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1. Introduction 

This chapter contains introduction into the context of Cyber-Physical Systems 

while explaining basic terms used throughout this work and its main goals as well as 

the structure of this thesis. 

1.1. Towards Cyber-Physical Systems 

With the arrival of low-cost mobile embedded devices capable of complicated 

networking and complex computing comes a great opportunity for large distributed 

systems which could significantly improve quality of life by providing high-value-

added services. Webs of elements interconnected by wireless technologies bringing 

these services constitute Cyber-Physical Systems (CPS) which addresses various 

challenges both social and technical in the real world. One example is intelligent 

transportation system where road infrastructure consisting of traffic lights, digital 

road signs, car parks and recharge stations for electric automobiles communicates 

with nearby vehicles in order to achieve efficient usage of limited resources such as 

road capacity, fuel and parking space. By exchanging information the vehicles can 

group together into autonomous cooperating fleets. Another example is smart malls, 

where customers‟ preferences can be used to advertise favorable deals right on their 

smart phones as they go by and where crowd can be recommended optimal routes to 

destination shops during holiday shopping sprees which could also shorten long 

waiting lines. Other examples range from smart exhibition centers, autonomous 

robots and smart electric grids to emergency coordination systems. A concrete 

example of firefighter coordination system is described in detail in Section 2.1. 

As seen from the numerous examples, the class of CPS is large and expansive, 

that is “engineered systems that are built from, and depend upon, the seamless 

integration of computational algorithms and physical components” [1]. European 

H2020 research agenda regards CPS to be “the next generation of embedded ICT 

systems that are interconnected and collaborating, providing citizens and businesses 

with a wide range of innovative applications and services” [2]. 

Main features of CPS are high dynamicity, open-endedness, but also 

dependability and resilience to cope with ever-changing physical environment whose 

properties are often uncertain. As a significant portion of CPS is life-critical, 
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dependability is a very important requirement. The unpredictability of the 

environment emphasizes the need of self-adaptability which means systems change 

their internal state and behavior to react to external impulses. However, typical 

existing approaches for self-adaptation cannot handle well all situations because they 

choose tactic from a fixed set which is difficult to design correctly for complex 

systems so that all mandatory functionality is unaffected under any circumstances. 

1.2. Problem Statement 

Self-adaptability, i.e. the ability to alter system‟s behavior or structure in 

response to external stimuli and changes in the environment, is an important feature 

of any efficient and dependable CPS. There are three typical ways for achieving self-

adaptation in software systems: (i) by designing detailed application mode, e.g., 

Markov Decision Processes (MDP), and employing simulations or other means of 

state-space traversal to infer the best response of the system, (ii) by identifying 

control parameters and employing feedback-based control techniques from control 

theory, and (iii) by reconfiguring architecture models, typically with the help of 

Event-Condition-Action rules – architecture-based self-adaptation. 

When facing a large complicated distributed systems such as CPS, method (iii), 

i.e. high level self-adaptation based on architecture models, is preferred in general 

[3], [4], [5], [6]. Self-adaptation rules in (iii) manifests in invoking certain suitable 

architecture reconfiguration based on satisfaction of particular conditions [3], [4], 

[7]. The results of adaptation are usually measured by satisfaction of system goals. 

The adaptation action enables or disables an activity, generally called tactic [3], in 

the form of component, component process or binding between components. These 

methods (i-iii) select an action from a pre-designed fixed set of operations based on 

observed state of the environment, so self-adaptation in (iii) can be interpreted as 

choosing subset of tactics from a fixed superset. 

The problem lies in inherent unpredictability in the realm of CPS, such as 

network instability, hardware malfunctions or other physical world hazards, which 

renders anticipating all potential circumstances in advance at design time infeasible. 

Therefore, CPS may encounter situations where adaptation by switching between 

tactics fails as no combination of predefined tactics is applicable in the current 

context. 
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1.3. Research Goals 

Responding to the challenges presented in Section 1.2, this thesis focuses on 

providing means to deal with unanticipated runtime situations in CPS which enhance 

IRM-SA [8], [9] design and runtime by elaborating and implementing the concept of 

meta-adaptation [10]. These meta-adaptations push the limits of systems‟ 

adaptability by creating new tactics at runtime to cope with dynamic changes in the 

environment and improve overall system utilities. The behavior of meta-adaptations 

at runtime can be influenced at design time of the CPS but the amount of initial input 

needed is kept at minimal possible level. 

The primary intention is to present the idea of meta-adaptation strategies which 

is in fact mostly agnostic to adaptation method and implementation framework and 

to provide implementation of example strategies as a proof of concept to IRM-SA 

architecture-based adaptation method. The running example of firefighter 

coordination system in jDEECo [11], [12], [13] serves as a context to 

experimentation and evaluation of the proposed approach. 

This thesis targets the following research goals: 

G1 The first goal is to elaborate the proposed meta-adaptation strategies, 

their potential mutual cooperation and embedding into greater context. 

G2 The second goal is to implement examples of meta-adaptation 

strategies as jDEECo plugins which commence functioning when 

IRM-SA adaptation method fails to provide suitable adaptation tactic. 

G3 The last goal is to prepare the experimental environment in the context 

of firefighter case study to evaluate the implementation of the meta-

adaptation strategies. 

1.4. Structure 

The thesis is structured in the following way. First, Chapter 2 introduces an 

example of CPS (Section 2.1), detailed description of the case study based on the 

example and technological background needed to fully understand the concepts and 

terms used throughout the thesis. Particularly, IRM (Section 2.4), IRM-SA (Section 

2.5) and DEECo & jDEECo (Section 2.6) are presented. Chapter 3 provides an 

analysis of limitations of combination of IRM-SA and jDEECo and formulates 

requirements based on thesis goals dealing with these weaknesses. Chapter 4 
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contains descriptions of meta-adaptation strategies further referenced in the thesis 

and their relationships focusing on goal G1. Chapter 5 presents the architecture of 

framework supporting meta-adaptation (Section 5.1 and 5.2) as well as information 

about individual implementations of the meta-adaptation strategies dealing with goal 

G2. The results of the evaluation of the firefighter case study as required by goal G3 

can be found in Chapter 6. The context of the research and the comparison of the 

meta-adaptation strategies and other related approaches are provided in Chapter 7. 

Finally, Chapter 8 then concludes the thesis and gives some ideas to improve and 

extend the outcomes of the thesis. 
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2. Background and Running Example 

The first sections of this chapter contain description of the case study, 

introduction into Invariant Refinement Method and how it can be exploited to model 

the case study. Basic concepts of DEECo and particularities of its Java 

implementation jDEECo can be found in the second half of sections in this chapter. 

2.1. Example of a Cyber-Physical System 

To better illustrate the context and challenges of Cyber-Physical Systems, the 

following text describes a simple scenario based on real-life real-scale case study that 

has been proposed for the evaluation of distributed self-adaptive systems, Firefighter 

Coordination System [8]. A team of firefighters divided into tactical groups of 

several firefighters is deployed on the emergency field. Each group is led by a group 

leader (officer) who aggregates the data of their subordinates‟ status and 

environment. The intention is that each leader can deduce whether any of their group 

members is in danger and take strategic decisions. Example of such mission can be 

seen in Figure 1. 

The communication is done via low-power nodes integrated into their personal 

protective equipment. Every node is configured at runtime depending on the task 

assigned to its bearer. For example, a hazardous situation might need closer 

monitoring of a certain parameter (e.g., temperature). 

The group leaders use tablets to display model of the current situation on a map 

and also detailed information provided by low-power nodes are shown, i.e. 

information about position, external temperature, battery level and oxygen level. 

These data are crucial for creating overall picture of the status of the current 

operation and for giving the appropriate orders or taking corresponding measures to 

avoid casualties. 

Such a coordination system comes with a number of challenges. Its demands on 

stability, safety and performance are obviously high. Though no guaranties for end-

to-end response time are available on top of opportunistic ad-hoc networks assumed 

to operate beneath the system. Energy consumption should be minimal. Sensors and 

other component malfunctions cannot be ruled out. What if the temperature starts 

providing inaccurate readings or fails completely at runtime? What if GPS 
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connection is not available inside the structure firefighters operate in? What if group 

members lose connection to their group leader? 

In the circumstances listed above, latest information available is the ground for 

adaptation of the behavior of every node. For instance, the tactic using indoor 

tracking system needs to replace the tactic using GPS to detect position if GPS signal 

becomes too weak. Other tactics ranges from delegating the communication with the 

group leader to a nearby firefighter if connection to the leader is lost, to changing the 

frequency of the sensor sampling. 

However, it is not possible to list every situation that could trigger adaptation 

with non-zero probability at design time of the firefighter coordination system. The 

environment is too unpredictable, complex and dynamic. Far better approach is to 

Figure 1: Firefighter coordination case study. 
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build framework where it is possible to dynamically alter its behavior by (i) 

generating new tactics on demand, and (ii) using these tactics in adaptation actions to 

deal with unanticipated circumstances. 

2.2. Introduction to IRM-SA and DEECo 

Invariant Refinement Method for Self-Adaptivity (IRM-SA) [8], [9] is a 

requirements-oriented design method targeted for domain of CPS. It is based on an 

iterative approach of refining system requirements from general one to requirements 

on certain components. This method enables to trace software artifacts to system-

level goals and thus contributes to dependability. The different system or component 

modes emerge from different operational contexts captured by IRM-SA as design 

alternatives, which greatly boosts adaptability. 

The basic concept of IRM-SA is invariant that describe properties of the system-

to-be during its whole lifecycle. Invariants express goals and requirements of the 

system. There are several different sub-kinds of invariants. Process invariants refer 

only to one component and its fields. Exchange invariants transfer data from fields of 

one component to other component‟s field. Assumptions are a special kind of 

invariant describing conditions expected to hold about the environment, thus an 

assumption is not expected to be maintained by the system. The invariants constitute 

a hierarchical system, resembling oriented forest of invariants. The orientation 

represents refinement of higher level invariants into lower level invariants, either as 

AND-decomposition or OR-decomposition. The latter can capture different design 

alternatives with an assumption guarding each variant covering the state of the 

environment. The IRM-SA design method starts with a set of top-level invariants and 

ends when every leaf invariants is either Process invariant, Exchange invariant or 

Assumption. 

For example, consider invariant (1) in Figure 2, which declares that the leader of 

each firefighter group (officer) needs an up-to-date view (encapsulated in the field 

positionMap) of their group members‟ location. This “necessity” is AND-

decomposed into invariant (2), which happens to be exchange invariant describing 

the necessities of propagating the position from each member to the leader, and 

invariant (3) stating necessity of determining the position on the side of each 

member. Further decomposition of invariant (3) is an example of captured design 
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alternatives. It can be satisfied either by determining the position through an indoors 

tracking system – invariant (5) – or a Global Positioning System (GPS) – invariant 

(7). The satisfaction of assumptions (4) and (6) is monitored at runtime and the 

system switches to the activity bound to the tree‟s branch currently in effect. 

Figure 2: Fragment of IRM-SA model of the case study. 

IRM-SA is an independent method without any other dependencies, however its 

concepts are very well aligned with the abstractions and mechanisms featured in 

Dependable Emergent Ensemble of Components (DEECo) [11], [12] which is a 

component system specifically targeted for creating highly dynamic CPS. It features 

two basic abstractions – components and ensembles. Components are autonomous 

units of computation and deployment which contain knowledge (their data fields 

representing the state of the component) and processes operating on knowledge of 

the individual component. The components are strictly separated and cannot 

explicitly communicate with each other. The only possible way of communication is 

indirect via ensembles, which corresponds to how exchange invariants of IRM-SA 

work, i.e. one component‟s knowledge is transformed into knowledge of another 

Firefighter

+ id
+ missionId
+ batteryLevel
+ position
+ temperature

Officer

+ id
+ missionId
+ batteryLevelMap
+ positionMap
+ temperatureMap

(1) Up-to-date GL::positionMap, w.r.t. GM::position,
is available

(2) GL::positionMap – GL s belief
over the GM::position – is updated 

every 2 seconds (3) GM::position is determined

(4) GM indoors

X

(5) GM::position is determined by
ITS every 1 second

P
(7) GM::position is determined by

GPS every 1 second

P

(6) GM outdoors

Group Leader [GL]

[GM] Group Member

Component Invariant

X

Exchange
Invariant

Assumption
Takes-role

relation
OR

decomposition
AND

decomposition

Process
Invariant

P
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component. (e.g., Figure 3, lines 25-26). Ensembles are thus groups of associated 

components exchanging data and cooperating to achieve a specific objective. 

Components‟ memberships in ensembles are dynamic, that is periodically updated 

with regards to component‟s knowledge accessed through ensemble-specific 

interfaces. 

 

As hinted above, IRM-SA to DEECo mapping is straightforward. IRM-SA 

components correspond to DEECo components, process invariants to component 

processes, exchange invariants to ensembles and assumptions to DEECo runtime 

monitors. The DEECo process coinciding to process invariant (7) from IRM-SA 

graph and ensemble matching exchange invariant (2) can be seen in Figure 3, lines 

12-17 and 25-26. The adaptation logic used by DEECo systems to turn on and off 

particular features is exploited to switch to IRM-SA graph tree branch currently in 

Figure 3: Fragment of case study components and ensembles in DEECo DSL. 

1. interface GroupMember: 
2. missionId, position 
3. interface GroupLeader: 
4. missionId, positionMap 
5.  
6. component Firefighter features GroupMember 
7. knowledge: 
8. id = 59 
9. position = { x = 49.04606, y = 15.093519 } 
10. temperature = 45.2 
11. … 
12. process determinePositionFromGPS 
13. out position 
14. function: 
15. position.x ← GPSSensor.readX() 
16. position.y ← GPSSensor.readY() 
17. scheduling: periodic ( 500ms ) 
18. … /* other process definitions */ 
19.  
20. ensemble PositionExchange: 
21. coordinator: GroupLeader 
22. member: GroupMember 
23. membership: 
24. member.missionId == coordinator.missionId 
25. knowledge exchange: 
26. coordinator.positionMap ← ( member.id, member.position ) 
27. scheduling: periodic ( 1000ms ) 
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effect at runtime. Technically, a SAT solver is used by a dedicated adaptation 

manager to reveal a satisfiable configuration, i.e. turns on processes and ensembles 

corresponding to selected leaf invariants and disabling the other ones. 

2.3. Case Study Description 

This section contains elaboration and more detailed description of the example 

of a CPS from Section 2.1. This simple scenario comes from a case study developed 

in cooperation with professional firefighters. 

Let us consider an emergency situation like fire, flood or hurricane. A scouting 

team of firefighters is deployed in the field by the firefighter department with the 

objective to survey the criticality of the situation for taking suitable strategic 

measures. The team consists of tactical groups and every group is organized, 

commanded and feedbacked by its group leader (officer). The decreasing costs of 

related technologies enable to equip firefighters with sensing and actuating 

equipment. This results in improving safety and decision making as firefighting 

departments and group leaders are provided with large quantity of information 

collected by firefighters in real time about their position, state of surroundings 

(temperature, noise, humidity, air composition, etc.), energy level, oxygen supply 

and health status. These data could prove crucial for making tactical decisions by the 

group leaders to command the group effectively and to successfully complete the 

mission. 

Members of the firefighter groups have personal protective equipment with 

integrated low-power nodes capable of wireless communication and thus of 

capturing and sharing information about the environment as discussed above. 

Different configurations of the nodes for various types of missions are available, so 

efficient usage of limited resources is reached depending on the task assigned to the 

bearer. For example, oxygen level might not be monitored during a flood emergency 

(resulting in lowering the power consumption). On the other hand, while fighting the 

fire the monitoring of temperature is of a great importance and this environment 

parameter should be monitored very closely in such context. The nodes can also 

exploit other stationary heterogeneous devices in the operation site, e.g. access 

points, temperature sensors in the buildings, etc. either to gather additional 
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information or boost the wireless coverage and network performance when the 

additional devices are used as relays. 

Group leaders coordinate and command their subordinates through tablets where 

data collected from individual firefighters are aggregated. The model of the current 

situation is shown in a visual way (i.e. on a map) on their displays so decisions can 

be made quickly and efficiently, this greatly helps in avoiding or at least lowering 

casualties both in lives and heath as well as material damage. When a firefighter is 

discovered in a potentially dangerous situation, the group leader is notified and can 

take measures immediately to mitigate the risks before the situation becomes critical. 

Designing such safety-critical system is a very challenging task as fulfilling the 

requirements on stability, performance and dependability is top priority. The 

environment is highly dynamic and any hardware failure may occur at any time, so 

sensor readings may become unavailable or completely wrong. Network may prove 

unreliable in extreme conditions expected in operational field and packets may be 

delayed or even lost. The length of mission can vary a lot and often cannot be 

predicted in advance, energy consumption should thus be kept as low as possible to 

keep the firefighters in the field as long as the circumstances dictate. 

The first of two main objectives of the system is to guarantee that individual 

nodes can operate in any situation, even when the network fails and they are 

completely isolated. The second objective is to ensure that the nodes can optimally 

satisfy system-level objectives and constraints even without supervision. 

During the analysis of the requirements we may try to capture all possible 

situations which our system-to-be can get into. What if connection to other group 

members is lost? What if the oxygen level sensor malfunctions? What if the indoor 

position system cannot be used due to interference? What if data from others are 

obsolete because of intermittent network connection? Even this short list of what-ifs 

serves to indicate that the environment is too dynamic and complex to predict all 

problems at runtime and their combination ahead at design time. 

The ideal solution would be to adjust the system behavior dynamically at 

runtime to cope with unanticipated situations without the need to provide exhaustive 

list of pre-designed solutions. This is the subject of our approach. In particular, we 

build a framework generating new adaptation tactics at runtime to use them in 

adaptation actions in order to deal with circumstances or combination of failures that 
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have not been expected at runtime either due to their low probability or due to 

mistakes in design process. 

2.4. Invariant Refinement Method 

This section expands the description of Invariant Refinement Method (IRM) [8], 

[9] from Section 2.2 in more detail. IRM is a design method specifically tailored for 

CPS. It is a requirements-oriented design method focused on distributed cooperation 

and global perspective on the system-to-be. Both low level software requirements 

and high level system goals are modeled by the invariant concept. IRM is based on 

the iterative decomposition of higher level invariants into more specific sub-

invariants until all leaf invariants can be implemented by autonomic components or 

data transfer from one component to the other (i.e. in DEECo performed through the 

participation of components in an ensemble). This method guides the transformation 

of initial high level requirements into software architecture of ensembles and 

autonomous components. IRM provides both traceability of system-level goals to 

software artifacts and vice versa and captures the design alternatives corresponding 

to various situations and system deployments mapped to system configurations and 

component modes. 

Components are functional entities of the system-to-be. In IRM, components 

consist of data fields specific to the domain of the system called knowledge, for 

example the oxygen level in a firefighter personal equipment or a list of places that a 

driver wants to visit at particular times. Knowledge is not immutable, but only 

changes as a result of so-called process invariants (the component itself changes its 

knowledge) or exchange invariants (the framework transfers knowledge of one 

component to the other). Components may adopt a particular role in the system if 

they are referenced by an invariant. 

Invariants are the basic concept that IRM is built on. They represent system 

requirements and goals by describing the desired state of the system-to-be at every 

moment. Invariants are organized into trees reflecting the decomposition of the top-

level system goals. Example of such tree hierarchy from the case study can be seen 

in Figure 2. Rounded rectangles represent invariants, for instance (1) is a top-level 

invariant expressing the requirement that group leaders must have information about 

their subordinates‟ positions. 
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There are three sub-kinds of invariants – process invariants, exchange invariants 

and assumptions. IRM guided design is done if and only if all leaf invariants in IRM 

trees are one of these sub-kinds of invariants. Assumptions are conditions about the 

environment expected to hold during runtime and are not maintained explicitly by 

the system. They are depicted as yellow hexagons in diagrams, for example (4) in 

Figure 2. Process and exchange invariants are associated with computation activity, 

i.e. computation producing output knowledge fields given input knowledge fields so 

that the invariant referencing those fields is satisfied. The computation activity is a 

second view on the invariant as it provides means for satisfying the operational 

normalcy described by the invariant. 

Every knowledge field of components is an output of a single process or 

exchange invariant. Process invariants take an input set of knowledge fields of a 

single component and transform them into an output set of knowledge fields of the 

same component (of course both sets can be empty for special-purpose invariants). 

On the other hand, exchange invariants take an input set of knowledge fields of a 

component and transfer them into an output set of knowledge fields of other 

component. Invariant (5) in Figure 2 is an example of process invariant which are 

marked with P in diagrams. Similarly, the letter X marks the exchange invariants, 

e.g. invariant (2) in Figure 2. 

The key mechanism of IRM is decomposition of higher level invariants in a 

systematic and step-by-step manner. This decomposition results in a set of lower 

level sub-invariants whose conjunction or disjunction implies the higher level 

invariant which is depicted in IRM tree via AND- and OR-nodes and their 

connections. The same behavior expected from the parent invariant is found in 

children invariants and potentially even more. 

This refinement process is recursively applied to system level goals and ends 

when all leaf invariant are either an assumption, process invariant (invariant 

referencing only one component) or exchange invariant (invariant referencing 

ensemble of components). 

Figure 2 also demonstrates the refinement. The top-level invariant (1) is refined 

into a conjunction of two sub-invariants: (2) transferring the information about group 

member position to group leader and (3) determining the position so it can be 

transferred. Invariant (3) is further refined by a combination of OR-decomposition 
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and AND-decomposition which is formally not allowed by the IRM. The formal way 

to handle such situations is the introduction of synthetic invariants corresponding to 

the abstract-syntax tree of the target formula. However, the graphical notation of 

diagrams omits these synthetic invariants and decomposition symbols are connected 

directly, because there is no additional knowledge in the synthetic invariants. 

2.5. IRM-SA 

Invariant Refinement Method for Self Adaptation (IRM-SA) [8], [9] is an 

extension of IRM. The design model and process of IRM-SA capture design 

alternatives (alternative realizations of requirements on the system), applicable 

configurations and their corresponding circumstances, this enables the running 

system to adapt to different situations by exploiting architecture variability. 

 There is at least one applicable configuration for every situation. The number of 

design alternatives that must be explored to map configurations to situations is 

usually large. If the design alternatives depend on each other or reference various 

abstraction levels, the issue is even more problematic. To achieve scalability at 

design time, decomposition for separation of concerns is introduced. To scale at 

runtime, SAT solving for selecting the application configuration is employed. 

The architecture self adaptation itself runs in iterations consisting of three steps. 

Firstly, the current situation needs to be identified. Secondly, the configuration suited 

for the situation must be selected. And finally, the architecture is reconfigured to 

match the selected configuration. 

IRM-SA extends the IRM design model by OR-decomposition, which makes it 

possible to capture design alternatives. A characterizing assumption in IRM-SA is a 

top-level assumption specifying the particular situation addressed by the design 

alternative. Examples of characterizing assumptions can be seen in Figure 2, 

assumptions (4) “GM indoors” and (6) “GM outdoors” are characterizing 

assumptions for their respective sub-trees which captures two design alternatives 

corresponding to the situations where the firefighter is located inside a building or 

under the open sky. 

Characterizing assumptions of several design alternatives may hold at the same 

time, so the design alternatives are not exclusive. This also serves as built-in fault 

tolerance mechanism [14]. 
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Tracing the low-level processes to high-level invariants is the main way to 

address dependability. There is no support for other dependability features such as 

privacy or security. Self-adaptation is not based only on evaluation of snapshots of 

internal data of other components (i.e. component belief), but also on evaluation of 

various metadata associated with the belief, e.g. timestamp of creating of the belief, 

timestamp of network activity associated with the belief (timestamp of receiving or 

sending the data) and so on. This information may help the self-adaptation to predict 

dangerous situations and further increases dependability. 

The CPS sensing and distribution of data causes that belief of the individual 

components is necessarily outdated. The initial sensor and network latency when 

disseminating the data as well as other influences are summarized in inaccuracy of 

the belief - this is another example of belief metadata that can be considered while 

self-adapting. The inaccuracy works well for continuous domains. For discrete ones 

there is concept of possibility which is a model based on timed automata (see Figure 

5). Both inaccuracy and possibility enable invariants to express the need for special 

adaptation actions when the inaccuracy of the component belief raises too high. This 

fail-safe mechanism also contributes to overall CPS dependability. 

Figure 4: An architecture configuration selected by IRM. 
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The IRM-SA model of the system can be encoded into a Boolean satisfiability 

problem (SAT) to easily select an applicable configuration to the current situation. In 

short, the task to select an applicable configuration is the problem of constructing a 

set C of selected invariants from the IRM-SA model corresponding to an applicable 

configuration (example in Figure 2). The following statements must hold to ensure C 

is well formed with regards to invariant decomposition: firstly every top level 

invariant is in C. Secondly every child invariant created by AND-decomposition is in 

C if and only if its parent invariant is in C. Thirdly if a parent invariant is refined by 

OR-decomposition, then it is in C if and only if at least one of its children invariants 

is in C, too. 

Due to the fact that the IRM tree is a directed acyclic graph, invariants on shared 

paths can be safely duplicated to transform the IRM-SA model into a forest. A 

Boolean variable si is created for every invariant i indicating whether the invariant is 

in set C or not. Rules described above are transformed to formulas as input of SAT. 

The variables corresponding to top-level invariants are bound to true. Another 

Boolean variable ai is created for every invariant i indicating whether the invariant is 

acceptable, i.e. whether it can be included in C with regards of the current situation. 

Formulas “si implies ai“ is added to the SAT instance to capture the relationships 

between these variables. The state of system and its environment is represented in 

binding variables ai to reflect acceptability of their corresponding invariant. Every 

satisfying valuation of such a SAT instance corresponds to an applicable system 

configuration. If no satisfying valuation exists, then there is no applicable 

configuration for the current situation. 

However, there can be more than one applicable configuration. In such cases 

there can be mechanism that takes i) IRM-SA model and ii) outputs of the SAT 

solver (applicable configurations) and chooses one configuration to become the new 

OK

DANGER CRITICALt>5s

t>0s

t:=0s

Figure 5: Timed automaton capturing the transitions in the possible valuation of 

the nearbyGMsStatus field. 
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system configuration. This mechanism can consider many features of individual 

applicable configurations and compare them based on different criteria. Many 

different strategies could be employed in this place, e.g. simple total preorder of 

alternatives in each decomposition, etc. 

Every node solves the SAT problem independently exploiting the determinism 

of SAT solving so that all nodes using the same prioritization method reach the same 

applicable configuration. However, because of communication delay and 

unreliability components‟ knowledge, and therefore also the output of the SAT 

solvers, gets temporarily desynchronized. This is not harmful in most cases, only the 

overall system performance is reduced. As an aside, unbounded message delays 

render both fully centralized and distributed (those requiring distributed consensus) 

SAT solving methods inapplicable [14]. 

2.6. DEECo and jDEECo 

This section expands the description of the Dependable Emergent Ensemble of 

Components (DEECo) [11], [12] from Section 2.2 and introduces jDEECo [13] 

which is its Java implementation. 

DEECo is a component model and instantiation of a class of component systems 

called Ensemble-Based Component Systems (ECBS) which exploits the key ideas of 

component-based software engineering [15], [16], agent-oriented computing [17], 

[18] and ensemble-oriented systems [19], [20]. ECBS addresses the dynamic and 

autonomic nature of Cyber Physical Systems, for which it is specifically tailored and 

features autonomic components with periodic execution and dynamic ensembles of 

components controlling data exchange between components. 

These dynamic ensembles replace the usual explicit architecture of components 

and can be characterized as dynamic groups of components cooperating to 

accomplish joint objectives. The components are autonomous entities inspired by 

concepts of agent-oriented computing to deal with dynamism. The definition EBCS 

can be as follows [11]: “Distributed systems composed of components that feature 

autonomic and (self-) adaptive behaviors and are organized into emergent ensembles 

to achieve cooperation.” 

The most important characteristics of ECBS are (i) emergent system architecture 

represented by bindings of components arising at runtime but based on component 
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and ensemble definitions created at design time, (ii) belief about the environment and 

the system is managed by the runtime framework for each component, (iii) 

components are encapsulated and their processes can only employ the knowledge 

(which includes the belief over the knowledge of other components) of the 

component with no explicit communication with other components. 

DEECo refines the approach of ECBS into software engineering concepts 

suitable for building actual CPS. There are two main constructs in DEECo: 

components and ensembles. A component is an independent and autonomous unit of 

computation, deployment and development. An ensemble is the only way 

components can interact with each other and serves as a mediator between a set of 

components which binds them together and arranges their communication. The 

runtime framework managing both components and ensembles constitutes an 

essential part of DEECo component model. 

A component consists of a set of processes and a set of knowledge fields 

accessible via a set of interfaces (example of DEECo DSL fragment from the case 

study can be seen in Figure 3). 

Component‟s knowledge represents component‟s belief of its environment and 

the rest of the system which means it may become invalid or obsolete and must be 

handled as such. In essence, knowledge is mapping of identifiers to values, 

potentially structured further (for these cases structured identifiers are used as shown 

on lines 15 and 16 in Figure 3). 

The knowledge can be accessed by the runtime via a set of interfaces (example 

definitions on lines 1-4, usage on lines 6 and 21-22 in Figure 3) which offers a 

limited view on component‟s knowledge. Knowledge fields exposed by interfaces do 

not have to be disjunctive so one field may be exposed by multiple interfaces. 

Polymorphism may be achieved if one interface is provided by different components. 

Every knowledge field is an output of exactly one process or ensemble. 

A component process is characterized as a function (lines 12-17 in Figure 3) 

with a list of input and output knowledge fields (line 13) and thus manipulates the 

knowledge of its component. Processes are periodically scheduled, i.e. the 

framework executes them repeatedly after a specified period (line 17). The 

framework also fully manages the processes, i.e. gathers atomically all input 

knowledge fields, computes the process function and writes all output knowledge 
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fields, again atomically. Executing the process may have side effects (e.g. sensing or 

actuating), but the explicit communication with other processes or even other 

components is strictly forbidden. 

Ensembles determine component composition and interaction by defining the 

bindings between them. The ensemble is the only way components can communicate 

with each other, that is transfer knowledge from one to the other (lines 25-26). 

Example of an ensemble definition in DEECo DSL from the case study can be seen 

in Figure 3. In an ensemble, there are two roles that components can play – one of 

them is the coordinator of the ensemble (line 21), and the other components are the 

ensemble‟s members (line 22). The coordinator is determined by providing the 

interface specified in definition of the ensemble. The members are components 

providing required interface and satisfying the ensemble‟s membership condition 

which is a predicate about knowledge fields accessible via coordinator and member 

interfaces (lines 23-24). The ensembles may overlap and one component may be 

coordinator in one ensemble and member of different ensembles at the same time. 

Moreover, both ensembles may share the same definition, provided the component is 

accessible by both member and coordinator interfaces. A new ensemble is 

dynamically created for every group of components satisfying the membership 

condition and providing corresponding interfaces by the framework which 

automatically evaluates the membership condition at suitable times or every 

specified period (line 27). 

The main objective of ensembles is knowledge exchange, i.e. transferring 

information among components. It is a one-to-many interaction between the 

coordinator and members of the ensemble. The knowledge exchange is performed as 

defined in ensemble definition once within a specified period. 

The framework jDEECo [13] is an implementation of DEECo in Java 

programming language for practical usage in real development of CPS. jDEECo 

provides the runtime environment and programming means to design, develop, 

deploy and run applications exploiting the concepts of DEECo component model. 

The mapping of DEECo features to Java language is based on use of annotations 

which has an advantage in not introducing any external preprocessors or extensions 

of the language. 



Chapter 2 

 

20 

Figure 6 contains a simplified example of a component definition from the case 

study. The components are defined by creating a class annotated by “@Component” 

annotation (line 1). The knowledge fields are represented by non-static public fields 

(lines 3-4). The String field “id” is mandatory so the framework can uniquely 

identify individual components. Knowledge fields start first level of knowledge 

hierarchy. They can be primitive types (respectively their object wrapper classes), 

Lists, Maps or structured classes implementing Serializable interface whose fields 

recursively represent the knowledge hierarchy. The initial values of knowledge fields 

are either provided by the class constructors or by static initializers. Note that 

DEECo interfaces are not mapped to Java interfaces. Instead, similarly to duck 

typing in dynamic programming languages, the provided interfaces are determined 

by name convention, i.e. they are implicitly detected based on class field names 

matching the ones exposed by the interfaces. 

1. @Component 
2. public class FireFighter { 
3. public String id; 
4. public Double temperature; 
5. … 
6. @Process 
7. @PeriodicScheduling(period=1250) 
8. public static void determineTemperature( 
9. @Out(“temperature”) ParamHolder<Double> temperature) { 
10. … 
11. } 
12. … 
13. } 

Figure 6: Simplified fragment of jDEECo component from the case study. 
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Defining the component processes has the form of declaring public static 

methods annotated by “@Process” annotation in the class representing corresponding 

component (lines 6-11). The “static” modifier is enforced because of the semantics of 

component processes, primarily their isolation from the component knowledge fields 

except their input and output knowledge. Knowledge fields are not static and thus 

inaccessible from the process. However the manipulation with input and output 

knowledge fields is allowed by passing them as method parameters which is 

managed by the framework. The parameters need to be annotated by “@In”, “@Out” 

and “@InOut” annotations to mark which knowledge fields are input, output or both 

(line 9). The identifier of the knowledge field is part of all these annotations too. The 

dot-delimited identifier path can be used to access the internal knowledge node 

inside the knowledge tree. If a primitive type should be passed as out or inout 

knowledge field for a process it needs to wrapped inside an ParamHolder object 

because of immutability of such objects in Java (line 9). Periodicity of the process is 

expressed in “@PeriodicScheduling” annotation with period in milliseconds as 

parameter on the method representing the process (line 7). 

Figure 7 contains a simplified example of a component definition from the case 

study. Similarly to component definitions, ensembles are defined as appropriately 

annotated classes. The main annotation is “@Ensemble” on the class itself (line 1). 

1. @Ensemble 
2. @PeriodicScheduling(period=1000) 
3. public class PositionExchange { 
4. @Membership 
5. public static boolean membership( 
6. @In(“member.missionId”) String memberMissionId, 
7. @In(“coord.missionId”) String coordMissionId) { 
8. return memberMissionId == coordMissionId; 
9. } 
10. @KnowledgeExchange 
11. public static void exchange( 
12. @In(“member.id”) String memberId, 
13. @In(“member.position”) Position memberPosition, 
14. @InOut(“coord.positionMap”) Map<String,Position> positionMap) { 
15. positionMap.put(memberId, memberPosition); 
16. } 
17. } 

Figure 7: Simplified fragment of jDEECo ensemble from the case study. 
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Inside such annotated class there can be defined membership condition and 

knowledge exchange in a form of public static methods. The annotation 

“@Membership” marks the membership predicate (line 4), the annotation 

“@KnowledgeExchange” is intended for methods implementing knowledge 

exchanges (line 10). Parameters of these methods are also annotated by “@In”, 

“@Out” and “@InOut” annotation in the same way as parameters of component 

processes with one exception - identifiers for parameters corresponding to 

knowledge fields belonging to coordinator component are prefixed with “coord”; 

prefix for members‟ knowledge is “member” (lines 6-7 and 12-14). Analogously to 

interfaces provided by components interfaces required to become member or 

coordinator do not need to be defined explicitly. Instead, they are implicitly 

determined as union of knowledge fields passed to methods implementing 

membership condition and knowledge exchange. Another similarity to component 

process is the use of annotation “@PeriodicScheduling” to specify period of the 

knowledge exchange, however it annotates the ensemble class itself because there is 

only one knowledge exchange method per ensemble (line 2). 
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3. Analysis / Goals Revisited 

Although self-adaptation is an important characteristic of CPS, the DEECo 

component model and its implementation jDEECo offer no special means for 

adaptation. The framework is powerful but all responses to external stimuli have to 

be devised in advance at design time. The same applies to IRM itself. The IRM-SA 

provides ways to easily switch between different configurations of the system. Its 

approach is grounded in employing a certain set of component processes whose 

selection is based on satisfaction of given pre-defined conditions. 

However the success of the system adaptations still relies on careful planning 

during design time and capturing all possible problematic circumstances in advance 

and preparing suitable responses. In complicated and complex systems such CPS, it 

is often impossible to anticipate every point of failure in dynamic and perhaps hostile 

environment which is inherently unpredictable for the realm of CPS. If hardware 

malfunction, network breakdown or similar issues occur, the system may find itself 

with no applicable configuration and is destined to fail its goals and objectives in this 

context. 

The concept of meta-adaptation naturally extends the IRM-SA design and 

provides dynamic changes to system behavior at runtime to improve the adaptability 

of the system facing unexpected real-world difficulties. It addresses the limitations of 

IRM-SA and improves utility of the system in unfriendly conditions by generating 

new adaptation tactics at runtime, picking ones worth trying and then evaluating their 

effect in the runtime system. 

 In contrast to limited number of runtime situations that can be defined at design 

time, the number of tactics generated at runtime is in principle infinite. The meta-

adaptation is independent from underlying adaptation method or implementation 

framework and can be configured at design time, but the idea is to invest as little 

effort at design time as possible and still get measurable results. 

This thesis focuses on one specific category of meta-adaptations which adapts 

and changes the self-adaptation logic of systems employing architecture-based self-

adaptation (i.e. self-adaptation based on switching between architecture 

variants/modes) to expand the adaptation envelope of the system. The adaptation 

envelope can be understood as maximal deviations from the optimal situation that the 
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system can still handle and heal itself by its self-adaptation mechanisms (e.g. IRM-

SA). The meta-adaptation helps the current self-adaptation to fulfill its purpose in a 

domain independent way. The self-adaptation itself is adapted and thus the “meta” 

prefix in the mechanism‟s name. 

To cope with this task a framework capable of deriving new strategies at runtime 

must be developed. This framework needs to meet three basic requirements. Firstly a 

mechanism monitoring how the system‟s inherent self-adaptation is successful needs 

to be designed. For the scope of this thesis, it does not have to be very complex and 

complicated, a basic one is sufficient as a demonstration and ground for subsequent 

research. Secondly, a unified way of describing the meta-adaptation strategies would 

assist in researching and categorizing the meta-adaptation strategies. The system 

designers would also benefit from this documentation, because it would make the 

decision on whether to implement and deploy certain strategies in the system easier 

by providing all necessary information to make the choice in a readable and 

formalized way. Finally, actual implementations of the meta-adaptation strategies 

call for a framework that would enable to plug them in easily and in a 

straightforward way without reinventing the wheel every time. 

As a proof of concept, several meta-adaptation strategies and means for their 

cooperation and management are introduced in Chapter 4. Their implementations in 

jDEECo are discussed in Chapter 5 to demonstrate their viability. Chapter 6 provides 

detailed evaluation of their benefits in a test scenario where a simplified case study 

model was subjected to malfunctions unforeseen at design time. 
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4. Meta-Adaptation Strategies 

As stated in the chapters above, even self-adaptive systems can be only designed 

to cope with a finite number of situations that they may encounter at runtime. On the 

other hand, the number of unique tactics that can be generated – in reaction to 

reaching the limits of the system design when facing the unforeseen circumstances – 

is generally infinite. Equally important to generating tactics is to be able to rank them 

and compare them based on their impact on the system. This enables to select the 

most auspicious tactic suitable for the current situation or at least filter the 

unpromising tactics before trying them and wasting time with them. Our current 

implementation of this adaptation mechanism (see Section 5.2) activates tactics and 

examines its impact on the system. Should the effect of the changes be positive, they 

are kept, otherwise they are rollbacked. Figure 8 illustrates basic components of this 

mechanism in the implementation. 

 

Figure 8: When IRM-SA finishes adaptation, MetaAdaptation Manager is 

notified and takes over the adaptation if no applicable configuration has been found. 

In such cases individual strategies are invoked. 

The concept of meta-adaptation strategies (MAS) systematizes the creation of 

new tactics. Every strategy pushes the limits of system‟s adaptability in a specific 

manner. There are two objectives of a MAS – to provide (i) an algorithm 

systematically generating adaptation tactics at runtime, (ii) a metric ranking the 

generated set of tactics.  
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The rest of this chapter contains examples of the meta-adaptation strategies 

whose implementations (see Chapter 5) are evaluated in Chapter 6. The template 

used to describe them is inspired by the style used by Ramirez et al. to document 

adaptation design patterns [21] (further based on the template by template of Gamma 

et al. [22]). Figure 9 contains description of the template format. 

4.1. Tactics Generated by Data Classification 

The interdependencies among data coming from various real-world physical 

sensors can be revealed and studied. Particular meta-adaptation strategies could take 

advantage of them, for example in situations when direct sensing is no longer 

available. A specific case is dependency based on close physical location of the 

sensors providing certain measurable attributes, i.e. data with location-dependency. 

A strategy for automatic creation of definitions of knowledge exchanges is described 

below. These new knowledge exchanges represent new tactics and can be perceived 

as a form of “collaborative sensing” when malfunctioning sensor is compensated by 

a sensor belonging to a node nearby. The description of the implementation of this 

strategy in jDEECo can be found in Section CorrelationPlugin5.3. 

Strategy Name: Knowledge Exchange by Data Classification. 

Intent: Improving of system‟s robustness and extending the period of 

satisfactory running (or at least result in graceful degradation) under circumstances 

including unavailability and obsolescence of data. 

Strategy Name: a unique identifier describing the strategy in a compact form 

Intent: the strategy‟s rationale and objectives that it aims to complete 

Context: the application independent circumstances required for successful 

application of the strategy 

Behavior: description of the algorithm that generates new tactics accompanied by 

UML diagrams if needed and the metrics comparing the generated tactics 

Contraindications: enumeration of disadvantages and compromises of the 

strategy 

Example: at least one situation that gives an idea of difficulties addressed by 

application of this strategy and how the difficulties are mitigated 

Figure 9: Meta-adaptation strategy template. 
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Context: This strategy deals with scenarios when component‟s data in a 

knowledge field become so old that the component‟s behavior cannot be reliably 

considered correct, e.g. field‟s value cannot be updated because of malfunction of the 

sensor providing the data. 

Behavior: A new ensemble specification (see DEECo architecture, Section 2.6) 

is created to obtain the approximation of actual value of the currently unupdatable 

field by substituting the up-to-date knowledge of other components. The 

specification is comprised of (i) membership condition specifying the condition 

which components must satisfy to interact with each other; and (ii) a knowledge 

exchange function specifying manipulation with data transferred from a component 

to the malfunctioning component. For simplicity‟s sake, only identity function is now 

used as the knowledge exchange function, i.e. the data are just copied without further 

altering. 

The building of the membership condition is not trivial and requires long 

observation of the system during normal operation and logging of evolution of 

components‟ knowledge with timestamps. This data gathering is usually done in 

advance as the data analysis and correlation have a performance overhead that cannot 

be tolerated for embedded mobile devices. The objective of this offline analysis is to 

find conditional correlations indicating that “closeness” of pairs of values of 

knowledge fields (A1, B1), … , (An, Bn) belonging to two different components 

implies that values of other knowledge fields C, D of the same two components are 

“close” too. The ensemble specification is created for each such correlation so that 

the membership condition is the closeness of pairs (Ai, Bi) and the knowledge 

exchange function is the assignment D := C providing D is the un-updatable 

knowledge field. These new ensemble specifications will be instantiated when the 

situation targeted by the strategy is encountered. 

Finding the correlations is technically realized by searching for relations 

⋀𝑖=1…𝑛𝜇𝐴𝑖𝐵𝑖
 𝑣𝐴𝑖

, 𝑣𝐵𝑖
 <  ∆𝐴𝑖 ,𝐵𝑖

→ 𝜇𝐶,𝐷 𝑣𝐶 , 𝑣𝐷 < 𝑇𝐶,𝐷  

The knowledge logged from runs during normal operation enables to establish 

these relations on a given confidence level α. The function μX,Y is domain-specific 

and user-provided metrics which defines “distance” between values of knowledge 

fields X and Y. Typical metric used is a Euclidean distance. The constant TC,D is 

again domain-specific and user-provided tolerable distance for fields C and D. The 
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value of knowledge field X is represented by vX. The output parameter is denoted as 

ΔA,B and represent maximal distance of values of knowledge fields A and B so that 

they still imply correspondence of values of C and D. 

Possible membership conditions corresponding to different tactics are generated 

and then a tactic providing the most general condition given the target confidence 

level is selected (i.e. the membership that is a superset of all other memberships). 

Contraindications: Dedicated hardware infrastructure may be needed because 

the gathered data analysis is a performance heavy task. Also the knowledge logging 

itself could potentially have high requirements on resources. The demands on 

performance are particularly serious when there are many knowledge fields or/and 

when their values change frequently. Moreover, the system may find itself 

overloaded with needlessly replicated data created by potentially excessive 

ensembles. 

Example: As stated in the description of the firefighter case study Chapter 2.3, 

each firefighter is equipped with temperature and position sensors whose readings 

are stored as knowledge. The cooling system of the personal equipment may employ 

the values of the temperature knowledge, for example. The sensor malfunction 

clearly endangers the firefighter‟s security. Fortunately, the firefighters typically 

cooperate in groups moving close together and thus their sensors measure similar 

values. So the readings from temperature sensors belonging to nearby colleagues 

could replace the outdated value from the broken temperature sensor. For instance, 

the algorithm computes that the temperatures could be exchanged with confidence 

level 0.8 and tolerated distance 10 degrees (those are user-defined parameters) if the 

two firefighters are not separated by more than 4 meters. 

4.2. Tactics Generated by Period Adjusting 

Real-time criteria are usually part of specifications of CPS and are addressed by 

parameters controlling the scheduling of component processes. Schedulability 

analysis can most of the times deduce values for these scheduling parameters when 

the parameters do not have complicated impact on the system. This systematic 

analysis may not be viable otherwise, i.e. in cases when the parameters affect the 

system in a complex way, for example when the balance between battery 

consumption, network utilization and CPU performance is sought. Instead, the 
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systems architects assign values to the scheduling parameters manually. However, if 

unforeseen circumstances occur, these manually set parameters may no longer meet 

the criteria imposed on the system, which is exactly the situation addressed by the 

meta-adaptation strategy introduced in this section. The description of the 

implementation of this strategy in jDEECo can be found in Section 5.4.1. 

Strategy Name: Process Period Adjusting. 

Intent: Process scheduling optimization considering overall domain-specific 

system performance if there are periodically scheduled processes in the system. 

Context: This strategy deals with scenarios when violation of timing criteria 

causes the failure of the system and deduction of scheduling parameters in advance is 

not viable due to their complicated impact on the system 

Behavior: Each process ri from the set R of real-time processes in the system 

with scheduling period pi is provided a corresponding runtime monitor that returns a 

fitness value fi which is a real number in range [0-1] that indicates whether the 

process is still satisfied. If fi is lower than minimal acceptable value, new tactics that 

correspond to new real-time processes ri‟ are generated. The processes ri are 

transformed to ri‟ by adjusting their periods pi to pi‟ while keeping them in the pre-

defined allowed range. The generic algorithm (1+1)-ONLINE EA [23] is exploited to 

find the suitable adaptation as can be seen in Figure 10 and Figure 11. Adjusting 

period pi of ri (line 12 in Figure 10) can be understood as substitution of tactic ri by 

newly generated tactic ri‟. When there are no processes suitable for adjusting left, i.e. 

period of every processs has been already adjusted in both directions, or a pre-

defined maximal number of tries has been reached, the process period adjusting is 

finished. 

The benefit of individual tactics (i.e. new processes) is measured by comparing 

the overall system fitness (calculated as a function of individual fi‟s) after an 

observation period passes and the changes take effect on the running system. 

Contraindications: If the periods of component processes are lowered too 

much, other system resources like battery, network or CPU may be influenced 

negatively. In such systems, consumption of these resources must be modeled, so the 

strategy can choose tactics with regards to these requirements. 

Example: As stated in the description of the firefighter case study Section 2.3, 

the operation time of firefighters in field cannot be easily predicted, so battery 
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consumption should be kept minimal. However, the team leader needs as accurate 

position information for effective firefighter management. These two requirements 

can be modeled as two contradictory invariants. If the GPS process is invoked too 

scarcely, the cumulative inaccuracy of the estimated position of a moving firefighter 

may be too high to fit into a predefined range. On the other hand, too frequent 

invoking of GPS may result in high battery drainage. As cumulative inaccuracy is the 

sum of initial inaccuracy of the GPS sensor and the distance a firefighter could have 

moved since the last GPS readings are obtained, the predesigned process period can 

become unsuitable if the initial inaccuracy of the sensor rise unexpectedly, e.g. due 

to the fact that less than three satellites are in sight. 

The adaptation can mitigate the risen inaccuracy by scheduling the process 

determining the firefighter position more frequently. However, the process period 

must stay in pre-defined bounds and also cannot jeopardize battery life, so balance 

between these factors must be found by the process period adjusting. 

1. begin 
2. foreach Invariant from Processes.Invariants do 
3. begin 
4. Compute fitness for Invariant 
5. OldFit = *CombineFitness(Processes.Invariants.Fitnesses) 
6. Adaptees = *SelectProcessesToAdaptTheirPeriods(Processes) 
7. end 
8. foreach Process from Adaptees do 
9. begin 
10. *Select the direction for period adjustment (up or down) for Process 
11. *Calculate period delta (difference of old and new period) for Process 
12. Change period of Process 
13. end 
14. ObserveTime = CalculateObserveTime(Processes) 
15. Run for ObserveTime with no further adaptations for changes to take 

effect 
16. foreach Invariant from Processes.Invariants do 
17. Compute fitness for Invariant 
18. NewFit = *CombineFitness(Processes.Invariants.Fitnesses) 
19. if NewFit > OldFit then 
20. KeepChanges 
21. else 
22. Roll-back changes 
23. end 

Figure 10: Single run of the Process Period Adjusting strategy in a form of 

pseudocode. “*” denotes variation points of the algorithm. 
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1  Compute fitness of every invariant

2*  Compute overall fitness   OldFitness

3  Select a set of processes to adapt

4  Select directions

5*  Compute period deltas

6  Apply the changes

7  Compute observe time

8  Run for observe time

9  Compute fitness of every invariant

10*  Compute overall fitness   NewFitness

NewFitness
>

OldFitness

11 Keep changes

Yes

12  Rollback changes

No

Figure 11: Single run of the Process Period Adjusting strategy in a form of 

activity diagram. “*” denotes variation points of the algorithm. 
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4.3. Tactics Generated by Assumption Parameters 

Adjusting 
Monitoring and analysis of the environment conditions are crucial for the CPS to 

self-adapt itself in face of dynamic changes. Assumptions about the environment of 

the CPS and its internal state are periodically re-evaluated by specialized 

(“monitoring”) tactics to decide which pre-designed situation the system is in. 

Descriptions and specifications of these situations are dependent on domain-specific 

knowledge in a form of behavioral models, such as timed automata or state-space 

models). However, if unforeseen circumstances occur at runtime, the expectations 

that these models are built on may be no longer valid and CPS fails to meet its goals. 

Such cases when the current situation is not effectively identified by the parameters 

of assumptions set manually are addressed by the following strategy. The description 

of the implementation of this strategy in jDEECo can be found in Section 5.4.2. 

Strategy Name: Assumption Parameters Adjusting. 

Intent: Preventing inappropriate, overdue or early actions by improving the 

monitoring and analysis phases by making the assumptions parameters as fitting to 

the present circumstances as possible. 

Context: This strategy deals with scenarios when the current situation is not 

identified correctly because of the predesigned model with hardcoded domain 

knowledge does not expect such circumstances and thus there are no monitoring 

assumptions corresponding to the present status. In such cases, early, overdue or 

inappropriate adaptation actions may be taken which could jeopardize the efficiency 

or even the functionality of the whole system. 

Behavior: The behavior of this meta-adaptation strategy is very similar to the 

Process Period Adjusting described in the previous chapter. Each assumption ai from 

the set A of all assumptions in the system is provided with a corresponding runtime 

monitor accepting parameters Pi with values Vi. The runtime monitor of ai returns a 

fitness value fi which is a real number in range [0-1] that indicates whether the 

assumption is still satisfied. If fi is lower than minimal acceptable value, new tactics 

that correspond to new assumptions ai‟ are generated. The assumptions ai are 

transformed to ai‟ by adjusting values Vi of their parameters Pi to Vi‟ while keeping 

them in the pre-defined allowed range. The generic algorithm (1+1)-ONLINE EA 

[23] is exploited to find the suitable adaptation as can be seen in Figure 12 and 
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Figure 15. Adjusting values Vi of ai‟s parameters Pi (line 12 in Figure 12) can be 

understood as substitution of tactic ai by newly generated tactic ai‟. When there are 

no assumptions suitable for adjusting left, i.e. parameters of every assumption have 

been already adjusted in both directions, or pre-defined maximal number of tries has 

been reached, the assumption parameter adjusting is finished. 

The benefit of individual tactics (i.e. new assumptions) is measured by 

comparing the overall system fitness (calculated as a function of individual fi‟s) after 

an observation period passes and the changes take effect on the running system. 

Contraindications: Softening of the assumption parameters may be very 

dangerous in safety critical systems where values of these parameters are not only 

result of experiences of the application architects but come from strict specifications, 

such as laws etc. In these situations, relaxing assumptions is not a solution, so 

parameterizable assumptions can be fine tuned at design time and strict, fail-safe 

1. begin 
2. foreach Assumption from Assumptions do 
3. begin 
4. Compute fitness for Assumption 
5. OldFit = *CombineFitness(Assumptions.Fitnesses) 
6. Adaptees = *SelectParametersToAdaptTheirValues(Assumptions) 
7. end 
8. foreach Parameter from Adaptees do 
9. begin 
10. *Select the direction for param. adjustment (up or down) for Parameter 
11. *Calculate value delta (difference of old and new value) for Parameter 
12. Change value of Parameter 
13. end 
14. Run for predefined ObserveTime with no further adaptations for changes 

to take effect 
15. foreach Assumption from Assumptions do 
16. Compute fitness for Assumption 
17. NewFit = *CombineFitness(Assumptions.Fitnesses) 
18. if NewFit > OldFit then 
19. KeepChanges 
20. else 
21. Roll-back changes 
22. end 

Figure 12: Single run of the Process Period Adjusting strategy in a form of 

pseudocode. “*” denotes variation points of the algorithm. 
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bounds of their parameters can be specified. All these measures ensure that the 

system is not put in a risk at any time. 

Example: Consider altered situation from the case study depicted in Figure 14 

where the technology for wireless communication is chosen based on the distance 

between the communicators. The technology with limited range is more reliable and 

less energy demanding, but susceptible to interference. The Wi-Fi technology at 

5GHz is more power hungry and has longer range. The parameter “25” of 

assumptions 2 and 3 is a domain-specific knowledge coming from system architects‟ 

experience and specifications. However when unanticipated interference prevents the 

Bluetooth technology to function properly for this distance, this strategy can take 

care of decreasing the parameter, so more reliable technology is used, even though it 

drains the batteries more and it would not be efficient to use it for this distance under 

normal circumstances. Figure 13 illustrates such scenario. 

(1) Communication technology is 
determined and heartbeat 

established

(2) The other side within 25 meters

(4) Bluetooth heartbeat every 30 
seconds

P

(5) WiFi heartbeat every 30 seconds

P

(3) The other side further than 25 
meters

Figure 14: Alternative situation of the case study where heartbeat 

signals are required. 

Figure 13: Example of problematic situation where unanticipated 

interference (red) requires adaptation from original Bluetooth range (blue) to 

shorter one (green), so 5GHz Wi-Fi is used. 
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1  Compute fitness of every assumption

2*  Compute overall fitness   OldFitness

3  Select a set of parameters to adapt

4  Select directions

5*  Compute parameter value deltas

6  Apply the changes

8  Run for observe time

9  Compute fitness of every assumption

10*  Compute overall fitness   NewFitness

NewFitness
>

OldFitness

11 Keep changes

Yes

12  Rollback changes

No

Figure 15: Single run of the Assumption Parameter Adjusting strategy in a 

form of activity diagram. “*” denotes variation points of the algorithm. 
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5. Implementation as jDEECo Plugins 

This chapter contains information about the jDEECo implementations of the 

three meta-adaptation strategies described in Chapter 4. The first section provides the 

overall picture of how IRM-SA jDEECo plugin, the MetaAdaptationPlugin and the 

plugins corresponding to the individual meta-adaptations are coordinated. The next 

sections describe the individual components in more detail. The source codes can be 

found at the attached CD as well as online at project website [24]. 

5.1. Overall Picture 

The existing jDEECo IRM Plugin [25] has been extended, so listeners to the 

result of the self-adaptation can be registered and serve as adapters between the 

plugins. The listeners implement AdaptationListener interface and are notified every 

time IRM-SA adaptation finishes via adaptationResult method. These notifications 

are the main source of information for MetaAdaptationPlugin managing individual 

meta-adaptation strategies. This pattern is chosen because IRM-SA should not 

depend on the meta-adaptation plugin, so it only provides simple interface which is 

implemented in the meta-adaptation plugin. These relationships are illustrated in 

Figure 8. The dependencies as defined for jDEECo plugins are depicted in Figure 16. 

Technically, the implementation of the schema above is much more complicated 

because of limitations brought by jDEECo as shown in Figure 17. Classes 

representing jDEECo plugins are marked with stereotype instead of implementing 

IRMPlugin

Meta
AdaptationPlugin

Implements
IRM-SA

Assumption
Parameter

AdaptationPlugin

Manages
Meta-Adaptation

Period
AdaptationPlugin

 CorrelationPlugin

Implements
Knowledge 
Exchange by Data 
Classification

Implements
Assumption 
Parameters 
Adjusting

Implements
Process Period 
Adjusting

Figure 16: Dependencies between jDEECo plugins implementing self-

adaptation. 
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DEECoPlugin interface to keep the diagram clear. The list containing adaptation 

listeners of IRMPlugin is passed to AdaptationManager (which is jDEECo 

component responsible for IRM-SA self-adaptation) as part of its internal data. 

Internal data is a mechanism that allows the communication between jDEECo 

components deployed to the same runtime outside of ensemble concept and should 

only be exploited for system components, not application ones. 

AdaptationManager‟s static methods representing IRM processes can access this list 

via ComponentInstance provided by jDEECo framework and notify the listeners and 

ask them whether the IRM-SA self-adaptation can continue or the IRM-SA 

adaptation mechanism should be blocked until listeners‟ work is finished. In other 

words, the behavior of the AdaptationManager has been altered to not proceed with 

IRM-SA adaptation if there are listeners that do not wish to be disturbed, such as 

meta-adaptation strategies that perform self-adaptation of their own. This 

synchronization is needed as threading model of the jDEECo is not visible to its 

components and component processes should not block and instead finish as soon as 

possible, so collisions with process scheduling are avoided. 

Both AdaptationManager and MetaAdaptationManager as well as other 

components excluded from the IRM model need to be marked as such by 

<<jDEECo Plugin>>

IRMPlugin

+registerListener(listener): void

<<Interface>>

AdaptationListener

+adaptationResult(solutions, total): void
+canIRMRun(): boolean

<<Represents AdaptationManager>>

ComponentInstance

-internalData

+getInternalData()

<<jDEECo SystemComponent>>

AdaptationManager

+id: String

+reason(id: String): void

<<jDEECo Plugin>>

MetaAdaptationPlugin

+registerManager(manager): void
+unregisterManager(manager): void

<<jDEECo SystemComponent>>

MetaAdaptationManager

+id: String

+adapt(...): void

+unregisterListener(listener): void

stores listeners
in internal data

listeners list stored in internalData

retrieves listeners
from internal data

0..*

-listeners

1 -irmPlugin

registers
AdaptationListener

1
creates anonymous implementation

notifies and gets blocked if needed

<<Represents MetaAdaptationManager>>

ComponentInstance

-internalData

+getInternalData()

1

stores/retrieves flags
in/from internal data

retrieves/stores
flags in/from
internal data

creates and deploys to jDEECo

creates and deploys to jDEECo

AnonymousImplementation

+alreadyStarted: Boolean

Figure 17: Class diagram depicting actual relations and 

communication between IRMPlugin and MetaAdaptationPlugin 
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“@SystemComponent” (depicted as stereotypes in Figure 17) so the adaptations do 

not adapt these crucial processes which could result in unexpected behavior. 

The whole meta-adaptation extension of the IRM-SA is organized into Eclipse 

[26] projects. The project cz.cuni.mff.d3s.jdeeco.irm-sa.strategies contains package 

called cz.cuni.mff.d3s.irm-sa.strategies with all the classes related to 

MetaAdaptationPlugin described in Section 5.2. 

The same project contains also packages for common behavior of (1+1)-

ONLINE EA Plugins (see Section 5.4), PeriodAdaptationPlugin (Section 5.4.1) and 

AssumptionParameterAdaptationPlugin (Section 5.4.2). 

Because of organization reasons, the CorrelationPlugin (Section 5.3) has its own 

separated project cz.cuni.mff.d3s.irm-sa.strategies.correlation dependent on the main 

project. 

5.2. MetaAdaptationPlugin 

This plugin is responsible for deploying MetaAdaptationManager into jDEECo 

runtime which manages plugins/managers implementing meta-adaptation strategies 

that are described in the following sections. It provides similar interface methods for 

registering adaptation managers as IRM-SA AdaptationPlugin; their communication 

patterns are analogous. This can be seen in Figure 19 with example *Plugin instead 

of actual plugin responsible for meta-adaptation. The package structure of the project 

is illustrated in Figure 18. 

 

Figure 18: Package of MetaAdaptationPlugin inside its project. 

The MetaAdaptationPlugin takes advantage of jDEECo dependency 

management and its only dependency is the IRM-SA AdaptationPlugin. It becomes 

the dependency of the three meta-adaptation strategies (Figure 16). 

MetaAdaptationManager is a jDEECo component which is notified by the 

IRMPlugin via anonymous implementation of the interface AdaptationListener and 
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ComponentInstance‟s internal data as shown in Figure 17. Analogously, interface 

AdaptationManager serves as an adapter between MetaAdaptationManager and 

components responsible for individual meta-adaptation strategies. When IRM-SA 

fails to find an applicable configuration, anonymous implementation of the 

AdaptationListener sets flag RUN_FLAG in internal data of the ComponentInstance 

corresponding to MetaAdaptationManager. Having fetched this flag, 

MetaAdaptationManager uses the list of AdaptationManagers stored in its internal 

data and starts the meta-adaptation strategies that correspond to the 

AdaptationManagers, it keeps a flag alreadyStarted indicating whether the managers 

have been already started to avoid multiple calls of AdaptationManagers‟ run() 

methods. The AdaptationListener blocks IRM-SA self-adaptation until 

MetaAdapationManager sets the appropriate flag IRM_CAN_RUN (again in the 

internal data) indicating that all AdaptationManagers signal that their adaptations are 

finished, either successfully or not. 

Current implementation of the plugin is very simplistic and does not apply any 

sophisticated mechanism to manage the AdaptationManagers. This is definitely 

room for improvement as elaborated in Chapter 8 – however the AdaptationManager 

interface would probably need to be overhauled to provide detailed information 

<<jDEECo Plugin>>

MetaAdaptationPlugin

+registerManager(manager): void

<<Interface>>

AdaptationManager

+run(): void
+stop(): void

<<Represents MetaAdaptationManager>>

ComponentInstance

-internalData

+getInternalData()

<<jDEECo SystemComponent>>

MetaAdaptationManager

+id: String

+adapt(...): void

<<jDEECo Plugin>>

*Plugin

<<jDEECo SystemComponent>>

*Manager

+id: String

+*adapt(...): void

+unregisterManager(manager): void

stores managers
in internal data

managers list stored in internalData

retrieves managers
from internal data

0..*

-managers

1 -metaAdaptationPlugin

registers
AdaptationManager

starts and monitors whether finished

<<Represents *Manager>>

ComponentInstance

-internalData

+getInternalData()

retrieves/stores
flags in/from
internal data

1

creates and deploys
to jDEECo

creates and deploys to jDEECo

+alreadyStarted: Boolean

+isDone: boolean

retrieves/stores
flags in/from
internal data

Figure 19: Class diagram depicting relations and communication between 

MetaAdaptationPlugin and example *Plugin implementing a meta-ataptation 

strategy. 
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about the adaptation method along with descriptions of both the situations that the 

adaptation method is appropriate for. 

5.3. CorrelationPlugin 

This plugin implements Knowledge Exchange by Data Classification meta-

adaptation strategy (Section 4.1). Because of organization reasons, it resides inside 

its own project cz.cuni.mff.d3s.irm-sa.strategies.correlation dependent on the main 

meta-adaptation project. Its structure can be seen in Figure 21. The relationships and 

communication between classes are illustrated in Figure 20. 

 

Figure 20: UML class diagram depicting relationships and communication 

between classes from CorrelationPlugin‟s project. 

The communication pattern is the one depicted in the template of Figure 19. The 

current implementation of CorrelationPlugin is for demonstration purposes intended 

for online data correlation analysis. For that reason, it needs to pass deecoNodes to 

the CorrelationManager that is a jDEECo component implementing the meta-

adaptation strategy itself to extract knowledge from all accessible adaptable 

components (done in the static private method extractKnowledgeHistory) to 

knowledgeHistoryOfAllComponents in a form of MetadataWrapper which must 

wrap knowledge fields that are supposed to be adaptable. At runtime, distance 

<<jDEECo SystemComponent>>

CorrelationManager

+id: String

<<Interface>>

AdaptationManager

+run(): void
+stop(): void
+isDone: boolean

<<Represents CorrelationManager>>

ComponentInstance

-internalData

+getInternalData()
1

-deecoComponent

stores/retrieves flags
in/from internal data

retrieves/stores
flags in/from
internal data

creates and
deploys

to jDEECo

<<jDEECo Plugin>>

CorrelationPlugin

-deecoNodes: List<DEECoNode>

CorrelationEnsembleFactory

-bufferedClasses: Map<String, Class<?>>

+getEnsembleDefinition(...): Class<?>
+setEnsembleMembershipBoundary(...)

-createEnsembleDefinition(...): Class

CorrelationClassLoader

to load created classes

to create
new injecting

ensembles

<<Interface>>

Metric

+distance(Object value1, Object value2): 
double

DifferenceMetric

KnowledgeMetadataHolder

+setBoundAndMetric(...): void

MetadataWrapper<T>

-value: T

+getValue(): T

+deecoNodes: List<DEECoNode>
+knowledgeHistoryOfAllComponents
+distanceBounds: Map

KnowledgeMetadata

-bound: int

+getBound(): int

+calculateCorrelation(...): void
+manageCorrelationEnsembles(): void
-computeDistances(...): List
-getDistanceBoundary(...): double

-confidenceLevel: double

1-metric

+getConfidenceLevel(): double
+getMetric(): Metric

-timestamp: long
-operational: boolean

+getTimestamp(): long
+setValue(value, timestamp): void
+isOperational(): boolean
+malfunction(): void

history in
form of

0..*

-knowledgeMetadata

mapping: string label
-> KnowledgeMetadata

+getBound(label: String): int
+getMetric(label: String): Metric
+getConfidenceLevel(...): double
+distance(label, obj1, obj2): double

retrieves designer s
domain information

about knowledge
fields

-extractKnowledgeHistory(...): void
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boundaries for pairs of component knowledge fields (mapped in field 

distanceBounds) are computed (in jDEECo process calculateCorrelation) using 

domain information about knowledge fields passed to the strategy at design time to 

KnowledgeMetadataHolder (see below). The distance may be NaN to indicate that 

no correlation is found. In this meta-adaptation data of a specific knowledge field 

from other components are injected to a component that cannot obtain fresh values 

anymore (e.g. due to sensor failure). Data are injected based on data correlation – the 

correlation with the highest confidence level is picked if there are more than one. 

Technically, CorrelationManager creates a new ensemble class (in jDEECo process 

manageCorrelationEnsembles) via CorrelationEnsembleFactory loaded by 

CorrelationClassLoader and deploys it to the jDEECo framework. The same process 

also again un-deploys this ensemble in cases when the correlation is no longer valid. 

 

Figure 21: Package of CorrelationPlugin inside its own separated project. 

This meta-adaptation strategy requires initial input at design time to be passed to 

KnowledgeMetadataHolder: (i) required confidence level, (ii) Metric providing 

distance between values and (iii) bound that separates values considered close from 

the rest. The Metric is a simple interface providing distance between two objects 

representing values of knowledge fields that are analyzed. For convenience there is 

an implementation of DifferenceMetric for descendants of Number class, but for 
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more complex types there must be user-defined one. For example Euclidean distance 

for two-dimensional position was used in the evaluation scenario. 

The knowledge fields that are supposed to participate in this meta-adaptation 

needs to be wrapped in MetadataWrapper. This is required because the plugin needs 

to distinguish whether the sensor is operational (MetadataWrapper„s boolean field 

operational) and also needs to pair the values by their timestamps 

(MetadataWrapper‟s long field timestamp) to correctly discover the correlation. 

Also note that KnowledgeMetadata is a private static inner class of 

KnowledgeMetadataHolder, so it is not visible at project overview in Figure 19. One 

more discrepancy in that figure is class CorrelationEnsembleTemplate which is not 

used at all, but serves only as an example of a class generated by 

CorrelationEnsembleFactory at runtime via javassist library [27]. 

The interesting feature of this implementation of the meta-adaptation strategy is 

the fact that it is completely independent of IRM-SA invariant tree and hierarchy, 

unlike the two other meta-adaptation strategy implementations. 

5.4.  (1+1)-ONLINE EA Plugins 

Process Period Adjusting and Assumption Parameters Adjusting strategies have 

very similar structure, as they both exploit (1+1)-ONLINE EA and IRM-SA 

invariant hierarchy; therefore code-reuse is desirable between the jDEECo plugins 

implementing these two strategies. The common parts of the plugins are located in 

package cz.cuni.mff.d3s.irmsa.strategies.commons and its sub-package variations in 

project cz.cuni.mff.d3s.jdeeco.irm-sa.strategies (Figure 22). 

The relationships and communication of classes in these packages are depicted 

in Figure 23. The entry point to the common functionality provided by these 

packages is EvolutionaryAdaptationPlugin depending on MetaAdaptationPlugin 

which is an abstract class intended to be ancestor of plugins implementing meta-

adaptation strategies based on the evolutionary algorithm. The communication 

pattern is the one depicted in Figure 19. Descendants of the plugin need to provide 

implementation for several methods, mostly default implementations of interfaces 

from sub-package variations which represent variation points of the strategy as 

described in Chapter 4. Moreover, the method provideDataToManager() can be 
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overridden to provide more data to the EvolutionaryAdaptationManager which is the 

main jDEECo component responsible for the adaptation. The information about 

IRM-SA invariants with additional information needed for the algorithm is stored 

and passed along in a form of collections of instances of InvariantInfo class. 

 

Figure 22: Packages with common functionality for meta-adaptation plugins 

exploiting (1+1)-ONLINE EA. 

The adaptation process is divided into two steps and thus slightly differs from 

the flow charts from the meta-adaptation strategies templates. However, it complies 

with the original specifications in all other aspects. The whole process is started by 

MetaAdaptationManager indicating that IRM-SA could not find applicable 

configuration. Firstly, the overall system fitness is monitored in 

monitorOverallFitness with help of InvariantFitnessCombiner. The result is stored in 

knowledge field fitness and auxiliary structures needed for computation are stored 

for later use in the second step. Secondly, the adaptation itself is handled in process 

adapt. The state of the adapt process is stored in knowledge field StateHolder 

containing the flag (field state) indicating whether new tactic should be devised or 

new tactic has been observed and now it is time to evaluate it and revert it if it proves 

disadvantageous. All information to restore the state before application of the tactic 

is part of the StateHolder knowledge in field backup. After an adaptation is accepted 
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or discarded, interfaces representing variation points are notified via 

AdaptationResultListener. 

If the overall fitness is above adaptationBound or the maximal number of tries 

is reached, the self-adaptation stops and indicates it to the MetaAdaptationManager. 

There is one inconvenience in jDEECo process scheduling that the plugin must 

work around: the process is already scheduled for the next run when its method is 

called. That means that the adapt process can only change its own period with lag of 

one run. It causes no significant problems when the observation time is equal to or 

larger than adapt‟s period. Otherwise the observation takes longer than required, but 

this should not be harmful in most cases. More aggressive solution manipulating with 

jDEECo internal process scheduling queue may remove these issues, but would also 

bind the plugin with private API of jDEECo which is not desirable. 

Because Process Period Adjusting and Assumption Parameters Adjusting 

strategies are similar but not identical, the extension points where the behavior of the 

EvolutionaryAdaptationManager and related classes can be customized are provided. 

To implement new meta-adaptation based on this template plugin, one has to extend 

the EvolutionaryAdaptationPlugin, StateHolder and Backup classes. The main 

extension point is interface EvolutionaryAdaptationManagerDelegate which is 

delegated all extension actions from EvolutionaryAdaptationManager using delegate 

pattern [22]. This approach is chosen because static nature of jDEECo components 

prevents the convenient extension based on inheritance. At least one implementation 

of each variation point of the algorithm must be provided. 

A lot of the mentioned classes are generic. The main reason behind this is the 

fact that this enables better type safety (that is hardcode overtyping is rarer, e.g. for 

Backup and StateHolder) and various “withers” (i.e. setters returning the object itself 

to enable fluent typing) can return the correct object type instead of the instance of 

class where these withers are declared. 
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Figure 23: UML class diagram depicting relationships and communication 

between classes from EvolutionaryAdaptationPlugin‟s project. 

The integration to jDEECo framework and IRM-SA is depicted in Figure 24. 

Several extensions of IRM-SA to support meta-adaptations are described there. The 

IRM-SA model has been extended with weight of invariant (how important the 

invariant‟s fitness should be to the overall fitness for some 

InvariantFitnessCombiners) and minimal and maximal periods for process invariants. 

New type of monitor has been introduced for monitoring invariants‟ fitnesses 

returning double value instead of old satisfaction monitor‟s boolean value. 

IRMInstanceGenerator now handles these new monitors and sets their outputs into 

new field fitness of InvariantInstances. New annotation “@AssumptionParameter” is 

intended to provide default value, minimal and maximal bound, scope and initial 

adaptation direction for parameters of assumption monitors (for detailed information 

see Section 5.4.2) and is exploited by IRMInstanceGenerator when preparing non-

adapted parameters for calling assumption monitors (both satisfaction and fitness 

monitors). 

<<jDEECo SystemComponent>>

EvolutionaryAdaptationManager

+id: String

<<Interface>>

AdaptationManager

+run(): void
+stop(): void
+isDone: boolean

<<Represents CorrelationManager>>

ComponentInstance

-internalData

+getInternalData()

retrieves/stores
flags/data in/from

internal data

1

deploys
to jDEECo

+maximumTries: Integer
+triesLeft: Integer

+monitorOverallFitness(...): void
+adapt(...): void

<<jDEECo Plugin>>

EvolutionaryAdaptationPlugin

#model: RuntimeMetadata

#createDefaultInvariantFitnessCombiner

#design: IRM
#trace: TraceModel
#adaptationBound: double
#maximumTries: int

#createDefaultAdapteeSelector
#createDefaultDirectionSelector
#createDefaultDeltaComputor
#createAdaptationManager
#provideDataToManager(data): void

stores fields in
Internal data

<<Interface>>

InvariantFitnessCombiner 

+combineInvariantFitness(...): double

<<Interface>>

AdapteeSelector

+selectAdaptees(...): Set

<<Interface>>

DirectionSelector

+selectDirection(...): void

<<Interface>>

DeltaComputor

+computeDelta(...): void

<<Interface>>

AdaptationResultListener

+adaptationImprovement(double 
improvement, infos): void

1 -deecoNode

retrieves/stores
flags/data in/from

internal data

+fitness: Double

<<Knowledge>>

StateHolder

+oldFitness: double

+reset(): void

<<Enumeration>>

State

STARTED
OBSERVED

<<Knowledge>>

Backup

#createBackupName(): String

+state1

<<Interface>>

EvolutionaryAdaptationManagerDel
egate

+getMonitorPeriod(): long

+observeTime: long
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Figure 24: EvolutionaryAdaptationManager set in greater context of jDEECo 

framework and IRM-SA 

5.4.1. PeriodAdaptationPlugin 

This plugin extends EvolutionaryAdaptationPlugin and implements Process 

Period Adjusting meta-adaptation strategy. The structure of its package is illustrated 

in Figure 25. 

 

Figure 25: Package of PeriodAdaptationPlugin inside its project. 
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ComponentProcessClass and locating TimeTrigger object in the returned collection. 

This object can be used to set the period to a new value. The overview of the most 

important classes can be seen in Figure 26. 

 

Figure 26: Overview of the most important classes of PeriodAdaptationPlugin. 
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(DirectionSelectorAnnealing). The deltas of period (variation point DeltaComputor) 

can be computed in two ways: (i) fixed delta provided at design time 

(DeltaComputorFixed), (ii) delta to set the period in the middle of current period and 

its bound (DeltaComputorBound). The users of the plugin are encouraged to provide 

own implementations of the variation points of the algorithm as those provided by 

default are merely examples and proof of concept. 

The required user input at design time is as follows. IRM-SA model must 

contain minimal and maximal process periods. Monitors returning double value 

representing fitness value must be provided along with existing IRM-SA satisfaction 

monitors returning boolean values. Both monitors use the “@Monitor” annotation. 

When creating the plugin, the user specifies the variants of the algorithm to be used 

by passing implementations of corresponding interfaces to the plugin before adding it 

to jDEECo framework. Example of the plugin‟s creation is depicted in Figure 28. 

1. IRM design = (IRM)  
2. EMFHelper.loadModelFromXMI(DESIGN_MODEL_PATH); 
3. IRMPlugin irmPlugin = new IRMPlugin(design).withLog(false); 
4. MetaAdaptationPlugin metaAdaptationPlugin = 
5. new MetaAdaptationPlugin(irmPlugin); 
6. RuntimeMetadata model = RuntimeMetadataFactoryExt.eINSTANCE 
7. .createRuntimeMetadata(); 
8. PeriodAdaptationPlugin periodAdaptionPlugin = 
9. new PeriodAdaptationPlugin( 
10. metaAdaptationPlugin, model, design, irmPlugin.getTrace()) 
11. .withInvariantFitnessCombiner( 
12. new InvariantFitnessCombinerAverage()) 
13. .withAdapteeSelector(new AdapteeSelectorFitness()) 
14. .withDirectionSelector(new DirectionSelectorImpl()) 
15. .withDeltaComputor(new DeltaComputorFixed(250)) 
16. .withConsiderAssumptions(true) 
17. .withAdaptationBound(0.8) 
18. .withMaximumTries(3); 

Figure 27: Code snipped illustrating the creation of PeriodAdaptationPlugin. 
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5.4.2. AssumptionParameterAdaptationPlugin 

This plugin extends the EvolutionaryAdaptationPlugin and implements 

Assumption Parameters Adjusting meta-adaptation strategy. The structure of its 

package is illustrated in Figure 28. 

The code of the plugin and its delegate is very straightforward thanks to robust 

infrastructure provided by EvolutionaryAdaptationPlugin. The values of assumption 

parameters for satisfaction and fitness monitors are changes by setting appropriate 

values in components‟ internal data. Name convention is used to identify parameters‟ 

values by both AssumptionParameterAdaptationManagerDelegate and 

IRMInstaceGenerator which extracts the values of monitor methods‟ parameters and 

calls the monitors. AssumptionInfo extends InvariantInfo by containing the invariant 

monitor object and parameter. It is more finely grained because the adaptation affects 

individual parameters, not just assumptions as a whole. It also provides convenient 

method getParameterId() to get to parameter id which follows the naming 

convention mentioned above. The overview of the most important classes of the 

plugin can be seen in Figure 29. 

 

Figure 28: Package of AssumptionParameterAdaptationPlugin inside its 

project. 

The implementation provides great variety of variation points. More detailed 

description of provided implementations of interfaces from package 
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cz.cuni.mff.d3s.irmsa.strategies.commons.variations is presented in Section 5.4.1 as 

analogous implementations are prepared for this plugin. 

 

Figure 29: Overview of the most important classes of 

AssumptionParameterAdaptationPlugin. 

The required user input at design time is as follows. Assumption monitors 

returning double fitness value must be provided along with existing IRM-SA 

satisfaction monitors returning boolean values. Both monitors use the “@Monitor” 

annotation. Their parameters must be marked with “@AssumptionParameter” 

annotation. The following parameter properties must be specified: name, default 

value, minimal and maximal values. The scope of the parameter is optional and 
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property is initial direction for parameter adaptation, either UP or DOWN. Figure 30 
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plugin, the user specifies the variants of the algorithm to be used by passing 

implementations of corresponding interfaces to the plugin before adding it to 
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1. @Component 
2. @IRMComponent("FireFighter") 
3. public class FireFighter { 
4. … 
5. @InvariantMonitor("A02") 
6. public static boolean positionAccuracySatisfaction( 
7. @AssumptionParameter(name = "bound", defaultValue = 1.5, 
8. maxValue = 1.9, minValue = 1.1, 
9. scope = Scope.COMPONENT, initialDirection = Direction.UP) 
10. double bound) { 
11. … 
12. } 
13. … 
14. } 

Figure 30: Code snipped illustrating the use of AssumptionParameter. 

1. IRM design = (IRM)  
2. EMFHelper.loadModelFromXMI(DESIGN_MODEL_PATH); 
3. IRMPlugin irmPlugin = new IRMPlugin(design).withLog(false); 
4. MetaAdaptationPlugin metaAdaptationPlugin = 
5. new MetaAdaptationPlugin(irmPlugin); 
6. RuntimeMetadata model = RuntimeMetadataFactoryExt.eINSTANCE 
7. .createRuntimeMetadata(); 
8. AssumptionParameterAdaptationPlugin apap = 
9. new AssumptionParameterAdaptationPlugin ( 
10. metaAdaptationPlugin, model, design, irmPlugin.getTrace()) 
11. .withInvariantFitnessCombiner( 
12. new InvariantFitnessCombinerAverage()) 
13. .withAdapteeSelector(new AdapteeSelectorFitness()) 
14. .withDirectionSelector(new DirectionSelectorImpl()) 
15. .withDeltaComputor(new DeltaComputorFixed(5)) 
16. .withAdaptationBound(0.4) 
17. .withMaximumTries(3); 

Figure 31: Code snipped illustrating the creation of 

AssumptionParameterAdaptationPlugin. 
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6. Experimental Evaluation 

This chapter contains a description of the simplified case study that is used to 

evaluate the three proposed meta-adaptation strategies, their impact on the running 

system and a comparison with the scenario where no self-adaptation is employed at 

all. 

6.1. Experiment Description 

The experiment exploits meta-adaptation strategies implemented as extension of 

IRM-SA plugin for jDEECo as described in Chapter 5. In Section 6.1.1 there is an 

explanation of simplification of the original case study and Section 6.1.2 describes 

the specific scenario which has been used for gathering the data for the evaluation 

itself. 

6.1.1. IRM-SA Model for the Case Study 

The overall case study is very complex and multi-layered which could interfere 

with evaluation of the meta-adaptation approach. To mitigate this risk only part of 

the system is simulated to focus on the most essential areas the adaptation could 

significantly improve the behavior of the system in unanticipated situations and harsh 

circumstances.

 

Figure 32: simplified model of the case study for the evaluation 

The main goal of the simplified system is gathering the information about 

firefighters‟ environment and equipment. The only component considered is the 

FireFighter as can be seen in Figure 32. The battery level, the temperature of 
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environment and firefighter position are chosen to represent various important data 

that could be monitored to detect possible danger to the group members. There are 

two top level invariants: 

1. [I01] Protective equipment of the firefighter has enough energy to stay 

operational during the predefined mission time 

2. [I02] Data about firefighter‟s environment are collected 

Both of them are further refined via AND-decomposition. The invariant [I01] 

has naturally sub-invariants related to battery, i.e. process invariant [P01] to 

determine battery level and assumption [A01] guaranteeing optimal energy drainage. 

The invariant [I02] is refined by process invariant [P02] determining environment 

temperature and inner invariant [I03] which is again further refined by finally leaf 

invariants, that is process invariant [P03] determining position by using particular 

technology and assumption [A02] ensuring the position inaccuracy is within 

predefined bounds. 

The knowledge fields of the FireFighter component are wrapped inside 

MetadataWrapper to support certain types of adaptation described in more detail 

above in Section 5.3. PositionKnowledge is a type integrating two real values 

representing position in two-dimensional coordination system used by the simulation 

and a real number as accuracy of this position information provided by the position 

sensor. Battery level is integral for clarity‟s sake and temperature is stored as real 

value in degrees of Celsius. 

There is no pre-designed ensemble in this simplified scenario as the FireFighter 

components do not need to communicate with each other to gather the required 

information about their environment because every unit is provided with all 

necessary measuring equipment. 

The idea is to provide transparent scenario where different automatic meta-

adaptation strategies could be evaluated, for results of this evaluation see Section 6.2. 

There are no pre-designed adaptations that would benefit from employing the IRM-

SA to show example situation where imperfection inherently contained in complex 

and complicated CPS could be mitigate by general approach of meta-adaptation 

strategies. 
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6.1.2. Scenario description 

The simplified case study model is used in the evaluation scenario where there is 

a building on fire that is being explored by three firefighters (FF1, FF2 and FF3) 

whose map is depicted in Figure 33. Firefighter FF3 is moving on their own, while 

firefighters FF1 and FF2 are moving together in a group. Every firefighter is 

modeled as s DEECo component that gathers information about its battery level, 

position and environment temperature. The IRM-SA model is shown in Figure 32. 

IRM-SA is responsible for adaptation of the system. If there is no applicable 

configuration that can be used to adapt to the current situation, the IRM-SA notifies 

the meta-adaptation manager described in Section 5.2. Then the individual meta-

adaptation strategies are employed to adapt the system for unexpected circumstances. 

To simulate such unforeseen conditions, two artificial malfunctions are 

introduced to the scenario: 

The first malfunction occurs after 50 seconds – FF1‟s position tracking system 

begins to provide inaccurate readings, so inaccuracy of position of FF1 oversteps the 

Figure 33: Heat and corridor map used in the simulation: blue lines marks the 

corridors in the building, background color depicts environment temperature 
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pre-designed boundary (1.5 m). Meta-adaptation is started because IRM-SA is not 

able to discover application system configuration. The fact that the sensor is still 

operation, only more inaccurate, prevents the use of Data Classification strategy 

(DC, see Section 4.1). The situation can be though saved by both Process Period 

Adjusting strategy (PPA, see Section 4.2) and Assumption Parameters Adjusting 

strategy. (APA, see Section 4.3). Invariant P03 “FF::position is determined every 

1.25 seconds” is chosen by PPA as perspective candidate for adaptation and the 

corresponding process‟s period is lowered for FF1. This decreases inaccuracy of the 

position between two consecutive position determinations which in turn to some 

extent alleviate problems with increased inaccuracy of the position sensor. 

Due to the pre-designed lower bound for the position process (250 ms), PPA 

strategy is not enough to fully recover the system, i.e. lower the position inaccuracy 

of FF1 back under the acceptable threshold (1.5 m). Fortunately, APA is prepared to 

deal with such situations. Assumption A02 is chosen as a perspective candidate for 

adaptation and its parameter is relaxed to allow higher position inaccuracy, but still 

within pre-designed bounds. The system recovers and the IRM-SA can again find a 

satisfiable configuration. 

The second malfunction occurs after 150 seconds – FF1‟s temperature sensor 

breaks completely. The IRM-SA again cannot find an applicable configuration and 

triggers meta-adaptation via meta-adaptation manager. Changing process periods by 

PA has no impact. APA is not able to improve the situation because the sensor 

provides no readings whatsoever. However, DC finds the correlation between the 

distance between firefighters and environmental temperature their sensors measure. 

The closer the firefighters stand, the more similar the environmental temperatures 

are. A new ensemble created by DC at runtime is deployed to the system. This 

ensemble injects the temperature readings of other firefighters to firefighter FF1 if 

they are close enough. Usually FF2‟s temperature is injected to FF1‟s field because 

these two firefighters move as a group. Yet, when FF1 is closer to FF3 than he is to 

FF2, FF3‟s temperature is injected instead. 

This scenario combining two different malfunctions provides opportunities for 

all suggested strategies to improve the system performance while proving that 

cooperation is achievable for both very different and very similar strategies which 
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might not be the case if more specific and specialized examples for each strategy are 

evaluated. The results of the evaluation can be found in the next section. 

6.2. Experiment Evaluation 

In this section, the results of the evaluation of the experimental scenario can be 

found including figures comparing self-adaptation approach of meta-adaption 

strategies with control run with no adaptation at all. 

Figure 34 shows the differences between the two approaches after the first 

malfunction, i.e. position sensor provides readings with higher inaccuracy after 50
th

 

second of the experiment. The differences between the FF1‟s belief of his position 

and his actual position are depicted by the box plots. The common period [0, 50]s, 

i.e. before the malfunction occurs, is the same for both meta-adaption approach and 

control sample and is displayed by the left box. The rest of the boxes depicts period 

(50, 300]s, the middle box shows data from the simulation with meta-adaptation and 

finally the right box corresponds to the control simulation without any adaptations. 

The increased inaccuracy of position sensor obviously raises the difference between 

the belief and the actual values as depicted by the last box. Figure 34 also captures 

the assumed limits on the position inaccuracy – the original limit is represented by 

the horizontal dashed line; the limit relaxed by APA strategy is represented by the 

horizontal dotted-dashed line. 

Figure 34: The Euclidean difference between the actual position and belief 

about the position. The first box depicts situation before malfunction, the second one 

illustrates results of the meta-adaptation strategies and the third one is control sample 

without any adaptations. 
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Figure 35 concentrates on the situation after the 150
th
 second of the experiment, 

i.e. after the second malfunction prevents FF1‟s temperature to operate completely. 

The actual environmental temperature is represented by the red line. The 

component‟s belief about the temperature in simulation with meta-adaptation is 

represented by the blue line. And finally the component‟s belief about the 

temperature in simulation without adaptation is represented by a green line. As can 

be seen, the belief is rather accurate before the malfunction occurs because there is 

only interference caused by firefighter‟s movement between measurements and by 

random noise. After the malfunction, the belief that is not adapted is no longer usable 

as it is not updated at all and temperature field can no longer be relied on. On the 

other hand, the meta-adaption causes the belief to be updated by injecting readings 

from nearby firefighters which provides useful belief in spite of some delay and 

inaccuracy. 

 

Figure 35: The evolution of the actual temperature and belief about the belief 

temperature. 
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7. Related Work 

The self-adaptation belongs among thriving research subjects of the software 

engineering [29], [30], [31]. The main research areas dealing with it are (i) modeling 

and model-driven engineering [32], [33], [34], (ii) control theory [35], [36], [37] and 

(iii) software architecture [3], [5], [38], [39]. 

The MAS elaborated in this thesis could be applied to model many diverse 

approaches from (i)-(iii) that push the borders of adaptability of a system, in spite the 

fact that it is designed primarily with architecture-based self-adaptation in mind. For 

instance, a model-driven approach is likely to be easily converted to a MAS strategy, 

should it be able to generate new behavior models and to pick from them in the 

running system. One of the promising approaches is AVIDA-MDE [34]. In AVIDA-

MDE, a MAS tactic takes a form of a behavior model of the system (state diagram in 

UML) and a MAS strategy corresponds to generating behavioral models by a digital 

evolution-based approach exploiting an evolutionary computation platform [40]. The 

definition of a MAS metric consists of both the latent functional properties exhibited 

by the generated models, and the non-functional characteristics. Despite the fact that 

offline approach is employed in AVIDA-MDE, the automatic generation of tactics is 

its important feature that MAS counts on. Other sources of inspiration for MAS are 

various methods for synthetizing computationally diverse program variants [41]. 

The inspiration for Process Period Adjusting and Assumption Parameter 

Adjusting strategies is a method using evolutionary computation to adapt test cases 

[42] introduced not long time ago called Veritas. Its primary concept lies in 

application of (1+1)-ONLINE algorithm generating new test cases. At runtime, less 

false negatives are produced by the new test cases; that is the test cases correspond 

better to the current changes in the self-adaptive system behavior. A MAS tactic 

takes form of a test case; iterative application of the evolutionary algorithm that 

generates new test cases corresponds to a MAS strategy. Fitness functions measure 

the overall system fitness which is similar to Process Period Adjusting and 

Assumption Parameters Adjusting strategies. The MAS metric of this strategy can 

take the form of these fitness functions. Proteus [43] is a framework incorporating 

Veritas that addresses assurance when confronted with uncertainty in the running 

system. In order to enhance self-adaptative systems with runtime compliance 
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checking [44], component-based integration testing is also encouraged along with 

online adaptive testing described above. 

There are many different levels where the adaptability of a system can be 

improved to cope with uncertainty. FLAGS [45], [46] and Evolution Requirements 

[47], [48] are examples of approaches originating from requirements engineering 

community that come with important ideas. 

The main concept of FLAGS lies in “adaptation requirements”. They describe 

requirements on the counteractions applied when application requirements fail. 

KAOS [49] object models, operation and goals are exploited in FLAGS. When 

satisfaction criteria of a “conventional” goal are not met, the system takes a 

countermeasure which corresponds to an adaptation goal, which is a special goal 

type. FLAGS introduces a fuzzy goal whose satisfaction is the result of a fuzzy 

membership function. That allows modeling of the satisfaction criteria for 

conventional goals. RELAX language [50] is exploited [51] for formal specification 

of the fuzzy goals. Adaptation goals in the running system may be triggered based on 

the level of goals‟ satisfaction. This starts countermeasures including altering the 

operations‟ pre- and post-conditions, changing the goals‟ membership functions or 

adding or removing objects, operations or goals [46]. 

Requirements causing the evolution of other requirements are the main concept 

of Evolution Requirements (EvoReqs). On one hand, traditional requirements are 

modeled as goals (i.e. EvoReqs is model-based), on the other hand the evolutional 

requirements take the form of event-condition-action rules whose events serve as a 

guard condition for the goals. When the satisfaction of a requirement is no longer 

possible, the requirement is altered, e.g. the requirement are relaxed, retried later, 

delegated to a human actor or a system task takes place of a domain assumption [48]. 

MAS differs from FLAGS, EvoReqs and similar approaches (e.g. [52]) by (i) 

focusing mainly on runtime behavior of the system, while their focus lies mainly in 

requirements specification, and (ii) the fact the unanticipated circumstances cannot 

be coped with by these approaches because every situation and corresponding tactic 

(plan or task) must be foreseen in advanced to model them, i.e. they do not define 

how design and runtime flexibility should be achieved, only provide means to it. 
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8. Conclusion & Discussion 

Meta-adaptation strategies elaborated in this thesis enhance IRM-SA capabilities 

to deal with unanticipated situations at runtime by creating new tactics dealing with 

dynamically changing environment. This extends the adaptation envelope of the 

system and provides self-healing mechanisms to put in use when unforeseen 

circumstances jeopardizing the functionality of the system are encountered. A 

mechanism for management and activation of different meta-adaptation strategies is 

introduced to provide common means for easy implementation of various 

approaches. These implementations cover a large spectrum of meta-adaptation 

strategies, including not only the ones elaborated in the thesis, but also many others 

that are out of the scope of this thesis. 

The proposed meta-adaptation strategies are described in detail in Chapter 4. 

IRM-SA has been altered to provide interface to plug in various extensions listening 

to the results of IRM-SA self-adaptation covering goal G1. This interface is 

exploited by MetaAdaptationManager (Section 5.2) that serves as a controller 

managing individual implementations of meta-adaptation strategies which are 

documented thoroughly in Chapter 5, as required by goal G2. The experimental 

scenario based on the firefighter coordination case study to evaluate the 

implementations of meta-adaptation strategies has been prepared and the promising 

results are presented in Chapter 6, satisfying goal G3. 

8.1. Improvements of the Current Implementation 

There are several ways to improve the current implementation of the meta-

adaptation strategies and to remove their current limitations. Some of them are 

elaborated in this section. 

First, the simplistic implementation of the MetaAdaptationManager could be 

extended to choose the meta-adaptations to run according to a more sophisticated 

algorithm. For this reason, interface AdaptationManager should be extended. One 

possibility is to provide some kind of rich communication protocol providing 

information about the suitable situations to deploy this meta-adaptation to the 

MetaAdaptationManager and let it to compare it with the present circumstances and 

decide if the strategy is really to be employed. In such a case, the strategy would 
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provide preconditions that must be satisfied for the meaningful execution of the 

strategy. The other option is to add only one method returning a boolean value 

indicating whether the strategy is useful in the current situation or not, so the 

responsibility for monitoring the current state of the system lies on meta-adaptation 

strategies themselves and not their manager. 

The individual implementations of meta-adaptation strategies could also be 

improved. Process Period Adjusting strategy may be expanded to adapt also 

ensemble periods, not only process periods. However, ensemble scheduling periods 

are not available in the current jDEECo API, so this improvement would need 

coordination with the main jDEECo project development. 

Assumption Parameter Adjusting strategy has also room for improvement. The 

current implementation is limited to adjust parameters of assumptions that are related 

to the knowledge of one component only. The workaround consisting of auxiliary 

ensemble (gathering knowledge needed) and component (storing knowledge and 

hosting the assumption monitor) is obviously clumsy. Adjusting parameters of 

assumptions dealing with knowledge of multiple components natively is a natural 

extension of the current implementation, however it must be thought well because it 

may easily introduce communication between components bypassing the standard 

jDEECo communication model. A place inside jDEECo framework for defining such 

assumption monitors and auxiliary data must be defined, too. 

8.2. Possible Extensions 

Implementations of other meta-adaptation strategies can be seen as possible 

extensions of the work presented in this thesis. The following meta-adaptation 

strategy is an example that could extend the self-adaptation capabilities of the 

systems even more and that would nicely fit into the mechanisms introduced in this 

thesis. 

Consider a scenario where multiple sensors measure a physical phenomenon, for 

example temperature. These components have role TemperatureProvider. At some 

point, component C (one of the sensors) malfunctions and starts emitting 

temperatures that are not at all close to the values provided by the rest of the 

components. A meta-adaptation strategy based also on data correlation could 

discover that this phenomenon is taking place and remove the role 
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TemperatureProvider from component C so that unusable data are not spread in the 

system. 
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