome size within a phylogenetic framework to avoid misinterpretation (e.g. 

overestimating the significance of environmental factors). We believe that this study is likely to 

stimulate further research into the promising but still largely unexplored field of tropical polyploid 

evolutionary biology and cytogeography. 

 

See http://www.preslia.cz for Electronic Appendix 1. 
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Abstract 

Genome size  has been suggested as one of the traits associated with invasiveness of plant species. 

To provide a quantitative insight into the role of this trait, we estimated nuclear DNA content in 93 

alien species naturalized in the Czech Republic, belonging to 32 families, by using flow cytometry, 

and compared it with the values reported for non-invading congeneric and confamilial species from 

the Plant DNA C-values database. Species naturalizedin the Czech Republic have significantly 

smaller genomes than their congeners not known to be naturalized or invasive in any part of the 

world. This trend is supported at the family level: alien species naturalized in the Czech flora have 

on average a smaller genome than is the mean value for non-invading confamilials. Moreover, 

naturalized and non-invading species clearly differed in the frequency of five genome size 

categories; this difference was mainly due to very small genomes prevailing and intermediate to 

very large genomes underrepresented in the former group. Our results provide the first quantitative 

support for association of genome size with invasiveness, based on a large set of alien species 

across a number of plant families. However, there was no difference in the genome size of invasive 

species compared to naturalized but non-invasive. This suggests that small genome size provides 

alien plants with an advantage already at the stage of naturalization and need not be necessarily 

associated with the final stage of the process, i.e. invasion. 

 

Keywords: alien plants, confamilials, congeners, C-value, flow cytometry, genome size, invasive 

species, large genome constraint hypothesis, nuclear DNA content, plant invasions 

 

 

Introduction 

The numbers of invasive species in various parts of the world continue to increase, 

representing a serious threat to biodiversity worldwide (e.g. Meyerson & Mooney 2007, Blackburn 

et al. 2009, Hulme et al. 2009b, McGeoch et al. 2010). As a result, biological invasions have been 

receiving serious attention from both scientists and practitioners and research in invasive plant and 

animal species has been increasing exponentially (e.g. Crall et al. 2006, Pyšek et al. 2006, 2008, 

Lambdon et al. 2008, Ricciardi & MacIsaac 2008, Chytrý et al. 2009, DAISIE 2009, Davis 2009). 
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The knowledge of ecological impacts on native biodiversity and ecosystem functioning improved 

dramatically in the last decade (e.g. Levine et al. 2003, Gaertner et al. 2009, Hejda et al. 2009a, 

Nentwig et al. 2010, Vilà et al. 2010), and it is now widely recognized that invasive species incur 

serious economic costs (Binimelis et al. 2007, Kettunen et al. 2009, Vilà et al. 2010). The 

awareness of the magnitude of problem is stimulating not only management efforts (Keller et al. 

2007, Richardson et al. 2007, Hulme et al. 2008, 2009a, Simberloff 2009, McGeoch et al. 2010), 

but also research aimed at deeper understanding of underlying processes and determinants of 

naturalization and invasiveness (e.g. Pyšek et al. 2008, 2009a, Blackburn et al. 2009, Davis 2009, 

Essl et al. 2009, Štajerová et al. 2009). Within this research realm, an effort to identify biological 

and ecological traits conferring invasiveness is as well established as the field of invasion biology 

itself (see Pyšek & Richardson 2007 for a review). Recent developments, including the 

development of new technologies (Richardson & Pyšek 2008), in particular molecular techniques, 

now make it possible to include traits that were until not long ago impossible to consider in 

multispecies studies focusing on determinants of invasiveness (Pyšek & Richardson 2007). The 

amount of nuclear DNA (genome size) is one of the traits for which knowledge has improved 

dramatically in the last decade, largely due to the advent and spread of flow cytometry (Kron et al. 

2007, Ekrt et al. 2009). 

Genome size is a fundamental biological parameter involved in the scaling of both plants 

and animals (Gregory 2005). DNA is known to play not only a qualitative (i.e. genic) role but also 

a quantitative one because of its direct and sequence-independent influence on cellular (and by 

extension, organismal) characteristics. Correlations between genome sizeand plant traitsare many 

and range from nuclear and cellvolumes through the duration of cell cycle (both meiotic and 

mitotic) up to seed size and specific leaf area (reviewed by Leitch & Bennett 2007, see also 

Loureiro et al. 2010). Through concomitant changes in cellular parameters, genome size affects 

several aspects of a plant’s development. Minimum generation time (i.e. time to flowering) and life 

history (i.e. whether ephemeral, annual or perennial) are illustrative examples of developmental 

traits constrained by the amount of nuclear DNA. On average, ephemerals (plants completing their 

life cycle in less then seven weeks) have been shown to possess the smallest genomes, followed by 

annuals, whereas obligate herbaceous perennials have the highest DNA amounts (Bennett 1972). 

Whereas species with small genomes can display any developmental life history, their large-

genome counterparts are restricted to an obligate perennial life history. Large genomes also impose 

constraints on ecologicalbehaviour, influencing where a plant may grow and its chances of survival 

in a changing world (Knight et al. 2005, Vidic et al. 2009). In addition, traits associated with 

genome size (seed size and mass, and the rate of developmental processes in particular) may co-

determine the life strategy adopted by the plant (i.e. whether competitor, stress tolerator or ruderal). 

In their study on 156 weedy angiosperm species, Bennett et al. (1998) showed that the probability 

of being recognized as a weed decreases with increasing genome size. 

On the same conceptual basis, small genomes have been suggested as a prerequisite for 

plant invasiveness because species with low nuclear DNA content usually produce many light seeds 

and their establishment is fast (Rejmánek 1996). In addition, invasions typically occur in disturbed 

habitats (Davis et al. 2000, Chytrý et al. 2005, 2008) and small genomes have been shown to 

represent an evolutionary advantage in time-limitedenvironments (Bennett 1987). In his “theory of 

seed plant invasiveness”, Rejmánek listed a low amount of nuclear DNA among the most important 

factors contributing to the invasiveness of seed plants (Rejmánek 1996, 2000, Rejmánek et al. 

2005). Experimental support for this conclusion comes mainly from comprehensive studies on 

genome size variation in the genus Pinus (Wakamiya et al. 1993, Grotkopp et al. 2002, 2004). 
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Invasiveness of pines, particularly of wind-dispersed species, was shown to be negatively 

associated with both genome size and seed mass (Grotkopp et al. 2002). Smaller genomes in 

invasive species as compared to their non-invasive congeners have also been found in some other 

genera such as Senecio (Lawrence 1985) or Acacia (Mukherjee & Sharma 1990), although the 

number of analyzed invasive species was usually quite low. In addition, a negative relationship was 

observed between the genome size of three Briza species and the invaded area (Rejmánek 1996). 

Despite the pieces of evidence mentioned above for the role of genome size in plant 

invasions, a systematic study aimed at comparing genome sizes in invasive plant species and their 

non-invasive counterparts across different taxonomic groups is still lacking. To fill this gap, we 

determined nuclear DNA amounts in a representative set of alien species occurring in the Czech 

Republic and compared their genome size values with those of non-invasive congeners and 

confamilials. Specifically, we addressed the following questions: (i) What is the distribution of 

holoploid genome sizes in alien species and how it differs from the general pattern found in 

angiosperms? (ii) Which factors affect the genome size of alien species? Is genome size related to 

the invasion status? (iii) Do alien species differ in genome size from their non-invasive congeners 

and confamilials? 

 

 

Material and methods 

Analyzed species 

The species set included 93 neophytes (alien species introduced after 1500 A.D.; see 

Pyšek et al. 2002, 2004) occurring in the flora of the Czech Republic. They belonged to 70 genera 

and 32 families according to the Angiosperm phylogeny group classification (Stevens 2001). Seeds 

were collected in the field during 2005–2007 (see Electronic Appendix 1). Seedlings were 

germinated in a growth chamber and cultivated in the experimental garden of the Institute of 

Botany, Academy of Sciences, Průhonice, Czech Republic(49°59'30''N, 14°34'00''E, ca 320 m 

a.s.l.). Fresh young leaftissuewas used for genome size estimation. Herbarium vouchers are kept at 

PRA. 

Species’ invasion status in the Czech Republic (casual; naturalized; invasive) was taken 

from Pyšek et al. (2002). The vast majority of species were naturalized, only three (Ambrosia 

trifida, Bidens connata and Panicum miliaceum) were casual; for the sake of simplicity, all the 

species analyzed are further referred to as ‘naturalized’. Of these naturalized species, 41 were 

invasive and 49 naturalized but not invasive (sensu Richardson et al. 2000, Pyšek et al. 2004). Each 

species was further characterized (see Table 1) by its life history (annual; monocarpic perennial; 

polycarpic perennial) and moisture score. The moisture score was calculated by using data from 

Hejda et al. (2009b); this paper and associated database give, for species alien to the Czech 

Republic, information on habitats in which they occur in their native range. These habitats were 

classified using a 5-degree ordinal scale (1-dry, 3-mesic, 5-humid, with 2 and 4 representing 

transitions) and average value was used as the moisture score. Of our species set, habitat data for 58 

species were available in Hejda etal. 

(2009b);forremainingspeciesweusedtheaverageEllenberg’sindicator value for moisture (Ellenberg 

et al. 1992), transformed to a 5-degree scale as follows: 1–3=1, 4=2, 5=3, 6–7=4, 7–9=5 

 

Genome size estimation 
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Holoploid genome sizes (C-values sensu Greilhuber et al. 2005) were determined using 

propidium iodide flow cytometry following the simplified two-step protocol as described by 

Doležel et al. (2007). Briefly, young intact leaf tissue of the analyzed plant was chopped together 

with an appropriate internal reference standard in 0.5 ml of ice-cold Otto I buffer (0.1 M citric acid, 

0.5% Tween 20; Otto 1990). The sample was filtered through 42-μm nylon mesh, and incubated 10 

min at room temperature. The staining solution consisted of 1 ml of Otto II buffer (0.4 M Na2HPO4 

·12H2O) supplemented with propidium iodide and RNase IIA (both at final concentrations of 50 

μg/ml) and β-mercaptoethanol (2 μl/ml). The fluorescence intensity of isolated nuclei (5000 

particles) was recorded using Partec CyFlow SL cytometer equipped with a diode-pumped solid 

state laser 532 nm (Cobolt Samba, 100 mW output power). Each sample was analyzed at least three 

times on different days;only analyses with a between-day fluctuation below 3% were considered. 

The following species were used as internal reference standards (Doležel et al. 2007): 

Solanum lycopersicum 'Stupické polní rané' (2C = 1.90 pg), Glycine max 'Polanka' (2C = 2.30 pg), 

Bellisperennis (2C = 3.46 pg), Zea mays 'CE-777' (2C = 5.47 pg), Pisum sativum 'Ctirad' (2C = 

8.76 pg) and Vicia faba 'Inovec' (2C = 26.92 pg). Pisum sativum 'Ctirad' (Doležel et al. 1998) 

served as a primary reference standard, with 2C-value of 8.76 pg as recommended by Greilhuber et 

al. (2007). Genome sizes of other reference species were calibrated against Pisum, based on three 

measurements on different days. For each analyzed plant, internal standard was selected so that its 

genome size was close to but not overlapping with that of the analyzed sample. 

Ploidy levels of analyzed naturalized plants were inferred from chromosome numbers 

taken from various karyological databases and flora handbooks, including Goldblatt & Johnson 

(1979), Marhold et al. (2007), Flora of the Czech Republic (Hejný & Slavík 1988–1992, Slavík 

1995–2000, Slavík & Štěpánková 2004), the database of the flora of the Czech Republic 

(CzechFlor) and the internal karyological database of plants of the Czech Republic (both held at the 

Institute of Botany AS CR, Průhonice). Monoploid genome sizes (1Cx-values) were calculated as 

2C-values / ploidy level. 

 

Reference genome size data 

To compare the genome size of naturalized alien plants in the Czech flora with non-

invasive species, 2C-values and ploidy levels for plants from corresponding genera and families 

that are not reported to be naturalized or invasive were extracted from the Plant DNA C-values 

database (Bennett & Leitch 2005). Species in this reference data set are referred to as ‘non-

invading’ to reflect not only that they are not invasive (in the sense of Richardson et al. 2000) but 

neither naturalized, i.e. they do not successfully enter the invasion process. The selection of non-

invading congeners and confamilials was made by omitting from the Plant DNA C-values database 

any species reported as naturalized or invasive in any part of the world, based on the updated 

database of Weber (2003) and other sources. In some cases, the ploidy level taken from the Plant 

DNA C-values database was corrected so that the basic chromosome number (x) was the same for 

both naturalized species and their non-invading congeners. Reference genome size data were 

available for 45 congeneric and 31 confamilial non-invading counterparts. 

 

Statistical analysis 
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Comparison of genome size categories between naturalized plants of the Czech flora and 

non-invading species taken from the Plant DNA C-values database was done by G-test on a 

contingency table (e.g. Crawley 2002, p. 548–550). 

The effect of invasion status (41 invasive vs 51 non-invasive species, the latter including 

48 naturalized and three casual; Oxybaphus nyctagineus was excluded because of nonavailable 

moisture data), life history and moisture score on 2C-values was analyzed by general linear model. 

The most parsimonious model was selectedby a stepwise procedure, beginning with the maximal 

model (containing all predictors and all their possible interactions) and proceeding by the 

elimination of non-significant terms, using deletion tests. This was done by an automatic step-wise 

process of model simplification of deviance tables, based on Akaike Information Criterion (AIC) 

(program Spotfire S-Plus v. 8.1, TIBCO Software Inc. 2008; e.g. Crawley 2002). Observed power 

of the chosen model (e.g. Steidel& Thomas 2001) was computed for α = 0.05 in SPSS v. 18 (SPSS 

Inc. 2010). 

Paired t-tests (Sokal & Rohlf 1995) were used for comparisons of 2C- and Cx-values of 

naturalized aliens with corresponding mean values of their non-invading congeners, and of mean 

2C-values of naturalized aliens with corresponding mean values of their noninvading confamilials. 

All 2C-values were ln-transformed to normalize the data, and then checked for homogeneity of 

variance. The general linear model was checked by plotting standardized residuals against fitted 

values, and by normal probability plots (Crawley 1993). 

 

 

Results 

Genome size variation in naturalized alien species 

Flow cytometric analyses yielded histograms with mean coefficients of variation (CVs) of 

3.18% and 2.50% for the sample and internal reference standard, respectively (Fig. 1). 

Genome size values were determined in one APG family (Phrymaceae) and 66 species for 

the first time (Table 1). 1C-values of analyzed plants varied from 0.24 pg in Sisymbrium loeselii to 

15.27 pg in Rudbeckia laciniata, spanning ~64-fold range. The majority of naturalized species 

possessed low nuclear DNA amounts, with mean 1C-value of 1.93 pg and median of 1.17 pg. The 

distribution of genome sizes was highly skewed (Fig. 2). The most common were plants with 1C-

values between 0.4 and 0.6 pg; other classes were much less frequent, and only four species had 

1C-values above 4.4 pg. The same pattern was obtained when the species analyzed were attributed 

to five genome size categories as defined by Leitch et al. (1998). Very small genomes (1C ≤ 1.4 pg) 

were represented by 49 species, small genomes (1.4 pg < 1C ≤ 3.5 pg) by 36 species, intermediate 

genomes (3.5 pg < 1C ≤ 14.0 pg) by seven species, and large genomes (14.0 pg < 1C ≤ 35.0 pg) by 

one species. Plants with very large genomes (1C > 35 pg) were not present in our species set. 

Compared to non-invading species (Table 2), naturalized species had more often very small and 

small 
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Relative fluorescence 

 

Fig. 1. – Flow cytometric histograms showing genomesize determinationin species with very small 

(Sisymbrium altissimum, 2C = 0.52 pg; panel A) and large (Helianthus tuberosus, 2C = 23.89 pg; panel B) 

genomes. Nuclei of both the analyzed sample and internal reference standard were isolated, stained with 

propidium iodide and analyzed simultaneously. Solanum lycopersicum and Vicia faba, respectively, were used 

as reference standards. 

 

genomes, and less often intermediate to very large genomes than expected by chance (G-test on 

contingency table: 2 = 61.15, df = 2, P < 0.0001). 

Ploidy levels in the species set analyzed varied from diploid to dodecaploid (Table 1), and 

monoploid genome sizes (1Cx-values) ranged from 0.12 pg in 8x Juncus tenuis to 4.38 in 2x Virga 

strigosa (= 38-fold range). 

 

Factors affecting genome size of naturalized alien species 

None of the examined explanatory variables (invasion status, life history, moisture score) 

had a significant effect on genome size (full model: F = 1.141; df = 11, 80; NS; observed power = 

0.486). 
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1C-value (pg DNA) 

Fig. 2. – Distribution of 1C-values (pg means) in 93 naturalized alien species occurring in the Czech 

Republic. 

 

 

Table 2. – Contingency table on observed and expected counts of genome size categories according to 

Leitch et al. (1998) in naturalized plants of the Czech flora (n = 93) and non-invading species (n = 4148) 

taken from the Plant DNA C-values database (Bennett & Leitch 2005). Genome size categories 

“intermediate”, “large” and “very large” were pooled together due to small sample sizes in these 

categories for naturalized species. Statistics are given in the text. 

 

Genome size category                                                   Naturalized species   Non-invading species 

 
observed expected 

 
observed expected 

Very small (1C ≤ 1.40 pg) 49 30.0   1287 1306.7 

Small (1C = 1.41–3.50 pg) 36 22.1 
 

958 972.2 

Intermediate to very large (1C ≥ 3.51 pg) 8 40.9   1903 1869.1 

 

 

Genome size in naturalized alien species vs their non-invading relatives 

Naturalized aliens had significantly smaller holoploid and monoploid genome sizes than 

their non-invading congeners (two-sided paired t-tests: 2C-values t = 2.161, df = 45, P = 0.04; Cx-

values t = 2.70, df = 44, P = 0.01), and the same held for 2C-values on confamilials(t = 3.161, df = 

30, P = 0.004). Visual inspection of data indicatesthat naturalized aliens had smaller genomes in 19 

of 31 families considered (Fig. 3). 
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Table 1. – List of analyzed species, with their family affiliation, life history, LH (an – annual; mono – 

monocarpic perennial; per – polycarpic perennial), invasion status, moisture score (see Methods for 

calculation) and genome size characteristics: mean holoploid genome sizes (2C-values with standard 

deviation, and 1C-values in picograms of DNA and megabase pairs; 1 pg = 978 Mbp), ploidy levels, 

monoploid genome sizes (1Cx-values), and internal reference standard used (B – Bellis perennis; G – 

Glycine max; P – Pisum sativum; S – Solanum lycopersicum; V – Vicia faba; Z – Zea mays). Invasion 

status was taken from Pyšek et al. (2002); species marked with asterisk are classified differently to better 

reflect situation in sampled localities. Species analyzed for the first time are shown in bold; those used 

for comparison with non-invading congeners are designated by “+” after species name. Empty cells – 

data not available. 

 

Species  and family Life 
history 

Invasion 
status 

Moisture 2C-

value 
S.D. 1C-value  

1C-

value 
Ploidy 

1Cx-

value  

Int. 

st. 

score (pgDNA)   (pgDNA) (Mbp) level (pgDNA)   

Abutilon theophrasti         
Malvaceae 

an nat.* 4.0 2.17 0.02 1.9 1061.1 6 0.36 B 

Amaranthus albus + 

Amaranthaceae 
an nat. 2.0 1.11 0.00 0.55 540.8 4 0.28 S 

Amaranthus blitoides + 
Amaranthaceae 

an nat. 2.3 1.13 0.00 0.56 552.1 4 0.28 G 

Amaranthus powellii + 

Amaranthaceae 
an invasive 4.0 1.2 0.00 0.51 496.8 4 0.25 B 

Amaranthus retroflexus + 
Amaranthaceae 

an invasive 2.2 1.12 0.01 0.56 546.2 4 0.28 S 

Ambrosia artemisiifolia    

Asteraceae 
an invasive 3.0 2.32 0.03 1.16 1134.5 4 0.58 B 

Ambrosia trifida               
Asteraceae 

an casual 3.7 3.82 0.03 1.91 1865.5 2 1.91 P 

Angelica archangelica        

Apiaceae 
mono invasive 5.0 6.46 0.10 3.23 3158.0 2 3.23 P 

Antirrhinum majus     
Plantaginaceae 

mono nat. 1.0 1.17 0.01 0.58 570.7 2 0.58 S 

Arabis alpina                

Brassicaceae 
per nat. 2.0 0.83 0.02 0.42 406.8 2 0.42 S 

Asclepias syriaca           
Apocynaceae 

per nat. 3.0 0.84 0.03 0.42 409.8 2 0.42 S 

Aster lanceolatus +            

Asteraceae 
per invasive 4.0 5.41 0.01 2.71 2647.0 8 0.68 P 

Bidens connata                 
Asteraceae 

an casual 5.0 6.44 0.06 3.22 3150.6 4 1.61 Z 

Bidens frondosa                

Asteraceae 
an invasive 5.0 3.20 0.02 1.60 1566.3 4 0.80 P 

Bunias orientalis +         

Brassicaceae 
mono invasive 2.1 5.40 0.02 2.70 2641.6 2 2.70 P 

Cannabis ruderalis +    

Cannabaceae 
an nat.* 2.5 1.81 0.01 0.91 885.1 2 0.91 S 

Cardamine chelidonia + 
Brassicaceae 

mono nat. 3.0 0.71 0.00 0.36 349.1 4 0.18 S 

Claytonia alsinoides    

Portulacaceae 
an nat. 4.0 6.91 0.05 3.45 3377.0 

  
P 
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Collomia grandiflora 

Polemoniaceae 
an nat. 3.0 4.15 0.04 2.8 2030.3 2 2.8 B 

Consolida orientalis 

Ranunculaceae 
an nat. 2.4 4.57 0.04 2.28 2233.3 2 2.28 P 

Conyza canadensis           

Asteraceae 
an invasive 1.8 0.91 0.01 0.45 443.5 2 0.45 S 

Corydalis lutea             

Papaveraceae 
per nat. 1.0 1.26 0.01 0.63 616.1 4 0.32 S 

Cuscuta campestris    

Convolvulaceae 
an invasive 3.0 0.96 0.00 0.48 469.4 8 0.12 S 

Datura stramonium +      

Solanaceae 
an nat. 2.0 4.19 0.05 2.9 2047.4 2 2.9 Z 

Digitalis purpurea     

Plantaginaceae 
mono invasive 2.4 1.86 0.01 0.93 910.0 8 0.23 G 

Duchesnea indica               

Rosaceae 
per nat. 3.0 3.45 0.01 1.72 1686.6 12 0.29 P 

Echinocystis lobata      

Cucurbitaceae 
an invasive 3.0 1.49 0.01 0.74 727.6 4 0.37 S 

Echinops 

sphaerocephalus 

Asteraceae 

per invasive 2.5 8.2 0.11 4.1 3923.7 4 2.1 Z 

Epilobium ciliatum +      

Onagraceae 
per invasive 4.0 0.82 0.03 0.41 401.0 4 0.21 S 

Epilobium dodonaei + 
Onagraceae 

per nat. 5.0 1.17 0.01 0.59 573.1 4 0.29 S 

Erigeron annuus               

Asteraceae 
mono invasive 2.0 4.33 0.05 2.17 2118.8 3 1.44 Z 

Erucastrum gallicum      
Brassicaceae 

mono nat. 2.0 2.8 0.01 1.4 1018.6 4 0.52 B 

Galega officinalis               

Fabaceae 
per nat. 3.0 4.42 0.04 2.21 2161.4 2 2.21 G 

Galinsoga parviflora        
Asteraceae 

an invasive 3.0 1.47 0.01 0.74 720.3 4 1.1 S 

Galinsoga quadriradiata 

Asteraceae 
an invasive 2.0 4.3 0.04 2.2 1972.6 2 0.74 Z 

Geranium pyrenaicum 
Geraniaceae 

per invasive 3.0 2.87 0.02 1.44 1403.9 2 1.44 G 

Helianthus tuberosus +      

Asteraceae 
per invasive 4.0 23.89 0.09 11.95 11682.7 12 1.99 V 

Heracleum 

mantegazzianum + 

Apiaceae 

mono invasive 3.0 3.56 0.03 1.78 1740.8 2 1.78 Z 

Hesperis matronalis       

Brassicaceae 
per nat. 3.4 7.61 0.07 3.80 3719.3 4 1.90 P 

Hordeum jubatum +            

Poaceae 
an nat. 2.0 17.38 0.09 8.69 8499.8 4 4.35 P 

Chenopodium pumilio + 

Amaranthaceae 
an nat. 1.0 0.73 0.02 0.37 357.0 2 0.37 P 

Chenopodium strictum + 

Amaranthaceae 
an nat. 3.1 1.60 0.01 0.80 782.4 4 0.40 P 

Impatiens glandulifera + 

Balsaminaceae 
an invasive 3.3 1.90 0.01 0.95 927.6 2 0.95 B 
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Impatiens parviflora + 

Balsaminaceae 
an invasive 3.0 4.26 0.04 2.13 2083.6 2 2.13 Z 

Imperatoria ostruthium       
Apiaceae 

per invasive 3.0 3.89 0.08 1.95 1904.2 2 1.95 P 

Inula helenium +             

Asteraceae 
mono nat. 3.0 4.53 0.01 2.26 2214.2 2 2.26 P 

Iva xanthiifolia                  
Asteraceae 

an nat. 2.0 6.34 0.07 3.17 3098.8 4 1.58 Z 

Juncus tenuis +                 

Juncaceae 
per invasive 3.0 0.92 0.01 0.46 450.9 8 0.12 S 

Kochia scoparia        
Amaranthaceae an 

an invasive 2.3 2.23 0.01 1.12 1090.5 2 1.12 G 

Lepidium densiflorum + 

Brassicaceae mono 
mono nat. 2.0 0.66 0.03 0.33 322.7 4 0.17 S 

Lupinus polyphyllus +          
Fabaceae 

per invasive 3.0 1.60 0.02 0.80 783.4 4 0.40 S 

Lychnis coronaria    

Caryophyllaceae 
mono nat. 2.0 6.30 0.17 3.15 3078.7 2 3.15 Z 

Lysimachia punctata      
Primulaceae 

per nat. 5.0 4.43 0.02 2.21 2165.8 2 2.21 P 

Matricaria discoidea +      

Asteraceae 
an invasive 3.0 4.70 0.01 2.35 2298.3 2 2.35 B 

Medicago sativa +                
Fabaceae 

per nat.* 3.0 3.49 0.03 1.74 1706.1 4 0.87 S 

Mimulus guttatus           

Phrymaceae 
per invasive 5.0 0.73 0.03 0.37 357.0 4 0.18 S 

Myrrhis odorata                   
Apiaceae 

per invasive 5.0 1.81 0.01 0.90 883.1 2 0.90 G 

Oenothera biennis +         

Onagraceae 
mono invasive 2.0 2.30 0.02 1.15 1124.7 2 1.15 S 

Oenothera glazoviana + 
Onagraceae 

mono nat. 3.0 2.30 0.01 1.15 1122.7 2 1.15 S 

Oxalis corniculata subsp. 

repens +         Oxalidaceae 
mono nat.* 2.0 2.11 0.02 1.5 1031.3 8 0.26 S 

Oxalis dillenii +              

Oxalidaceae 
mono nat. 2.0 1.1 0.01 0.50 491.9 4 0.25 G 

Oxalis fontana +             

Oxalidaceae 
mono nat. 3.0 1.22 0.01 0.61 594.1 4 0.30 G 

Oxybaphus nyctagineus 

Nyctaginaceae 
per nat. 

 
1.89 0.01 0.95 924.2 6 0.32 B 

Panicum capillare +             

Poaceae 
an nat. 2.0 0.91 0.01 0.45 443.5 2 0.45 B 

Panicum miliaceum +          

Poaceae 
an casual 4.3 2.9 0.04 1.4 1020.5 4 0.52 B 

Phytolacca esculenta + 

Phytolaccaceae 
per nat. 3.0 5.68 0.10 2.84 2778.5 8 0.71 P 

Potentila intermedia +         

Rosaceae 
mono nat. 1.0 1.80 0.01 0.90 880.2 4 0.45 S 

Rudbeckia hirta                

Asteraceae 
per nat. 2.6 14.33 0.09 7.17 7008.3 4 3.58 P 

Rudbeckia laciniata           

Asteraceae 
per invasive 4.0 30.54 0.12 15.27 14935.5 8 3.82 P 
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Rumex alpinus +         

Polygonaceae 
per invasive 3.0 0.96 0.01 0.48 467.0 2 0.48 S 

Rumex longifolius +     

Polygonaceae 
per invasive 2.0 3.99 0.07 2.00 1951.6 6 0.67 B 

Rumex patientia +        

Polygonaceae 
per nat. 2.0 4.87 0.02 2.43 2380.5 6 0.81 Z 

Rumex thyrsiflorus +     

Polygonaceae 
per invasive 1.0 7.81 0.05 3.90 3817.1 2 3.90 P 

Scutellaria altissima         

Lamiaceae 
per nat. 2.0 0.79 0.03 0.40 386.3 4 0.20 S 

Sedum hispanicum       

Crassulaceae 
per invasive 1.0 5.39 0.04 2.70 2636.2 

  
S 

Sedum rupestre             

Crassulaceae 
per nat. 3.0 5.41 0.09 2.70 2643.0 4 1.35 P 

Sedum spurium +          

Crassulaceae 
per nat. 1.0 4.16 0.03 2.8 2034.2 2 2.8 P 

Senecio inaequidens +      

Asteraceae 
per nat.* 3.0 2.90 0.01 1.45 1419.6 4 0.73 B 

Senecio vernalis +            

Asteraceae 
an nat. 1.7 2.33 0.01 1.16 1138.4 2 1.16 B 

Setaria faberi +                     

Poaceae 
an nat. 3.0 2.56 0.02 1.28 1253.8 4 0.64 B 

Silene dichotoma + 

Caryophyllaceae 
mono nat. 3.0 5.89 0.02 2.94 2878.7 2 2.94 P 

Sisymbrium altissimum 

Brassicaceae 
an nat. 2.3 0.52 0.00 0.26 255.7 2 0.26 S 

Sisymbrium loeselii       

Brassicaceae 
an invasive 3.5 0.48 0.00 0.24 233.3 2 0.24 S 

Sisymbrium strictissimum 

Brassicaceae  
per nat. 4.0 1.39 0.01 0.70 680.2 4 0.35 S 

Smyrnium perfoliatum        

Apiaceae 
mono nat. 3.0 5.64 0.05 2.82 2758.0 2 2.82 P 

Solidago canadensis         

Asteraceae 
per invasive 3.0 2.4 0.01 1.2 999.5 2 1.2 G 

Solidago gigantea             

Asteraceae 
per invasive 4.0 3.65 0.03 1.82 1782.9 4 0.91 Z 

Telekia speciosa                  

Asteraceae  
per invasive 3.0 2.57 0.01 1.29 1258.2 2 1.29 S 

Trifolium hybridum +        

Fabaceaea 
mono invasive 2.0 1.9 0.01 0.54 532.0 2 0.54 S 

Veronica persica +     

Plantaginaceae 
an invasive 4.0 1.38 0.01 0.69 672.9 4 0.34 S 

Vicia grandiflora +              

Fabaceae 
an nat. 3.0 6.23 0.07 3.11 3046.0 2 3.11 P 

Virga strigosa                

Dipsacaceae 
mono invasive 3.0 8.76 0.05 4.38 4283.2 2 4.38 Z 

Xanthium albinum           

Asteraceae 
an nat. 5.0 5.18 0.09 2.59 2531.6 4 1.29 P 
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Fig. 3. – Comparison of median genome sizes (1C-values) of naturalized aliens with those of their non-invading 

confamilials in 31 plant families. Genome sizes for non-invading species were taken from the Plant DNA C-values database 

(Bennet & Leitch 2005), those known to be naturalized or invasive in any part of the world were excluded. Plant families 

are sorted according to the genome size of non-invading species. Numbers of species (non-invading/naturalized) are shown 

in parentheses. 

 

 

Discussion 

Genome size variation 

We determined nuclear DNA amounts in a representative setof naturalized plant speciesin 

the flora of the Czech Republic and compared their values with genome sizes of noninvading 

species taken from the Plant DNA C-values database (Bennett & Leitch 2005). Out of 93 

naturalized species included, 66 (= 71%) were analyzed for the first time. In addition, the first 

record was obtained for the family Phrymaceae, which had a very small genome (Mimulus 

guttatus; 1C = 0.37 pg). 

A comparison of genome size values for the same species as determined in our study with 

those extracted from the database (Bennett & Leitch 2005) revealed some discrepancies. 

Disregarding variation caused by potential differences in ploidy level, the average absolute 

difference in C-values was 28%. While about one third of the species (nine out of 26) showed 

differences below 10% (which is within the acceptable between-laboratory limit as suggested by 

Doležel et al. 1998), four species differed more than 1.5-fold (Amaranthus retroflexus, Solidago 

canadensis, Galinsoga parviflora and Antirrhinum majus). It should, however, be noted that the 

difference largely depended on the methodology used. The best congruency between our data and 

the database values was observed for measurements performed using propidium iodide flow 

cytometry (absolute difference < 10%, n = 4), which is generally recommended as the most reliable 

technique for genome size estimation in plants (Greilhuber et al. 2007, Temsch et al. 2010). Species  
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analyzed either by Feulgen densitometry (which is much more sensitive to working conditions; 

Greilhuber 2005) or flow cytometry with base-selective fluorochromes (Doležel et al. 1992) 

showed higher differences (30%, n = 21 and 54%, n = 1, respectively). Whereas small differences 

in determined genome sizes can be explained by minor variation in adopted protocols between 

laboratories (use of different buffers, different internal reference standards, etc.), it is possible that 

more serious methodological flaws were involved in other cases and such data should be treated 

with caution. 

Very small and small genomes (in the sense of the classification of genome sizes defined 

by Leitch et al. 1998) clearly prevailed in our data set, accounting for 53 and 39% of the species 

total, respectively. This is a dramatically different frequency of individual genome size categories 

as compared to non-invading species (Table 2). For example, while intermediate genomes (1C = 

3.51–14.0 pg) are as common as the very small ones (1C ≤ 1.4 pg) in non-invading plants, their 

ratio drops down to only one seventh of the frequency of very small genomes in naturalized aliens. 

Significantly smaller genomes in naturalized plants as compared to their phylogenetically related 

non-invading counterparts were also confirmed at both taxonomic levels tested, i.e., the rank of 

genus and family. The same pattern of genome size variation as in naturalized plants (i.e. 

predominance of species with low nuclear DNA amounts and the lack of DNA-obese species) was 

observed, for instance, in weedy plants (Bennett et al. 1998) or in endemics on oceanic islands 

(Suda et al. 2005). Selection for rapid development, fast growth, and production of many light and 

easily dispersible seeds are plausible evolutionary forces that constrain the genome size in these 

plant groups. 

The presence of species with different life histories allowed us to test the potential 

association between genome size and life history (Bennett 1972). Although basic descriptive 

statistics for 36 polycarpic perennial plants (mean and median 1C-values 2.44 pg and 1.73 pg, 

respectively) somehow differed from corresponding values for both 36 annuals (mean = 1.58 pg, 

median = 1.10 pg) and 21 monocarpic species (mean = 1.65 pg, median = 1.15 pg), the differences 

were not statistically significant. 

 

Relationship between genome size and invasion success 

By using the data set analyzed in this study, we were unable to detect the effect of any 

species traits examined on the genome size. However, it should be noted that the low test power of 

the model does not allow us to conclude that such effects do not exist. The analysis was carried out 

with individual species as random independent data points. This can inflate degrees of freedom, 

because the species can be mutually dependent due to their phylogenetic relatedness (e.g. Harvey & 

Pagel 1991). However, removing phylogenetic effects from the nonsignificant general linear model 

would require methods based on eigenvector filtering (Diniz-Filho et al. 1998) and repeating the 

analysis after this correction could thus only further decrease the statisticalsignificanceof the 

results. That genome size is associated with invasion success is clearly demonstrated by the 

comparison of naturalized aliens in the Czech flora with the reference global set of non-invading 

congeners. In this analysis the effect of phylogenetic relatedness, which was shown to bias the 

effect of traits on species’ invasion success (e.g. Crawley et al. 1996, Pyšek 1997, Goodwin et al. 

1999, Grotkopp et al. 2004, Hamilton et al. 2005, Lloret et al. 2005, Cadotte et al. 2006) was 

suppressed by the congeneric comparison. This is a convenient approach to studying the role of 

species traits in plant invasions (Pyšek & Richardson 2007, Perglová et al. 2009). 
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Our results therefore provide robust evidence, based on a large number of species across a 

wide range of plant families, that alien species that successfully naturalize have smaller genomes 

than those that do not reach the stage of naturalization. It should be, however, noted that sample 

size for some families was rather limited (e.g. only one naturalized and/or non-invading species 

was available for 18 out of 31 families used for comparison), which may limit the generality of our 

conclusions and calls for further comparative studies. The association of small genome size with 

invasiveness was previously suggested in a number of studies (Rejmánek 1996, 2000, Grotkopp et 

al. 2002, Rejmánek et al. 2005, Garcia et al. 2008). Small genome size seems to be a result of 

selection for short minimum generation time.It isalso associatedwith smallseed size,high leafarea 

ratio and high relative growth rate of seedlings (Grotkopp et al. 2002), and as such may be an 

ultimate determinant of plant species invasiveness in disturbed habitats (Rejmánek 1996, Bennett et 

al. 1998, Grotkopp et al. 1998, Rejmánek 2000). 

However, studies that addressed the role of genome size in plant species’ invasiveness 

usually compared invasive and non-invasive species and did not distinguish between species at 

different stages of the invasion process. In our data there was no difference in the genome size of 

invasive species compared to naturalized but non-invasive species. This indicates that the small 

genome size may provide alien plants with an advantage already at the stage of naturalization and 

need not necessarily play a role during the follow-up step, transition from naturalized to invasive 

species. It also points to the importance of distinguishing the stages of invasion in such studies 

since the determinants of invasion success may differ between stages (Williamson 2006, Pyšek et 

al. 2008, 2009a, b). 

 

See http://www.preslia.cz for Electronic Appendix 1. 
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Abstract 

Flow cytometry (FCM) has been widely used in plant science to determine the amount of nuclear 

DNA, either in absolute units or in relative terms, as an indicator of ploidy. The requirement for 

fresh material in some applications, however, limits the value of FCM in field research, including 

plant biosystematics, ecology and population biology. Dried plant samples have proven to be a 

suitable alternative in some cases (large-scale ploidy screening) although tissue dehydration is 

often associated with a decrease in the quality of FCM analysis. The present study tested, using 

timescale laboratory and in situ field experiments, the applicability of glycerol-treated nuclear 

suspension for DNA flow cytometry. We demonstrate that plant nuclei preserved in ice-cold buffer 

+ glycerol solution remain intact for at least a few weeks and provide estimates of nuclear DNA 

content that are highly comparable and of similar quality to those obtained from fresh tissue. The 

protocol is compatible with both DAPI and propidium iodide staining, and allows not only the 

determination of ploidy level but also genome size in absolute units. Despite its higher 

laboriousness, glycerol-preserved nuclei apparently represent the most reliable way of sample 

preservation for genome size research. We assume that the protocol will provide a vital alternative 

to other preservation methods, especially when stringent criteria on the quality of FCM analysis are 

required. 

 

Keywords: DAPI . flow cytometry . genome size . ploidy . propidium iodide . sample preservation 

Abbreviations 

CV Coefficient of variation 

DAPI 4',6-diamidino-2-phenylindole 

FCM Flow cytometry/flow cytometric 

PI Propidium iodide 

SD Standard deviation 
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Introduction 

Flow cytometry is a high-throughput, cost-effective and accurate cytogenetic method with 

broad applications in plant sciences (Doležel et al. 2007a). In plant evolutionary and ecological 

studies, flow cytometry (FCM) has played a prominent role in the estimation of nuclear DNA 

content, either in absolute units (picograms of DNA or mega base pairs) or in relative terms as an 

indicator of ploidy (Kron et al. 2007). By enabling the analysis of large population samples over a 

short time span, FCM has significantly advanced our knowledge of ploidy and genome size 

variation in natural systems (Kron et al. 2007; Suda et al. 2007a; Loureiro et al. 2010). The global 

application of FCM is, however, limited by the need to use fresh plant material for reliable 

measurements of DNA content (Doležel et al. 2007a; Greilhuber et al. 2007). This prerequisite 

hampers largescale population studies in regions without easily accessible FCM facilities (e.g. most 

of the tropical regions) and may cause difficulties elsewhere (e.g. when the capacity of a laboratory 

is saturated or during instrument maintenance). Transport of seeds and their direct FCM 

measurement or analysis of growing seedlings can partly solve the problem (Sliwinska et al. 2005; 

Suda et al. 2005). Nevertheless, this approach may be hampered by the need to collect plant 

material during the seed gathering season, difficulties in seed germination ex situ, potential shifts in 

genome size values estimated from dry seeds (e.g. Sliwinska et al. 2005) and/or by taxonomic 

complexity (e.g. hybrid origin of the seeds). Tissue preservation using chemical fixatives (ethanol- 

or formaldehyde-based), although widely used in animal and human FCM studies, have elicited 

only little interest from the plant community (Kron et al. 2007). The last years have seen several 

attempts to substitute fresh plant samples with dry or frozen tissue. Suda and Trávníček (2006a, b) 

introduced a protocol for reliable ploidy estimation (using 4',6-diamidino-2-phenylindole (DAPI)) 

in desiccated plant material (either silica- or air-dried) and this method has been successfully 

applied to a number of plant groups (e.g. Šmarda et al. 2005; Suda et al. 2007b; Popp et al. 2008; 

Hülber et al. 2009; Košnar and Kolář 2009; Volkova et al. 2010). Reasonable FCM histograms can 

also be achieved by analysing rapidly frozen plant tissues (Dart et al. 2004; Nsabimana and Van 

Staden 2006; Halverson et al. 2008; Cires et al. 2009). 

Despite these promising steps towards the routine use of non-fresh plant samples, the 

above-mentioned protocols are still considered inadequate for estimating genome size in absolute 

units (using intercalating fluorochromes). The quality of measurements from dry or frozen tissue 

samples only rarely reaches the level achievable for fresh material and further decreases with the 

ageing of the samples. Usual symptoms accompanying the analysis of non-fresh material are: (1) 

lower reliability of DNA content estimates as evidenced by pronounced shifts in fluorescence 

intensity compared to that of fresh samples (e.g. Šmarda 2006; Suda and Trávníček 2006b; Cires et 

al. 2009; Bainard et al. 2011), and (2) decrease in the uniformity of fluorescence, resulting in 

higher coefficient of variations (CVs) of the peaks and more prominent background (Suda and 

Trávníček 2006b). These observations are not compatible with the high standards required for some 

FCM applications, including the determination of absolute genome size (Doležel and Bartoš 2005; 

Doležel et al. 2007b; Greilhuber et al. 2007). Consequently, the majority of published studies have 

used non-fresh material solely to determine DNA ploidy levels, which can tolerate some relaxation 

of the quality criteria (e.g. Eidesen et al. 2007; Schönswetter et al. 2007a; Popp et al. 2008; 

Bendiksby et al. 2011), or interpret the results as supplementary to fresh tissue analysis (Dušková 

et al. 2010). Only very recently, Bainard et al. (2011) conducted a careful experimental study to 

evaluate the potential of silica-dried plant material for genome size research. The authors 
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concluded that sample desiccation introduced comparatively minor variation (<10%), a level of 

which was species-specific and comparable to other sources of artefactual variation. They 

considered dehydrated plant samples promising for assessing absolute genome size, yet admitted 

that relaxed demands should be applied to the quality of analysis and caution must be exercised in 

interpreting the results. 

Whereas the effects of physical preservation on FCM estimates of nuclear DNA content 

have been intensively studied and there are some comparative studies showing advantages and 

limitations of these approaches (Suda and Trávníček 2006b; Bainard et al. 2011), the potential of 

chemical fixatives has been largely neglected. This reluctance likely stems from the higher 

laboriousness of the protocols and potential chemical-induced changes in chromatin condensation, 

which can affect the stoichiometric staining of DNA using intercalating dyes (Shapiro 2003). The 

search for alternative modes of preservation is desirable in order to (1) increase the accuracy of 

nonfresh tissue measurements and (2) extend FCM measurements to species in which other 

preservation techniques have failed (according to our knowledge, around 15% of plant species do 

not yield acceptable FCM histograms after dehydration). A promising alternative to physical and 

chemical preservation of plant tissues is the storage of isolated nuclear suspensions in intact 

protective solutions such as glycerol (propane-1,2,3-triol). The value of glycerol for the 

preservation of isolated nuclei for FCM analysis was first mentioned by Chiatante et al. (1990), and 

a more thorough evaluation of the method was developed by Hopping (1993). This researcher 

stored isolated nuclei of Actinidia deliciosa in 30% glycerol at approximately −20°C and found that 

storage for 9 months did not compromise FCM analysis, and the estimated values were highly 

comparable with those obtained from fresh samples (fluorescence decrease of 5% to 7%). 

Unfortunately, his results were only based on the analysis of a single plant species and were not 

subjected to a rigorous statistical evaluation. 

This study aimed to investigate the applicability of glycerol-preserved plant nuclei for 

genome size research and assess the capabilities and limitations of this approach. We conducted 

two complementary experiments: (1) a time-scale laboratory experiment using six model plant 

species from different families and covering a range of genome sizes, to systematically compare 

the glycerol-based protocol with other currently used methods of sample preservation, and (2) a 

multi-species experiment using a set of tropical species collected and preserved in the field, to test 

the feasibility of the methodology in situ. The effects of fluorescent dyes with different modes of 

DNA binding (AT-selective DAPI vs. intercalating propidium iodide (PI)) were also investigated. 

 

 

Methods 

Plant material 

Six plant species from five plant families and spanning nearly 18-fold range of genome 

sizes (from 1.52 pg/2C to 26.9 pg/2C) were selected for a time-scale laboratory experiment. They 

included both frequently used FCM reference standards (Bellis perennis – Asteraceae, Pisum 

sativum ‘Ctirad’ – Fabaceae and Vicia faba ‘Inovec’ – Fabaceae) and representatives of the major 

tropical families analysed in the second experiment (Euphorbia milii – Euphorbiaceae, Ficus 

elastica – Moraceae and Galium album – Rubiaceae). This species selection comprised both plants 

with soft and rapidly decaying leaves (B. perennis, G. album and P. sativum) and plants with rather 
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tough or even leathery leaves (E. milii, F. elastica and V. faba). Plants of P. sativum and V. faba 

were grown from seeds (kindly provided by J. Doležel, Institute of Experimental Botany, Olomouc, 

the Czech Republic) while the remaining species were available from the living collection of the 

Botanical Garden, Faculty of Science, Charles University in Prague, Czech Republic. 

The in situ experiment involved 21 species from 12 angiosperm families (both monocots 

and dicots) that were collected in primary and secondary rainforests around the Wannang village 

(approximately 60 km west of Madang) in northern Papua New Guinea in August 2006 (see Table 

S1). Representatives of speciesrich tropical genera (e.g. Ficus and Macaranga) as well as 

economically important crops (e.g. Musa, Strychnos and Syzigium) were included. Herbarium 

vouchers are kept in CBFS. 

 

Sample preservation 

Four different methods of sample preservation were tested in a time-scale experiment: (1) 

young healthy leaves stored in a moist plastic bag at 4°C in a refrigerator (further referred to as 

‘plastic bag’), (2) leaf tissue rapidly dehydrated using silica gel (‘silica gel’), (3) isolated nuclei 

suspended in Otto I buffer + glycerol (see below) and kept at −18°C in a freezer (‘ice-cold 

glycerol’; note that the solution remained liquid at this temperature), and (4) isolated nuclei kept in 

the same solution at room temperature (23±2°C; ‘RT glycerol’). In addition, fresh leaves picked 

from the cultivated plants were used as ‘control’. 

The in situ experiment involved the same preservation methods except for the silica gel 

treatment. For all the used treatments, there was an approximately 24-h interruption in low-

temperature storage due to sample transportation from Papua New Guinea to the Czech Republic. 

 

FCM analysis 

Sample preparation generally followed the simplified two-step procedure using Otto’s 

buffers (Doležel et al. 2007b). Briefly, ~50 mg of sample leaf tissue and the same amount of the 

fresh internal reference standard were chopped with a sharp razor blade in a Petri dish containing 

0.5 mL of ice-cold Otto I buffer (0.1 M citric acid, 0.5% Tween-20) (Otto 1990). The suspension 

was filtered through a 42-μm nylon mesh and incubated for approximately 15 min at room 

temperature. Samples were then stained for 10 min at room temperature. The staining solution 

consisted of 1 mL of Otto II buffer (0.4 M Na2HPO4·12 H2O), β-mercaptoethanol (final 

concentration of 2 μL mL−1) and a fluorochrome. Two DNA-binding fluorochromes were 

employed: (1) intercalating PI plus RNase IIA (both at final concentrations of 50 μg mL−1) and (2) 

AT-selective DAPI at a final concentration of 4 μg mL−1. Stained nuclei were run on a flow 

cytometer and excited either with (1) a green diode-pumped solid-state laser (Cobolt Samba, 532 

nm, 100 mW; Cobolt, Stockholm, Sweden) embedded in a Partec CyFlow SL instrument (Partec 

GmbH., Münster, Germany) (for PI staining) or (2) a UV mercury arc lamp embedded in a Partec 

PA II instrument (for DAPI staining). In the time-scale experiment, fluorescence intensity 

(measured in linear scale) and forward and side scatter (both in logarithmic scale) were recorded in 

laser-based measurements while only the first parameter was recorded in lamp-based 

measurements; in both cases, 5,000 particles were analysed. The following instrument settings 

were kept constant throughout the experiment: (1) the position of the first G0/G1 peak on channel 

100 (using a 1,024-channel scale), (2) the discriminator for fluorescence (i.e. the lowest recorded 
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value) on channels 30 and 50 in the time-scale laboratory experiment and in the in situ experiment, 

respectively and (3) discriminators for forward and side scatter on channels 30 and 10, respectively. 

In the in situ experiment, only fluorescence intensity was recorded for both laser- and lamp-based 

instruments and the setting was adjusted independently for each sample to achieve optimal FCM 

results. 

The following modifications were adopted for the analysis of glycerol-preserved samples 

(see Supplementary file S4 for a summarised procedure): approximately 300 mg of intact fresh leaf 

tissue of the sample was chopped together with the same amount of the internal reference standard 

in a Petri dish containing 6 mL of Otto I buffer. The suspension was filtered through a 42-μm nylon 

mesh, divided into twelve 0.5-mL aliquots and 0.5 mL of 60% glycerol solution was added to each 

aliquot. Six aliquots were kept in a freezer (−18°C) until FCM analysis (‘ice-cold glycerol’), while 

the other six were left at room temperature (‘RT glycerol’). Before FCM analysis, the suspension 

was centrifuged for 3 min at 3,200 rpm, the supernatant was discarded and 100 μL of ice-cold Otto 

I buffer was added to resuspend the nuclei. The sample tubes were gently shaken and the nuclear 

suspension was incubated for 15 min at room temperature. Finally, 1 mL of staining solution (Otto 

II buffer supplemented with β-mercaptoethanol and a fluorochrome) was added, and after 10 min 

of incubation, the samples were run on a flow cytometer. 

B. perennis (2C03.38 pg; Schönswetter et al. 2007b) served as the internal reference 

standard for E. milii, F. elastica and P. sativum, while P. sativum (2C=8.84 pg; Greilhuber et al. 

2007) was used as a reference point for B. perennis, G. album and V. faba. Zea mays from a local 

field in Madang was used as a reference standard for the tropical species included in the in situ 

experiment. 

FCM histograms were evaluated using Partec Flomax 2.4d software. ‘Fit Gauss Peaks’ 

function was used to calculate basic descriptive statistics (mean position, CV and number of 

particles) of G0/G1 peaks. Because non-fresh material was measured, we adopted more relaxed 

quality standards, and as successful considered analyses with CVs of sample G0/G1 peaks up to 

10%. The proportion of background noise was determined as a ratio between the number of 

particles outside and inside the area of G0/G1 peaks defined by the ‘Fit Gauss Peaks’ function. 

In the time-scale experiment, all except ‘silica gel’ samples were analysed after 1, 7 and 15 

days of storage; the ‘silica gel’ samples were only analysed after 15 days of storage. Each 

measurement (including sample preparation) was repeated on three subsequent days to minimise 

potential artefactual instrumental drift. As a result of this experimental design, each species was 

analysed 18 times per treatment (three times of storage, three replicates and two fluorochromes), 

except ‘silica gel’ for which each species was analysed only six times (three replicates and two 

fluorochromes). In the in situ experiment, samples were analysed once after 15 days of storage. 

 

Statistical analyses 

Parameters describing the quality of FCM histograms (CVs and proportions of 

background noise) were analysed using a mixed-effect analysis of variance (ANOVA) with species 

identity as a random factor. Separate ANOVAs were conducted for (1) all treatments (i.e. ‘control’, 

‘plastic bag’, ‘ice-cold glycerol’, ‘RT glycerol’ and ‘silica gel’), testing the effects of stain and 

preservation method, and (2) all except ‘silica gel’ treatments, testing the effect of storage time. 

Differences among individual treatments were further analysed by a Fisher’s LSD test. 
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The stability of sample/standard fluorescence ratio across treatments was tested separately 

for each fluorochrome using a linear mixed-effect model with species identity as a random factor. 

The effects of the preservation method and storage time (including their interactions) were tested 

after the exclusion of the ‘silica gel’ treatment, while the effect of the preservation method alone 

was tested on the data from the 15th day of storage (i.e. with the ‘silica gel’ treatment included). 

The probability of success of FCM analysis for individual treatments was analysed using a 

binomial generalised linear mixed-effect model fit with the Laplace approximation (Bates and 

Maechler 2009). 

ANOVAs with post hoc comparisons were calculated in Statistica version 8 (StatSoft, Inc. 

2008), while R package version 2.9.2 (R Development Core Team 2009) was used to calculate 

mixed-effect and generalised mixed-effect linear models. 

 

 

Results 

Time-scale experiment 

FCM acquisitions resulted in histograms with sample peak CVs ranging from 0.98% to 

9.58% (mean 2.4%; Figs. 1 and 2); thus, all analyses were considered successful. The mixed-effect 

ANOVA on the entire dataset revealed significant effect of the preservation method on the quality 

of analysis (F4, 20=67.62, p<0.001): the ‘silica gel’ samples generally exhibited the highest CVs 

(mean 4.2%) while the ‘plastic bag’ and ‘ice-cold glycerol’ samples (means for both treatments 

2.0%) exhibited CV values comparable to those of fresh ‘control’ (mean 1.7%). PI-stained samples 

had generally slightly higher CVs than their DAPI-stained counterparts (means 2.67% and 2.19%, 

respectively; F1, 5=29.28, p=0.003). 

There was a significant interaction between the preservation method and the time of 

storage (F6, 30=42.43, p<0.001). After 15 days of storage, ‘plastic bag’ and ‘RT glycerol’ samples 

generally showed higher CVs than freshly collected tissue. By contrast, the quality of ‘ice-cold 

glycerol’ samples was highly comparable to that of fresh control (Fig. 2). The effect of 

fluorochrome remained significant (F1, 5=11.43, p=0.020); however, no significant interaction with 

the time of storage or preservation method was detected. 

The proportion of background noise significantly differed among the preservation methods 

(F4, 20=19.3, p<0.001); the highest background levels were generally observed in ‘silica gel’ 

samples. However, if the storage time was considered (i.e. with ‘silica gel’ samples excluded), no 

significant differences were detected either among the preservation methods (F3, 15=2.85, p00.072) 

or their interactions with the time of storage (F6, 30=0.97, p00.462). 

With the exception of ‘RT glycerol’ samples, tissue preservation using any of the methods 

caused only a negligible shift in fluorescence intensity relative to the standard over the time span 

tested. Although the effect of both preservation method and its interaction with the time of storage 

was significant in both DAPI and PI datasets (Table 1), this was largely caused by ‘RT glycerol’ 

samples, which showed a significant decrease in sample/standard fluorescence ratio compared to 

the fresh ‘control’ (t203=−2.65, p=0.008 and t203=−2.14, p=0.033 for DAPI and PI data, respectively). 

The most stable were ‘ice-cold glycerol’ samples (absolute difference between preserved/fresh 

tissue below 2%), followed by ‘plastic bag’ (difference 0.2% to 3.1% and 0.3% to 5.7% for DAPI 
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and PI staining, respectively) and ‘silica gel’ (difference 0.2% to 2.6% and 1.6% to 12.9% for DAPI 

and PI staining, respectively) treatments. The difference in ‘RT glycerol’ samples usually exceeded 

2% and reached up to ~18% in some cases (Table 2). 

 

 

 

 

Fig. 1 Illustrative histograms of fluorescence intensities and side scatter/fluorescence scattergraphs of ‘control’  

(A, D), 15-day-old samples of B. perennis stored in ‘ice-cold glycerol’ (B, E) and ‘silica gel’ (C, F), analysed  

together with the internal reference standard, P. sativum and stained with propidium iodide. CVs (%) of G0/G1  

peaks of Bellis/Pisum are 1.92/1.68, 1.84/1.82 and 9.04/ 1.92 for the ‘control’, ‘ice-cold glycerol’ and ‘silica  

gel’ samples, respectively 

 

 

In situ experiment 

Eighty-one out of 126 samples transported from Papua New Guinea and stored ~15 days 

had been successfully analysed (i.e. yielded histograms with distinct peaks and CVs <10%, for 

illustrative histograms see Fig. S2). Acceptable histograms using at least one preservation 

technique were obtained in all but one species (Macaranga fallacina, Euphorbiaceae). The 

probability of success was significantly influenced by the preservation method (binomial 

generalised linear mixed-effect model χ2=79.99, p<10−6; see also Fig. 3) and marginally also by the 

DNA fluorochrome (χ2=4.5054, p=0.034; DAPI slightly less successful). Regardless of the 

fluorochrome, the most successful was the ‘ice-cold glycerol’ treatment whereas the ‘RT glycerol’ 

one was the least successful. 
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In successful analyses, the type of preservation significantly influenced the sample CV (F2, 

24=19.51, p<0.001). The highest CVs were recorded in ‘RT glycerol’ samples (mean 8.20%) while 

CVs for ‘ice-cold glycerol’ (mean 4.51%) and ‘plastic bag’ (mean 5.02%) samples did not differ 

significantly from each other at α=0.05. Nuclei preserved in ‘icecold glycerol’ yielded the best FCM 

results (in terms of the lowest CVs) in more than two-thirds of the analysed species (14 and 13 

species in DAPI and PI analyses, respectively), while the remaining species gave the lowest CVs 

when stored in a plastic bag in a refrigerator. ‘Ice-cold glycerol’ was the only mode of preservation 

that allowed successful FCM analysis in four species (Endospermum labios, Macaranga 

aleuritoides, Osmoxylon novo-guineense and Versteegia sp.; Table S1). 

Discussion 

The value of glycerol-preserved nuclei 

Unlike animal and human biology, fresh samples still dominate plant FCM research, 

especially when absolute genome size values are required (Doležel et al. 2007b; Kron et al. 2007). 

Nonetheless, the ever-increasing number of applications in biosystematics, ecology and 

evolutionary biology has accelerated the search for methods of sample preservation applicable in 

field conditions and allowing longer-term sample storage. An ideal protocol should be simple and 

rapid (to be easily performed outside the laboratory), universal (applicable to a wide range of plant 

species) and reliable (introducing no artefactual shift in fluorescence intensity). The present study 

adds to previous methodological attempts and describes the advantages, limitations and potential 

use of glycerol-treated nuclear suspensions. 

The suitability of glycerol solution for preserving nuclear suspension was first 

documented by Hopping (1993), who achieved promising results (i.e. distinct peaks and only a 

small shift in fluorescence intensity) using nuclei of A. deliciosa stored up to 9 months in the frost 

and stained by PI. We tested the value of his protocol on a set of plants from different families and 

covering a range of genome sizes (including popular plant reference standards), using two the most 

important DNA-selective fluorochromes with different binding modes (DAPI and PI). In addition, 

we applied the methodology in situ in the tropics to estimate the amount of nuclear DNA in 21 

native species. 
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Fig. 2 The effects of preservation method and the time of storage on the quality of FCM analysis of six plant 

species expressed as the CV (mean±SD) of sample G0/G1 peak. Treatments significantly (at α=0.05) different 

from the control in a particular time point are highlighted in grey. Freshly collected leaves from the cultivated 

plants were used as control at each time point. Silica gel samples were only analysed after 15 days of storage 

and not tested for the temporal variation 

 

 

Table 1 Summary of the linear mixed-effect model testing the effects of preservation method and storage time 

on sample/standard fluorescence ratio 

 

Effect                                 DAPI staining   PI staining 

  df F p   df F p 

Variation in fluorescence values 

across all storage timesa  

      Preservation method 3, 203 3.65 0.014 
 

3, 203 5.80 <0.001 

Time of storage 1, 203 2.98 0.086 
 

1, 203 0.51 0.477 

Preservation method×time of 

storage 
3, 203 4.46 0.004 

 
3, 203 4.65 0.003 

Variation in fluorescence values 

after 15 days of storage        

Preservation method 4, 80 2.92 0.026   4, 80 2.33 0.063 

 

Species identity was treated as a random factor. Significant effects are in bold 
a Samples preserved in silica gel were not included in this test
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Table 2 Variation in sample/standard fluorescence ratios of six plant species preserved using four different 

techniques and stained with two different fluorochromes after 15 days of storage 

Speciesa 
Preservation 

method 
DAPI staining 

  
PI staining 

    

Sample/standard 

ratio 

(mean±SD)b 

Difference 

from the 

control (%) 

  

Sample/standard 

ratio 

(mean±SD)b 

Difference 

from the 

control (%) 

Bellis perennisP Fresh control 0.419±0.008 – 
 

0.381±0.007 – 

(2C=3.38 pg) 
Ice-cold 

glycerol 
0.420±0.009 0.2 

 
0.384±0.008 0.8 

 
RT glycerol 0.494±0.012 17.9 

 
0.448±0.024 17.6 

 
Plastic bag 0.430±0.004 2.6 

 
0.382±0.016 0.3 

 
Silica gel 0.427±0.003 1.9 

 
0.374±0.012 −1.9 

Euphorbia miliiB Fresh control 1.264±0.004 – 
 

1.255±0.003 – 

(2C=4.27 pg) 
Ice-cold 

glycerol 
1.258±0.015 −0.5 

 
1.241±0.016 −1.1 

 
RT glycerol 1.200±0.029 −5.3 

 
1.178±0.027 −6.5 

 
Plastic bag 1.274±0.011 0.8 

 
1.262±0.013 0.6 

 
Silica gel 1.279±0.005 1.2 

 
1.276±0.048 1.7 

Ficus elasticaB Fresh control 0.533±0.004 – 
 

0.452±0.004 – 

(2C=1.52 pg) 
Ice-cold 

glycerol 
0.529±0.003 −0.8 

 
0.444±0.004 −1.8 

 
RT glycerol 0.519±0.005 −2.7 

 
0.442±0.003 −2.3 

 
Plastic bag 0.531±0.001 −0.4 

 
0.450±0.003 −0.4 

 
Silica gel 0.530±0.003 −0.6 

 
0.445±0.007 −1.6 

Galium albumP Fresh control 0.447±0.003 – 
 

0.412±0.003 – 

(2C=3.62 pg) 
Ice-cold 

glycerol 
0.446±0.009 −0.2 

 
0.419±0.002 1.7 

 
RT glycerol 0.497±0.024 11.2 

 
0.467±0.020 13.3 

 
Plastic bag 0.449±0.002 0.4 

 
0.426±0.020 3.4 

 
Silica gel 0.453±0.011 1.3 

 
0.465±0.016 12.9 

Pisum sativumB Fresh control 2.386±0.046 – 
 

2.625±0.047 – 

(2C=8.84 pg) 
Ice-cold 

glycerol 
2.383±0.048 −0.1 

 
2.605±0.053 −0.8 

 
RT glycerol 2.025±0.047 −17.8 

 
2.239±0.119 −17.2 

 
Plastic bag 2.461±0.029 3.1 

 
2.774±0.154 5.7 

 
Silica gel 2.449±0.025 2.6 

 
2.584±0.230 −1.6 

Vicia fabaP Fresh control 3.092±0.012 – 
 

3.047±0.017 – 

(2C=26.9 pg) 
Ice-cold 

glycerol 
3.122±0.023 1 

 
3.011±0.039 −1.2 

 
RT glycerol 3.117±0.050 0.8 

 
3.054±0.067 0.2 

 
Plastic bag 3.097±0.040 0.2 

 
3.106±0.034 1.9 

  Silica gel 3.087±0.037 −0.2   3.139±0.092 3 

Differences from the fresh control that exceeded the 2% threshold are in bold 

a Internal reference standards: superscript B – Bellis perennis, superscript – Pisum sativum 

b Three independent replicates on three successive days  
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The preservation of nuclear suspensions in a 30% glycerol–Otto I buffer solution (Otto 

1990; Doležel et al. 2007b) and sample storage at −18°C was found to be a reliable method for the 

FCM estimation of genome size in plants in both absolute and relative units. The quality of analysis 

(expressed as CVs of G0/G1 sample peaks and the proportion of background noise) as well as their 

reliability (i.e. the stability of fluorescence intensity) appeared to be unaffected by the glycerol 

treatment, at least during the time period studied (15 days). After 2 weeks of storage in frost, both 

the quality measures of resulting FCM histograms and genome size estimates were fully 

comparable to those of fresh control samples (Fig. 2; Table 2). 

 

 

Fig. 3 The probability of achieving successful FCM analysis (i.e. sample CV below 10%) using three different 

preservation methods in the multi-species in situ experiment. Open circles samples, black squares mean 

probability success for a particular treatment. To visualise all samples, a small error variance was added to 

each value representing individual measurements 

 

Furthermore, light scattering properties of the nuclei showed no signs of the so-called tannic acid 

effect, indicating that the analyses were not negatively affected by interfering secondary 

metabolites and/or nuclei aggregation (Loureiro et al. 2006; see Fig. 1). In general, the analyses of 

glycerol-preserved nuclei mostly fulfilled the stringent criteria applied for the genome size 

estimation in absolute units in freshly collected samples, including the requirements of stable 

sample/ standard fluorescence ratio and CVs below 5% (e.g. Doležel et al. 2007a). A crucial step of 

the proposed protocol seems to be the storage of glycerol-preserved nuclei at −18°C, as samples 

kept at room temperature deteriorated quickly (Fig. 2). 
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Comparison with other modes of sample preservation 

Despite the ongoing debate about the use of non-fresh (preserved) plant material for FCM 

analysis (Doležel and Bartoš 2005; Doležel et al. 2007a; Bainard et al. 2011), only a handful of 

studies have ventured to explore the value of fixed plant nuclei, cells and/or tissues to estimate 

genome size. Rapid tissue desiccation (most conveniently done using silica gel) is the only way of 

sample preservation that has received wider attention in ecological and evolutionary plant FCM 

studies. However, the dehydrated samples were mostly stained with AT-selective fluorochrome 

DAPI, which has favourable staining properties (e.g. comparatively low sensitivity to chromatin 

condensation and high increase in quantum efficiency after binding to the DNA molecule; Shapiro 

2003), but precludes genome size estimation in absolute units. The artefactual shift in fluorescence 

intensity often observed after tissue dehydration (e.g. Šmarda 2006; Suda and Trávníček 2006b; 

Cires et al. 2009) and lower quality of FCM analysis also work against its use for absolute genome 

size estimation. Only recently, the potential of dried plant material for genome size research was 

thoroughly evaluated (Bainard et al. 2011). The authors considered the fluorescence shift 

introduced by drying (<10%) to be acceptable, as it fell within the limits introduced by other 

methodological factors (e.g. seasonal variation, instrument and buffer used, among others), and 

concluded that PI-stained samples can represent a promising option. 

Despite its higher laboriousness in comparison with tissue dehydration, glycerol-preserved 

nuclei apparently represent the most reliable way of sample preservation for genome size research, 

at least in a short-term time frame. In the present study, estimates of nuclear DNA in glycerol-

treated samples after 2 weeks of storage in frost were highly comparable to those obtained using 

fresh material. Whereas the ‘silica gel’ samples experienced up to a 12.9% shift in fluorescence 

intensity and CVs of 4.2%, on average, the ‘ice-cold glycerol’ samples showed very stable 

fluorescence (maximum difference <1.7%) and much lower CVs (Table 2). Interestingly, 2-week-

old glycerol-preserved nuclei yielded better results than living plant tissues kept for the same time 

in a humid environment in the cold (Fig. 2), which is usually the first choice for short-term sample 

storage (Suda et al. 2007a). It should be noted that the period for which fresh tissues can be stored 

in a refrigerator before FCM analysis is considerably influenced by leaf characteristics. Whereas 

species with small and soft leaves (in our set, for instance, B. perennis and P. sativum) deteriorate 

quickly, plants with tough and leathery leaves (e.g. E. milii and F. elastica) seem to be generally 

less sensitive (Fig. S3). In parallel, glycerol preservation represented the only way to analyse 

several soft-leaved tropical plants in the in situ experiment (Table S1). Although the fluorescence 

properties of glycerol-preserved nuclei after long-term storage are largely unknown and in need of 

further study (but note that Hopping (1993) suggests that nuclei are likely to remain intact for at 

least several months), the presented methodology appears to be a very promising way of sample 

preservation for genome size studies. 

 

Applicability of the protocol 

Of particular importance is the fact that plant nuclei stored in ice-cold glycerol remain 

intact for at least a few weeks and provide estimates of nuclear DNA content that are highly 

comparable and of similar quality to those obtained from fresh tissue. Furthermore, the protocol is 

compatible with both DAPI and PI staining, allowing the determination of not only ploidy level 

but, more importantly, genome size in absolute units. Moreover, high resolution of resulting FCM 

histograms opens the possibility of detecting small differences in nuclear DNA content. 
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Table 3 Advantages, limitations and potantial applications of different approaches used to substitute fresh 

somatic tissues in plant FCM 

Type of material Advantage(s) Limitation(s) Applications(s) 

Cold-stored 

somatic tissue 

Reliable FCM 

measurements 

(fluorescence stability) 

Short-time preservation 

(need for immediated 

FCM analysis) 

Screening of ploidy 

variation across 

multiple species and 

at various spatial 

scales 

 Suitability for genome 

size estimation in 

absolute units 

Challenging transport 

(need for a sufficient 

space, phytosanitary 

certificate) 

Genome size 

estimation 

 Easy sample 

preparation 

 Detection of small 

differences in the 

amount of nuclear 

DNA 

Dry seeds Reliable FCM 

measurements (when 

cultivated plants are 

used) 

Need for a proper timing 

of collection 

Screening of ploidy 

variation across 

multiple species and 

at various spatial 

scales 

 Suitability for the 

entire range of FCM 

applications (when 

cultivated plants are 

used) 

Possible germination 

problems 

Genome size 

estimation 

 Easy sample transport Possible shift in 

fluorescence intensity 

whendry seeds are 

analysed directly 

Detection of small 

differences in the 

amount of nuclear 

DNA 

 Convenient and long-

term storage 

Need for a cultivation 

facility 

 

  Unknown male parent of 

the individual analysed 

(e.g. putative hybrid 

origin of the seed) 

 

Dehydrated 

somatic tissue 

(silica- or air-

dried) 

Easy sample transport Limited use for absolute 

genome size estimation 

(possible shift in 

fluorescence intensity) 

Screening of ploidy 

variation across 

multiple species and 

at various spatial 

scales 

 Convenient sample 

preparation 

Lower resolution than in 

fresh tissue (challenging 

detection of small 

differences in the amount 

of nuclear DNA) 

First insights into 

genome size 

variation 
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Frozen somatic 

tissue 

Convenient sample 

preparation 

Dependence on a basic 

lab facility for sample 

preservation (freezer) 

Screening of ploidy 

variation in model 

species 

  Challenging sample 

transport 

First insights into 

genome size 

variation 

  Limited use for absolute 

genome size estimation 

(possible shift in 

fluorescence intensity) 

 

  Lower resolution than in 

fresh tissue 

 

Chemically 

fixed somatic 

tissue (ethanol- 

or 

formaldehyde-

based fixations) 

  Dependence on a basic 

lab facility for sample 

preservation 

Screening of ploidy 

variation in model 

species 

  Dependence on the 

availability of internal 

reference standard(s) 

 

  Challenging selection of 

a suitable reference 

standard for unknown 

sample species 

 

  Likely shifts in 

fluorescence intensity 

(changes in chromatin 

compaction) 

 

Glycerol-

preserved nuclei 

Reliable FCM 

measurements 

(fluorescence stability) 

Dependence on a basic 

lab facility for sample 

preservation (freezer) 

Screening of ploidy 

variation in model 

species 

 Suitability for genome 

size estimation in 

absolute units 

Challenging sample 

transport 

Genome size 

estimation 

  Dependence on the 

availability of internal 

reference standard(s) 

Detection of small 

differences in the 

amount of nuclear 

DNA 

    Challenging selection of 

a suitable reference 

standard for unknown 

sample species 

  

 

 

Finally, glycerol-preserved nuclei also offer opportunity to cytotype plant species with soft 

and rapidly decaying leaves, in which other modes of storage usually provide less satisfactory 

results or completely fail. 

The major limitations of the proposed protocol stem from higher demands on sample 

preparation, i.e. the need for basic laboratory facilities, including a freezer, and the necessity for 
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suitable reference standard(s), a selection of which should meet several criteria (see Suda and 

Leitch 2010). In addition, the reliability of the protocol after longer-term storage (several months) 

needs to be assessed. 

A detailed comparison of current methodologies of sample preservation for plant FCM, 

including their pros and cons, is provided in Table 3. Considering these facts, we assume that 

glycerol-treated nuclei will provide a vital alternative to other preservation methods, especially 

when stringent criteria on FCM analysis are required (e.g. in genome size studies) and/or if a 

detailed investigation of a single or a few plant species is intended. The storage of fresh tissue in 

cold will likely be the method of choice for short-term field trips while large-scale ploidy studies in 

remote areas will probably still be dominated by silica-dried samples. 
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KEY RESULTS AND CONCLUSION 
 

GS dynamics and variation in study systems 

In Case study I we confirmed the existence of extraordinary intraspecific genome size 

variation in Taraxacum stenocephalum (Asteraceae), which at the homoploid level ranged up 

to 1.262-fold in 775 F1 seedlings. Such big differences in 2C DNA content between 

individuals are not associated with aneuploidy or the presence of B chromosomes. The only 

detected karyological differences were found in the presence of satellite chromosomes, so we 

assume that repetitive DNA contributes to DNA content variation in the study species. DNA 

content values in F1 individuals were directly  proportionally determined by parental genome 

size and no shift in the GS of F1 offspring was detected as compared to parental GS. 

 Case studies II and III demonstrate the importance of genome size for large-scale 

cytological screenings in ploidy-variable groups. We studied differences between di- and 

tetraploid cytotypes in two different species – Galium valdepilosum (Rubiaceae) and 

Arabidopsis arenosa (Brassicaceae). In G. valdepilosum we detected only one contact zone 

and observed no mixed-ploidy populations. Although extensive sampling (874 individuals), 

we found no triploids, which indicates that the contact zone is stable. The within-cytotype 

variation is very low. In Arabidopsis arenosa we sampled more than 2,900 individuals and 

recorded the parapatric distribution of diploids and tetraploids with two contact zones. At the 

landscape level, diploid and tetraploid populations are interspersed. At the population level, 

however, they are cytologically homogeneous. We found only a few triploid individuals, 

always in purely diploid populations. We therefore assume that the triploids were most likely 

formed by the fusion of reduced and unreduced gametes. Therefore,in A. arenosa we also 

regard the contact zone as stable. In both Case studies (II, III), genome size estimation 

brought some new unexpected findings. In G. valdepilosum, genome size indicates the 

relatedness of West-Bohemian populations to G. valdepilosum and not to G. sudeticum, as had 

been previously thought. For A. arenosa we found a new isolated diploid lineage on the Baltic 

coast. We were the first to publish the occurrence of triploids in A. arenosa. The scarcity of 

triploids among the nearly 3,000 sampled individuals shows how rarely are triploids generated. 

Mixed-ploidy populations were found in A. arenosa only with an even bigger sampling effort 

(F. Kolář et al. – as yet not published). This demonstrates the relevance of detailed studies 

with extensive sampling, which can reveal the influence of certain very rare evolutionary 

events which, however, may have important consequences for species evolution. 

 In Case study IV we studied 184 individuals of 20 species of Lasiocephalus 

(Asteraceae). The estimated range of DNA content (1.64-fold variation) indicates ploidy 

variation. Based on the 1.5-fold difference in genome size accompanied by high 

morphological similarity, we assume that triploid individuals occur in some of the species. 

Because this supposition was not verified karyologically, we refer to presumed triploids as 

DNA triploids. The smallest values of DNA content in Lasiocephalus revealed hybridization 

with the closely related species Culcitium nivale. 

 

 



 

157 

 

Association of genome size with biological traits – from phenotype to ecology 

In Case study I we found a significant association between intraspecific genome size and 

weight of fruit, time to germination, time to flowering, length of leaves and aboveground 

biomass. This could be explained by the size of nuclei and the duration of cell division, which 

together influence the growth of individuals. In congruence with other studies, we also found a 

non-linear relationship between genome size and particular traits. In Taraxacum 

stenocephalum there is a unimodal distribution of leaf length, which reached its greatest values 

in individuals with mid-sized genomes. 

 Case study II illustrates the different ecological preferences of diploid and tetraploid 

Galium valdepilosum. The tetraploid cytotype was found over a larger distribution area and in 

more habitat types than diploid cytotypes. Although serpentine substrates represent an extreme 

and stressful environment, both cytotypes are able to grow on this substrate to a similar extent. 

 By contrast, in Case study III on Arabidopsis arenosa we did not detect any 

differences in ecological preferences; both cytotypes occur in habitats of various types. 

Differences at the microecological scale in contact zones will be the topic of a future study. 

 In Case study IV we found correlations of genome size with habitat characteristics, 

growth forms and elevation in diploid species. However, all these traits were correlated with 

phylogeny. At the generic level, phylogeny seems to be the determining factor of genome size 

variation. At the lower taxonomic levels, ecological conditions are important and genome size 

can be altered through selection. 

 Case study V represents the first more extensive quantitative study of the association 

between genome size and invasiveness carried out on a set of congeners. The study is based on 

93 alien species from 32 families, naturalized in the Czech Republic. We confirmed that 

invasiveness is associated with small genomes. We examined alien species with various status 

of invasiveness. Naturalized species have smaller genomes than their non-invasive congeners. 

When we compared naturalized aliens with invasive aliens, we did not find any difference in 

genome size. This means that DNA content is important in the process of naturalization and it 

is not crucial exclusively for invasiveness. Based on our results we suppose that species with 

smaller genomes are potentially more successful and they could become naturalized or 

invasive over time. Another paper confirming our findings about the association between 

genome size and invasiveness at the interspecific level followed (Pyšek et al. 2018 – 

Phragmites australis). 

 In Case study V we extracted information about congeners and confamiliers from the 

Angiosperm DNA C-value database (Bennett & Leitch 2012), which provides useful data 

allowing to make various comparisons across the plant system and helping to reveal general 

trends in GS evolution. Although the estimation of genome size requires great care (numerous 

of old estimates have been refuted as incorrect because of methodological problems), the 

database is useful for revealing ranges of genome size variation and associations across the 

angiosperms. As stated in Knight et al. (2005), joining data on genome size with databases of 

functional traits in combination with GIS data promises new findings about direct effects of 

genome size on the lives of plants. However, phylogenetic corrections should be applied to 

intergeneric or interspecific comparisons of genome size because phylogeny can be the main 
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source of genome size differences at this level, as shown in Case study IV. At the generic 

level, the phylogeny of Lasiocephalus is significantly correlated with genome size and with 

habitat requirements, elevation and growth form. In Case study V we used congener pairs, so 

there was no need to make any phylogenetic corrections. 

 

 

Overcoming limits of FCM genome size estimation 

Observance of a best-practice protocol is essential in genome size studies. Estimation of 

genome size entails a number of necessary procedures to ensure data reliability (see Doležel & 

Bartoš 2005, Walker et al. 2006, Doležel et al. 2007, Greilhuber 2008, Šmarda & Bureš 2010). 

Despite adherence to strict rules, certain issues may complicate the estimation of genome size. 

One limiting requirement is the need for fresh material. This hinders the determination of 

genome size in plants which are collected during long field trips or in remote areas if the 

transport of samples to a cytometer takes a long time. In Case studies II, III and IV we 

successfully used a combination of silica-dried samples and fresh samples. This enabled us to 

perform extensive screening throughout the distribution area of the study species (Case 

studies II, III) and to bring samples from remote regions (Case study IV). 

 The use of silica-dried samples brought significant, progress, but it is applicable only 

for certain types of analyses. With most species it can be used only for flow cytometry using 

AT-selective DAPI staining. This makes it impossible to estimate absolute genome size, and 

only relative genome size can be ascertained by this method. Fortunately, in all groups under 

study there was a strong correlation between the results of DAPI and PI analyses, the results 

were comparable for the purpose of ploidy level estimation. In addition, the quality of silica-

dried samples is often lower compared to fresh samples and the possible shift in the 

fluorescence of nuclei makes it impossible to combine the two types of data. Generally, silica-

dried samples are sufficient for ploidy determination (Case study II, III, IV) and for extensive 

rapid ploidy screening because such analyses are run until the acquisition of only 3,000 

particles (in contrast to analyses for the purpose of estimating absolute genome size, which are 

run until the acquisition of 5,000 particles and repeated on three different days). Moreover, if 

the material gives peaks of high quality, it is also possible to detect double peaks, which 

constitute the best proof of tiny differences in genome size. The big advantage is that samples 

can be analysed after several weeks or months after being collected and dried. For example, in 

Case study IV we successfully analysed silica-dried samples up to 18 months old. This makes 

it easier to process samples from remote areas or when it is helpful to postpone the analysis of 

samples until after the busy vegetation season. 

 In Case study VI we tried to overcome the need for fresh samples by designing a 

protocol for sample preservation which would be applicable also for absolute genome size 

estimation. We modified the protocol of Hopping (1993) and created a new protocol for the 

fixation of nuclei. This we tested for reliability under laboratory conditions in a time-scale 

experiment using six species covering a wide range of plant genome sizes. We tried to apply 

the modified original protocol using ice-cold glycerol (Hopping 1993), which requires 

electricity for the operation of a freezer. As this is unavailable in in remote regions, so we also 
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tested the protocol with room-temperature (RT) glycerol. We compared the quality of GS 

analyses of fresh samples (controls), tissue stored in plastic bags in a refrigerator, nuclei 

preserved in RT glycerol, nuclei in ice-cold glycerol and silica-dried samples. After one week 

and after fifteen days, we analysed the samples and compared the quality of different 

treatments. Besides control samples, the best results were reached with nuclei preserved in ice-

cold glycerol, followed by the plastic bags treatment and silica-dried samples; the RT glycerol 

treatment produced the worst results. Nuclei  suspensions fixed in ice-cold glycerol were 

comparable with control samples for the purposes of estimating both absolute and relative 

genome size. We successfully applied this protocol during research trips to Papua-New Guinea 

on a set of 21 species from 12 families. The samples remained usable for several weeks even 

though they were not kept cold during the 24 hours it took to travel to the laboratory. This or 

similar protocols represent a promising way to expand our knowledge about genome size in 

undeveloped and unexplored remote areas. It could help expand the volume of data in the 

Plant C-value database (Bennett & Leitch 2012), most of which are from the Northern 

Hemisphere. Additional data from the Southern Hemisphere and other unexplored regions 

could bring unexpected findings or at least consolidate our ideas about the range and 

distribution of genome size variation in plants. 

 

 

Conclusion and future prospects 

This thesis demonstrates that genome size can be used as an important marker of direct 

dependence of a certain trait on genome size, mainly at the cellular level, which is manifested 

in the form of phenotypic correlations, as well as of ecological differentiation of taxa. Genome 

size can be a useful marker for delimiting species and studying important evolutionary 

processes such as hybridization or polyploidization. Genome size can also help to explain the 

distribution of species or understand their phylogeny and evolutionary history. All the 

included case studies brought new genome size values, expanding our knowledge about plant 

genome size, and someinteresting associations between genome size and biological traits of 

plants. 

 Intraspecific genome size variation at the homoploid level provides a suitable subject 

for detailed genome size studies. The advantage of this approach is that GS variation within 

one species is not determined by phylogeny and that it compares genomes that have been 

shaped by the same evolutionary processes and at the same time. However, differences in 

DNA content of larger magnitude are rare in wild species at the homoploid level and there is 

lack of studies working with homoploid species with substantial genome size variation over 

several generations. As a future prospect we should look at GS variation in successive 

generations to see under which conditions is genome size adaptive. This could be helpful for 

revealing the actual effect of genome size compared to another factor during the growth of 

individuals. 

 Whole-genome duplication is a crucial process in plant speciation. Genome size 

estimation in angiosperms often reveals polyploidy. It can also indicate the age of polyploids 

or point to potential progenitors of newly formed allopolyploids. Mixed-ploidy species 
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constitute interesting study material for exploring the effects effect of varying nuclear DNA 

content. However, the whole issue of polyploidy is so complex that it is difficult or even 

impossible to separate the effect of genome duplication from changes in the functioning of 

genes, which are also connected with polyploidy. For that purpose, newly formed 

autopolyploids could provide suitable material. 

 Many previous studies describing  associations of genome size with various biological 

traits are based on interspecies  comparisons without the application of phylogenetic 

corrections. I suppose that a re-evaluation of these data using phylogenetic corrections might 

bring quite a few surprises because the role of genome size is not equal in different groups. 

 In general, there are some direct  associations between genome size with certain 

cellular characteristics (nuclei volume, duration of cell division) based on physical limits, but 

further effects and consequences of genome size are likely to differ from species to species, as 

they also depend on other factors and processes (such as selection) influencing traits 

associated with genome size. 

 Lastly, the causes and consequences of genome size variation can be multifactorial, so 

it is necessary to take a multi-method approach to unravelling the true nature of genome size 

variation. Sometimes we view genome size as a primary source of variability in plants when in 

fact it can mirror past or ongoing evolutionary processes. The authors of some papers argue 

that previous works have been done only on a limited number of species or within a single 

genus or that different species with different evolutionary histories have been compared. In my 

opinion, this is the exact question we ought to ask. However, we should formulate it precisely 

and, accordingly, choose a suitable model system that will allow us to reach an answer. In any 

case, genome size significantly influences the properties and behaviour of plants and is a 

highly useful marker in plant studies. 
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