CHARLES UNIVERSITY
FAcuLTY OF MATHEMATICS AND PHYSICS

HABILITATION THESIS

Jan Kofron

Verification of Software

Computer Science, Software Systems

Prague, Czech Republic

2018

Contents

1 Introduction 3
2 Specification of Software Behavior 7
2.1 Software components and services 7
3 Verification of Source Code 11
3.1 Explicit model checking oo 11
3.2 Staticanalysis 12
3.3 Symbolic verification methodso 14
4 Behavior Protocols Verification: Fighting State Explosion 17
5 Checking Software Component Behavior Using Behavior Protocols and
Spin 19
6 Modes in component behavior specification via EBP and their applica-
tion in product lines 21
7 Threaded Behavior Protocols 23
8 On Partial State Matching 25
9 Framework for Static Analysis of PHP Applications 27
10 WeVerca: Web Applications Verification for PHP 29
11 On Interpolants and Variable Assignments 31
12 PVAIR: Partial Variable Assignment InterpolatoR 33

13 Conclusion and future work 35

CONTENTS

Preface

The thesis presents selected results in the area of specification and verification of soft-
ware properties. The work has been carried out during my stay at the Department of
Distributed and Dependable Systems (formerly Distributed Systems Research Group) of
the Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, and
Forschungszentrum Informatik, Karlsruhe, Germany.

The selected topics include two main directions—first, it is the problem of semantic
specification of software behavior, with a focus on component software. Second, we address
the problem of efficient verification of software in general, in particular improving scaling
of explicit and symbolic verification methods as well as providing a scalable yet precise
static analysis algorithms for dynamic languages. The thesis consists of published research
papers (selecting those that summarize the achieved results in particular topics) and
connecting comments to make the text seamless as much as possible.

Apart from the papers, there are also research results in the form of taking part in
international and national projects and organization of international conferences and
workshops. The international projects include a bilateral project with France Telecom
“Component Reliability Extensions for Fractal component model”, FP7 European project
“Q-ImPrESS”, FP7 Marie Curie ITN project “Relate”, and FP7 FET Proactive Initia-
tive project “Ascens”. The national projects include several ones funded by the Czech
Science Foundation, in particular 102/03/0672, 201/03/0911, 201/06,/0770, 201/08/0266,
P103/11/1489, 14-11384S, and 17-124658S.

Major partners in the aforementioned collaborative research projects include Orange
S.A., formerly France Télécom S.A., France, Universitat Karlsruhe, Germany, Univerzita
Svizzera della italiana, Lugano, Switzerland, and Vysoké uceni technické v Brné, Czech
Republic.

The research presented in the thesis is of a collective rather than individual nature. The
software prototypes mentioned in the thesis are large piece of software; it is beyond abilities
of an individual researcher to bring them to a working state in a reasonable amount of
time. The published research papers were included with a list of all the contributing
authors, while the connecting comments are mine.

I am grateful to my colleagues from the Department of Distributed and Dependable
Systems (formerly Distributed Systems Research Group). Jifi Addamek, Rima Al Ali,

Preface

Paolo Arcaini, Lubomir Bulej, Jakub Daniel, Ilias Gerostatopoulos, David Hauzar, Petr
Hnétynka, Viliam Holub, Pavel Jancik, Pavel Jezek, Tomas Kalibera, Lucia Kapova,
Michat Kit, Michal Malohlava, Vladimir Mencl, Pavel Parizek, Tomas Poch, Tomas Pop,
Ondrej Sery, Viliam Simko, and Jif{ Vindrek have all participated in the research activities
relevant to the thesis and therefore have made this work possible. A special thank belongs
to Frantisek P1asil, Petr Tuma, and Tom&s Bures for not only participating in research
but also leading the department (group).

I am also grateful to my colleagues from Forschungszentrum Informatik, Karlsruhe, in
particular Steffen Becker and Mircea Trifu, who have welcomed me during my visit and
led the research activities.

Jan Kofron

CHAPTER 1

Introduction

Software is ubiquitous. Its reliability has become an important aspect of everyday lives and
the errors within it can cause not only inconvenience at the user side, but also represent a
significant danger to people’s health and lives (e.g., [50]). A number of techniques thus
have been developed to reduce the number of errors inside software. On the one hand, they
include modern programming concepts and languages, practically eliminating some types
of errors, such as type mismatch. On the other hand, testing and verification procedures
can automatically reveal errors beyond syntax and type system of the used programming
language. Unfortunately, the techniques of the latter group suffer from the theoretical
complexity of the task; the required time usually grows exponentially with the size of
the input, more often, the task is even undecidable. Testing, including both traditional
application testing by human testers and more sophisticated methods such as unit testing,
brings an additional burden in terms of effort to prepare and perform the tests. Testing
definitely improves quality of software in most common use cases and scenarios; despite
those come on mind of both testers and developers, they are particularly weak in covering
the corner cases. Verification methods can successfully address this weakness; here, the
effort is largely moved from humans to computers. Still, humans have to specify the
desired properties of the software to be verified.

In order to produce reliable and dependable software, it is necessary to create a specification
capturing semantics of the software and verify the desired properties thereof. This requires
using an appropriate specification platform featuring verification tools. In the design, this
can help to form the software architecture that enables the implementation to satisfy the
properties. Later in the development process, the properties of the code have to be verified
as well. Here, as the recent research shows, code level specification, usually in the form
of annotations, is more appropriate than re-using the design specification and extracting
information from it [29]. Nonetheless, maintaining consistency between the design and
code level is a challenging task.

1. Introduction

In this thesis, we focus on the methods improving software design and verification. This
spans from various approaches to capturing the desired properties and modeling software
behavior (semantics) to techniques of verifying the validity of properties at the code level.

First, we focus on software behavior specification. The challenge here is to capture
the desired properties of the system, while still keeping the specification reasonably simple
to be able to maintain it, communicate it, and analyze its properties. This especially
employs using an appropriate specification language. With a sufficient expressiveness of the
language at one hand, one has to keep in mind the complexity of the verification process
on the other hand. This means that a compact yet expressive specification language,
model checking (or another kind of formal analysis) of which is infeasible, is practically
not very useful. In Chapter 2, we describe our research in this area, applied in the domain
of software components. In our research, we focused on both development of a suitable
specification language for software component behavior and development of algorithms
allowing for implementation and application of the verification tools on real-live component
applications. Our contribution is summed up in Chapters 4-7.

The second part of this thesis is devoted to code verification. This does not necessarily
imply direct analysis of source code, but usually employs a pre-processing compilation
phase, such as compiling Java code into Java bytecode and transforming C code into a
formula in propositional logic. In this part, we first focus on explicit code model checking
and verification of properties of Java programs. Here, we address the state explosion
problem [21], which is the major obstacle in application of explicit model checking in
practice. By means of dead-heap-variable analyses, we propose optimization of state space
that reduces both the representation of particular states and the number of states to be
explored. Our achievements are described in Chapter 8.

While being theoretically undecidable, code model checking can, in many cases, decide
on validity of software properties; however, its inherent complexity, exponential in the
size of the input program, limits its practical usability. Often, approximate results on
property violations are of great value. The imprecision of such verification results includes
not covering all the issues and reporting spurious ones. It is then up to the developer
to investigate them and decide about their relevance. Such an approximate piece of
information can be computed by means of static analysis. Its advantage over model
checking is a lower complexity—while model checking works upon the state space of
the input program, which can grow exponentially due to non-deterministic user input
and thread interleavings, static analysis uses directly the code representation, without
generating its state space. The challenge of designing a static-analysis algorithm is to
balance its precision with its performance. Low precision of the algorithm results in
many spuriously reported issues, while low performance of a precise algorithm hinders
practical usability of the corresponding tool in the development process. In this area, we
focus on static analysis of dynamic languages, such as PHP and JavaScript, to reveal
vulnerabilities (potential security problems) of web applications. In particular, we aim at
reasonably precise representation of heap data structures to reduce the imprecision (i.e.,
over-approximation) of the analysis. The results are described in Chapters 9 and 10.

The final part of the thesis forming Chapters 11 and 12 is devoted to the area of symbolic
verification. In particular, we focus on improving efficiency of verification methods

1. Introduction

employing Craig interpolants. The interpolants are used for capturing semantics of
programs (functions) in an over-approximate, i.e., simpler way, since a precise representation
is practically useless due to its high complexity and size. Similarly to the previous part, one
of the most burning issues here is the efficiency of the verification process; while it works
well for simple programs, scaling to larger real-life applications is still difficult to achieve.
Therefore, we address the problem of efficiency of the interpolation procedure. The smaller
representation of interpolants and the faster way they are computed, the more efficient
the overall verification is. In particular, we have extended the interpolation systems by
the option to specify a partial variable assignment, thus focusing the computed function
interpolant (function summary) on a specific context in which the corresponding function
is used. This not only helps to generate a more compact interpolant representation, but
also to make the computation procedure more efficient, both in terms of time and memory.

The main part of the thesis consists of the following papers and articles published at
international conferences or in international journals:

Martin Mach, Frantisek Plasil, and Jan Kofron: Behavior Protocols Verification: Fighting
State Fxplosion, International Journal of Computer and Information Science, Vol.6, Number
1, ACIS, ISSN 1525-9293, pp. 22-30, March 2005

Jan Kofron: Checking Software Component Behavior Using Behavior Protocols and Spin,
Proceedings of the 2007 ACM Symposium on Applied Computing, ACM, Seoul, Korea,
ISBN 1-59593-480-4, pp. 1513-1517, March 2007

Jan Kofron, Frantisek Pl4sil, and Ondfej Sery: Modes in component behavior specification
via EBP and their application in product lines, Information and Software Technology 51/1,
pp. 31-41, Elsevier, January 2009

Tomés Poch, Ondrej Sery, Frantisek Plsil, and Jan Kofron: Threaded Behavior Protocols,
Formal Aspects of Computing, Volume 25, Issue 4 , pp 543-572, ISSN 0934-5043, Springer-
Verlag, July 2013

Pavel Janc¢ik and Jan Kofron: On Partial State Matching, Formal Aspects of Computing,
ISSN: 1433-299X, pp. 1-27, Springer Verlag, January 2017

David Hauzar and Jan Kofron: Framework for Static Analysis of PHP Applications,
Proceedings of the 29th European Conference on Object-Oriented Programming (ECOOP
2015), July 2015

David Hauzar and Jan Kofron: WeVerca: Web Applications Verification for PHP, Proceed-
ings of the 12th International Conference on Software Engineering and Formal Methods
(SEFM’14), Grenoble, France. LNCS, September 2014

Pavel Jancik, Jan Kofron, Simone Fulvio Rollini, and Natasha Sharygina: On Interpolants
and Variable Assignments, Proceedings of Formal Methods in Computer-Aided Design
2014, Lausanne, Switzerland, October 2014

Pavel Jancik, Leonardo Alt, Grigory Fedyukovich, Antti E.J. Hyvarinen, Jan Kofron, and
Natasha Sharygina: PVAIR: Partial Variable Assignment InterpolatoR, Proceedings of
FASE’16, Eindhoven, Netherlands, April 2016

1. Introduction

CHAPTER 2

Specification of Software Behavior

Specification of software behavior and its properties is an important part of the development
process. Without a specification, one can hardly decide upon software correctness and
whether it fulfills the original expectations. Moreover, correctness, or error freedom, of
software is an aspect that is parametrized by the property or properties of interest; what
can be perceived as correct behavior in some cases, might be erroneous in other ones.
Therefore, the properties of interest are also to be captured.

2.1 Software components and services

Challenges and approaches. Software components have become a widely used mean of
software construction, both in industry and academia. A plenty of component systems have
been introduced, each one focusing on different aspects of the systems [11, 13, 14, 17, 18, 52].
Particular software components can be specified in terms of modeling (simulating) their
behavior and expressing their (both functional and extra-functional) properties. It is
worth mentioning that properties of a software component include not only its provided
properties, but also those required by other components, usually communicating with this
one (its environment).

Specification of software components is important for many reasons. First, for complex
software, composing components together is a non-trivial task. One has to pay attention
to fulfilling all the components requirements and achieve the intended functionality. Here,
the specification not only serves for checking the composition correctness, but also provides
the developer with a formal and precise description of the component functionality. In
other words, it can be seen as a form of developer documentation.

Second, for mission-critical software, which is usually not that large, absence of errors
and adherence to the specification is of particular importance. This includes software in
areas such as avionics, medical devices, and military devices. Here, more than elsewhere,

2. Specification of Software Behavior

deviation from the specification can have tragic consequences. Specification of particular
components helps to not only assemble the systems together and prove properties of
particular parts, but also to devise the validity of the overall system specification out of
these.

Specification of a software component does not involve just its type information, i.e., type
specification of provided (and required) interfaces. An important part of the specification
is also semantic information, i.e., description of the behavior of the component. This piece
of information can take a form of a temporal logic formulae, such as LTL and CTL [21], or
a model of abstract behavior of the component in the form of an automaton or generally a
type of state-transition system [31, 33, 36].

The semantic specification of a software component can capture both its functionality
and the assumed ways of using it. While the assumed way of usage is something one can
imagine as a set of allowed sequences of method calls or messages issued on the component,
the meaning of component’s functionality varies across the component systems. Since
components are usually understood as black or gray boxes, the functional specification
usually narrows to contracts or rules relating the component’s inputs and outputs. This
includes pre- and post-conditions of particular provided methods (or services) [10, 38] and
dependencies of usage of the required interfaces on particular provided ones [6, 8] and [44].

Contribution. Chapters 4-7 describe our development of a specification platform called
behavior protocols family. Here, particular specification languages model behavior of
particular components by means of communication protocols; this involves, for each
component, specification of allowed sequences of provided method calls and for each
provided method, a set of possible reactions of the component in terms of calling particular
required methods (i.e., those of required interfaces). Having all the components forming
a particular application specified in terms of behavior protocols, it is possible to check
compatibility of the components, i.e., the correctness of their composition. This involves
compatibility of the protocols of communicating components, but also, in hierarchical
systems, correctness of realization of each composed component by its sub-components.
We refer to those as horizontal resp. wvertical compliance [8]. Since validation of the
compliance relations by hand becomes practically impossible for applications consisting
of tens and more components, (semi-)automatic tools performing these tasks become a
necessity. Along the development, tools verifying correctness of component composition
in terms of both horizontal and vertical compliance [6, 9] were implemented for each
specification language in the context of the SOFA component system [18].

Verification of correctness of the communication among particular components signifi-
cantly helps during the design phase. Nonetheless, adhering to the specification when
implementing the system (which means implementing both primitive components in a
programming language and composite components by composition of other ones) is a
non-trivial task, too. Whereas the correctness of composition in case of the composite
components is already established at the design phase, correspondence of behavior of
primitive components with their specification is definitely not guaranteed. This problem
is undecidable in general, usually even after (reasonable) limiting both the specification
language and the programming one. Fortunately, methods for checking the correspondence

2. Specification of Software Behavior

working in most practical cases are available. In particular, for behavior protocols, these
include [39].

Hereby, we have naturally stepped to the topic of the following chapter—verification of
software properties at the code level.

2. Specification of Software Behavior

10

CHAPTER 3

Verification of Source Code

Creating a detailed specification of software semantics and consequently maintaining its
correspondence with the implementation is tedious and can be, by some, even perceived as
superfluous. Currently, the trend in this area is to specify the properties directly in source
code, usually by means of annotations [22, 26, 34]. Alternatively, the required properties
can be defined generally, that is independently of actual code, usually just reflecting
specifics of a particular domain [2] and [53]. The notion of a domain includes a particular
programming language and its specific issues (absence of null-pointer de-references in
C/C++ and Java) and particular software kinds, such as device drivers.

Verification of source code introduces a second-level check following the syntax and type
checks performed by a compiler. It is desirable that this semantic check discovers any
technical issue that may arise at runtime. Of course, this idea has its limits in terms of
what is the intended behavior of the software piece—things that are correct and intended
in one case can be wrong in another. This justifies the need for explicit specification in
cases where software reliability is of particular importance.

3.1 Explicit model checking

Challenges and approaches. The idea of model checking dates back to early 1980s.
Originally formulated for finite-state systems [19, 20, 25, 43], it allowed one to systematically
and automatically verify properties of computational systems, if their model in the form
of a finite state graph was available. The state space of complex software is often infinite
(or so large that it is considered infinite from the analysis point of view), thus disallowing
a straightforward application of model checking in general. Moreover, even for finite-state
software, constructing its state space results in large transition systems, whose traversal is
practically infeasible, anyway. Despite this, a lot of attention has been paid to developing
appropriate methods to face these issues and as for today, several explicit code model
checkers are available and even used outside academia in industry [30, 49].

11

3. Verification of Source Code

Success of a particular explicit model checking method and the corresponding tool crucially
depends on its practical usability. This means both its performance and the set of properties
it is able to verify. As to the supported properties, most of the tools in this area are able
to verify reachability properties, usually materialized as assertions inside the code. This
allows for simplification of the overall model checking process, focusing on reduction of the
state space needed to explore, and efficient traversal thereof. The reduction techniques
are in particular important in case of multi-threaded programs, where the state explosion
problem arises in a huge extent.

Partial Order Reduction (POR) [21] is a reduction technique exploiting the fact that two
or more sequences of actions can result in the same state. Then, just a single sequence
from such set needs to be explored, while the other ones can be omitted. In the context of
code model checking, this corresponds to different thread schedulings when there is no
race condition in the code. This reduction is implemented in a form in all explicit state
model checkers today [30, 49] and significantly improves performance of these tools.

Other techniques focus on reduction of the state sizes, such as Dead Variables Reduction
(DVR). Based on the information which variables are accessed during a future execution,
i.e., the live variables, the representation of a state can be significantly reduced. The
problem here is to identify the live variables at particular program states efficiently. Our
research in this area is devoted to finding methods that identify future accesses to variables
and objects on the heap, given a program state. Even though several results in this
direction have been published so far [16, 35, 47|, they usually restrict themselves just
to local variables, or miss some important properties, such as sound support for multi-
threaded programs. Successful reduction of state representation by removing their dead
parts results not only in a more compact representation, but also decreases the number of
explored states, since more states are considered as equal; in particular those differing just
in the dead parts.

Contribution. Our results in this direction are described in Chapter 8. We address the
problem of dead variable analysis for data stored at the heap. In particular, this involves
fields of dynamically allocated objects, which are the most common type of objects in
Java programs. We have developed and implemented two types of analysis, one aiming at
speed and simplicity, while the other at precision and maximal state space reduction. The
methods are based on tracking live fields during state space traversal and identification
of states being equivalent in the values of these fields, i.e., omitting the dead ones. Our
experiments prove the technique useful; it has the potential to significantly decrease not
only the size of program state space, but also the size of particular state representation.

3.2 Static analysis

Challenges and approaches. In many cases, precise formal analysis of software prop-
erties is (computationally and sometimes even theoretically) infeasible. Here, static
analysis [15] can be applied and provide very useful results. Static analysis works at the

12

3. Verification of Source Code

level of code representation rather than at the level of the associated state space, which
results in better scaling and a wider set of programs that can be handled; the price paid
is a lower precision of the results in terms of over-approximation. When aiming at not
missing a violation of the specification, the method can yield false negatives; in other
words, it can report spurious specification violations. Static analysis can be also used as a
means of bug hunting. In such a case, it is more desirable that the reported specification
violations are real, with the possibility of not discovering all of them. Both cases can be
covered by static analysis, being set up different ways.

In our work, we focus on the first settings, i.e., we aim at discovering all potential issues;
the decision if a reported problem is real or spurious is a task for the user/developer. The
goal of static analysis can differ a lot in different cases, which also implies different kind of
information that is computed by it. We are concerned with information about data types
and values, based on which more specific information can be deduced; this can include
information about what variables can be influenced by user input and thus are subject to
security checks. This type of static analysis is called data-flow program analysis.

The high-level view on the data-flow-analysis algorithm is a cycle extending the set of
possible values (or types) of each program variable, based on the possible values of variables
influencing this one. The sets of possible values are extended until a fixed point is reached.
Since the fixed-point computation can take very long, i.e., many iterations of the main
cycle can be needed to reach it, widening of those sets of possible values that have met a
threshold size is made. Generally, widening extends the set of possible values by adding
new values without being a direct consequence of values of other variables. In particular,
this can be realized by assuming that a variable can take any value of its domain. Widening
thus becomes a source of over-approximation and, in turn, of reporting spurious issues.
Even without widening, spurious issues can be reported because some combination of
computed variable values might be infeasible in the given program.

To mitigate the impact of the over-approximation, several steps to improve the result
precision have been made. In general, the algorithm can take into account various aspects
of the program that is by default disregarded for the sake of analysis performance. Flow-
sensitive analysis takes into account the ordering of particular statements, i.e., their mutual
position in the program. Possible values of a variable can then be narrower. Path-sensitive
analysis computes several versions of possible value sets for each variable parametrized by
the conditional branches taken in the past. This is usually realized as adding the conditions
that determine the particular branches. Contert-sensitive analysis takes into account the
program point from which a particular function or method is called and computes several
versions of the possible value sets parametrized by this context. This kind of sensitiveness
make sense just for inter-procedural analyses, which is not always the case. Static analysis
can be made sensitive in any combination of the aforementioned dimensions, which usually
improves the precision, but lowers its performance.

Contribution. In our work, we focus on security analysis of dynamic languages, es-
pecially PHP. We are interested in detecting vulnerabilities, i.e., possibilities of leaking
and damaging data by means of passing malicious user input. The most famous types of
vulnerabilities are SQL injection (SQLi) and Cross-site scripting (XSS) attacks [48].

13

3. Verification of Source Code

It is not too difficult to design and implement fast data-flow analysis; the drawback is
usually its low precision. On the other hand, it is not too difficult to come up with a precise
analysis algorithm; the analysis then usually runs out of computational resources—memory
and time. A tool being very fast but imprecise in terms of reporting many spurious
warnings (next to the real ones) is not of much practical use. Similarly, a tool producing
precise results, but being too slow or even running out of memory in most cases would
not be more useful. Balancing these two aspects is a basic assumption for a success of an
analysis tool.

To achieve a reasonable precision of the analysis algorithm, it is necessary to represent the
data in a precise and easy-to-process way. In contrast to other state-of-the-art tools for
security analysis of PHP, we decided to support also the heap data structures and their
interconnections in terms of references with no particular nesting limit and most of the
PHP5 constructs such as classes, the eval function, and dynamic includes [40].

We have created an analysis framework for dynamic languages (PHP, JavaScript) with
a PHP front-end that demonstrates its usefulness. It provides the developers with an
easy way to implement a custom kind of data-flow analysis. The framework processes
the input program in two phases; in the first phase, the AST representation of the code
is created. This is not an easy task, since in dynamic languages, names of included files
can be computed at runtime, making the problem undecidable in general. Fortunately,
constructing filenames is often limited to using basic string operations, so in most cases,
this piece of information can be computed by means of static analysis. Consequently, the
basic information about data types and values are computed. Providing a second-phase
analysis is up to the developer. We have implemented a security analysis for PHP that
was able to find a previously unknown real vulnerability inside real code. The results of
our work are described in Chapters 9 and 10.

3.3 Symbolic verification methods

Challenges and approaches. Despite the success of explicit verification methods, they
still have to face several issues hindering its practical usability. While the approach of
state space traversal in an explicit way is not very complex in principle, the complexity
and practical time (and often also memory) requirements stemming from the fact that
the number of different thread schedulings grows exponentially in number of threads
and the program size significantly limits scaling of these methods. Symbolic verification
methods, on contrary, can handle the state explosion problem in much better way. Even
though usually being of the same theoretical complexity as the explicit methods, symbolic
methods can perform better in practice. However, they have their drawbacks, too. It
is usually principally difficult to support different aspects of programs, such as dynamic
heap allocation, and multi-threading, that are commonly used. Therefore, the available
approaches and tools are often limited and their application in industrial settings is not easy.
Nonetheless, significant advances have been recently made that contribute to practical
usability of the related tools [27, 32, 42, 51].

14

3. Verification of Source Code

Symbolic model checking, proposed by K. L. McMillan in his doctoral thesis [36] in 1992,
employs binary decision diagrams for representation of set of states. For symbolic methods
in code verification, different approaches are used. Some of them employ static analysis
and abstract interpretation, while others exploit SAT and SMT solvers. In the latter case,
the program is transformed to a propositional or a first-order-theory formula; consequently,
a SAT or SMT solver is called to decide on satisfiability of the formula, corresponding to
reachability of an error state. The hard part of the problem is thus yielded to a solver, while
the verification tool itself is responsible for preparing the solver input and interpreting the
solver results. Since for large programs, precise formula representations are impractical
due to their sizes, an abstraction method is to be employed. Here, Craig interpolation
plays a central role.

Given an unsatisfiable formula in the form A A B, Craig interpolant [24] is a formula [
such that (i) A — I, (ii) BAI — L, and (iii) I contains only variables common to both
A and B. Interpolants can be used for over-approximating sets of states, e.g., those that
are reachable after n steps of program execution. An interpolant can be perceived as a
proof that no error state (represented by the B sub-formula) is reachable from within
the states represented by the interpolant (containing all the states represented by the
A sub-formula). Such over-approximation introduces a source of imprecision, which can
manifest itself as a non-empty intersection of I and B, representing a spurious error-state
reachability. On the other hand, the benefit of employing interpolants lies in a much
smaller representation of sets of states compared to the original A sub-formula. Moreover,
the spurious errors can be detected and the interpolant refined—modified to become more
precise over-approximation of A not intersecting with B any more.

An interpolant is usually computed from a proof of unsatisfiability of A A B. There are
several algorithms for interpolant computation [37, 41, 46] called interpolation systems.
Interpolants computed by different systems differ in size and in logical strength. The
Labeled Interpolation System (LIS) [46] generalizes different approaches and formulates
criteria for comparing the strength of different interpolants. It is worth mentioning that
for different verification tasks, interpolants of different strength are needed. In addition,
interpolants computed by a specific interpolation system have properties that others lack.

Since the motivation for using interpolants in program verification is to reduce the size of
set-of-states representation, it is desirable that the interpolants are as compact as possible.
Various techniques for achieving this goal are used; they employ reductions of the proof of
unsatisfiability [12, 23, 28, 45|, from which interpolants are computed, and optimizations
of the interpolant construction itself [45]. Smaller interpolants not only save memory, but
also the time in the subsequent verification steps in which they are involved.

Contribution. In our work, we focused on faster computation of smaller interpolants
by exploiting partial variable assignments. Such an assignment corresponds to ignoring
parts of the program as a consequence of added knowledge about, e.g., method parameters.
In turn, this results not only in potentially smaller interpolants, but also in more efficient
computation of them. Moreover, it does not restrict the application area, since in the case
of an empty variable assignment, our technique is equivalent to the standard ones. Our
results in this direction are described in Chapters 11 and 12.

15

3. Verification of Source Code

16

CHAPTER 4

Behavior Protocols Verification: Fighting State
Explosion

Authors: Martin Mach, Frantisek Plasil, and Jan Kofron

[8] International Journal of Computer and Information Science, Vol.6, Number 1, ACIS,
ISSN 1525-9293, pp. 22-30, March 2005

17

4. Behavior Protocols Verification: Fighting State Explosion

18

CHAPTER 5

Checking Software Component Behavior Using
Behavior Protocols and Spin

Authors: Jan Kofron

[6] Proceedings of the 2007 ACM Symposium on Applied Computing, ACM, ISBN 1-
59593-480-4, pp. 1513-1517, DOI: 10.1145/1244002.1244326, Seoul, Korea, March
2007

19

5. Checking Software Component Behavior Using Behavior Protocols and Spin

20

CHAPTER 6

Modes in component behavior specification via EBP
and their application in product lines

Authors: Jan Kofron, Frantisek Plasil, and Ondiej Sery

(7] Information and Software Technology 51/1, pp. 31-41, Elsevier,
DOI: 10.1016/j.infsof.2008.09.011, January 2009

21

6. Modes in component behavior specification via EBP and their application in product lines

22

CHAPTER 7

Threaded Behavior Protocols

Authors: Tomas Poch, Ondiej Sery, Frantisek Plasil, and Jan Kofron

[9] Formal Aspects of Computing, Volume 25, Issue 4 , pp 543-572, ISSN 0934-5043,
DOI: 10.1007/500165-011-0194-3, Springer-Verlag, July 2013

23

7. Threaded Behavior Protocols

24

CHAPTER 8

On Partial State Matching

Authors: Pavel Jané¢éik and Jan Kofron

[4] Formal Aspects of Computing, ISSN: 1433-299X, pp. 1-27,
DOI: 10.1007/500165-016-0413-z, Springer Verlag, January 2017

25

8. On Partial State Matching

26

CHAPTER 9

Framework for Static Analysis of PHP Applications

Authors: David Hauzar and Jan Kofron

[2] Proceedings of the 29th European Conference on Object-Oriented Programming
(ECOOP 2015),
DOI: 10.4230/LIPlcs. ECOOP.2015.68910.4230/LIPIcs. ECOOP.2015.689, Prague,
Czech Republic, July 2015

27

9. Framework for Static Analysis of PHP Applications

28

CHAPTER 10

WeVerca: Web Applications Verification for PHP

Authors: David Hauzar and Jan Kofron

[1] Proceedings of the 12th International Conference on Software Engineering and Formal
Methods (SEFM’14), LNCS, DOI: 10.1007/978-3-819-10431-7_24, Grenoble, France,
September 201

29

10. WeVerca: Web Applications Verification for PHP

30

CHAPTER 11

On Interpolants and Variable Assignments

Authors: Pavel Jancik, Jan Kofron, Simone Fulvio Rollini, and Natasha Shary-
gina

[5] Proceedings of Formal Methods in Computer-Aided Design 2014,
DOI: 10.1109/FMCAD.2014.698760/, Lausanne, Switzerland, October 201}

31

11. On Interpolants and Variable Assignments

32

CHAPTER 12

PVAIR: Partial Variable Assignment InterpolatoR

Authors: Pavel Jancik, Leonardo Alt, Grigory Fedyukovich, Antti E.J. Hyvari-
nen, Jan Kofron, and Natasha Sharygina

[3] Proceedings of FASE’16, DOI: 10.1007/978-3-662-49665-7_25, Eindhoven, Nether-
lands, April 2016

33

12. PVAIR: Partial Variable Assignment InterpolatoR

34

CHAPTER 13

Conclusion and future work

This thesis provides an overview of my contribution to the field of software verification. It
ranges from creating semantic models for behavior of software components to techniques
improving the practical complexity of the verification tools. I emphasized that while
advances in the direction of new algorithms’ development are of a great importance, new
optimizations of verification tools and their performance are a necessity.

Building reliable and error-free software is a very important goal nowadays. Absence of
errors in software can be achieved by different means, at various stages of the development
process. On one hand, a formal specification of desired properties at the design phase
helps to create software that is maintainable, scalable, and satisfies high-level requirements.
On the other hand, verification of properties at the code and bytecode level can assure
absence of low-level errors at runtime. Thus, we address the issues of software correctness
during the whole development process, at all levels of design.

Verification (especially by means of model checking) of software properties is an algo-
rithmically undecidable problem in general. Nonetheless, successful attempts to develop
methods and tools deciding validity of certain properties in particular cases have been
made; despite being often either unsound or incomplete, such tools are very useful in
practice. Another challenge in this area is capturing (and verifying) high-level design
properties, such as security and privacy aspects of user data, at the code level; while
finding a possible assertion violation is definitely very useful in the debugging phase,
high-level properties are usually not provable at the code level. In addition, maintaining
correspondence of a high-level design with the code in important aspects is rarely addressed
in research. Hence in my view, the next step to be taken in this area is to develop methods
for linking the high-level (design) properties with abstractions at the code level allowing
for maintaining and verifying consistency between these two levels. This can be achieved,
e.g., by inserting assert-like statements and special annotations into the code or creating a
particular structure of method (or function) bodies. Even though some tools providing
such functionality have already been made, e.g., for UML, little attention has been paid
to preserving important properties so far (traceability) during the development process.

35

13. Conclusion and future work

To achieve this goal, extending an existing programming language by new abstractions
or design a new one, supporting this kind of connections, is needed. To avoid changes
breaking desired properties, support at the side of an integrated development environment
(IDE), preferably also providing the verification functionality, becomes a necessity.

While the paragraphs above describe our vision at a high level, below, we pinpoint particular
steps to be taken helping in achieving the goal of a practically usable verification platform.

In the area of static analysis of dynamic languages, we plan to improve the efficiency of the
memory representation to keep precision of our analysis and improve the performance in
terms of memory consumption, which is currently the main limiting factor of the framework.
While the precision is satisfactory—an acceptable rate of false negatives is produced, unlike
in the case of other tools, memory demands for analysis of more complex PHP programs is
beyond what a usual desktop PC can offer, making the framework hard to be used on daily
basis by software developers. This means either proposing a better memory representation
or extending the analysis algorithm to differentiate among particular situations (memory
patterns) making the representation more compact.

In the area of symbolic software-verification methods, improving performance is one of the
main factors motivating further research. Even though by our improvements, we manage
to decrease both memory demands and verification time significantly, our method still
suffers from low practical usability in terms of scaling to large programs. A very promising
direction here is to extend the partial variable assignment interpolation system currently
encoding the input program into propositional formulas to a first-order logic. Using a
logic such as Linear Integer Arithmetic (LIA) allows one to drop the expensive step of
encoding the program variables into Boolean ones, substantially decreasing the size of the
verification condition. Instead of an SAT solver, an SMT solver is to be used, then. Even
though an SMT call is usually more expensive than an SAT call, the size of the formula
can be significantly smaller for a higher-order logic; recent research results show viability
of such an approach.

36

Bibliography

Included Publications

1]

D. Hauzar and J. Kofron. WeVerca: Web Applications Verification for PHP. In
D. Giannakopoulou and G. Salaiin, editors, Software Engineering and Formal Methods:
12th International Conference, SEFM 2014, Grenoble, France, September 1-5, 201}.
Proceedings, pages 296-301, Cham, 2014. Springer International Publishing.

D. Hauzar and J. Kofron. Framework for Static Analysis of PHP Applications. In J. T.
Boyland, editor, 29th European Conference on Object-Oriented Programming (ECOOP
2015), volume 37 of Leibniz International Proceedings in Informatics (LIPIcs), pages
689-711, Dagstuhl, Germany, 2015. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

P. Jancik, L. Alt, G. Fedyukovich, A. E. J. Hyvérinen, J. Kofron, and N. Sharygina.
PVAIR: Partial Variable Assignment InterpolatoR. In P. Stevens and A. Wasowski,
editors, Fundamental Approaches to Software Engineering: 19th International Con-
ference, FASE 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, pages 419-434, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

P. Jancik and J. Kofron. On partial state matching. Formal Aspects of Computing,
pages 1-27, 2017.

P. Jancik, J. Kofron, S. F. Rollini, and N. Sharygina. On Interpolants and Variable
Assignments. In Proceedings of the 14th Conference on Formal Methods in Computer-
Aided Design, FMCAD ’14, pages 22:123-22:130, Austin, TX, 2014. FMCAD Inc.

J. Kofron. Checking Software Component Behavior Using Behavior Protocols and
Spin. In Proceedings of the 2007 ACM Symposium on Applied Computing, SAC ’07,
pages 1513-1517, New York, NY, USA, 2007. ACM.

J. Kofron, F. Pl4sil, and O. Sery. Modes in Component Behavior Specification via
EBP and Their Application in Product Lines. Inf. Softw. Technol., 51(1):31-41, Jan.
2009.

M. Mach, F. Plasil, and J. Kofron. Behavior Protocol Verification: Fighting State
Explosion. International Journal of Computer and Information Science, 6(1):22-30,
2005.

37

Bibliography

[9] T. Poch, O. Sery, F. Plasil, and J. Kofron. Threaded behavior protocols. Formal

Aspects of Computing, 25(4), July 2013.

Referenced Publications

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

The consolidated Ada Reference Manual, consisting of the International Standard
(ISO/IEC 8652:2012): Information Technology — Programming Languages — Ada,
2012.

Autosar: AUTomotive Open System ARchitecture. http://www.autosar.org/.

O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Linear-Time
Reductions of Resolution Proofs. In HVC pages 114-128, 2008.

S. Becker, H. Koziolek, and R. Reussner. Model-based performance prediction with
the palladio component model. In V. Cortellessa, S. Uchitel, and D. Yankelevich,
editors, WOSP, pages 54-65. ACM, 2007.

E. Borde and J. Carlson. Towards verified synthesis of procom, a component model
for real-time embedded systems. In 1/th International ACM SIGSOFT Symposium
on Component Based Software Engineering (CBSE). ACM, June 2011.

J. Boulanger. Static Analysis of Software: The Abstract Interpretation. Wiley, 2011.

M. Bozga, J. Fernandez, and L. Ghirvu. State space reduction based on live variables
analysis. In Static Analysis, 6th International Symposium, SAS °99, Venice, Italy,
September 22-24, 1999, Proceedings, pages 164—178, 1999.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper., 36(11-12):1257-1284, Sept. 2006.

T. Bures, P. Hnetynka, and F. Plasil. Runtime concepts of hierarchical software
components. International Journal of Computer & Information Science, 8(S):454-463,
sep 2007.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages 52-71,
London, UK, UK, 1982. Springer-Verlag.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.

Syst., 8(2):244-263, Apr. 1986.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.

38

Bibliography

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. Vce: A practical system for verifying concurrent c. In

Proceedings of the 22Nd International Conference on Theorem Proving in Higher
Order Logics, TPHOLs ’09, pages 23—42, Berlin, Heidelberg, 2009. Springer-Verlag.

S. Cotton. Two Techniques for Minimizing Resolution Proofs. In SAT, pages 306312,
2010.

W. Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Logic, 22(3):269-285, 1957.

E. Emerson and E. Clarke. Characterizing correctness properties of parallel programs
using fixpoints. Automata, Languages and Programming, 85/1980:169-181, 1980.

M. Fahndrich. Static verification for code contracts. In SAS’10 Proceedings of the
17th international conference on Static analysis. Springer Verlag, September 2010.

G. Fedyukovich, A. C. D’Iddio, A. E. J. Hyvéarinen, and N. Sharygina. Symbolic
detection of assertion dependencies for bounded model checking. In A. Egyed and
I. Schaefer, editors, Fundamental Approaches to Software Engineering: 18th Inter-
national Conference, FASE 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings, pages 186-201, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

P. Fontaine, S. Merz, and B. W. Paleo. Compression of Propositional Resolution
Proofs via Partial Regularization. In CADE-23, pages 237-251, 2011.

J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Miiller, and M. Parkinson. Behavioral
interface specification languages. ACM Comput. Surv., 44(3), 2012.

K. Havelund. Java pathfinder user guide. NASA Ames Research, 1999.

G. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11), volume 6806 of LNCS,
pages 5b85-591. Springer, 2011.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134-152, 1997.

G. T. Leavens and A. L. Baker. Enhancing the pre- and postcondition technique for
more expressive specifications. In J. M. Wing, J. Woodcock, and J. Davies, editors,
FM’99 — Formal Methods: World Congress on Formal Methods in the Development
of Computing Systems Toulouse, France, September 20-24, 1999 Proceedings, Volume
11, pages 1087-1106, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

39

Bibliography

[35]

[43]

[44]

[48]

M. Lewis and M. Jones. A dead variable analysis for explicit model checking. In Pro-
ceedings of the 2006 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation, 2006, Charleston, South Carolina, USA, January 9-10,
20006, pages 48-57, 2006.

K. L. McMillan. Symbolic model checking — an approach to the state explosion
problem. PhD thesis, Carnegie Mellon University, 1992.

K. L. McMillan. Interpolation and SAT-Based Model Checking. In Proc. CAV 03,
pages 1-13, 2003.

B. Meyer. Applying “design by contract”. Computer, 25(10):40-51, Oct. 1992.

P. Parizek, F. Plasil, and J. Kofron. Model checking of software components: Com-
bining java pathfinder and behavior protocol model checker. 2012 35th Annual IEEE
Software Engineering Workshop, 00:133-141, 2006.

PHP: Hypertext Preprocessor. http://www.php.net/.

P. Pudlédk. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log., 62(3):981-998, 1997.

C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person,
and M. Pape. Combining unit-level symbolic execution and system-level concrete
execution for testing nasa software. In Proceedings of the 2008 International Sym-
posium on Software Testing and Analysis, ISSTA ’08, pages 15-26, New York, NY,
USA, 2008. ACM.

J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in cesar.
In Proceedings of the 5th Colloquium on International Symposium on Programming,
pages 337-351, London, UK, 1982. Springer-Verlag.

R. Reussner, . Poernomo, and H. W. Schmidt. Reasoning about software architectures

with contractually specified components. In Component-Based Software Quality, pages
287-325, 2003.

S. F. Rollini, R. Bruttomesso, N. Sharygina, and A. Tsitovich. Resolution Proof
Transformation for Compression and Interpolation. Formal Methods in System Design,
pages 1-41, 2014.

S. F. Rollini, O. Sery, and N. Sharygina. Leveraging interpolant strength in model
checking. In Proc. CAV’12, volume 7358 of LNCS, pages 193—-209. Springer, 2012.

J. P. Self and E. G. Mercer. On-the-fly dynamic dead variable analysis. In Model
Checking Software, 14th International SPIN Workshop, Berlin, Germany, July 1-3,
2007, Proceedings, pages 113-130, 2007.

M. Shema. Hacking Web Apps: Detecting and Preventing Web Application Security
Problems. Syngress Media. Syngress, 2012.

40

Bibliography

[49] V. Still, P. Rockai, and J. Barnat. Divine: Explicit-state 1tl model checker. In

[50]

[51]

[52]

[53]

M. Chechik and J.-F. Raskin, editors, Tools and Algorithms for the Construction and
Analysis of Systems: 22nd International Conference, TACAS 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pages 920-922, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

Tesla car crash. https://www.theguardian.com/technology/2016/jun/30/tesla-
autopilot-death-self-driving-car-elon-musk, June 2016.

N. Tillmann and P. de Halleux. Pex - white box test generation for .net. In Proc.
of Tests and Proofs (TAP’08), volume 4966, pages 134-153, Prato, Italy, April 2008.
Springer Verlag.

R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The koala component
model for consumer electronics software. Computer, 33(3):78-85, Mar. 2000.

Microsoft Visual Studio. https://www.visualstudio.com/.

41

	Introduction
	Specification of Software Behavior
	Software components and services

	Verification of Source Code
	Explicit model checking
	Static analysis
	Symbolic verification methods

	Behavior Protocols Verification: Fighting State Explosion
	Checking Software Component Behavior Using Behavior Protocols and Spin
	Modes in component behavior specification via EBP and their application in product lines
	Threaded Behavior Protocols
	On Partial State Matching
	Framework for Static Analysis of PHP Applications
	WeVerca: Web Applications Verification for PHP
	On Interpolants and Variable Assignments
	PVAIR: Partial Variable Assignment InterpolatoR
	Conclusion and future work

