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Abstract 

The introductory part of this thesis sums up the state of knowledge on aposematism and 

mimicry, the effect of aposematic and mimetic signals on spider predators, and cases when 

spiders do not receive but send such signals. Attachments of the thesis include four original 

manuscripts. In the first study, we presented jumping spiders (Evarcha arcuata, Salticidae) 

with different colour forms (red-and-black, yellow-and-black, white-and-black) of the firebug 

(Pyrrhocoris apterus, Pyrrhocoridae). Our goal was to compare reactions of the spiders to 

various intensity of aposematic signalization, expecting red-and-black coloration to have the 

strongest effect. Aversive learning of all colour forms was equally effective, but generalization 

of the learned avoidance to other colour forms was more effective after switch from less 

(white-and-black, yellow-and-black) to more (red-and-black) conspicuously coloured prey. 

When tested the next day, avoidance of the white-and-black prey got mostly forgotten. In the 

second study, we assessed little studied sensitivity of spiders to smells of unpalatable prey. 

After jumping spiders learned to avoid firebugs, most of them avoided the firebug smell, 

showing their sensitivity not only to optical, but also to chemical part of signalization of the 

unpalatable prey. In the third study, we approached spiders not only as receivers, but as 

senders of aposematic signalization. In two species of red-and-black ladybird spiders (Eresus 

kollari, E. moravicus) that are considered Batesian mimics (warningly signalling, but palatable 

prey), we attempted to specify their model – i.e., a species protected against predators and 

mimicked by the spiders. The key factors were relative abundances of species similar  to 

ladybird spiders in their localities and degree of similarity between these species and ladybird 

spiders based on objective criteria (colour, coloration pattern, body shape, body size). The 

results have shown that the most likely model of the ladybird spiders is the seven-spotted 

ladybird (Coccinella septempunctata, Coccinellidae). In the fourth study, we used jumping 

spiders as model predators for analysis of mimetic relationship between larvae of two true bug 

species, the firebug and the Mediterranean red bug (Scantius aegyptius, Pyrrhocoridae). The 

composition of the red bug’s secretion notably differed from that of the firebug and was 

slightly less effective against spiders. Nonetheless, avoidance learning was highly effective and 

the aversion was well memorable in both species. The generalization was only slightly 

asymmetric, favouring the red bug. Mimetic relationship between the species was therefore 

rather Müllerian, although under specific conditions, the firebug may be put into disadvantage 

due to weaker defence of the red bug and slightly asymmetric generalization. Altogether, the 

results reveal high complexity of spider reactions towards mimetic and aposematic signals and 

provide support for their further use in studies of these phenomena. 
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Abstrakt 

Úvodní část této práce shrnuje stav poznání aposematismu a mimese, vlivu mimetických a 

aposematických signálů na pavoučí predátory a případů, kdy pavouci naopak tyto signály 

vysílají. Součástí disertační práce jsou i čtyři původní vědecké práce. V první studii jsme 

skákavkám černým (Evarcha arcuata, Salticidae) předkládali larvy různě zbarvených forem 

(červenočerná, žlutočerná, bíločerná) ruměnice pospolné (Pyrrhocoris apterus, Pyrrhocoridae). 

Cílem bylo srovnat reakce pavouků vůči různé intenzitě aposematické signalizace, přičemž 

předpokladem bylo, že červenočerné zbarvení bude mít nejvýraznější efekt. Averzivní učení 

probíhalo u všech barevných forem stejně rychle, ale generalizace naučené averze na další 

barevné formy byla účinnější při přechodu z méně (bíločerná, žlutočerná) na více 

(červenočerná) nápadně zbarvenou kořist. U bíločerné barevné formy byla averze do druhého 

dne do značné miry zapomenuta. Ve druhé studii jsme zkoumali málo zkoumanou citlivost 

pavouků na pachy nepoživatelné kořisti. Poté, co se skákavky černé naučily vyhýbat 

ruměnicím, vyhýbaly se jejich pachu, čímž byla prokázala jejich citlivost nejen na optickou, ale 

i na pachovou složku signalizace aposematické kořisti. Ve třetí studii jsme zkoumali pavouci 

nikoliv jako příjemce, ale jako zdroje varovné signalizace. U dvou červenočerných druhů 

stepníků (Eresus kollari, E. moravicus), považovaných za batesovské mimetiky (varovně 

zbarvenou, ale nechráněnou kořist), jsme se pokusili určit model stepníků – tedy druh 

chráněný před predátory, který tito pavouci v přírodě napodobují. Klíčovými faktory přitom 

byli relativní abundance stepníkům podobných druhů na jejich lokalitách a míra podobnosti 

těchto druhů stepníkům na základě objektivních kritérií (barva, barevný vzor, tvar těla, 

velikost). Výsledky ukázaly, že nejpravděpodobnějším modelem stepníků slunéčko sedmitečné 

(Coccinella septempunctata, Coccinellidae). Ve čtvrté studii jsme použili skákavky černé jako 

modelové predátory pro analýzu mimetického vztahu larev dvou druhů ploštic, ruměnice 

pospolné a Scantius aegyptius (Pyrrhocoridae). Sekrece S. aegyptius měla výrazně odlišné 

složení od sekrece ruměnic a proti pavoukům byla trochu méně účinná. Přesto u nich averzivní 

učení probíhalo rychle u obou druhů a averze byla stejně dobře zapamatovatelná. Při 

generalizaci mezi oběma druhy byl  S. aegyptius mírně zvýhodněn. Mimetický vztah mezi 

oběma druhy je tedy spíše müllerovský, prospěšný pro obě strany, i když slabší obrana a mírná 

asymetrie generalizace může za určitých podmínek ruměnici znevýhodňovat. Dohromady 

výsledky odhalují vysokou komplexitu reakcí pavouků na aposematické a mimetické signály a 

poskytují podporu dalšímu využití pavouků jako modelových predátorů při studiu těchto jevů. 



3  

1 Introduction 

Aposematism and mimicry are popular cases of predator-prey interaction, being well-known 

even to general public. However, there are large gaps in knowledge on these topics. One of 

them is the role of spiders in communication by means of aposematic and mimetic signals. 

Most hypotheses concerning aposematism and mimicry are tested on avian predators (Ruxton 

et al. 2019). Birds are important predators in nature (reviewed in Whelan et al. 2008) and their 

complex cognitive abilities allow testing various aposematic signals, especially visual ones. 

However, use of other experimental predators than birds, especially those as phylogenetically 

distant and neurologically different as spiders, may provide a key additional information about 

the functioning of aposematic and mimetic signals, especially in two aspects. Firstly, theories 

regarding antipredatory defence should be tested on multiple predatory taxa before being 

considered a general principle. Secondly, many non-avian taxa are key predators in nature, and 

their reactions to prey signals may reflect the actual effect of the signals on prey fitness. 

As the following pages will hopefully prove, some spiders, despite having synganglions 

(“brains”) of a size of a pinhead (Land 2004), respond to aposematic and mimetic signals with 

complexity close to that observed in birds. Aside from this ability, spiders play an unenviable 

role of prey combining warning signals with almost no direct protection from their predators. 

This combination is rare in arthropods (as many insects are at least evasive or distasteful) and 

makes some spider taxa suitable for use in experiments concerning the effect of mimetic 

signals on predators. 

 
 
 

The main aims of this thesis are: 

 
1) Assessment of the effect of warning colouration on behaviour of jumping spiders (Evarcha 

arcuata) and comparison of the results with those previously obtained from bird predators. 

2) Experimental study of assumed mimetic relationship between two pyrrhocorid aposematic 

species, Pyrrhocoris apterus and Scantius aegyptius, using jumping spiders as predators. 

3) Testing the little known role of olfactory chemoreception in perception of aposematism by 

jumping spiders. 

 

4) Identification of a natural model of ladybird spiders (Eresus spp.), warningly coloured but 

undefended group that probably mimics some similar, aposematic species. 
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2 Aposematism 
 

2.1 Definition of aposematism 

 
The effect of warning signalization on predators was first thoroughly analysed by Wallace 

(1867), who even formulated some rules of its functioning that have stayed valid until 

nowadays (see below). Aposematism has been one of the most popular subjects of study of 

evolutionary ecology ever since, but the definitions of and general approaches to the 

phenomenon have changed since the first use of the term (Poulton 1890). According to a 

relatively recent, broadly applicable conception, aposematism can be defined as an association 

between (1) a signal sent to a predator by a prey and (2) unprofitability of the prey to the 

predator (Mappes et al., 2005). The term “unprofitability” may not only include a distasteful, 

noxious, or dangerous prey, but also a prey with low nutritional value (such as ants, McNab 

1984) or a prey which is difficult to catch or handle (such as agile butterflies or beetles, 

Balgooyen 1997, Ruxton et al. 2004a; see Marples et al. 2018 for general discussion). 

 
 
 

2.2 Types of aposematic signalization 
 

Traditionally, aposematic signals are considered to be primarily visual. The reason for their 

dominance is that once present, they require virtually no energy to maintain (Ruxton et al. 

2018). Typical means of visual aposematic signalization is warning coloration, often combining 

black colour with either middle- or long-wave (yellow, orange, red) colours, or with white 

(Cott 1940, Svádová et al. 2009). Some patterns, especially striping, may serve dual function: 

when observed closely, the pattern is conspicuous, but from longer distance, it often has 

disruptive effect, making the signaller cryptic (reviewed in Ruxton et al. 2018). 

Acoustic and vibratory signals, unlike visual ones, are energy-consuming, so signallers produce 

them only in proximity of a potential predator. They may not only serve as aposematic signals, 

but may even be unpleasant to predators by themselves, making them less willing to capture 

and handle the prey (Mitchell Masters 1979). The most widespread means of production of 

acoustic/vibratory aposematic signals in arthropods is stridulation, a sound or vibrations 

produced by rubbing two body parts against each other. Warning stridulation occurs in 

numerous arthropod taxa, especially insects such as Hymenoptera, Coleoptera, Heteroptera, 

and Lepidoptera (e.g., Mitchell Masters 1979, Schilman et al. 2001, Bura et al. 2009). Other 

means of acoustic/vibratory aposematic signalling include buzzing, common in Hymenoptera 
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(Brower & Brower 1965, Kirchner & Röschard 1999), tymbalation (i.e., sound produced by 

vibrations of tymbal, a specialized cuticular organ), used as an aposematic signal by arctiid 

moths (reviewed in Conner 2014), and air flow modification, used only by a few taxa such as 

hissing cockroaches (Gromphadorhina spp., Blattodea: Blaberidae) or hawk moths 

(Lepidoptera: Sphingidae) (Bura 2012 and references therein). On the contrary, hissing and 

other means of air flow modification are typical warning signals in terrestrial vertebrate taxa 

(Silaeva 1996). 

Chemical aposematism, airborne (olfactory) and/or contact, is common in many taxa, 

especially in insects such as true bugs (Aldrich 1988) and beetles (e.g., Pettersson 2012). The 

main advantage of aposematic allomones (i.e. chemicals used for interspecific communication, 

advantageous for the signaller) is that they may serve as both in signalization and in defence 

itself (Ruxton et al. 2018 and references therein). Nature provides countless examples of 

antipredatory allomones that are also distasteful, irritating, repellent, noxious, toxic, or at least 

unpleasant to potential predators. Aside from having defensive or aposematic effects, some 

chemicals have other antipredatory functions. For example, the main function of pyrazines, 

commonly excreted by unpalatable ladybirds, is to trigger hidden aversions of other 

aposematic signals (such as warning colouration) in potential predators (Rowe & Guilford 

1996). 

Behavioural aposematism, although being considered a separate category, typically enhances a 

signal already present, often using the same sensory mode. For example, warningly coloured 

animals do not hide from predators, but display their signal so it can be seen from long 

distance. This gives predators more time to evaluate the prey and lowers the probability of 

recognition error in experienced predators (Guilford 1986). Many displays of behavioural 

aposematism are relatively simple and do not require special morphological prerequisities, but 

are relatively effective against predators and therefore widely used. Such signals  include, 

among others, slow movement of prey (Wallace 1889, Hatle et Faragher 1998, Hatle et al. 

2002), striking lack of cryptic behaviour (Wallace 1889, Pröhl & Ostrowski 2011), or aggregatory 

behaviour (Cott 1940, Gamberale & Tullberg 1996a, Hatle et al. 2002). However, behavioural 

signalling can eventually become so sophisticated that it can involve originally semantically 

neutral activities of the signaller. For example, typical ant-like behaviour, such as fast erratic 

locomotion combined with antennal and abdominal movement (McIver & Stonedahl 1993, 

Cushing 2012, Rubio et al. 2013), can act as a strong aposematic signal, as ants are usually 

avoided by predators, especially arthropod ones (Simmons 1957, Seifert 2007, Cushing 2012). 
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2.3 Effects of aposematic signalling 
 

Aposematic signals are almost exclusively conspicuous. This enables potential predators to 

distinguish such prey from a cryptic, usually unprotected one (Ruxton et al. 2004b). Moreover, 

intense conspicuous stimuli elicit corresponding reactions in predators, and avoidance of 

conspicuous aposematic stimuli have often been fixated in predators during predator-prey co- 

evolution. Most notably, predators may possess innate, unlearned avoidance of signals such as 

red, orange, or yellow coloration (e.g., Schuler & Hesse 1985, Lindström et al. 1999, Pegram & 

Rutowski 2014). Subsequently, it is often difficult to distinguish whether the predator’s 

reactions during experiments is based on the signal’s conspicuousness, or on a hidden innate 

bias against a particular colour. 

Bird predators learn to avoid widespread warning signals (especially red colour) faster than 

atypical or cryptic ones (e.g., Gittleman et al. 1980, Sillén-Tullberg 1985, reviewed in Skelhorn 

et al. 2016, but see, e.g., Ham et al. 2006), and detailed experiments have shown that atypical, 

but conspicuous signals have the same effect (Roper & Wistow 1986, Roper & Redston 1987). 

Furthermore, if predators learned to avoid a prey, the avoidance persists longer if the prey 

signal is conspicuous (e.g., Exnerová et al. 2008, reviewed in Ruxton et al. 2004, but see Ham et 

al. 2006, Svádová et al. 2009). Another advantage of conspicuous signals is that they provide 

advantage during generalization, which is more effective when the novel aposematic signal is 

stronger than the one already avoided (Gamberale-Stille & Tullberg 1999, Pegram & Rutowski 

2014). The avoidance of a highly conspicuous novel prey may be even stronger than that of a 

previously avoided one (Gamberale & Tullberg 1996b, Svádová et al. 2009). One of possible 

explanations is that predators learn to discriminate between unprofitable and profitable prey 

on a basis of a particular trait (e.g., colour wavelength) and consequently avoid a novel prey to 

a greater extent if it is located farther from the profitable prey in the trait dimension (e.g., 

when its colour has longer wavelength) (“peak-shift”, reviewed in Ten Cate & Rowe 2007). 

It should be noted that nearly all information about the effect of aposematic signalization has 

been obtained from studies of bird predators. However, occasional experiments with non- 

avian predators, especially mantises (Bowdish & Bultman 1993, Prudic et al. 2006) and spiders 

(Taylor et al. 2014, Raška et al. 2017, Vickers & Taylor 2018) provide some support to broad 

generalization of theories that were originally tested on birds only. 

Despite advantages of conspicuous aposematic coloration mentioned above, avoidance 

learning in predators represents a critical phase to aposematic prey. Before predators learn to 

associate the signal with prey unprofitability, signallers suffer from high mortality due to their 
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conspicuousness. This threshold of temporarily decreased fitness is overcome by several 

mechanisms. One of the most important ones is kin selection: an aposematic individual may 

get killed by a naive predator, but if the predator learns to avoid the aposematic signal after 

this experience, the survival  rate of relatives (i.e. bearers of the mutation for aposematic 

signalization) of the killed individual is increased, and the mutation can persist in population 

(Fisher 1930). 

However, mechanisms of individual selection can help an aposematic prey to survive an 

encounter with a naive predator as well, still providing the predator with sufficient information 

about the prey unprofitability. For example, defensive chemicals of true bugs (Hemiptera: 

Heteroptera) are often excreted onto the body surface and may even be sprayed towards an 

approaching predator (Carayon 1971); these mechanisms decrease the chance that the prey 

would get injured or killed during the encounter with the predator (e.g., Exnerová et al. 2003, 

Raška et al. 2017). 

 

Special attention has been paid to seemingly paradoxical initial stage of the evolution of 

aposematism. As only few novel aposematic mutants occur in this phase, they should 

theoretically be killed off (due to their easier detectability) before predators learn to avoid the 

signal. Numerous hypotheses have been formulated to explain the very possibility of 

establishment of an aposematic prey population, suggesting critical effects of phenomena such 

dietary conservatism and neophobia, innate biases in predators, or phenological, geographical, 

or individual variability in responses of potential predators (Lindström 1999, Mappes et al. 

2005, Ruxton et al. 2018). 
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3 Mimicry 
 
 

3.1 Definition and basic categories of mimicry 
 

The term “mimicry” was introduced to biology at the beginning of the 19th century (Kirby & 

Spence 1817), referring to what is now classified as masquerade, an atypical, problematic 

subcategory of mimicry (Ruxton et al. 2018). It took almost half a century later since mimicry 

was used in a modern context to describe, among others, a case of antipredatory protection 

when a harmless species, a mimic, imitates a protected one, a model, to deceive potential 

predators (Bates 1862, Ruxton et al. 2018). This model-mimic relationship, later termed as 

Batesian mimicry, is parasitic – the mimic disrupts the ability of potential predators to 

associate the model’s signal with its protection, and therefore the mimic’s fitness is increased 

at the expense of the model (Mappes & Alatalo 1997 and references therein). 

 

To benefit from mimicry, a Batesian mimic has to fulfil two critical conditions: it has to be less 

abundant than its model, and it has to co-occur with its model both spatially and temporarily 

(Wallace 1867; Pfennig et al. 2001). As usually, there are exceptions from these rules. For 

example, a model and a mimic do not have to co-occur when their predators (such as birds) 

are highly mobile (Ruxton et al. 2004b), and mimics in fact tend to occur later during season 

than their models – this is adaptive both for the model (its signal is not disrupted by Batesian 

mimics) and the mimic (by the time it occurs, the predators have already learned to avoid the 

signalization) (Waldbauer et al. 1988 and references therein). 

The theory of mimicry was later complemented by category of Müllerian mimicry, involving a 

model and a mimic which are both protected against potential predators (Müller 1878). Unlike 

Batesian mimicry, the relationship between a model and its Müllerian mimic is mutualistic. 

Since predators typically have to learn to avoid a defended prey and the process is associated 

with prey mortality, Müllerian mimicry enables the model and the mimic to share the cost of 

this process (Müller 1879, Ruxton et al. 2018). Since Müllerian mimicry are advantageous to 

both involved sides, its evolution differs from that of Batesian mimicry. Most importantly, it is 

convergent rather than advergent (Turner 1987) and it is less dynamic, rather evolving by 

gradual steps (Fisher 1930, Balogh & Leimar 2005). 
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3.2 Mimicry under natural conditions 
 

The two categories of antipredatory mimicry, Batesian and Müllerian, are in fact not as clearly 

defined as it may seem from the textbook examples of wasps, bees, and hoverflies. Some 

mimics that are harder to categorize, such as sweat bees (Hymenoptera: Halictidae) with only 

mildly painful stings (Schmidt 2017). Mimics therefore rather form a Batesian-Müllerian 

continuum of mimics with various effect on their model, from purely mutualistic to purely 

parasitic. The mimics that are protected against predators, but still decrease their models’ 

fitness due to relatively low efficacy of their defence, are considered quasi-Batesian, rather 

parasitic (Speed 1993, 1999). 

Müllerian and quasi-Batesian mimics could be distinguished based on their effect on the 

model’s fitness. Quasi-Batesian mimics are less harmful to their models that classical Batesian 

mimics, but are still parasitic, increasing mortality of their models (Speed 1999, reviewed in 

Ruxton et al. 2018). Müllerian mimicry, on the other hand, allows the costs of avoidance 

learning to be shared between the model and the mimic (Müller 1878). Unfortunately, the 

whole phenomenon is difficult to  assess experimentally and the experimental setup (e.g., 

relative abundances of the model and the mimic, presence of an alternative prey, predator 

feeding motivation) significantly affect the results (Speed et al. 2000, Rowland et al. 2007, 2010, 

Ihalainen et al. 2012). 

Mimetic relationships also do not necessarily include only one model and one mimic, as 

involvement of more than two species in a Müllerian mimetic relationship further decreases 

the cost of avoidance learning. In nature, this often results into coevolution of broad mimicry 

rings including numerous species from various taxa (Ruxton et al. 2018). Among the best- 

known ones is the wasp-like mimicry ring, with hymenopteran models and/or Müllerian 

mimics, hoverfly Batesian mimics, some moth species positioned along the whole Batesian- 

Müllerian axis, and others (Chittka & Osorio 2007). In Europe, red-and-black mimicry ring 

includes broad spectrum of arthropods, such as true bugs (Heteroptera) (Hotová Svádová et al. 

2010) and ladybird beetles (Coleoptera: Coccinellidae) (Arenas et al. 2015), but probably also 

taxa such as leaf beetles (e.g., Cryptocephalus spp. and Crioceris spp., Coleoptera: 

Chrysomelidae), leafhoppers (Cercopis spp., Cicadomorpha: Cercopidae), and even some 

spiders (Eresus spp. (Araneae: Eresidae), Philaeus chrysops (Poda 1761) (Araneae: Salticidae)). 
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3.3 3 Imperfect mimicry 
 

Just like aposematism, mimicry has some topics that are difficult to explain and therefore 

fascinate researchers for decades. One of them is the case of imperfect mimicry. One would 

assume that mimic would be strongly selected for evolution of perfect mimicry, but many 

mimics, such as some hoverflies (e.g., Melanostoma spp.) or spiders (e.g., Eresus spp.), seem to 

get away with what can hardly confuse a careful observer. Some reasons for this apparent 

paradox may relate to the signaller itself (e.g., developmental constraints, trade-offs between 

different life aspects such as defensive and foraging behaviour), some may relate to their 

potential models (as one mimic can evolve intermediate signal based on multiple models, 

“jack-of-all-trades”), and some can be explained by characteristics of predators which, for 

example, may perceive signals only vaguely and may therefore not act as selective agents for 

mimicry perfection (Sherratt 2002, Kikuchi & Pfennig 2013). Perfect mimicry may also be a 

handicap during an encounter with a predator specialized on preying on the model (especially 

myrmecophagous specialists that may represent a threat to myrmecomorphic mimics) (Pekár 

et al. 2011). 
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4 Cognition of spiders 
 

 
4.1 Spider senses 

 
Spider sensory modes often have strikingly different priorities than in human or bird 

observers. In this chapter, spider senses are discussed, with emphasis on sight which, 

according to the current paradigm, is a dominant mediator of aposematic signalization 

(Ruxton et al. 2018). 

Image resulution strongly depends on absolute eye diameter value (Land & Barth  1992). 

Spiders and other arthropods therefore inevitably have worse initial conditions for acute vision 

than vertebrates. Nonetheless, principal eyes may be modified to compensate this handicap. 

For example, jumping spiders have tubular rather than round eyes, which enables them to see 

objects in their focal point as if their eyes were much larger (Land 1969a), and the eyes are 

equipped with six eye-moving muscles, the same number as in humans, to adjust the focal 

point (Land 1969b; Fig. 1). 

The significance of visual cues in spiders largely depends on thir hunting strategy. Generally, 

diurnal cursorial spiders have larger eyes than web-building or nocturnal ones, although 

contrarily, some nocturnal spiders (e.g., Lycosidae, Deinopidae) have the eyes enlarged to 

obtain more visual information. Spiders of some families (e.g., Gnaphosidae) have their eyes 

reduced so they do not provide detailed information, but complete eye reduction is common 

only in troglomorphic species (Culver & Pipan 2010). 

According to the information about the number of photoreceptor cell types detected in main 

(anterior median) eyes, it seems that spiders‘ colour vision is highly variable. It ranges from 

monochromatic, such as in Sparassidae (Nørgaard 2008), through probably the most common 

dichromatic system, present in Lycosidae, Salticidae pt., Ctenidae, and Thomisidae (DeVoe 

1972, Blest et al. 1981; Walla et al. 1996, Defrize et al. 2011, respectively), up to trichromatic,  

such as in Salticidae pt. and Araneidae (DeVoe 1975, Yamashita & Tateda 1978, respectively), 

and even tetrachromatic vision (Salticidae pt.; Land 1969a, Yamashita & Tateda 1976). Colour 

vision has usually been studied on a single species or genus per family, so it is unknown 

whether high variability observed in salticids is present in other spiders as well, or whether it is 

unique to this family of visually oriented spiders. 
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Although colour vision largely depends on the number and characteristics of photoreceptor 

cell types, it can be further modified morphologically, physiologically, or neurologically. Thus, 

supposedly dichromatic Cupiennius salei (Keyserling 1877) (Ctenidae) turned out to be colour- 

blind in physiological tests (Orlando & Schmid 2011). On the other hand, Habronattus 

pyrrithrix (Chamberlin 1924), a dichromatic salticid, shifts wavelength of light reaching one 

layer of its photoreceptor cells, making its eyes functionally trichromatic and sensitive even to 

long-wavelength light (Zurek et al. 2015). True long-wavelength photoreceptors are present in 

tetrachromatic salticids (Land 1969a, Yamashita & Tateda 1976), and both physiological 

(Peaslee & Wilson 1989) and behavioural (Chang 2012) tests performed on  other  species 

suggest that such broad sensitivity spectrum is in fact probably common in jumping spiders. 

 

Mechanoreception, including perception of vibrations and sound, is the most important sense 

in most spiders (Foelix 2011). Mechanic information is mediated by several receptor types with 

partially overlapping function: tactile hairs, densely distributed on spider body surface; 

trichobothriae, hairs connected to innervated pits; and slit sensilla, which are often merged 

into unique lyriform organs (Foelix 2011). Tactile hair, despite having relatively complex 

structure, especially compared to their insect counterparts (Foelix & Chu-Wang 1973a), provide 

rather simple information acout contact stimuli (Foelix 2011). Trichobothriae, on the other 

hand, mediate non-contact and more complex information about air currents and low- 

frequency sounds (Barth 2004, Foelix 2011). They are important especially during foraging 

behavior of cursorial spiders and may be so sensitive that they nearly reach the maximum 

sensitivity level possible for this type of sensory organs (Barth 2004). Slit sensilla, especially 

those formed into lyriform organs, are principal vibroreceptors and auditory organs especially 

in web-building spiders (Foelix 2011). Among other functions, slit sensilla inform spiders about 

presence, position, and qualities of the prey (Uhl & Elias 2011). 

Analogically to mechanoreceptors, spider chemoreceptors can be classified into two categories, 

contact and non-contact. Contact chemoreception is only partially analogous to the sense of 

taste in human and other terrestrial vertebrates, as spiders have chemoreceptive organs (“taste 

hairs”) not only in their mouthparts, but also on pedipalps and legs, especially in distal parts 

(Foelix & Chu-Wang 1973b). Contact chemoreception is used in many aspects of spider 

behaviour, especially mating (reviewed in Gaskett 2007, Uhl & Elias 2011) and, to a lesser 

extent, foraging (Foelix 2011). 

Non-contact chemoreception (olfactory chemoreception, “smell”) is largely unknown in 

spiders. Even olfactory chemoreceptors have not been unambiguously specified yet, although 
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tarsal organs, located on legs, are the most likely candidates for this function (Foelix & Chu- 

Wang 1973b, Foelix 2011). With an exception of specialized predators (e.g., Allan et al. 1996, 

Jackson et al. 2002, Cross & Jackson 2010), olfactory chemoreception is probably of lesser 

importance in foraging behaviour of spiders. However, increasing amount of data (e.g., 

Hostettler & Nentwig 2006, Raška et al. 2018, reviewed in Uhl 2013) suggests that relevance of 

olfactory stimuli in predation may be underrated in spiders. 

 
 
 

4.2 Perception of aposematism and mimicry 

 
Current knowledge on perception of aposematic and mimetic signals by spiders can hardly be 

considered comprehensive, especially compared to the state of knowledge on birds. Still, the 

data are sufficient to illustrate a striking contrast in perception of prey signals by the two taxa. 

Although the ability to perceive visual aposematic signals has been observed in a few spider 

families, such as Salticidae (see the next chapter) and Thomisidae (Morris & Reader 2016), 

visual signals typically play a secondary role in spider cognition (Foelix 2011). It would 

therefore seem that spiders are probably generally not very sensitive to aposematic, usually 

visual (Ruxton et al. 2018), warning signals. 

However, there may be an alternative interpretation of the available data. It is likely that our 

understanding of aposematism as a visually-dominated phenomenon is biased, as both bird 

predators and human observers are highly dependent on visual information (Zeigler & Bischof 

1993, Van Essen et al. 1992, respectively). However, occasional studies of non-visual aposematic 

signalization show that alternative means of aposematic signalling, especially warning 

vibrations, are produced by numerous taxa, such as true bugs (Hemiptera: Heteroptera; 

reviewed in Gogala 2006), Coleoptera of many families (reviewed in Wessel 2006), moths 

(Lepidoptera: Erebidae; e.g., Dunning 1968, Hristov & Conner 2005) and Hymenoptera, such as 

mutillid wasps (Mitchell Masters 1979) or ants (Santos et al. 2005). Due to small size of these 

animals, their signals usually have either high frequency and limited range, or are transfered 

via substrate rather than via air (Michelsen et al. 1982). In such cases, they are not well 

perceptible to vertebrate predators, but represent strong stimuli in an umwelt of an arthropod 

predator. So, while typical receiver of a visual aposematic signal is a vertebrate predator, 

vibratory signals are more likely to be aimed at arthropods, including spiders. 

Different perception of acoustic and vibratory signals by spiders (substrate-borne and plain air 

flow, reviewed in Foelix 2011) than in humans (airborne) is probably the reason of insufficient 
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knowledge on the use of vibratory cues in spiders and other arthropod predators. It is no 

surprise, however, that vibratory signals allow spiders, among others, to perceive 

unprofitability of a potential prey. For example, wolf spiders (Lycosa ceratiola (Gertsch & 

Wallace 1935), Geolycosa ornatipes (Bryant 1935)) attacked an unprofitable prey (mutillid wasps 

and ground beetles (Coleoptera: Carabidae)) more readily when stridulatory organs of the prey 

were disabled (Mitchell Masters 1979). The same effect occurred when an artificial vibrating 

prey was used (Mitchell Masters 1979), which suggests presence of a broad spectrum of 

aversions towards vibrating prey. This hypothesis has been supported by experiments with 

jumping spiders and neutral stimuli, one of which was associated with vibratory signal (Long 

et al. 2015). Spider sensitivity to vibratory aposematic signals can be quite broad and non- 

specific. For example, orb-web spiders (Araneus diadematus Clerck 1757) learned to associate 

presentation of a quinine-coated prey with a tone of a tuning fork (Bays 1962). 

Unlike visual and vibratory aposematic signals, olfactory (non-contact) traits seem to have a 

similar, usually secondary effect on both birds and spiders. Although spiders of many families 

have shown aversion towards strong odours, such as peppermint or lavender oil (Peckham & 

Peckham 1887), knowledge on the relevance of olfactory information to spiders in nature is 

only fragmental, and few studies of the effect of olfactory aposematic signals on spiders (Raška 

et al. 2018, Vickers & Taylor 2018) provide only a fragmental insight into the  topic.  For 

example, jumping spiders that had learnt to avoid unpalatable firebugs (Pyrrhocoris apterus L. 

1758, Heteroptera: Pyrrhocoridae) also avoided the distinct smell of crushed firebugs (Raška et 

al. 2018). However, more subtle smell of dangerous, previously encountered paper wasp prey, 

Polistes dominula Christ 1791, was not recognized by crab spider Synema globosum (Morris & 

Reader 2016). Olfactory signals may have an indirect effect on spider predators: a novel odour 

released into the experimental arena primed avoidance of conspicuous red prey (Vickers & 

Taylor 2018). 

 

The perception of contact defensive chemicals, on the other hand, is widespread in spiders. 

The advantage of such substances is that they may serve both as a signal and as a defence 

(Holen 2013). Since spiders are able perceive chemicals not only by mouthparts, but also by 

legs and palps (Foelix 2011), contact chemoreception is especially important to them compared 

to vertebrate predators, as they can assess the qualities of their prey before attacking it. The 

most striking  examples of spiders‘ ability to  perceive contact defensive chemicals include 

cutting out the distasteful prey from webs by Nephila spp. (Masters 1990 and  references 

therein) and wiping the mouthparts against substrate after encountering unlapatable seed 

bugs (Heteroptera: Lygaeidae) by jumping spiders (Hill 2006). Spiders are able to detect both 
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prey (e.g., Johnson et al. 2011 and references therein, reviewed in Uhl 2013) and predator (e.g., 

Eiben & Persons 2007, reviewed in Uhl & Elias 2011) indirectly via cues on a substrate, but so far 

no study has focused on whether they are able to perceive defensive chemicals this way. 

Hypotheses concerning effects of behavioural aposematism on spiders have not been 

thoroughly tested on spiders yet. It is known that fast movement of a prey can have a 

stimulating effect on predatory behaviour of spiders (e.g., Persons & Uetz 1997, Bednarski et al. 

2012), and more frequent encounters with prey may enhance avoidance learning when a prey is 

aposematic. Although the effect of behavioural aposematism has not been studied directly, its 

potential significance in spider predatory behaviour can be deduced from spiders‘ reactions 

towards ant mimics. When encountering a non-visually oriented spider predator (Lampona 

murina Koch 1873, Lamponidae), the myrmecomorphic jumping spider Myrmarachne luctuosa 

(Koch 1873) starts moving its front legs as if they were ant antennae; this behaviour eventually 

increases its chance to survive the encounter (Pekár et al. 2017, Pekár, pers. comm.) Ant-like 

behaviour may even help juvenile M. luctuosa to  protect themselves against cannibalistic 

adults (Huang et al. 2011). Aggregations of Myrmarachne melanotarsa Wesolowska & Salm 

2002, atypical of spiders and effective against other spider predators, might have not only 

increased the intensity of visual mimicry, but also mimicked social behaviour of ants (Nelson & 

Jackson, 2009). It should be noted that observations of behavioural aposematism are in general 

often not validated in experiments with natural predators (e.g., Mochida 2009, Pröhl & 

Ostrowski 2011) and are seldom paid sufficient attention to. 

 
 
 

4.3 Unique case of jumping spiders 

 
Percetion of aposematic signalization by jumping spiders, with their predominant visual 

orientation, acute vision, and complex cognitive abilities (reviewed in Richman & Jackson 1992, 

Jackson & Pollard 1996) may be considered more similar to that of vertebrate predators such as 

lizards or birds (or humans, for that matter) than to perception by other spider taxa or insect 

predators. Not only are jumping spiders able to perceive long-wavelength warning colours 

such as red, orange, or yellow, but are also able to associate them with the signaller’s defence 

and have potential for responsiveness to various changes of experimental conditions. For these 

reasons, jumping spiders represent an excellent alternative model predators for studies of 

effects of aposematism and associated antipredatory defence. During the 20th century, 

however, studies of these subjects using these predators were scarce and superficial (e.g., 
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Eisner 1980, Eisner et al. 1981, McIver & Lattin 1990), and only in the last two decades have 

jumping spiders become widely used as model predators. 

During pioneering experiments with differently coloured heated plates, jumping spiders have 

shown their ability to associate a colour with negative experience (Nakamura & Yamashita 

2000). Following experiments with live prey have provided the same results, along with data 

concerning effects of environment changes, presentation of an alternative prey, duration of 

intervals between prey presentation etc. (Skow & Jakob 2005, Hill 2006). In following years, 

jumping spiders exhibited many behavioural patterns previously observed in the most 

thoroughly studied predators, birds. First, when offered differently-coloured prey , jumping 

spiders avoided red and yellow individuals, showing an innate bias against these typical 

aposematic colours (Taylor et al. 2014, but see Raška et al. 2017). If spiders had to learn to avoid 

protected, warningly coloured prey, they subsequently generalized the association between the 

signal and the protection to a similar prey, be it artificially coloured crickets (Taylor et al. 

2015), a second true bug species involved in a mimetic relationship with the first one (Raška et 

al., to be submitted), or differently coloured individuals of the same species (Raška et al. 2017). 

The last case was especially intriguing. Not only did the spiders generalized between similar 

prey, but due to peak-shift in the response, the aversion to the presented prey even increased 

after switch from a yellow or white colour form to a novel red one, but not vice versa (Raška et 

al. 2017). This response, surprisingly complex in predators with such simple neural system 

(Steinhoff et al. 2017), was very similar to reactions of bird predators in previous experiments 

(Svádová et al. 2009), suggesting presence of convergent evolutionary processes on a wide 

taxonomical scale not only in prey species (such as in formation of mimetic complexes), but 

correspondingly also in their potential predators. 
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5 Spiders as senders of warning signals 
 

 
5.1 Warning signals of spiders 

 
Spiders do not only perceive aposematic signalization as predators, but can also send warning 

signals to their potential predators, especially birds and other vertebrates. However, 

aposematism sensu stricto, i.e. association between a signal and the signaller‘s unprofitability 

(Mappes et al. 2005), is quite rare in spiders. Most truly aposematic species belong to only a 

few families, and even in those few ones, they usually represent a small fraction of all species 

(Pekár 2014a). 

The most conspicuous truly aposematic spiders are araneids armed with hard cuticle 

appendages which make them harder or even impossible to swallow or digest. This defence is 

typical of Gasteracantha spp. but can be found in other spiders belonging to two 

phylogenetically distant (Kallal et al. 2018) araneid subfamilies, Micratheninae (Micrathena 

spp.) and Gasteracanthinae (e.g., Macracantha arcuata (F. 1793), Thelacantha brevispina 

(Doleschall 1857)). 

Colouration of these spiders is peculiar: not only do they exhibit unique colouration patterns 

that to not match those of potential Müllerian mimics, but some species exhibit high 

colouration polymorphism (Gawryszewski & Motta 2012, Truong 2012). The former 

phenomenon could be explained by specific signalization associated with the spiders‘ relatively 

uncommon means of defence, as the thorns themselves are often coloured in contrasting 

colours. The explanation of the latter phenomenon is still unclear. Experiments testing effect 

of different colouration on predation success have provided ambiguous results (Hauber et al. 

2002, Gawryszewski & Motta 2012, Kemp et al. 2013, Rao et al. 2015, White & Kemp 2016) and its 

effect on thermoregulation (Rao & Mendoza-Cuenca 2016) is probably only secondary. The 

same problem arises in another polymorphic (e.g., Sen et al. 2010) conspicuous spider group, 

Nephila spp. Their large, resilient webs allow these spiders to catch and subdue even birds 

(Brooks 2012, Walther 2016) and their conspicuous colouration may warn flying predators 

about this risk. However, this hypothesis has not been supported yet, and just as in other 

conspicuous araneids, the colouration may serve other functions, such as prey attraction (Tso 

et al. 2002). 

Unambiguously  aposematic  colouration  can  be found  in  venomous  representatives  of  the 

Latrodectus genus (Theridiidae), yet even in these spiders, the colouration may be highly 
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polymorphic (e.g., L. mactans (F. 1775), Levi 1959). The reason for the polymorphism is even 

more enigmatic than in aposematic Araneidae. Since Latrodectus spp. mostly prey on 

nocturnal arthropods (Hódar & Sánchez-Piñero 2002), the hypothesis tested in araneids (prey 

attraction effect) is unlikely to function in these spiders. This phenomenon, which may be 

associated with multiple potential models of these spiders (Kikuchi & Pfennig 2013) or with 

disruption of search image of the spiders‘ potential predators, has not been directly assessed by 

any study so far. 

Other cluster of aposematic spider species, Phoneutria spp. and Cuppienius spp. (both 

Ctenidae), uses its aposematic colouration as a part of behavioural warning signalling. These 

spiders raise their front legs when threatening potential attackers (Peigneur et al. 2018). Such 

behaviour is common in wide spectrum of spider taxa, such as theraphosids (West et al. 2008) 

or salticids (Clark & Uetz 1990), but some ctenid spiders enhance its effect by displaying red 

(e.g., C. coccineus Pickard-Cambridge 1901), yellow (e.g., P. boliviensis (Pickard-Cambridge 

1897)), or black-and-white (e.g., P. nigriventer (Keyserling 1891)) lower sides of their legs. This 

signalling, supported by colourful chelicerae in some species, is so characteristic that 

Phoneutria spp. are commonly known as “armed spiders“ (Peigneur et al. 2018). 

Although its function has not been sufficiently supported by experimental studies yet, it is very 

likely that aposematic colouration of some mygalomorph spiders, usually with red and white 

elements (e.g., Brachypelma spp.), less often blue-dominated (e.g., Poecilotheria metallica 

Pocock 1899), serves aposematic function. Moreover, when threatened, Brachypelma spp. 

spiders stridulate, producing sound clearly audible even to vertebrates (Pérez-Miles & Perafán 

2017). 

Despite seemingly high number of taxa discussed above, only a small proportion of spiders is 

truly aposematic (Pekár 2014a). This fact may be surprising, considering that nearly all spiders 

have functional venom glands (Foelix 2011). Even spiders with strong chelicerae, however, 

usually use them against predators only as a last resort, and rather rely on other means of 

active defence, such as escape (Cloudsley-Thompson 1995, Arbuckle 2015), or passive defences 

such as anachoresis, crypsis, or Batesian mimicry (Pekár 2014a). 

 
 
 

5.2 Mimicry in spiders, case study: Eresus spp. 

 
Batesian mimicry is more or less important part of defence in about 30 % of all spider species 

(Pekár 2014a). Great majority of spider mimics imitate ants (Pekár 2014a), but accurate ant 
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mimicry is common only in two families, Salticidae and Corinnidae (Pekár 2014b). Aside from 

ants, spiders imitate taxa such as other Hymenoptera, or beetles (Pocock 1909, Pekár 2014a). 

 
The latter is probably the case of ladybird spider males (Eresus spp.). These spiders are among 

the most widely known examples of warningly coloured arachnids. However, these spiders are 

probably not truly aposematic, as they seem to possess no effective defence that could be 

associated with their warning coloration. Although they are endowed with relatively strong 

chelicerae, they are unable to penetrate specialized organs used during predation, such as 

mantid forelegs (Raška et al., unpublished) or, analogically, a bird beak. Combining this 

drawback with soft cuticle and relatively low body flexilibity, ladybird spider males seem to 

represent a harmless and profitable prey to their potential predators. However, further 

empirical support is necessary for this hypothesis. For example, the risk of a spider bite to a 

non-protected body part may not be negligible in young, inexperienced birds. 

 

If ladybird spiders‘ warning colouration does not signal their own defence, they are most likely 

Batesian mimics of some other, protected species. Considering how popular with 

arachnologists ladybird spiders are, it is surprising that the identification of the spiders‘ model 

was long neglected. Although, as the ladybird spiders‘ name suggests, the models may be 

ladybirds, especially the seven-spotted ladybird (Coccinella septempunctata L. 1758) 

(Cloudsley-Thompson 1995), other taxa, such as some true bugs, may in fact play this role 

(Askins 2002). Identification of the ladybird spiders‘ model is complicated by the fact that four 

Eresus species occuring in central Europe differ in phenology. None of them occur in early 

summer, a period when naive predators are abundant and Batesian mimics would be put under 

high predatory pressure (Waldbauer et al. 1988 and references therein). However, while adult 

males of E. kollari Rossi 1846, the most widely distributed species, actively search for females in 

late summer and early autumn, males of the other three species occuring in central Europe 

emerge in spring, with slightly shifted activity periods (E. hermani Kovács et al. 2015 is active in 

early spring, E. moravicus Řezáč 2008 in mid-spring, and E. sandaliatus (Martini & Goeze 1778) 

in mid- and late spring) (Řezáč et al. 2008, Kovács et al. 2015, Kůrka et al. 2015). According to 

hypotheses concerning phenology, a Batesian mimic should occur either at the same time as 

its model (Wallace 1867), or preferably a little later (Waldbauer 1988). Thus, it is not 

impossible for spring- and autumn-occuring ladybird spiders, although looking almost the 

same, to form mimetic relationships with completely different species. 

The hypothesis suggesting a close mimetic relationship between ladybird spiders and ladybird 

beetles has been recently supported by phenological and morphometrical data. During the 
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emergence periods of E. moravicus (spring) and E. kollari (early autumn), C. septempunctata 

was abundant at all studied localities of the spiders in Southern Moravia (Czech Republic). 

Analysis of similarity, based on close-to-objective criteria (colouration pattern, colouration 

reflectance, body shape and size), showed that among species more abundant than Eresus spp. 

(and therefore suitable for a role of a model), it was again C. septempunctata that was the most 

similar to the spiders (Raška & Pekár 2018). 

These results show that C. septempunctata is most likely the key model species of the two 

spider species despite their different phenology. Although field data were obtained in a 

relatively small area and only from E. moravicus and E. kollari, the information can be broadly 

generalized not only to all four central European Eresus species (as E. hermani and E. 

sandaliatus have similar phenology as E. moravicus), but also to the whole distribution areas of 

these spider species. Since C. septempunctata is a common species in whole western 

Palaearctic region, it is probably sympatric with the spiders in their whole distribution area 

(e.g., Řezáč et al. 2008, Mihajlov 2013, Nikitsky & Ukrainsky 2016, Pasqual et al. 2019). 
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Most studies of aposematism focus on the effect of warning signals on vertebrate predators, especially 

birds. In our experiments, we used jumping spiders, Evarcha arcuata (Araneae: Salticidae) as predators, 

and larvae of three colour forms (red, white, yellow) of an unpalatable firebug, Pyrrhocoris apterus 

(Heteroptera: Pyrrhocoridae) as prey. The experiments were divided into four successive steps, focusing 

on different aspects of predatoreprey interaction. (1) When presented with a firebug for the first time, 

the spiders captured the white, least conspicuous colour form more often than the other two. No dif- 

ferences in the attack latencies were observed between the colour forms. (2) In the avoidance-learning 

test, the spiders were offered in succession five firebugs of one of the three colour forms. The attack and 

capture rate decreased in all colour forms, more notably in the red, most conspicuous form. (3) After five 

presentations of the same prey, the spiders were presented with a different firebug colour form. The 

results of the generalization process were asymmetric: spiders' attack rate increased when the red prey 

was followed by the yellow or white one, but decreased when the red form was presented after the other 

colour forms. (4) Spiders attacked the same prey more often the next day, but the attacks were seldom 

fatal. Similarly to the initial reaction, spiders captured the white firebugs more often. Our results show 

that for E. arcuata, the red coloration can represent an effective aposematic signal. Red prey coloration 

decreased the attack rate during the avoidance-learning process and favoured the prey in generalization 

between different colour forms. Yellow coloration was moderately effective against E. arcuata, whereas 

white coloration was the least effective because of low innate bias against this signal. 

© 2017 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. 

 
 

 

 

Aposematism can be defined as an association between a prey's 
unprofitability and a relevant signal sent by the prey to a potential 

predator (Mappes, Marples, & Endler, 2005). This may involve op- 

tical signals (colour, pattern, contrast, shape, etc.) as well as other 

modes of signalling, such as warning sounds, tastes or smells 

(reviewed in Koma'rek, 2003). 

Aposematic signals usually make the prey conspicuous, which 
enhances the avoidance-learning process of predators (Aronsson & 

Gamberale-Stille, 2009; Roper & Wistow, 1986). The attacked prey 

may often be killed even though it is unpalatable or noxious, but 

the negative association made by a predator potentially protects its 

relatives from further attacks. Aposematism can thus be main- 

tained by means of kin selection (Fisher, 1930). However, apose- 

matic   prey   individuals   may   frequently   survive   the   attack 
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unharmed, especially when predators sample the ‘suspicious’ prey 

(e.g. Gamberale-Stille & Guilford, 2004; Guilford, 1994; Ja€rvi, Sillen- 

Tullberg, & Wiklund, 1981; Skelhorn & Rowe, 2006). The fitness of 
the aposematic prey can therefore be increased directly by indi- 

vidual selection (Ja€rvi et al., 1981; Wiklund & Ja€rvi, 1982). 

An aposematic signal can affect the behaviour of its receiver at 
several levels. Even naïve predators can be affected by a signal due 

to the presence of an innate bias. For example, when presented 

with a painted novel palatable food (Tenebrio molitor larvae), do- 

mestic chicks, Gallus gallus domesticus, preferred olive and green 

prey items over the conspicuous (yellow, black and yellow) ones 

(e.g. Hauglund, Hagen, & Lampe, 2006; Schuler & Hesse, 1985). 

The most prominent aspect of aposematism is that the associ- 

ation between signal and unprofitability can be learned by preda- 

tors in a process of avoidance learning. The more salient the signal 

is, the easier it is for the predator to associate it with the sender's 

characteristics (Gamberale-Stille, Balogh, Tullberg, & Leimar, 2012; 

Rescorla & Wagner, 1972). This hypothesis has been supported by 

numerous experimental studies (reviewed in Ruxton, Sherratt, & 
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Speed, 2004). Combining two or more warning signals can further 
increase the predator's response, as seen in experiments using 

optical signalling combined with acoustic or chemical cues (e.g. 

Marples & Roper, 1996; Rowe & Guilford, 1996). 

When a predator learns to avoid a particular aposematic prey, it 

can generalize this experience towards a similar prey. Under some 

circumstances, the generalization may be asymmetric due to sen- 

sory or learning biases (ten Cate & Rowe, 2007). For example, when 

a predator has learned to discriminate between palatable and un- 

palatable prey, it may show stronger avoidance of a novel prey that 

differs more from the palatable one than the prey encountered 

during the avoidance-learning process. This phenomenon has been 

termed peak shift as the theoretical peak of the aversive response is 

shifted along the discriminative-stimulus dimension away from the 

original aversive stimulus (Ghirlanda & Enquist, 2003; Spence, 

1937). This way predators may generalize their aversive response 
more effectively towards a novel prey that is more conspicuously 

coloured (Aronsson & Gamberale-Stille, 2008; Gamberale-Stille & 

Tullberg, 1999), larger (Gamberale & Tullberg, 1996a), or presented 

in an aggregation (Gamberale & Tullberg, 1996b). 

Stronger aposematic signals may also help the learned avoidance 

to be remembered for longer (e.g. Guilford & Dawkins, 1991; Speed, 

2000). In some experiments, conspicuous colour (Exnerova' et al., 

2008; but see Ham, Ihalainen, Lindstro€m, & Mappes, 2006) or 

contrast against background (Alatalo & Mappes, 1996; Roper & 

Redston, 1987) indeed increased the maintenance of learned associ- 

ation in bird predators. 
Most experimental data on the function of aposematic signals 

have been obtained from bird predators (Exnerova' et al., 2008), and 

knowledge of how aposematism functions is especially limited for 
arthropod predators. However, most aposematic species are insects, 

and therefore are small enough to be preyed upon by other insects 

and spiders. Arthropod predators and parasitoids are in fact the 

main biotic cause of mortality of arthropod species (Symondson, 

Sunderland, & Greenstone, 2002) and may be crucial agents for 

the evolution of aposematic signals. The only two arthropod pred- 
atory taxa in which the reactions towards aposematic prey have 

been studied in detail are mantids (Mantodea; Berenbaum & 

Miliczky, 1984; Bowdish & Bultman, 1993; Prudic, Skemp, & Papaj, 

2007) and jumping spiders (Araneae: Salticidae). Because of com- 

plex cognitive abilities (reviewed in Richman & Jackson, 1992), 

acute vision (Land, 1969; Yamashita, 1985) and tetrachromatic 
colour perception ranging from UV to red (Nakamura & Yamashita, 

2000; Peaslee & Wilson, 1989), the jumping spiders are an excellent 

model for studies of the effect of aposematism. 

Recently, several phenomena, first described in birds, have also 
been observed in jumping spiders. Jumping spiders have learned to 

avoid unpalatable prey (Hill, 2006; Skow & Jakob, 2006), general- 

ized information about prey palatability to a similar prey (Taylor, 

Amin, Maier, Byrne, & Morehouse, 2016), and even avoided red 

and yellow prey without any prior experience, suggesting presence 

of an innate bias (Taylor, Maier, Byrne, Amin, & Morehouse, 2014). 

Maintenance of the learned avoidance, however, is problematic in 

jumping spiders: after five trials of avoidance learning, the attack 

1999; Stimson & Berman, 1990); moreover, black-and-white 
coloration seems to have a smaller effect on predators than the 

red-and-black and yellow-and-black ones (Exnerova' et al., 2006; 

Sv'adov'a et al., 2009). We wanted to test whether the antipred- 
ator defence of the third-instar larvae of P. apterus is effective 

against jumping spiders, and how the spider's predatory behaviour 

is affected by the prey's colour. Specifically, we tested whether prey 
colour affects the degree  of unlearned wariness, the process of 

avoidance learning and signal memorability, and how the spiders 

generalize between the different colour forms. 

 
METHODS 

 
Predators 

 
Evarcha arcuata is a jumping spider (Araneae: Salticidae) with a 

Palaearctic distribution (Platnick, 2016), living in grass habitats 

(Buchar & K0urka, 2001). Its body length is about 5 mm in males and 

6 mm in females. It is a cursorial generalist predator feeding on 

other spiders and various insects, including true bugs from the 
family Miridae (Dobroruka, 1997; Nentwig, 1986). Jumping spiders 

are visually oriented and experimental studies have revealed that 

the species Hasarius adansoni could discriminate between red and 

yellow, red and grey, and yellow and grey colour stimuli (Nakamura 

& Yamashita, 2000). Although these experiments have not been 

performed with E. arcuata, we assumed that its colour perception 
would be similar. 

Altogether we tested 200 spiders (68 males, 67 females and 65 

juveniles of older instars, at least 3 mm long); each spider was 

tested only once. All spiders were collected in the meadows in 

Dalejske' údolí, Prague (50002034.000N, 14021026.100E) between April 

and August 2010e2014. They were kept at 27 0C and under a nat- 
ural light cycle (between 12:12 and 16:8 h light:dark) in trans- 
parent cylindrical plastic containers (70 mm tall, 30e33 mm in 

diameter) for at least 2 weeks before the experiments. After this 

period, the spiders can be considered quasinaïve, having forgotten 

all the potential prey preferences  based on previous experience 
(Hill, 2006; Taylor et al., 2016). The spiders had access to water ad 

libitum and were fed twice a week with three to four micropterous 

fruit flies (Drosophila melanogaster); the number of fruit flies 

depended on the spiders' age and sex (adult females were fed more 
than males and juveniles). Each spider had been fed at least three 

times in captivity; the last feeding took place 1 week before the 

experiment to increase and standardize the foraging motivation of 

the spiders. We did not use females that laid eggs in captivity prior 

to the experiments. 

 
Prey 

 
We used the third-instar larvae of P. apterus (Heteroptera: Pyr- 

rhocoridae) as prey. Pyrrhocoris apterus is a common, nearly pan- 

Palearctic true bug (Kerzhner, 2001; Moulet, 1995) feeding mainly 

on seeds of lime trees (Tilia cordata, Tilia platyphylos), other Malva- 

ceae sensu stricto and black locust, Robinia pseudacacia (Fabaceae) 

rate towards unpalatable large milkweed bugs, Oncopeltus fasciatus (Kristenova',  Exnerova',  & S-tys,  2011).  The  firebugs  are  mostly 
(Heteroptera: Lygaeidae) on the next day increased to about 80% of 
that observed in naïve spiders on the previous day (Hill, 2006). 

In this study, we used Evarcha  arcuata, a common European 

jumping spider, as a model predator, and the third-instar larvae of 

(1) red-and-black, (2) yellow-and-black and (3) white-and-black 

colour forms of the European firebug, Pyrrhocoris apterus, as prey. 

Red-and-black, yellow-and-black and white-and-black colour 
combinations represent typical aposematic signals (Cott, 1940). 

However, the aposematic function of black-and-white coloration is 

context dependent (e.g. Lyytinen, Alatalo, Lindstro€m, & Mappes, 

brachypterous and live on the ground under their host plants or 
upon them. The adults are about 7e12 mm long (Puchkov, 1974); the 

third-instar larvae are about 2e3 mm long. This size makes the 

third-instar larvae suitable prey for E. arcuata, as its highest capture 

rate is with prey that are 50e75% of its own size (Nentwig & Wissel, 
1986). The red, wild-type firebug colour form has warning coloration 

(red-and-black); these colours are produced by high concentrations 

of red erythropterin (Bel, Porcar, Socha, Ne-mec, & Ferre, 1997; 

Merlini & Nasini, 1966; Socha, 1993) and black melanin (Henke, 

1924), respectively; other pteridines, such as xanthopterin and 
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violapterin, can occur in this colour form as well (Krají-cek et al., 2014; 
Socha, 1993). White (rather white-and-black) colour mutants differ 

from the natural colour form by the absence of erythropterin and low 

overall amount of pteridine pigments; yellow (rather yellow-and- 

black) colour mutants have a lower concentration of erythropterin 
and higher concentration of other pigments, especially xanthopterin 

(Bel et al., 1997; Socha, 1993). All three colour forms have melanized 

head, legs, wing lobes, antennae and vicinity of the dorsoabdominal 

scent gland openings, and partly melanized pronotum. In characters 
other than colour, the white and yellow mutants do not differ from 

the wild-type red form (Sva'dov'a et al., 2009). White and yellow 

mutants occasionally occur in nature but are very rare and these 

phenotypes do not persist in populations of P. apterus (Exnerov'a 

et al., 2006). Note that while the red and the yellow larvae were 
clearly conspicuous on the white filter paper used in the experi- 

mental arena (see below), the white larvae were partly cryptic. 

Both larvae and adult firebugs are chemically protected. The 

test: red-and-black (‘red’), yellow-and-black (‘yellow’) and white- 

and-black (‘white’) firebugs (always third-instar larvae) and adult 

fruit flies as a control palatable prey. After the avoidance-learning 
test, the groups were further divided into subgroups according to 

the prey presented in the generalization and memory tests (see 

Table 1). The spiders were divided semirandomly, and each group 

and subgroup contained an equal proportion of male, female and 

juvenile spiders. The sample size in each subgroup was 25 spiders. 

The experiments were performed in petri dishes (90 mm diameter, 

14e17 mm height) with white filter paper covering their bottom. A 

white environment was used in several recent studies (Hill, 2006; 

Skow & Jakob, 2006; Taylor et al., 2014, 2016) and we used it to 

prevent the effect of chromatic contrast. 

The experiments were carried out under natural daylight, or 
daylight with an additional fluorescent tube (Philips Master PL-S 
11W/840/2P) if necessary. The light source had no significant ef-  

fect  on  the  spiders'  reactions  (Wald  test:  attack  rate:  c2 ¼ 2.45, 

defensive secretion of adults consists mostly of aldehydes, and the P ¼ 0.118;  capture rate: c2 ¼ 0.004, P ¼ 0.949).  We  allowed  the 

dominant chemicals in the larval secretion are oxoaldehydes and 
aldehydes (Farine, Bonnard, Brossut, & Le Quere, 1992). These 

chemicals are known to act as repellents and contact poisons to 

ants (Remold, 1963) and are toxic to mantids (Prudic, Noge, & 

Becerra, 2008). Also, adults of P. apterus are generally unpalatable 

spiders to acclimate in the experimental arena for 1 h before the 
experiments, which always started between 0900 and 1000 hours 

CEST. 

The experiments were filmed using digital cameras (Canon HG 

20, Canon Legria FS 22) and the spiders' behaviour was recorded in 

for  bird  predators  (e.g.  Exnerova' et  al.,  2003,  2006;  Hotov'a, Observer  XT  8.0  (Noldus  Information Technology,  Wageningen, 

Sva'dova',  Kope-ckova',  Exnerova',  & S-tys,  2010;  Wiklund  & Ja€rvi, 
1982). The defensive secretion in larvae of all three colour forms 

of P. apterus contains mostly aldehydes and ketoaldehydes. The 
dominant compound is always 4-oxo-trans-2-octenal, with trans-2- 

octenal, trans-2-decenal and 4-oxo-trans-2-decenal occurring in 
lesser amounts (Farine, n.d.). The chemical secretion of all three 

colour forms is equally effective against bird predators (Exnerov'a 

et al., 2006; Sva'dova' et al., 2009). 

The red, naturally coloured wild-type form of P. apterus was 

collected in Dalejske' údolí (50002034.00N, 14021018.00E), Prague, in a 

different habitat from E. arcuata; we used F1eF3 laboratory-reared 
generations in the experiments. The white and yellow colour mu- 

tants were obtained from laboratory cultures of the Institute of 

Entomology, Academy of Sciences of the Czech Republic, C-eske' 

Bude-jovice. Bugs of each colour form were reared separately in 

500e750 ml plastic containers at 23e27 0C and 14:10 h light:dark 

cycle. The bugs were fed on crushed seeds of small-leaved lime, 
T. cordata, and provided with water ad libitum. 

Micropterous fruit flies, D. melanogaster, which we used as food 

prior to the experiments and as a palatable control prey during the 

experiments, were reared on nutritive substrate at 20e25 0C. 

 
Experimental  Design 

 
The experiments consisted of three  parts: avoidance-learning 

test, generalization test and memory test. Each of these parts 

consisted of a series of consecutive 10 min trials with 50 min 

intertrial intervals (see Skow & Jakob, 2006). In the first trial of the 

avoidance-learning test we tested the initial reaction of spiders to 

the prey presented. During  each prey presentation, the spiders 

received a single prey individual. Recorded reactions of spiders 

included attack (spider bit or attempted to bite the prey) and 

contact (spider touched the prey with chemoreceptive organs on 

the front legs). If the spider captured the prey (i.e. held it by 
chelicerae for more than 2 min, killing and feeding on it), the trial 

was ended and the prey was removed to prevent the spider's 

satiation. Latency between the presentation of the prey and the first 

attack in each trial and prey activity level (percentage of time spent 

moving, see Taylor et al., 2014, 2016) were also recorded. 

Before the experiments, the spiders were divided into four 

groups according to the prey presented in the avoidance-learning 

Netherlands). 

 
Initial Reaction 

 
The initial reactions of spiders towards firebugs of different 

colour forms were assessed in the first trial of the avoidance- 

learning test, when the spiders encountered the firebugs for the 

first time. If the spider did not attack or contact the prey within 

10 min, the experiment was terminated, and the data were not used 

in the analyses. In this case, the whole experiment was repeated 

with a new spider, so the resulting number of spiders in each 

experimental group/subgroup remained the same (see Table 1). 

Nearly all spiders (198 of 200) that passed the abovementioned 

criterion attacked (not only contacted) the prey, and therefore it 

was not possible to analyse differences in the attack rate during 

trial 1. The analysed variables of the initial reaction included latency 

of the first attack and the capture rate, which informed us about a 
possible existence of  innate wariness associated with  the prey's 

colour, or about different prey detectability. Two spiders that only 

contacted the prey during trial 1 were excluded from the analysis of 

latency of the first attack. 

 
Avoidance-Learning Test 

 
The avoidance-learning test consisted of a sequence of five 

consecutive 10 min trials, in which the spider was presented 

repeatedly with the same prey type according to its experimental 

group (Table 1), with 50 min intertrial intervals (see Skow & Jakob, 

2006). We analysed a change in the attack rate towards the prey 

and the capture rate of the prey in each group to find out whether 

the spiders learned to avoid the particular prey. Moreover, we 

analysed differences in these changes between the groups to 

compare the effectiveness of avoidance learning. 

 
Generalization Test 

 
The generalization test followed 50 min after the avoidance- 

learning test. This interval was the same as the intertrial intervals 

of the avoidance-learning test, because we wanted to separate the 

effect   of   generalization   from   the   possible   effect   of   prey 
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Table 1 

List of experimenta l groups and subgroup s based on prey types 
 

Group Avoidance- le arn in g test (day 1, trial 1e5) Subgroup Generalizat ion test Memory test 

   (day 1, trial 6e8) (day 2, trial 9) 

Group 1 (N¼75) Red firebug 1a (N¼25) 

1b (N¼25) 

Red firebug (control)a 

White firebugb
 

Red firebugb
 

e 

1c (N¼25) Yellow firebugb 
e 

Group 2 (N¼50) White firebug 2a (N¼25) White firebug (control)a White firebugb
 

2b (N¼25) Red firebug
b 

e 

Group 3 (N¼50) Yellow firebug 3a (N¼25) Yellow firebug (control)a Yellow firebugb
 

3b (N¼25) Red firebugb 
e 

Group 4 (N¼25) Fruit fly 4a (N¼25) Fruit fly Fruit flyb
 

 

 

Prey types: third-instar larvae of red, white and yellow colour forms of the firebug Pyrrhoco ris apterus and adult fruit fly Drosophila melanogast er. N is the number of spiders 

used in the analyse s. Subgrou p s that were offered the same firebug colour form during all three parts of the experiment were used as controls for the generalizat ion test. 
a  

Control subgroup to the generalizat ion test. 
b   Followed by a control trial with a fruit fly. 

 

memorability. Previous experimental data have shown that learned 

avoidance may fade in a matter of hours in jumping spiders (Hill, 
2006). 

The test consisted of three 10 min trials (trials 6e8) with 50 min 

intertrial intervals. The spiders were divided into subgroups and 

their prey was either altered or remained the same as in the 

avoidance-learning test (see Table 1). Only the spiders in which the 

prey was changed were used in the generalization test. 

The reactions of spiders to a novel prey during the first trial of 

the generalization test were compared to their reactions to the prey 

previously encountered during the avoidance-learning test. Also, 

possible asymmetry in generalization was analysed in opposite 

prey combinations (e.g. the change from the red to the white 

firebug was opposite to the change from the white to the red 

firebug). 

 

Memory  Test 

 
The memory test took place on day 2, and was carried out only 

with the spiders that were presented with the same prey during 
trials 1e5 (five trials of the avoidance-learning test) and trials 6e8 

(control groups in three trials of the generalization test; see Table 1). 

After the last trial of the first day, the spiders were provided with a 

few drops of water and kept in the experimental arenas overnight. 

Next day, they received the same prey as on the previous day (trial 

9); the trial took place approximately 24 h after the first trial of the 

first day. The change in the attack and capture rate between the 

trials of the first day and the first trial of the second day was used for 

comparing memorability of different prey types. 

 
Control Trial 

 
To test the possibility that the decreased frequency of attacks by 

spiders during the sequence of trials was due to satiation (see Skow 

& Jakob, 2006), running out of venom or other reasons not specific 

to the firebugs, we provided the spiders with control palatable prey 

(fruit fly, D. melanogaster). The control fruit fly was offered imme- 

diately after the end of the experiments (after the generalization 

test if the prey was altered, or after the memory test if the prey 

remained the same for the whole experimental test; see Table 1). If 

the spider did not capture the prey during the first 5 min of the 
control trial, we added another fruit fly for the next 5 min to 

exclude the possibility that this result was due to prey inactivity. If 

the spider did not attack the prey during the whole 10 min control 

trial, we did not use the data in the analyses and the whole 

experiment was later repeated with another spider, so the number 

of spiders in each group/subgroup remained the same. Ten spiders 

in total failed to attack the control prey and their data were not 

used in the analyses. 

Data Analyses 

 
The data were analysed in R 2.12.1 (The R Foundation for Sta- 

tistical Computing, Vienna, Austria, http://www.r-project.org) and 
Statistica 8 (Statsoft, Tulsa, OK, U.S.A.). All the tests were two tailed, 

with the level of significance a ¼ 0.05. We refer to 0.05 < a < 0.1 as 
a ‘nonsignificant trend‘. 

In the analyses, dependent variables included the attack rate 
(the rate of spiders attacking the prey, binomial distribution), the 

capture rate (the rate of spiders capturing the prey, binomial dis- 

tribution), the attack latency (the latency between the presentation 

of the prey and the first attack, normalized distribution) or the prey 
activity level (percentage of time spent moving, normalized dis- 

tribution). The explanatory variables of models included, if appli- 

cable, trial number (factor), day of the trial (factor), prey type 

(factor), spider sex/life stage (factor; levels: male, female, juvenile) 

or spider life stage only (factor; levels: adult, juvenile), depending 

on an explanatory value for a particular model and/or prey activity 

level (covariate), and all possible two-level interactions between 
the variables. All generalized estimating equations (GEE) included 

individual spider in the model. Models were further reduced ac- 

cording to the Akaike informational criterion (linear models, 

generalized linear models) or quasi-informational criterion 

(generalized estimation equation) (Peka'r & Brabec, 2016). We used 

spider sex and life stage as explanatory variables because these 

aspects have been shown to affect predatory behaviour by means of 

different predator/prey size ratios (highest in females, lowest in 
juveniles), nutritional demand (higher in females, lower in males 

(Givens, 1978; Taylor et al., 2014, 2016)), or level of exploratory and 

potentially risky behaviour (high in males, low in females; Jackson, 

1979). We used the prey activity level as a covariate because 

jumping spiders are motion-oriented and higher prey activity 

elicits more intense predatory reaction (e.g. Bednarski, Taylor, & 

Jakob, 2012; Freed, 1984; Tarsitano & Jackson, 1992, 1994). 

We performed analyses of the effect of light source (factor, levels: 

natural light, natural light with an additional fluorescent light tube) 

on the attack and capture rates. The models included these 
explanatory variables: trial, day, prey type, life stage, light and prey 

activity level, and all possible two-level interactions. The model was 

further reduced according to the quasi-informational criterion. 

We performed an overall analysis of spiders’ attack rate and 

capture rate during all experimental trials to assess the effect of 

sex/life stage, life stage and the prey activity level, using GEE.  

Subsequently, we compared the activity level of true bug colour 

forms and control D. melanogaster prey, as it might explain poten- 

tial differences in the spiders' approach towards different prey. The 

prey activity level was logit transformed to fit a normal distribution 

and analysed using a linear model (LM) with the prey type as an 

explanatory variable. 

http://www.r-project.org/
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We compared the rate of spiders succeeding (i.e. attacking or 

contacting the prey) during trial 1 to estimate the level of spiders' 
innate bias towards different prey. A low rate of success would 

suggest the presence of an innate bias, but this test was not fully 

representative, as it could reflect some other aspect (e.g. low 

feeding motivation of a particular spider). We conducted the 

analysis using a generalized linear model (GLM) and the prey type 

as a fixed factor. To compare the initial reactions of the spiders to 

different prey types, we also analysed the attack latencies and the 

capture rates in the first trial of the avoidance-learning sequence. 

Shorter latencies would reflect either an innate bias towards a 

certain prey type or better prey detectability. A lower capture rate 

during the initial reaction would suggest more careful approach 

towards a certain prey type, which might be a possible effect of 
innate bias against the prey. The first-attack latencies were log- 

transformed to fit a normal distribution and  analysed  with  an 

LM; the capture rates were compared with a GLM. 

For the analyses of avoidance learning, generalization and 

memory tests, we always used two dependent variables: the 

attack rate and the capture rate. They were analysed with a GEE 

model. 

To assess the learning process during the avoidance-learning 

test, we analysed the reactions (attack rate, capture rate) of spi- 

ders towards presented prey during the whole avoidance-learning 

test to compare the level of protection of the firebug colour forms 

against  spiders  during  the  learning  process.  Owing  to  the  bias 

 
memorability of each firebug colour form. If reactions towards one 

firebug colour form increased more than towards other colour 
forms between days 1 and 2, the colour signal was easier to forget. 

 
Ethical Note 

 
No ethics approval was necessary for experiments with the 

tested species. We carefully handled the experimental animals and 

provided them with sufficient food and water. For 1 week after the 

experiments, we provided the spiders with D. melanogaster and 

water, and then released them back into the locality of their origin. 

 

RESULTS 

 
Twenty-four spiders (10.7%) did not attack or contact the prey 

during trial 1. This proportion was significantly lower in the ex- 

periments  with  the  yellow  form  of  the  third-instar  larvae  of 

P. apterus (2%) than with  the  red  form  (16.7%;  chi-square  test: 
c2 ¼ 8.804, P ¼ 0.003), and there was a similar, but nonsignificant 

trend when we compared the yellow and white forms (10.7%; chi- 

square test: c2 ¼ 3.729, P ¼ 0.053). The difference in proportion of 

spiders that failed to attack or contact the red and white forms was 

not significant (chi-square test: c2 ¼ 1.028, P ¼ 0.311). There was no 

signifi difference in the number of spiders failing to attack or 
contact the prey between any of the firebug colour forms and the 

control fruit flies (7.4%; chi-square test: red: c2  ¼ 1.626, P ¼ 0.202; 

caused by the design of trial 1 (exclusion of spiders not attacking or white: c2 ¼ 0.238, P ¼ 0.625; yellow: c2 ¼ 1.329, P ¼ 0.249). 
contacting the prey, see above), only trials 2e5 were used in 
comparison of the attack rates. Moreover, we used the learning 

curves (i.e. the effect of trial number on spiders' reactions) to 

compare  the  learning  process  between  groups  presented  with 

The results of the overall analysis of all experimental trials 

showed that higher prey activity level (i.e. percentage of time spent 
moving) significantly increased the chance that the prey would be 

attacked  (Wald test:  c2 ¼ 32.537,  P < 0.001) and  captured (Wald 

different  prey  (i.e.  interaction  between  the  trial  and  prey  type test: c2 ¼ 9.897, P ¼ 0.002). The initial model revealed no signifi- 
variables): the more rapidly a curve descended, the more effective 
the learning process was. 

cant effect of spider sex or life stage on attack rate (Wald test: 
c2 ¼ 2.714,  P ¼ 0.257)  or  capture  rate  (Wald  test:  c2 ¼ 3.046, 

2 2 

When we analysed the process of generalization, we compared 
the change in reactions of spiders when presented with a novel 

prey during the first trial of the generalization test (trial 6) to its 

reactions towards the previous prey during the avoidance-learning 

test (trials 1e5). The null hypothesis was that we would observe the 

same trend as in later trials of the avoidance-learning test (between 

trials 3e4 and 4e5), i.e. slow decrease in reactions towards fire-  

bugs. Then we tested the symmetry in generalization: we 

compared the change in reactions towards familiar (trials 1e5) and 
novel (trial 6) prey in opposite subgroups, e.g. during the switch 

from red to yellow colour forms and during the switch from yellow 

to red colour forms (i.e. interaction between subgroup and prey 

novelty (levels: familiar prey, novel prey)). If the change differed 

between the subgroups (i.e. the attack rate increased during a 

switch, but decreased during the opposite one), the generalization 

process was asymmetric, suggesting presence of a peak shift. We 

did not use data from trials 7e8 for the analyses of generalization, 

as they provided no additional information to results of previous 

analyses. 

The spiders used in the memory test were those that were used 

as controls in the generalization test (trials 6e8), being presented 

with the same prey as in the avoidance-learning test (trials 1e5). 

Next day, we presented them with the same prey again and using 

day as a new explanatory variable, we compared the reaction 

during the first presentation of the prey on day 2 (trial 9) to those 
observed during previous trials (1e8). The null hypothesis was that 

the trend would be similar to that observed in late trials of the 

previous day (trials 6e8), i.e. slow decrease in reactions towards 

firebugs. After analysing the changes within each experimental 

subgroup, we compared them with each other (i.e. analysed in- 

teractions   between   day   and   prey   type)   to   assess   relative 

P ¼ 0.218), and subsequent analyses of effects of life stage revealed 
that although the attack rates of adults (67.8%) and juveniles 

(72.8%) did not differ significantly (Wald test: c2 ¼ 2.6, P ¼ 0.107), a 

nonsignifi trend could be observed in success of the attacks, as 
juveniles captured the prey less often (20.8%, compared to 24.8% in 

adults; Wald test: c2 ¼ 2.873, P ¼ 0.09). We found no significant 

differences between the reactions of male and female adult spiders 

(attack  rate:  males:  67.5%;  females:  68.1%;  Wald  test:  c2 
< 0.114, 

P ¼ 0.736; capture rate: males: 24.6%; females: 25.1%; Wald test: 

c2 ¼ 0.277, P ¼ 0.599). 

Analysis of the overall prey activity level revealed a significant 

difference in activity between the firebug colour forms. Yellow 

firebugs moved around significantly less (median 49%) than the 
other  two  colour   forms   (red:   median   69.3%;   ANOVA: 

F1,1048 ¼ 57.345,    P < 0.001;    white:    median    68.2%;    ANOVA: 

F1,848 ¼ 33.228,  P < 0.001).  The  difference  between  the  red  and 
white forms was not significant (ANOVA: F1,1048 ¼ 1.328, P ¼ 0.25). 

The activity level of the control D. melanogaster prey (median 

79.7%) was significantly higher than that of any firebug colour form 
(ANOVA:   red:   F1,848 ¼ 15.347,   P < 0.001;   white:   F1,648 ¼ 20.44, 

P < 0.001; yellow: F1,648 ¼ 97.103, P < 0.001). 
 

Initial Reaction 

 
We found a nonsignificantly different trend in first-attack la- 

tencies towards red (median 24.9 s) and yellow (median 35.6 s) 
colour forms (ANCOVA: F1,119 ¼ 2.829, P ¼ 0.095). First-attack la- 

tencies towards the white form (median 32.8 s) did not differ 

significantly from those towards the other two forms (ANCOVA: red 
and white: F1,122 ¼ 0.455, P ¼ 0.27; white and yellow: F1,95 ¼ 0.186, 

P ¼ 0.668). 
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The spiders were more likely to capture white firebugs (52%) test:   red   and   white:   c2 ¼ 0.606,   P ¼ 0.436;   red   and   yellow: 

during the initial presentation, compared to the red (29.33%; chi- square test: c2 ¼ 6.5, P ¼ 0.011) or yellow (28%; chi-square test: c2 ¼ 1.741, P ¼ 0.187). 
fi 

1 During the ve trials of the avoidance-learning test, the pro- 

1 ¼ 6.07, P ¼ 0.014) ones. The difference between the capture rate portion of spiders capturing the firebugs decreased signi ficantly 
of the red and the yellow firebugs was not significant (chi-square (Wald   test:   red:   c2 ¼ 12.072,   P < 0.001;   white:   c2 ¼ 29.294, 

test: c2 ¼ 0.026, P ¼ 0.872). All three firebug colour forms were P < 0.001;  yellow: 
1 

c2 ¼ 12.661, 
1 

P < 0.001).  The  decrease  in  the 
captured significantly less often than control fruit flies (88%; chi- 
square   test:   red:   c2 ¼ 28.083,   P < 0.001;   white:   c2 ¼ 10.432; 

capture rate was more gradual for the red form than for the other 

colour forms: the difference was significant when compared to the 1 1 

P ¼ 0.0 01; yellow: c2 ¼ 26.211, P < 0.001; Fig. 1, trial 1). white form (Wald test: c2 ¼ 7.301, P ¼ 0.007) and the trend was nonsignifi 

 
Avoidance Learning 

 
During the five trials of the avoidance-learning test, the firebugs 

of all three colour forms were attacked at a lower frequency than 

the control fruit flies (Wald test: red: c2  ¼ 26.787, P < 0.001; white: 
c2 2 

cantly  different  when  compared  to  the  yellow  form 
(Wald test: c2 ¼ 2.891, P ¼ 0.089). The difference in the decrease in 

the capture rate between the white and the yellow firebugs was not 

significant (Wald test: c2 ¼ 0.341, P ¼ 0.559; Fig. 1). 

In spiders tested with the fruit flies, the capture rate remained 

high    during    the    avoidance-learning    sequence    (Wald    test: 
c2 ¼ 1.515,  P ¼ 0.218).  This result differed  significantly  from  the 

1 ¼ 17.529, P < 0.001; yellow: c1 ¼ 16.503, P < 0.001). The attack 
rate  towards  the  red  firebugs  was  lower  than  that  towards  the 
white (Wald test: c2 ¼ 8.267, P ¼ 0.004) and the yellow (Wald test: 

1 
decreasing tendency found in spiders tested with any of the firebug 
colour   forms   (Wald   test:   red:   c2 ¼ 5.333,   P ¼ 0.021;   white: 

1 ¼ 9.45, P ¼ 0.002) ones. There was no difference in the attack 
rate  towards  the  white  and  the  yellow  firebugs  (Wald  test: 

2 ¼ 10.978, P < 0.001; yellow: c2 ¼ 9.562, P < 0.001; Fig. 1). 

1 ¼ 0.085, P ¼ 0.77; Fig. 1). 
Spiders  learned  to  avoid  the  firebugs,  and  their  attack  rate 

decreased  significantly during  the  avoidance-learning  test when 
tested with any of the colour forms (Wald test: red: c2 ¼ 69.166, 

Generalization 

 
After the avoidance-learning test, we changed the colour form of 

firebugs in some experimental subgroups and compared the re- 

P < 0.001;   white:   c2 ¼ 47.595,   P < 0.001;   yellow:   c2 ¼ 22.59, actions of the spiders encountering the novel prey with their re- 

P < 0.001). There were no significant differences in the decrease in 
the attack rate (i.e. interactions between prey type and trial) to- 
wards different colour forms (Wald test: red and white: c2 ¼ 0.551, 

P ¼ 0.458; red and yellow: c2 ¼ 0.384, P ¼ 0.535; white and yellow: 

actions towards previous prey during the avoidance-learning test. 
When we replaced the white colour form with the red one, the 

attack rate continued to decrease, not differing from the tendency 

observed    during    the    avoidance-learning    test    (Wald    test: 

1 ¼ 1.527, P ¼ 0.217; Fig. 1). 
2 ¼ 0.006,  P ¼ 0.938).  When  we  switched  from  the  red  colour 

The attack rate towards the control fruit flies remained high 

(Wald  test:  c2 ¼ 1.785,  P ¼ 0.182)  and  differed  from  that  for  all 

form to the white one, however, the proportion of attacking spiders 
increased, and therefore differed significantly from the decreasing 

three fi ug colour forms (Wald test: red: c2 ¼ 26.536, P < 0.001; tendency observed during the avoidance-learning test (Wald test: 
reb 1  2

 
white:  c2 ¼ 17.404,  P < 0.001;  yellow:  c2 ¼ 16.493,  P < 0.001; c1  ¼ 9.894, P ¼ 0.002). A similar response was observed when the 

1 
Fig. 1). 

1 
spiders were presented with the yellow and the red firebugs: when 

The  spiders  captured  firebugs  of  all  the  colour  forms  less 

frequently than the control fruit flies (Wald test: red: c2 ¼ 82.166, 

we switched from the yellow to the red colour form, the attack rate 

kept decreasing (Wald test: c2 ¼ 0.856, P ¼ 0.355), but when the 
P < 01;  white:  c2 ¼ 55.747,  P < 0.001;  yellow:  c2 ¼ 69.473, prey  colour  was  switched  from  red  to  yellow,  the  attack  rate 

0.0 1 1 

P < 0.0 01). The white firebugs were more likely to be captured than increased (Wald test: c2 ¼ 10.503, P ¼ 0.001). 

the  yellow  ones,  but  this  trend  was  nonsignificant  (Wald  test: 

1 ¼ 3.765, P ¼ 0.052). Other differences were not significant (Wald 

 
1 

 

 
0.8 

 

 
0.6 

The  spiders'  ability  to  generalize  different  colour  forms  was 

asymmetrical both in red-white (Wald test: c2 ¼ 7.334, P ¼ 0.007) 

and red-yellow combinations (Wald test: c2 ¼ 14.458, P < 0.001; 

Figs. 2 and 3). In both cases, it was caused by a decrease in the attack 
rate when a red firebug was presented as a novel prey and by an 

increase in the attack rate when white and yellow colour forms 
were presented as a novel prey after the red colour form. 

The rate of spiders capturing the prey increased significantly 
between the learning test and the first trial of the generalization 

test  in  most  colour  combinations,  and  this  response  differed 

significantly from the decreasing tendency observed  during the 
avoidance-learning   test  (Wald   test:  red   to  white:   c2 ¼ 6.061, 
P ¼ 14;   white   to   red:   c2 ¼ 6.5,   P ¼ 0.011;   yellow   to   red: 

0.0 1 

0.4 c1 ¼ 5.446,  P ¼ 0.02).  The  only  combination with  no  significant 

change in the capture rate was red to yellow (Wald test: 
P ¼ 0.828). 

1 ¼ 0.047, 

0.2 
 

 
0 

Comparison of the capture rates between opposite subgroups 
(red-white and white-red, red-yellow and yellow-red) showed no 
significant asymmetry in generalization between red and white 

(Wald test: c2 ¼ 0.558, P ¼ 0.455) and red and yellow (Wald test: 
1 2 3 4 5 

Trial 
 

Figure 1. Spider attack rate towards the prey ± SE (open symbols) and capture rate of 

the prey ± SE (filled symbols) during the five trials of the learning test: triangles ¼ red 

firebugs  (N ¼ 75),  squares ¼ white   firebugs   (N ¼ 50),   circles ¼ yellow   firebugs 

(N ¼ 50), diamonds ¼ fruit flies (N ¼ 25). 

1 ¼ 0.514, P ¼ 0.473) colour forms (Figs. 2 and 3). 

Memory 

 
The proportion of attacking spiders increased significantly be- 

tween day 1 and day 2 towards all firebug colour forms (Wald test: 
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Figure 2. Spider attack rate (open bars) and capture rate of the prey (hatched bars) of 

the subgroup of spiders presented with red (red bars) versus white (grey bars) firebug 

colour forms. Either red or white prey were provided in trials 1e5 (avoidance-learning 

test) and then the prey were switched to the other colour in trial 6 (the first trial of the 

generalization test). The sample size in each subgroup was 25 spiders. 
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Figure 3. Spider attack rate (open bars) and capture rate of the prey (hatched bars) of 

the subgroup of spiders presented with red (red bars) versus yellow (yellow bars) 

firebug colour forms. Either red or yellow prey were provided in trials 1e5 (avoidance- 

learning test) and then the prey were switched to the other colour in trial 6 (the first 

trial of the generalization test). The sample size in each subgroup was 25 spiders. 
 
 

 
red: c2  ¼ 19.331, P < 0.001; white: c2  ¼ 12.801, P < 0.001; yellow: 

 
Figure 4. Spider attack rate ± SE (open symbols) and capture rate ± SE (filled symbols) 

during trials 6e8 on day 1 and trial 9 on day 2: triangles ¼ red firebugs (N = 25), 

squares ¼ white firebugs (N ¼ 25), circles ¼ yellow firebugs (N ¼ 25). 

 
(with  a  nonsignificant  trend)  to  the  yellow  one  (Wald   test: 

1 ¼ 2.754, P ¼ 0.097). The increase in the rate of spiders capturing 
the red and the yellow firebugs did not differ significantly (Wald 
test: c2 ¼ 0.66, P ¼ 0.416; Fig. 4). 

 
DISCUSSION 

 
Our results show that the colour of an unpalatable prey affects 

the reactions of jumping spiders. According to the current theory of 

aposematism (reviewed in Ruxton et al., 2004), aposematic signals 

trigger unlearned avoidance, decrease the attack rate and prey 

mortality during avoidance learning, are advantageous during 

generalization from a weaker signal, and increase memorability. 

These effects were generally most prominent when the red colour 

form of P. apterus was presented to the spiders. Yellow coloration 

had an intermediate effect on the spiders, and white coloration was 

the least effective signal among the three presented types. 

The spiders‘ reactions were also strongly affected by the in- 

tensity of prey movement: the more the prey moved around, the 
more likely it was to be attacked and captured. This effect has been 

observed in previous studies with jumping spiders and live prey 

(e.g. Bednarski et al., 2012; Freed, 1984; Tarsitano & Jackson, 1992, 

1994). Some studies, however, have used immobilized prey instead 

(Hill, 1979; Jackson & Tarsitano, 1993; see Jackson & Pollard, 1996 

for review). For example, the rate  of  jumping spiders attacking 

motionless fruit flies was only 6e24% (Jackson & Tarsitano, 1993); 

in our study, when live fruit flies were used as a control prey, almost 

all spiders attacked the prey. The use of living prey is therefore 
suggested for future studies on predatory behaviour of jumping 

1 1 

c2 

1 ¼ 10.491, P ¼ 0.001). There were no differences (i.e. interactions 
between prey type and day) in the increase in the attack rate be- 
tween spiders tested with different firebug colour forms (Wald test: 
red and white: c2 ¼ 0.483, P ¼ 0.487; red and yellow: c2 ¼ 0.974, 

spiders, as it more accurately reflects the perception of the prey by 
spiders. 

The activity level differed between the firebug colour forms, as 

the  yellow  form  moved  significantly  less  than  the  other  ones. 1 1 

P ¼ 0.324; white and yellow: c2 ¼ 0.024, P ¼ 0.878; Fig. 4). Because the more the prey moved, the more likely it was to be 
The capture rate increased signifi cantly between day 1 and day 2 attacked and captured, we would expect the yellow form to be 

only when the white firebugs were presented as a prey (Wald test: 

1 ¼ 19.001, P < 0.001). In the other two colour forms, there was  
either a nonsignificant trend in the increase in the capture rate, as 
with red firebugs (Wald test: c2 ¼ 3.67, P ¼ 0.055), or no significant 

change, as with yellow firebugs (Wald test: c2 ¼ 2.34, P ¼ 0.126). 

The increase was most noticeable in the white colour form, 

compared to the red one (Wald test: c2 ¼ 10.692, P ¼ 0.001) and 

partially protected  by its  lower activity. However, the reactions 

towards the yellow form usually did not differ significantly from 

more than one colour form, and the reactions towards it could 

therefore be considered intermediate. In a single case the reactions 

did differ from both other colour forms (percentage of spiders 

attacking or contacting the prey during trial 1), but this result was 

opposite to the above-stated prediction. 
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The effect of sex and/or life stage of spiders on their predatory 

reactions was not significant. The results might be affected by 
generally bigger adult females having more prey before the ex- 

periments; nevertheless, the results do not support the traditional 

point of view that male jumping spiders are less suitable for 

foraging experiments (Jackson & Pollard, 1996) which has even 

resulted in exclusion of males from experiments (e.g. Hill, 2006; 

Jackson, Pollard, Li, & Fijn, 2002; Nentwig, 1986; Nentwig & 

Wissel, 1986). During an experiment by Taylor et al. (2014), the 

wild-caught females, some of which were mated, were more 

responsive to the presented prey than males or juveniles; this effect 

was not observed in the laboratory-reared virgin females. No fe- 

males used in our experiments laid eggs in captivity, so this effect 

could not be verified. 

 
Initial Reaction 

 
Previous studies using different predator species revealed two 

contradictory effects of prey coloration on the predator's initial 

reaction. Potential innate biases should reduce predatory reactions 

towards an aposematic prey (e.g. Hauglund et al., 2006; Schuler & 

Hesse, 1985). On the other hand, aposematic coloration is usually 

conspicuous, and predators are therefore able to detect (and 

possibly attack) aposematic prey sooner than the cryptic one 

(Fabricant & Herberstein, 2015; Roper & Wistow, 1986). 

The majority of spiders in our experiments attacked or con- 

tacted  the  prey  during  the  first  encounter.  This  suggests  that 

E. arcuata probably does not possess any strong innate bias against 

the firebugs of any of the three colour forms. Furthermore, yellow 

firebugs were attacked or contacted more often than the red and 
white ones when presented to the spiders for the first time. This 

suggests an innate preference for yellow prey. This result would be 

contradictory to those found in previous experiments with jumping 

spiders (Taylor et al., 2014) as well as birds (Hauglund et al., 2006), 

in which predators showed innate bias against yellow prey. It is 

therefore possible that the reaction could be affected by the simi- 

larity between the yellow firebugs and some yellowish brown 

palatable prey preferred by E. arcuata (such as aphids, psyllids and 

true bugs, Plagiognathus sp., Miridae; Nentwig, 1986). Another 

possibility is that the spiders generalized the yellow form with the 

palatable D. melanogaster they were fed prior to the experiments. 

The analyses of first-attack latencies showed no significant dif- 

ferences in reactions towards the three firebug colour forms, and 
therefore did not support the prediction of shorter latencies to- 

wards the red, presumably the most conspicuous form, and longer 

latencies towards the white, the least conspicuous form. An alter- 

native hypothesis, which suggests an opposite result due to the 

presence of an innate bias, was also not supported by these results. 

The white form suffered from higher mortality than the other 

colour forms during the first encounter with spiders (Fig. 1, trial 1). 

The difference found in the capture rate but not in the tendency to 

attack   can   be   explained   via   the   ‘go-slow’  signalling   theory 

(Guilford, 1994). According to this theory, the aposematic prey may 

not only be more likely to be avoided by predators but also handled 

more carefully if they decide to attack it. Although this theory was 

designed to explain the phenomenon of automimicry, it can also 
explain the predator's behaviour during encounters with a novel 

prey. Our results therefore suggest the presence of an innate bias, 

but on a different level than hypothesized. All colour forms may be 

attacked at a high rate, but the conspicuous red and yellow ones 

may be handled more carefully and therefore suffer from lower 

mortality than the less conspicuous white form. 
The different approach towards the white colour form than to 

the other two may be caused by innate bias (e.g. Hauglund et al., 

2006;  Roper, 1990;  Schuler  & Hesse, 1985)  against  certain  prey 

colours, especially red and yellow (Hauglund et al., 2006; Roper, 

1990; Schuler & Hesse, 1985; Taylor et al., 2014), or against their 

higher contrast against the background (Roper & Wistow, 1986). 
However, some other mechanisms with no effect of aposematism 

or of any bias may affect the predator's reaction during the first 

encounter. For instance, a white colour with minor black elements 

may make the white form appear smaller. Jumping spiders gener- 

ally approach small prey with less caution (Jackson & Pollard, 1996, 

and references therein), which may be why they rejected the white 

unpalatable bugs less than the red or yellow ones after attacking 

them. 

 
Avoidance Learning 

 
During the five avoidance learning trials, the spiders attacked 

the red colour form less frequently than the other two, presumably 

less conspicuous ones (Fig. 1). These results agree with the theory 

that conspicuous coloration affects avoidance learning. This has 

repeatedly been supported by experimental studies with vertebrate 
predators (e.g. Gittleman & Harvey, 1980; Hauglund et al., 2006; 

Roper & Wistow, 1986; Sille'n-Tullberg, 1985), but our results sug- 

gest the occurrence of the same phenomenon in an arthropod 

predator. 

Although the attack rate was lower towards the red form than 
towards the other two colour forms, the decrease in the attack rate 

was not significant. The likely reason for this discrepancy is that 

spiders learned to avoid the red form faster than the other two 
colour forms. The attack rate towards red bugs decreased rapidly, 

but the decrease slowed down and the learning curve became 

parallel to those of the other colour forms (Fig. 1). Still, this rapid 

decrease alone was enough to create a significant difference in the 

overall attack rate. Red and yellow are generally considered to be 

aposematic colours (Cott, 1940), but some studies of aposematism 

successfully used  other colours, such  as green and purple  (e.g. 

Gittleman & Harvey, 1980; Roper, 1994), or contrast against the 

background (Prudic et al., 2007; Roper & Wistow, 1986). Also, each 

predator species may have different sensitivity to different apose- 

matic signals. An extreme model predator is a colour-blind mantis, 

which learned to avoid unpalatable prey faster when it contrasted 

with the background; the discrimination cue was luminance 

contrast (Prudic et al., 2007). Further research would be needed to 
investigate  the effect  of colour and contrast on the  response  of 

E. arcuata. As only a uniform background (white filter paper) was 

used in this study, our data do not provide any pertinent 

information. 

The decrease in the capture rate seemed to be steeper when the 

white form was presented than when the red form was presented 

(Fig. 1). This was probably because spiders captured white bugs 

more often during the first presentation of the prey, and therefore 

had  more  intense  initial  experience  with  them.  Nonsignificant 

trends  involving  differences  in  the  capture  rate  were  probably 

caused by low absolute numbers of spiders capturing the firebugs. 

It is intriguing that while the capture rate of P. apterus decreased 
rapidly during learning, the attack rate was higher than 50% in all 

the colour forms even in trial 5. In other words, although many 

spiders attacked the bugs even after several encounters, their at- 

tacks were seldom fatal to the prey. This suggests that there are two 

distinct steps on which the spiders assess the palatability of their 

prey, each with different dynamics. 

Previous studies suggest that if there is a possibility of 

encountering Batesian mimics (including automimics), predators 
tend to ‘go slow’ (Guilford, 1994) and sample seemingly dangerous 

prey before consuming it (e.g. Gamberale-Stille & Guilford, 2004; 

J€arvi et al., 1981; Skelhorn & Rowe, 2006). This strategy is more 
likely to occur when it is not very costly to the predator (Guilford, 
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1994), which is probably the case during an encounter with rela- 
tively harmless P. apterus. 

 
Generalization 

 
Our results show that the generalization was asymmetrical be- 

tween the red form and the other two colour forms. Comparison of 

the overall attack rates showed that generalization worked better 

towards the red, presumably more conspicuous form; this effect 
was consistent in both color combinations, red/white and red/yel- 

low (Figs. 2 and 3). These results agree with theoretical predictions 

(Leimar, Enquist, & Sillen-Tullberg, 1986) as well as with experi- 

mental observations. In experiments on generalization between 

unpalatable prey, bird predators were more successful when they 

generalized towards more conspicuous prey: either larger 
(Gamberale & Tullberg, 1996a, 1996b), with more intense hue 

(Gamberale-Stille & Tullberg, 1999), or with more conspicuous 

colour (Sva'dova' et al., 2009; but see Ham et al., 2006). 

When we presented the red colour form as a novel prey, the 

attack rate towards it even decreased, compared to the reactions to 

the previously presented colour forms. These results indicate the 

presence of a peak shift towards the red coloration during gener- 

alization (ten Cate & Rowe, 2007), possibly based on its higher 

contrast against the background, longer wavelengths or lower 

resemblance to fruit flies (i.e. previously encountered positive 

stimulus). Peak shift is a widespread phenomenon observed both in 
vertebrates and in arthropods (e.g. Lynn, Cnaani, & Papaj, 2005), 

and our results suggest that this response towards aposematic 

stimuli may be similar across the various predator taxa. 

An alternative explanation is the presence of a hidden colour 

bias, triggered by a previous negative experience with chemically 

defended prey. Hidden biases against novel or conspicuous prey 

colours are well documentad in avian predators (e.g. Kelly & 

Marples, 2004; Marples & Roper, 1996; Rowe & Guilford, 1996), 

and they may be elicited by chemical stimuli, both olfactory (Jetz, 

Rowe, & Guilford, 2001; Lindstro€m, Rowe, & Guilford, 2001) and 

gustatory ones (Rowe & Skelhorn, 2005; Skelhorn, Griksaitis, & 

Rowe, 2008). For  example, in Rowe and Skelhorn (2005) study, 

after experience with distasteful naturally coloured (brownish 

grey) seeds, domestic chicks were simultaneously presented with 

green and either yellow- or red-coloured distasteful seeds. 
Although all these colour forms were novel to them, chicks ate 

more green seeds  than conspicuously coloured ones. Moreover, 

these results were more striking in green/red colour choice. 

The ability of jumping spiders to generalize between differently 

coloured prey has not been tested before. However, they can 

generalize the avoidance of red, chemically protected O. fasciatus 

towards a novel red-coloured prey (crickets; Taylor et al., 2016). 
However, this generalization ability was dependent on several 

factors: for example, wild-caught spiders were not able to gener-  

alize between the prey types, and the spiders required the same 

environment for the training and the generalization task (Taylor 

et al., 2016). 

 
Memory 

 
Better memorability may be one of the effects of aposematic 

signals (Endler & Mappes, 2004; Guilford & Dawkins, 1991; Ruxton 

et al., 2004; Speed, 2000), but our results do not show clear support 

for this effect in jumping spiders. The attack rate increased signif- 

icantly between days 1 and 2, reaching about 80% towards all colour 

forms (Fig. 4). This rate was similar to that observed by Hill (2006) 

in experiments testing the retention of aversive experience with 

aposematic prey in jumping spiders between 2 consecutive days. 
The  white,  less  conspicuous  colour  form  suffered  from  higher 

 
mortality than the other two colour forms. This may suggest either 

that the  white coloration is less memorable, or that all spiders 

forgot the information to the same degree, and their approach to- 
wards the prey on day 2 was analogous to the initial reaction. The 

capture rate increased between days 1 and 2 only when the white 

colour form was presented (Fig. 4). In other words, spiders often 

attacked the red and the yellow firebugs on day 2, but rarely killed 

them. This behaviour would be in accordance with predictions of 

the go-slow theory which suggests that when predators sample 

‘suspicious’ prey, they tend to attack it carefully, and often leave it 

unharmed (Guilford, 1994). The red and the yellow colour forms 

(but not the white one) may therefore be protected by means of 

individual selection. 

Prey memorability may be enhanced by particular colours and 

patterns (Exnerova' et al., 2008; Sva'dova' et al., 2009; but see Ham 

et al., 2006) or contrast against the background (Alatalo & 

Mappes, 1996; Lindstro€m, Alatalo, & Mappes, 1999; Roper, 1994; 
Roper & Redston, 1987). In an experiment with great tits, Parus 

major, the yellow colour form of P. apterus was less memorable than 

the red and brown ones when presented on a beige background 

(Sva'dova' et al., 2009). Because we used white filter paper as a 

substrate during the experiments, higher mortality of the white 
colour form could have been caused by its lower contrast against 

the background, when compared to the other two colour forms. 

 
Evolutionary  Implications 

 
As jumping spiders are unusual among arthropods in possessing 

tetrachromatic vision and complex cognitive abilities (see above), 

our results cannot be generalized to other predatory arthropod 
taxa, or even to other spider families. Still, they extend our concept 

of aposematism by checking its tenets on predators rarely used as 

models. 

The great majority of hypotheses related to aposematism have 

been tested with bird predators, especially two species: the do- 

mestic chicken and great tit. The number of neurons in the central 

neural system of a great tit is over 2 000 000 (Olkowicz et al., 2016), 

which is about 2000 times more than the number found in the 

wandering spider, Cupiennius salei (Ctenidae; Babu & Barth, 1984). 
The spider umwelt is therefore considerably different from that of a 

bird, and probably much less complex. Although the cognitive 

abilities of jumping spiders and birds differ, their reactions towards 

aposematic signals are surprisingly similar. For example, the high 

effectiveness of the red warning coloration observed in our study 

(as well as in the study by Taylor et al., 2014) corresponds to its 

effectiveness in analogous studies carried out with birds (Rowe & 

Skelhorn, 2005; Sva'dova' et al., 2009). This consistency in re- 

actions of phylogenetically distant predators is advantageous for 
the prey as the variability in the reactions of predators is usually 

considered to be a limiting factor for the evolution and function of 

aposematic signals. 

Fixation of a novel, originally rare aposematic signal in a pop- 

ulation seems hardly possible as its bearers do not profit from the 

predators‘ learned avoidance (Mappes et al., 2005). Several hy- 
potheses have been proposed to explain this apparent paradox: 

predator neophobia or innate bias, existence of a peak shift in 

generalization of aposematic signals, or similarity to an already 

known unprofitable prey (reviewed in Lindstro€m, 1999; Mappes 

et al., 2005). Our results suggest that thanks to biased generaliza- 
tion, the novel red coloration may be advantageous for the prey 

even when  the predator has previously encountered only other 

colour forms. The red colour form can then withstand the initial 

predatory pressure and persist in a population of yellow and white 
bugs. Red coloration is one of the most common aposematic sig- 

nals, especially in true bugs (Hotova' Sva'dova', Kope-ckova', Exnerova', 
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& S-tys,  2010),  and  our  findings  suggest  an  explanation  for  the 
widespread occurrence of this warning signal. 
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1 | INTRODUC TION 

 
Olfaction, that is, noncontact chemoreception, is probably the least 

studied among five traditionally recognized senses in spiders (Uhl & 

Elias, 2011). The current hypothesis suggests that olfactory chemo‐ 

reception is carried out mainly by tarsal organs shaped as small pits 

on the dorsal side of each tarsus (Ehn & Tichy, 1994). The sensitivity 

of these organs to airborne chemicals is assumed to be low (Foelix, 

2011). Along with the tarsal organs, the contact chemoreceptive 

setae, situated mainly on distal parts of palps and legs, probably 

perceive some olfactory cues, especially pheromones (Foelix, 2011, 

Ganske & Uhl, 2018, and references therein). 

The most common ecologically relevant use of olfactory cues is 

the pheromone‐mediated intraspecific communication, especially 

sexual attraction, observed in species of many families (reviewed in 

Gaskett, 2007). Use of airborne prey signals during foraging seems to 

be relatively uncommon and has been mostly observed in context of 

search for prey by specialized predators (e.g., Allan, Elgar, & Capon, 

1996; Jackson & Cross, 2015, and references therein). However, sev‐ 

eral studies have shown that even generalistic spiders are able to 

perceive and use olfactory cues from potential prey (Hostettler & 

Nentwig, 2006; Riechert, 1985). 

If spiders respond to attractive prey olfactory cues, is it possi‐ 

ble that they may also react to repellent ones? This hypothesis has 

not yet been supported. Recent study of reactions of the crab spi‐ 

der Synema globosum (F., 1775; Thomisidae) did not reveal any abil‐ 

ity of the spiders to discriminate between the odour of protected 

wasps and bees and unprotected hoverflies (Morris & Reader, 2016). 

However, these species signal their unprofitability by means of vi‐ 

sual or acoustic signals rather than by olfactory ones (Morris & 

Reader, 2016). A prey with more effective warning chemicals will be 

more suitable for testing the ability of spiders to perceive repellent 

olfactory signals. 

We therefore carried out experiments with a chemically pro‐ 

tected prey, third‐instar larvae of the firebug Pyrrhocoris apterus (L. 

1758), and a generalist, primarily visually oriented (Uhl & Elias, 2011) 

jumping spider predator, Evarcha arcuata (Clerck, 1757; Salticidae). 

The secretion of firebugs is primarily effective in contact chemical 

defence, but owing to its volatile compounds, it may also function 

as an airborne aposematic signal, especially to predators that had 

a previous experience with contacting the chemically defended 

bug. The aim of this study was to test whether E. arcuata is able 

to perceive and avoid olfactory signals of previously encountered 

firebugs. 

 

 
 

Ethology.  2018;124:773–776. w iley onlinelibrary .com/journal/eth © 2018 Blackwell V erlag GmbH |  773 

Receiv ed: 28 A pril 2018 Rev ised: 30 May  2018 A ccepted: 29 July  2018 

DO I: 10.1111/eth.12811 

| | 

Abstract 

Studies of aposematism are mostly focused on visual aspects of warning signalization 

and based on experiments with avian predators. This study presents results of ex‐ 

periments with an arthropod predator, a jumping spider Evarcha arcuata (Araneae: 

Salticidae) and olfactory (i.e., noncontact chemical) aposematic signals. Spiders were 

presented with chemically protected firebug Pyrrhocoris apterus (Heteroptera: 

Pyrrhocoridae). After acquiring the negative experience with the bugs, the spiders 

were offered a choice between the firebug olfactory signal and a scentless control. 

Spiders actively avoided the firebug signal, showing that they are able to recognize an 

unprofitable prey by means of olfactory chemoreception. The results show that ol‐ 

factory signals alone may function as effective means of aposematic signalization to 

spiders. 
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2 |  MET H O D S  

 

2.1 |  Spiders 
 

Evarcha arcuata (Araneae: Salticidae) is a medium‐sized (5–6 mm) 

spider with Palaearctic distribution (World Spider Catalog, 2018). It 

is a cursorial generalist predator feeding on small spiders and insects 

(Dobroruka, 1997; Nentwig, 1986). 

Altogether, we tested 19 spiders (eight adult males, eight adult 

females, one subadult male and two juvenile males); each spider was 

tested only once. All spiders were collected in meadows in Dalejské 

údolí, Prague (50°2′37.343" N, 14°21′31.157" E) in late July 2015 

and were used in the experiments in August 2015. The spiders were 

kept in captivity according to methods described in Raška, Štys, and 

Exnerová (2017). 

 
 

2.2 |  Prey 
 

As a chemically defended prey, we used third‐instar larvae of the 

firebug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Their 

body length of 2–3 mm (Puchkov, 1974) makes them a potential 

prey of these spiders (Nentwig & Wissel, 1986). P. apterus is an 

aposematic species, combining warning signalization (especially 

its red and black coloration) with unprofitability. The defensive 

secretion of firebug larvae mostly consists of ketoaldehydes and 

aldehydes (Farine, Bonnard, Brossut, & Quere, 1992), chemicals 

common in true bug defensive secretions (Blum, 1981). Secretions 

of third‐instar larvae of P. apterus  are effective defence against 

E. arcuata: The spiders attacked the bugs initially, but the prey 

mortality was low and the spiders gradually learned to avoid the 

bugs (Raška et al., 2017). 

The firebugs used in the experiments were collected under 

linden trees in Botanic Garden of Charles University in Prague 

(50°04′20.5" N, 14°25’25.2" E) 1–5 days prior to the experiments. 

They were kept in 500‐ml plastic containers at 23–27°C and 14:10 

light:dark cycle, fed on crushed seeds of the small‐leaved lime (Tilia 

cordata Miller, 1768) and provided with water ad libitum. 

 
 

2.3 | Experim ental design 

 
2.3.1 | Pretrainin g 

 

To ensure the spiders would have sufficient negative experience 

with the firebug secretion, they were offered third‐instar larvae of 

P. apterus in a sequence of trials until they learned to avoid them. 

Each trial took 10 min; the intertrial interval was 20 min. Spiders 

which did not attack the firebugs during trial 1 or at least did not 

touch them with legs, on which the contact chemoreceptors are 

situated (Foelix & Chu‐Wang, 1973), were excluded from the ex‐ 

periments. Remaining spiders were tested immediately after they 

refused to attack or touch the firebugs in two consecutive trials. If a 

spider kept attacking the firebugs after 10 trials, the pretraining was 

terminated and the spider was excluded from the test. 

 

2.3.2 | Test 
 

The test was based on the design by Cross and Jackson (2009, 

Experiment 2). It was performed in a cardboard arena eliminating un‐ 

wanted visual stimuli, and equipped with a fluorescent tube (Osram 

L 18 W/965 Biolux) as the only light source, located above and in 

front of the olfactometer. 

The glass Y‐olfactometer (see Figure 1 and Cross & Jackson, 

2009, 2010, for further details and the olfactometer terminology) 

consisted of a test arm and two "experimental" arms. The spider 

contained in a holding chamber was put into the test arm of the 

olfactometer. The test arm was 320 mm long, but the opening of 

the holding chamber was situated closer to the branching of the 

olfactometer at the beginning of the experiment, so the functional 

length of the test arm was the same as of the other two arms. Two 

parallel experimental chambers were connected to one arm of the 

olfactometer each. They were spheric rather than square (com‐ 

pare with Cross & Jackson, 2009, 2010) to enable more even air 

flow through the chamber. The volume of air pushed through each 

chamber was set to 500 ml/min and was regulated by a single flow 

 

 
 

 
 
F I G U R E 1   Olfactometer (not drawn to scale). Arrows indicate 

the direction of airflow (modified after Cross & Jackson, 2010). 

Stimulus and control chambers: 285 ml in volume. Stimulus, control 

and test arms: 90 mm long (functional length in the test arm), 

22 mm diameter. Holding chamber: 10 mm long, 7 mm internal 

diameter. See the Methods section for further specifications and 

modifications of the original design 
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meter Omega FL 3803ST. A cardboard barrier between the cham‐ 

bers and the olfactometer ensured that the spiders could not see 

inside. 

Chemicals of five freshly crushed third‐instar firebug larvae on 

gauze placed in one experimental chamber were used as a stimulus 

and provided in one experimental chamber, while the control (clean 

gauze) was placed in the other. Left/right orientation of the set‐up 

was changed after each trial, and the spiders were ordered randomly 

for the experiment. 

A single 10‐min trial was carried out with each spider during the 

test. The criterion for a preference was set to spending at least 30 s 

either in the arm with a stimulus or with a control (see e.g., Cárdenas, 

Jiroš, & Pekár, 2012; Cross & Jackson, 2009, 2010). The spider was 

free to move to the other arm of the olfactometer afterwards, but 

only the first choice was recorded. After each test, we cleaned the 

olfactometer consecutively with a common detergent, water and 

96% ethanol, and dried it up in 170°C. 

 
 

2.4 | Statistical analysis 
 

The data were analysed in R 2.12.1 (R Foundation for Statistical 

Computing, 2010). The effect of spiders’ preference of either the 

stimulus or the control was analysed by exact binomial test. The ef‐ 

fect of the spiders’ sex on their responsiveness was analysed by gen‐ 

eralized linear model with binomial distribution (levels: 0—the spider 

was either not used in the test or did not choose any experimental 

arm of the olfactometer; 1—the spider was used in the test and chose 

one of the experimental arms). The statistical tests were two‐tailed, 

with the level of significance α = 0.05. 

 

 
3 |  RESULT S 

 
Of 19 individuals, three spiders failed to attack the presented fire‐ 

bug during trial 1 of the pretraining, and two spiders failed to learn 

to avoid the firebugs during 10 trials of the session. Fourteen spi‐ 

ders that successfully learned to avoid the firebugs proceeded to 

the test. 

When put into a Y‐olfactometer with the stimulus in one arm 

and a control (clean gauze) in the other, two spiders did not choose 

any of them. Among the 12 spiders that entered one of the ex‐ 

perimental arms, significantly more spiders preferred the control 

cue (n = 10) over the stimulus (n = 2; two‐tailed binomial test, 

p = 0.039). 

Only three of eight adult females successfully performed in both 

parts of the experiment (i.e., learned to avoid the firebugs and chose 

one of the experimental arms of the olfactometer), but all eight adult 

males succeeded in both tasks. The spiders’ sex therefore had a sig‐ 

nificant effect on their responsiveness towards the stimuli during 

4 |   DISCU S SI O N 

 
Our study provides the evidence that jumping spiders are able to 

perceive olfactory warning signals from their potential prey. Jumping 

spiders do not seem to be exceptional among spiders when it comes 

to chemoreception (Gaskett, 2007), so it is quite likely that this 

ability is present also in other spider families. We set up a rather 

conservative experimental design by combination of prey (larvae of 

firebug Pyrrhocoris apterus) with known and effective chemical de‐ 

fences (Farine et al., 1992; Raška et al., 2017) and a jumping spider 

(Evarcha arcuata) able to learn to avoid firebug larvae after several 

encounters (Raška et al., 2017). Moreover, we used crushed bugs as 

a stimulus source during the experiments. Aside from the need of a 

stable source of semiochemicals during the experiments, we wanted 

to use a stimulus that would be at least as strong as (or even stronger 

than) the one that could be encountered by the spiders in nature. 

Sufficient intensity and consistency of stimuli are essential for an 

experimental design (Jakob & Long, 2016), and low intensity of prey 

signals might be the reason why spiders did not respond properly in 

previous experiments (Morris & Reader, 2016). 

Higher responsiveness of adult male spiders to stimuli during the 

experiments as compared to females was surprising, as the females 

are usually considered more responsive in behavioural experiments 

and this assumption even resulted in exclusion of male spiders from 

some studies (e.g., Cross & Jackson, 2009; Li, Jackson, & Cutler, 1996; 

Nentwig, 1986). However, low activity of female jumping spiders 

has been observed in some previous experiments (Hoefler & Jakob, 

2006; Taylor, Maier, Byrne, Amin, & Morehouse, 2014). Under natural 

conditions, male spiders are more likely than females and juveniles 

to leave the nest and explore. This has been explained by the males’ 

need to search for females despite the higher exposure to preda‐ 

tors and other risks associated with such behaviour (Jackson, 1979). 

Exploratory behaviour seems to be sexually dimorphic in jumping spi‐ 

ders, and the effect of sex should not be neglected in future studies. 

Studies  on  aposematism  focus  mainly  on  visual  signalling 

(Mappes, Marples, & Endler, 2005; Ruxton, Sherratt, & Speed, 

2004). Visual cues are the most important source of information 

for birds (McFadden, 1993), the predators most frequently used in 

studies of aposematism (Ruxton et al., 2004). This bias is even stron‐ 

ger in jumping spiders, a primarily visually oriented group, and the 

role of olfaction in most aspects of their behaviour is unknown. Our 

study shows that olfactory chemoreception itself may be sufficient 

for their perception of aposematic signals. Ecological significance of 

such information is probably not critical in predatory behaviour of 

grass‐dwelling E. arcuata. However, in spiders with different preda‐ 

tory strategies, especially in the night‐active or web‐building ones, 

the situation may be different. Aside from the need of involvement 

of more spider families, future studies should focus especially on the 

sensitivity of spiders to individual chemicals, the role of chemicals 

the experiment (chi‐square test, χ2
 

 

(1) 
= 9.29, p = 0.002). The sample acquired from plants in defence of P. apterus  and the correlation 

of juvenile spiders (N = 3) was too small to be comparable with those 

of adult spiders. 

between jumping spider sex and/or stage and their performance in 

behavioural experiments. 
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Adult male ladybird spiders (Eresus spp., Araneae: Eresidae) possess conspicuous red and black coloration. As these 

spiders are palatable to many predators, they are likely to be Batesian mimics of some other, defended species. We 

therefore aimed to identify potential models of two ladybird spider species, the spring-breeding Eresus moravicus 
and the autumn-breeding Eresus kollari, by assessing the co-occurence and similarity of the spiders and their pu- 

tative models. The abundance of potential models of Eresus spp. was monitored at nine sites where the spiders are 
found. Phenotypic similarity between the spiders and their potential models was assessed by comparing their colour, 

coloration pattern, and body size and shape. The ladybirds Coccinella septempunctata and Hippodamia variegata co- 

occurred with Eresus spp. at most sites during the whole season and were among the most abundant species found; 
the leafhopper Cercopis sanguinolenta was common only in spring and the stink bug Graphosoma lineatum only in 

late summer and early autumn. Analyses of similarity showed that coccinellids, including Coccinella septempunctata, 
were relatively similar to Eresus spp. We conclude that the seven-spot ladybird beetle Coccinella septempunctata is 

probably the key model of the ladybird spiders. Other taxa may serve as secondary models, further enhancing the 

spiders’ defence against predators. 

ADDITIONAL KEYWORDS:  aposematism – Araneae – Batesian mimicry – Coccinellidae – Eresus. 
 

 

 

INTRODUCTION 

Prey that are distasteful, dangerous or otherwise 

unprofitable to their potential predators often advertise 

this fact by using warning (aposematic) signals that 

their predators can associate with unprofitability 

(Mappes et al., 2005). The signals are often visual 

(e.g. colour, colour pattern, movement), but can also 

be manifested mechanically (vibrations, sounds) or 

chemically (characteristic odour or taste) (Ruxton 

et al., 2004). The negative association between the 

signal and the sender’s unprofitability is sometimes 

exploited by palatable prey that imitate signals of the 

defended prey. Adaptive resemblance between signals 

of a palatable mimic and a defended model is called 

Batesian mimicry (Bates, 1862; Mappes & Alatalo, 

1997, and references therein). 

Ladybird spiders (Eresus spp., Araneae: Eresidae) 

are believed to mimic chemically defended ladybird 

beetles , especially the seven-spotted ladybird 

(Coccinella septempunctata L. 1758, Coleoptera: 

Coccinellidae) (Cloudsley-Thompson, 1995). Their 

resemblance to ladybird spiders is sex- and stage- 

limited, however, in that it is only the adult males 

that are characterized by a bright red abdomen with 

four to six black spots (Fig. 1). Females and juveniles, 

in comparison, are darkish with no prominent colour 

pattern. The restriction of the mimicry to adult males 

is likely to reflect their behaviour of actively searching 

for females, while juveniles and adult females hide in 

their burrows (Řezáč et al., 2008).When searching, male 

spiders are virtually defenceless and highly profitable 

prey (Cloudsley-Thompson, 1995). In fact, due to their 

high nutritional value, spiders are a common prey of 

many arthropod and vertebrate predators, such as 

birds, lizards, wasps and other spiders (e.g. Polis et al., 

1989; Gunnarsson, 2007; reviewed by Foelix, 2011). 

Although  it  has  been  suggested  that  ladybird 

   spiders mimic ladybird beetles (Cloudsley-Thompson, 

*Corresponding authors. E-mail: raska@natur.cuni.cz; pekar@ 

sci.muni.cz 

1995), this hypothesis has never been verified. It is 

possible that the resemblance to ladybird beetles is 
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Figure 1. Adult males of Eresus moravicus (A) and E. kollari (B). 
 

perceived only by human observers, and is ecologically 

irrelevant (eye-of-the-beholder hypothesis, see Kikuchi 

& Pfennig, 2013). Ladybird spiders might therefore 

mimic a different model that has the widespread red– 

black aposematic coloration instead, for example some 

true bug species (Askins, 2002). 

The key prerequisite for a mimetic relationship is 

co-occurrence of the model and the mimic. Models 

should be more abundant than their Batesian mimics, 

so the association between the warning signal and the 

model’s unprofitability, which leads to their avoidance 

by predators, would not be disrupted by presence of 

the mimic (‘relative abundance hypothesis’: Wallace, 

1867; Lindström et al., 1997). Mimics should also tend 

to occur later in the season than their models, so that 

naive predators (especially fledgling birds) can learn to 

associate the warning signal with prey unprofitability 

(‘phenological shift hypothesis’: Waldbauer & Sheldon, 

1971). This shift in phenology is advantageous for both 

the model (its aposematic signal is not disrupted by the 

presence of mimics) and the mimic (because predators 

have already learned to avoid the aposematic signal by 

the time the mimic emerges). In the temperate zone, 

this leads to a low abundance of Batesian mimics in 

summer and high abundance in late spring and early 

autumn (e.g. Waldbauer & Sheldon, 1971; Waldbauer, 

1988; reviewed by Evans, 1990; but see Howarth & 

Edmunds, 2000). Indeed, males of central European 

ladybird spiders search for females for a short period 

either in spring or in late summer and early autumn. 

The former is the case for Eresus moravicus Řezáč 

2008, which is most active in May, while the latter is 

the case for Eresus kollari (Rossi 1846), which is most 

active during September (NCA CR, 2018). 

The effect of a mimetic signal on predators also 

depends on the degree of similarity between a model 

and its mimic. It is often difficult to specify this 

similarity, as the perception of similarity depends 

on the cognitive abilities of the predators involved. 

For instance, most arthropods lack red opsin and are 

therefore insensitive to the corresponding part of 

the light spectrum (reviewed by Osorio & Vorobyev, 

2005), and some of them, such as mantises, may even 

be colour-blind (Barry et al., 2015, and references 

therein). However, physiological constraints are not 

the only factors affecting the perception of prey signals 

– further cognitive processes can dramatically alter the 

way the perceived information is stored and applied. To 

filter out the specifics of observer perception, several 

studies have used objective methods to quantify 

similarity unaffected by observer perception (Cuthill 

& Bennett, 1993; Dittrich et al., 1993; Pekár & Jarab, 

2011). The results were similar, but not identical, to 

those obtained with pigeon and human observers 

(Dittrich et al., 1993). 

Here we aimed to identify the potential model of 

adult males of Eresus spp. and to test the relative 

abundance and phenological shift hypotheses. We 

focused on two central European ladybird spider 

species (Fig. 1), the spring breeder E. moravicus and 

the autumn breeder E. kollari (together referred to 

hereafter as Eresus spp.). First, we performed a field 

study on the occurrence and abundance of Eresus 

spiders and their potential models. We then measured 

the phenotypic resemblance of Eresus spiders to 

potential models by using a series of objective methods 

that focused on size, shape, colour pattern and colour 

reflectance. 

 

© 2018 The Linnean Society of London, Biological Journal of the Linnean Society, 2019, 126, 168–177 

D
o
w

n
lo

a
d
e
d

 fro
m

 h
ttp

s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

lin
n
e
a
n
/a

rtic
le

-a
b
s
tra

ct/1
2
6
/1

/1
6
8
/5

2
1
0
4
38

 b
y
 In

s
e
a
d
 u

s
e
r o

n
 2

4
 D

e
c
e
m

b
e
r 2

0
1
8
 



170 J. RAŠKA and S. PEKÁR 
 

 

 

MATERIAL AND METHODS 

We studied the association of Eresus spp. with their 

potential models at nine sites in southern Moravia 

where the spiders  occur: Stránská  skála, Brno 

(49°11′25″N, 16°40′30″E), Svatý kopeček, Mikulov 

(48°48′22″N, 16°38′47″E), and Pouzdřanská step, 

Pouzdřany (48°56′33″N, 16°38′34″E), where E. kollari 

occurs; Čebínský kopec, Čebín (49°18′12″N, 16°29′04″E), 

Ve Stráních, Dolní Kounice (49°04′12″N, 16°28′23″E), 

and Květnice, Tišnov (49° 21 ′10″N 16° 25 ′13″E), 

where E. moravicus occurs; and Váté Písky, Bzenec 

(48°55′52″N, 17°16′45″E), Mohelenská hadcová step, 

Mohelno (49°06′18″N, 16°11′24″E), and Děvín, Pavlov 

(48°52′01″N 16°39′08″E), where both species occur. 

 
 

Sampling 

To obtain data on the seasonal occurrence of potential 

models of Eresus spp., for assessment of the ecological 

significance of the models to the spider, we conducted 

surveys at each study site once a month: in late August 

and September 2016, and in late April, May, June and 

July 2017. Central European arthropods are mostly 

univoltine and occur for longer than a few weeks, so 

this sampling rate was sufficient to record phenological 

shifts of the study species. 

To study the relative abundances of mimics and 

models at the study sites, we used individual sampling 

and net sampling methods. We sampled all potentially 

aposematic species with a dorsal red/black colour pattern 

and an average body length of between 4 and 20 mm, 

i.e. very roughly of a similar size to Eresus spp. A single 

collector (J.R.) collected the specimens on sunny days, in 

an area of c. 0.4 ± 0.1 ha, during a 2-h period between 

09.00 and 15.00 h CEST, i.e. when the spiders are active 

on the soil surface. Within this period, we conducted six 

sampling sessions during each survey – four individual 

samplings (10 min each) of arthropods occurring on the 

ground and vegetation up to a height of 120 cm, and 

two net samplings (net 350 mm in diameter, 3 × 50 

sweeps per sampling, about 10 min each) of arthropods 

occurring on vegetation up to a height of 80 cm. 

 

 
phenotypic Similarity 

To obtain data for analyses of the visual similarity of 

putative models of Eresus spp., we photographed 3–5 

specimens of each species. If both larvae and adults of 

a single species were aposematic, or if a species had 

two distinct colour forms, we took pictures of both 

stages/forms and they were treated as separate models 

in the analyses. If species were indistinguishable by 

eye, such as imagoes of Zygaena purpuralis (Brünnich 

1763) and Z. minos (Denis & Schiffermüller, 1775) or 

aposematic lygaeid larvae, they were treated as a 

single model. Additionally, we included a common wolf 

spider, Pardosa sp. (Araneae: Lycosidae), as a non- 

mimetic control. 

Individuals were killed with ethyl acetate and 

images were taken less than 1 h later. If the colouration 

of a specimen was altered by ethyl acetate [e.g. in 

Coccinellidae, Corizus hyoscyami (L. 1758)], we killed 

it by freezing at −30 °C for around 10 min. We mounted 

freshly killed specimens on a glass plate using sticky 

tape in order to hold their natural body posture. 

We photographed the specimens  using an 

Olympus SC50 camera installed on an Olympus X12 

stereomicroscope, which was lit from the anterior and 

posterior sides with fluorescent bulbs (13-W daylight 

Repti Glo 2.0 UVB) with a light spectrum similar to 

natural light. We took images by means of Stream 

Motion 1.9.4 image analysis software (Olympus Soft 

Imaging Solutions, 2014), which produces composite 

fully focused images. 

We then analysed the images by means of custom- 

made image analysis software (Ježek, 2015) to obtain 

data on body shape and size and dorsal colour pattern. 

When assessing body shape and size, we straightened 

the image of each specimen according to the axis 

of the body, measured the length of the body axis, 

placed 40 evenly distributed points along the body 

axis relative to the body length of each specimen, 

and measured the distance from each of these points 

to the body edge (without legs, which are not visible 

from above in some models). We then estimated the 

local binary pattern (LBP, i.e. differences between 

nearby pixels after conversion to greyscale) (Ojala 

et al., 2002) to measure the colour pattern separately 

for head and thorax/cephalothorax and abdomen. 

After the specimen was photographed, we measured 

its reflectance by means of a USB4000 spectrometer 

with a PX-2 pulsed xenon light source (Ocean Optics, 

Largo, FL, USA) emitting light from 220 to 750 nm. 

The read probe was at a 45°  angle to the specimen 

and 9 mm from the specimen. We used STAN-SSH 

(Pixelteq, Largo, FL, USA) as a high-reflectance 

standard and the background of specimens (black 

polypropylene adhesive tape) as a low-reflectance 

standard. We took three measurements  of each 

specimen from the anterior, posterior and lateral sides 

and recorded average values. 

 

Data analySeS 

Overall, we found three individuals of E. kollari (two 

in August, one in September) and four individuals of 

E. moravicus (two in April, two in May); the overall 

abundance threshold (i.e. when the abundance of 

a potential model could be considered as equal to 

or greater than that of the mimic) for the use of a 

potential model in principal component analysis from 
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the package vegan (Oksanen et al., 2013) was therefore 

set to four. According to this criterion, 24 models (along 

with both Eresus spp. and a non-mimetic control 

Pardosa sp.) were used in the analyses (Supporting 

Information, Fig. S1). 

We  compared  model  occurrence  (binaries)  and 

abundances  (counts)  between April  and  May  (for 

localities of E. moravicus) and between August and 

September  (for  localities  of  E. kollari)  by  means  

of  a  generalized  linear  model  (GLM). The  l inear 

predictor included mimetic model, site, month and all 

interactions between these variables. We assumed a 

binomial distribution (GLM-b) for occurrence data and 

a negative binomial distribution (GLM-nb) for counts 

because the data showed strong overdispersion when 

fitted with a Poisson distribution (Pekár & Brabec, 

2016). We consequently reduced the linear predictor of 

models the using Akaike’s information criterion (AIC). 

We  analysed  s imilar  morphometric  variables  

among  127  individuals  (3–5  individuals  for  each 

model) separately by means of multivariate methods 

in order to reduce multidimensional variation to two 

dimensions. Specifically, we carried out three separate 

principal components analyses (PCAs) of the following 

variables: (1) body shape and length (40 measures 

of shape and one measure of length); (2) local binary 

pattern  (20  measures   of  the  head  and  thorax/ 

cephalothorax and abdomen); and (3) colour reflectance 

(90 measures from 300 to 750 nm). The former two 

variables were based on analyses of images, while 

the third was based on measurements obtained by a 

spectrophotometer. Body shape and length and local 

binary pattern were column-scaled. PCA was used as 

an indirect ordination method because the gradient of 

the first two axes was low (Lepš & Šmilauer, 2003). 

We then took PCA scores for each individual along the 

first two axes from each separate PCA and used them 

in the final PCA. Therefore, six variables in total (row- 

scaled) were subjected to the final PCA. 

When producing figures depicting the results of 

PCAs (see Fig. 5), we used median values for the model 

in order to avoid a large overlap of points if all data 

points were used. We performed all analyses in R 3.3.1 

(R Core Team, 2017). 

 

 
RESULTS 

occurrence 

We found 36 potential models of Eresus spp. at sites of 

their occurrence (Table S1). The models most commonly 

belonged to the beetle families Chrysomelidae (N = 9) 

and Coccinellidae (N = 8). Of the 36 potential models, 

24 occurred either a month before or during the main 

period of emergence of adult spider males. 

During April, before  the  peak  of  emergence  of 

E. moravicus males, Coccinella septempunctata was 

the most frequent model and was found at five of 

the six study sites where this spider occurred; during 

May, when the spiders usually emerge, Coccinella 

septempunctata occurred at all six sites. Other potential 

models found frequently at the sites of E. moravicus 

in spring were Hippodamia variegata Goeze 1777 

and Cercopis sanguinolenta (Scopoli 1763); the latter 

model species occurred only in May. Other models were 

found only at one or occasionally at two sites (Fig. 2A). 

Model species composition at the studied sites was 

significantly  different  in April  and  May  (GLM-b, 

1 = 119.82, P = 0.001) – in May, almost twice as many 

models per site were found than in April. 
In late summer and early autumn, Coccinella 

septempunctata was found at all six studied localities 

 

 
 

Figure 2. Number of studied sites (out of six) where potential models co-occurred with Eresus moravicus in April and May 

(A) and with Eresus kollari in August and September (B). 
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of E. kollari both in August (before the main period 

of emergence of E. kollari males) and in September 

(when the spider males usually emerge). Only the red 

colour form of Graphosoma lineatum (L. 1758) and 

Hippodamia variegata occurred at most studied sites, 

and except for Ceratomegilla undecimnotata and 

adults and larvae of Lygaeus equestris (L. 1758) and 

Pyrrhocoris apterus (L. 1758), no other potential model 

was found at more than one site either in August or 

in September (Fig. 2B). Slightly more potential models 

per site were found in September than in August, 

In August, at localities of E. kollari before the main 

period of emergence of adult males, the most abundant 

model was the red colour form of G. lineatum (28.7 

individuals per survey), followed by Hippodamia 

variegata (6.2) and Coccinella septempunctata (5.5) 

(Fig. 4A). In September, when E. kollari males are most 

active, by far the most abundant model was Hippodamia 

variegata (808.2 individuals per survey), followed by 

Ceratomegilla undecimnotata Schneider 1792 (12.2) and 

the red form of G. lineatum (6.0) (Fig. 4B).The abundances 

of potential models of Eresus spp. differed significantly 

but the difference in species composition was not between August and September (GLM-nb, χ2
 = 3632, 

significant (GLM-b, χ2
 = 180.99, P = 0.095). P < 0.001), and the mean number of individuals of each 

model was higher in September than in August. 
 

abunDance 

We collected 6346 individuals of potential models of 

Eresus spp. at the study sites. Most of the collected 

specimens  belonged to seven families  of three 

orders: (1) Hemiptera: Cicadomorpha: Cercopidae, 

Heteroptera: Pentatomidae, Lygaeidae, Pyrrhocoridae; 

(2) Coleoptera: Coccinellidae, Chrysomelidae; and (3) 

Lepidoptera: Zygaenidae. 

At localities of E. moravicus, the most abundant model 

during April, i.e. before the peak of emergence of adult 

spider males, was Pyrrhocoris apterus (7.5 individuals 

per survey), followed by Hippodamia variegata (5.5) 

and Coccinella septempunctata (3.2) (Fig. 3A). During 

May, when E. moravicus males are generally active on 

the surface, the most abundant model was Coccinella 

septempunctata (3.2 individuals per survey), followed 

by Cercopis sanguinolenta (1.2) and Cryptocephalus 

bipunctatus (L. 1758) (1.2) (Fig. 3B). The abundances 

of potential models differed significantly between April 

and May (GLM-nb, χ2 = 445.56, P < 0.001), with a higher 

mean number of individuals of each model in April. 

 
 

phenotypic Similarity 

The gradient along PC1 axis in the PCA of body shape 

and size (Fig. 5A) can be largely attributed to body size 

(Table S2). The position of Eresus spp. on the PC2 axis 

suggests that the spiders are not very similar in shape to 

other taxa, such as beetles, moths or true bugs. According 

to the PCA of the local binary pattern (Fig. 5B), Eresus 

spp. are not very similar to Coccinella septempunctata 

or other coccinellids. Instead, they shared a low LBP 

value (i.e. rather low inner pattern contrast) with 

Zygaena spp., Trichodes apiarius (L. 1758) and Cercopis 

sanguinolenta. Finally, the PCA of reflectance (Fig. 5C) 

suggests that Eresus spp. are similar to models that 

reflect a high proportion of the red part of the colour 

spectrum, such as Trichodes apiarius (Coleoptera: 

Cleridae), Crioceris spp. (Coleoptera: Chrysomelidae) 

and Coccinella septempunctata (Fig. S2). 

The final PCA combined the first two axes of the 

three previous analyses. In two-dimensional ordination 

space, potential models of Eresus spp. formed the 

 

 
 

Figure 3. Abundance of potential models found per site where Eresus moravicus occurred in April (A) and in May (B). 

Bars = mean values, whiskers = ±SE. 
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Figure 4. Abundance of potential models found per site where Eresus kollari occurred in August (A) and in September (B). 

Bars = mean values, whiskers = ±SE. Note that in B the ordinate is on a log scale. 

 

following clusters: (1) medium-sized insects with red 

coloration and black spots, (2) small beetles and true 

bugs, and (3) a rather inconsistent group of mostly 

large insects with an atypical body shape (such as 

Zygaena spp. moths) or colour pattern (e.g. stripes in 

G. lineatum). Eresus spp. (along with T. apiarius) did 

not belong to any of these clusters and were situated 

far from all of them. However, the nearest was cluster 

1, and the models closest to both Eresus species were 

Coccinella septempunctata, Cercopis sanguinolenta 

and Harmonia axyridis Pallas 1773 f. succinea 

(Fig. 5D). 

 

 

DISCUSSION 

Ladybird spiders of the genus Eresus frequently co-

occurred at our study sites with several potential 

model  species , e.g. Coccinella septempunctata , 

Hippodamia variegata or the red form of G. lineatum. 

The closest in appearance to the spiders were large 

coccinellid beetles, namely Coccinella septempunctata, 

Harmonia axyridis f. succinea and Ceratomegilla 

undecimnotata . Overall , the spiders  were not  

very similar to any of their potential models and 

phenotypically they were not  intermediate in 

appearance between multiple potential models. 

Only 12 potential models were found at more than 

one site during the period of ladybird spider emergence, 

and only eight of these species were found at more than 

half of the studied sites. These findings indicate that 

the number of potential models that are ecologically 

relevant for Eresus spp. is low. Co-occurrence on a 

regular basis is a key assumption for a stable mimetic 

relationship. If this requirement is not fulfilled, the 

mimic’s phenotype should be selected either to shift 

away to  either  another  model, or become  cryptic 

(‘mimetic breakdown’: Kikuchi & Pfennig, 2013). Stable 

mimetic relationships involve models that are ‘reliable’ 

in terms of consistent occurrence at sites suitable for 

the mimic – Coccinella septempunctata, Hippodamia 

variegata, Cercopis sanguinolenta  or  G. lineatum 

in this case. The effect of the model’s abundance is 

similar: the more abundant the model is compared 

to the mimic, the more stable and effective the whole 

mimetic relationship should be (e.g. Huheey, 1964, 

1980; Lindström et al., 1997). Therefore, it would be 

adaptive for ladybird spiders to rely on one or several 

of the most abundant potential models. If we accept 

this conclusion, the above-mentioned species would be 

even more likely candidates as mimics of Eresus spp. 

The co-occurrence and relative abundance of Eresus 

spp. and their potential models were assessed only at 

sites in southern Moravia. However, several Eresus 

species with a ladybird-like colour pattern are known 

to occur outside this region (E. kollari having the 

widest distribution) (Řezáč et al., 2008). Collectively, 

Eresus spp. with the mimetic phenotype range from 

the Iberian Peninsula through almost the whole of 

Europe to Siberia (Řezáč et al., 2008; Mihajlov, 2013). 

What then do the mimetic relationships look like in 

different parts of the spiders’ distribution area? The 

answer might, in fact, be quite simple: the ladybird 

spiders occur within the distribution areas of the 

four most common potential model species: Coccinella 

septempunctata (Nikitsky & Ukrainsky, 2016; Pasqual 

et al., 2017), Cercopis sanguinolenta (Soulier-Perkins, 

2017), G. lineatum (Rider, 2006) and Hippodamia 

variegata (Agarwala & Ghosh, 1988; Pasqual et al., 

2017). Thus, the mimetic relationships observed in 
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Figure 5. Ordination diagrams of PCAs of body shape and length (A), of the local binary pattern (B), of the reflectance (C), 

and combined analysis using PCA1 and PCA2 values of analyses A–C for each individual as input variables, with highlighted 

model clusters (D). Only two axes, PC1 and PC2, are shown, with the amount of variability explained by each axis. The 

analysis was performed using several individuals for each model/mimic; however, each type is represented by a single point, 

the model-type median. Colour indicates ladybird spiders and the most important model groups: red – Araneae: Eresidae, 

brown – Heteroptera: Pentatomidae, purple – Heteroptera: Lygaeidae and Pyrrhocoridae, blue: Coleoptera: Chrysomelidae, 

green – Coleoptera: Coccinellidae. Abbreviations for model species: CeS – Cercopis sanguinolenta, CeU – Ceratomegilla 

undecimnotata, ClQ – Clytra quadripunctata, CoR – Coptocephala rubicunda, CoS – Coccinella septempunctata, CoU – 

Coptocephala unifasciata, Cr2 – Crioceris duodecimpunctata, Cr4 – Crioceris quatuordecimpunctata, Cr5 – Crioceris quin- 

quepunctata, CrB – Cryptocephalus bipunctatus, ErK – Eresus kollari, ErM – Eresus moravicus, EuR – Eurydema ornata, 

red form, GrR – Graphosoma lineatum, red form, HaP – Harmonia axyridis, f. spectabilis, HaU – Harmonia axyridis, 

f. succinea, HiV – Hippodamia variegata, Ly5 – Lygaeidae sp., 4th–5th instar, LyE – Lygaeus equestris, PaS – Pardosa sp., 

Py5 – Pyrrhocoris apterus, 4th–5th instar, PyA – Pyrrhocoris apterus, RhI – Rhynocoris iracundus, TrA – Trichodes apiaries, 

ZyC – Zygaena carniolica, ZyL – Zygaena loti, ZyP – Zygaena purpuralis complex. 

 

Moravia may be common for all ladybird-like spiders 

of the genus Eresus. 

The results of the analysis of body shape suggest 

that ladybird spiders are not very similar to potential 

model taxa. This result is not very surprising, given 

that spiders and insects have different body plans. Legs 

were not taken into account in the analysis, but we can 

assume that the eight thick, long legs of ladybird spiders 

would make them even more distant from insect models. 

Body shape, therefore, seems to be a key limitation in 

achieving perfect mimicry of insect models in spiders. 

In Eresus spp., the black coloration of the cephalothorax 
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may be cryptic on a dark surface, making the spiders 

look smaller and more compact in terms of body shape, 

and therefore more similar to, for example, coccinellids. 

However, the occurrence of Eresus spp. did not appear 

to depend on the colour of the surface, so this effect is 

probably of minor ecological relevance for the spiders. 

Surprisingly, the local binary pattern of Eresus 

spp. was quite diss imilar to that  of Coccinella 

septempunctata and other coccinellids (Table S3). 

According to the analysis, the dorsal pattern of the 

spiders was most similar to those of zygaenid moths, 

possibly because the colour patterns in both the spiders 

and the moths consist of large monochromatic areas. 

Interestingl  y,  ladybird   spiders    (especially  

E. moravicus) reflected more light in the red part of 

the spectrum and, therefore, may produce a stronger 

aposematic signal (Gamberale-Stille & Tullberg, 1999) 

compared to most of their potential models. Such results 

may indicate the presence of perceptual exploitation of 

the sensory bias of the observer (Kikuchi & Pfennig, 

2013) – in this case, the negative association of red 

colour with unprofitability. Perceptual exploitation 

is considered to be too costly to become widespread 

among mimics and has been suggested for epigamic 

signals only (Kikuchi & Pfennig, 2013, and references 

therein). Eresus spp., therefore, represent an intriguing 

case of mimics that exaggerate their models’ signal to 

achieve better protection against potential predators. 

The pigments responsible for red coloration in Eresus 

spp. have not yet been determined (Holl, 1987), but 

it is possible that due to different colour production 

mechanisms (e.g. cuticular pigments in insect models 

vs. hair pigments in spiders), the spiders evolved a 

coloration that is unavailable to insects. 

When multiple traits were considered collectively, 

Eresus spp. were clearly separated from almost all 

potential models, which suggests that their mimicry 

is quite poor. The persistence of imperfect mimicry 

in these spiders may have several explanations. 

First, numerous traits  (number  of  legs, absence 

of antennae, compact  cephalothorax)  have  made 

it almost impossible for spiders to become perfect 

mimics of insects during evolution. Also, perfecting 

a particular mode of defence is usually constrained 

by another, antagonistic selection pressure (e.g. the 

need for foraging behaviour in cryptic species) (Pekár, 

2014). In ladybird spiders, short legs and a compact 

body, common adaptations of beetle-mimicking spiders 

(Pocock, 1909), could negatively affect the mobility of 

male spiders searching for females. 

Predators probably do not select for evolution of multi- 

trait perfect mimicry. Rather, they may focus on a single 

dominant trait that produces overall similarity (e.g. 

Chittka & Osorio, 2007; Gamberale-Stille et al., 2018). 

Experiments with birds have shown that birds do indeed 

discriminate prey based on colour but, surprisingly, not 

the colour pattern (Aronsson & Gamberale-Stille, 2008) 

or shape (Kišelová, 2014). Another argument against 

selection for perfect mimicry is that only moderately 

accurate overall resemblance may be a sufficiently 

effective mimetic signal. Experiments comparing 

pigeons’ perceptions of similarity between wasps and 

their hoverfly mimics revealed that a 50% objective 

resemblance between the compared species was enough 

for them to be treated as perfect mimics by the birds 

(Dittrich et al., 1993). Further analyses have shown that 

human perception of mimetic similarity is, in fact, more 

similar to the classification performed by pigeons than 

to the results of objective methods (Penney et al., 2012). 

We weighted all variables in the analysis of phenotypic 

s imilarity equally to keep our analyses  rather 

conservative and observer-independent; ultimately, only 

presentation of the mimics and models to their potential 

predators, especially birds, will determine the actual 

importance of each potential mimetic trait. 

Our study indicates that ladybird spiders of the 

genus Eresus co-occur at the same sites and at the same 

time as several members of the hypothetical European 

red/black insect mimicry complex, which includes 

many species of heteropterans (Hotová Svádová et al., 

2010), coccinellid beetles (Brakefield, 1985) and other 

taxa, but are relatively dissimilar to its members. We 

conclude that although several species are likely to be 

involved in mimetic relationships with Eresus spp., 

the seven-spot ladybird Coccinella septempunctata is 

probably the key mimetic model of the ladybird spiders. 
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Figure S1. Potential models of Eresus spp. that were sufficiently abundant at the studied sites. Cicadomorpha: 

Cercopidae: A – Cercopis sanguinolenta; Heteroptera: Reduviidae: B – Rhynocoris iracundus; Heteroptera: 

Pentatomidae: C – red form of Eurydema oleracea, D – red form of Graphosoma lineatum; Heteroptera: 

Lygaeidae: E – Lygaeus equestris, F – lygaeid larva, aposematic morphotype; Heteroptera: Pyrrhocoridae: G – 

Pyrrhocoris apterus, H – P. apterus larva; Coleoptera: Cleridae: I – Trichodes apiarius; Coleoptera: Coccinellidae: 

J – Ceratomegilla undecimnotata, K – Coccinella septempunctata, L – Harmonia axyridis, forma spectabilis, M 

– H. axyridis, f. succinea, N – Hippodamia variegata; Coleoptera: Chrysomelidae: O – Clytra quadripunctata, 

P – Coptocephala rubicunda, Q – C. unifasciata, R – Crioceris duodecimpunctata, S – C. quatuordecimpunctata, 

T – C. quinquepunctata, U – Cryptocephalus bipunctatus; Lepidoptera: Zygaenidae: V – Zygaena carniolica, W – 

Z. loti, X – Z. purpuralis group 

Figure S2. Median reflectance spectrum of Eresus kollari, E. moravicus, selected potential models and the con- 

trol non-mimetic spider (Pardosa sp.), compared to the white standard. 

Table S1. List of studied ladybird spider species, potential models of the spiders found at their localities, and the 

control non-mimetic spider (Pardosa sp.), along with their taxonomic classification. 

Table S2. Median body length and median maximum body width (based on 40 measurements taken evenly across 

body axis) of Eresus spp., their potential models and the control non-mimetic spider (Pardosa sp.). Species are 

arranged according to body length. 

Table S3. Sums of column-scaled median local binary pattern values (10 values, each with range 0–1) for the 

dorsal side of the front part of the body (cephalothorax in spiders, head + thorax in insects), back body (abdomen), 

and sum of these values for Eresus spp., their potential models and the control non-mimetic spider (Pardosa sp.). 

Species are arranged according to the sum of values. 

 

 

SHARED DATA 

The data from this study can be downloaded from a website of Masaryk University (http://www.sci.muni.cz/ 

zoolecol/inverteb/?page_id=18). 
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Abstract 
 

Adults and larvae of a true bug Scantius aegyptius (Heteroptera: Pyrrhocoridae) closely 

resemble a sympatric pyrrhocorid species, Pyrrhocoris apterus, and most likely form a mimetic 

relationship with this species. S. aegyptius adults, although producing secretion atypical of true 

bugs, are to some extent chemically protected against predators. In this study, we analyzed 

composition and function of larval secretion in S. aegyptius, and attempted to determine 

mimetic relationship between larvae of S. aegyptius and P. apterus. The main component of 

larval secretion in S. aegyptius is 2-heptanol, a chemical not known to function in 

antipredatory defence, followed by (E)-2-octenal, a common true bug defensive chemical. 

When larvae of both species were presented to jumping spiders (Evarcha arcuata), S. aegyptius 

was slightly less protected than P. apterus, but the spiders behaved towards the two species in 

a similar way: they quickly learned to avoid the bugs, but usually attacked them again on the 

second day. The spiders also generalized their learned avoidance from one true bug species to 

the other (with only slight asymmetry favouring S. aegyptius), suggesting that the bugs‘ 

mimetic relationship is most likely Müllerian, advantageous to both species. 
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Introduction 

 
Antipredatory mimicry refers to a situation, when one species (mimic) is protected against 

predators by possessing a signal (or a set of signals) that resembles a signal of another species 

(model), which is avoided by predators. The key aspect of mimicry is an antipredatory defence 

of the mimic itself.  If the mimic is undefended (Batesian),  the relationship is parasitic – 



2  

protecting the mimic but harmful to the model (Bates 1862, Huheey 1988). An honest, 

Müllerian mimic, on the other hand, is unprofitable for predators by itself, and its presence is 

advantageous to the model. Most predators have to encounter (and frequently kill) one or 

more defended prey individuals before they learn to avoid prey of a particular appearance, and 

Müllerian mimics share this “cost of predation“ with their models (Müller 1879). It is often 

impossible to identify a model and a mimic in Müllerian mimicry, as the signals involved 

might have evolved to resemble each other by convergence rather than advergence (Turner 

1987, Balogh & Leimar 2005). 

In his model, Müller (1879) implicitly expected defended mimics to have equally effective 

defence as their models, which is virtually never the case in nature. The relative efficacy of the 

mimic’s defence compared to that of the model, positions the mimic onto a continuous 

Batesian-Müllerian axis. Simply said, mimics that are beneficial their model are located in the 

Müllerian part of the axis and mimics that harm their model are located in the Batesian part of 

the axis (Wallace 1882, Huheey 1976, Speed 1993). Even some defended mimics may harm their 

model if their protection is considerably lower than that of their model (quasi-Batesian 

mimicry, Speed 1993). However, distinction between Müllerian and quasi-Batesian mimics is 

problematic, reflecting high complexity of the topic. The results depend on the classification 

criterion (e.g., absolute vs. relative mortality, Rowland et al. 2007, 2010) and factors such as 

relative abundances of models and mimics, model-mimic similarity, or prey community 

complexity (Speed et al. 2000, Rowland et al. 2007, 2010, Ihalainen et al. 2012). Moreover, most 

studies are either theoretical (Speed 1993, Balogh et al. 2008), or are limited to artificial prey 

and bird predators (Speed et al. 2000, Rowland et al. 2007, 2010, Ihalainen et al. 2012). Use of 

natural prey or broader spectrum of predatory taxa may provide more ecologically relevant 

information about the phenomenon. 

Some well-defended species share their warning signals with more than one mimic, which 

leads to formation of mimetic complexes (Poulton 1909, Brower 1958). These complexes may 

include numerous species from various parts of the Batesian-Müllerian spectrum. One of the 

most distinct mimetic complexes in West Palearctic is composed of red-and-black insects and 

spiders. The complex includes species from numerous true bug families (e.g. Lygaeidae, 

Pentatomidae, Pyrrhocoridae, Rhopalidae) and several beetle families (especially Coccinellidae 

and Chrysomelidae), along  with taxa such as ladybird spiders (Eresus spp.) and zygaenid 

moths (Hotová Svádová et al. 2010, Raška & Pekár 2018). Two red-and-black species of 

pyrrhocorid true bugs exhibit particularly close similarity in their colour patterns: the firebug, 
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Pyrrhocoris apterus (L. 1758) (referred to as “Pyrrhocoris“ further in the text) and the 

Mediterranean red bug, Scantius aegyptius (L. 1758) (“Scantius“ further in the text) (Fig. 1). 

Despite being members of the same family, the two species belong to different genera, each of 

which includes several other species, none of them exhibiting the contrasting red-and-black 

colour pattern. Even though the phylogeny of the group is still unknown, it is therefore 

possible that the red-and-black colouration evolved in each of the studied species 

independently. Distribution areas of these species overlap (Kerzhner 2001) and they can even 

be found in mixed aggregations on their host plants (Exnerová & Štys, pers. obs). The 

resemblance between the two species is therefore very likely to enhance one or both species’ 

antipredatory protection under natural conditions. 

True bugs (Heteroptera) possess two primary systems of exocrine scent glands often used in 

antipredatory defence: dorsoabdominal glands in larvae and metathoracic glands in adults 

(Staddon 1979, Aldrich 1988). In Pyrrhocoris, adults produce aldehyde-rich secretion (Krajicek 

et al. 2016), which is effective as an antipredatory defence against birds (Exnerová et al. 2003), 

ants (Remold 1963), and mantises (Raška et al., unpubl. data). Secretion of Pyrrhocoris larvae 

contains mainly ketoaldehydes (Farine et al. 1992) and acts as an effective antipredatory 

defence against birds (Prokopová et al. 2010) and spiders (Raška et al. 2017, 2018). These 

defensive effects are not surprising, as both aldehydes and ketoaldehydes belong to the most 

widespread defensive chemicals in true bugs (Aldrich 1988). In Scantius, the function of scent- 

gland secretions is less clear. Adult secretion is dominated by atypical alcohols, such as 2- 

cyclohexen-1-ol and cyclopentanemethanol (Krajicek et al. 2016), and larval secretion, which in 

true bugs usually differs from secretion of the adults (Aldrich 1988), has not been analysed so 

far. Chemical defence of Scantius adults against birds appears to be less effective than that of 

Pyrrhocoris (Exnerová et al. 2005). 

Predators are supposed to learn to avoid highly unprofitable prey faster and remember their 

experience for longer, compared to the prey with only moderately effective defences 

(theoretical and experimental studies reviewed in Skelhorn et al. 2016, Ruxton et al. 2018). As 

Scantius seems to be less well defended than Pyrrhocoris, it may gain protection from its 

resemblance to this better defended and more abundant species. However, mimicry between 

the two species have not been studied so far, and it is unknown whether mimetic relationships 

between Scantius and Pyrrhocoris are rather Batesian or Müllerian. Moreover, the comparative 

data  on  effectiveness  of  antipredatory  defence  in  the  two  species  are  based  solely  on 
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experiments with avian predators (Exnerová et al. 2005), and it is not clear, whether other 

predators, especially arthropods, would react in the same way. 

In our study, we assessed the effectiveness of antipredatory defences in larvae of Pyrrhocoris 

and Scantius, and the mimetic relationships between the two species. First, we filled a gap in 

knowledge of the defensive secretions of the two species by analysing the composition of the 

larval dorsoabdominal scent-gland secretion of Scantius by means of GC-MS analysis. Then we 

compared antipredatory effects of the defensive secretions of 3rd-instar larvae of Pyrrhocoris 

and Scantius in experiments with jumping spiders, Evarcha arcuata (Clerck 1757). Jumping 

spiders (Salticidae) possess complex cognitive abilities (reviewed in Richman & Jackson 1992), 

including acute vision with spectral sensitivity ranging from UV to dark red (Peaslee & Wilson 

1989), and they are responsive to nuances of aposematic signals (e.g. Taylor et al. 2014, Raška et 

al. 2017). We compared reactions of spiders to the bugs during their first encounter and rate of 

subsequent avoidance learning. Once the spiders gained experience with one of the two prey 

species, we presented one group of the spiders with the other prey to test for the degree and 

symmetry of their mimetic relationships. The other group was presented with the same prey 

species for two consecutive days to assess memorability of the learned avoidance. 

 
 

Methods 
 

Predators 

 
Evarcha arcuata is a jumping spider (Araneae: Salticidae) common in grass habitats of the 

Palearctic region (Buchar & Kůrka 2001, World Spider Catalog 2019). It is a medium-sized (5-6 

mm) cursorial generalist predator, which is able to feed on various arthropods including true 

bugs from the family Miridae (Nentwig 1986, Dobroruka 1997). 

We collected the spiders in meadows in Dalejské údolí, Prague (50°02‘35“N, 14°21‘28“E) 

between April and August 2010-2014. We kept the spiders in the laboratory for two weeks. 

After such period, the spiders can be considered quasi-naive, having forgotten all prey 

preferences based on previous experience (Hill 2006). We kept the spiders in small plastic 

containers and fed them with micropterous fruit flies, housing and feeding conditions were 

identical to those described in Raška et al. (2017). 
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Fig. 1: Adults of the firebug Pyrrhocoris apterus (a) and the red bug Scantius aegyptius (b), and 3rd instar 

larvae of both species – the firebug (c) and the red bug (d). Scale = 1 mm. 
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Prey 

 
We used 3rd-instar larvae of Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae; referred to as 

“Pyrrhocoris“ further in the text) and Scantius aegyptius (Heteroptera: Pyrrhocoridae; referred 

to as “Scantius“ further in the text) as a prey. Both species have Palaearctic distribution. 

Pyrrhocoris is nearly pan-Palaearctic, whereas Scantius is rather subtropical, with its natural 

distribution area ranging from western Mediterranean to India (Puchkov 1974, Kerzhner 2001). 

Both Pyrrhocoris and Scantius have also been recently introduced to North America (Hodgson 

2008, Bryant 2009, Rojas & Jackson 2018). Pyrrhocoris is slightly larger than Scantius (Puchkov 

1974), its 3rd instar larvae are 2-3 mm long compared to 2-2.5 mm in Scantius. Larvae of both 

species are therefore of adequate size to be an acceptable prey to E. arcuata, which prefers prey 

size about 50-75% of its own body length (Nentwig & Wissel, 1986). 

Both species are defended against predators by a combination of aposematic coloration and 

defensive secretion. In both species, the warning red-and-black coloration is produced mainly 

by high concentration of red erythropterin and black melanin in the bugs’ cuticle (Krajíček et 

al. 2014). The composition of defensive secretions of the two species, on the other hand, seems 

to be completely different. While the secretion of Pyrrhocoris is mostly composed chemicals 

typical of true bug defensive secretion (aldehydes and alkanes in adults, ketoaldehydes and 

aldehydes in larvae, Farine et al. 1992, Krajicek et al. 2016), the composition of secretion of 

Scantius adults includes unique chemicals such as cyclic alcohols (Krajicek et al. 2016). 

We collected Pyrrhocoris under lime trees (Tilia sp.) in Dalejské údolí, Prague (50°02‘34“N, 

14°21‘18“E), and used F1–F3 laboratory-reared generations in the experiments. We reared the 

bugs in 500–750 ml plastic containers at 23–27 °C and 14:10 h light:dark cycle. We fed the bugs 

on crushed seeds of small-leaved lime (Tilia cordata Mill. 1768) and provided with water ad 

libitum. 

Scantius was collected on several sites: Kos island, Greece; Brač island, Croatia; Athens, Greece; 

and Palermo, Italy. We used F1-F3 laboratory-reared generations in the  experiments.  We 

reared the bugs in 250-500 ml plastic containers at 27°C and 14:10 light:dark cycle, fed them on 

seeds of the common hollyhock (Alcea rosea (L. 1758)), and provided with water ad libitum. 

We reared micropterous fruit flies (Drosophila melanogaster Meigen 1830), the prey the spiders 

were fed on before the experiments and presented with as a control prey, on nutritive substrate 

in 20-25°C. 
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Analysis of scent-gland secretion (GC-MS) 

 
We performed the analysis of secretion of dorsoabdominal grands of Scantius larvae using a 

GCMS-QP2010 Plus instrument (Shimadzu, Japan), equipped with 20 m × 0.15 mm i.d., 0.15 μm 

film thickness Rtx-200 column (trifluoropropylmethyl polysiloxane stationary phase, Restek, 

USA). We used helium (99.999 %, Linde, Czech Republic) as the carrier gas at a constant linear 

flow rate of 35 cm s-1, and employed splitless-mode injection with SPME liner at 250 °C (split 

valve closed for 1 min). We maintained the oven temperature at 35 °C for 3 min, ramping it at 5 

°C min-1  to 130 °C, then ramping it at 20 °C min-1  to 300 °C and then maintaining it for 5 min 

(total run time, 35.50 min). We operated the mass spectrometer in the scan mode (m/z 35–500). 

The ion source and interface temperatures were 200 and 250 °C, respectively. 

We collected and evaluated the data using the GCMS software (Shimadzu, Japan), Origin 8 

(Origin Lab corporation, Northampton, MA, USA), Microsoft Excel 2003 (Microsoft 

Corporation, Redmond, DC, USA) and Minitab 16 (Minitab Inc., State College, PA, USA) 

programs. We identified the secretion components by comparing the obtained spectra with 

those in the NIST 2008 Mass Spectra Library. We analyzed series of n-alkanes (C8—C20) and 

reference compounds under the same experimental conditions as those used for the samples to 

either establish the retention indices or confirm the identity of the analytes. We measured 

retention times of reference compounds by injection of their diluted solutions in pentane. We 

selected the dilution for each standard individually in such a way that its retention time was 

constant and reproducible and did not change with higher dilution. We performed the identity 

confirmation of the separated compounds by comparing the experimental retention times, 

retention indices and mass spectra of the compounds with those of concurrently analyzed 

reference standards. 

 
We adopted the procedure of secretion sampling from Krajicek at al. 2016 to allow better 

comparison of secretions of Scantius larvae (this article) and adults (Krajicek et al. 2016). We 

placed three larvae in a syringe with a barrel volume of 12.5 mL (Eppendorf, Hamburg, 

Germany), and placed the syringe in an incubated shaker for tempering the specimens at 40 °C 

for 1 min (bioSan, Riga, Latvia). After that, we slightly compressed the larvae with the plunger 

of a syringe until they discharged the secretion which appeared as a thin liquid film appeared 

on their abdominal dorsum. Then we inserted an SPME (solid phase microextraction) fiber 

based on 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 

(Supelco, Bellefonte, PA, USA) into the tip of the barrel to sample volatile compounds. Before 



8  

each analysis of defensive secretion, we performed a control analysis of SPME sampler itself  

and SPME sampling of the syringe itself (blank). 

 
 

Experimental design 

 
Altogether we tested 125 spiders (44 males, 41 females, and 40 juveniles of older instars, at least 

3 mm in length). We divided the spiders semirandomly into three groups (five subgroups) so 

that each group would include about the same number of males, females, and juveniles. We 

performed the experiments simultaneously with our previous study (Raška et al. 2017) and data 

of two subgroups have already been published in the study (see Table 1). 

The experiments consisted of a series of consecutive 10-minute trials separated by 50-minute 

inter-trial intervals. During each prey presentation, we provided the spiders with a single prey 

individual. We recorded whether spiders attacked (i.e. bit or attempted to bite) or at least 

contacted (i.e. touched with chemoreceptive organs on front legs) the prey, and we recorded 

latency between the presentation of the prey and the first attack in each trial. If a spider 

captured the prey (i.e. held it by chelicerae for more than two minutes and was feeding on it), 

we removed the prey to prevent the spider’s satiation. 

We performed the experiments in Petri dishes (90 mm diameter, 14–17 mm height) with white 

filter paper covering  their bottom. We carried out the experiments under daylight, 

supplemented with fluorescent tube (Philips Master PL-S 11W/840/2P) if necessary. We filmed 

the experiments using digital cameras (Canon HG 20, Canon Legria FS 22) and recorded the 

spiders' behaviour using Observer XT 8.0 (Noldus Information Technology, 2008). 

 
 

Avoidance-learning test 

 
We allowed the spiders to acclimate in the experimental arena for 1 hour before the 

experiments, which always started between 9 and 10 AM CEST. The avoidance-learning test 

consisted of 5 trials, in which we compared changes of the attack rates and the capture rates 

during repeated presentation of the same prey species. If a spider did not attack or contact the 

prey within the 10-minute limit of trial 1, the experiment was terminated, the spider was not 

used in subsequent trials, and its data were not used in analyses unless stated otherwise. In 

such case, the whole experiment was repeated with a new spider, so the resulting number of 

spiders  in  each  experimental  group/subgroup  would  remain  the  same.  The  numbers  of 
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excluded spiders were also analysed to test whether the spiders were initially equally attracted 

to the two prey species, and whether their behaviour was not affected by previous experience, 

unlearned avoidance or other unforeseen factors. 

After the avoidance-learning test, two subgroups of spiders were presented with a different 

prey and used in the generalization test (trials 1–8) and three subgroups of spiders were 

presented with the same prey and used in the memory test (trials 1–9, with trial 9 being 

performed on a second day) (Table 1). 

 
 

Generalization test 

 
The generalization test consisted of three 10-minute trials (trials 6–8) and followed 50 minutes 

after the avoidance-learning test. We presented the spiders with the other true bug species 

than they were presented in the avoidance-learning test (see Table 1). The reactions of the 

spiders towards a novel prey during trial 6 were compared (1) to their responses to previously 

presented prey during trial 5 of the avoidance-learning test to test how the spiders’ reactions 

change directly after the prey switch (2) to reactions of spiders presented with the same prey 

during trial 1 to find out whether the spiders’ experience with a similar prey decreases their 

predatory response to the presented true bug species, compared to naive spiders. 

 
 

Memory test 

 
The memory test was divided into two parts. The first part (trials 6–8) was performed to 

prolong the avoidance-learning process. Previous experiments have shown that after 8 

presentations of unpalatable true bugs, almost all jumping spiders learn to avoid the prey 

(Skow and Jakob 2005). After trial 8, the spiders were provided with a few drops of water and 

kept in the experimental arenas overnight. 

The second part of the memory test took part the next day (trial 9), approximately 24 hours 

after trial 1. We presented the spiders with the same prey as on the previous day to find out 

whether and to what degree they have remembered the learned avoidance acquired on day 1. 
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Control trial 

 
To account for the possibility that the spiders’ attack frequency decreased due to satiation or 

other reasons not specific to the true bugs, we provided the spiders with a control palatable 

prey (micropterous fruit fly D. melanogaster). We offered a single fruit fly to each spider 

immediately after the end of the experiments (after trial 8 of the generalization test or after 

trial 9 of the memory test, see Table 1). If a spider did not capture the prey during the first 5 

minutes of the control trial, we added an additional fruit fly for the next five minutes to reduce 

the possibility that the spider did not respond to the prey due to its inactivity. If a spider did 

not attack during the whole 10-minute control trial, we excluded its data from the analyses and 

the whole experiment was later repeated with another spider, so the number of spiders in each 

subgroup would remain the same. 

 
 

Data analyses 

 
Dependent variables included attack rate (rate of spiders attacking the prey), capture rate (rate 

of spiders capturing the prey), attack latency (latency between the presentation of the prey and 

the first attack). All models initially included all possible second-level interactions of 

explanatory variables and were simplified according to Akaike information criterion (AIC) in 

linear models and generalized linear models with binomial distribution (GLM(b)) and Quasi- 

information criterion (QIC) in general estimation equation models with binomial distribution 

(GEE(b)). 

We used GEE(b) models to assess which variables could potentially affect dependent variables 

and as such should be used in partial analyses. The model initially included a single dependent 

variable (attack rate or capture rate) and illumination (levels: natural only, with an additional 

light source), sex and life stage (levels: male, female, juvenile), trial (1–9), day (1–2), and prey 

species (levels: fruit fly, Pyrrhocoris, Scantius) as explanatory variables. According  to  the 

overall model (and contrary to the previously published results, Raška et al. 2017), the 

additional light source significantly increased both the attack rate (GEE(b), χ2 = 5.047, p = 

0.025) and the capture rate (GEE(b), χ2 = 4.03, p = 0.045). We therefore used illumination and 

its second-level interactions as random factors in initial versions of all models. Sex and life 

stage of the spiders, on the other hand, had no significant effect in the overall model (GEE(b), 

attack rate: χ2  = 0.457, p = 0.796; capture rate: χ2  = 0.107, p = 0.948) and could be excluded 
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according to QIC. We therefore decided not to use the sex/life stage variable in  further 

analyses. 

To rule out a possibility that some factor (e.g. unlearned avoidance) could influence the initial 

part of the experiment, we compared the rate of spiders failing to respond to the prey (i.e. to 

attack or contact it) during trial 1 by means of GLM(b) models with illumination as a random 

factor and the prey species as a fixed factor. To obtain more detailed information, we 

compared attack latencies and capture rates in spiders attacking the presented prey during the 

first trial of the avoidance-learning test. The first-attack latencies were log-transformed to fit 

normal distribution and analysed by means of linear models, capture rates were compared by 

means of GLM(b) models. We used illumination as a random factor and the prey species as a 

fixed factor in both analyses. 

We assessed changes in prey attack rate and prey capture rate during the avoidance-learning 

test (trials 1–5) by means of GEE(b) models with illumination as a random factor and the trial 

number as a fixed factor. When comparing the trend between two prey species, we added the 

prey species and its interaction with the trial number as a fixed factor. 

To find out whether the spiders were able to generalize between the two true bug species, we 

first compared the attack rate and the capture rate between the last trial of the avoidance- 

learning test (trial 5) and the first trial of the generalization test, after we switched the prey 

species (trial  6). We used GEE(b)  models with illumination as a random factor and trial 

number as a fixed factor for each prey switch (from Pyrrhocoris to Scantius, from Scantius to 

Pyrrhocoris) separately and then added the prey switch as a fixed factor to account  for 

potential asymmetry of the generalization process (i.e. interaction between the trial number 

and the prey switch). 

An additional method to approach the generalization process was to compare reactions (attack 

rates, capture rates) towards the novel prey in truly naive spiders (trial 1) and in spiders that 

had an experience with a similar prey (trial 6, i.e. the first trial of the generalization test). The 

two groups were not fully comparable, as we took into account even naive spiders that did not 

attack or at least contact the prey in trial 1 and were not used in subsequent trials. This fact, 

however, made our analyses more conservative, as the use of foraging-motivated spiders only 

in the generalization test could have an effect opposite to potential generalization between 

unprofitable prey species. Still, the rate of attacking spiders was clearly higher in trial 1 (ca 90 

%) than in trial 6 (ca 60-70 %) and capture rate values were affected by this difference. We 

therefore  decided  to  assess  the  capture  rates  in  attacking  spiders  only  to  obtain  more 
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comparable results. We compared the attack rates and the attack susses rates by means of a 

GLM(b) models. We used illumination as a random factor and the trial number as a fixed 

factor in both analyses. To test for difference between trends in the two true bug species, we 

added the prey species as a fixed factor and focused on the interaction between the trial 

number and the prey species. 

We tested whether the attack rate and capture rate changed between the prolonged 

avoidance-learning test (trials 1–8) and the memory test (trial 9, performed on day 2) to assess 

memorability of the avoidance the spiders have learned during day 1. For that, we used GEE(b) 

models with illumination and trial number as random factors, and day as a fixed factor. We 

compared the changes in two prey species by adding the prey species its interaction with day 

as fixed factors. We did not use data from trials 10–11 due to their low informative value. 

 
 

We analysed the data in R 3.5.2 (R Foundation for Statistical Computing, 2018). All the tests 

were two-tailed, with the level of significance α = 0.05. We refer to 0.05 < α < 0.1 as the 

"marginal significance". All GEE models were analysed using package geepack (Halekoh et al. 

2006), QIC was calculated using package MuMIn (Bartoń 2009). 

 
 

Table 1: List of experimental groups and subgroups based on prey species: 3rd instar larvae of 

Pyrrhocoris (P. apterus), 3rd instar larvae of Scantius (S. aegyptius), and adult fruit fly (Drosophila 

melanogaster), with numbers of spiders in each (sub)group. 
 

Group 

 

Learning 
 

Subgroup 

 

Generalization Memorability 
 

 (day1, trial1-5)  (day 1, trial 6-8) (day 2, trial 9-11) 

 
Group 1 (N = 50) 

 
Pyrrhocoris 

1a (N = 25)* 

 
1b (N = 25) 

Pyrrhocoris 

 
Scantius** 

Pyrrhocoris ** 

 
- 

 

Group 2 (N = 50) 

 

Scantius 

2a (N = 25) 

 
2b (N = 25) 

Scantius 

 
Pyrrhocoris** 

Scantius ** 

 
- 

Group 3 (N = 25) fruit fly 3a (N = 25)* fruit fly fruit fly** 

*Previously published results (Raška et al. 2017), recalculated and compared with data not published 

before. 

** Followed by a control trial with the fruit fly prey. 
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(1) (1) 

(1) 

χ2 

(1,73) (1,73) 

Results 
 

Composition of scent-gland secretions 

 
Analyses of larval secretion were carried out for the same number of individuals (n = 3) as in the 

analyses of male and female secretions (Krajicek et al. 2016). Identifications of the individual 

peaks of dominant secretion components obtained for males, females and larvae, the 

corresponding retention times, their standard deviations and relative abundance (only peaks 

with response (A) greater than 20,000 a.u. and similarity higher than 85 % were selected for the 

identification) are summarized in Table 2. Both adult (Krajicek et al. 2016) and larval secretions 

mostly composed of alcohols, alkanes, aldehydes, and esters. Compounds dominant in the 

secretion of the adults were cyclopentanemethanol, 2-cyclohexen-1-ol, 1-dodecanol, and 

tetradecane (Krajicek et al. 2016). The larval secretion, on the other hand, was dominated by 2- 

heptanol and (E)-2-octenal. Some compounds, such as tetradecane, 4-tert-butylcyclohexyl 

acetate, 1-dodecanol, and limonene, were present in both adult (Krajicek et al. 2016) and larval 

secretions. 

 
 

Initial reaction 

 
In trial 1, only fifteen spiders (9.09 %) did not attack or at least contact the prey. The 

proportion did not differ significantly between the prey species, including the control fruit flies 

(GLM(b), Pyrrhocoris vs. Scantius χ2
 = 0.068, p = 0.794; Pyrrhocoris vs. fruit fly χ2

 = 0.191, p 

= 0.662; Scantius vs. fruit fly χ2
 = 0.411, p = 0.521). 

 

Compared to Pyrrhocoris, Scantius suffered from higher mortality during its first presentation 

in trial 1, although the difference in capture rates was only marginally significant (GLM(b), 

(1,97)  = 2.753, p = 0.097) (Fig. 2, Trial 1). Still, both true bugs were captured less often than 

control fruit flies (GLM(b), Pyrrhocoris: χ2
 = 86.939, p < 0.001; Scantius: χ2

 = 83.688, p = 

0.022). 

 
In trial 1, spiders attacked Pyrrhocoris sooner (median 19.8 s) than Scantius (median 40 s) 

(ANOVA, F1,98 = 5.881, p = 0.017). Also, unlike Pyrrhocoris (ANOVA, F1,72 = 0.004, p = 0.953), 

Scantius was attacked later than control fruit flies (median 21.4 s) (ANOVA, F1,73 = 4.994, p = 

0.028) when first presented to the spiders. 
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Table 2.  The dominant chemicals identified in defensive secretion of  Scantius larvae (n = 3),  compared with 
secretions of males (n = 3) and females (n = 3) (Krajicek et al. 2016); tret is the retention time of the relevant 

substance, SD standard deviation, relative abundances (% areas of the relevant peaks) as a result of chromatogram 
internal normalization. The methods used for the identification: A – retention time of the relevant substance was 
compared with the reference compound; B – the mass spectrum of the relevant substance was compared with NIST 
2008 mass spectra library; S – similarity of the compound spectrum with the spectrum in the NIST 2008 database. 
Only peaks with response (A) greater than 20,000 a.u. and similarity (match factor in NIST 08 database) higher than 
85 % were selected for the identification and following normalization. 

 

 
Compound 

 

tret (min) 
± SD 

Relative abundance (%) and spectra 
similarity (S) 

 
Identification 

Males S Females S Larvae S 

2-heptanol 6.39 ± 

0.04 

- - - - 20.81 97 A, B 

cyclopentanemethanol 6.42 ± 

0.05 

11.42 96 12.96 94 - - A, B 

2-cyclohexen-1-ol 6.88 ± 

0.05 

12.07 85 18.85 88 - - A, B 

cyclopentanone 6.27 ± 

0.05 

3.77 97 0.34 85 - - A, B 

limonene 7.65 ± 

0.07 

3.93 93 3.67 91 2.83 87 A, B 

(E)-2-octen-1-ol 11.16 ± 
0.05 

- - - - 4.90 95 A, B 

dodecane 11.86 ± 
0.07 

10.84 97 2.92 97 1.21 97 A, B 

1-dodecene 11.97 ± 

0.03 

2.89 93 1.13 95 0.47 94 A, B 

(E)-2-octenal 14.06 ± 

0.04 

- - - - 14.06 95 A, B 

tetradecane 16.91 ± 

0.02 

7.62 97 9.01 95 3.71 95 A, B 

4-tert-butylcyclohexyl 

acetate 
a
 

18.64 ± 

0.02 

4.37 91 3.90 92 2.93 89 A, B 

(E)-2-decenal 19.26 ± 

0.03 

- - - - 2.81 90 A, B 

4-tert-butylcyclohexyl 
acetate 

a
 

19.65 ± 

0.06 

0.18 81 0.58 82 0.35 85 A, B 

pentadecane 19.52 ± 

0.06 

2.08 92 2.54 89 1.21 84 A, B 

1-dodecanol 21.10 ± 
0.02 

9.21 97 10.01 96 5.28 94 A, B 

hexadecane 21.41 ± 
0.07 

1.95 94 2.42 92 1.21 85 A, B 

a 
E or Z isomer 
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(1) (1) 

(1) (1) 

(1) 

(1) 

Avoidance-learning test 

 
Spiders have learned to avoid both true bug species during five trials, as evidenced by a rapid 

decrease of attack rates (GEE(b), Pyrrhocoris: χ2 

0.001) and capture rates (GEE(b), Pyrrhocoris χ2
 

= 38.799, p < 0.001; Scantius: χ2
 

= 12.975, p < 0.001; Scantius χ2
 

= 38.163, p < 

= 21.93, p < 
(1) (1) 

0.001) over time. The efficiency of the avoidance-learning process did not differ significantly 

between the two true bug species (GEE(b), attack rate: χ2
 = 0.04, p = 0.841, capture rate: χ2 = 

0.362, p = 0.548) (Fig. 2). The spiders also attacked (GEE(b), χ2
 = 1.811, p = 0.178) and captured 

(GEE(b), χ2
 = 1.9, p = 0.168) both true bug species with similar frequency during the whole 

avoidance-learning test. 
 
 

 
 

 
 

Fig. 2. Attack rates ± SE (dotted lines) and capture rates ± SE (full lines) during five trials of the 

avoidance-learning test. Pink squares = Pyrrhocoris (N = 50), blue circles = Scantius (N = 50), white 

diamonds = control fruit flies (N = 25). 
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On the contrary, when we presented the spiders with the control fruit flies, the attack rate 

(GEE(b), χ2
 =  1.78, p = 0.182) and the capture rate (GEE(b), χ2

 = 1.515, p = 0.218) did not 

change significantly over the trials, differing from trends observed in Pyrrhocoris (GEE(b), 

attack rate: χ2
 = 18.638, p < 0.001; capture rate: χ2

 = 18.638, p < 0.001) and Scantius (GEE(b), 

attack rate: χ2
 = 17.746, p < 0.001; capture rate: χ2

 = 5.118, p = 0.024) (Fig. 2). 
 

 

 

Generalization test 

 
When we switched the presented true bug species after the last trial of the avoidance-learning 

test (between trials 5 and 6), the attack rate increased significantly following the switch from 

Scantius to Pyrrhocoris (GEE(b), χ2
 

Pyrrhocoris to Scantius (GEE(b), χ2
 

= 3.884, p = 0.049), but not following the switch from 

= 0.334, p = 0.563). However, the difference between the 

change of attack rate during switch from Scantius to Pyrrhocoris and from Pyrrhocoris to 

Scantius was not significant (GEE(b), χ2
 = 2.291, p = 0.130). The capture rates did not change 

significantly after we switched the prey species (GEE(b), from Scantius to Pyrrhocoris: χ2 = 

0.671, p = 0.563, from Pyrrhocoris to Scantius: χ2
 = 0.671, p = 0.563) and the trend was the 

same in both prey combinations (GEE(b), χ2
 = 0, p = 1) (Fig. 3). 

 

The attack rate towards both true bug species was lower when the spiders had an experience 

with  a  similar  species  (trial  6),  compared  to  their  naive  counterparts  in  trial  1  (GLM(b), 

Pyrrhocoris: χ2
 = 8.721, p = 0.003, Scantius: χ2

 = 4.225, p = 0.04). The trend did not depent 

significantly on which prey was presented first and which second (GLM(b), χ2
 = 0.362, p = 

0.547).  Also,  if  a  spider  attacked  Scantius  in  trial  6,  after  a  five-trial  experience  with 

Pyrrhocoris, it was less likely to capture the prey (GLM(b), χ2
 = 87.416, p = 0.039). We did not 

observe this effect when Pyrrhocoris was presented after Scantius (GLM(b), χ2
 = 88.783, p = 

0.783). However, the effect of the prey order (Scantius-Pyrrhocoris vs. Pyrrhocoris-Scantius) 

was not significant in direct comparison (GLM(b), χ2
 = 176.2, p = 0.225). 
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Fig. 3. Attack rates ± SE (open bars connected with dotted lines) and capture rates ± SE (coloured bars 

connected with full lines) before and after switch from a familiar (trial 5) to a novel prey species (trial 6) 

(N = 2 × 25) and in comparison with naive spiders (trial 1). Pink = Pyrrhocoris (N = 56), blue = Scantius 

(N = 57). 

 
 

Memory test 

 
The attack rate towards both true bug species increased between the last trial of the prolonged 

avoidance-learning test (trial 8) and the memory test on the second day (trial 9) (GEE(b), 

Pyrrhocoris: χ2
 = 7.843, p = 0.005, Scantius: χ2

 = 4.926, p = 0.026), but the capture rate did 

not (GEE(b), Pyrrhocoris: χ2
 = 1.589, p = 0.208, Scantius: χ2

 = 2.098, p = 0.148) (Fig. 4). The 

capture rate was also lower in the memory test than in trial 1, when the spiders were naive 

(although the difference was only marginally significant in Scantius) (Pyrrhocoris: χ2
 = 0.509, 

p = 0.019, Scantius: χ2
 = 3.742, p = 0.053). 

 

Overall trends did not differ significantly between reactions towards Pyrrhocoris and Scantius 

in the last trial of the prolonged avoidance-learning test and in the memory test (GEE(b), 

attack rates: χ2
 

memory test: χ2
 

= 0.525, p = 0.489; capture rates: χ2
 

= 0.033, p = 0.855). 

= 1.124, p = 0.289; capture rates, trial 1 vs. 

(1) 
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Fig. 4. Attack rates ± SE (open bars connected with dotted lines) and capture rates ± SE (coloured bars 

connected with full lines) during presentation of the same prey in the last trial of the prolonged 

avoidance-learning test (trial 8) and in the memory test on the second day (trial 9). Pink = Pyrrhocoris 

(N = 25), blue = Scantius (N = 25). 

 

 

Discussion 
 

Secretions of both Pyrrhocoris and Scantius larvae contained several chemicals effective in true 

bug defence (Aldrich 1988, Farine 1992), but these chemicals represented only a minor fraction 

of  Scantius secretion. Correspondingly, Scantius larvae suffered from slightly higher mortality 
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during spider attacks due to their less effective chemical defence. Nonetheless, spiders 

effectively learned to avoid both true bug species despite their unequal defence, and retained 

the learned avoidance until the next day at similar rates. During generalization experiments, 

spiders were able to generalize learned avoidance to a newly presented true bug species, but 

the process was asymmetric, providing higher advantage to Scantius larvae. 

Secretions 

 
Defensive secretions of Pyrrhocoris and Scantius larvae were markedly different, considering 

how closely both species are related. On the other hand, interspecific differences in larvae were 

less striking than differences in adults, probably due to lack of epigamic pheromonal function 

in the secretion. 

Dominant components of larval secretion in Pyrrhocoris are (4)-oxo-(E)-2-octenal, (4)-oxo-(E)- 

2-decenal, (E)-2-decenal, and (E)-2-octenal, altogether representing more than 90 % of the 

secretion (Farine et al. 1992). These chemicals, along with other unsaturated aldehydes and 

ketoaldehydes (usually C6, C8, or C10), are among the most common components of true bug 

defensive secretions (Blum 1981, Aldrich 1988), and have been proven to have repellent and/or 

toxic effects on insects (Remold 1963, Gunawardena & Herath 1991, Prudic et al. 2008). Similar 

chemicals (especially (E)-2-hexenal) have been found in Pyrrhocoris adults (Farine 1992), 

suggesting defensive function for secretions of both stages. 

Although the secretion of Scantius larvae also contains some typical true bug defensive 

chemicals (e.g., (E)-2-hexenal), the main component of the secretion is 2-heptanol. This 

chemical is relatively common alarm pheromone of bees and ants (e.g., Blum 1981, Schorkopf 

et al. 2009). Ant alarm pheromones are often synthetized by true bugs, supposedly being 

effective in defence against these predators (Aldrich 1988). This may be the case of 2-heptanol 

in Scantius larval secretion. Ants may represent a serious threat to Scantius larvae but not 

adults, which may be the reason why this chemical is absent in adult secretion. They are 

replaced with cyclic compounds (Krajicek et al. 2016), which probably serve pheromonal 

function, but their unique complex structures are still surprising, considering that true bug 

pheromones are almost always rather simple molecules (Aldrich 1988). 

Initial reaction 

 
Great majority of spiders (88–93 %) attacked or at least contacted presented prey species in 

trial 1. We can therefore conclude that (1) all prey species were sufficiently attractive to the 

spiders, and (2) the spiders did not show initial avoidance of any of the prey species, either 
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innate or learned in the wild prior to the experiments. The former conclusion supports the 

hypothesis that 3rd instar larvae of European pyrrhocorids are of an adequate size (50–75 % of 

the spiders’ body length, Nentwig & Wissel 1986) to represent an acceptable prey to Evarcha 

arcuata. The latter conclusion supports the results of previous studies (e.g. Hill 2006) that after 

a two-week period in captivity, the spiders could be treated as quasi-naive. 

We expected that, similarly to results of experiments with bird predators (Exnerová et al. 

2005), defence of Pyrrhocoris would be more effective than that of Scantius. Our results 

suggest that Pyrrhocoris may be the better defended species also against spiders, since they 

successfully captured Scantius more frequently than Pyrrhocoris in their first encounter with 

the bugs. Nevertheless, this difference was only marginally significant, and other aspects of 

behaviour of the spiders were similar towards both species. 

Surprisingly, spiders attacked Pyrrhocoris sooner than Scantius during their first encounter. 

One hypothesis that could explain this difference is that Pyrrhocoris simply moved around 

more and attracted the spiders' attention. The three pairs of salticid secondary eyes serve 

mainly as movement detectors (Richman and Jackson 1992), so moving prey can be detected 

and eventually attacked sooner than a static one. However, post-hoc analysis of prey activity 

revealed that in fact, it was Scantius which moved around slightly more (69 % of the time on 

average, compared to 59 % in Pyrrhocoris; ANOVA, F1,98 = 96.402, p = 0.059). It is therefore 

possible that the spiders’ reactions could be affected by some other aspect of Pyrrhocoris’s 

behaviour, for example speed of movement. Fast-moving aposematic prey is frequently 

attacked sooner than slow-moving one (Hatle & Faragher 1998, Hatle et al. 2002). Since we did 

not record prey movement speed during our experiments, this hypothesis could be to be tested 

in further experiments. 

 
 

Avoidance learning 

 
The attack rate towards both Pyrrhocoris and Scantius dropped by ca 45 % and the capture 

rate by ca 60 % between trials 1 and 5. These results, contrasting with constantly high attack 

and capture rates towards the control prey, support the hypothesis that the both true bug 

species are protected against predation by jumping spiders. In similar experiments with 

jumping spiders (Phidippus princeps (Peckham & Peckham 1883)) and larvae of a milkweed bug 

Oncopeltus fasciatus (Dallas 1852; Lygaeidae: Lygaeinae) the attack rate dropped between trials 
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1 and 2 even further, becoming only 5 % (Hill 2006), which suggests considerably  more 

effective protection of this species compared to those used in our experiments. 

Similar rates at which the spiders learned to avoid both Pyrrhocoris and Scantius, does not fit 

the experimentally supported (Skelhorn & Rowe 2006, Zvereva et al. 2018) prediction that, of 

the two species, Pyrhocoris possesses more effective antipredatory defence, since the stronger 

defence is supposed to induce more rapid avoidance learning (reviewed in Skelhorn et al. 2016, 

Ruxton et al. 2018). Differences reported in the previous study (Exnerová et al. 2005) may 

therefore be specific for adult bugs and/or for the defence against avian predators. Defensive 

secretions of larvae of both species, notwithstanding their differences, may be both sufficiently 

effective against arthropod (spider) predators. Similar avoidance rates for prey with different 

chemical defences have been observed also in avian predators (e.g. Skelhorn & Rowe 2005, 

Chouteau et al. 2019). 

 
 

Generalization 

 
Our data show that shared colour of the prey species may be sufficient for generalization 

between them by jumping spiders even if their other characters, such as body shape, pattern, 

and chemical defence, are similar only partially. Pyrrhocoris has a more rounded body shape 

than Scantius, is more melanized (Fig. 1) and possesses different defensive chemicals, but after 

an experience with one of the species, spiders attacked the other one with considerably lower 

frequency. 

Generalization between same-coloured insects is not surprising in jumping spiders, as they 

have already shown this ability in experiments with red-coloured milkweed bugs and red- 

painted crickets (Taylor et al. 2015). Colour is critical for recognition of similarity between 

different prey species, and particularly for birds it is so important that they often do not 

generalize between closely similar aposematic prey if it differs in warning colour (Aronsson & 

Gamberale-Stille 2008, 2012, Rönkä et al. 2018, but see Ham et al. 2006, Svádová et al. 2009). 

Jumping spiders, however, were also able to generalize between different colour morphs of 

Pyrrhocoris (Raška et al. 2017). Therefore, unlike in birds, shared colour seems to  be  an 

effective but not necessary part of mimetic signalization to jumping spiders. 

Compared to encounters with naive spiders, both true bug species were attacked substantially 

less when the spiders had the experience with the other species, but some aspects of the 

generalization process suggest slight asymmetry of the relationship. The attack rate and the 
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proportion of spiders attacking successfully were generally higher following the switch from 

Scantius to Pyrrhocoris than vice versa, so it was Scantius that profited more from the species‘ 

similarity. The most probable reason for this result is more effective defence of Pyrrhocoris,  

which may subsequently provide better protection to the similar, less protected species. 

 
 

Memorability 

 
Spiders’ attack rates towards true bugs increased significantly between days 1 and 2. The 

increases were similar in both presented prey species, although the stronger defence of 

Pyrrhocoris should theoretically be better memorable than the weak one of Scantius (Skelhorn 

& Rowe 2006, Ruxton et al. 2018). Increases in attack rates are consistent with results of 

previous experiments with jumping spiders as predators and true bugs as prey (Hill 2006, 

Raška et al. 2017). However, the capture rate did not increase significantly between the two 

days, and was lower on day 2 compared to first trial of day 1, when the spiders were naive. The 

increase in the attack rate but not the capture rate may indicate that the spiders attacked the 

prey with caution on day 2, and as a result they killed the bugs with relatively low frequency. 

Careful handling of a potentially dangerous prey has been proposed as an optimal predator 

strategy especially in cases when prey individuals within a population vary in presence or 

intensity of their antipredatory defence (automimicry and go-slow signalling, Guilford 1994), 

but may also be advantageous in situations when the predator becomes uncertain about the 

previously learned warning signal and resumes sampling the prey to get new information 

about its palatability (e.g., Sherratt 2011). 

 
 

Mimetic relationship 

 
Composition of secretions of Pyrrhocoris and Scantius larvae notably differed, and typical true 

bug defensive compounds were more abundant in secretion of the former species. 

Correspondingly, the effectiveness of the secretions in antipredatory defence was  slightly 

higher in Pyrrhocoris. Nevertheless, the decrease of attack rates towards the two true bug 

species showed that the both species are well protected against spider predators. This 

information alone, however, still does not say anything about their mimetic relationship. 

When we compared reactions between naive spiders and spiders experienced with the other 

bug species, the experienced spiders attacked novel prey significantly less often than the naive 

ones. It seems that jumping spiders perceive both true bug species as reasonably accurate 
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mimics (the attack rate increased only slightly after the prey change), but certainly not perfect 

ones (in which case the attack rate would further decrease). The key aspect of similarity 

between the two species is their shared colour, which is a fundamental trait for recognition of 

mimicry by birds (Aronsson & Gamberale-Stille 2008, Kazemi et al. 2014) that has also been 

shown to allow generalization between otherwise different prey in jumping spiders (Taylor et 

al. 2015). 

These results indicate that both true bug species gained some profit from their mutual 

resemblance. Even though, the mimetic relationship between Pyrrhocoris and Scantius was 

slightly asymmetric, and Scantius gained more protection from from its similarity to 

Pyrrhocoris. This asymmetry could be ecologically relevant especially in situations of scarcity 

of an alternative prey, when Scantius would become acceptable to some predators and the co- 

occurrence of the two species could be therefore harmful to Pyrrhocoris (e.g. Kokko et al. 2003, 

Sherratt et al. 2004 and references therein). Under other circumstances, the mimetic 

relationship between Pyrrhocoris and Scantius appears to be most likely Müllerian, 

advantageous to both species. 
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