
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Adam Huječek

Meta-Adaptation Strategies for Adaptation in Cyber-

Physical Systems

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Doc. RNDr. Tomáš Bureš, Ph.D.

Study program: Informatics

Study branch: Software Systems

Prague 2015

i

I declare that I carried out this master thesis independently, and only with the cited sources,

literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/2000

Sb., the Copyright Act, as amended, in particular the fact that the Charles University in

Prague has the right to conclude a license agreement on the use of this work as a school work

pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, November 20, 2015 ……….………………………

Adam Huječek

ii

Acknowledgement

I would like to thank everyone whose lectures and classes I had the honor to attend to

during my studies at Faculty of Mathematics and Physics at Charles University in

both Bachelor and Master study programs. They developed my interest in computer

sciences and made this work possible.

Namely, I thank my supervisor Tomáš Bureš for his help and support and for

introducing me to the great team which has been working on the IRM and DEECo

for years making them well-thought, deep and complex projects. It is a pleasure to

work with them. My deepest gratitude goes to Ilias Gerostathopoulos whose advice

and guidance helped to overcome my inexperience in the world of research. His

encouragement and enthusiasm proved to be exactly what I needed in the time of

crisis. I am grateful to Dominik Škoda for fruitful collaboration on implementations

of the meta-adaptation strategies as well as the rest of my co-authors Petr Hnětynka

and František Plášil.

I would also like to thank my current employer for their patience, support and

time flexibility that allowed me to continue my studies while gaining much needed

experience in the field.

Above all, I thank my family and friends for creating a perfect environment for

my studies and their unshakeable support.

iii

Anotace

Název práce Meta-adaptační strategie pro adaptaci v cyber-physical systémech

Autor Adam Huječek

Katedra Katedra distribuovaných a spolehlivých systémů

Matematicko-fyzikální fakulta
Univerzita Karlova v Praze

Vedoucí

diplomové práce

Doc. RNDr. Tomáš Bureš, Ph.D.

bures@d3s.mff.cuni.cz
(+420) 2 2191 4236

Adresa Katedra distribuovaných a spolehlivých systémů
Univerzita Karlova v Praze

Malostranské náměstí 25

118 00 Praha

Abstrakt

Při návrhu komplexních cyber-physical systémů je často nemožné dopředu předvídat

všechny potencionální situace a připravit odpovídající taktiky pro adaptaci na změny

v dynamickém prostředí, což velmi škodí robustnosti a spolehlivosti těchto systémů.

Ze situací mimo očekávanou „obálku adaptability“ mohou povstat všemožné

problémy, od poruchy jedné komponenty až po selhání celého systému.

Samoadaptační přístupy jsou typicky omezeny na volbu taktiky z pevně dané

množiny taktik. Meta-adaptační strategie posouvají hranice adaptability vlastní

systému vytvářením nových taktik za běhu. Tato práce rozvíjí a implementuje

vybrané meta-adaptace pro IRM-SA v jDEECo a vyhodnocuje jejich účinnost na

experimentálním scénáři založeném na případové studii o koordinaci hasičů.

Klíčová slova

Meta-adaptační strategie, adaptační taktiky, cyber-physical systémy

mailto:hnetynka@d3s.mff.cuni.cz

iv

Annotation

Title Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems

Author Adam Huječek

Department Department of Distributed and Dependable Systems

Faculty of Mathematics and Physics
Charles University in Prague

Supervisor of

the master thesis

Doc. RNDr. Tomáš Bureš, Ph.D.

bures@d3s.mff.cuni.cz
(+420) 2 2191 4236

Mailing

address

Department of Distributed and Dependable Systems
Charles University in Prague

Malostranské náměstí 25

118 00 Prague, Czech Republic

Abstract

When designing a complex Cyber-Physical System it is often impossible to foresee

all potential situations in advance and prepare corresponding tactics to adapt to the

changes in dynamic environment. This greatly hurts the system‟s resilience and

dependability. All kinds of trouble can rise from situations that lie beyond the

expected “envelope of adaptability” from malfunction of one component to failure of

the whole system. Self-adaptation approaches are typically limited in choosing a

tactic from a fixed set of tactics. Meta-adaptation strategies extend the limits of

system‟s inherent adaptation by creating new tactics at runtime. This thesis

elaborates and provides implementations of selected meta-adaptation strategies for

IRM-SA in jDEECo as well as their evaluation in a scenario based on a firefighter

coordination case study.

Keywords

Meta-adaptation strategies, Adaptation tactics, Cyber-physical systems

mailto:hnetynka@d3s.mff.cuni.cz

v

Contents

1. Introduction ... 1

1.1. Towards Cyber-Physical Systems ... 1

1.2. Problem Statement .. 2

1.3. Research Goals ... 3

1.4. Structure ... 3

2. Background and Running Example .. 5

2.1. Example of a Cyber-Physical System .. 5

2.2. Introduction to IRM-SA and DEECo .. 7

Figure 2: Fragment of IRM-SA model of the case study. 8

2.3. Case Study Description ..10

2.4. Invariant Refinement Method ..12

2.5. IRM-SA ...14

2.6. DEECo and jDEECo ..17

3. Analysis / Goals Revisited ..23

4. Meta-Adaptation Strategies ...25

4.1. Tactics Generated by Data Classification ...26

4.2. Tactics Generated by Period Adjusting ..28

4.3. Tactics Generated by Assumption Parameters Adjusting32

5. Implementation as jDEECo Plugins ..36

5.1. Overall Picture ...36

5.2. MetaAdaptationPlugin ...38

Figure 18: Package of MetaAdaptationPlugin inside its project.38

5.3. CorrelationPlugin...40

Contents

vi

Figure 21: Package of CorrelationPlugin inside its own separated project.........41

5.4. (1+1)-ONLINE EA Plugins ...42

5.4.1. PeriodAdaptationPlugin ...46

Figure 25: Package of PeriodAdaptationPlugin inside its project.46

5.4.2. AssumptionParameterAdaptationPlugin49

6. Experimental Evaluation ...52

6.1. Experiment Description ...52

6.1.1. IRM-SA Model for the Case Study...52

Figure 32: simplified model of the case study for the evaluation52

6.1.2. Scenario description ...54

6.2. Experiment Evaluation...56

7. Related Work ..58

8. Conclusion & Discussion ..60

8.1. Improvements of the Current Implementation60

8.2. Possible Extensions ...61

Bibliography ..63

List of Abbreviations ...67

APA – Assumption Parameters Adjusting strategy ...67

Attachments ...68

Chapter 1

1

1. Introduction

This chapter contains introduction into the context of Cyber-Physical Systems

while explaining basic terms used throughout this work and its main goals as well as

the structure of this thesis.

1.1. Towards Cyber-Physical Systems

With the arrival of low-cost mobile embedded devices capable of complicated

networking and complex computing comes a great opportunity for large distributed

systems which could significantly improve quality of life by providing high-value-

added services. Webs of elements interconnected by wireless technologies bringing

these services constitute Cyber-Physical Systems (CPS) which addresses various

challenges both social and technical in the real world. One example is intelligent

transportation system where road infrastructure consisting of traffic lights, digital

road signs, car parks and recharge stations for electric automobiles communicates

with nearby vehicles in order to achieve efficient usage of limited resources such as

road capacity, fuel and parking space. By exchanging information the vehicles can

group together into autonomous cooperating fleets. Another example is smart malls,

where customers‟ preferences can be used to advertise favorable deals right on their

smart phones as they go by and where crowd can be recommended optimal routes to

destination shops during holiday shopping sprees which could also shorten long

waiting lines. Other examples range from smart exhibition centers, autonomous

robots and smart electric grids to emergency coordination systems. A concrete

example of firefighter coordination system is described in detail in Section 2.1.

As seen from the numerous examples, the class of CPS is large and expansive,

that is “engineered systems that are built from, and depend upon, the seamless

integration of computational algorithms and physical components” [1]. European

H2020 research agenda regards CPS to be “the next generation of embedded ICT

systems that are interconnected and collaborating, providing citizens and businesses

with a wide range of innovative applications and services” [2].

Main features of CPS are high dynamicity, open-endedness, but also

dependability and resilience to cope with ever-changing physical environment whose

properties are often uncertain. As a significant portion of CPS is life-critical,

Chapter 1

2

dependability is a very important requirement. The unpredictability of the

environment emphasizes the need of self-adaptability which means systems change

their internal state and behavior to react to external impulses. However, typical

existing approaches for self-adaptation cannot handle well all situations because they

choose tactic from a fixed set which is difficult to design correctly for complex

systems so that all mandatory functionality is unaffected under any circumstances.

1.2. Problem Statement

Self-adaptability, i.e. the ability to alter system‟s behavior or structure in

response to external stimuli and changes in the environment, is an important feature

of any efficient and dependable CPS. There are three typical ways for achieving self-

adaptation in software systems: (i) by designing detailed application mode, e.g.,

Markov Decision Processes (MDP), and employing simulations or other means of

state-space traversal to infer the best response of the system, (ii) by identifying

control parameters and employing feedback-based control techniques from control

theory, and (iii) by reconfiguring architecture models, typically with the help of

Event-Condition-Action rules – architecture-based self-adaptation.

When facing a large complicated distributed systems such as CPS, method (iii),

i.e. high level self-adaptation based on architecture models, is preferred in general

[3], [4], [5], [6]. Self-adaptation rules in (iii) manifests in invoking certain suitable

architecture reconfiguration based on satisfaction of particular conditions [3], [4],

[7]. The results of adaptation are usually measured by satisfaction of system goals.

The adaptation action enables or disables an activity, generally called tactic [3], in

the form of component, component process or binding between components. These

methods (i-iii) select an action from a pre-designed fixed set of operations based on

observed state of the environment, so self-adaptation in (iii) can be interpreted as

choosing subset of tactics from a fixed superset.

The problem lies in inherent unpredictability in the realm of CPS, such as

network instability, hardware malfunctions or other physical world hazards, which

renders anticipating all potential circumstances in advance at design time infeasible.

Therefore, CPS may encounter situations where adaptation by switching between

tactics fails as no combination of predefined tactics is applicable in the current

context.

Chapter 1

3

1.3. Research Goals

Responding to the challenges presented in Section 1.2, this thesis focuses on

providing means to deal with unanticipated runtime situations in CPS which enhance

IRM-SA [8], [9] design and runtime by elaborating and implementing the concept of

meta-adaptation [10]. These meta-adaptations push the limits of systems‟

adaptability by creating new tactics at runtime to cope with dynamic changes in the

environment and improve overall system utilities. The behavior of meta-adaptations

at runtime can be influenced at design time of the CPS but the amount of initial input

needed is kept at minimal possible level.

The primary intention is to present the idea of meta-adaptation strategies which

is in fact mostly agnostic to adaptation method and implementation framework and

to provide implementation of example strategies as a proof of concept to IRM-SA

architecture-based adaptation method. The running example of firefighter

coordination system in jDEECo [11], [12], [13] serves as a context to

experimentation and evaluation of the proposed approach.

This thesis targets the following research goals:

G1 The first goal is to elaborate the proposed meta-adaptation strategies,

their potential mutual cooperation and embedding into greater context.

G2 The second goal is to implement examples of meta-adaptation

strategies as jDEECo plugins which commence functioning when

IRM-SA adaptation method fails to provide suitable adaptation tactic.

G3 The last goal is to prepare the experimental environment in the context

of firefighter case study to evaluate the implementation of the meta-

adaptation strategies.

1.4. Structure

The thesis is structured in the following way. First, Chapter 2 introduces an

example of CPS (Section 2.1), detailed description of the case study based on the

example and technological background needed to fully understand the concepts and

terms used throughout the thesis. Particularly, IRM (Section 2.4), IRM-SA (Section

2.5) and DEECo & jDEECo (Section 2.6) are presented. Chapter 3 provides an

analysis of limitations of combination of IRM-SA and jDEECo and formulates

requirements based on thesis goals dealing with these weaknesses. Chapter 4

Chapter 1

4

contains descriptions of meta-adaptation strategies further referenced in the thesis

and their relationships focusing on goal G1. Chapter 5 presents the architecture of

framework supporting meta-adaptation (Section 5.1 and 5.2) as well as information

about individual implementations of the meta-adaptation strategies dealing with goal

G2. The results of the evaluation of the firefighter case study as required by goal G3

can be found in Chapter 6. The context of the research and the comparison of the

meta-adaptation strategies and other related approaches are provided in Chapter 7.

Finally, Chapter 8 then concludes the thesis and gives some ideas to improve and

extend the outcomes of the thesis.

Chapter 2

5

2. Background and Running Example

The first sections of this chapter contain description of the case study,

introduction into Invariant Refinement Method and how it can be exploited to model

the case study. Basic concepts of DEECo and particularities of its Java

implementation jDEECo can be found in the second half of sections in this chapter.

2.1. Example of a Cyber-Physical System

To better illustrate the context and challenges of Cyber-Physical Systems, the

following text describes a simple scenario based on real-life real-scale case study that

has been proposed for the evaluation of distributed self-adaptive systems, Firefighter

Coordination System [8]. A team of firefighters divided into tactical groups of

several firefighters is deployed on the emergency field. Each group is led by a group

leader (officer) who aggregates the data of their subordinates‟ status and

environment. The intention is that each leader can deduce whether any of their group

members is in danger and take strategic decisions. Example of such mission can be

seen in Figure 1.

The communication is done via low-power nodes integrated into their personal

protective equipment. Every node is configured at runtime depending on the task

assigned to its bearer. For example, a hazardous situation might need closer

monitoring of a certain parameter (e.g., temperature).

The group leaders use tablets to display model of the current situation on a map

and also detailed information provided by low-power nodes are shown, i.e.

information about position, external temperature, battery level and oxygen level.

These data are crucial for creating overall picture of the status of the current

operation and for giving the appropriate orders or taking corresponding measures to

avoid casualties.

Such a coordination system comes with a number of challenges. Its demands on

stability, safety and performance are obviously high. Though no guaranties for end-

to-end response time are available on top of opportunistic ad-hoc networks assumed

to operate beneath the system. Energy consumption should be minimal. Sensors and

other component malfunctions cannot be ruled out. What if the temperature starts

providing inaccurate readings or fails completely at runtime? What if GPS

Chapter 2

6

connection is not available inside the structure firefighters operate in? What if group

members lose connection to their group leader?

In the circumstances listed above, latest information available is the ground for

adaptation of the behavior of every node. For instance, the tactic using indoor

tracking system needs to replace the tactic using GPS to detect position if GPS signal

becomes too weak. Other tactics ranges from delegating the communication with the

group leader to a nearby firefighter if connection to the leader is lost, to changing the

frequency of the sensor sampling.

However, it is not possible to list every situation that could trigger adaptation

with non-zero probability at design time of the firefighter coordination system. The

environment is too unpredictable, complex and dynamic. Far better approach is to

Figure 1: Firefighter coordination case study.

Chapter 2

7

build framework where it is possible to dynamically alter its behavior by (i)

generating new tactics on demand, and (ii) using these tactics in adaptation actions to

deal with unanticipated circumstances.

2.2. Introduction to IRM-SA and DEECo

Invariant Refinement Method for Self-Adaptivity (IRM-SA) [8], [9] is a

requirements-oriented design method targeted for domain of CPS. It is based on an

iterative approach of refining system requirements from general one to requirements

on certain components. This method enables to trace software artifacts to system-

level goals and thus contributes to dependability. The different system or component

modes emerge from different operational contexts captured by IRM-SA as design

alternatives, which greatly boosts adaptability.

The basic concept of IRM-SA is invariant that describe properties of the system-

to-be during its whole lifecycle. Invariants express goals and requirements of the

system. There are several different sub-kinds of invariants. Process invariants refer

only to one component and its fields. Exchange invariants transfer data from fields of

one component to other component‟s field. Assumptions are a special kind of

invariant describing conditions expected to hold about the environment, thus an

assumption is not expected to be maintained by the system. The invariants constitute

a hierarchical system, resembling oriented forest of invariants. The orientation

represents refinement of higher level invariants into lower level invariants, either as

AND-decomposition or OR-decomposition. The latter can capture different design

alternatives with an assumption guarding each variant covering the state of the

environment. The IRM-SA design method starts with a set of top-level invariants and

ends when every leaf invariants is either Process invariant, Exchange invariant or

Assumption.

For example, consider invariant (1) in Figure 2, which declares that the leader of

each firefighter group (officer) needs an up-to-date view (encapsulated in the field

positionMap) of their group members‟ location. This “necessity” is AND-

decomposed into invariant (2), which happens to be exchange invariant describing

the necessities of propagating the position from each member to the leader, and

invariant (3) stating necessity of determining the position on the side of each

member. Further decomposition of invariant (3) is an example of captured design

Chapter 2

8

alternatives. It can be satisfied either by determining the position through an indoors

tracking system – invariant (5) – or a Global Positioning System (GPS) – invariant

(7). The satisfaction of assumptions (4) and (6) is monitored at runtime and the

system switches to the activity bound to the tree‟s branch currently in effect.

Figure 2: Fragment of IRM-SA model of the case study.

IRM-SA is an independent method without any other dependencies, however its

concepts are very well aligned with the abstractions and mechanisms featured in

Dependable Emergent Ensemble of Components (DEECo) [11], [12] which is a

component system specifically targeted for creating highly dynamic CPS. It features

two basic abstractions – components and ensembles. Components are autonomous

units of computation and deployment which contain knowledge (their data fields

representing the state of the component) and processes operating on knowledge of

the individual component. The components are strictly separated and cannot

explicitly communicate with each other. The only possible way of communication is

indirect via ensembles, which corresponds to how exchange invariants of IRM-SA

work, i.e. one component‟s knowledge is transformed into knowledge of another

Firefighter

+ id
+ missionId
+ batteryLevel
+ position
+ temperature

Officer

+ id
+ missionId
+ batteryLevelMap
+ positionMap
+ temperatureMap

(1) Up-to-date GL::positionMap, w.r.t. GM::position,
is available

(2) GL::positionMap – GL s belief
over the GM::position – is updated

every 2 seconds (3) GM::position is determined

(4) GM indoors

X

(5) GM::position is determined by
ITS every 1 second

P
(7) GM::position is determined by

GPS every 1 second

P

(6) GM outdoors

Group Leader [GL]

[GM] Group Member

Component Invariant

X

Exchange
Invariant

Assumption
Takes-role

relation
OR

decomposition
AND

decomposition

Process
Invariant

P

Chapter 2

9

component. (e.g., Figure 3, lines 25-26). Ensembles are thus groups of associated

components exchanging data and cooperating to achieve a specific objective.

Components‟ memberships in ensembles are dynamic, that is periodically updated

with regards to component‟s knowledge accessed through ensemble-specific

interfaces.

As hinted above, IRM-SA to DEECo mapping is straightforward. IRM-SA

components correspond to DEECo components, process invariants to component

processes, exchange invariants to ensembles and assumptions to DEECo runtime

monitors. The DEECo process coinciding to process invariant (7) from IRM-SA

graph and ensemble matching exchange invariant (2) can be seen in Figure 3, lines

12-17 and 25-26. The adaptation logic used by DEECo systems to turn on and off

particular features is exploited to switch to IRM-SA graph tree branch currently in

Figure 3: Fragment of case study components and ensembles in DEECo DSL.

1. interface GroupMember:
2. missionId, position
3. interface GroupLeader:
4. missionId, positionMap
5.
6. component Firefighter features GroupMember
7. knowledge:
8. id = 59
9. position = { x = 49.04606, y = 15.093519 }
10. temperature = 45.2
11. …
12. process determinePositionFromGPS
13. out position
14. function:
15. position.x ← GPSSensor.readX()
16. position.y ← GPSSensor.readY()
17. scheduling: periodic (500ms)
18. … /* other process definitions */
19.
20. ensemble PositionExchange:
21. coordinator: GroupLeader
22. member: GroupMember
23. membership:
24. member.missionId == coordinator.missionId
25. knowledge exchange:
26. coordinator.positionMap ← (member.id, member.position)
27. scheduling: periodic (1000ms)

Chapter 2

10

effect at runtime. Technically, a SAT solver is used by a dedicated adaptation

manager to reveal a satisfiable configuration, i.e. turns on processes and ensembles

corresponding to selected leaf invariants and disabling the other ones.

2.3. Case Study Description

This section contains elaboration and more detailed description of the example

of a CPS from Section 2.1. This simple scenario comes from a case study developed

in cooperation with professional firefighters.

Let us consider an emergency situation like fire, flood or hurricane. A scouting

team of firefighters is deployed in the field by the firefighter department with the

objective to survey the criticality of the situation for taking suitable strategic

measures. The team consists of tactical groups and every group is organized,

commanded and feedbacked by its group leader (officer). The decreasing costs of

related technologies enable to equip firefighters with sensing and actuating

equipment. This results in improving safety and decision making as firefighting

departments and group leaders are provided with large quantity of information

collected by firefighters in real time about their position, state of surroundings

(temperature, noise, humidity, air composition, etc.), energy level, oxygen supply

and health status. These data could prove crucial for making tactical decisions by the

group leaders to command the group effectively and to successfully complete the

mission.

Members of the firefighter groups have personal protective equipment with

integrated low-power nodes capable of wireless communication and thus of

capturing and sharing information about the environment as discussed above.

Different configurations of the nodes for various types of missions are available, so

efficient usage of limited resources is reached depending on the task assigned to the

bearer. For example, oxygen level might not be monitored during a flood emergency

(resulting in lowering the power consumption). On the other hand, while fighting the

fire the monitoring of temperature is of a great importance and this environment

parameter should be monitored very closely in such context. The nodes can also

exploit other stationary heterogeneous devices in the operation site, e.g. access

points, temperature sensors in the buildings, etc. either to gather additional

Chapter 2

11

information or boost the wireless coverage and network performance when the

additional devices are used as relays.

Group leaders coordinate and command their subordinates through tablets where

data collected from individual firefighters are aggregated. The model of the current

situation is shown in a visual way (i.e. on a map) on their displays so decisions can

be made quickly and efficiently, this greatly helps in avoiding or at least lowering

casualties both in lives and heath as well as material damage. When a firefighter is

discovered in a potentially dangerous situation, the group leader is notified and can

take measures immediately to mitigate the risks before the situation becomes critical.

Designing such safety-critical system is a very challenging task as fulfilling the

requirements on stability, performance and dependability is top priority. The

environment is highly dynamic and any hardware failure may occur at any time, so

sensor readings may become unavailable or completely wrong. Network may prove

unreliable in extreme conditions expected in operational field and packets may be

delayed or even lost. The length of mission can vary a lot and often cannot be

predicted in advance, energy consumption should thus be kept as low as possible to

keep the firefighters in the field as long as the circumstances dictate.

The first of two main objectives of the system is to guarantee that individual

nodes can operate in any situation, even when the network fails and they are

completely isolated. The second objective is to ensure that the nodes can optimally

satisfy system-level objectives and constraints even without supervision.

During the analysis of the requirements we may try to capture all possible

situations which our system-to-be can get into. What if connection to other group

members is lost? What if the oxygen level sensor malfunctions? What if the indoor

position system cannot be used due to interference? What if data from others are

obsolete because of intermittent network connection? Even this short list of what-ifs

serves to indicate that the environment is too dynamic and complex to predict all

problems at runtime and their combination ahead at design time.

The ideal solution would be to adjust the system behavior dynamically at

runtime to cope with unanticipated situations without the need to provide exhaustive

list of pre-designed solutions. This is the subject of our approach. In particular, we

build a framework generating new adaptation tactics at runtime to use them in

adaptation actions in order to deal with circumstances or combination of failures that

Chapter 2

12

have not been expected at runtime either due to their low probability or due to

mistakes in design process.

2.4. Invariant Refinement Method

This section expands the description of Invariant Refinement Method (IRM) [8],

[9] from Section 2.2 in more detail. IRM is a design method specifically tailored for

CPS. It is a requirements-oriented design method focused on distributed cooperation

and global perspective on the system-to-be. Both low level software requirements

and high level system goals are modeled by the invariant concept. IRM is based on

the iterative decomposition of higher level invariants into more specific sub-

invariants until all leaf invariants can be implemented by autonomic components or

data transfer from one component to the other (i.e. in DEECo performed through the

participation of components in an ensemble). This method guides the transformation

of initial high level requirements into software architecture of ensembles and

autonomous components. IRM provides both traceability of system-level goals to

software artifacts and vice versa and captures the design alternatives corresponding

to various situations and system deployments mapped to system configurations and

component modes.

Components are functional entities of the system-to-be. In IRM, components

consist of data fields specific to the domain of the system called knowledge, for

example the oxygen level in a firefighter personal equipment or a list of places that a

driver wants to visit at particular times. Knowledge is not immutable, but only

changes as a result of so-called process invariants (the component itself changes its

knowledge) or exchange invariants (the framework transfers knowledge of one

component to the other). Components may adopt a particular role in the system if

they are referenced by an invariant.

Invariants are the basic concept that IRM is built on. They represent system

requirements and goals by describing the desired state of the system-to-be at every

moment. Invariants are organized into trees reflecting the decomposition of the top-

level system goals. Example of such tree hierarchy from the case study can be seen

in Figure 2. Rounded rectangles represent invariants, for instance (1) is a top-level

invariant expressing the requirement that group leaders must have information about

their subordinates‟ positions.

Chapter 2

13

There are three sub-kinds of invariants – process invariants, exchange invariants

and assumptions. IRM guided design is done if and only if all leaf invariants in IRM

trees are one of these sub-kinds of invariants. Assumptions are conditions about the

environment expected to hold during runtime and are not maintained explicitly by

the system. They are depicted as yellow hexagons in diagrams, for example (4) in

Figure 2. Process and exchange invariants are associated with computation activity,

i.e. computation producing output knowledge fields given input knowledge fields so

that the invariant referencing those fields is satisfied. The computation activity is a

second view on the invariant as it provides means for satisfying the operational

normalcy described by the invariant.

Every knowledge field of components is an output of a single process or

exchange invariant. Process invariants take an input set of knowledge fields of a

single component and transform them into an output set of knowledge fields of the

same component (of course both sets can be empty for special-purpose invariants).

On the other hand, exchange invariants take an input set of knowledge fields of a

component and transfer them into an output set of knowledge fields of other

component. Invariant (5) in Figure 2 is an example of process invariant which are

marked with P in diagrams. Similarly, the letter X marks the exchange invariants,

e.g. invariant (2) in Figure 2.

The key mechanism of IRM is decomposition of higher level invariants in a

systematic and step-by-step manner. This decomposition results in a set of lower

level sub-invariants whose conjunction or disjunction implies the higher level

invariant which is depicted in IRM tree via AND- and OR-nodes and their

connections. The same behavior expected from the parent invariant is found in

children invariants and potentially even more.

This refinement process is recursively applied to system level goals and ends

when all leaf invariant are either an assumption, process invariant (invariant

referencing only one component) or exchange invariant (invariant referencing

ensemble of components).

Figure 2 also demonstrates the refinement. The top-level invariant (1) is refined

into a conjunction of two sub-invariants: (2) transferring the information about group

member position to group leader and (3) determining the position so it can be

transferred. Invariant (3) is further refined by a combination of OR-decomposition

Chapter 2

14

and AND-decomposition which is formally not allowed by the IRM. The formal way

to handle such situations is the introduction of synthetic invariants corresponding to

the abstract-syntax tree of the target formula. However, the graphical notation of

diagrams omits these synthetic invariants and decomposition symbols are connected

directly, because there is no additional knowledge in the synthetic invariants.

2.5. IRM-SA

Invariant Refinement Method for Self Adaptation (IRM-SA) [8], [9] is an

extension of IRM. The design model and process of IRM-SA capture design

alternatives (alternative realizations of requirements on the system), applicable

configurations and their corresponding circumstances, this enables the running

system to adapt to different situations by exploiting architecture variability.

 There is at least one applicable configuration for every situation. The number of

design alternatives that must be explored to map configurations to situations is

usually large. If the design alternatives depend on each other or reference various

abstraction levels, the issue is even more problematic. To achieve scalability at

design time, decomposition for separation of concerns is introduced. To scale at

runtime, SAT solving for selecting the application configuration is employed.

The architecture self adaptation itself runs in iterations consisting of three steps.

Firstly, the current situation needs to be identified. Secondly, the configuration suited

for the situation must be selected. And finally, the architecture is reconfigured to

match the selected configuration.

IRM-SA extends the IRM design model by OR-decomposition, which makes it

possible to capture design alternatives. A characterizing assumption in IRM-SA is a

top-level assumption specifying the particular situation addressed by the design

alternative. Examples of characterizing assumptions can be seen in Figure 2,

assumptions (4) “GM indoors” and (6) “GM outdoors” are characterizing

assumptions for their respective sub-trees which captures two design alternatives

corresponding to the situations where the firefighter is located inside a building or

under the open sky.

Characterizing assumptions of several design alternatives may hold at the same

time, so the design alternatives are not exclusive. This also serves as built-in fault

tolerance mechanism [14].

Chapter 2

15

Tracing the low-level processes to high-level invariants is the main way to

address dependability. There is no support for other dependability features such as

privacy or security. Self-adaptation is not based only on evaluation of snapshots of

internal data of other components (i.e. component belief), but also on evaluation of

various metadata associated with the belief, e.g. timestamp of creating of the belief,

timestamp of network activity associated with the belief (timestamp of receiving or

sending the data) and so on. This information may help the self-adaptation to predict

dangerous situations and further increases dependability.

The CPS sensing and distribution of data causes that belief of the individual

components is necessarily outdated. The initial sensor and network latency when

disseminating the data as well as other influences are summarized in inaccuracy of

the belief - this is another example of belief metadata that can be considered while

self-adapting. The inaccuracy works well for continuous domains. For discrete ones

there is concept of possibility which is a model based on timed automata (see Figure

5). Both inaccuracy and possibility enable invariants to express the need for special

adaptation actions when the inaccuracy of the component belief raises too high. This

fail-safe mechanism also contributes to overall CPS dependability.

Figure 4: An architecture configuration selected by IRM.

Chapter 2

16

The IRM-SA model of the system can be encoded into a Boolean satisfiability

problem (SAT) to easily select an applicable configuration to the current situation. In

short, the task to select an applicable configuration is the problem of constructing a

set C of selected invariants from the IRM-SA model corresponding to an applicable

configuration (example in Figure 2). The following statements must hold to ensure C

is well formed with regards to invariant decomposition: firstly every top level

invariant is in C. Secondly every child invariant created by AND-decomposition is in

C if and only if its parent invariant is in C. Thirdly if a parent invariant is refined by

OR-decomposition, then it is in C if and only if at least one of its children invariants

is in C, too.

Due to the fact that the IRM tree is a directed acyclic graph, invariants on shared

paths can be safely duplicated to transform the IRM-SA model into a forest. A

Boolean variable si is created for every invariant i indicating whether the invariant is

in set C or not. Rules described above are transformed to formulas as input of SAT.

The variables corresponding to top-level invariants are bound to true. Another

Boolean variable ai is created for every invariant i indicating whether the invariant is

acceptable, i.e. whether it can be included in C with regards of the current situation.

Formulas “si implies ai“ is added to the SAT instance to capture the relationships

between these variables. The state of system and its environment is represented in

binding variables ai to reflect acceptability of their corresponding invariant. Every

satisfying valuation of such a SAT instance corresponds to an applicable system

configuration. If no satisfying valuation exists, then there is no applicable

configuration for the current situation.

However, there can be more than one applicable configuration. In such cases

there can be mechanism that takes i) IRM-SA model and ii) outputs of the SAT

solver (applicable configurations) and chooses one configuration to become the new

OK

DANGER CRITICALt>5s

t>0s

t:=0s

Figure 5: Timed automaton capturing the transitions in the possible valuation of

the nearbyGMsStatus field.

Chapter 2

17

system configuration. This mechanism can consider many features of individual

applicable configurations and compare them based on different criteria. Many

different strategies could be employed in this place, e.g. simple total preorder of

alternatives in each decomposition, etc.

Every node solves the SAT problem independently exploiting the determinism

of SAT solving so that all nodes using the same prioritization method reach the same

applicable configuration. However, because of communication delay and

unreliability components‟ knowledge, and therefore also the output of the SAT

solvers, gets temporarily desynchronized. This is not harmful in most cases, only the

overall system performance is reduced. As an aside, unbounded message delays

render both fully centralized and distributed (those requiring distributed consensus)

SAT solving methods inapplicable [14].

2.6. DEECo and jDEECo

This section expands the description of the Dependable Emergent Ensemble of

Components (DEECo) [11], [12] from Section 2.2 and introduces jDEECo [13]

which is its Java implementation.

DEECo is a component model and instantiation of a class of component systems

called Ensemble-Based Component Systems (ECBS) which exploits the key ideas of

component-based software engineering [15], [16], agent-oriented computing [17],

[18] and ensemble-oriented systems [19], [20]. ECBS addresses the dynamic and

autonomic nature of Cyber Physical Systems, for which it is specifically tailored and

features autonomic components with periodic execution and dynamic ensembles of

components controlling data exchange between components.

These dynamic ensembles replace the usual explicit architecture of components

and can be characterized as dynamic groups of components cooperating to

accomplish joint objectives. The components are autonomous entities inspired by

concepts of agent-oriented computing to deal with dynamism. The definition EBCS

can be as follows [11]: “Distributed systems composed of components that feature

autonomic and (self-) adaptive behaviors and are organized into emergent ensembles

to achieve cooperation.”

The most important characteristics of ECBS are (i) emergent system architecture

represented by bindings of components arising at runtime but based on component

Chapter 2

18

and ensemble definitions created at design time, (ii) belief about the environment and

the system is managed by the runtime framework for each component, (iii)

components are encapsulated and their processes can only employ the knowledge

(which includes the belief over the knowledge of other components) of the

component with no explicit communication with other components.

DEECo refines the approach of ECBS into software engineering concepts

suitable for building actual CPS. There are two main constructs in DEECo:

components and ensembles. A component is an independent and autonomous unit of

computation, deployment and development. An ensemble is the only way

components can interact with each other and serves as a mediator between a set of

components which binds them together and arranges their communication. The

runtime framework managing both components and ensembles constitutes an

essential part of DEECo component model.

A component consists of a set of processes and a set of knowledge fields

accessible via a set of interfaces (example of DEECo DSL fragment from the case

study can be seen in Figure 3).

Component‟s knowledge represents component‟s belief of its environment and

the rest of the system which means it may become invalid or obsolete and must be

handled as such. In essence, knowledge is mapping of identifiers to values,

potentially structured further (for these cases structured identifiers are used as shown

on lines 15 and 16 in Figure 3).

The knowledge can be accessed by the runtime via a set of interfaces (example

definitions on lines 1-4, usage on lines 6 and 21-22 in Figure 3) which offers a

limited view on component‟s knowledge. Knowledge fields exposed by interfaces do

not have to be disjunctive so one field may be exposed by multiple interfaces.

Polymorphism may be achieved if one interface is provided by different components.

Every knowledge field is an output of exactly one process or ensemble.

A component process is characterized as a function (lines 12-17 in Figure 3)

with a list of input and output knowledge fields (line 13) and thus manipulates the

knowledge of its component. Processes are periodically scheduled, i.e. the

framework executes them repeatedly after a specified period (line 17). The

framework also fully manages the processes, i.e. gathers atomically all input

knowledge fields, computes the process function and writes all output knowledge

Chapter 2

19

fields, again atomically. Executing the process may have side effects (e.g. sensing or

actuating), but the explicit communication with other processes or even other

components is strictly forbidden.

Ensembles determine component composition and interaction by defining the

bindings between them. The ensemble is the only way components can communicate

with each other, that is transfer knowledge from one to the other (lines 25-26).

Example of an ensemble definition in DEECo DSL from the case study can be seen

in Figure 3. In an ensemble, there are two roles that components can play – one of

them is the coordinator of the ensemble (line 21), and the other components are the

ensemble‟s members (line 22). The coordinator is determined by providing the

interface specified in definition of the ensemble. The members are components

providing required interface and satisfying the ensemble‟s membership condition

which is a predicate about knowledge fields accessible via coordinator and member

interfaces (lines 23-24). The ensembles may overlap and one component may be

coordinator in one ensemble and member of different ensembles at the same time.

Moreover, both ensembles may share the same definition, provided the component is

accessible by both member and coordinator interfaces. A new ensemble is

dynamically created for every group of components satisfying the membership

condition and providing corresponding interfaces by the framework which

automatically evaluates the membership condition at suitable times or every

specified period (line 27).

The main objective of ensembles is knowledge exchange, i.e. transferring

information among components. It is a one-to-many interaction between the

coordinator and members of the ensemble. The knowledge exchange is performed as

defined in ensemble definition once within a specified period.

The framework jDEECo [13] is an implementation of DEECo in Java

programming language for practical usage in real development of CPS. jDEECo

provides the runtime environment and programming means to design, develop,

deploy and run applications exploiting the concepts of DEECo component model.

The mapping of DEECo features to Java language is based on use of annotations

which has an advantage in not introducing any external preprocessors or extensions

of the language.

Chapter 2

20

Figure 6 contains a simplified example of a component definition from the case

study. The components are defined by creating a class annotated by “@Component”

annotation (line 1). The knowledge fields are represented by non-static public fields

(lines 3-4). The String field “id” is mandatory so the framework can uniquely

identify individual components. Knowledge fields start first level of knowledge

hierarchy. They can be primitive types (respectively their object wrapper classes),

Lists, Maps or structured classes implementing Serializable interface whose fields

recursively represent the knowledge hierarchy. The initial values of knowledge fields

are either provided by the class constructors or by static initializers. Note that

DEECo interfaces are not mapped to Java interfaces. Instead, similarly to duck

typing in dynamic programming languages, the provided interfaces are determined

by name convention, i.e. they are implicitly detected based on class field names

matching the ones exposed by the interfaces.

1. @Component
2. public class FireFighter {
3. public String id;
4. public Double temperature;
5. …
6. @Process
7. @PeriodicScheduling(period=1250)
8. public static void determineTemperature(
9. @Out(“temperature”) ParamHolder<Double> temperature) {
10. …
11. }
12. …
13. }

Figure 6: Simplified fragment of jDEECo component from the case study.

Chapter 2

21

Defining the component processes has the form of declaring public static

methods annotated by “@Process” annotation in the class representing corresponding

component (lines 6-11). The “static” modifier is enforced because of the semantics of

component processes, primarily their isolation from the component knowledge fields

except their input and output knowledge. Knowledge fields are not static and thus

inaccessible from the process. However the manipulation with input and output

knowledge fields is allowed by passing them as method parameters which is

managed by the framework. The parameters need to be annotated by “@In”, “@Out”

and “@InOut” annotations to mark which knowledge fields are input, output or both

(line 9). The identifier of the knowledge field is part of all these annotations too. The

dot-delimited identifier path can be used to access the internal knowledge node

inside the knowledge tree. If a primitive type should be passed as out or inout

knowledge field for a process it needs to wrapped inside an ParamHolder object

because of immutability of such objects in Java (line 9). Periodicity of the process is

expressed in “@PeriodicScheduling” annotation with period in milliseconds as

parameter on the method representing the process (line 7).

Figure 7 contains a simplified example of a component definition from the case

study. Similarly to component definitions, ensembles are defined as appropriately

annotated classes. The main annotation is “@Ensemble” on the class itself (line 1).

1. @Ensemble
2. @PeriodicScheduling(period=1000)
3. public class PositionExchange {
4. @Membership
5. public static boolean membership(
6. @In(“member.missionId”) String memberMissionId,
7. @In(“coord.missionId”) String coordMissionId) {
8. return memberMissionId == coordMissionId;
9. }
10. @KnowledgeExchange
11. public static void exchange(
12. @In(“member.id”) String memberId,
13. @In(“member.position”) Position memberPosition,
14. @InOut(“coord.positionMap”) Map<String,Position> positionMap) {
15. positionMap.put(memberId, memberPosition);
16. }
17. }

Figure 7: Simplified fragment of jDEECo ensemble from the case study.

Chapter 2

22

Inside such annotated class there can be defined membership condition and

knowledge exchange in a form of public static methods. The annotation

“@Membership” marks the membership predicate (line 4), the annotation

“@KnowledgeExchange” is intended for methods implementing knowledge

exchanges (line 10). Parameters of these methods are also annotated by “@In”,

“@Out” and “@InOut” annotation in the same way as parameters of component

processes with one exception - identifiers for parameters corresponding to

knowledge fields belonging to coordinator component are prefixed with “coord”;

prefix for members‟ knowledge is “member” (lines 6-7 and 12-14). Analogously to

interfaces provided by components interfaces required to become member or

coordinator do not need to be defined explicitly. Instead, they are implicitly

determined as union of knowledge fields passed to methods implementing

membership condition and knowledge exchange. Another similarity to component

process is the use of annotation “@PeriodicScheduling” to specify period of the

knowledge exchange, however it annotates the ensemble class itself because there is

only one knowledge exchange method per ensemble (line 2).

Chapter 3

23

3. Analysis / Goals Revisited

Although self-adaptation is an important characteristic of CPS, the DEECo

component model and its implementation jDEECo offer no special means for

adaptation. The framework is powerful but all responses to external stimuli have to

be devised in advance at design time. The same applies to IRM itself. The IRM-SA

provides ways to easily switch between different configurations of the system. Its

approach is grounded in employing a certain set of component processes whose

selection is based on satisfaction of given pre-defined conditions.

However the success of the system adaptations still relies on careful planning

during design time and capturing all possible problematic circumstances in advance

and preparing suitable responses. In complicated and complex systems such CPS, it

is often impossible to anticipate every point of failure in dynamic and perhaps hostile

environment which is inherently unpredictable for the realm of CPS. If hardware

malfunction, network breakdown or similar issues occur, the system may find itself

with no applicable configuration and is destined to fail its goals and objectives in this

context.

The concept of meta-adaptation naturally extends the IRM-SA design and

provides dynamic changes to system behavior at runtime to improve the adaptability

of the system facing unexpected real-world difficulties. It addresses the limitations of

IRM-SA and improves utility of the system in unfriendly conditions by generating

new adaptation tactics at runtime, picking ones worth trying and then evaluating their

effect in the runtime system.

 In contrast to limited number of runtime situations that can be defined at design

time, the number of tactics generated at runtime is in principle infinite. The meta-

adaptation is independent from underlying adaptation method or implementation

framework and can be configured at design time, but the idea is to invest as little

effort at design time as possible and still get measurable results.

This thesis focuses on one specific category of meta-adaptations which adapts

and changes the self-adaptation logic of systems employing architecture-based self-

adaptation (i.e. self-adaptation based on switching between architecture

variants/modes) to expand the adaptation envelope of the system. The adaptation

envelope can be understood as maximal deviations from the optimal situation that the

Chapter 3

24

system can still handle and heal itself by its self-adaptation mechanisms (e.g. IRM-

SA). The meta-adaptation helps the current self-adaptation to fulfill its purpose in a

domain independent way. The self-adaptation itself is adapted and thus the “meta”

prefix in the mechanism‟s name.

To cope with this task a framework capable of deriving new strategies at runtime

must be developed. This framework needs to meet three basic requirements. Firstly a

mechanism monitoring how the system‟s inherent self-adaptation is successful needs

to be designed. For the scope of this thesis, it does not have to be very complex and

complicated, a basic one is sufficient as a demonstration and ground for subsequent

research. Secondly, a unified way of describing the meta-adaptation strategies would

assist in researching and categorizing the meta-adaptation strategies. The system

designers would also benefit from this documentation, because it would make the

decision on whether to implement and deploy certain strategies in the system easier

by providing all necessary information to make the choice in a readable and

formalized way. Finally, actual implementations of the meta-adaptation strategies

call for a framework that would enable to plug them in easily and in a

straightforward way without reinventing the wheel every time.

As a proof of concept, several meta-adaptation strategies and means for their

cooperation and management are introduced in Chapter 4. Their implementations in

jDEECo are discussed in Chapter 5 to demonstrate their viability. Chapter 6 provides

detailed evaluation of their benefits in a test scenario where a simplified case study

model was subjected to malfunctions unforeseen at design time.

Chapter 4

25

4. Meta-Adaptation Strategies

As stated in the chapters above, even self-adaptive systems can be only designed

to cope with a finite number of situations that they may encounter at runtime. On the

other hand, the number of unique tactics that can be generated – in reaction to

reaching the limits of the system design when facing the unforeseen circumstances –

is generally infinite. Equally important to generating tactics is to be able to rank them

and compare them based on their impact on the system. This enables to select the

most auspicious tactic suitable for the current situation or at least filter the

unpromising tactics before trying them and wasting time with them. Our current

implementation of this adaptation mechanism (see Section 5.2) activates tactics and

examines its impact on the system. Should the effect of the changes be positive, they

are kept, otherwise they are rollbacked. Figure 8 illustrates basic components of this

mechanism in the implementation.

Figure 8: When IRM-SA finishes adaptation, MetaAdaptation Manager is

notified and takes over the adaptation if no applicable configuration has been found.

In such cases individual strategies are invoked.

The concept of meta-adaptation strategies (MAS) systematizes the creation of

new tactics. Every strategy pushes the limits of system‟s adaptability in a specific

manner. There are two objectives of a MAS – to provide (i) an algorithm

systematically generating adaptation tactics at runtime, (ii) a metric ranking the

generated set of tactics.

IRM-SA
MetaAdapation

Manager

AdaptationListener

Knowledge
Exchange by Data

Classification

AdaptationManager

AdaptationManager

Process Period
Adjusting

AdaptationManager

Assumption
Parameter
Adjusting

AdaptationManager

Chapter 4

26

The rest of this chapter contains examples of the meta-adaptation strategies

whose implementations (see Chapter 5) are evaluated in Chapter 6. The template

used to describe them is inspired by the style used by Ramirez et al. to document

adaptation design patterns [21] (further based on the template by template of Gamma

et al. [22]). Figure 9 contains description of the template format.

4.1. Tactics Generated by Data Classification

The interdependencies among data coming from various real-world physical

sensors can be revealed and studied. Particular meta-adaptation strategies could take

advantage of them, for example in situations when direct sensing is no longer

available. A specific case is dependency based on close physical location of the

sensors providing certain measurable attributes, i.e. data with location-dependency.

A strategy for automatic creation of definitions of knowledge exchanges is described

below. These new knowledge exchanges represent new tactics and can be perceived

as a form of “collaborative sensing” when malfunctioning sensor is compensated by

a sensor belonging to a node nearby. The description of the implementation of this

strategy in jDEECo can be found in Section CorrelationPlugin5.3.

Strategy Name: Knowledge Exchange by Data Classification.

Intent: Improving of system‟s robustness and extending the period of

satisfactory running (or at least result in graceful degradation) under circumstances

including unavailability and obsolescence of data.

Strategy Name: a unique identifier describing the strategy in a compact form

Intent: the strategy‟s rationale and objectives that it aims to complete

Context: the application independent circumstances required for successful

application of the strategy

Behavior: description of the algorithm that generates new tactics accompanied by

UML diagrams if needed and the metrics comparing the generated tactics

Contraindications: enumeration of disadvantages and compromises of the

strategy

Example: at least one situation that gives an idea of difficulties addressed by

application of this strategy and how the difficulties are mitigated

Figure 9: Meta-adaptation strategy template.

Chapter 4

27

Context: This strategy deals with scenarios when component‟s data in a

knowledge field become so old that the component‟s behavior cannot be reliably

considered correct, e.g. field‟s value cannot be updated because of malfunction of the

sensor providing the data.

Behavior: A new ensemble specification (see DEECo architecture, Section 2.6)

is created to obtain the approximation of actual value of the currently unupdatable

field by substituting the up-to-date knowledge of other components. The

specification is comprised of (i) membership condition specifying the condition

which components must satisfy to interact with each other; and (ii) a knowledge

exchange function specifying manipulation with data transferred from a component

to the malfunctioning component. For simplicity‟s sake, only identity function is now

used as the knowledge exchange function, i.e. the data are just copied without further

altering.

The building of the membership condition is not trivial and requires long

observation of the system during normal operation and logging of evolution of

components‟ knowledge with timestamps. This data gathering is usually done in

advance as the data analysis and correlation have a performance overhead that cannot

be tolerated for embedded mobile devices. The objective of this offline analysis is to

find conditional correlations indicating that “closeness” of pairs of values of

knowledge fields (A1, B1), … , (An, Bn) belonging to two different components

implies that values of other knowledge fields C, D of the same two components are

“close” too. The ensemble specification is created for each such correlation so that

the membership condition is the closeness of pairs (Ai, Bi) and the knowledge

exchange function is the assignment D := C providing D is the un-updatable

knowledge field. These new ensemble specifications will be instantiated when the

situation targeted by the strategy is encountered.

Finding the correlations is technically realized by searching for relations

⋀𝑖=1…𝑛𝜇𝐴𝑖𝐵𝑖
 𝑣𝐴𝑖

, 𝑣𝐵𝑖
 < ∆𝐴𝑖 ,𝐵𝑖

→ 𝜇𝐶,𝐷 𝑣𝐶 , 𝑣𝐷 < 𝑇𝐶,𝐷

The knowledge logged from runs during normal operation enables to establish

these relations on a given confidence level α. The function μX,Y is domain-specific

and user-provided metrics which defines “distance” between values of knowledge

fields X and Y. Typical metric used is a Euclidean distance. The constant TC,D is

again domain-specific and user-provided tolerable distance for fields C and D. The

Chapter 4

28

value of knowledge field X is represented by vX. The output parameter is denoted as

ΔA,B and represent maximal distance of values of knowledge fields A and B so that

they still imply correspondence of values of C and D.

Possible membership conditions corresponding to different tactics are generated

and then a tactic providing the most general condition given the target confidence

level is selected (i.e. the membership that is a superset of all other memberships).

Contraindications: Dedicated hardware infrastructure may be needed because

the gathered data analysis is a performance heavy task. Also the knowledge logging

itself could potentially have high requirements on resources. The demands on

performance are particularly serious when there are many knowledge fields or/and

when their values change frequently. Moreover, the system may find itself

overloaded with needlessly replicated data created by potentially excessive

ensembles.

Example: As stated in the description of the firefighter case study Chapter 2.3,

each firefighter is equipped with temperature and position sensors whose readings

are stored as knowledge. The cooling system of the personal equipment may employ

the values of the temperature knowledge, for example. The sensor malfunction

clearly endangers the firefighter‟s security. Fortunately, the firefighters typically

cooperate in groups moving close together and thus their sensors measure similar

values. So the readings from temperature sensors belonging to nearby colleagues

could replace the outdated value from the broken temperature sensor. For instance,

the algorithm computes that the temperatures could be exchanged with confidence

level 0.8 and tolerated distance 10 degrees (those are user-defined parameters) if the

two firefighters are not separated by more than 4 meters.

4.2. Tactics Generated by Period Adjusting

Real-time criteria are usually part of specifications of CPS and are addressed by

parameters controlling the scheduling of component processes. Schedulability

analysis can most of the times deduce values for these scheduling parameters when

the parameters do not have complicated impact on the system. This systematic

analysis may not be viable otherwise, i.e. in cases when the parameters affect the

system in a complex way, for example when the balance between battery

consumption, network utilization and CPU performance is sought. Instead, the

Chapter 4

29

systems architects assign values to the scheduling parameters manually. However, if

unforeseen circumstances occur, these manually set parameters may no longer meet

the criteria imposed on the system, which is exactly the situation addressed by the

meta-adaptation strategy introduced in this section. The description of the

implementation of this strategy in jDEECo can be found in Section 5.4.1.

Strategy Name: Process Period Adjusting.

Intent: Process scheduling optimization considering overall domain-specific

system performance if there are periodically scheduled processes in the system.

Context: This strategy deals with scenarios when violation of timing criteria

causes the failure of the system and deduction of scheduling parameters in advance is

not viable due to their complicated impact on the system

Behavior: Each process ri from the set R of real-time processes in the system

with scheduling period pi is provided a corresponding runtime monitor that returns a

fitness value fi which is a real number in range [0-1] that indicates whether the

process is still satisfied. If fi is lower than minimal acceptable value, new tactics that

correspond to new real-time processes ri‟ are generated. The processes ri are

transformed to ri‟ by adjusting their periods pi to pi‟ while keeping them in the pre-

defined allowed range. The generic algorithm (1+1)-ONLINE EA [23] is exploited to

find the suitable adaptation as can be seen in Figure 10 and Figure 11. Adjusting

period pi of ri (line 12 in Figure 10) can be understood as substitution of tactic ri by

newly generated tactic ri‟. When there are no processes suitable for adjusting left, i.e.

period of every processs has been already adjusted in both directions, or a pre-

defined maximal number of tries has been reached, the process period adjusting is

finished.

The benefit of individual tactics (i.e. new processes) is measured by comparing

the overall system fitness (calculated as a function of individual fi‟s) after an

observation period passes and the changes take effect on the running system.

Contraindications: If the periods of component processes are lowered too

much, other system resources like battery, network or CPU may be influenced

negatively. In such systems, consumption of these resources must be modeled, so the

strategy can choose tactics with regards to these requirements.

Example: As stated in the description of the firefighter case study Section 2.3,

the operation time of firefighters in field cannot be easily predicted, so battery

Chapter 4

30

consumption should be kept minimal. However, the team leader needs as accurate

position information for effective firefighter management. These two requirements

can be modeled as two contradictory invariants. If the GPS process is invoked too

scarcely, the cumulative inaccuracy of the estimated position of a moving firefighter

may be too high to fit into a predefined range. On the other hand, too frequent

invoking of GPS may result in high battery drainage. As cumulative inaccuracy is the

sum of initial inaccuracy of the GPS sensor and the distance a firefighter could have

moved since the last GPS readings are obtained, the predesigned process period can

become unsuitable if the initial inaccuracy of the sensor rise unexpectedly, e.g. due

to the fact that less than three satellites are in sight.

The adaptation can mitigate the risen inaccuracy by scheduling the process

determining the firefighter position more frequently. However, the process period

must stay in pre-defined bounds and also cannot jeopardize battery life, so balance

between these factors must be found by the process period adjusting.

1. begin
2. foreach Invariant from Processes.Invariants do
3. begin
4. Compute fitness for Invariant
5. OldFit = *CombineFitness(Processes.Invariants.Fitnesses)
6. Adaptees = *SelectProcessesToAdaptTheirPeriods(Processes)
7. end
8. foreach Process from Adaptees do
9. begin
10. *Select the direction for period adjustment (up or down) for Process
11. *Calculate period delta (difference of old and new period) for Process
12. Change period of Process
13. end
14. ObserveTime = CalculateObserveTime(Processes)
15. Run for ObserveTime with no further adaptations for changes to take

effect
16. foreach Invariant from Processes.Invariants do
17. Compute fitness for Invariant
18. NewFit = *CombineFitness(Processes.Invariants.Fitnesses)
19. if NewFit > OldFit then
20. KeepChanges
21. else
22. Roll-back changes
23. end

Figure 10: Single run of the Process Period Adjusting strategy in a form of

pseudocode. “*” denotes variation points of the algorithm.

Chapter 4

31

1 Compute fitness of every invariant

2* Compute overall fitness OldFitness

3 Select a set of processes to adapt

4 Select directions

5* Compute period deltas

6 Apply the changes

7 Compute observe time

8 Run for observe time

9 Compute fitness of every invariant

10* Compute overall fitness NewFitness

NewFitness
>

OldFitness

11 Keep changes

Yes

12 Rollback changes

No

Figure 11: Single run of the Process Period Adjusting strategy in a form of

activity diagram. “*” denotes variation points of the algorithm.

Chapter 4

32

4.3. Tactics Generated by Assumption Parameters

Adjusting
Monitoring and analysis of the environment conditions are crucial for the CPS to

self-adapt itself in face of dynamic changes. Assumptions about the environment of

the CPS and its internal state are periodically re-evaluated by specialized

(“monitoring”) tactics to decide which pre-designed situation the system is in.

Descriptions and specifications of these situations are dependent on domain-specific

knowledge in a form of behavioral models, such as timed automata or state-space

models). However, if unforeseen circumstances occur at runtime, the expectations

that these models are built on may be no longer valid and CPS fails to meet its goals.

Such cases when the current situation is not effectively identified by the parameters

of assumptions set manually are addressed by the following strategy. The description

of the implementation of this strategy in jDEECo can be found in Section 5.4.2.

Strategy Name: Assumption Parameters Adjusting.

Intent: Preventing inappropriate, overdue or early actions by improving the

monitoring and analysis phases by making the assumptions parameters as fitting to

the present circumstances as possible.

Context: This strategy deals with scenarios when the current situation is not

identified correctly because of the predesigned model with hardcoded domain

knowledge does not expect such circumstances and thus there are no monitoring

assumptions corresponding to the present status. In such cases, early, overdue or

inappropriate adaptation actions may be taken which could jeopardize the efficiency

or even the functionality of the whole system.

Behavior: The behavior of this meta-adaptation strategy is very similar to the

Process Period Adjusting described in the previous chapter. Each assumption ai from

the set A of all assumptions in the system is provided with a corresponding runtime

monitor accepting parameters Pi with values Vi. The runtime monitor of ai returns a

fitness value fi which is a real number in range [0-1] that indicates whether the

assumption is still satisfied. If fi is lower than minimal acceptable value, new tactics

that correspond to new assumptions ai‟ are generated. The assumptions ai are

transformed to ai‟ by adjusting values Vi of their parameters Pi to Vi‟ while keeping

them in the pre-defined allowed range. The generic algorithm (1+1)-ONLINE EA

[23] is exploited to find the suitable adaptation as can be seen in Figure 12 and

Chapter 4

33

Figure 15. Adjusting values Vi of ai‟s parameters Pi (line 12 in Figure 12) can be

understood as substitution of tactic ai by newly generated tactic ai‟. When there are

no assumptions suitable for adjusting left, i.e. parameters of every assumption have

been already adjusted in both directions, or pre-defined maximal number of tries has

been reached, the assumption parameter adjusting is finished.

The benefit of individual tactics (i.e. new assumptions) is measured by

comparing the overall system fitness (calculated as a function of individual fi‟s) after

an observation period passes and the changes take effect on the running system.

Contraindications: Softening of the assumption parameters may be very

dangerous in safety critical systems where values of these parameters are not only

result of experiences of the application architects but come from strict specifications,

such as laws etc. In these situations, relaxing assumptions is not a solution, so

parameterizable assumptions can be fine tuned at design time and strict, fail-safe

1. begin
2. foreach Assumption from Assumptions do
3. begin
4. Compute fitness for Assumption
5. OldFit = *CombineFitness(Assumptions.Fitnesses)
6. Adaptees = *SelectParametersToAdaptTheirValues(Assumptions)
7. end
8. foreach Parameter from Adaptees do
9. begin
10. *Select the direction for param. adjustment (up or down) for Parameter
11. *Calculate value delta (difference of old and new value) for Parameter
12. Change value of Parameter
13. end
14. Run for predefined ObserveTime with no further adaptations for changes

to take effect
15. foreach Assumption from Assumptions do
16. Compute fitness for Assumption
17. NewFit = *CombineFitness(Assumptions.Fitnesses)
18. if NewFit > OldFit then
19. KeepChanges
20. else
21. Roll-back changes
22. end

Figure 12: Single run of the Process Period Adjusting strategy in a form of

pseudocode. “*” denotes variation points of the algorithm.

Chapter 4

34

bounds of their parameters can be specified. All these measures ensure that the

system is not put in a risk at any time.

Example: Consider altered situation from the case study depicted in Figure 14

where the technology for wireless communication is chosen based on the distance

between the communicators. The technology with limited range is more reliable and

less energy demanding, but susceptible to interference. The Wi-Fi technology at

5GHz is more power hungry and has longer range. The parameter “25” of

assumptions 2 and 3 is a domain-specific knowledge coming from system architects‟

experience and specifications. However when unanticipated interference prevents the

Bluetooth technology to function properly for this distance, this strategy can take

care of decreasing the parameter, so more reliable technology is used, even though it

drains the batteries more and it would not be efficient to use it for this distance under

normal circumstances. Figure 13 illustrates such scenario.

(1) Communication technology is
determined and heartbeat

established

(2) The other side within 25 meters

(4) Bluetooth heartbeat every 30
seconds

P

(5) WiFi heartbeat every 30 seconds

P

(3) The other side further than 25
meters

Figure 14: Alternative situation of the case study where heartbeat

signals are required.

Figure 13: Example of problematic situation where unanticipated

interference (red) requires adaptation from original Bluetooth range (blue) to

shorter one (green), so 5GHz Wi-Fi is used.

Chapter 4

35

1 Compute fitness of every assumption

2* Compute overall fitness OldFitness

3 Select a set of parameters to adapt

4 Select directions

5* Compute parameter value deltas

6 Apply the changes

8 Run for observe time

9 Compute fitness of every assumption

10* Compute overall fitness NewFitness

NewFitness
>

OldFitness

11 Keep changes

Yes

12 Rollback changes

No

Figure 15: Single run of the Assumption Parameter Adjusting strategy in a

form of activity diagram. “*” denotes variation points of the algorithm.

Chapter 5

36

5. Implementation as jDEECo Plugins

This chapter contains information about the jDEECo implementations of the

three meta-adaptation strategies described in Chapter 4. The first section provides the

overall picture of how IRM-SA jDEECo plugin, the MetaAdaptationPlugin and the

plugins corresponding to the individual meta-adaptations are coordinated. The next

sections describe the individual components in more detail. The source codes can be

found at the attached CD as well as online at project website [24].

5.1. Overall Picture

The existing jDEECo IRM Plugin [25] has been extended, so listeners to the

result of the self-adaptation can be registered and serve as adapters between the

plugins. The listeners implement AdaptationListener interface and are notified every

time IRM-SA adaptation finishes via adaptationResult method. These notifications

are the main source of information for MetaAdaptationPlugin managing individual

meta-adaptation strategies. This pattern is chosen because IRM-SA should not

depend on the meta-adaptation plugin, so it only provides simple interface which is

implemented in the meta-adaptation plugin. These relationships are illustrated in

Figure 8. The dependencies as defined for jDEECo plugins are depicted in Figure 16.

Technically, the implementation of the schema above is much more complicated

because of limitations brought by jDEECo as shown in Figure 17. Classes

representing jDEECo plugins are marked with stereotype instead of implementing

IRMPlugin

Meta
AdaptationPlugin

Implements
IRM-SA

Assumption
Parameter

AdaptationPlugin

Manages
Meta-Adaptation

Period
AdaptationPlugin

 CorrelationPlugin

Implements
Knowledge
Exchange by Data
Classification

Implements
Assumption
Parameters
Adjusting

Implements
Process Period
Adjusting

Figure 16: Dependencies between jDEECo plugins implementing self-

adaptation.

Chapter 5

37

DEECoPlugin interface to keep the diagram clear. The list containing adaptation

listeners of IRMPlugin is passed to AdaptationManager (which is jDEECo

component responsible for IRM-SA self-adaptation) as part of its internal data.

Internal data is a mechanism that allows the communication between jDEECo

components deployed to the same runtime outside of ensemble concept and should

only be exploited for system components, not application ones.

AdaptationManager‟s static methods representing IRM processes can access this list

via ComponentInstance provided by jDEECo framework and notify the listeners and

ask them whether the IRM-SA self-adaptation can continue or the IRM-SA

adaptation mechanism should be blocked until listeners‟ work is finished. In other

words, the behavior of the AdaptationManager has been altered to not proceed with

IRM-SA adaptation if there are listeners that do not wish to be disturbed, such as

meta-adaptation strategies that perform self-adaptation of their own. This

synchronization is needed as threading model of the jDEECo is not visible to its

components and component processes should not block and instead finish as soon as

possible, so collisions with process scheduling are avoided.

Both AdaptationManager and MetaAdaptationManager as well as other

components excluded from the IRM model need to be marked as such by

<<jDEECo Plugin>>

IRMPlugin

+registerListener(listener): void

<<Interface>>

AdaptationListener

+adaptationResult(solutions, total): void
+canIRMRun(): boolean

<<Represents AdaptationManager>>

ComponentInstance

-internalData

+getInternalData()

<<jDEECo SystemComponent>>

AdaptationManager

+id: String

+reason(id: String): void

<<jDEECo Plugin>>

MetaAdaptationPlugin

+registerManager(manager): void
+unregisterManager(manager): void

<<jDEECo SystemComponent>>

MetaAdaptationManager

+id: String

+adapt(...): void

+unregisterListener(listener): void

stores listeners
in internal data

listeners list stored in internalData

retrieves listeners
from internal data

0..*

-listeners

1 -irmPlugin

registers
AdaptationListener

1
creates anonymous implementation

notifies and gets blocked if needed

<<Represents MetaAdaptationManager>>

ComponentInstance

-internalData

+getInternalData()

1

stores/retrieves flags
in/from internal data

retrieves/stores
flags in/from
internal data

creates and deploys to jDEECo

creates and deploys to jDEECo

AnonymousImplementation

+alreadyStarted: Boolean

Figure 17: Class diagram depicting actual relations and

communication between IRMPlugin and MetaAdaptationPlugin

Chapter 5

38

“@SystemComponent” (depicted as stereotypes in Figure 17) so the adaptations do

not adapt these crucial processes which could result in unexpected behavior.

The whole meta-adaptation extension of the IRM-SA is organized into Eclipse

[26] projects. The project cz.cuni.mff.d3s.jdeeco.irm-sa.strategies contains package

called cz.cuni.mff.d3s.irm-sa.strategies with all the classes related to

MetaAdaptationPlugin described in Section 5.2.

The same project contains also packages for common behavior of (1+1)-

ONLINE EA Plugins (see Section 5.4), PeriodAdaptationPlugin (Section 5.4.1) and

AssumptionParameterAdaptationPlugin (Section 5.4.2).

Because of organization reasons, the CorrelationPlugin (Section 5.3) has its own

separated project cz.cuni.mff.d3s.irm-sa.strategies.correlation dependent on the main

project.

5.2. MetaAdaptationPlugin

This plugin is responsible for deploying MetaAdaptationManager into jDEECo

runtime which manages plugins/managers implementing meta-adaptation strategies

that are described in the following sections. It provides similar interface methods for

registering adaptation managers as IRM-SA AdaptationPlugin; their communication

patterns are analogous. This can be seen in Figure 19 with example *Plugin instead

of actual plugin responsible for meta-adaptation. The package structure of the project

is illustrated in Figure 18.

Figure 18: Package of MetaAdaptationPlugin inside its project.

The MetaAdaptationPlugin takes advantage of jDEECo dependency

management and its only dependency is the IRM-SA AdaptationPlugin. It becomes

the dependency of the three meta-adaptation strategies (Figure 16).

MetaAdaptationManager is a jDEECo component which is notified by the

IRMPlugin via anonymous implementation of the interface AdaptationListener and

Chapter 5

39

ComponentInstance‟s internal data as shown in Figure 17. Analogously, interface

AdaptationManager serves as an adapter between MetaAdaptationManager and

components responsible for individual meta-adaptation strategies. When IRM-SA

fails to find an applicable configuration, anonymous implementation of the

AdaptationListener sets flag RUN_FLAG in internal data of the ComponentInstance

corresponding to MetaAdaptationManager. Having fetched this flag,

MetaAdaptationManager uses the list of AdaptationManagers stored in its internal

data and starts the meta-adaptation strategies that correspond to the

AdaptationManagers, it keeps a flag alreadyStarted indicating whether the managers

have been already started to avoid multiple calls of AdaptationManagers‟ run()

methods. The AdaptationListener blocks IRM-SA self-adaptation until

MetaAdapationManager sets the appropriate flag IRM_CAN_RUN (again in the

internal data) indicating that all AdaptationManagers signal that their adaptations are

finished, either successfully or not.

Current implementation of the plugin is very simplistic and does not apply any

sophisticated mechanism to manage the AdaptationManagers. This is definitely

room for improvement as elaborated in Chapter 8 – however the AdaptationManager

interface would probably need to be overhauled to provide detailed information

<<jDEECo Plugin>>

MetaAdaptationPlugin

+registerManager(manager): void

<<Interface>>

AdaptationManager

+run(): void
+stop(): void

<<Represents MetaAdaptationManager>>

ComponentInstance

-internalData

+getInternalData()

<<jDEECo SystemComponent>>

MetaAdaptationManager

+id: String

+adapt(...): void

<<jDEECo Plugin>>

*Plugin

<<jDEECo SystemComponent>>

*Manager

+id: String

+*adapt(...): void

+unregisterManager(manager): void

stores managers
in internal data

managers list stored in internalData

retrieves managers
from internal data

0..*

-managers

1 -metaAdaptationPlugin

registers
AdaptationManager

starts and monitors whether finished

<<Represents *Manager>>

ComponentInstance

-internalData

+getInternalData()

retrieves/stores
flags in/from
internal data

1

creates and deploys
to jDEECo

creates and deploys to jDEECo

+alreadyStarted: Boolean

+isDone: boolean

retrieves/stores
flags in/from
internal data

Figure 19: Class diagram depicting relations and communication between

MetaAdaptationPlugin and example *Plugin implementing a meta-ataptation

strategy.

Chapter 5

40

about the adaptation method along with descriptions of both the situations that the

adaptation method is appropriate for.

5.3. CorrelationPlugin

This plugin implements Knowledge Exchange by Data Classification meta-

adaptation strategy (Section 4.1). Because of organization reasons, it resides inside

its own project cz.cuni.mff.d3s.irm-sa.strategies.correlation dependent on the main

meta-adaptation project. Its structure can be seen in Figure 21. The relationships and

communication between classes are illustrated in Figure 20.

Figure 20: UML class diagram depicting relationships and communication

between classes from CorrelationPlugin‟s project.

The communication pattern is the one depicted in the template of Figure 19. The

current implementation of CorrelationPlugin is for demonstration purposes intended

for online data correlation analysis. For that reason, it needs to pass deecoNodes to

the CorrelationManager that is a jDEECo component implementing the meta-

adaptation strategy itself to extract knowledge from all accessible adaptable

components (done in the static private method extractKnowledgeHistory) to

knowledgeHistoryOfAllComponents in a form of MetadataWrapper which must

wrap knowledge fields that are supposed to be adaptable. At runtime, distance

<<jDEECo SystemComponent>>

CorrelationManager

+id: String

<<Interface>>

AdaptationManager

+run(): void
+stop(): void
+isDone: boolean

<<Represents CorrelationManager>>

ComponentInstance

-internalData

+getInternalData()
1

-deecoComponent

stores/retrieves flags
in/from internal data

retrieves/stores
flags in/from
internal data

creates and
deploys

to jDEECo

<<jDEECo Plugin>>

CorrelationPlugin

-deecoNodes: List<DEECoNode>

CorrelationEnsembleFactory

-bufferedClasses: Map<String, Class<?>>

+getEnsembleDefinition(...): Class<?>
+setEnsembleMembershipBoundary(...)

-createEnsembleDefinition(...): Class

CorrelationClassLoader

to load created classes

to create
new injecting

ensembles

<<Interface>>

Metric

+distance(Object value1, Object value2):
double

DifferenceMetric

KnowledgeMetadataHolder

+setBoundAndMetric(...): void

MetadataWrapper<T>

-value: T

+getValue(): T

+deecoNodes: List<DEECoNode>
+knowledgeHistoryOfAllComponents
+distanceBounds: Map

KnowledgeMetadata

-bound: int

+getBound(): int

+calculateCorrelation(...): void
+manageCorrelationEnsembles(): void
-computeDistances(...): List
-getDistanceBoundary(...): double

-confidenceLevel: double

1-metric

+getConfidenceLevel(): double
+getMetric(): Metric

-timestamp: long
-operational: boolean

+getTimestamp(): long
+setValue(value, timestamp): void
+isOperational(): boolean
+malfunction(): void

history in
form of

0..*

-knowledgeMetadata

mapping: string label
-> KnowledgeMetadata

+getBound(label: String): int
+getMetric(label: String): Metric
+getConfidenceLevel(...): double
+distance(label, obj1, obj2): double

retrieves designer s
domain information

about knowledge
fields

-extractKnowledgeHistory(...): void

Chapter 5

41

boundaries for pairs of component knowledge fields (mapped in field

distanceBounds) are computed (in jDEECo process calculateCorrelation) using

domain information about knowledge fields passed to the strategy at design time to

KnowledgeMetadataHolder (see below). The distance may be NaN to indicate that

no correlation is found. In this meta-adaptation data of a specific knowledge field

from other components are injected to a component that cannot obtain fresh values

anymore (e.g. due to sensor failure). Data are injected based on data correlation – the

correlation with the highest confidence level is picked if there are more than one.

Technically, CorrelationManager creates a new ensemble class (in jDEECo process

manageCorrelationEnsembles) via CorrelationEnsembleFactory loaded by

CorrelationClassLoader and deploys it to the jDEECo framework. The same process

also again un-deploys this ensemble in cases when the correlation is no longer valid.

Figure 21: Package of CorrelationPlugin inside its own separated project.

This meta-adaptation strategy requires initial input at design time to be passed to

KnowledgeMetadataHolder: (i) required confidence level, (ii) Metric providing

distance between values and (iii) bound that separates values considered close from

the rest. The Metric is a simple interface providing distance between two objects

representing values of knowledge fields that are analyzed. For convenience there is

an implementation of DifferenceMetric for descendants of Number class, but for

Chapter 5

42

more complex types there must be user-defined one. For example Euclidean distance

for two-dimensional position was used in the evaluation scenario.

The knowledge fields that are supposed to participate in this meta-adaptation

needs to be wrapped in MetadataWrapper. This is required because the plugin needs

to distinguish whether the sensor is operational (MetadataWrapper„s boolean field

operational) and also needs to pair the values by their timestamps

(MetadataWrapper‟s long field timestamp) to correctly discover the correlation.

Also note that KnowledgeMetadata is a private static inner class of

KnowledgeMetadataHolder, so it is not visible at project overview in Figure 19. One

more discrepancy in that figure is class CorrelationEnsembleTemplate which is not

used at all, but serves only as an example of a class generated by

CorrelationEnsembleFactory at runtime via javassist library [27].

The interesting feature of this implementation of the meta-adaptation strategy is

the fact that it is completely independent of IRM-SA invariant tree and hierarchy,

unlike the two other meta-adaptation strategy implementations.

5.4. (1+1)-ONLINE EA Plugins

Process Period Adjusting and Assumption Parameters Adjusting strategies have

very similar structure, as they both exploit (1+1)-ONLINE EA and IRM-SA

invariant hierarchy; therefore code-reuse is desirable between the jDEECo plugins

implementing these two strategies. The common parts of the plugins are located in

package cz.cuni.mff.d3s.irmsa.strategies.commons and its sub-package variations in

project cz.cuni.mff.d3s.jdeeco.irm-sa.strategies (Figure 22).

The relationships and communication of classes in these packages are depicted

in Figure 23. The entry point to the common functionality provided by these

packages is EvolutionaryAdaptationPlugin depending on MetaAdaptationPlugin

which is an abstract class intended to be ancestor of plugins implementing meta-

adaptation strategies based on the evolutionary algorithm. The communication

pattern is the one depicted in Figure 19. Descendants of the plugin need to provide

implementation for several methods, mostly default implementations of interfaces

from sub-package variations which represent variation points of the strategy as

described in Chapter 4. Moreover, the method provideDataToManager() can be

Chapter 5

43

overridden to provide more data to the EvolutionaryAdaptationManager which is the

main jDEECo component responsible for the adaptation. The information about

IRM-SA invariants with additional information needed for the algorithm is stored

and passed along in a form of collections of instances of InvariantInfo class.

Figure 22: Packages with common functionality for meta-adaptation plugins

exploiting (1+1)-ONLINE EA.

The adaptation process is divided into two steps and thus slightly differs from

the flow charts from the meta-adaptation strategies templates. However, it complies

with the original specifications in all other aspects. The whole process is started by

MetaAdaptationManager indicating that IRM-SA could not find applicable

configuration. Firstly, the overall system fitness is monitored in

monitorOverallFitness with help of InvariantFitnessCombiner. The result is stored in

knowledge field fitness and auxiliary structures needed for computation are stored

for later use in the second step. Secondly, the adaptation itself is handled in process

adapt. The state of the adapt process is stored in knowledge field StateHolder

containing the flag (field state) indicating whether new tactic should be devised or

new tactic has been observed and now it is time to evaluate it and revert it if it proves

disadvantageous. All information to restore the state before application of the tactic

is part of the StateHolder knowledge in field backup. After an adaptation is accepted

Chapter 5

44

or discarded, interfaces representing variation points are notified via

AdaptationResultListener.

If the overall fitness is above adaptationBound or the maximal number of tries

is reached, the self-adaptation stops and indicates it to the MetaAdaptationManager.

There is one inconvenience in jDEECo process scheduling that the plugin must

work around: the process is already scheduled for the next run when its method is

called. That means that the adapt process can only change its own period with lag of

one run. It causes no significant problems when the observation time is equal to or

larger than adapt‟s period. Otherwise the observation takes longer than required, but

this should not be harmful in most cases. More aggressive solution manipulating with

jDEECo internal process scheduling queue may remove these issues, but would also

bind the plugin with private API of jDEECo which is not desirable.

Because Process Period Adjusting and Assumption Parameters Adjusting

strategies are similar but not identical, the extension points where the behavior of the

EvolutionaryAdaptationManager and related classes can be customized are provided.

To implement new meta-adaptation based on this template plugin, one has to extend

the EvolutionaryAdaptationPlugin, StateHolder and Backup classes. The main

extension point is interface EvolutionaryAdaptationManagerDelegate which is

delegated all extension actions from EvolutionaryAdaptationManager using delegate

pattern [22]. This approach is chosen because static nature of jDEECo components

prevents the convenient extension based on inheritance. At least one implementation

of each variation point of the algorithm must be provided.

A lot of the mentioned classes are generic. The main reason behind this is the

fact that this enables better type safety (that is hardcode overtyping is rarer, e.g. for

Backup and StateHolder) and various “withers” (i.e. setters returning the object itself

to enable fluent typing) can return the correct object type instead of the instance of

class where these withers are declared.

Chapter 5

45

Figure 23: UML class diagram depicting relationships and communication

between classes from EvolutionaryAdaptationPlugin‟s project.

The integration to jDEECo framework and IRM-SA is depicted in Figure 24.

Several extensions of IRM-SA to support meta-adaptations are described there. The

IRM-SA model has been extended with weight of invariant (how important the

invariant‟s fitness should be to the overall fitness for some

InvariantFitnessCombiners) and minimal and maximal periods for process invariants.

New type of monitor has been introduced for monitoring invariants‟ fitnesses

returning double value instead of old satisfaction monitor‟s boolean value.

IRMInstanceGenerator now handles these new monitors and sets their outputs into

new field fitness of InvariantInstances. New annotation “@AssumptionParameter” is

intended to provide default value, minimal and maximal bound, scope and initial

adaptation direction for parameters of assumption monitors (for detailed information

see Section 5.4.2) and is exploited by IRMInstanceGenerator when preparing non-

adapted parameters for calling assumption monitors (both satisfaction and fitness

monitors).

<<jDEECo SystemComponent>>

EvolutionaryAdaptationManager

+id: String

<<Interface>>

AdaptationManager

+run(): void
+stop(): void
+isDone: boolean

<<Represents CorrelationManager>>

ComponentInstance

-internalData

+getInternalData()

retrieves/stores
flags/data in/from

internal data

1

deploys
to jDEECo

+maximumTries: Integer
+triesLeft: Integer

+monitorOverallFitness(...): void
+adapt(...): void

<<jDEECo Plugin>>

EvolutionaryAdaptationPlugin

#model: RuntimeMetadata

#createDefaultInvariantFitnessCombiner

#design: IRM
#trace: TraceModel
#adaptationBound: double
#maximumTries: int

#createDefaultAdapteeSelector
#createDefaultDirectionSelector
#createDefaultDeltaComputor
#createAdaptationManager
#provideDataToManager(data): void

stores fields in
Internal data

<<Interface>>

InvariantFitnessCombiner

+combineInvariantFitness(...): double

<<Interface>>

AdapteeSelector

+selectAdaptees(...): Set

<<Interface>>

DirectionSelector

+selectDirection(...): void

<<Interface>>

DeltaComputor

+computeDelta(...): void

<<Interface>>

AdaptationResultListener

+adaptationImprovement(double
improvement, infos): void

1 -deecoNode

retrieves/stores
flags/data in/from

internal data

+fitness: Double

<<Knowledge>>

StateHolder

+oldFitness: double

+reset(): void

<<Enumeration>>

State

STARTED
OBSERVED

<<Knowledge>>

Backup

#createBackupName(): String

+state1

<<Interface>>

EvolutionaryAdaptationManagerDel
egate

+getMonitorPeriod(): long

+observeTime: long

#createStateHolderName(): String
#createStateHolderType(): String
#resetBackup(backup): Backup

1

+state

1

+backup

#createBackupType(): String

+getDefaultAdaptingPeriod(): long
+extractInvariants(iRMInstances): Set
+applyChanges(adaptees,backup):Backup
+computeObserveTime(...): long
+restoreBackup(infos, backup): void

#delegate
1

delegates
extension

actions

InvariantInfo

+invariant: InvariantInstance

+int computeInvariantLevel(): int

+fitness: double
+weight: double
+level: int
+delta: Number

<<Enumeration>>

Direction

UP

+getCoef(): byte

DOWN
NO

+opposite(): Direction

-direction

1

Chapter 5

46

Figure 24: EvolutionaryAdaptationManager set in greater context of jDEECo

framework and IRM-SA

5.4.1. PeriodAdaptationPlugin

This plugin extends EvolutionaryAdaptationPlugin and implements Process

Period Adjusting meta-adaptation strategy. The structure of its package is illustrated

in Figure 25.

Figure 25: Package of PeriodAdaptationPlugin inside its project.

The code of the plugin and its delegate is very straightforward thanks to robust

infrastructure provided by EvolutionaryAdaptationPlugin. The periods of the

component processes are changed via getTriggers() method of

<<jDEECo SystemComponent>>

EvolutionaryAdaptationManager

+id: String
+maximumTries: Integer
+triesLeft: Integer

+monitorOverallFitness(...): void
+adapt(...): void

<<Interface>>

InvariantFitnessCombiner

+combineInvariantFitness(...): double

<<Interface>>

AdapteeSelector

+selectAdaptees(...): Set

<<Interface>>

DirectionSelector

+selectDirection(...): void

<<Interface>>

DeltaComputor

+computeDelta(...): void

+fitness: Double

InvariantInfo

+int computeInvariantLevel(): int

+fitness: double
+weight: double
+level: int

+delta: Number
+direction: Direction

createsmanipulates

<<Interface>>

ComponentProcess

+getTriggers()

<<Interface>>

ComponentInstance

+getInternalData()

stores information in internal data

*

-componentProcesses

-componentInstance

1

<<Thread Singleton>>

ContextMonitor

-context: ThreadLocal<ContextMonitor>

+getMonitoredComponent()
+setMonitoredComponent()
+getMonitoredEnsemble()
+setMonitoredEnsemble()

*

-monitoredComponent

1

IRMInstanceGenerator

+generateInstances()

sets context

generates InvariantInstances

<<Interface>>

InvariantInstance

+getFitness(): double

generates

<<Interface>>

ProcessInvariantInstance

1

-invariant

1 -componentProcess

<<jDEECo Component>>

ExampleComponent

+id: String

+processFitnessMonitor(...): double

<<Interface>>

EnsembleController

+getTriggers()

* 1

-monitoredEnsemble

calls monitor
functions

Fitness functions access context
to retrieve auxiliary information

from internal data

+process(...)

+processSatisfactionMonitor(...): boolean
+assumptionFitnessMonitor(...): double
+assumptionSatisfationMonitor(...): bool

+isSatisfied(): boolean

<<Interface>>

AssumptionInstance

1 -componentInstance

<<Interface>>

ExchangeInvariantInstace

<<Interface>>

Invariant

+getWeigth(): double

1 -ensembleController

<<Interface>>

ProcessInvariant

+getProcessPeriod(): long

-processInvariant1

<<Interface>>

ExchangeInvariant

+getEnsemblePeriod(): long

<<Interface>>

Assumption

-assumption1 -exchangeInvariant1

+getProcessMinPeriod(): long
+getProcessMaxPeriod(): long

+getEnsembleMinPeriod(): long
+getEnsembleMaxPeriod(): long

extracts values
of assumption

parameters

Chapter 5

47

ComponentProcessClass and locating TimeTrigger object in the returned collection.

This object can be used to set the period to a new value. The overview of the most

important classes can be seen in Figure 26.

Figure 26: Overview of the most important classes of PeriodAdaptationPlugin.

The implementation provides a great number of variation points. The overall

system fitness (variation point InvariantFitnessCombiner) can be computed in two

ways: (i) compute weighted average fitness by invariants‟ weight defined at design

time (InvariantFitnessCombinerAverage) or (ii) compute weighted average fitness

using invariant level as weight (InvariantFitnessCombinerLevel). Potential adaptees

(variation point AdapteeSelector) can be selected in two ways: (i) the ones with

lowest fitness (AdapteeSelectorFitness), (ii) the ones higher in the IRM tree

(AdapteeSelectorTree). The direction of the adaptation (i.e. determining whether the

adaptee‟s period should increase or decrease, variation point DirectionSelector) can

be determined in two ways: (i) try down and then up if previous try is not successful

(DirectionSelectorImpl) or (ii) by simulated annealing [28]

<<jDEECo Plugin>>

EvolutionaryAdaptationPlugin

#model: RuntimeMetadata

#createDefaultInvariantFitnessCombiner

#design: IRM
#trace: TraceModel
#adaptationBound: double
#maximumTries: int

#createDefaultAdapteeSelector
#createDefaultDirectionSelector
#createDefaultDeltaComputor
#createAdaptationManager
#provideDataToManager(data): void

PeriodAdaptationPlugin

#considerAssumptions: boolean

<<Interface>>

EvolutionaryAdaptationManagerDel
egate

+getMonitorPeriod(): long
+getDefaultAdaptingPeriod(): long
+extractInvariants(iRMInstances): Set
+applyChanges(adaptees,backup):Backup
+computeObserveTime(...): long
+restoreBackup(infos, backup): void

PeriodAdaptationManagerDelegate

<<jDEECo SystemComponent>>

EvolutionaryAdaptationManager

+id: String
+maximumTries: Integer
+triesLeft: Integer

+monitorOverallFitness(...): void
+adapt(...): void

+fitness: Double

1

deploys
to jDEECo

#delegate
1

PeriodAdaptationManager

creates

creates

delegates
extension

actions

<<Knowledge>>

StateHolder

+oldFitness: double

+reset(): void

<<Knowledge>>

Backup

#createBackupName(): String

+state1

+observeTime: long

#createStateHolderName(): String
#createStateHolderType(): String
#resetBackup(backup): Backup

1

+backup

#createBackupType(): String

PeriodStateHolder

PeriodBackupcreates

<<Knowledge>>

Change

+delta: long
+direction: Direction

0..*

processes

maps invariant ids
to revert changes

Chapter 5

48

(DirectionSelectorAnnealing). The deltas of period (variation point DeltaComputor)

can be computed in two ways: (i) fixed delta provided at design time

(DeltaComputorFixed), (ii) delta to set the period in the middle of current period and

its bound (DeltaComputorBound). The users of the plugin are encouraged to provide

own implementations of the variation points of the algorithm as those provided by

default are merely examples and proof of concept.

The required user input at design time is as follows. IRM-SA model must

contain minimal and maximal process periods. Monitors returning double value

representing fitness value must be provided along with existing IRM-SA satisfaction

monitors returning boolean values. Both monitors use the “@Monitor” annotation.

When creating the plugin, the user specifies the variants of the algorithm to be used

by passing implementations of corresponding interfaces to the plugin before adding it

to jDEECo framework. Example of the plugin‟s creation is depicted in Figure 28.

1. IRM design = (IRM)
2. EMFHelper.loadModelFromXMI(DESIGN_MODEL_PATH);
3. IRMPlugin irmPlugin = new IRMPlugin(design).withLog(false);
4. MetaAdaptationPlugin metaAdaptationPlugin =
5. new MetaAdaptationPlugin(irmPlugin);
6. RuntimeMetadata model = RuntimeMetadataFactoryExt.eINSTANCE
7. .createRuntimeMetadata();
8. PeriodAdaptationPlugin periodAdaptionPlugin =
9. new PeriodAdaptationPlugin(
10. metaAdaptationPlugin, model, design, irmPlugin.getTrace())
11. .withInvariantFitnessCombiner(
12. new InvariantFitnessCombinerAverage())
13. .withAdapteeSelector(new AdapteeSelectorFitness())
14. .withDirectionSelector(new DirectionSelectorImpl())
15. .withDeltaComputor(new DeltaComputorFixed(250))
16. .withConsiderAssumptions(true)
17. .withAdaptationBound(0.8)
18. .withMaximumTries(3);

Figure 27: Code snipped illustrating the creation of PeriodAdaptationPlugin.

Chapter 5

49

5.4.2. AssumptionParameterAdaptationPlugin

This plugin extends the EvolutionaryAdaptationPlugin and implements

Assumption Parameters Adjusting meta-adaptation strategy. The structure of its

package is illustrated in Figure 28.

The code of the plugin and its delegate is very straightforward thanks to robust

infrastructure provided by EvolutionaryAdaptationPlugin. The values of assumption

parameters for satisfaction and fitness monitors are changes by setting appropriate

values in components‟ internal data. Name convention is used to identify parameters‟

values by both AssumptionParameterAdaptationManagerDelegate and

IRMInstaceGenerator which extracts the values of monitor methods‟ parameters and

calls the monitors. AssumptionInfo extends InvariantInfo by containing the invariant

monitor object and parameter. It is more finely grained because the adaptation affects

individual parameters, not just assumptions as a whole. It also provides convenient

method getParameterId() to get to parameter id which follows the naming

convention mentioned above. The overview of the most important classes of the

plugin can be seen in Figure 29.

Figure 28: Package of AssumptionParameterAdaptationPlugin inside its

project.

The implementation provides great variety of variation points. More detailed

description of provided implementations of interfaces from package

Chapter 5

50

cz.cuni.mff.d3s.irmsa.strategies.commons.variations is presented in Section 5.4.1 as

analogous implementations are prepared for this plugin.

Figure 29: Overview of the most important classes of

AssumptionParameterAdaptationPlugin.

The required user input at design time is as follows. Assumption monitors

returning double fitness value must be provided along with existing IRM-SA

satisfaction monitors returning boolean values. Both monitors use the “@Monitor”

annotation. Their parameters must be marked with “@AssumptionParameter”

annotation. The following parameter properties must be specified: name, default

value, minimal and maximal values. The scope of the parameter is optional and

defines whether the parameter value is shared among assumption monitors

(COMPONENT) or is localized to this monitor only (MONITOR). The other optional

property is initial direction for parameter adaptation, either UP or DOWN. Figure 30

contains code snipped illustrating the use of the annotation. When creating the

plugin, the user specifies the variants of the algorithm to be used by passing

implementations of corresponding interfaces to the plugin before adding it to

jDEECo framework.

<<jDEECo Plugin>>

EvolutionaryAdaptationPlugin

#model: RuntimeMetadata

#createDefaultInvariantFitnessCombiner

#design: IRM
#trace: TraceModel
#adaptationBound: double
#maximumTries: int

#createDefaultAdapteeSelector
#createDefaultDirectionSelector
#createDefaultDeltaComputor
#createAdaptationManager
#provideDataToManager(data): void

AssumptionParameterAdaptationPlugin

#observeTime: long

<<Interface>>

EvolutionaryAdaptationManagerDel
egate

+getMonitorPeriod(): long
+getDefaultAdaptingPeriod(): long
+extractInvariants(iRMInstances): Set
+applyChanges(adaptees,backup):Backup
+computeObserveTime(...): long
+restoreBackup(infos, backup): void

AssumptionParameterAdaptation
ManagerDelegate

<<jDEECo SystemComponent>>

EvolutionaryAdaptationManager

+id: String
+maximumTries: Integer
+triesLeft: Integer

+monitorOverallFitness(...): void
+adapt(...): void

+fitness: Double

1

deploys
to jDEECo

#delegate1

AssumptionParameter
AdaptationManager

creates

creates

delegates
extension

actions

<<Knowledge>>

StateHolder

+oldFitness: double

+reset(): void

<<Knowledge>>

Backup

#createBackupName(): String

+state1

+observeTime: long

#createStateHolderName(): String
#createStateHolderType(): String
#resetBackup(backup): Backup

1

+backup

#createBackupType(): String

AssumptionParameterStateHolder

AssumptionParameterBackupcreates

<<Knowledge>>

Change

+delta: long
+direction: Direction

0..*+parameters

maps parameters
to revert changes

+paramId: String

InvariantInfo

+int computeInvariantLevel(): int

+fitness: double
+weight: double
+level: int

+delta: Number
+direction: Direction

AssumptionInfo

+monitor: InvariantMonitor

+getParameterId(): String

creates

+parameter: Parameter

Chapter 5

51

1. @Component
2. @IRMComponent("FireFighter")
3. public class FireFighter {
4. …
5. @InvariantMonitor("A02")
6. public static boolean positionAccuracySatisfaction(
7. @AssumptionParameter(name = "bound", defaultValue = 1.5,
8. maxValue = 1.9, minValue = 1.1,
9. scope = Scope.COMPONENT, initialDirection = Direction.UP)
10. double bound) {
11. …
12. }
13. …
14. }

Figure 30: Code snipped illustrating the use of AssumptionParameter.

1. IRM design = (IRM)
2. EMFHelper.loadModelFromXMI(DESIGN_MODEL_PATH);
3. IRMPlugin irmPlugin = new IRMPlugin(design).withLog(false);
4. MetaAdaptationPlugin metaAdaptationPlugin =
5. new MetaAdaptationPlugin(irmPlugin);
6. RuntimeMetadata model = RuntimeMetadataFactoryExt.eINSTANCE
7. .createRuntimeMetadata();
8. AssumptionParameterAdaptationPlugin apap =
9. new AssumptionParameterAdaptationPlugin (
10. metaAdaptationPlugin, model, design, irmPlugin.getTrace())
11. .withInvariantFitnessCombiner(
12. new InvariantFitnessCombinerAverage())
13. .withAdapteeSelector(new AdapteeSelectorFitness())
14. .withDirectionSelector(new DirectionSelectorImpl())
15. .withDeltaComputor(new DeltaComputorFixed(5))
16. .withAdaptationBound(0.4)
17. .withMaximumTries(3);

Figure 31: Code snipped illustrating the creation of

AssumptionParameterAdaptationPlugin.

Chapter 6

52

6. Experimental Evaluation

This chapter contains a description of the simplified case study that is used to

evaluate the three proposed meta-adaptation strategies, their impact on the running

system and a comparison with the scenario where no self-adaptation is employed at

all.

6.1. Experiment Description

The experiment exploits meta-adaptation strategies implemented as extension of

IRM-SA plugin for jDEECo as described in Chapter 5. In Section 6.1.1 there is an

explanation of simplification of the original case study and Section 6.1.2 describes

the specific scenario which has been used for gathering the data for the evaluation

itself.

6.1.1. IRM-SA Model for the Case Study

The overall case study is very complex and multi-layered which could interfere

with evaluation of the meta-adaptation approach. To mitigate this risk only part of

the system is simulated to focus on the most essential areas the adaptation could

significantly improve the behavior of the system in unanticipated situations and harsh

circumstances.

Figure 32: simplified model of the case study for the evaluation

The main goal of the simplified system is gathering the information about

firefighters‟ environment and equipment. The only component considered is the

FireFighter as can be seen in Figure 32. The battery level, the temperature of

Firefighter

+ id
+ missionId
+ batteryLevel
+ position
+ temperature

(I02) FF::sensorData are
determined

(P03) FF::position is determined
every 1.25 seconds

P

(P02) FF::temperature is
determined every 1.25 seconds

P

(A02) Inaccuracy(FF::position)<1.5 m

(I01) FF::batteryLevel is adequate throughout the
operation time

(A01) Battery
drainage is optimal

(P01) FF::batteryLevel is
determined every 1 second

P
(I03) FF::position is determined

within accuracy bounds

[FF]

Chapter 6

53

environment and firefighter position are chosen to represent various important data

that could be monitored to detect possible danger to the group members. There are

two top level invariants:

1. [I01] Protective equipment of the firefighter has enough energy to stay

operational during the predefined mission time

2. [I02] Data about firefighter‟s environment are collected

Both of them are further refined via AND-decomposition. The invariant [I01]

has naturally sub-invariants related to battery, i.e. process invariant [P01] to

determine battery level and assumption [A01] guaranteeing optimal energy drainage.

The invariant [I02] is refined by process invariant [P02] determining environment

temperature and inner invariant [I03] which is again further refined by finally leaf

invariants, that is process invariant [P03] determining position by using particular

technology and assumption [A02] ensuring the position inaccuracy is within

predefined bounds.

The knowledge fields of the FireFighter component are wrapped inside

MetadataWrapper to support certain types of adaptation described in more detail

above in Section 5.3. PositionKnowledge is a type integrating two real values

representing position in two-dimensional coordination system used by the simulation

and a real number as accuracy of this position information provided by the position

sensor. Battery level is integral for clarity‟s sake and temperature is stored as real

value in degrees of Celsius.

There is no pre-designed ensemble in this simplified scenario as the FireFighter

components do not need to communicate with each other to gather the required

information about their environment because every unit is provided with all

necessary measuring equipment.

The idea is to provide transparent scenario where different automatic meta-

adaptation strategies could be evaluated, for results of this evaluation see Section 6.2.

There are no pre-designed adaptations that would benefit from employing the IRM-

SA to show example situation where imperfection inherently contained in complex

and complicated CPS could be mitigate by general approach of meta-adaptation

strategies.

Chapter 6

54

6.1.2. Scenario description

The simplified case study model is used in the evaluation scenario where there is

a building on fire that is being explored by three firefighters (FF1, FF2 and FF3)

whose map is depicted in Figure 33. Firefighter FF3 is moving on their own, while

firefighters FF1 and FF2 are moving together in a group. Every firefighter is

modeled as s DEECo component that gathers information about its battery level,

position and environment temperature. The IRM-SA model is shown in Figure 32.

IRM-SA is responsible for adaptation of the system. If there is no applicable

configuration that can be used to adapt to the current situation, the IRM-SA notifies

the meta-adaptation manager described in Section 5.2. Then the individual meta-

adaptation strategies are employed to adapt the system for unexpected circumstances.

To simulate such unforeseen conditions, two artificial malfunctions are

introduced to the scenario:

The first malfunction occurs after 50 seconds – FF1‟s position tracking system

begins to provide inaccurate readings, so inaccuracy of position of FF1 oversteps the

Figure 33: Heat and corridor map used in the simulation: blue lines marks the

corridors in the building, background color depicts environment temperature

Chapter 6

55

pre-designed boundary (1.5 m). Meta-adaptation is started because IRM-SA is not

able to discover application system configuration. The fact that the sensor is still

operation, only more inaccurate, prevents the use of Data Classification strategy

(DC, see Section 4.1). The situation can be though saved by both Process Period

Adjusting strategy (PPA, see Section 4.2) and Assumption Parameters Adjusting

strategy. (APA, see Section 4.3). Invariant P03 “FF::position is determined every

1.25 seconds” is chosen by PPA as perspective candidate for adaptation and the

corresponding process‟s period is lowered for FF1. This decreases inaccuracy of the

position between two consecutive position determinations which in turn to some

extent alleviate problems with increased inaccuracy of the position sensor.

Due to the pre-designed lower bound for the position process (250 ms), PPA

strategy is not enough to fully recover the system, i.e. lower the position inaccuracy

of FF1 back under the acceptable threshold (1.5 m). Fortunately, APA is prepared to

deal with such situations. Assumption A02 is chosen as a perspective candidate for

adaptation and its parameter is relaxed to allow higher position inaccuracy, but still

within pre-designed bounds. The system recovers and the IRM-SA can again find a

satisfiable configuration.

The second malfunction occurs after 150 seconds – FF1‟s temperature sensor

breaks completely. The IRM-SA again cannot find an applicable configuration and

triggers meta-adaptation via meta-adaptation manager. Changing process periods by

PA has no impact. APA is not able to improve the situation because the sensor

provides no readings whatsoever. However, DC finds the correlation between the

distance between firefighters and environmental temperature their sensors measure.

The closer the firefighters stand, the more similar the environmental temperatures

are. A new ensemble created by DC at runtime is deployed to the system. This

ensemble injects the temperature readings of other firefighters to firefighter FF1 if

they are close enough. Usually FF2‟s temperature is injected to FF1‟s field because

these two firefighters move as a group. Yet, when FF1 is closer to FF3 than he is to

FF2, FF3‟s temperature is injected instead.

This scenario combining two different malfunctions provides opportunities for

all suggested strategies to improve the system performance while proving that

cooperation is achievable for both very different and very similar strategies which

Chapter 6

56

might not be the case if more specific and specialized examples for each strategy are

evaluated. The results of the evaluation can be found in the next section.

6.2. Experiment Evaluation

In this section, the results of the evaluation of the experimental scenario can be

found including figures comparing self-adaptation approach of meta-adaption

strategies with control run with no adaptation at all.

Figure 34 shows the differences between the two approaches after the first

malfunction, i.e. position sensor provides readings with higher inaccuracy after 50
th

second of the experiment. The differences between the FF1‟s belief of his position

and his actual position are depicted by the box plots. The common period [0, 50]s,

i.e. before the malfunction occurs, is the same for both meta-adaption approach and

control sample and is displayed by the left box. The rest of the boxes depicts period

(50, 300]s, the middle box shows data from the simulation with meta-adaptation and

finally the right box corresponds to the control simulation without any adaptations.

The increased inaccuracy of position sensor obviously raises the difference between

the belief and the actual values as depicted by the last box. Figure 34 also captures

the assumed limits on the position inaccuracy – the original limit is represented by

the horizontal dashed line; the limit relaxed by APA strategy is represented by the

horizontal dotted-dashed line.

Figure 34: The Euclidean difference between the actual position and belief

about the position. The first box depicts situation before malfunction, the second one

illustrates results of the meta-adaptation strategies and the third one is control sample

without any adaptations.

Chapter 6

57

Figure 35 concentrates on the situation after the 150
th
 second of the experiment,

i.e. after the second malfunction prevents FF1‟s temperature to operate completely.

The actual environmental temperature is represented by the red line. The

component‟s belief about the temperature in simulation with meta-adaptation is

represented by the blue line. And finally the component‟s belief about the

temperature in simulation without adaptation is represented by a green line. As can

be seen, the belief is rather accurate before the malfunction occurs because there is

only interference caused by firefighter‟s movement between measurements and by

random noise. After the malfunction, the belief that is not adapted is no longer usable

as it is not updated at all and temperature field can no longer be relied on. On the

other hand, the meta-adaption causes the belief to be updated by injecting readings

from nearby firefighters which provides useful belief in spite of some delay and

inaccuracy.

Figure 35: The evolution of the actual temperature and belief about the belief

temperature.

Chapter 7

58

7. Related Work

The self-adaptation belongs among thriving research subjects of the software

engineering [29], [30], [31]. The main research areas dealing with it are (i) modeling

and model-driven engineering [32], [33], [34], (ii) control theory [35], [36], [37] and

(iii) software architecture [3], [5], [38], [39].

The MAS elaborated in this thesis could be applied to model many diverse

approaches from (i)-(iii) that push the borders of adaptability of a system, in spite the

fact that it is designed primarily with architecture-based self-adaptation in mind. For

instance, a model-driven approach is likely to be easily converted to a MAS strategy,

should it be able to generate new behavior models and to pick from them in the

running system. One of the promising approaches is AVIDA-MDE [34]. In AVIDA-

MDE, a MAS tactic takes a form of a behavior model of the system (state diagram in

UML) and a MAS strategy corresponds to generating behavioral models by a digital

evolution-based approach exploiting an evolutionary computation platform [40]. The

definition of a MAS metric consists of both the latent functional properties exhibited

by the generated models, and the non-functional characteristics. Despite the fact that

offline approach is employed in AVIDA-MDE, the automatic generation of tactics is

its important feature that MAS counts on. Other sources of inspiration for MAS are

various methods for synthetizing computationally diverse program variants [41].

The inspiration for Process Period Adjusting and Assumption Parameter

Adjusting strategies is a method using evolutionary computation to adapt test cases

[42] introduced not long time ago called Veritas. Its primary concept lies in

application of (1+1)-ONLINE algorithm generating new test cases. At runtime, less

false negatives are produced by the new test cases; that is the test cases correspond

better to the current changes in the self-adaptive system behavior. A MAS tactic

takes form of a test case; iterative application of the evolutionary algorithm that

generates new test cases corresponds to a MAS strategy. Fitness functions measure

the overall system fitness which is similar to Process Period Adjusting and

Assumption Parameters Adjusting strategies. The MAS metric of this strategy can

take the form of these fitness functions. Proteus [43] is a framework incorporating

Veritas that addresses assurance when confronted with uncertainty in the running

system. In order to enhance self-adaptative systems with runtime compliance

Chapter 7

59

checking [44], component-based integration testing is also encouraged along with

online adaptive testing described above.

There are many different levels where the adaptability of a system can be

improved to cope with uncertainty. FLAGS [45], [46] and Evolution Requirements

[47], [48] are examples of approaches originating from requirements engineering

community that come with important ideas.

The main concept of FLAGS lies in “adaptation requirements”. They describe

requirements on the counteractions applied when application requirements fail.

KAOS [49] object models, operation and goals are exploited in FLAGS. When

satisfaction criteria of a “conventional” goal are not met, the system takes a

countermeasure which corresponds to an adaptation goal, which is a special goal

type. FLAGS introduces a fuzzy goal whose satisfaction is the result of a fuzzy

membership function. That allows modeling of the satisfaction criteria for

conventional goals. RELAX language [50] is exploited [51] for formal specification

of the fuzzy goals. Adaptation goals in the running system may be triggered based on

the level of goals‟ satisfaction. This starts countermeasures including altering the

operations‟ pre- and post-conditions, changing the goals‟ membership functions or

adding or removing objects, operations or goals [46].

Requirements causing the evolution of other requirements are the main concept

of Evolution Requirements (EvoReqs). On one hand, traditional requirements are

modeled as goals (i.e. EvoReqs is model-based), on the other hand the evolutional

requirements take the form of event-condition-action rules whose events serve as a

guard condition for the goals. When the satisfaction of a requirement is no longer

possible, the requirement is altered, e.g. the requirement are relaxed, retried later,

delegated to a human actor or a system task takes place of a domain assumption [48].

MAS differs from FLAGS, EvoReqs and similar approaches (e.g. [52]) by (i)

focusing mainly on runtime behavior of the system, while their focus lies mainly in

requirements specification, and (ii) the fact the unanticipated circumstances cannot

be coped with by these approaches because every situation and corresponding tactic

(plan or task) must be foreseen in advanced to model them, i.e. they do not define

how design and runtime flexibility should be achieved, only provide means to it.

Chapter 8

60

8. Conclusion & Discussion

Meta-adaptation strategies elaborated in this thesis enhance IRM-SA capabilities

to deal with unanticipated situations at runtime by creating new tactics dealing with

dynamically changing environment. This extends the adaptation envelope of the

system and provides self-healing mechanisms to put in use when unforeseen

circumstances jeopardizing the functionality of the system are encountered. A

mechanism for management and activation of different meta-adaptation strategies is

introduced to provide common means for easy implementation of various

approaches. These implementations cover a large spectrum of meta-adaptation

strategies, including not only the ones elaborated in the thesis, but also many others

that are out of the scope of this thesis.

The proposed meta-adaptation strategies are described in detail in Chapter 4.

IRM-SA has been altered to provide interface to plug in various extensions listening

to the results of IRM-SA self-adaptation covering goal G1. This interface is

exploited by MetaAdaptationManager (Section 5.2) that serves as a controller

managing individual implementations of meta-adaptation strategies which are

documented thoroughly in Chapter 5, as required by goal G2. The experimental

scenario based on the firefighter coordination case study to evaluate the

implementations of meta-adaptation strategies has been prepared and the promising

results are presented in Chapter 6, satisfying goal G3.

8.1. Improvements of the Current Implementation

There are several ways to improve the current implementation of the meta-

adaptation strategies and to remove their current limitations. Some of them are

elaborated in this section.

First, the simplistic implementation of the MetaAdaptationManager could be

extended to choose the meta-adaptations to run according to a more sophisticated

algorithm. For this reason, interface AdaptationManager should be extended. One

possibility is to provide some kind of rich communication protocol providing

information about the suitable situations to deploy this meta-adaptation to the

MetaAdaptationManager and let it to compare it with the present circumstances and

decide if the strategy is really to be employed. In such a case, the strategy would

Chapter 8

61

provide preconditions that must be satisfied for the meaningful execution of the

strategy. The other option is to add only one method returning a boolean value

indicating whether the strategy is useful in the current situation or not, so the

responsibility for monitoring the current state of the system lies on meta-adaptation

strategies themselves and not their manager.

The individual implementations of meta-adaptation strategies could also be

improved. Process Period Adjusting strategy may be expanded to adapt also

ensemble periods, not only process periods. However, ensemble scheduling periods

are not available in the current jDEECo API, so this improvement would need

coordination with the main jDEECo project development.

Assumption Parameter Adjusting strategy has also room for improvement. The

current implementation is limited to adjust parameters of assumptions that are related

to the knowledge of one component only. The workaround consisting of auxiliary

ensemble (gathering knowledge needed) and component (storing knowledge and

hosting the assumption monitor) is obviously clumsy. Adjusting parameters of

assumptions dealing with knowledge of multiple components natively is a natural

extension of the current implementation, however it must be thought well because it

may easily introduce communication between components bypassing the standard

jDEECo communication model. A place inside jDEECo framework for defining such

assumption monitors and auxiliary data must be defined, too.

8.2. Possible Extensions

Implementations of other meta-adaptation strategies can be seen as possible

extensions of the work presented in this thesis. The following meta-adaptation

strategy is an example that could extend the self-adaptation capabilities of the

systems even more and that would nicely fit into the mechanisms introduced in this

thesis.

Consider a scenario where multiple sensors measure a physical phenomenon, for

example temperature. These components have role TemperatureProvider. At some

point, component C (one of the sensors) malfunctions and starts emitting

temperatures that are not at all close to the values provided by the rest of the

components. A meta-adaptation strategy based also on data correlation could

discover that this phenomenon is taking place and remove the role

Chapter 8

62

TemperatureProvider from component C so that unusable data are not spread in the

system.

Bibliography

63

Bibliography

[1] MODELS 2014. Call for ACM Student Research Competition. [Online]. Available:

http://models2014.webs.upv.es/acmsrc.htm

[2] European Union Horizon 2020, Smart Cyber-Physical Systems, ICT-01-2014.

[Online]. Available: http://ec.europa.eu/research/participants/portal/desktop/en/-

opportunities/h2020/topics/78-ict-01-2014.html

[3] S.-W. Cheng and D. Garlan, “Stitch: A Language for Architecture-based Self-

adaptation,” J. Syst. Softw., vol. 85, no. 12, pp. 2860–2875, Dec. 2012.

[4] P.-C. David, T. Ledoux, M. Léger, and T. Coupaye, “FPath and FScript: Language

support for navigation and reliable reconfiguration of Fractal architectures,” annals

of telecommunications-annales des télécommunications, vol. 64, no. 1-2, pp. 45–63,

2009.

[5] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow:

Architecture-based self-adaptation with reusable infrastructure,” Computer, vol. 37,

no. 10, pp. 46–54, 2004.

[6] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel, “Modes for software architectures,”

in Software Architecture. Springer, 2006, pp. 113–126.

[7] T. Batista, A. Joolia, and G. Coulson, “Managing dynamic reconfiguration in

component-based systems,” in Software Architecture. Springer, 2005, pp. 1–17.

[8] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, and

N. Plouzeau, “Adaptation in Cyber-Physical Systems: from System Goals to

Architecture Configurations,” Department of Distributed and Dependable Systems,

Charles University in Prague, Tech. Rep. D3S-TR-2014-01, March 2014.

[9] J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P. Hnetynka, and N. Hoch,

“Design of ensemble-based component systems by invariant refinement,” in

Proceedings of the 16th International ACM Sigsoft symposium on Component-based

software engineering. ACM, 2013, pp. 91–100.

[10] I. Gerostathopoulos, T. Bures, P. Hnetynka, A. Hujecek, F. Plasil, and D. Skoda,

“Meta-Adaptation Strategies for Adaptation in Cyber-Physical Systems,” Technical

Report, Tech. Rep., 2015.

[11] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil,

“DEECO: an Ensemble-Based Component System,” in Proceedings of the 16th

International ACM Sigsoft symposium on Component-based software engineering.

ACM, 2013, pp. 81–90.

[12] R. Al Ali, T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and

F. Plasil, “DEECo: an Ecosystem for Cyber-Physical Systems,” in Companion

Proceedings of the 36th International Conference on Software Engineering. ACM,

2014, pp. 610–611.

[13] "jDEECo Website", 2015. [Online]. Available: https://github.com/d3scomp/JDEECo

http://models2014.webs.upv.es/acmsrc.htm
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/78-ict-01-2014.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/78-ict-01-2014.html
https://github.com/d3scomp/JDEECo

Bibliography

64

[14] I. Gerostathopoulos, T. Bures, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, and

N. Plouzeau, “Self-Adaptation in Cyber-Physical Systems: from System Goals to

Architecture Configurations,” 2015.

[15] I. Crnkovic and M. Larsson, “Building Reliable Component-Based Software

Systems, Artech House,” Inc., Norwood, MA, 2002.

[16] I. Crnkovic, M. Chaudron, and S. Larsson, “Component-based development process

and component lifecycle,” in Software Engineering Advances, International

Conference on. IEEE, 2006, pp. 44–44.

[17] N. R. Jennings, “On agent-based software engineering,” Artificial intelligence, vol.

117, no. 2, pp. 277–296, 2000.

[18] Y. Shoham and K. Leyton-Brown, Multiagent systems: Algorithmic, game-theoretic,

and logical foundations. Cambridge University Press, 2009.

[19] M. Hölzl, A. Rauschmayer, and M. Wirsing, “Engineering of software-intensive

systems: State of the art and research challenges,” in Software-Intensive Systems and

New Computing Paradigms. Springer, 2008, pp. 1–44.

[20] M. Hölzl et al., “Engineering Ensembles: A White Paper of the ASCENS Project,”

ASCENS Deliverable JD1, vol. 1, 2011.

[21] A. J. Ramirez and B. H. Cheng, “Design patterns for developing dynamically

adaptive systems,” in Proceedings of the 2010 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems. ACM, 2010, pp. 49–58.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of

reusable object-oriented software. Pearson Education, 1994.

[23] N. Bredeche, E. Haasdijk, and A. Eiben, “On-line, on-board evolution of robot

controllers,” in Artifical Evolution. Springer, 2010, pp. 110–121.

[24] "Meta-adaptation Strategies Website". [Online]. Available: https://github.com/-

d3scomp/IRM-SA/tree/meta-adaptation-strategies

[25] "IRM-SA Website". [Online]. Available: https://github.com/d3scomp/IRM-SA

[26] "Eclipse Website". [Online]. Available: https://eclipse.org/

[27] "Javassist Website"". [Online]. Available: http://jboss-javassist.github.io/javassist/

[28] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi et al., “Optimization by simulated

annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[29] G. Di Marzo Serugendo, B. Cheng, R. De Lemos, H. Giese, P. Inverardi, J. Magge,

J. Andersson, B. Becker, N. Bencomo, Y. Brun et al., “Software Engineering for

Self-Adaptive Systems: A Research Roadmap,” 2009.

[30] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,

B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel et al., “Software engineering for

self-adaptive systems: A second research roadmap,” in Software Engineering for

Self-Adaptive Systems II. Springer, 2013, pp. 1–32.

https://github.com/d3scomp/IRM-SA/tree/meta-adaptation-strategies
https://github.com/d3scomp/IRM-SA/tree/meta-adaptation-strategies
https://github.com/d3scomp/IRM-SA
https://eclipse.org/
http://jboss-javassist.github.io/javassist/

Bibliography

65

[31] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research

challenges,” ACM Transactions on Autonomous and Adaptive Systems (TAAS),

vol. 4, no. 2, p. 14, 2009.

[32] M. Morandini, L. Penserini, and A. Perini, “Towards goal-oriented development of

self-adaptive systems,” in Proceedings of the 2008 international workshop on

Software engineering for adaptive and self-managing systems. ACM, 2008, pp. 9–

16.

[33] J. Zhang and B. H. Cheng, “Model-based development of dynamically adaptive

software,” in Proceedings of the 28th international conference on Software

engineering. ACM, 2006, pp. 371–380.

[34] H. J. Goldsby and B. H. Cheng, “Automatically generating behavioral models of

adaptive systems to address uncertainty,” in Model Driven Engineering Languages

and Systems. Springer, 2008, pp. 568–583.

[35] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, “Self-adaptive software meets

control theory: A preliminary approach supporting reliability requirements,” in

Proceedings of the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering. IEEE Computer Society, 2011, pp. 283–292.

[36] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A systematic survey on the

design of self-adaptive software systems using control engineering approaches,” in

Proceedings of the 7th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems. IEEE Press, 2012, pp. 33–42.

[37] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-adaptive

software with control-theoretical formal guarantees,” in Proceedings of the 36th

International Conference on Software Engineering. ACM, 2014, pp. 299–310.

[38] D. Sykes, W. Heaven, J. Magee, and J. Kramer, “From goals to components: a

combined approach to self-management,” in Proceedings of the 2008 international

workshop on Software engineering for adaptive and self-managing systems. ACM,

2008, pp. 1–8.

[39] J. Kramer and J. Magee, “A rigorous architectural approach to adaptive software

engineering,” Journal of Computer Science and Technology, vol. 24, no. 2, pp. 183–

188, 2009.

[40] C. Ofria and C. O. Wilke, “Avida: A software platform for research in

computational evolutionary biology,” Artificial life, vol. 10, no. 2, pp. 191–229,

2004.

[41] B. Baudry, M. Monperrus, C. Mony, F. Chauvel, F. Fleurey, and S. Clarke,

“DIVERSIFY: Ecology-inspired software evolution for diversity emergence,” in

Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),

2014 Software Evolution Week-IEEE Conference on. IEEE, 2014, pp. 395–398.

[42] E. M. Fredericks, B. DeVries, and B. H. Cheng, “Towards run-time adaptation of

test cases for self-adaptive systems in the face of uncertainty,” in Proceedings of the

Bibliography

66

9th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems. ACM, 2014, pp. 17–26.

[43] E. M. Fredericks and B. H. Cheng, “Automated generation of adaptive test plans for

self-adaptive systems,” in Appear in Proceedings of 10th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS,

vol. 15, 2015.

[44] C. E. da Silva and R. de Lemos, “Dynamic plans for integration testing of self-

adaptive software systems,” in Proceedings of the 6th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems. ACM, 2011, pp.

148–157.

[45] L. Baresi and L. Pasquale, “Live goals for adaptive service compositions,” in

Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and

Self-Managing Systems. ACM, 2010, pp. 114–123.

[46] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for requirements-driven

adaptation,” in Requirements Engineering Conference (RE), 2010 18th IEEE

International. IEEE, 2010, pp. 125–134.

[47] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “(Requirement) evolution

requirements for adaptive systems,” in Proceedings of the 7th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems.

IEEE Press, 2012, pp. 155–164.

[48] V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos,

“Requirements-driven software evolution,” Computer Science-Research and

Development, vol. 28, no. 4, pp. 311–329, 2013.

[49] A. van Lamsweerde, “Requirements engineering: from craft to discipline,” in

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of

software engineering. ACM, 2008, pp. 238–249.

[50] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel, “RELAX: a

language to address uncertainty in self-adaptive systems requirement,”

Requirements Engineering, vol. 15, no. 2, pp. 177–196, 2010.

[51] L. Baresi and L. Pasquale, “Adaptation goals for adaptive service-oriented

architectures,” in Relating Software Requirements and Architectures. Springer,

2011, pp. 161–181.

[52] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A goal-based modeling

approach to develop requirements of an adaptive system with environmental

uncertainty,” in Model Driven Engineering Languages and Systems. Springer, 2009,

pp. 468–483.

List of Abbreviations

67

List of Abbreviations

APA – Assumption Parameters Adjusting strategy

API – Application Programming Interface

CPS – Cyber-Physical Systems

CPU – Computer Processing Unit

DC – Data Classification strategy

DEECo – Dependable Emergent Ensemble of Components

DSL – Domain-Specific Language

ECBS – Ensemble-Based Component Systems

FF – Fire Fighter

GM – Group Member

GPS – Global Position System

ICT – Information and Communication Technologies

IRM – Invariant Refinement Method

IRM-SA – Invariant Refinement Method for Self Adaptation

jDEECo – java implementation of DEECo

MAS – Meta-Adaptation Strategies

MDP – Markov Decision Processes

NaN – Not a Number

PPA – Process Period Adjusting strategy

SAT – Boolean Satisfiability Problem

Attachments

68

Attachments

The CD attached to this thesis contains the following:

 thesis.pdf

o electronic version of the thesis

 workspace

o Eclipse workspace containing the sources related to the thesis and

dependencies needed to run the experimental scenario

 thesis

o directory containing the thesis sources and figures

