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Introduction
While the widespread adoption of electric vehicles in the future could serve to re-
duce our reliance on fossil fuels, provided that the energy used to charge those ve-
hicles comes from cleaner sources, the increased electricity usage that would come
as a side effect could constitute a challenge to the electrical grid [1, 2, 3, 4]. Most
trips by household-owned vehicles are trips to work and back [5], and most peo-
ple plug in their car to charge it as soon as they arrive home [6]. As the bulk
of the people arrive home around the same time, this can cause peaks in electricity
consumption in the afternoon hours.

Because traditional coal or nuclear power plants have a long ramp-up time,
they are ill-suited to be used to cover these sudden peaks, and specialized peaking
power plants such as gas turbines or pumped hydroelectric energy storage must
be used, which is costly and not always feasible [7].

The situation is further complicated as power plants utilizing renewable energy
sources are being introduced to the grid. These plants, such as solar panel farms
or wind turbines, often have an uncontrollable and intermittent power output,
requiring even more energy storage to compensate [7].

To combat these negative effects, there arises a need to be able to better
control the electricity demand of the grid by matching the power requirements
of electricity subscribers to the generation profile of the power plants.

Related work
Several strategies have been proposed to control the charging of electric vehicles
to suit the power distributors.

Wu et al. [8] propose a demand control scheme where EV owners unite into
aggregators who then purchase electricity at the day-ahead market, with each
aggregator formulating the demands of EVs into a linear programming problem,
and based on its solution decides what amount of electricity to buy in which
period so as to minimize the total cost of charging the vehicles.

Vayá and Andersson [9] propose a decentralized algorithm for minimizing
the total price of power generation using time-of-use electricity pricing variable
at the tranmission node level, determining the optimal pricing by solving a mul-
tiperiod optimal power flow problem assembled from the charging requirements
of the vehicles.

Karfopoulos and Hatziargyriou [10] propose a multi-agent system which pits
the grid and the EVs against each other in a non-cooperative, dynamic game,
where the objective of the EVs is to minimize their charging cost, and the objective
of the grid is to minimize the peaks and valleys in the total load, adjusting
the electricity prices after each round to achieve it.

Ahn et al. [11] present an algorithm to find an optimal solution to the prob-
lem of EV charging by first formulating and solving it as a linear programming
problem centrally, based on estimated EV behaviour, and then mimicking the be-
haviour of individual EVs in the optimal solution by the actual EVs.

Gan et al. [12] propose a system for finding an optimal solution to the charging
problem using an iterative algorithm to negotiate charging rates with the util-
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ity provider, with the EVs deciding their charging rates based on a price signal
broadcast by the utility, who based on the charging rates of the EVs iteratively
updates the price signal until the charging rates converge.

In a similar vein, Li et al. [13] propose an on-line iterative algorithm coordi-
nating the charging of EVs, this time based only on the current and past load
on the grid, with the EVs again making their own decision about when to charge
based on a charging reference signal iteratively calculated by the distributor,
who updates the signal based on the reported charging rates of the EVs.

Rigas et al. [14] identify several key issues with the current strageties, one
of them being their privacy implications, as most of them require the EV own-
ers to inform the distributor or another third party about their travel schedule
and charging needs, which some might not be willing to do. Another weak point
is that the strategies control only electric cars, and do not take into account
other appliances that could be controlled. Furthemore, most of the strategies re-
quire that subscribers are willing to adhere to them, even though it might not be
directly beneficial to them.

Goals of the thesis
In recognition of the issues with previous solutions, we set two goals for this
thesis — first, to present a demand control system which tackles these issues,
specifically: protects the privacy of the subscribers, allows for control of multiple
appliance types, and makes cooperation with the utility distributor beneficial
to the subscribers.; and second, to develop a smart grid simulator to evaluate
the performance of the presented system on real-world data.

The rest of this thesis is organized as follows: in Chapter 1 we describe the de-
mand control algorithm we designed; in Chapter 2 we describe the smart grid
simulator we created to test the performance of the algorithm; in Chapter 3
we present results of simulations we performed to evaluate our algorithm.
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1. Algorithm

1.1 Overview
To fulfill the first goal we set in the previous chapter, in designing our demand
control algorithm, we decided to employ the strategy of motivating the subscribers
to use energy at specific times by means of time-of-use electricity price tariffs,
with different timing of low and high prices for each connected household.

The electricity distributor decides on a total target electricity demand pro-
file which it would like to achieve on its grid according to its needs (e.g. a flat
demand profile for a grid consisting of power plants with slow demand-response
characteristics, or a profile with higher demand during specific intervals for a grid
containing solar plants or wind turbines when expecting a lot of sunlight or wind).
A part of this demand does not come from subscribers whose demand can be in-
fluenced easily, but instead from other sectors like businesses and industrial cus-
tomers. The part of the demand the distributor can influence, like the demand
of households, can be used for balancing the demand of the rest of the grid
to achieve the desired total demand. The distributor must therefore separate
the total target demand profile into the uninfluenceable base demand and the in-
fluenceable target household demand. The electricity prices for each household
are then assigned so that more households get a high price when their demand
should be low, and a low price when their demand should be high. The electricity
prices are finally distributed to the households, and the decision on when to turn
their appliances on is left to them, expecting them to act in their own interest
and optimize their appliance usage to achieve the lowest total cost of electricity.

This achieves the goals described earlier — privacy of the subscribers is pro-
tected, since they do not need to divulge the information about the usage of their
appliances; multiple types of appliances can be controlled, since they only need
to be able to adjust their operation to the electricity price; and the subscribers
are incentivized to use energy in coordination with the needs of the distributor,
as it will also be cheaper for them.

1.2 Requirements
To set the total target electricity demand profile for a given time interval which
it would like to control, the electricity distributor needs to know the ideal power
generation profile of the power plants on the grid, and the predicted total power
demand of the grid for that interval, We assume that the distributor has this
information available, as it is already needed to control the power generation
on the grid even without using our algorithm.

The distributor also needs to know the distribution of power demand between
subscribers which are taking part in the demand control scheme and the rest
of the grid, to determine the base demand on the grid which the demand control
scheme will then balance. This can be determined by calculating the portion
of customers which are taking part in the scheme, and by analyzing their be-
haviour through subscriber research programs like [6].
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Furthermore, we assume we have access to statistics of subscriber behaviour
(when do subscribers have their EVs available for charging etc.), appliance us-
age (how much power do appliances need on average each day) and appliance
ownership (what ratio of households owns an appliance of a given type). These
can be obtained from subscriber research programs like [5] or [6].

1.3 Algorithm design
The algorithm works with the idea that households will use their appliances when
electricity is cheap rather than when it is expensive. Therefore the ratio of house-
holds with a lower electricity price at a given time should depend on the desired
power demand the households should have at that time, as electricity consump-
tion will be higher at times when more households have a lower price compared
to times when they have a higher price.

1.3.1 Basic algorithm
We started with a simple algorithm directly translating the target household
demand into electricity prices — the higher the target demand is in a given time
slot, the more households will get cheap electricity in that slot. This simple
algorithm is shown in Algorithm 1.

Algorithm 1 The simple price assignment algorithm for a single day
INPUT:

τ = {1..1440} . . . Time slots for which to calculate the price ratio
TargetDemandt, t ∈ τ . . . Target power demand of the households at time t
Households . . . List of households connected to the grid
LowerPrice . . . The lower electricity price
HigherPrice . . . The higher electricity price

ALG:
for each t ∈ τ do

PriceRatiot ←
TargetDemandt

maxt′∈τ (TargetDemandt′)
end for
for each Household in Households do

for each t ∈ τ do
r ← random number between 0 and 1
if priceRatiot < r then

pricet ← LowerPrice
else

pricet ← HigherPrice
end if

end for
SetPrices(Household, price)

end for
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1.3.2 Improvements
The simple algorithm is very crude, and it does not take into account sub-
scriber behaviour and needs. For instance, electricity price is not the only
influence on the power demand, as the demand will also be higher at times
when more appliances are being used (e.g. at night when EVs are at home,
plugged in), compared to times when the appliances are unavailable (during
the day when the EVs are away). This can cause further imbalances in the de-
mand, as not all of the households which get lower electricity prices in a given
time slot will be able to utilize that lower price, and will thus make the total de-
mand lower than desired. To mitigate that, more households should get a lower
electricity price when less appliances are available for usage, to encourage those
appliances that are available to cover for those which are unavailable.

To be able to take appliance availability into account, we can utilize the sub-
scriber research programs described in Section 1.2. From the data gathered
by those programs, we can calculate the information needed for our purposes —
the portion of households which own an appliance of a given type (e.g. what
portion of households own an air conditioning unit), the ratio of appliances
of a given type which are available for usage at a given time (e.g. how many
EVs are plugged in at home at a given time), and the average power usage
of an appliance of a given type during a given interval (e.g. how much power
does an average freezer use per day). The processing of statistics from the sub-
scriber research programs is described in Algorithm 2.

Algorithm 2 Processing statistics for a single day
INPUT:

τ = {1..1440} . . . Time slots for which to process statistics
Households . . . The households for which statistics are available
ApplianceTypes . . . The types of appliances for which to process statistics
Available(h, a, t) . . . A relation determining if appliance a of household h

is available for usage at time t

Owns(h, a) . . . A relation determining if household h owns an appliance
of type a

Demand(h, a, τ) . . . Function determining how much power did appliance a
of household h use during the time interval τ

ALG:
for each a in ApplianceTypes do

Ho ← {h ∈ Households | Owns(h, a)}

OwnershipRatioa ←
|Ho|

|Households|
for each t ∈ τ do

ApplianceAvailabilityRatioa,t ←
|{h ∈ Ho | Available(h, a, t)}|

|Ho|
end for
ApplianceTypeDemanda,τ ←

∑
h∈Ho

Demand(h, a, τ)
|Ho|

end for
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Subscribers can also take issue with the way electricity prices are assigned
to them. First, if the price changes too often, many appliances based around
charging a battery, like electric vehicle chargers, could turn on and off too fre-
quently to always charge only during the intervals with lower prices, potention-
ally leading to faster deterioration of their batteries due to charging in too short
bursts. One option to solve this issue would be to lower the resolution of the al-
gorithm, to change the prices with a lower frequency than one minute (e.g. every
hour), to enable these appliances to charge for longer uninterrupted intervals. Un-
fortunately, this would induce spikes in energy usage at the start of each interval,
as a large group of subscribers would switch from a high price to a low price, lead-
ing them all to turn their appliances on simultaneously, causing them to all start
drawing power at the same time. To avoid that, we keep the one minute resolu-
tion of the algorithm, but assign the lower electricity prices in longer, continuous
batches (e.g. one hour long) that do not need to start at regular intervals. Sec-
ond, subscribers may be troubled with having an uncertain amount of cheaper
electricity every day, as due to the randomness of assigning prices, some sub-
scribers could have considerably less cheaper electricity on some days than other
subscribers, leading to inequality concerns and other social issues. To alleviate
these concerns, we incorporate a guarantee of a minimal daily amount of cheaper
electricity (e.g. at least eight hours per day) into the price assignment algorithm.

1.3.3 Final algorithm
The algorithm is separated into two parts: determining the ratio of households
which should get a lower electricity price at a given time, and assigning the actual
electricity prices to the households based on that ratio.

In the first part, the price ratio calculating algorithm takes as input the tar-
get demand profile of the households it is controlling, as set by the distributor;
the ownership ratios of each of the appliance types that can be controlled, as esti-
mated from statistics of subscriber behaviour; the total predicted power demand
by each of the appliance types, as estimated from statistics of appliance usage;
and a predicted ratio of appliances of a given type available for usage at a given
time, as estimated from statistics of subscriber behaviour. The sum of the target
demand should be the same as the sum of total predicted demand of all the con-
trolled appliances.

The algorithm works with an one minute resolution, separating a day into 1440
slots, for each of which the price ratio is calculated.

The algorithm first calculates the total appliance availability ratio for each
of the time slots as a weighted average of the estimated availability ratios of each
of the controlled appliance types, weighted by the fraction by which each of them
is expected to contribute to the total target demand.

Next, the target demand profile is inversely scaled by this total appliance avail-
ability ratio, to combine the influences of both the target demand and the avail-
ability of the appliances. The resulting scaled target demand profile is then di-
vided by its maximum to scale it to a [0, 1] range, and set as the desired ratio
of households which should get a lower electricity price at a given time.

Algorithm 3 shows the price ratio calculation algorithm for a single day.
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Algorithm 3 The price ratio calculation algorithm for a single day
INPUT:

τ = {1..1440} . . . Time slots for which to calculate the price ratio
ApplianceTypes . . . List of appliance types for which statistics are available
OwnershipRatioa, a ∈ ApplianceTypes . . . The portion of households that

own an appliance of type a

ApplianceAvailabilityRatioa,t, a ∈ ApplianceTypes, t ∈ τ . . . The ratio of ap-
pliances of type a available for usage at time t

ApplianceTypeDemanda,τ . . . Predicted total demand of all appliances
of type a for the calculated interval

TargetDemandt, t ∈ τ . . . Target electricity demand at time t

ALG:
for each t ∈ τ do

TotalAvailabilityRatiot ← 0
for a in ApplianceTypes do

TotalAvailabilityRatiot +=
OwnershipRatioa × ApplianceAvailabilityRatioa,t

×ApplianceTypeDemanda,τ

end for
UnscaledPriceRatiot ←

TargetDemandt

TotalAvailabilityRatiot
end for
for each t ∈ τ do

PriceRatiot ←
UnscaledPriceRatiot

maxt′∈τ (UnscaledPriceRatiot′)
end for
return PriceRatio

In the second part, the algorithm assigns electricity prices to the households
based on the previously calculated price ratio. The algorithm again works with
an one minute resolution, separating a day into 1440 slots, for each of which
the electricity prices will be calculated.

Since the subscribers expect a guaranteed minimal amount of cheaper elec-
tricity per day, and the electricity prices not to change too rapidly, we assign
to the households electricity prices that are stable in longer intervals (e.g. at least
60 minute intervals of cheaper electricity), ensuring that each household gets
at least a set amount of time having cheaper electricity (e.g. at least 480 minutes
per day), while also respecting the previously calculated ratio of households with
cheaper or more expensive electricity at a given time.

The price assignment algorithm takes as input a list of households for which
to assign the price; the previously calculated price ratio for each minute of the pro-
cessed day; the minimum number of minutes per day for which each household
will get a cheaper electricity price; the minimum length of each continuous inter-
val of cheaper electricity; and the electricity prices during the cheaper and during
the more expensive intervals.

The algorithm assigns prices to each household separately. The price as-
signment process for a household starts with the electricity price high during
the whole day, iteratively adding randomly generated cheaper intervals until

8



there are enough cheaper minutes during that day to satisfy the specified re-
quirements. The cheaper intervals are generated so that their midpoint is se-
lected randomly from the available time slots, with the probability distribution
of the slots corresponding to the previously calculated price ratio.

Algorithm 4 shows the price assignment algorithm for a single day.

Algorithm 4 The price assignment algorithm for a single day from the pre-
calculated price ratio
INPUT:

τ = {1..1440} . . . Time slots for which to calculate prices
Households . . . List of households connected to the grid
PriceRatiot, t ∈ τ . . . The previously calculated ratio of households which

should get a lower electricity price at time t

CheapMinuteCount . . . The minimum number of minutes per day for which
each household will get a cheaper electricity price

CheapIntervalLength . . . The length of each cheaper interval in minutes
LowerPrice . . . The electricity price during the cheaper intervals
HigherPrice . . . The electricity price during the more expensive intervals

ALG:
for each t ∈ τ do

Probabilitiest ←
PriceRatiot∑

t′∈τ PriceRatiot′
, t ∈ τ

end for
for each Household in Households do

for each t ∈ τ do
cheapt ← 0

end for
while ∑

t∈τ cheapt < CheaperMinuteCount do
intervalMid← random slot from τ with distribution Probabilities
startPos← max(min(τ), intervalMid− ⌈CheapIntervalLength/2⌉)
endPos← min(intervalMid + ⌊CheapIntervalLength/2⌋, max(τ))
cheapt ← 1, t ∈ {startPos..endPos}

end while
for each t ∈ {t | cheapt = 0} do

pricet ← HigherPrice
end for
for each t ∈ {t | cheapt = 1} do

pricet ← LowerPrice
end for
SetPrices(Household, price)

end for
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2. Simulator
For evaluating the effectiveness of the demand control algorithm, we created
a simulator of the smart grid. Its structure was designed to resemble a real
electrical distribution grid, with each part of the grid being a separate entity, op-
erating independently, keeping its own clock and performing calculations exactly
when needed, according to an environment-provided clock signal. This was done
to allow for easier possible future extension of the simulator or its separation
into multiple programs communicating over some network interface to enable
simulating communication delays and other physical limitations of the distribu-
tion grid.

The simulator implements the algorithm described in chapter 1 and two sim-
pler demand control algorithms used for comparison with the first one — an al-
gorithm where appliances stretch their power demand across their whole usage
interval, and an algorithm where they perform their operation as early as possible.

The simulator works with data from the Pecan Street organization [6] and the
National Household Travel Survey [5].

2.1 Program structure

2.1.1 Overview
The simulator is a Python application consisting of several classes and modules,
the main ones being:

Simulator The main class of the program, which creates the grid and houses,
connects them together, then runs the simulation and optionally writes
the results to disk.

Grid Represents the electrical grid. Takes care of estimating the base demand,
calculating the target demand and price ratios, and collecting the resulting
demands of the houses.

Connection Represents the connection between the grid and a house. Takes care
of selecting the cheap price intervals for the connected house and sending it
the resulting price profile, and provides a general communication interface
between the grid and the house.

House Represents a house connected to the grid. Contains several appliances,
and takes care of directing their simulation.

Appliance An abstract class representing a household appliance or machine.
Takes care of calculating its electricity usage according to several optimiza-
tion behaviours.

There are currently three categories of appliances available for simulation:
Battery An appliance category whose power draw comes from charging a bat-

tery, which has a negligible power draw when not being used, and when used
it cannot be plugged in. Currently the only simulated appliance of this cat-
egory is an electric car.
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Accumulator An appliance category that works by accumulating energy, which
then gets used gradually over time, while the appliance is still connected to
electricity. The simulated appliances of this category are air conditioning,
electrical heating, refrigerators and storage water heaters.

Machine An appliance category which can be turned on at any point during
a specific interval, must finish by some time limit, and once turned on runs
its predefined program. The simulated appliances of this category are dish-
washers and washing machines.

There are also several modules used as an interface to access the data about
appliance usage and grid demand records:

applianceStatistics A module containing several classes providing information
about the characteristics and usage statistics of various appliances.

gridStatistics A module providing access to the demand records of the model
electrical grid.

The simulator also heavily utilizes the Profile class implementing a time-
indexable array of float values for representing demand profiles and other time
series and containing special methods for manipulating those series.

2.1.2 Simulator
The main class of the program, which contains only one static method, run, used
for executing the simulation.

run Creates a Grid, an user-defined number of Houses and connects them to-
gether using Connections. Then sets the current date and time in the Grid
and Houses to the user-defined starting datetime of the simulation. Then, ac-
cording to the user-defined length of the simulation, repeatedly calls the tick()
method of the Houses and the Grid to tell them to move forward one day in time
and perform all the necessary operations for that day. After the required number
of days is simulated, it collects the recorded demands and the electricity price
ratio from the Grid, optionally saves those results to a user-defined CSV file,
and sets the results as its return value.

2.1.3 Grid
A class representing the smart grid. Takes care of estimating the base demand,
calculating the target demand and price ratio, and collecting the resulting de-
mands of the houses. Its main methods are:

setUp Prepares the grid for the simulation — sets the correct time, predicts
the base demand and calculates the target demand and price ratio for a long
enough interval in the future for the simulation to run.

tick Performs all the necessary actions of the grid for one day of the simulation —
collects the simulation results calculated by the households for the previous
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day, predicts one more day of the base demand, calculates one more day
of the target demand and the price ratio, and distributes the price ratio
to the Connections to the houses.

predictBaseDemand Predicts the power demand of the rest of the grid, with-
out the connected houses, for a specified interval. Currently just sub-
stracts the expected demand of the households from the estimated demand
of the whole grid.

calculateTargetDemand Calculates the power demand the connected houses
should try to achieve during a specified interval. Currently just smooths out
the base demand by interpolating between its peaks and then scales the re-
sult according to the expected demand of the households. In a real grid
this would be calculated to match the expected output by the power plants.

calculatePriceRatio Calculates the cheap price ratios for a speficied interval
based on the target demand and appliance availability statistics according
to the algorithm described in chapter 1.

distributePriceRatios Distributes the calculated price ratios to all the Con-
nections to houses.

collectDemands Collects the power demands from all the connected households
and stores them.

2.1.4 Connection
A class representing a connection between the electric grid and a household.
Serves mostly as an intermediary between the Grid and the connected House,
facilitating the exchange of electricity prices and demand information. Its only
real purpose is to calculate the actual electricity price for the connected House
based on the price ratio supplied by the Grid.

The price generation is separated into two parts — generating random inter-
vals of a predefined length during which the electricity price will be lower ac-
cording to the price ratio provided by the grid, and setting those prices based on
the intervals. These two actions are separated to enable easier overlapping of lower
price intervals at the edges of simulated days.

The main methods of the class are:

setUp Prepares the connection for the simulation — sets the correct time, gen-
erates the electricity prices for the first two days of the simulation and sends
those prices to the connected house.

tick Performs all the necessary actions of the connection for one day of the simu-
lation — generates the electricity prices for one more day of the simulation
and sends them to the connected house.

generateRandomCheaperIntervals For a given time range, generates the in-
tervals in which the electricity price will be lower, according to probabilities
given by the price ratio for that time range. These can reach up to one
hour over the edges of the given time range, to enable their distribution
to correspond to the price ratio.
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generatePriceProfile Based on the intervals of lower price generated earlier,
generate the actual electricity prices.

sendPriceProfile Send the generated electricity prices to the connected house.

2.1.5 House
A class representing a household connected to the simulated grid. Serves as a con-
tainer of appliances, forwarding the electricity prices set by the grid to the house-
hold to them, and aggregating their electricity demand to be retrieved by the grid.
The class also has a static method House.random(), serving to create a House
instance containing random appliances generated according to the appliance own-
ership statistics specified in applianceStatistics.ownershipRatios.

2.1.6 Appliance
Appliance is an abstract class representing household appliances and devices,
like electric cars, water heaters, dishwashers and similar. It contains methods
for simulating their operation using different optimization algorithms, namely:

setUp Prepares the appliance for the simulation — sets the correct time and gen-
erates random information about the usage of the appliance for the first day
of the simulation.

tick Performs all the necessary actions of the appliance for one day of the simu-
lation — generates random usage for one more day, calculates the power de-
mand according to each of the demand optimization algorithms, and moves
the appliance clock one day ahead.

generateUsage Generates random usage for the appliance for a specified time
interval based on usage statistics information contained in its usageStatis-
tics member variable.

calculateSmartDemand Calculates the power demand the appliance would
have in a specified interval if it tried to minimize the total electricity cost
according to the price profile for the household, and saves it in its smart-
Demand member variable.

calculateUncontrolledDemand Calculates the power demand the appliance
would have in a specified interval if it tried to perform its function as early
as possible, and saves it in its uncontrolledDemand member variable.

calculateSpreadOutDemand Calculates the power demand the appliance
would have in a specified interval if it tried to spread out its electricity
demand over the whole interval its available for usage, and saves it in
its spreadOutDemand member variable.

Appliance categories

There are three main appliance categories, each performing a different function.
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Battery An abstract class for battery-based appliances or devices, e.g. an elec-
tric car. This category of appliance has only one parameter, its charging
power.

Overview The class represents an appliance with a battery that needs
to be recharged after every use. The owners of the appliance use it at most
once a day during some usage interval, and the rest of the day the appliance
is available for charging. For simplification of the simulation, the appliance
always charges using its maximum charging power. For each simulated
day a connection and disconnection time is randomly generated, along with
the amount of energy needed to recharge the battery after it is connected.
The simulation then decides when will the battery be charged.

Usage generation When generating random usage for a specified inter-
val, based on the data from the appliance type’s usage statistics, a ran-
dom usage interval (a disconnection and connection time) and a random
needed charge amount are generated for each day of the specified interval.
For simplification of the simulation, it is assumed that the usage interval
represents the time between the first appliance disconnection of the day
and the last connection of the day, and that the usage interval always
ends on the same day it began, therefore the appliance is always avail-
able for charging over midnight. To simulate an usage interval that spans
multiple days, it is possible to split the usage interval to multiple inter-
vals covering only a single day, and set the required charge to zero on all
but the last of those intervals.

Demand calculation Each day of the simulated interval, the appliance
is considered available for charging between the end of its usage interval
on that day and the start of its usage interval on the next day. If the ap-
pliance would not be able to be charged in time for its next usage even
when charging with the maximum available power, the appliance will charge
for the whole availability interval. Otherwise, the appliance calculates
the demand using each of the implemented simulation algorithms.
When simulating operation with the intention of minimizing the total elec-
tricity cost, the appliance determines the amount of minutes it would need
to charge for so that it would get charged fully, and then chooses that many
minutes from the availability interval, choosing the cheapest minutes avail-
able.
When simulating operation with the intention of charging the battery fully
as early as possible, the appliance simply starts charging as soon as it is con-
nected and charges until fully charged.
When simulating operation with the intention of spreading out its electricity
demand over the whole availability interval, the appliance simply draws
a constant amount of electricity each minute of its availability interval,
so that at the disconnection time it is fully charged.
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Accumulator An abstract class for appliance types which work by accumulat-
ing energy in some medium, e.g. electrical household heatings or refriger-
ators. This category of appliances has two parameters, its charging power
and its energy capacity.

Overview The appliance represents a system of energy storage, with
the energy typically stored in the form of heat. The amount of energy
stored is kept within some limits (i.e. lower and upper temperature limits
on a thermostat), the difference between which is represented by the energy
capacity parameter. During the run of the appliance, the stored energy
slowly escapes from the system (i.e. through heat dissipation), requiring
more energy to be put in to keep within the limits.

Usage generation When generating random usage for a specified inter-
val, a random discharging profile (how much energy escapes the system
each minute of the interval) is generated for that interval based on the data
from the appliance type’s usage statistics. The statistics reflect the differ-
ent rates of energy loss during different periods (a house loses heat faster
during winter than during summer).

Demand calculation When simulating the operation of the appliance,
the amount of energy stored in the appliance must never fall below zero
and never exceed its capacity (i.e. the temperature in a house never falls be-
low some lower limit and never exceeds some upper limit specified by the in-
habitants). For simplification of the simulation, it is assumed the amount
of energy stored in the appliance is desired to be constant (i.e. a stable
temperature in a house or a refrigerator) and that the amount of energy
lost at any given minute does not depend on the amount of energy stored
in the appliance, or that this dependence is negligible.
When simulating operation with the intention of minimizing the total elec-
tricity cost, the appliance chooses the minutes in which the appliance should
be charging its accumulator using the greedy algorithm described in [15].
We use the non-optimized, quadratic-time version of the algorithm, be-
cause due to its implementation utilizing NumPy optimizations it is ex-
ecuting faster than its asymptotically faster versions utilizing prefix sum
trees or the Disjoint-set data structures.
Because of the algorithm’s goal to minimize the electricity cost, it leaves
the appliance at the end of the calculated interval with as little energy
as possible. With the iterative architecture of the grid simulator, this would
cause an issue where at the start of each simulated interval, the appliances
would need to charge disproportionately more to compensate for the low
amount of energy stored at the end the of previous interval, causing spikes
in the electricity demand. To avoid that, we calculate the power demand
for a longer interval than needed, and then keep only the part of the calcu-
lated demand that is needed.
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When simulating operation with the intention of performing its function
as early as possible, the appliance simulates the progression of the amount
of energy stored, lowering the amount of energy stored each minute based
on the generated usage, and whenever turning the appliance on would not
cause the stored energy to exceed the appliance capacity, the appliance
turns on.
When simulating operation with the intention of spreading out its elec-
tricity demand over the whole availability interval, the appliance simulates
a thermostat-based charging, where any time the amount of energy stored
in the appliance falls to zero, the appliance starts charging its accumulator
until its fully charged again.

Machine An abstract class for appliance types which work by running a prede-
fined program, and can be set to run at any point in a specified interval,
e.g. dishwashers or washing machines.

Overview The machines simulated by this class have some program (rep-
resented by its length and by the amount of power the machine draws
at each minute of the program) which needs to be run uninterrupted until
it is complete. They can be set to run with a delayed start, with their owner
specifying the earliest time they can start and the time they need to be fin-
ished by (typically the owner will want to run them overnight, to be finished
in the morning).

Usage generation When generating random usage for a specified inter-
val, based on the data from the appliance type’s usage statistics, for each day
of that interval it is randomly decided if the appliance will be used that day,
and if it will, a random operation program (how much electricity does
the appliance draw each minute of its operation) and a random availability
interval (at what time can the appliance start at the earliest and by what
time must it finish) are generated for that day.

Demand calculation If the difference between the earliest possible start-
ing time and latest possible finishing time is not long enough for the given
operation program on that day, the appliance simply runs as early as pos-
sible. Otherwise, it decides when to run according to the desired behaviour
specified by the simulator.
When simulating operation with the intention of minimizing the total elec-
tricity cost, the appliance calculates the cost of electricity its operation
would have for each possible starting minute in the availability interval,
and chooses the cheapest of those minutes.
When simulating operation with the intention of performing its function
as early as possible, the appliance simply turns on in the first minute
of its availability interval.
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When simulating operation with the intention of spreading out its electric-
ity demand over the whole availability interval, the appliance simply runs
in the middle of its availability interval.

Appliance types

For each appliance category, there are one or more appliance types subclassing
that category’s base class. These are:

Battery Car

Accumulator AirConditioning, ElectricalHeating, Fridge, WaterHeater

Machine Dishwasher, WashingMachine

These subclasses only pair the right appliance category with the right appli-
ance statistics object.

2.1.7 Profile
An utility class representing a time-series of float values. Enables transparent
access to the stored values with time indexing. The values are stored in a NumPy
array Profile.values, and the datetime belonging to the first value is stored
in Profile.startingDT. Main methods of the class are:

get Retrieves the values for a specified interval from the Profile, filling the missing
values with 0.

set Puts new values to a specified interval in the Profile.

add Increases the values stored for a specified interval by specified new values.

transition Changes the values stored in the Profile for a specified interval,
smoothly transitioning them to the specified new values.

prune Removes unneeded stored values up to a specified point in time, to save
memory.

fromCSV Creates a Profile from a CSV file, where the first column in the file
specifies the datetime of values and the second column the actual values.

2.1.8 Appliance statistics
The simulator also contains a module applianceStatistics, which contains
data about typical appliance characteristics and usage patterns for all the simu-
lated appliance types. This data is stored in classes BatteryStatistics, Accu-
mulatorStatistics and MachineStatistics corresponding to each of the ap-
pliance categories in the simulator.
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BatteryStatistics Contains statistics for appliance types of the Battery class.
The main statistics are:

chargingPowers List of possible maximum charging powers of the appliance
type

usageProbabilities Probabilities that the appliance will get used on a given
day

neededCharges List of possible charges which the appliance might need after
usage on a given day

averageNeededCharge Average charge that is required by the appliance type
on a given day

usageIntervals Intervals in which the appliance might be used on a given day

availabilityProfile Profile of the ratio of appliances that are available for charg-
ing at any given date and time

AccumulatorStatistics Contains statistics for appliance types of the Accu-
mulator class. The main statistics are:

chargingPowers List of possible charging powers for the appliance type

averageChargingPower Average charging power of the appliance type

capacityParameters Mean appliance accumulator capacity and its standard
deviation

dischargingProfile The average discharging profile of the appliance type at any
given date and time

averageDailyCharge Average needed charge of the appliance type for any given
day

MachineStatistics Contains statistics for appliance types of the Machine class.
The main statistics are:

startAfterParameters Mean minute of the day that the machine can start
after, and its standard deviation

finishByParameters Mean minute of the day that the machine must finish by,
and its standard deviation

usageProbabilities Probabilities that the machine will get used on a given day

usageProfiles Possible power usage profiles of the machine type, corresponding
to the machine programs

averagePowerNeeded Average power needed by the machine type on a given
day

18



Each of these classes also contains corresponding methods to randomly gen-
erate each characteristic based on the contained statistics, and methods to load
these statistics from a file.

These classes are then each instantiated into objects for each of the appli-
ance types, namely carStatistics, airConditioningStatistics, electri-
calHeatingStatistics, fridgeStatistics, waterHeaterStatistics, dish-
washerStatistics and washingMachineStatistics.

Also contained in this module is an object ownershipRatios containing in-
formation about the ratio of households which own a given appliance type.

2.1.9 Grid Statistics
The simulator also contains a module gridStatistics, which contains data
about the forecasted and actually recorded demand of some real distribution grid,
currently the Texas distribution grid1, and the average demand of a household
from the Pecan Street research network.

2.1.10 Data gathering
To be able to simulate the operation of the grid, we must first obtain the data
based on which the grid will be created. To that end there is a subfolder data in-
side the main simulator folder, in which there are several scripts for downloading
and parsing the data from the Internet. The data is downloaded from the Post-
greSQL database of the Pecan Street organization [6] and from the webpages
of the National Household Travel Survey [5].

In the data folder there is a config.txt file containing two lines with direc-
tives to configure the time span of the data to be downloaded.

There are also three subfolders, manual, dataport and nhts, one for each
of the data sources.

Manual contains files with data that needs to be manually filled out, those be-
ing priceConfig.json with configuration of the electricity prices to be used
in the simulator, ownershipRatios.json containing configuration of the ra-
tios of households that own appliances of a given type, and applianceCapac-
ities.json containing configuration of the parameters based on which random
energy capacities for random appliances are generated.

Dataport contains scripts for downloading data from the Dataport database
of the Pecan Street organization.

The credentials to access the database are configured in the KEY file in-
side that folder.

There are five kinds of data downloaded from the Dataport database, each
having its own subfolder in the dataport folder containing a script getData.py
for downloading that data:

accumulators Data about the power usage of accumulator-based appliances
like household heating systems or air conditioning units

1https://www.ercot.com/
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cars Data about the charging powers and charging requirements of electric cars

machines Data about the power draw profiles of household machines like dish-
washers or washing machines

ercot Data about the power demand and demand predictions of the Texas power
grid

households Data about the power average power usage of households

NHTS contains scripts for downloading data from the National Household
Travel Survey project.

The data is downloaded by the script getData.py in that folder. The script
downloads the whole data archive from the NHTS website, and then parses
out data about how many cars do households own, the probability of the cars’
usage and the intervals in which the cars are being used. Some households
own up to 12 cars, but because cars beyond the fourth car in a household
tend to get used only rarely and the data about them is very sparse, we keep
the data only from the first four cars in a household.

2.2 Software libraries
The simulator uses several third party libraries for its operation, namely:

NumPy2 for memory-efficient floating-point array storage and manipulation

SciPy3 for peak detection in various time series

Pandas4 for easy manipulation of CSV files

There are some additional libraries used for downloading the data:

Requests5 for enabling easier access to the web resources of the National House-
hold Travel Survey [5]

Psycopg6 for accessing the PostgreSQL database of the Pecan Street organiza-
tion [6]

SQLAlchemy7 for enabling interaction between the Pandas and Psycopg li-
braries

Additionally, Jupyter8 and Matplotlib9 are used for the presentation of the re-
sults of the simulation.

These libraries were chosen for their maturity, ubiquity and interoperability.
2https://www.numpy.org/
3https://www.scipy.org/
4https://pandas.pydata.org/
5https://www.python-requests.org/
6http://initd.org/psycopg/
7https://www.sqlalchemy.org/
8https://www.jupyter.org/
9https://www.matplotlib.org/
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2.3 Usage

2.3.1 Requirements
The simulator can be run in an UNIX environment containing the Bash shell10

and a Python11 interpreter version 3.6 or newer.
Several third-party Python libraries are required, these are listed in the file

requirements.txt and available for installation with the shell command pip3
install -r requirements.txt.

2.3.2 Data download
Before the actual usage of the simulator, the data necessary for the simulation
must be downloaded first. This is performed in three steps:

1. In the file simulator/data/config.txt, put the desired dates in the from-
date and todate fields, in the format YYYY-MM-DD. For a succesful simula-
tion, the data must be downloaded for an interval starting one week before
the starting date of the simulation and ending one week after the ending
date of the simulation.

2. In the file simulator/data/dataport/KEY, put the username and password
to access the Dataport database in the username and password fields, re-
spectively. These access credentials can be obtained at https://dataport.
pecanstreet.org/.

3. Run the script downloadData.sh in a terminal. Depending on the length
of the downloaded interval, the download can take several hours and use
several gigabytes of data. Progress of the download is printed to the termi-
nal during the run of the script.

2.3.3 Running the simulator
After the data is downloaded, the simulator can be executed by using
the command ./run.py startingDate simulationLength householdCount
outputFolder in a terminal while being in the directory with the project,
while replacing startingDate with the date from which to run the simula-
tion in the format YYYY-MM-DD, simulationLength with the number of days
to simulate, householdCount with the number of households to simulate and
outputFolder with the destination folder in which the simulation results should
be saved, for example: ./run.py 2018-01-01 365 10000 out/.

While the simulation is running, the simulator prints information about its
progress to the terminal.

When the simulation finishes, the results are saved in the specified folder
in two files, desc.txt and data.csv. The file desc.txt contains information
about the simulation parameters, and the file data.csv is a standard comma-
separated values file containing the simulation results organized to eight columns:

10https://www.gnu.org/software/bash/
11https://www.python.org/
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Datetime The date and time of the result
PredictedBaseDemand The predicted grid base demand at that date and time

(in kilowatts)
ActualBaseDemand The actual grid base demand at that date and time (in

kilowatts)
TargetDemand The target power demand at that date and time (in kilowatts)
SmartDemand The power demand of the simulated households at that date

and time if the smart algorithm was used (in kilowatts)
UncontrolledDemand The power demand of the simulated households at that

date and time if the uncontrolled algorithm was used (in kilowatts)
SpreadOutDemand The power demand of the simulated households at that

date and time if the spread out algorithm was used (in kilowatts)
PriceRatio The ratio of how many households should have a lower electricity

price at that date and time

2.3.4 Displaying the results
To display the simulation results, one can use the included Jupyter notebook
Results.ipynb. After opening the notebook, first the folder with the simulation
results must be specified in the variable resultsFolder in the third code cell,
and then the cells in the notebook can be executed to show the results.
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3. Results
Using the provided simulator, we evaluated the performace of the proposed de-
mand optimalization algorithm (referred to as the smart algorithm in the results)
compared to two other algorithms — a simple optimization algorithm where ap-
pliances spread out their power demand across their whole use period (referred
to as the spread out algorithm in the results), and an algorithm without opti-
mization (referred to as the uncontrolled algorithm in the results), where the ap-
pliances behave as if they were not intelligent at all and perform their operation
without regard for the preferences of the distributor, which is what would happen
with most appliances currently on the market.

We evaluated the algorithm on a model grid based on the state of Texas,
modelled using data from the Electric Reliability Council of Texas (ERCOT)
[16], the Pecan Street organization [6] and the National Household Travel Survey
(NHTS) [5].

For the actual base demand of the grid, we used the actual demand of Texas
as recorded by ERCOT, reduced by the demand of households on the grid inferred
from data reported by the Pecan Street organization. For the predicted base de-
mand of the grid, we used demand predictions performed by ERCOT, again re-
duced by the demand of households on the grid. Since we need data about the pre-
dicted demand of households, and Pecan Street provides only data about their
actual demand, which does not include any prediction errors, we introduced an ar-
tificial 10% error into the data to model the error of actual predictions.

We simulated a model of the Texas grid scaled down to 10 000 households.
Each household contained a set of appliances which were available for the sim-
ulator to control, ranging from electric cars through household heating and air
conditioning to dishwashers and washing machines, with the appliances being
assigned according to ownership ratios reported by the Residential Energy Con-
sumption Survey [17]. The characteristics of the appliances for the households
were generated based on measurements of household appliance power usage per-
formed by the Pecan Street organization, and the usage of household vehicles
was generated based on statistics of citizen commute as recorded by the NHTS,
acting as if every car owned by the households was an electric one.

The target demand of the households was set as demand with a curve that
smooths out the peaks and valleys in the base demand, while at the same time
being high enough to cover for the predicted demand of the simulated households.
The target demand was shaped with regards to the predicted base demand, there-
fore when applied to the actual base demand, which may differ from the predicted
base demand, it is not as smooth as originally intended.

To best represent the electricity pricing on the Texas grid, based on the pricing
analysis published by ERCOT, we chose 0.05 USD/kWh and 0.15 USD/kWh
as the lower and higher electricity prices in the simulation, respectively.

3.1 Select intervals
We present a few select intervals from the results of the simulation of the year
2018 demonstrating the performance of the algorithm.

23



The algorithm works well during mild weather conditions, when the house-
holds do not need to heat or use air conditioning. Figure 3.1 shows the simulation
results for 9 days in February 2018, Figure 3.2 shows results at the turn of April
and May. The power demand of the households operating according to the smart
algorithm has much smaller peaks and valleys and is much closer to the target de-
mand than the power demand according to the uncontrolled algorithm, and offers
a slight improvement over the spread out algorithm as well.
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Figure 3.1: Results of the simulation from February 15 to February 24

29
. 04

.

30
. 04

.

01
. 05

.

02
. 05

.

03
. 05

.

04
. 05

.

05
. 05

.

06
. 05

.
0

10000

20000

30000

40000

50000

60000

D
em

an
d

[k
W

]

Uncontrolled demand
Base demand
Spread out demand

Target demand
Smart demand

Figure 3.2: Results of the simulation from April 29 to May 6

During winter, the load-balancing performance of the algorithm is slightly
worse, as seen in Figure 3.3. The peaks and valleys in the power demand
are larger, usually because there are not enough cars available for charging which
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could fill them by charging themselves, and because the energy capacity of house-
hold heating systems is too small to offset the heating by too long. Even so,
the algorithm still performs considerably better than the uncontrolled algorithm,
and slightly better than the spread out algorithm.
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Figure 3.3: Results of the simulation from January 19 to January 27

In summer, the load-balancing performance gets even worse, as seen in Fig-
ure 3.4. The peaks in the demand in the afternoons and evenings correspond
to the increased power usage caused by air conditioning, and because typical
air conditioning units have a very small capacity to accumulate energy, their de-
mand is hard to control.
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Figure 3.4: Results of the simulation from August 16 to August 29

Compared to the uncontrolled algorithm, the peaks and valleys are consid-
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erably smaller with the smart algorithm, but because the need to fill valleys
and therefore lower electricity price for households mostly coincides with the cars
being available to charge, the performance of the smart algorithm is only slightly
better than that of the spread out algorithm.

In September 2018, hurricane Florence hit Texas and caused adverse and un-
predictable weather conditions. Because of that, the power demand predictions
were unreliable, and as a result the target demand set by the simulator was not flat
as desired, as shown in Figure 3.5.
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Figure 3.5: Base demand prediction and actual base demand during hurricane
Florence

The simulation results during the hurricane are affected by the bad predictions
as well, with the smart demand trying to approach the fluctuating target demand,
as shown in Figure 3.6. It is still considerably flatter than the uncontrolled
demand, and slightly flatter than the spread out demand as well.

To better compare the performance of the different algorithms, we also cal-
culated a root mean squared error (RMSE) of the resulting demand compared
to the target demand for each of the displayed intervals. These are shown in Table
3.1.

Table 3.1: Table of root mean square errors of different algorithms

Interval Smart alg.
RMSE [kW]

Spread out
alg. RMSE
[kW]

Uncontrolled
alg. RMSE
[kW]

January 19 to January 27 3349.0 4234.5 4878.9
February 15 to February 24 2481.7 2802.8 5677.8

April 29 to May 6 2968.1 4035.6 7396.3
August 16 to August 29 6215.0 7072.5 11487.0

September 7 to September 16 3711.2 5047.6 9706.3
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Figure 3.6: Results of the simulation from September 7 to September 16

Our demand control algorithm performs significantly better than the two
other algorithms, hitting the target about twice as well as the uncontrolled algo-
rithm, and significantly better even than the spread out algorithm.

3.2 Price settings comparison
We also evaluated the performance of the algorithm with different settings both
for the minimum daily amount of cheap electricity for households and the mini-
mum cheap electricity interval length could choose to use.

We tried several combinations of settings, of which a few select combinations
are presented in Figure 3.7.

Setting 08x01 represents a configuration of a minimum daily amount of 8 hours
of cheap electricity split into at least 1-minute long intervals; 08x60 represents
a minimum of 8 hours of cheap electricity split into at least 60-minute long in-
tervals, 16x60 represents a minimum of 16 hours of cheap electricity split into
at least 60-minute long intervals, and 00x01 represents a special case where
there is no minimum amount of cheap electricity per day which does not need
to be continuous at all, but instead the simulator chooses the time slots in which
to give households cheap electricity directly based on the price ratio so that it
can achieve the desired price ratio perfectly (as it does in Algorithm 1).

We found that allowing for more precise price assignment enables the algo-
rithm to control the demand better, albeit only slightly. The best performing
configuration was one without a minimum amount of cheap electricity per day
and minimum length of intervals in which the cheap electricity is approportioned.

Comparison of the root mean squared errors of the presented configurations
is presented in Table 3.2.
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Figure 3.7: Comparison of electricity price settings

Table 3.2: Comparison of root mean square errors of different price configurations
Configuration RMSE [kW]

00x01 2634.2
08x01 2822.1
08x60 2912.1
16x60 3124.2

3.3 Storage air conditioning
The largest deviations from the target demand happen in the summer months,
as that is when most people are using their air conditioning units, which typically
have a low accumulative capacity and therefore can’t shift their energy consump-
tion by much. We decided to test if utilizing air conditioning units with thermal
storage would bring the electricity demand closer to the target.

We simulated the Texas power grid as in previous scenarios, but we changed
the air conditioning units to utilize energy storage with a mean capacity of
20 kWh, to imitate commercially available ice storage air conditioning solutions
[18]. The results of the simulation of two weeks in August 2018 are presented
in Figure 3.8. We compare the demand on a grid with traditional air conditioning
units (as inferred from the Dataport data), the demand on a grid with storage
air conditioning units, and the demand that would happen in an uncontrolled
scenario with traditional air conditioning units.

Utilizing energy storage in air conditioning units allows the power demand
of the units to be controlled better, as they cool down their storage when elec-
tricity is cheaper, typically during the valleys in the grid-wide power demand,
and then distribute the stored cold during the day when it is required, not need-
ing to use large amounts of electricity when it is expensive. This greatly benefits
the grid, as it allows the total demand to reach the target much more accurately
than with traditional air conditioning units. Comparing the root mean square
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Figure 3.8: Results of the simulation with ice storage air conditioning

errors of the three scenarios further supports this hypothesis, as seen in Table 3.3.

Table 3.3: Comparison of root mean square errors of different air conditioning
systems

Configuration RMSE [kW]
Standard ACs 6354.9
Storage ACs 2781.4
Uncontrolled 11634.2

3.4 Customer motivation
To see if our demand control system would motivate subscribers to cooperate
with the needs of the utility distributor, we also calculated the total amount
the households would pay for their electricity supply for both scenarios: if they
adjusted their appliance usage according to the variable electricity prices, and
if they did not adjust their appliance usage and did not conform to the electricity
pricing. The lower and higher electricity prices in the simulation were set the same
as previously, 0.05 USD/kWh and 0.15 USD/kWh. The average electricity costs
for one household for the simulated intervals described in Section 3.1 are shown
in Table 3.4.

In the winter and spring months, when the main source of power demand
is the charging of electric cars, households that adjust their electricity usage
according to the prices set by our algorithm can achieve a meaningful electricity
expenses reduction compared to households that do not, the savings can be up
to half of the total cost.

In summer, as air conditioning starts to be utilized heavily, the electricity
expenses rises rapidly, and as the demand from standard air conditioning units
can be shifted in time only slightly, the households that adjust their usage have
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Table 3.4: Average electricity costs for cooperating and non-cooperating sub-
scribers

Interval

Average cost for
cooperating
subscribers

[USD]

Average cost for
non-cooperating

subscribers
[USD]

January 19 to January 27 8.5 $ 16.7 $
February 15 to February 24 9.1 $ 18.5 $

April 29 to May 6 8.9 $ 16.3 $
August 16 to August 29 47.4 $ 62.9 $

September 7 to September 16 17.8 $ 28.5 $

their electricity expenses reduced less than in winter or spring, but the savings
can still be over a quarter of the total cost. This serves to show that the moti-
vation of the households to adjust their electricity usage to suit the distributor
is quite significant, as it offers an opportunity to achieve substantial savings
for the subscribers.

To evaluate if the utilization of storage air conditioning units would enable
to drive the expenses even lower, we also calculated the total amount the house-
holds would pay for their electricity supply in the scenario described in Section 3.3.
The lower and higher electricity prices in the simulation were set the same as pre-
viously, 0.05 USD/kWh and 0.15 USD/kWh. The average electricity costs for one
household for the interval between August 16, 2018 and August 26, 2018 are shown
in Table 3.5.

Table 3.5: Electricity costs based on the type of air conditioning units

Subscriber type Electricity cost for August 16
to August 26 [USD]

Cooperating with standard ACs 36.6 $
Cooperating with storage ACs 25.3 $

Non-cooperating 49.0 $

Utilizing storage air conditioning units can bring further savings in the sum-
mer months, as reduction of the electricity expenses can be another quarter
of the cost for the interval in which air conditioning is used heavily. This shows
that storage air conditioning units offer substantial benefits not only to the utility
distributor, but to the subsribers as well.
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Conclusion
In this thesis we sought to develop an algorithm for controlling the power demand
of households connected to the power grid, in order to reduce peaks and valleys
in the total grid consumption, and to match the power demand with its pro-
duction. We have set three key goals: to protect the privacy of the subscribers;
to allow the system to control multiple appliance types; and to make cooperation
with the utility distributor beneficial to the subscribers.

The algorithm we propose enables the power distributor to set a target de-
mand profile which it would like to achieve, and based on the base demand
prediction and historical subscriber behaviour it generates variable electricity
prices for the households in order to influence them to use electricity at desired
times. This serves to protect the subscribers privacy compared to centralized con-
trol algorithms, not requiring them to divulge information about their appliance
usage to the distributor, allows for simultaneous control of multiple appliance
types, and enables the distributor to incentivize the subscribers to cooperate
with the distributor.

We have also presented a smart grid simulator enabling us to evaluate the per-
formance of different demand control algorithms, simulating them on grids with
households containing appliances based on real world data collected in various
studies and projects.

Using the simulator, we have evaluated the performance of the presented
demand control algorithm on a scale model of the Texas power grid, achieving
a considerable reduction of the deviations in the total grid consumption compared
to an uncontrolled household demand, therefore potentially reducing the reliance
of the distribution grid on energy storage systems, and in turn reducing the opera-
tional costs. The simulation results also show that if the electricity pricing scheme
employed by the presented algorithm would be adopted, it would strongly mo-
tivate subscribers to use electricity at times desirable by the utility distributor,
as they could potentially save over a third on their electricity bills.

Electric vehicles have shown themselves to be the most controllable of the sim-
ulated appliances, as they have comparatively weak requirements for their charg-
ing as opposed to other power-hungry appliances such as air conditioning or space
heating. This could be alleviated by incentivizing subscribers to adopt appliances
with a high energy storage capacity, such as heat banks or ice storage air condi-
tioning. We have simulated a modified grid where the households have adopted
these appliances, and found that this allows the demand to be balanced signifi-
cantly better still, and the savings for the households adopting these appliances
could be even more significant still.

Future work
To evaluate the concept behind the presented algorithm, more research needs
to be done. A few social issues present themselves, such as some subscribers being
possibly unwilling to accept a varying electricity price tariff, hence the distributor
would have to find ways to encourage its customers to participate in the demand
control program, perhaps by offering incentives in form of a lower electricity price
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overall, compared to regular customers.
The algorithm relies heavily on predictions of subscriber behaviour, which

include their driving habits and household appliance usage. The projects collect-
ing these statistics are still relatively scarce, therefore the available predictions
might not be accurate in some locations and conditions. Additionally, in our sim-
ulations we control the charging of EVs only when they are at home, whereas
in reality their owners may charge them at their workplace or other locations
as well, offering further options for load-balancing.

Furthermore, the algorithm also relies on predictions of the base demand
of the grid, which may be inacurrate at times, leading to less than ideal re-
sults. In our simulation, we require that all subscribers know their electricity
price for at least one full day ahead. Instead, an approach with multiple lev-
els could be implemented, where some subscribers would agree to know their
prices only for a shorter period in the future, and if the base demand predictions
would change over time, their prices would be set so their demand would balance
the problems caused by the inacurrate predictions. caused by the inacurracies
in the predictions.

Since some subscribers might be willing to give up even more control of their
appliances, if incentivized properly, our algorithm could be used in conjunction
with a different, more direct and centralized one, where the smaller, more consent-
ing group of subscribers would have their appliances controlled directly by the dis-
tributor to accomodate for the issues in the demand of the rest of the subscribers.

Further research should also be done in collaboration with utility providers.
We have only researched the numerical part of the system, but collaboration
with the utility providers would offer additional insight into the technical chal-
lenges that could arise with its implementation in the real world, like the distri-
bution of the electricity prices to households. Moreover, the providers have access
to data about the grid not available to the public, and they can supply the ideal
target demand profile for their grid, based on the characteristics of the power
plants they operate.

Recently, a substantial amount of research has targeted the possibility of inte-
grating electric vehicles deeper into the power grid, with vehicle-to-grid systems
proposing to utilize the batteries in electric vehicles as load-balancing batteries
for the whole grid, drawing power when the total grid demand is low, and selling
it back when demand is high, to supplement the power plants on the grid, all while
ensuring that the batteries of the vehicles will be fully charged when the vehicles
are needed for usage. Our algorithm could be well suited for these scenarios,
as households get high electricity prices during intervals when the power demand
on the grid is expected to be high, to discourage them from using power unneces-
sarily, and during intervals when the power demand is expected to be low they get
lower prices, to encourage them to use power to fill the valleys in the demand.
This would work hand in hand with the vehicle-to-grid systems, encouraging EVs
to charge their batteries during lower price intervals, further filling the valleys,
and then selling the stored electricity back to the grid for a higher price when
the grid needs a higher supply. Further modifications to the simulator can be done
in the future to enable it to model vehicle-to-grid systems.
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