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Abstract
Nowadays, there is a wide range of forecasting methods and forecasters en-
counter several challenges during selection of an optimal method for volatility
forecasting. In order to make use of wide selection of forecasts, this thesis
tests multiple forecast combination methods. Notwithstanding, there exists a
plethora of forecast combination literature, combination of traditional methods
with machine learning methods is relatively rare. We implement the following
combination techniques: (1) simple mean forecast combination, (2) OLS com-
bination, (3) ARIMA on OLS combined fit, (4) NNAR on OLS combined fit
and (5) KNN regression on OLS combined fit. To our best knowledge, the lat-
ter two combination techniques are not yet researched in academic literature.
Additionally, this thesis should help a forecaster with three choice complication
causes: (1) choice of volatility proxy, (2) choice of forecast accuracy measure
and (3) choice of training sample length. We found that squared and absolute
return volatility proxies are much less efficient than Parkinson and Garman-
Klass volatility proxies. Likewise, we show that forecast accuracy measure
(RMSE, MAE or MAPE) influences optimal forecasts ranking. Finally, we
found that though forecast quality does not depend on training sample length,
we see that forecast combination methods outperform standalone methods on
a longer training sample. Finally, we found that KNN regression on OLS com-
bined fit on medium training sample outperforms other methods for Garman-
Klass volatility estimate.
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Abstrakt
V současné době existuje řada metod predikce a prognostici čelí mnoha výzvám
při výběru optimální metody pro predikci volatility. Tato diplomová práce tes-
tuje několik metod kombinací predikce, aby bylo možné využít široké škály
prognóz. Bez ohledu na to, že existuje spousta literatury o kombinaci prognóz,
kombinace tradičních metod s metodami machine learning je relativně vzácná.
V této práci implementujeme následující kombinované metody: (1) simple
mean forecast combination, (2) OLS combination, (3) ARIMA on OLS com-
bined fit, (4) NNAR on OLS combined fit a (5) KNN regression on OLS com-
bined fit. Na základě námi dostupných informací nejsou poslední dvě kombino-
vané metody doposud zkoumány v akademické literatuře. Tato práce by navíc
měla pomoci prognostici se třemi možnými komplikacemi: (1) výběr volatil-
ity proxy, (2) výběr měřítka přesnosti predikce a (3) výběr délky zkušebního
vzurku. Zjistili jsme, že squared a absolute return proxy jsou mnohem méně
účinné než Parkinson a Garman-Klass volatility proxy. Dále ukazujeme, že
metriky přesnosti prognózy (RMSE, MAE nebo MAPE) ovlivňují pořadí op-
timálních prognóz. Dalším zjištěním je, že přestože kvalita predikce nezáleží
na délce zkušebního vzorku, je vidět, že metody kombinace predikcí překoná-
vají samostatné metody na delších zkušebních vzorcích. Na závěr jsme zjistili,
že Garman-Klass volatiltiy proxy, KNN regression on OLS combined fit na
střední délce zkušebního vzorku překonává jiné metody pro estimaci Garman-
Klass volatility.
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Hypothesis #2: Accuracy of volatility forecast for less risky assets is higher
than for more risky ones.

Hypothesis #3: Volatility forecast for less risky assets and more risky ones
need different model combination.

Methodology Firstly, we are planning to introduce you with main popular meth-
ods for volatility forecast and then run various forecasts using (F)AR(I)MA, GARCH
and GARCH extensions (e.g. such as FIGARCH, EGARCH, TGARCH, etc.) addi-
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out by Einarsen (2014) where he did a comparative study of volatility forecasting
models, likewise a broad review of volatility forecasts was done by Poon and Granger
(2003). In addition, we will do forecasts with different horizons and will try to find
which horizon is optimal based on accuracy, Brownlees et al (2011) were assessing
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will be out-of-sample and will be tested on 3 types of datasets: (1) risky assets, (2)
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bours (kNN) and support vector regression (SVR) etc.

After we run forecasts using different models we will evaluate their forecasts using
different horizons. Metrics for forecast assessment will be RMSE, MAE, MAPE, ME
and MPE.

Afterwards, we will combine forecast models that showed the best accuracy and
see whether a combined forecast has advantages towards single model forecasts, sim-
ilar research was already done by Aiolfi et al (2010), Timmermann (2018), Degian-
nakis (2018), Diebold (1988) and Bates and Granger (1969). Same forecast assess-
ment as with single models will be done.

Finally, we will compare forecasts and will try to draw some conclusions and test
our hypotheses.

All three hypotheses written above are straightforward to test.

Expected Contribution We expect to find the best model for risky and safe assets
and also define optimal horizons when forecast predictions are most accurate. Like-
wise, we expect to find such forecast combination that would outperform forecasts
from other popular models. We hope, our results could be directly used in practice
by implementing our methods in volatility forecast. There are few researches that
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combine both conventional methods and machine learning/neural networks methods
in volatility forecasts.

Outline
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research.
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Chapter 1

Introduction

This thesis should provide you insights about volatility forecasting, forecasts
combinations and volatility proxies.

Volatility is an important topic in financial markets since volatility plays
a crucial role in various decision-making processes related to financial invest-
ments and policies because volatility is a fundamental measure of risk. There-
fore, volatility is a crucial part of derivatives pricing, Value-at-Risk estima-
tion, optimal portfolio construction and etc. High volatility is associated with
higher risk, so volatility also indirectly influences investment policies of var-
ious institutions since institutions that participate in financial markets (e.g.
pension funds, asset management companies) often have strict rules regard-
ing maximum tolerable risk for an investment. For example, pension funds
or government institutions usually can invest only in investment-grade bonds
and rating (grade) of a bond can be affected by a volatility of a stock price
of an institution issuing the bond. Likewise, banks that have trading activity
must allocate some budget for covering market risk and this buffer influences
key performance indicators of a bank (e.g. return on equity). Therefore, need
for accurate volatility estimation and forecast is also regulatory driven in the
world of financial markets and due to this academia also has been researching
this topic thoroughly.

All institutions that are affected by the need of precise volatility estimation
and forecasts endeavor to find the most accurate forecast. However, nowadays,
we have a lot of forecasting methods to select from and often it is difficult
for a forecaster to determine an optimal one. There are multiple reasons that
can complicate the choice of the best forecasting method and in this thesis
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we concentrate on tackling three complication causes1: (1) choice of volatility
proxy, (2) choice of forecast accuracy measure and (3) choice of training sample
length.

Volatility proxy choice is dependent on what type of data a forecaster has.
In the era of high frequency data, many forecasters would prefer to build their
forecasts on it. However, often high frequency data is not easily (or freely) avail-
able, also, models trained on high frequency data require more computational
power than models trained on data with lower sampling frequency (holding
time bounds of training sample constant). The most easily available data type
is daily data, which is freely accessible at most online platforms such as Yahoo
finance or Google finance. With daily data it is not straightforward on how
to approximate volatility in order to have also volatility estimates at daily fre-
quency because most online platforms provide only four price points (opening,
closing, highest and lowest price points) for free. Therefore, volatility proxy is
needed because sample standard deviation is extremely imprecise given sample
consists of maximum four observations per period. Many academicians utilize
squared or absolute return volatility proxies in their researches, whereas in our
opinion, both these proxies are unacceptably noisy and forecast quality of these
two proxies are low. Therefore, we analyze another two proxies: Parkinson and
Garman-Klass volatility proxies, which are price-range based proxies, and com-
pare them with volatility proxies of squared and absolute return. Parkinson
(1980) utilized information about highest and lowest price points for a daily
volatility proxy and Garman & Klass (1980) extended Parkinson proxy by in-
corporating also information about opening and closing prices.

Second complication for a forecast selection is how to measure forecast
quality. Forecast quality can be measured by various methods that can lead
to inconclusive conclusions. For example, Root Mean Square Error (RMSE)
may conclude that forecast from model A is the most accurate and at the same
time, Mean Absolute Error (MAE) may indicate that model B produces the
most accurate forecast. Thus, a forecaster would have multiple metrics that
suggest different choices.

1Originally, we wanted test three hypotheses outlined in Master’s Thesis Proposal, how-
ever, during the course of the research we decided to drop hypotheses #2 and #3 and
substitute them with the following ones:

Hypothesis #2 — Different training sub-samples require different models for same
assets.

Hypothesis #3 — Training sub-sample increase deteriorates forecast accuracy.
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Third complication — choice of training sample length — is dependent on
several factors. One of them being computational efficiency and second one
being data relevance. Some models, especially neural networks, require a lot of
computational power in order to produce a forecast if trained on a large sam-
ple. Originally, we wanted to have three training sub-samples with the longest
having more than 2000 observations, but when we started to train models we
realized it would take us too long in order to produce needed amount of fore-
casts and we kept only two training sub-samples (750+ and 250+ observations).
A training sample needs to be relevant enough and cover periods of high and
low volatility regimes for a stock in order not to provide over-optimistic (in case
a model was trained on data of low volatility regime only) or over-pessimistic
(in case a model was trained on data of high volatility regime only).

In order to alleviate a forecast choice decision, we decided to try forecast
combination methods. Though since forecast combination was popularized
by Bates & Granger (1969), there were many researches done on this topic,
we decide to combine traditional univariate time-series models with machine
learning models that is a relatively rare in academia.

In this thesis, we present comparison of traditional time-series models, ma-
chine learning time-series models and models from forecast combinations for
four volatility proxies: square return, absolute return, Parkinson and Garman-
Klass. Additionally, we compare results of models trained on two training
sub-sample sizes: medium and short. Finally, we also compare results for two
forecast horizons: 5 and 10 periods ahead. In order to obtain some statistically
sound results, we carry out the above on a sample of 20 stocks.

The remainder of the thesis is structured in the following way: Chapter 2
discusses volatility proxy issues, traditional volatility forecasting methods, un-
conventional time-series forecasting methods and forecasts combination. Chap-
ter 3 describes what data we use and how it is segmented as well as what
volatility proxies we use. Chapter 4 describes methods and models we use
for forecasting and this chapter is segmented in same way as Chapter 2 with
additional section where forecasts assessment and comparison methods are de-
scribed. Chapter 5 is divided in two subsections. Subsection 5.1.1 provides an
illustrative example of what results we obtain for each stock, the example is
done for one stock, one training sub-sample, one volatility proxy and two fore-
cast horizons. Since we have a lot of results, we aggregate them and present
aggregated results in Subsection 5.1.2. Chapter 6 summarizes aggregated re-
sults and main outcomes. Chapter 7 concludes the thesis.



Chapter 2

Literature Review

Since we are going to combine different models of volatility forecasting, we
decided to divide literature review in three subsections: traditional volatil-
ity forecasting, unconventional volatility forecasting and forecast combination.
However, in these subsections we can refer to literature that describes tech-
niques for other time series, i.e. not only volatility. Additionally, we devote
part of literature on volatility forecasting to discussion of volatility proxies.

2.1 Literature on volatility forecasting
Volatility forecasting topic has been in focus of academia for a long time and
there are many papers on this matter because volatility forecasting is of crucial
interest for a wide range of both academicians and practitioners (policy makers,
financial derivative analysts, market risk managers, etc.). Volatility in finance
can be defined in multiple ways since it is an implicit measure, i.e. you do
not observe it in a same way as, for example, we observe closing stock prices.
Various volatility proxies have its advantages and drawbacks and in literature
there is no clear conclusion on what volatility proxy is the most efficient one.

The most common definition of volatility in academia is standard deviation,
that is a square root of a sample variance. Such estimate can be obtained
if we have a reasonable amount of observations per unit of time and more
we have more efficient and accurate estimate we obtain. This aspect will be
discussed in more details later since we do not have many observations per
unit of time (which is one day in our case). Figlewski (1997) points out that
sample mean1, especially in small samples, is a very inaccurate estimate of the

1That is used for sample variance calculation
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true mean and may lead to a biased volatility estimate. Likewise, if you have
only daily data and you need to estimate daily volatility, standard deviation as
a volatility estimate will be extremely inaccurate because sample size will be
up to 4 (usually, opening, closing, highest and lowest price points are available
in daily stock data). In order to tackle this issue various volatility proxies for
daily data were introduced.

High-low estimate of volatility by Parkinson (1980) was developed and Gar-
man & Klass (1980) extended Parkinson’s estimate. Parkinson volatility es-
timate incorporated information of highest and lowest price points during a
trading day for daily volatility estimation. Advantage of Parkinson estimate
is that most of easily-accessible data sources (e.g. Yahoo Finance, Google
finance, etc.) provide daily highest, lowest, opening and closing prices. More-
over, calculation of this proxy is simple and does not require complex data
manipulations. Parkinson estimate is based on an assumption that return is
conditionally normally distributed and consequently this is its main drawback
since we know that financial data is not normally distributed and generally have
fat tails (i.e. have leptokurtic distribution). In order to use this estimate it is
advised to apply some trimming techniques to entire data set before running
the estimation. Likewise, Parkinson estimate does not account for cases when
market is closed and trading is not done, therefore volatility is underestimated
due to pauses in trading for more than one day. Garman & Klass (1980) incor-
porated information about opening and closing prices to Parkinson estimate.
Nevertheless, Garman-Klass volatility proxy underestimates volatility because
it ignores overnight jumps.

In academia, the most commonly used proxy for daily volatility (before
high frequency data became widely available) was squared return. However,
squared return is an extremely noisy estimate of volatility. Additionally, this
proxy does not account for asymmetrical distribution in sufficient way. Lopez
(2001) finds that squared return is an inaccurate estimate of variance due to its
asymmetric distribution. Another option for approximating volatility is the use
of absolute returns. Davidian & Carroll (1987) show that such volatility proxy
is more robust against asymmetry and non-normality. McKenzie (1999) finds
that volatility forecasts with absolute returns as proxy for volatility provide
more precise forecasts than models with squared returns as volatility proxy.

Andersen et al. (1999) find that generally higher data sampling frequency
(holding forecast horizon constant) increases forecast quality2. Nonetheless,

2Andersen et al. (1999) used intraday 5-min returns for GARCH volatility estimation.
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with forecast horizon getting longer lower data sampling frequency works bet-
ter. This is because with high frequency data and long horizon (e.g. more than
six months (Alford & Boatsman (1995)) volatility mean reversion is difficult to
adjust.

Likewise, due to complex structure of volatility, its forecast quality will
be different depending on current volatility regime and overall volatility level
(Diebold et al. (1998)). Additionally, Diebold et al. (1998), claim that opti-
mal volatility forecasting horizons depend on the underlying asset class and
industry.

All forecasting methods we are using in this paper are based on historical
data only, i.e. we are using only volatility estimates and no external variables.
However, it should be mentioned that there exists a method of implicit volatility
forecasting from option prices.

Poon & Granger (2003) carried out a comprehensive comparative study of
volatility forecasting models. Their study covered 93 papers on volatility fore-
casting and compared models performance and what was the volatility proxy
used. Poon & Granger (2003) segment volatility forecasting methods in 4
groups:

• HISVOL – historical volatility models, that include: random walk, his-
torical averages, moving averages, AR(F)IMA models,

• GARCH – any member of ARCH or GARCH family models,

• ISD – option implied standard deviation (please note, that we are not
using any of such models in this thesis),

• SV – stochastic volatility forecasting (please note, that we are not using
any of such models in this thesis).

In those papers, under their review, where models from both HISVOL and
GARCH groups were studied, in 22 cases models from HISVOL group per-
formed more accurate forecasts and in 17 papers models from GARCH group
provided more accurate forecasts. For example, Boudoukh et al. (1997) comes
to a conclusion that EWMA model provides a more accurate forecast (1-day
forecast) than GARCH (1,1)3. In addition, McMillan et al. (2000) ranks fore-
casts from random walk and moving average models higher than ones from

3Boudoukh et al. (1997) used ’Realized volatility’ as daily squared price changes averaged
over 5 days.
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GARCH models, using 1 day, 1 week and 1 month ahead forecasts, but should
be remarked that underlying volatility proxies were squared returns (1 day,
1 week and 1 month returns respectively), so forecasts were one step ahead.
On the other hand, Cumby et al. (1993) rank EGARCH model forecast higher
than naive one, but in this case forecast horizon is one week. Hans Franses &
van Dijk (1996) conclude that random walk model is better than GARCH but
QGARCH (Quadratic GARCH or non-linear GARCH) is slightly better than
random walk. Hans Franses & van Dijk (1996), used weekly squared deviations
to approximate volatility.

As you can see from the previous paragraph, there is no clear view on this
matter, whether to stick to simple models in volatility forecasting or to ap-
ply sophisticated GARCH-family models. Model selection is dependent on the
length of the forecast horizon, current volatility regime and other factors, we
provide forecasting results of different models, underlying assets4 and horizons.
Furthermore, results (namely, ranking based on forecast accuracy) may change
if another forecasting accuracy metrics would be used, e.g. RMSE or MAE.
Nevertheless, within GARCH-family models, it is clear that GARCH models
are better than ARCH ones. Hansen & Lunde (2005) compared more than
300 GARCH-family models and concluded that simple ARCH model is clearly
outperformed by GARCH extensions. Another important conclusion of Hansen
& Lunde (2005) was that GARCH (1,1) is not outperformed by GARCH ex-
tensions. Nonetheless, Hansen & Lunde (2005) recognize that it may be due
to limitations of their analysis (models were tested on two assets only: DM/$
exchange rate data and IBM stock prices data).

2.2 Literature on unconventional volatility fore-
casting

With the rise of computational power and data availability, machine learn-
ing techniques become more and more popular. Nowadays, it is one of the
hottest topic for a research. Machine learning techniques have a wide range
of applications: from speech recognition and image identification to customer
classification and time series forecasting. We are considering machine learning
techniques that are applicable to any time-series forecasting.

4Though we use only one class of assets, namely stocks, however from different sectors
and of different sizes in term of market capitalization.
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Connor et al. (1994) suggest that neural networks (NNs) for time-series are
a special case of nonlinear auto-regressive models. In NNs for time-series, lags
of a time-series are used as inputs for a neural network and output serves as a
forecast. Forecast errors are then used for updating the weights in the network.
Crone & Kourentzes (2010) introduced automatic methodology for specifying
multilayer perceptions (MLP) that was ranked 2nd in the 2008 ESTSP5 fore-
casting competition. A clear advantage of their methodology is that it is fully
data driven and does not require any subjective assessment. In Kourentzes &
Crone (2010)6, they additionally provide a solution for automatic specification
of inputs in NNs for forecasting. Authors use an Iterative Neural Filter for
automatic frequency identification and feature extraction.

Adya & Collopy (1998) reviewed 48 papers on NNs forecasting. Though
through their ’filters’7 only 22 studies passed, NNs outperformed other fore-
casting techniques in 19 (86%) of them. In addition, artificial neural net-
works (ANNs) can show superior performance in cases when outliers in data
are present. Barrow & Kourentzes (2018) compare NNs with conventional time-
series forecasting methods on data with significant and seasonal outliers. They
come to a conclusion that ANNs provide most accurate forecasts.

Donaldson & Kamstra (1997) introduced a semi-parametric nonlinear model
based on symbiosis of GARCH model and neural networks (ANN-GARCH
model). They came to a conclusion that ANN-GARCH model captures asym-
metric and clustering properties of volatility better than GARCH, EGARCH or
GJR-GARCH models. Therefore, ANN-GARCH out-of-sample forecasts take
in account volatility properties better than other models.

De Stefani et al. (2017) statistically compare relationships between most
used volatility proxies and then use Nonlinear Autoregressive with eXogenous
(NARX) approach to forecast one volatility proxy using another volatility prox-
ies as external regressors. De Stefani et al. (2017) use daily prices data for
approximating volatility. They compare naive, GARCH(1,1), NAR, NARX,
k Nearest Neighbors (kNN) and Support Vector Regression methods (SVR).
They came to a conclusion that SVR model produces smaller forecast errors
than those based on ANN and kNN. Moreover, all machine learning techniques
outperform GARCH(1,1) model.

5European Symposium on Times Series Prediction.
6Note, that Crone & Kourentzes (2010) and Kourentzes & Crone (2010) are two different

papers.
7Authors draw down criteria for effectiveness of validation and implementation. For more

details see Adya & Collopy (1998).
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Martinez et al. (2017) utilize kNN for time series forecasting. They develop
an automatic method for parameters selection and additionally implement fore-
cast combination in order to obtain more efficient results on NN38 competition
data. kNN models are claimed to be computationally efficient. Likewise, Mar-
tinez et al. (2017) find that data deseasonalizing is not necessary since kNN
seems to deal with it on its own. Nevertheless, detrending of the underlying
time series is required.

2.3 Literature on forecast combination
From the above sections, we can see that there is no clear conclusion which
models perform best in volatility forecasting or moreover different forecasting
accuracy measures may provide no clear winner, for example: Hemanth Kumar
& Basavaraj Patil (2015) results show that based on MAE – ARIMA forecast
has the best performance and on contrary when results are ranked according
to RMSE – forecast with feed-forward neural network provides the best result.
Furthermore, there are papers suggesting that combined forecasts provide more
accurate results. Forecast combination was popularized by Bates & Granger
(1969) where they showed that a linear combination of two forecasts result in
a smaller mean square error than either of two forecasts. However, they point
out that if one forecast is already an optimal forecast (having minimum mean
square error), then its weight in forecast combination will be 1 and consequently
it will not be a combination of forecasts.

Makridakis & Winkler (1983) show that accuracy of a combined forecast
rises with increasing number of forecasts being combined, but they also note
that a marginal increase in forecast accuracy diminishes after combining more
than 5 methods. Makridakis & Winkler (1983) utilized averaging technique
for forecast combinations. In Winkler & Makridakis (1983)9, authors utilize
weighted average method instead of simple average as in Makridakis & Win-
kler (1983). Authors test 5 different techniques for weights determination that
were introduced by Newbold & Granger (1974). Winkler & Makridakis (1983)
conclude that 2 out of 5 weighting methods outperform other and also outper-
form individual forecasts. Likewise, they show that forecasts combined using
weighted average have better performance than the ones using simple average.

8Artificial Neural Network & Computational Intelligence Forecasting Competition.
9Note, that Makridakis & Winkler (1983) and Winkler & Makridakis (1983) are two

different papers.
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Granger & Ramanathan (1984), introduced OLS based forecast combina-
tion technique, where individual forecasts are used as regressors. This tech-
nique performs especially well if individual forecasts are biased. Granger &
Ramanathan (1984) show that in case individual forecasts are biased, OLS
combined forecast provides better results than forecast combined using Bates
& Granger (1969) minimum variance method. Likewise, there are ’extensions’
of OLS combination methods that in fact are applications of some restrictions
on coefficients of OLS combinations. For instance, Aksu & Gunter (1992) intro-
duced Equality Restricted Least Squares (ERLS) combinations, where sum of
all OLS coefficients is constrained to be equal to one. Therefore, we explicitly
get weights for each forecasting method we combine. In addition, they in-
troduce Non-negativity Restricted Least Squares (NRLS) combinations, where
OLS coefficients are constrained to be non-negative. Aksu & Gunter (1992)
conclude that performance of NRLS combined forecasts in most cases superior
to ones from OLS and ERLS combined forecasts, and ERLS10 combined fore-
casts outperform OLS combined forecasts in majority of cases. Diebold (1988)
highlights that auto-correlation of residuals in OLS forecast combination model
should not be disregarded. Residuals from OLS forecast combination model
tend to be auto-correlated, thus it should be handled appropriately, since auto-
correlation in residuals represents some hidden information that is still present
in residuals. Diebold (1988) shows that ARMA adjustment to OLS combined
forecast provides superior results.

Additionally, there is a method of neural networks combination that com-
bines a set of neural networks (called ensemble) using various weighting meth-
ods (operators). Kourentzes et al. (2014) compare three ensemble operators:
mode, median and mean. Authors draw a conclusion that the mode operator
performs better than the median one and the median operator performs bet-
ter than the mean one. Likewise, Kourentzes et al. (2014) claim that mode
operator is most robust to distributional asymmetries in the forecasts of the
members of an ensemble. In addition, Kourentzes et al. (2014) find that the
mode operator is the most computationally efficient since it requires smaller
amount of ensemble members to be trained.

Moreover, forecast combination can circumvent issue with selection of pa-
rameter k in kNN time series forecasting. Martinez et al. (2017) suggest fitting
several models with different k’s and then combining them. This method proved

10ERLS without an intercept.
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to be more computationally efficient and accurate than usage of optimization
tool for selection of k parameter for kNN time series forecasting.

It should be noted that in the above mentioned forecast combination meth-
ods authors combined forecasts created from more less same information sets
(e.g. historical data). However, it is considered to be more beneficial when
forecasts created using different information sets are being combined. Aiolfi
et al. (2010) combine not only univariate time-series models but also forecasts
from subjective surveys (such as Survey of Professional Forecasters), non-linear
univariate and multivariate factor-augmented models. They find that in ma-
jority cases simple average of survey forecasts provide more accurate results
than a forecast from the best univariate model but simple average combina-
tion of survey forecasts and forecasts from various time-series models performs
relatively well. Nevertheless, there are examples when forecast combinations
fail to outperform individual forecasts. For example Degiannakis (2018) shows
that at forecast horizon of 5 trading days, combined forecasts (both simple
and weighted averaged) fail to outperform realized volatility forecast from het-
erogeneous auto-regressive model. Nonetheless, when the forecast horizon is
increased to 10 trading days, combined forecasts provide better results than
individual forecasts. Degiannakis (2018) used forecast combination technique
based on minimum forecast error in previous period.



Chapter 3

Data

Our raw data are stock daily prices data from yahoo Finance1 from January
2015 until January 2018. Stocks we use are presented in Table 3.1, it is sorted
according to market capitalization. In our sample, we have ten ’mega’ cap
stock, one ’large’ cap stock, six ’mid’ cap stocks and three ’small’ cap stocks2.
The sample is comprised of stocks from eight different sectors3. Stocks selection
was random, though with one condition — availability of data.

Once we have our sample, we split it in two sub-samples: training and
testing4. Testing sub-sample starts from January 1, 2018, end is dependent on
a forecast horizon which is either 1 or 2 weeks (5 or 10 business days). Length
of training sub-samples vary. There are two training sub-samples:

• from January 2015 until end-December 2017 (750+ observations);

• from January 2017 until end-December 2017 (245+ observations).

Different training sub-samples are needed in order to test hypotheses #2
and #3.

Once we have both in-sample and out-of-sample, we calculate different prox-
ies for volatility. One of the challenges in volatility forecast is what to use as a
proxy for volatility (standard deviation, squared return etc.). If it is a standard
deviation, then what period for returns should be used in order to calculate
it. Since we are going to model daily volatility and our sampling frequency is

1We are using getSymbols function from quantmod package in R (Ryan & Ulrich (2019))
that downloads daily highest, lowest, closing and opening prices as well as trading volume
and adjusted prices (the latter two are not used in our calculations or manipulations).

2Stock capitalization segmentation: ’mega’ – more than $200 billion, ’large’ – more than
$10 billion, ’mid’ – more than $2 billion, ’small’ – more than $300 million.

3Sectors are defined according to Yahoo Finance.
4Can also be referred to as in-sample and out-of-sample.
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Table 3.1: Stocks used for calculation

Stock Ticker Sector Market
Cap ($B)

Cap
type

Microsoft Corporation MSFT Technology 1051 Mega
Apple Inc. AAPL Technology 939.457 Mega
Alphabet Inc. GOOG Technology 796.361 Mega
Facebook, Inc. FB Technology 578.006 Mega
JPMorgan Chase & Co. JPM Fin Services 370.461 Mega
Johnson & Johnson JNJ Healthcare 350.747 Mega
Exxon Mobil Corporation XOM Energy 320.121 Mega
Mastercard Incorporated MA Fin Services 281.238 Mega
The Walt Disney Company DIS Consumer C. 257.128 Mega
The Coca-Cola Company KO Consumer D. 222.35 Mega
Splunk Inc. SPLK Technology 20.866 Large
Teva Pharmaceutical
Industries Limited TEVA Healthcare 9.155 Mid

Chegg, Inc. CHGG Consumer D. 5.204 Mid
GW Pharmaceuticals plc GWPH Healthcare 5.023 Mid
Manchester United plc MANU Consumer C. 2.978 Mid
Chesapeake Energy
Corporation CHK Energy 2.785 Mid

United States Steel
Corporation X Basic

Materials 2.598 Mid

Scientific Games
Corporation SGMS Consumer C. 1.782 Small

Ship Finance
International Limited SFL Industrials 1.53 Small

AAR Corp. AIR Industrials 1.477 Small
Consumer C. – Consumer Cyclical; Consumer D. – Consumer Defensive.

also daily, we cannot use usual standard deviation. Standard deviation can be
defined as a square root of sample variance:

σ̂2 = 1
N − 1

N∑
t=1

(rt − r̄)2, (3.1)

In daily data, N from equation Equation 3.1 equals to one or four, which is
still insufficient. So we utilize volatility proxies that allow us to use available
data at daily sampling frequency. In total, we have 4 proxies. Below we present
their formal definitions and visual examples for AAPL stock:

1. Squared return volatility proxy: visual example is presented in Figure 3.1.
Definition is: σ̂t = r2

t .
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Figure 3.1: Jan 2015 – Dec 2017 AAPL squared return volatility
proxy.

Source: Authors calculations.

2. Absolute return volatility proxy: visual example is presented in Fig-
ure 3.2. Formal definition is: σ̂t = |rt|. In both absolute return and
squared return proxies, rt is a simple daily return that takes closing stock
prices, Ct, as input and defined as:

rt = Ct − Ct−1

Ct−1

3. High-low Parkinson proxy: visual example is presented in Figure 3.3.
Parkinson estimate can be formally defined as:

σ̂t
2 = (ln Ht − ln Lt)2

4 ln 2 (3.2)

4. Garman-Klass proxy: visual example is presented in Figure 3.4. Formal
definition is presented below:

σ̂t
2 = 0.5(ln Ht − ln Lt)2 − 0.39(ln Ct − ln Ot)2 (3.3)
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Figure 3.2: Jan 2015 – Dec 2017 AAPL absolute return volatility
proxy.

Source: Authors calculations.

In Equation 3.2 and Equation 3.3, Ht, Lt, Ct and Ot are highest, lowest,
closing and opening prices at time t, respectively.

From formal definitions, it is seen that squared returns and absolute returns
proxies use returns as inputs while Parkinson and Garman-Klass proxies utilize
prices data as inputs. Visual representation example of inputs for squared
returns and absolute returns proxies (i.e. daily returns) is displayed in the left
plot of Figure 3.6. The right plot of Figure 3.6 shows returns histogram, it
is seen that returns have leptokurtic distribution, that is: presence of fat tails
and high density around zero, and how it is different from normal distribution
(solid black line). Visual representation example of inputs for Parkinson and
Garman-Klass volatility proxies is displayed in Figure 3.7, we plot all inputs
(Opening, Closing, Highest and Lowest daily prices) without any distinction
since they are very close to each other and there is no value added from it.
However, you may see that there is some dispersion between them and they
are not exactly the same.

Additionally, as you may see from visual representations, absolute return
volatility proxy is the noisiest out of all four volatility proxies. Additionally,
it is seen, that Parkinson proxy and Garman-Klass proxy are similar and both
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Figure 3.3: Jan 2015 – Dec 2017 AAPL Parkinson volatility proxy.

Source: Authors calculations.

are the least noisy volatility proxies. Likewise, both proxies have a spike in the
second half of 2015, which is clearly an outlier. On the other hand, squared
return volatility proxy and absolute return volatility proxy do not have such
clear outliers but they are much noisier. From visual assessment, we may see
that noisier the proxy, harder it to detect outliers. That is, in absolute return
volatility proxy it is harder to distinguish outliers from noise than in squared
return volatility proxy and in squared return volatility proxy it is harder to
distinguish outliers from noise than in Parkinson or Garman-Klass volatility
proxies. From Figure 3.5, it is seen that squared returns volatility proxy has the
smallest range among all four proxies, whereas Parkinson and Garman-Klass
proxies have very similar ranges and absolute returns proxy has the biggest
range (excluding outliers).
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Figure 3.4: Jan 2015 – Dec 2017 AAPL Garman-Klass volatility
proxy.

Source: Authors calculations.

Figure 3.5: Boxplots of volatility proxies for AAPL (Jan 2015 – Dec
2017).

Source: Authors calculations.



3. Data 18

Figure 3.6: Jan 2015 – Dec 2017 AAPL simple daily returns.

Source: Authors calculations.

Figure 3.7: Jan 2015 – Dec 2017 AAPL prices.

Source: Yahoo Finance.



Chapter 4

Methodology

This chapter lists and describes methods we use for our calculations. Motiva-
tion to use them is driven by discussion in Chapter 2, therefore, in this chapter,
we do not dive deep in discussions of each method’s advantages or drawbacks
since main purpose of this chapter is to present what methods we use to a
reader. This chapter is segmented in four parts:

1. Traditional time-series models – where we introduce traditional time-
series models we use for forecasting and subsequent combination.

2. Unconventional time-series models – where we introduce unconventional
time-series models we use for forecasting and subsequent combination.

3. Forecasts combination – where we introduce forecasts combination meth-
ods we use.

4. Forecasts evaluation and comparison – where we describe methods we use
for forecasts performance evaluation and how we compare them.

4.1 Traditional time-series models
In this section, we present traditional time-series models we use. This section
is split in three subsections:

1. Simple models,

2. ARIMA models,

3. GARCH models.
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4.1.1 Simple models

Below, we present simple models that do not require much of data manipulation
and therefore are easy to implement.

• Historical average,

• Simple Moving Average (SMA),

• Adjusted EWMA.

Historical average is a time-invariant simple mean over training sample.
Forecast is also a constant and equal to a simple mean of in-sample data.

σ̂ =
∑T

i=1 σi

T
(4.1)

SMA is a simple filter. As an input it takes a signal and calculates a simple
average for n-period window. In our calculations we use a window of length
10. The forecast is calculated as:

σ̂t+k =
∑t+k−1

j=t−n+k σj

n
(4.2)

The above reflects a simple average over last n observations. When we do an
out-of-sample forecast further than one step (i.e. k > 1), we use a forecast
for the first step as one of inputs in the filter1. That is, only one step ahead
forecast explicitly utilizes actual data. At step t + k, where k = n, SMA filters
already filtered data. Furthermore, estimate of σ̂t+k, where k >> n, converges
to some constant. Therefore, such method of forecasting cannot be used for a
long-term forecasting since quality of such a forecast deteriorates significantly
once k > n since model starts to filter already filtered data.

Adjusted EWMA is in fact auto-regressive model that has a smoothing func-
tion with more weight given to recent observations. Since we need an out-
of-sample forecasting, we adjust ordinary EWMA so it can produce a purely
out-of-sample forecast (i.e. not to feed the model with actual observations).
Adjusted EWMA is defined as:

σ̂t+k = (1 − λ)σt+k−2 + λσt+k−1, (4.3)
1σ̂t+1 is used in calculation of σ̂t+2.
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where λ ∈ [0, 1] is a decay constant. Greater λ – stronger the influence of volatil-
ity from previous period. Second term in the above equation is the persistence
term that determines how volatility from the previous period is carried over
to the current period notwithstanding what happened in the current period.
λ closer to 1 would result in a very persistent volatility estimator. For daily
data, popular value of λ is 0.94 that was recommended by RiskMetrics (1996).
Nonetheless, Bollen (2015) argues Riskmetrics value and recommends to set
λ to 0.72 (when RMSE and MAE criteria are used), however, for data with
heteroscedasticity, which financial data usually are, λ equal to 0.88 results in
lower heteroscedasticity adjusted RMSE and heteroscedasticity adjusted MAE.
For k > 2, the model starts to utilize already filtered data, thus a forecast from
adjusted EWMA converges to some constant faster than a forecast from SMA
whenever n > 2 from Equation 4.2.

4.1.2 AR(F)IMA models

ARIMA is an extension of ARMA model. ARMA model describes time series
(in our case volatility) in terms of two polynomials: auto-regression and moving
average of errors:

σ̂t = c + εt +
p∑

i=1
ϕσt−i +

q∑
j=1

θjεt−j, (4.4)

where |∑ϕ| < 1 and |∑ θ| < 1 for stationary process, p is the order of AR and
q is the order of MA. Errors εt assumed to be i.i.d.

Since our time-series can be non-stationary, we may first-difference it in
order to obtain stationary process. Differencing is the discrete-time version of
differentiation. ARIMA models are ARMA models with differenced input, i.e.
the underlying time-series has been differenced:

∆yt = yt − yt−1, (4.5)

in this case ∆yt is differenced time-series. Equation 4.4 can be rewritten using
back-shift operator, which is defined as:

BkXt = Xt−k, (4.6)
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where Xt is any time-series. Then, Equation 4.4 can be expressed as:

ϕ(B)σt = θ(B)εt, (4.7)

where polynomials are:

ϕ(z) = 1 − ϕ1z − ... − ϕpzp

and
θ(z) = 1 − θ1z − ... − θpzq

We introduced the back-shift operator in order to express ARIMA process in a
more compact form. Equation 4.5 can be expressed with the use of back-shift
operator as:

(1 − B)dyt, (4.8)

where d ∈ Z is the level of differencing. Generally, d = 1 because usually it
is enough for a non-stationary time series to be differenced once in order to
become stationary. ARIMA can be defined as:

ϕ(1 − B)dyt = θ(B)εt (4.9)

Whenever, d is fractional, i.e. not an integer, we obtain a long memory
process that is explained by ARFIMA model2. The model formulated in same
way as in Equation 4.9 but d ∈ (0, 1).

Order selection for ARMA, models can be done using Box & Jenkins (1970)
method. Box-Jenkins method consists of 3 steps:

1. Model identification: identification of model orders (AR and MA), assur-
ance of stationarity, determination of seasonality;

2. Parameter estimation: estimate parameters so ARIMA model is best fit
for a given process;

3. Model check: confirmation of i.i.d. residuals.

AR and MA order identification (parameters p and q from Equation 4.4)
can be done with the use of auto-correlation function (ACF) and partial auto-

2ARFIMA model is implemented as in Ghalanos (2019).



4. Methodology 23

correlation function (PACF). ACF is computed as:

ρs = γs

γ0
= Cov(xt, xt−s)

V ar(xt)
(4.10)

PACF captures correlation between two lags that is not explained by correla-
tions at all lower-order-lags.

In AR (p) model, PACF of lag p should not be zero, but all subsequent
partial auto-correlations should be insignificant. In MA (q) model, ACF of lag
q should be significant and all subsequent auto-correlations should be close to
zero. In ARMA (p, q) model, ACF and PACF are not very informative in order
identification. For this purpose, information criteria can be used. The informa-
tion criteria vary according to the penalty term. The most popular information
criterion is Akaike (AIC), which is almost always provided by standard statis-
tical software. Hyndman & Athanasopoulos (2018) define AIC as:

AIC = T log
(

SSE
T

)
+ 2(k + 2), (4.11)

Where T is the number of observations used for estimation and k is the number
of predictors in the model, SSE is a fit of the model. There exists an extension
of AIC — AIC with a correction (AICc). Hyndman & Athanasopoulos (2018)
define AICc as:

AICc = AIC + 2(k + 2)(k + 3)
T − k − 3 (4.12)

Basically, AICc is AIC with an extra penalty term for the number of param-
eters. However, with increasing sample size, extra penalty term converges to
zero and subsequently AICc converges to AIC.

Likewise, Schwarz’s Bayesian information criterion (SBIC or BIC) is widely
used. Hyndman & Athanasopoulos (2018) define BIC as:

BIC = T log
(

SSE
T

)
+ (k + 2) log(T ) (4.13)

Model with the lowest information crietion is selected. In our model selec-
tion, we are using the Hyndman & Khandakar (2008) algorithm that combines
unit root tests, minimization of AICc and MLE to get ARIMA orders. The
Hyndman-Khandakar algorithm description from Hyndman & Athanasopoulos
(2018, Section 8.7):
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1. The number of differences 0 ≤ d ≤ 2 is determined using repeated KPSS
tests.

2. The values of p and q are then chosen by minimising the AICc after
differencing the data d times. Rather than considering every possible
combination of p and q, the algorithm uses a stepwise search to traverse
the model space..

(a) Four initial models are fitted:

• ARIMA(0,d,0),

• ARIMA(2,d,2),

• ARIMA(1,d,0),

• ARIMA(0,d,1).

A constant is included unless d = 2. If d ≤ 1, an additional model
is also fitted:

• ARIMA(0,d,0) without a constant.

(b) The best model (with the smallest AICc value) fitted in step (a) is
set to be the ”current model”.

(c) Variations on the current model are considered:

• vary p and/or q from the current model by ±1;

• include/exclude c (a constant) from the current model.

The best model considered so far (either the current model or one
of these variations) becomes the new current model.

(d) Repeat Step 2(c) until no lower AICc can be found.

4.1.3 GARCH models

We are implementing GARCH models using ’rugarch’ R package by Ghalanos
(2019). GARCH definitions are taken from Ghalanos guide to the package
(Ghalanos (2017)), though the guide is for an older version of the package,
it is still relevant. In our models fitting, we are setting GARCH orders to
p = 1 and q = 1. Additionally, we are estimating the intercept and do not
utilize variance-targeting. Likewise, we are not adding any external regres-
sors. Finally, the conditional density used for innovations is skewed Student-T
distribution since it is more suitable for financial data than normal Gaussian
distribution. Major advantage of Student-T distribution is that it accounts
for excess kurtosis and can reflect leptokurtic property of financial data. We
are using skewed version of Student-T distribution to account for any possible
skewness, so in case there is no skew, skew parameter will equal to zero and
usual Student-T distribution will be assumed. Gao et al. (2012) conclude that
GARCH model with Student-T distribution performs better than the one with
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Normal distribution assumption3. GARCH models we utilize for our forecast
combination are presented below:

1. Standard GARCH,

2. AVGARCH,

3. GJR GARCH,

4. TGARCH,

5. NARCH,

6. NAGARCH,

7. APARCH,

8. ALLGARCH.

Standard GARCH model of Bollerslev (1986) is defined as:

σ̂2
t = ω +

q∑
j=1

αjε
2
t−j +

p∑
j=1

βjσ
2
t−j (4.14)

Sum of estimates α and β can be interpreted as persistence parameter (P̂ ),
which is a quantification of GARCH’s ability to capture volatility clustering.
The unconditional variance of the GARCH model, σ̂2, can be calculated as
follows:

σ̂2 = ω̂

1 − P̂
(4.15)

AVGARCH — Absolute Value GARCH model of Taylor (1986) and Schwert
(1990) is defined as:

σt = ω +
q∑

j=1
αj|εt−j| +

p∑
j=1

βjσt−j (4.16)

In fact, this is a standard GARCH model, where squared values are substituted
with absolute values, note that σt−j does not need to be absolute since it is

3Worth mentioning that Gao et al. (2012) also conclude that GARCH with Generalized
Error distribution performs better than GARCH with Student-T distribution.
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always non-negative. The persistence parameter is defined as:

P̂ =
q∑

j−1
αjκj +

p∑
j−1

βj,

where κj is expectation of the standardized residuals zt and defined as:

κj = E(|z|) =
∫ ∞

−∞
|z|f(z, 0, 1, ...)dz

Unconditional variance of the AVGARCH model, σ̂2, is calculated as squared
value of Equation 4.15.

GJR GARCH — GARCH extension of Glosten, Jagannathan and Runkle is
defined as:

σ2
t = ω +

q∑
j=1

(αjε
2
t−j + γjIt−jε

2
t−j) +

p∑
j=1

βjσ
2
t−j, (4.17)

where γj represents leverage term, an indicator function I that equals 1 for
ε ≤ 0 and 0 otherwise. GJR GARCH model of Glosten et al. (1993) models
positive and negative shocks on the conditional variance asymmetrically via the
use of the indicator function I. Therefore, the persistence term is augmented
and defined as:

P̂ =
q∑

j−1
αj +

p∑
j−1

βj +
q∑

j−1
γjκ,

where κ is the probability of standardized residuals zt being below zero and
calculated as:

κ = E[It−jz
2
t−j] =

∫ 0

−∞
f(z, 0, 1, ...)dz,

where f(...) is a standardized conditional density. Whenever distribution is
symmetric, κ = 0.5. Unconditional variance is calculated as in Equation 4.15.

TGARCH — Threshold GARCH model of Zakoian (1994) is defined as:

σt = ω +
q∑

j=1
αj(|εt−j| − γjεt−j) +

p∑
j=1

βjσt−j (4.18)

The model is very similar to AVGARCH, only with an addition of a leverage
term (γ). Persistence term is defined similarly as in AVGARCH, however, κj
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is defined a bit differently:

κj = E(|z| − γjz) =
∫ ∞

−∞
(|z| − γjz)f(z, 0, 1, ...)dz

Unconditional variance is calculated in the same way as in AVGARCH.

NARCH — Nonlinear ARCH model of Higgins & Bera (1992) is defined as:

σλ
t = ω +

q∑
j=1

αj|εt−j|λ (4.19)

Persistence term is defined similarly as in AVGARCH, but definition of κj

differs:
κj = E(|zt−j|)λ =

∫ ∞

−∞
|z|λf(z, 0, 1, ...)dz

Unconditional variance is calculated similarly to the one of standard GARCH:

σ̂2 =
(

ω̂

1 − P̂

)2/λ

NAGARCH — Nonlinear Assymetric GARCH model of Engle & Ng (1993)
is defined as:

σ2
t = ω +

q∑
j=1

αjσ
2
t−j(|zt−j − η2j|)2 +

p∑
j=1

βjσ
2
t−j, (4.20)

where η2j is shift parameter of the absolute value function transformation.
Persistence term is defined similarly as in AVGARCH, but definition of κj

differs:
κj = E(|zt−j − η2j|)2 =

∫ ∞

−∞
|z − η2j|2f(z, 0, 1, ...)dz

Unconditional variance is calculated as in Equation 4.15.

APARCH — Asymmetric Power ARCH model of Ding et al. (1993) is defined
as:

σδ
t = ω +

q∑
j=1

αj(|εt−j| − γjεt−j)δ +
p∑

j=1
βjσ

δ
t−j, (4.21)

where δ ∈ R+ is a Box & Cox (1964) transformation of σt. APARCH captures
the Taylor effect and leverage (γ). Taylor effect (Taylor (1986)) states that in
majority cases the sample auto-correlation of absolute returns is greater than
that of squared returns. Persistence term is defined similarly as in AVGARCH,
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but definition of κj differs and resembles the one from TGARCH with a minor
difference:

κj = E(|z| − γjz)δ =
∫ ∞

−∞
(|z| − γjz)δf(z, 0, 1, ...)dz

Calculation of unconditional variance is same as in NARCH, but λ = δ. In
fact, GARCH, AVGARCH, GJR GARCH, TGARCH and NARCH are all sub-
models of APARCH with parameters γj and δ assuming different values (in
case of NARCH also βj = 0).

ALLGARCH — Full Family GARCH model of Hentschel (1995) is defined as:

σλ
t = ω +

q∑
j=1

αjσ
λ
t−j(|zt−j − η2j| − η1j(zt−j − η2j))λ +

p∑
j=1

βjσ
λ
t−j, (4.22)

this is a Box-Cox transformation of σt where λ is its shape parameter, η1j

and η2j are rotation and shift parameters of the absolute value function trans-
formation respectively. Full Family GARCH model is a more general version
of APARCH model4. It captures decomposition of the residuals, shifts and
rotations of the news impact curve with shift being main source of asymme-
try for smaller shocks and rotation capturing larger shocks. In fact, GARCH,
AVGARCH, GJR GARCH, TGARCH, NARCH, EGARCH and APARCH are
sub-models of Full Family GARCH model with additional restrictions on some
parameters. Persistence parameter is defined similarly as in AVGARCH model,
but κj has a more generalized formulation and defined as:

κj = E(|zt−j−η2j|−η1j(zt−j−η2j))λ =
∫ ∞

−∞
(|z−η2j|−η1j(z−η2j))λf(z, 0, 1, ...)dz

Unconditional variance is calculated in the same way as in NARCH5.

4.2 Unconventional time-series models
This section presents unconventional time-series models we use. We call them
unconventional since they are from machine learning field.

4APARCH is a sub-model of Full Family GARCH model with η2j = 0 and |η1j | ≤ 1.
5In fact, it is the other way around: unconditional variance of NARCH is calculated in

the same way as in ALLGARCH.
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NNAR — is a neural network auto-regression model implemented by Hynd-
man et al. (2019). NNAR is a feed-forward neural network that uses lagged
values as inputs. NNAR we use has one hidden layer. NNAR model has two
arguments p and k, where p is the number of lagged inputs and k is the number
of nodes in the hidden layer. NNAR(p,0) is equivalent to ARIMA(p,0,0) model.
p is selected automatically and is same as for AR(p) based on AIC. Number of
nodes in the hidden layer can be either set manually or (if not set manually)
is calculated as:

k = round((p + 1)/2)

An example of NNAR(4,3) is depicted in Figure 4.1. On Figure 4.1, we can see
input-output scheme. Inputs to each hidden node are linearly weighted via the
below function:

zj = bj +
N∑

i=1
wi,jxi,

where N is the number of nodes in the hidden layer, xi is the value of the node
i from the input layer, wi,j is the weight of the input i from the input layer
to the hidden node j, bj is the intercept and zj is the resulting input for the
hidden node j. Afterwards, zj is modified using a non-linear function (sigmoid)
in order to produce an output from the hidden node j via the below funciton:

s(z) = 1
1 + e−z

,

where s(z) is the final output. At the initial iteration, weights wi,j take random
values and then optimized at every iteration using underlying data in order
to provide the best fit (or minimize the cost function that is mean square
error). The intercept bj is ’trained’ in the same way. The network is trained
t times and each time different random starting values for weights are taken,
after t iterations, final result is the average of those t trained networks. In
our application, we train our NNAR(p, k) models 20 times as suggested in
Hyndman et al. (2019).

MLP — is a multilayer perception neural network for time-series forecasting.
Major difference from NNAR(p, k) is option to have multiple hidden layers and
different transfer function (NNAR utilizes sigmoid transfer function). In our
implementation of MLP model, which is based on Kourentzes (2019), we use
two hidden layers. MLP with one single hidden layer is similar to NNAR but
transfer function can differ (instead of sigmoid function, hyperbolic tangent
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Figure 4.1: A neural network with four inputs and one hidden layer
with three nodes and denoted as NNAR(4,3).

Source: Hyndman & Athanasopoulos (2018).

function can be used). MLP can be defined as:

yt+1 = b0 +
H∑

i=1
big(a0,i +

I∑
j=1

aj,ixj),

where transfer function g(.) is a hyperbolic tangent activation function and
defined as:

g(x) = tanh(x) = 2
(1 − e2x) − 1

KNN regression — is a method of time series forecasting using k Nearest
Neighbours regression technique. We implement KNN regression based on
Martinez (2019) and Martinez et al. (2017). In Martinez et al. (2017, Section
2), k-NN time series forecasting is described as:

”Given some features – explanatory variables – of a new instance to be classified
– regressed on – k-NN finds the k training instances that are closest to the new
instance according to some distance metric and returns their majority class –
average explained variable.”

In case of univariate time series forecasting, explanatory variables are lagged
values of the time series and ”a new instance to be classified” is a forecast t+h.
k-NN tries to identify any repetitive pattern in the data and utilize it in order
to produce a forecast. On Figure 4.2 you can see an example of k-NN (with
k = 2) one step ahead forecast with 3 lags used as regressors: new instances
(empty dots) are regressed on two sets of the nearest neighbours (black dots)
and their targets (triangles) are used to create a forecast (asterisk).
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Figure 4.2: One-step-ahead forecast with 2-NN regression (i.e. k =
2).

Source: Martinez et al. (2017).

Before running k-NN forecast, we need to find optimal k. Martinez et al.
(2017) describe three ways of choosing k:

1. Rule of thumb: k = round(
√

N), where N is the number of training
instances.

2. Estimate optimal k — training set is split in training and validation parts
and then optimal k is the one that minimizes forecasting error (selected
forecasting accuracy measure can be selected) in validation set.

3. Combination of multiple models — several k-NN models (i.e. with dif-
ferent k’s) produce forecasts and then it is averaged (mean, median or
weighted mean can be used).

We utilize the third option since this requires less computational power
than the second option and is more robust than the first option, moreover, it
benefits from forecasts combination. Forecasts are combined using a median
operator as Kourentzes et al. (2014) asserts it is more efficient and robust than
a mean operator. For nearest neighbours selection, the Euclidean distance is
used since it is considered to be a benchmark.

Likewise, lags should be selected, Martinez et al. (2017) present three al-
ternatives:

1. Set number of lags equal to the period of seasonality, e.g. 1-12 lags for
monthly data, lags 1-4 for quarterly data.

2. Analyze PACF and select lags with significant auto-correlations.

3. Wrapper approach — lags are selected based on predictive performance.
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We utilize the second option, since the third one is computationally ex-
haustive and the first option is also computationally exhaustive for daily data
(1-252 lags for daily data).

For multi-step ahead forecasting, Martinez et al. (2017) suggest three op-
tions:

1. Recursive forecating – ARIMA, EWMA, etc. use this principle for multi-
step ahead forecasting. Under this principle, forecast points are used as
inputs for further forecast.

2. Direct approach – for each point in future a separate independent forecast
is created. Under this approach only historical data is used to create the
forecast, i.e. no forecast points are used.

3. Multi-Input Multi-Out (MIMO) – forecasts all future points at once.

In our application, we utilize MIMO strategy, since recursive forecasting
may have a large impact from cumulative forecast errors and at some point
forecast may converge to some constant (as in ARIMA and EWMA for a long
forecast horizon). Direct approach is quite computationally extensive since for
each point in future a separate model should be estimated. For example, for
three-steps ahead forecasting, three separate models are created (see Figure 4.3
illustrative example). Additionally, Ben Taieb et al. (2012) in their compari-
son of the above methods for multi-step forecasting find that MIMO strategy
provide the most accurate results.

Figure 4.3: The direct approach for three-steps ahead forecasting.

Source: Martinez et al. (2017).
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4.3 Forecasts combination
We implement the following combination methods:

• Simple mean method,

• OLS combination,

• ARIMA on combined fit,

• NNAR on combined fit,

• KNN on combined fit.

Simple mean method is the easiest combination method and many researches
claim it to be very efficient (e.g. Makridakis & Winkler (1983), Aiolfi et al.
(2010)). The forecast for period t+f of simple mean method is a simple average
of forecasts, formally can be defined as:

yt+f =
∑N

i=1 xi,t+f

N
(4.23)

where N is the number of forecasts to be combined, xi,t+f is a forecast for period
t+f from forecasting method i, f ∈ [1, 2, ...H] and H is a forecast horizon. This
method can be prone to outliers but if many forecasts are combined, negative
effect of outliers is lower. A clear advantage of this forecast is that it is very
simple and straightforward to implement.

OLS combination was introduced by Granger & Ramanathan (1984). We use
this combination technique as a standalone method and also as an intermediate
step for other 3 methods that we describe later below. For OLS combination,
the following steps are carried out:

1. We create our sample for OLS from fitting all standalone forecast methods
on our in-sample data.6

2. We fit OLS without the intercept on our in-sample data, we fit it without
the intercept since in our in-sample data we already have one constant,
which is mean forecast. Additionally, from this step, we obtain a com-
bined fit (i.e. fitted values of this OLS regression).

6Since there are eight standalone models from GARCH family, we decided to combine
them in one via a separate OLS fit and then use a result of this OLS fit as an input to the
first step of OLS combination. Additionally, fitted values of KNN regression are not included
since KNN regression does not purport creation of fitted values.
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3. We carry out an out-of-sample forecast, where inputs for our OLS model
are outputs from relevant out-of-sample forecasts from standalone fore-
casts.

ARIMA on combined fit is basically an ARIMA model, where combined fit
(obtained from the OLS combination) is used as a time-series for which ARIMA
modelling is done. Diebold (1988) warns that residuals from OLS combination
tend to be auto-correlated and this issue should be handled properly since
it indicates that there is still some information hidden in the residuals. In
our application, we take combined fit as an input and then run ARIMA. For
ARIMA model selection, we use the same method as for standalone ARIMA
model, that is Hyndman & Khandakar (2008) algorithm (described in Subsec-
tion 4.1.2). Once model selection is finalized, we simply create an out-of-sample
forecast.

NNAR on combined fit is same as NNAR described in Section 4.2. In this
case, combined fit from OLS combination is used as an input for NNAR and
output is the out-of-sample forecast.

KNN on combined fit is same as KNN described in Section 4.2. In this case,
combined fit from OLS combination is used as an input for KNN and output
is the out-of-sample forecast.

4.4 Forecasts evaluation and comparison
Once we have all our forecasts and combined forecasts, we need to assess their
performance and compare them in order to determine the most efficient fore-
casting technique and what volatility proxy to use in each particular case we
cover (two training sub-samples and two forecasting horizons).

First of all, since we have 20 stocks, we have 3207 sets of forecasts, thence, we
need to aggregate them in order to have a better picture. Aggregation is done on
stocks level. That is, for each stock we have 15 forecasting methods8, 2 training
sub-samples, 2 forecast horizons and their forecasting performance (RMSE,
MAE and MAPE). So for each training sub-sample and forecast horizon we

7320=20x4x2x2 — number of stocks x number of volatility proxies x number of training
sub-samples x number of forecast horizons.

810 standalone forecasting methods + 5 forecast combinations.
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calculate simple averages of RMSE, MAE and MAPE of forecasting methods
across 20 stocks.

avgRMSE =
∑N

i RMSEi

N
(4.24)

where N is a number of stocks (20). Average RMSE (as well as average MAPE
and MAE) of a forecasting method is calculated separately for each forecast
horizon, training sub-sample and volatility proxy. For average MAPE and av-
erage MAE, similar formula is used9. Closer average RMSE, MAE and MAPE
to zero indicate a more accurate forecast.

Since we have four volatility proxies, we need to select the most efficient
proxy among them. We define ’proxy efficiency’ as its level of predictability,
that is, we are able to predict (or forecast) this volatility proxy with lowest
forecasting errors. Since volatility proxies have different scales10, we cannot
utilize RMSE or MAE, because squared return volatility proxy is likely to have
smallest RMSE or MAE due to its scale. Therefore, we need to use a forecast
evaluation method that is dependent on relative values, such as MAPE. Thus,
determination of the most efficient proxy is based on the average MAPE of
the best forecasting method, i.e. we compare lowest average MAPE for each
volatility proxy (separately for each training sub-sample and forecast horizon).

Additionally, in order to determine the best forecasting method within one
volatility proxy, one training sub-sample and one forecast horizon, we com-
pare average RMSE of a forecasting method and average rank of a forecasting
method. Average rank is defined as a simple average of ranks of a forecasting
method according to RMSE (from lowest to highest) across 20 stocks11.

avg rank =
∑N

i ranki

N
(4.25)

where N is number of stocks (20). Value of avg rank can theoretically be
between 1 and 15, since inputs are bounded by 1 and 15. So the best forecasting
method will be the one which has value closest to 1.

9We also provide standard errors of averages in Appendix A.
10Figure 3.5 displays that squared return volatility proxy has much smaller scale than

other three volatility proxies.
11We also provide standard errors of averages in Appendix A.



Chapter 5

Empirical results

5.1 Empirical Results
This section provides empirical results of our models. The section is divided in
two subsections:

1. Example results for one stock.

2. Aggregated results for all stocks we use.

Since in Subsection 5.1.2, we provide aggregated results for 20 stocks, we
firstly would like to show what kind of data is being aggregated and what
data we get through whole process of model combination in Subsection 5.1.1.
Afterwards, in Subsection 5.1.2, we present aggregated results of all 20 stocks.

5.1.1 Example results for one stock

This section should serve you as an illustration of what results we obtain for
each stock and volatility proxy. Afterwards, these results are aggregated and
presented in Subsection 5.1.2. We do not discuss results in this subsection since
they are only for one stock, one training sub-sample and one volatility proxy.
For illustration purpose, we selected AAPL stock with in-sample data from
January 2015 until December 2017 and Garman-Klass estimate as a volatility
proxy. On Figure 3.4, our in-sample data is presented, from it, it is seen that
there was a spike of Garman-Klass volatility estimate in the second half of
2015. Other than that, Garman-Klass volatility estimates are below 0.04 units.
Based on these data, we run all our models.

Since simple models (detailed description in Subsection 4.1.1) do not have
any other output rather than fitted values and forecast itself, we do not provide
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R output for these ’models’ but only plots. Upper plot of Figure 5.1 shows
actual Garman-Klass volatility estimate versus its mean and its SMA fit.
Lower plot of Figure 5.1 shows actual Garman-Klass volatility estimate versus
its EWMA fit. From Figure 5.1, it is well seen how SMA and EWMA are not
able to capture the spike in the second half of 2015, however, it is not expected
from such simple models.

Figure 5.1: Jan 2015 – Dec 2017 AAPL Garman-Klass volatility esti-
mates versus its mean, SMA and EWMA.

Source: Authors calculations.

AR(F)IMA models (detailed description in Subsection 4.1.2) outputs are
presented in boxes below.
R output of ARIMA model is presented below:

ARIMA(1,1,2)

Coefficients:
ar1 ma1 ma2

0.5667 -1.2706 0.3055
s.e. 0.1725 0.1865 0.1622

sigma^2 estimated as 2.996e-05: log likelihood=2857.57
AIC=-5707.14 AICc=-5707.09 BIC=-5688.64
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From the above output, it is seen that Hyndman-Khandakar algorithm ended
up with ARIMA (1,1,2) model. Upper plot of Figure 5.2 shows actual Garman-
Klass volatility estimate versus its ARIMA fit. Lower plot of Figure 5.2
shows actual Garman-Klass volatility estimate versus its ARFIMA fit. From
it, we can see that both ARIMA and ARFIMA fits underestimate spikes and
ARFIMA fit generally has lower values than ARIMA fit.

Figure 5.2: Jan 2015 – Dec 2017 AAPL Garman-Klass volatility esti-
mates versus ARIMA and ARFIMA fits.

Source: Authors calculations.
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R output of ARFIMA model is presented below:

Mean Model : ARFIMA(2,d,2)
Distribution : sstd

Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)

mu 0.009748 0.000630 15.4611 0.000000
ar1 0.000000 NA NA NA
ar2 -0.855603 0.037221 -22.9874 0.000000
ma1 -0.035841 0.018004 -1.9907 0.046516
ma2 0.875337 0.020084 43.5844 0.000000
arfima 0.199917 0.035006 5.7110 0.000000
sigma 0.004856 0.000485 10.0094 0.000000
skew 1.977376 0.239497 8.2564 0.000000
shape 3.582542 0.690102 5.1913 0.000000

LogLikelihood : 3180.318
AIC=-8.4035 BIC=-8.3545 HQIC=-8.3846

From the above output, we see that all parameters are statistically significant.
arfima parameter is parameter d from ARFIMA model. skew parameter repre-
sents skewness parameter of the fit. Positive skewness parameter means that a
mode of distribution is lower than its mean and this is expected from volatility
data, since it is very close to zero and non-negative. shape parameter rep-
resents kurtosis value. Kurtosis value is greater than 3 (which is a value for
a normally distributed variable), which is expected for a financial data since
financial data generally have leptokurtic distribution).

Since we run 8 GARCH-family models, we do not provide outputs for each
model. Instead, we provide results of the OLS fit of 8 GARCH-family mod-
els. In the OLS model, the dependent variable is actual Garman-Klass volatil-
ity estimate and the independent variables are fitted values of GARCH-family
models. In the box below, the output of the OLS model is presented. From
the output, it is seen that ALLGARCH, NAGARCH and GARCH have sta-
tistically significant estimates. That is, AVGARCH, GJRGARCH, TGARCH,
NGARCH and APARCH are not statistically significant, from this, we may
conclude that these models are not important in Garman-Klass volatility esti-
mate fit, in other words, these models are not able to capture Garman-Klass
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volatility well. Additionally, on Figure 5.3 you can see the fit of the OLS model
versus actual Garman-Klass volatility estimates, from it, it is seen that the
spike of Garman-Klass volatility estimate in the second half of 2015 is under-
estimated.

Figure 5.3: Jan 2015 – Dec 2017 AAPL Garman-Klass volatility esti-
mates versus OLS GARCH-family fitted values.

Source: Authors calculations.
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R output of the OLS model is presented below:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.001950 0.001147 -1.701 0.0894 .
GARCH 0.259295 0.150964 1.718 0.0863 .
AVGARCH -0.056445 0.240663 -0.235 0.8146
GJRGARCH -2.386800 1.470084 -1.624 0.1049
TGARCH -1.274854 1.026483 -1.242 0.2146
NGARCH 0.293616 0.199343 1.473 0.1412
NAGARCH -0.686261 0.365578 -1.877 0.0609 .
APARCH 3.299995 2.363838 1.396 0.1631
ALLGARCH 1.436856 0.339971 4.226 2.67e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Residual standard error: 0.005328 on 746 degrees of freedom
Multiple R-squared: 0.2581,Adjusted R-squared: 0.2501
F-statistic: 32.43 on 8 and 746 DF, p-value: < 2.2e-16

For AAPL Garman-Klass volatility estimate, NNAR(8,4) was automati-
cally selected. NNAR(8,4) is a model where 8 lagged values are used as inputs
and 4 represents the number of hidden nodes (there is only one hidden layer in
NNAR). On Figure 5.4 you can see NNAR(8,4) fit versus actual Garman-Klass
volatility estimates, as you can see from it, even the spike in Garman-Klass
volatility estimate in the second half of 2015 is well captured.
R output of the NNAR model is presented below:

Model: NNAR(8,4)

Average of 20 networks, each of which is
a 8-4-1 network with 41 weights
options were - linear output units

sigma^2 estimated as 1.758e-05

KNN regression output, which is presented below, shows summary of the
KNN regression model used for forecasting AAPL Garman-Klass volatility esti-
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Figure 5.4: Jan 2015 – Dec 2017 AAPL Garman-Klass volatility esti-
mates versus NNAR(8,4) fitted values.

Source: Authors calculations.

mate. It is seen that what auto-regressive lags are used1. Three KNN regression
models were created (with k=3, 5 and 7) with median targets combination and
MIMO algorithm for multi-step ahead forecasting. Since KNN regression does
not purport fitting but only analysis of actuals and out-of-sample forecasting,
we do not provide a plot with actuals versus fitted values.
R output of the KNN regression model is presented below:

Multiple-Step Ahead Strategy: MIMO
K (number of nearest neighbors): 3 models with 3, 5 and 7

neighbors respectively
Autoregressive lags: 1 2 3 5 6 8
Number of examples: 718
Targets are combined using the median function.

Additionally, we fit two MLP models:

1. MLP model with 1 hidden layer, automatic lags selection (based on
underlying time series frequency), 20 networks to be trained and median
operator to be used for final fit and forecast creation. Upper plot in

1Note that not 8 lags, but lags up to 8 with lags 4 and 7 being dropped.
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Figure 5.5 shows MLP fitted values versus actuals, from it, it seen that
the spike in the second half of 2015 is not captured by the model. From
the R output presented in the box below, it is seen that MLP used 3 lags
(1-3).

2. MLP model with 2 hidden layers, selection of lags from a pre-defined
pool of lags (we feed 1-125 lags and then MLP keeps only necessary ones),
20 networks to be trained and mode operator to be used for final fit and
forecast creation. Lower plot in Figure 5.5 shows MLP fitted values versus
actuals2, from the plot it is seen that the spike in the second half of 2015
is very well captured. From the R output, it is seen that MLP used 19
lags between lags 1-125 and two hidden layers with 3 and 5 nodes in 1st
and 2nd hidden layer respectively.

R output of both MLP models are presented below:

MLP fit with 5 hidden nodes and 20 repetitions.
Univariate lags: (1,2,3)
Forecast combined using the median operator.

MLP fit with (3,5) hidden nodes and 20 repetitions.
Univariate lags: (1,2,3,6,8,14,17,25,32,47,53,61,71,82,83,99,

102,105,121)
Forecast combined using the mode operator.

Once we have all out-of-sample forecasts, we combine them. Figure 5.6,
shows boxplots of out-of-sample forecasts from all standalone methods we use
versus actual out-of-sample Garman-Klass volatility estimate. That is, we show
forecasts ranges versus range of actual data. Mean is higher than the mean of
’actual’ boxplot because the mean of in-sample is higher than the mean of
out-of-sample. In addition, it is seen that forecast of the MLP model with 1
hidden layer has the largest range and the EWMA forecast is almost flat (since
boxplot is flattened). Figure 5.6 well illustrates how various models trained
on same sample provide different forecasts and capture almost whole range of
actual data.

Results of simple mean forecast combination are presented on Fig-
ure 5.7, ’other forecasts’ are input forecasts used for mean forecast combina-

2MLP fit starts from mid-2015 because MLP used values until 121 lag.
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Figure 5.5: Jan 2015 – Dec 2017 AAPL Garman-Klass volatility esti-
mates versus MLP fitted values.

Source: Authors calculations.

tion, that is all standalone forecasts. It is seen that forecast combination is
quite flat and unable to capture spikes after January 29.

R output of OLS combination is presented in a box below. From it, it
is seen that in OLS forecasts combination, GARCH OLS combination (garch)
and MLP with 2 hidden layers (mlp2) are not statistically significant. Addi-
tionally, based on high R-squared value (0.964) we may conclude that OLS
model combination of our models fits in-sample data very well. We are not
interested in values of estimates since our main purpose is to make a fit rather
than to explain our data. Figure 5.8 shows OLS combined forecast versus
actuals, ’other forecasts’ are input forecasts used for OLS forecast combina-
tion. It is seen that spikes after January 29 are not captured. It should
be noted, that this is due to inability of single forecasts to capture these
spikes. Nevertheless, as Diebold (1988) warned, Figure 5.9 shows that resid-
uals of our OLS combined model are auto-correlated. Therefore, ARIMA
modelling of OLS fitted values is needed. R output of ARIMA model on
OLS combined fit is presented in the box below. From the R output, it
is seen that Hyndman-Khandakar algorithm ended up with ARIMA (1,1,3)
model. Figure 5.10 displays ARIMA (1,1,3) out-of-sample forecast, ’other
forecasts’ are forecasts from all standalone methods. It is seen that out-of-
sample ARIMA forecast converges to a constant and is unable to catch spikes.
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Figure 5.6: Boxplots: standalone out-of-sample forecasts versus
AAPL Garman-Klass volatility estimates (Jan 1, 2018 –
Jan 16, 2018).

Source: Authors calculations.

R output of the OLS forecast combination:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

mean 0.72926 0.07703 9.468 < 2e-16 ***
sma -2.18079 0.09166 -23.793 < 2e-16 ***
ewma 4.74416 0.13779 34.431 < 2e-16 ***
arima -0.78617 0.12777 -6.153 1.36e-09 ***
arfima -1.68714 0.20477 -8.239 1.02e-15 ***
garch -0.05132 0.05193 -0.988 0.323
nnet 0.61699 0.07657 8.058 3.95e-15 ***
mlp -0.41403 0.08309 -4.983 8.13e-07 ***
mlp2 0.02915 0.05094 0.572 0.567
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Residual standard error: 0.002241 on 625 degrees of freedom
Multiple R-squared: 0.964,Adjusted R-squared: 0.9634
F-statistic: 1858 on 9 and 625 DF, p-value: < 2.2e-16
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Figure 5.7: Jan 1, 2018 – Feb 13, 2018 AAPL Garman-Klass volatility
estimates versus simple mean forecast combination.

Source: Authors calculations.

R output of the ARIMA model on OLS in-sample fitted values:

ARIMA(1,1,3)

Coefficients:
ar1 ma1 ma2 ma3

0.8165 -1.5445 0.6073 -0.0566
s.e. 0.0609 0.0710 0.0741 0.0506

sigma^2 estimated as 2.602e-05: log likelihood=2443.87
AIC=-4877.74 AICc=-4877.64 BIC=-4855.49

For OLS combined fit, NNAR (13,7) was automatically selected. R output
of the NNAR (13,7) model on OLS in-sample combined fit is presented in the
box below. Figure 5.11 displays NNAR out-of-sample forecast versus actual
data, as seen the forecast range is small and almost flat after Jan 29.
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Figure 5.8: Jan 1, 2018 – Feb 13, 2018 AAPL Garman-Klass volatility
estimates versus OLS combined forecast.

Source: Authors calculations.

R output of the NNAR (13,7) model on OLS in-sample fitted values:

Model: NNAR(13,7)

Average of 20 networks, each of which is
a 13-7-1 network with 106 weights
options were - linear output units

sigma^2 estimated as 6.391e-06

The last combination technique is KNN regression on OLS combined
fit. R output of this KNN regression is presented below. It seen that three
KNN regression models were created (with k=3, 5 and 7) with median tar-
gets combination and MIMO algorithm for multi-step ahead forecasting. From
Figure 5.12, it is seen that the KNN forecast has the biggest range out of all
combined forecasts.
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Figure 5.9: Analysis of residuals from OLS combination.

Source: Authors calculations.

R output of the KNN regression model on OLS in-sample fitted values:

Multiple-Step Ahead Strategy: MIMO
K (number of nearest neighors): 3 models with 3, 5 and 7

neighbors repectively
Autoregressive lags: 1 2 3 8 10 11
Number of examples: 594
Targets are combined using the median function.

Once we have all standalone forecasts and combined forecasts, we rank them
according to RMSE. Table 5.1 presents ranking of out-of-sample forecasts based
on first 5 observations (that reflects one business week) according to RMSE.
Forecast of NNAR on combined fit has the lowest RMSE. Other forecasts from
combination techniques are ranked on 5th (Simple mean combined forecast),
6th (ARIMA on combined fit), 13th (KNN regression on combined fit) and
14th (out-of-sample OLS prediction). From such results, we see that fore-
cast combination technique provides better results than standalone forecasting
methods. Nonetheless, if we rank according to MAPE or MAE, MLP with
2 hidden layers provides the best result and NNAR on combined fit provides
second best result. If we increase our out-of-sample forecast to two business
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Figure 5.10: Jan 1, 2018 – Feb 13, 2018 AAPL Garman-Klass volatil-
ity estimates versus ARIMA forecast on OLS combined
fit.

Source: Authors calculations.

weeks (10 observations) results slightly change. Table 5.2 presents the ranking
of out-of-sample forecasts for 10 periods according to RMSE. From this rank-
ing, we see that MLP with 2 hidden layers forecasts with the lowest RMSE and
MAE. NNAR on combined fit is ranked second accrording to RMSE and MAE.
However, according to MAPE, MLP with 2 hidden layers is ranked third, with
second being out-of-sample OLS prediction and forecast from SMA being the
best one. Therefore, based on the results of only one stock and two out-of-
sample horizons, we are unable to conclude that any of combination techniques
is superior to a standalone forecasting method. Thus, in Subsection 5.1.2, we
aggregate same results for 19 another stocks and based on that information,
we try to conclude whether combination techniques provide superior results.

5.1.2 Aggregated results for all stocks

In this subsection, we present aggregated results for all 20 stocks. Since having
twenty times Subsection 5.1.1 (with results for each stock) is not informing and
it would be very hard to comprehend, we decide to aggregate them, in order
to present a clearer picture. Therefore, we aggregate obtained forecasts results
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Figure 5.11: Jan 1, 2018 – Feb 13, 2018 AAPL Garman-Klass volatil-
ity estimates versus NNAR (13,7) on in-sample OLS
combined fit out-of-sample forecast.

Source: Authors calculations.

(such as Table 5.1 and Table 5.2) for all 20 stocks on volatility proxy, forecast
horizon and training sub-sample levels. That is, we have aggregated results for
4 volatility proxies, 2 forecast horizons and 2 training sub-samples, which yields
16 (=4x2x2) aggregated results, which is also a lot and hard to comprehend, so
we decided to summarize aggregated results in Chapter 6 in order to present
our results in a clearer way. First we present results for medium training sub-
sample3, then for short training sub-sample4, we compare them and summarize
in Chapter 6.

Aggregated results for medium training sub-sample

Table 5.3 presents aggregated forecasts results for squared return and absolute
return volatility proxies. Table 5.4 presents aggregated results for Parkinson
and Garman-Klass volatility proxies. Aggregation was done by simple averag-
ing of RMSE, MAE and MAPE over 20 forecasts5 on medium training sub-

3Training data for our models from Jan 2015 until Dec 2017.
4Training data for our models from Jan 2017 until Dec 2017.
5That is, for each stock.
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Figure 5.12: Jan 1, 2018 – Feb 13, 2018 AAPL Garman-Klass volatil-
ity estimates versus KNN regression on in-sample OLS
combined fit out-of-sample forecast.

Source: Authors calculations.

sample and forecast horizon set to 5 periods ahead. Efficiency6 of volatility
proxy is compared by lowest average MAPE since comparison by averages of
RMSE or MAE may provide misleading results due to different scales of proxies
(Figure 3.5 clearly shows that squared return volatility proxy has much smaller
scale than other three volatility proxies).

Table 5.5 displays ranking according to average ranks across 20 stocks.
Average rank in Table 5.5 is calculated as average of ranks according to RMSE,
for instance, ranking from Table 5.1 is one of 20 inputs for obtaining average
rank for every method.

As seen from average MAPE columns in Table 5.3 and Table 5.4, squared
returns and absolute returns volatility proxies have much higher lowest av-
erage MAPE than Parkinson and Garman-Klass volatility proxies. Lowest
average MAPE of squared returns and absolute returns volatility proxies are
7895.12 and 296.89 respectively versus 32.66 and 28.32 (lowest average MAPE
of Parkinson and Garman-Klass volatility proxies respectively). This means
that our best forecasts (according to average MAPE) for squared returns volatil-

6We measure volatility proxy efficiency based on its forecast predictability as described
in Section 4.4
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Table 5.1: Out-of-sample forecasts ranking based on first 5 observa-
tions (according to RMSE).

rank model RMSE MAE MAPE
1 NNAR on combined fit 0.001929 0.001675 20.80592
2 MLP with 2 hidden layers 0.001985 0.001643 19.9166
3 NNAR 0.002018 0.00181 22.90764
4 ARFIMA 0.002119 0.001948 25.09004
5 Simple mean combined forecast 0.002192 0.001797 21.4759
6 ARIMA on combined fit 0.002214 0.001901 23.45675
7 ARIMA 0.002577 0.00204 23.27697
8 MLP with 1 hidden layer 0.002591 0.002301 28.08384
9 Mean 0.002715 0.002138 33.59004
10 GARCH-family 0.002822 0.002255 35.19752
11 KNN regression 0.002975 0.002461 27.58988
12 SMA 0.002985 0.002463 27.06964
13 KNN regression on combined fit 0.003107 0.002306 25.12427
14 Out-of-sample OLS prediction 0.003578 0.00257 26.44426
15 EWMA 0.00489 0.004497 53.09573

ity proxy predicts future points with average mean absolute percentage error of
7895.12 and this is for 5 points ahead, which is an unacceptably high error7. In
this particular sample, according to our definition of volatility proxy efficiency,
it is seen that Garman-Klass volatility proxy is the most efficient.

As it is seen from Table 5.4, for Garman-Klass volatility estimate, a forecast
from KNN regression on OLS combined fit is the best one having 10% lower
average RMSE than the second best that is a forecast from simple mean com-
bined forecast. Additionally, from Table 5.5, it is seen that KNN regression on
combined fit, on average, was ranked higher than other forecasting methods. In
fact, top three forecasting methods according to average rank are from forecast
combinations: (1) KNN regression on combined fit, (2) ARIMA on combined
fit and (3) simple mean combined forecast.

Additionally, from Table 5.4, it is seen that rankings may change based on
different forecasting assessment measure. For example, for Parkinson volatility
proxy: KNN regression on combined fit is ranked first according to average
RMSE and MAE, however, according to average MAPE, it is ranked second,
with first being SMA.

When we increase forecast horizon from 5 to 10, results, as expected, change.
Table 5.6 presents aggregated forecasts results for squared return and absolute

7In order to provide some comprehension, imagine temperature forecast for tomorrow is
10 degrees Celsius and actual temperature is 30 degrees, so here MAPE = 300.
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Table 5.2: Out-of-sample forecasts ranking based on first 10 observa-
tions (according to RMSE).

rank model RMSE MAE MAPE
1 MLP with 2 hidden layers 0.002629 0.002225 42.16231
2 NNAR on combined fit 0.00279 0.002407 45.70448
3 Simple mean combined forecast 0.002842 0.002417 44.9977
4 NNAR 0.002846 0.002548 48.70887
5 ARIMA 0.002897 0.002414 42.39419
6 ARIMA on combined fit 0.002989 0.002607 50.16016
7 ARFIMA 0.003031 0.002711 52.91605
8 SMA 0.003052 0.002464 34.37766
9 Out-of-sample OLS prediction 0.003261 0.002537 39.08699
10 MLP with 1 hidden layer 0.003474 0.003054 59.77609
11 KNN regression 0.003512 0.002799 47.35274
12 KNN regression on combined fit 0.003661 0.002897 51.23498
13 Mean 0.003928 0.003273 70.0181
14 GARCH-family 0.004173 0.003441 74.22352
15 EWMA 0.004447 0.003647 43.77129

return volatility proxies. Table 5.7 presents aggregated results for Parkinson
and Garman-Klass volatility proxies. It is naturally expected that results will
deteriorate (or at least change) with increasing forecast horizon, simply be-
cause you forecast for a further future points having same information set.
Nonetheless, volatility proxy efficiency ranking order remains same: Garman-
Klass volatility proxy has the lowest average MAPE (33.17), then Parkinson
volatility proxy (33.81), then absolute returns and squared returns volatil-
ity proxies (298.56 and 13659.94, respectively). Additionally, though ranking
of forecasts according to average RMSE change, for Garman-Klass volatility
proxy, KNN regression on combined fit still provided forecasts with the low-
est average RMSE (as with forecast horizon = 5). Nevertheless, for remaining
three volatility proxies, models providing best forecasts according to the low-
est average RMSE changed. But, if we look at average rank (Table 5.8), for
Garman-Klass volatility proxy, we see that ARIMA forecast has, on average,
higher rank than others (according to RMSE) and forecasts from KNN re-
gression on combined fit are, on average, are ranked sixth. This may seem
counter-intuitive, but this is caused by imperfections of average rank, which is
a simple average of ranks and simple average can be strongly affected by out-
liers (in this case, it can be caused by fact that for some stock, KNN regression
on combined fit was ranked worst and that’s why, average rank is lower, also,
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we need to take into account standard errors (Table A.6)).
Nonetheless, for medium training sub-sample we see that Garman-Klass

volatility proxy is the most efficient and forecasts from KNN regression on
combined fit provide lowest average RMSE and MAE for both forecast hori-
zons8. Next, we present similar set of results for short training sub-sample.

8Standard errors for construction of confidence intervals are provided in Appendix A.
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Aggregated results for short training sub-sample

Table 5.9 and Table 5.10 present aggregated forecast results for models trained
on short sub-sample and forecast horizon set to 5 periods ahead. Aggregation
is done in same way as in results for medium training sub-sample.

The most efficient volatility proxy (according to lowest average MAPE) is
Garman-Klass volatility proxy with the lowest average MAPE equal to 27.65,
then Parkinson, absolute returns and squared returns volatility proxies (lowest
average MAPE are 32.79, 300 and 10947 respectively). Ordering of volatility
proxy efficiency remains same as in models with medium training sub-sample,
however models that provide lowest average MAPE change, this will be dis-
cussed in Chapter 6.

From Table 5.10, for Garman-Klass volatility proxy, it is seen that accord-
ing to RMSE, the most accurate forecast is provided by simple mean, i.e. a
simple mean9 has lower average RMSE than all other models. However, if we
take into account standard errors of averages (Table A.8), we can calculate that
confidence intervals of average RMSE for forecasts provided by simple mean
and by MLP with 2 hidden layers overlap. Nonetheless, taking into account
just point estimate of average RMSE, mean provides the most accurate fore-
cast, though we hardly can call it a forecast. Second and third most accurate
forecasts according to average RMSE are both MLP models (with 2 and 1 hid-
den layer respectively). From set of combination techniques, the most accurate
forecast (according to average RMSE) is provided by ARIMA on combined fit
with seventh most accurate forecast.

In addition, if we look at average ranks in Table 5.11, we can see that on
average, ’forecasts’ from simple mean are ranked higher than others for all four
volatility proxies.

Nevertheless, if we measure forecast accuracy by average MAPE, top three
reshuffles: with MLP w/1 hidden layer being the most accurate and MLP w/2
hidden layers and simple mean being second and third most accurate forecasts
respectively.

When we increase our forecast horizon from 5 to 10 periods ahead, re-
sults do not change structurally (Table 5.12, Table 5.13 and Table 5.14). In
terms of volatility efficiency, order of ranking is same: Garman-Klass (with
lowest average MAPE of 29.04), Parkinson (32.79), absolute return (368) and

9Note that this is not a simple mean forecast combination but a usual historical in-sample
mean.
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squared return (14535). For Garman-Klass volatility proxy, top 5 most accu-
rate forecasts according to average RMSE are provided by same methods as
when forecast horizon set to 5 with only minor reshuffling. Again, in terms of
average RMSE, forecasts from simple mean provide lowest average RMSE, but
same as with forecast horizon set to 5, if we take into account standard errors
(Table A.11), we can calculate that confidence intervals of average RMSE for
forecasts provided by simple mean and by MLP with 1 hidden layer overlap sig-
nificantly. In any case, if we take point estimates, simple mean again provides
the most accurate forecast according to RMSE.

On the other hand, if we rank according to another forecast measure, e.g.
average MAE, then MLP with 2 hidden layers provides most accurate forecasts.
And if we rank according to average MAPE, then MLP with 1 hidden layer
provides most accurate forecasts.

Additionally, Table 5.14, shows that top three (according to average rank)
remain same as when forecast horizon set to 5.
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Chapter 6

Summary of aggregated results

Since Subsection 5.1.2 has a lot of results, it may be hard for a reader to see a
full picture. Therefore, this chapter summarizes and compares all our results
obtained in Subsection 5.1.2.

Table 6.3 lists models with most accurate results according to average
RMSE, MAE and MAPE for all four volatility proxies, both training sub-
samples and both forecast horizons. In Table 6.3, models written in regular
font are ones from set of traditional time-series models (i.e. described in Sec-
tion 4.1), models written in italics are ones from set of unconventional time-
series models (i.e. described in Section 4.2), models written in bold are ones
from set of forecast combination models (i.e. described in Section 4.3).

As you may see from Table 6.3, among models trained on medium training
sub-sample, KNN regression on combined fit has most accurate results in many
cases (10 out of 24) and if we add KNN regressions not on combined fit (i.e.
KNN regressions on original data) results are most accurate in 13 cases out
of 24. Additionally, if we focus on the most ’efficient’ volatility proxy, which
is Garman-Klass, we see that KNN regression on combined fit provides most
accurate forecasts in 5 out of 6 cases. Only according to point estimate of
average MAPE at horizon set to 10 periods ahead, SMA has more accurate
results, however, KNN is ranked second and if we take into account standard
errors (Table A.5), we can calculate that confidence intervals of average MAPE
for both methods overlap significantly.

When we shrink our training sub-sample three times (from 750+ to 245+
observations), we see that KNN regression on combined fit is no longer a leading
method (with being most accurate only in 1 case out of 24). We see that
MLP models (either with one or two hidden layers) are most accurate in 10
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cases out of 24. Additionally, we see that the simplest ’model’, which is simple
historical mean, is most accurate in 7 cases. Furthermore, for two most efficient
volatility proxies (Garman-Klass and Parkinson), simple historical mean (which
is a constant) is most accurate for both forecast horizons according to average
RMSE and in addition, for horizon set to 5, it is most accurate according to
average MAE. In other cases, for Parkinson and Garman-Klass, MLP models
(either with 1 or 2 hidden layers) are most accurate.

In order to capture differences of forecasts performance of models trained on
a short training sub-sample and a medium one, Table 6.1 is presented below.
Table 6.1 displays percentage differences between most accurate forecasts of
models trained on medium and short training sub-samples. We underlined
values where most accurate methods were same for both training sub-samples.
That is, for others, the most accurate forecast method changed.

Table 6.1: Relative difference of aggregated results in %.

horizon = 5 horizon = 10

Volatility proxy avg
RMSE

avg
MAE

avg
MAPE

avg
RMSE

avg
MAE

avg
MAPE

Squared return 61.47 55.45 27.88 17.74 26.62 6.02
Absolute return 22.21 18.80 1.13 10.01 13.16 18.85
Parkinson 21.75 21.03 -4.50 10.67 9.10 -3.13
Garman Klass 21.80 23.07 -2.43 4.46 5.94 -14.22

Values for tables were calculated according to the following formula:

vshort − vmedium

vshort

· 100

where vshort is a value of a parameter according to a short training sub-sample
and vmedium is a value of a parameter according to a medium training sub-
sample. Thus, positive values mean that there was a forecast improvement
with training sub-sample size increase since an error from a short sub-sample
is larger than an error from a medium sub-sample.

In order to check whether relative differences presented in Table 6.1 are
statistically significant, we present Table 6.2 where t statistics for differences
are calculated according to the following formula:

t = β̂s − β̂m√
σ̂2

s + σ̂2
m
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where β̂s is a parameter estimate from short sub-sample and β̂m is a parameter
estimate from a medium sub-sample and denominator is a sum of their standard
deviations.

Table 6.2: T statistics of relative differences from Table 6.1.

horizon = 5 horizon = 10

Volatility proxy avg
RMSE

avg
MAE

avg
MAPE

avg
RMSE

avg
MAE

avg
MAPE

Squared return 0.4642 0.4070 0.1117 0.1155 0.1917 0.0188
Absolute return 0.2865 0.2699 0.0086 0.1244 0.1912 0.1235
Parkinson 0.2370 0.2333 -0.0895 0.1260 0.1065 -0.0559
Garman Klass 0.2942 0.3213 -0.0469 0.0589 0.0773 -0.2720

From tables presented in this chapter, we see that if we have different length
of training samples, we are likely to have different most accurate forecasting
models. Only in 2 cases out of 24 the most accurate forecast was provided
by same method. These are: (1) KNN regression on combined fit according
to average MAPE for absolute return volatility proxy and horizon set to 5;
and (2) MLP with 2 hidden layers according to average MAE for Parkinson
volatility estimate. For other 22 cases, most accurate forecasts were provided
by different models.

Likewise, from Table 6.3, it is seen that when trained on medium train-
ing sub-sample, for the most efficient volatility proxy, combination techniques
(namely KNN regression on combined fit) provide most accurate results in 5
out of 6 cases. However, when trained on short training sub-sample, simple
historical mean and MLP (either with 1 or 2 hidden layers) provide most ac-
curate forecasts. It can be caused by the fact that simple historical mean on
shorter sub-sample better reflects close future, however, we also see, that MLP
models also perform well.

Finally, we see that though it may look like training sub-sample increase
improves forecast accuracy (at least according to average MAE and RMSE),
we need to check whether improvement is statistically significant and Table 6.2
suggests us that this is not the case1.

With all the above we may draw some conclusions about our hypotheses:

Hypothesis #1: Forecast from a combined model is more accurate than
forecasts from conventional models or their extensions.

1For statistically significant difference in estimates, t statistic in Table 6.2 should be
greater than 2.093 (in absolute value), which is a value from the t table for α = 0.05 and 19
degrees of freedom.
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Hypothesis #2: Different training sub-samples require different models
for same assets.

Hypothesis #3: Training sub-sample increase deteriorates forecast accu-
racy.

Table 6.3 shows that hypothesis #1 is corroborated for Garman-Klass volatil-
ity proxy and medium training sub-sample where we see a clear dominance of
combination technique (namely, KNN regression on combined fit). However,
for other instances, it is harder to say whether combination techniques are su-
perior to non-combination ones. It is all dependent on forecast horizon and
forecast accuracy measure used. Additionally, for a short training sub-sample,
we see that combination techniques are not superior to non-combination ones.

Likewise, Table 6.3 clearly supports hypothesis #2. We see that only in 2
cases (out of 24) same method remained to be the most accurate.

Finally, Table 6.2 clearly rejects hypothesis #3, since we do not see statisti-
cally significant forecast improvement in any of cases. It should be noted, that
we compare the most accurate forecasts from two sub-samples that in 22 cases
(out of 24) are provided by different models.
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Chapter 7

Conclusion

The goal of the thesis was to challenge several issues a forecaster can encounter
during selection of an optimal forecast. Namely, volatility proxy choice, train-
ing sample size choice and choice of a forecasting model. For these purposes,
we carried out multiple forecasts for 4 volatility proxies (squared and absolute
returns, Parkinson and Garman-Klass), 2 training samples (medium and short)
and 15 forecasting models (10 standalone methods and 5 forecast combination
methods). Forecasts were carried out for 20 stocks from different sectors and
of different market capitalization size that were randomly selected. Forecasts
quality was assessed by 3 metrics: RMSE, MAE and MAPE, and were as-
sessed for 2 forecast horizons: one and two business weeks or 5 and 10 periods
ahead. Forecasts were out-of-sample. In total, we generated 2400 forecasts1

that needed to be aggregated, because otherwise it would be impossible to
draw any general conclusions.

Aggregation was done on stocks level: we average results across 20 stocks
and obtain 120 sets of forecast results. Afterwards, we focus only on most
accurate forecast models but since we have 3 forecast accuracy assessment
methods and 2 forecast horizons, we obtain one for each. So from 120 sets of
forecasting results we go to 48 sets of results2 that are presented in Chapter 6.
And based on these results we are able to test our hypotheses.

We have 3 hypotheses and we draw general conclusions for two of them (hy-
potheses #2 and #3). Hypothesis #2 – different training sub-samples require
different models for same assets – is not rejected, since from Table 6.3, we see

12400 = 4 x 2 x 15 x 20, i.e. number of volatility proxies x number of training samples x
number of forecasting models x number of stocks.

248 = 4 x 2 x 3 x 2, i.e. number of volatility proxies x number of training samples x
number of forecast accuracy metrics x number of forecast horizons.
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that ’best’ models change based on training sub-sample in 22 cases (out of 24).
Hypothesis #3 – training sub-sample increase deteriorates forecast accuracy –
is rejected, since from Table 6.2, we see that relative differences of ’best’ models
are statistically insignificant.

However, for hypothesis #1 – forecast from a combined model is more
accurate than forecasts from conventional models or their extensions – that
is actually our main hypothesis, we cannot clearly draw a conclusion because
some narrowing is needed for this. For example, for Garman-Klass volatility
proxy and medium training sample, hypothesis #1 holds, for other cases even
more narrowing is needed. On short training sample, we see that forecast
combination produces most accurate forecast only in one case (out of 24).

Likewise, we see that machine learning techniques (from Section 4.2) and
simple forecasting methods (from Subsection 4.1.1) dominate traditional fore-
casting methods (from Subsection 4.1.2 and Subsection 4.1.3). Traditional fore-
casting methods are most accurate only in 2 cases (out of 48): (1) ARFIMA
according to average MAPE for squared return, horizon set to 5 and trained on
short sample and (2) ARIMA according to RMSE for absolute return, horizon
set to 10 and trained on medium sample.

Additionally, we compared efficiency of volatility proxies. We define volatil-
ity proxy efficiency as level of its predictability according to average MAPE.
We clearly see that squared and absolute return volatility proxies are much less
efficient than Parkinson and Garman-Klass in all 24 cases. Whereas, distinc-
tion between efficiency of Parkinson and Garman-Klass is hard, though it is
seen that Garman-Klass is marginally more efficient than Parkinson volatility
proxy. Nonetheless, if we take into account standard errors, we may calculate
that confidence intervals of average MAPE will overlap significantly.

We see there is plenty of room for future research in this field. OLS fore-
cast combination, which is a base for our ’best’ combination method – KNN
regression on combined fit, could be improved if ’insignificant’3 models used for
OLS fit were dropped and OLS fit was retrained only with ’significant’ models.
Likewise, longer training samples could be utilized and results checked with
short and medium training samples.

To conclude, we hope this thesis serves as a comprehensive guide in forecast
combination and volatility estimation fields. We find our results interesting
and revealing that machine learning and forecasting combination methods may
yield superior results.

3’Insignificant’ models are ones that had statistically insignificant estimate in OLS fit.
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Appendix A

Standard errors of averages

Standard errors are calculated for the following estimates: average RMSE,
MAE and MAPE for each horizon, training sub-sample, volatility proxy and
forecasting method based on sample of 20 observations (number of stocks).
Formally, standard errors are defined as:

se =

√
V ar(X)
√

N
(A.1)

where X is a vector of point estimates and N is the length of vector X, in our
case N = 20.



A. Standard errors of averages II

Ta
bl

e
A.

1:
St

an
da

rd
er

ro
rs

of
fo

re
ca

st
sa

gg
re

ga
tio

n
on

m
ed

iu
m

tr
ai

n-
in

g
su

b-
sa

m
pl

ea
nd

fo
re

ca
st

ho
riz

on
=

5
fo

rS
qu

ar
ed

re
tu

rn
an

d
A

bs
ol

ut
e

re
tu

rn
vo

la
til

ity
pr

ox
ie

s.

Sq
ua

re
d

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
A

bs
ol

ut
e

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
m

od
el

av
g

R
M

SE
av

g
M

A
E

av
g

M
A

PE
av

g
R

M
SE

av
g

M
A

E
av

g
M

A
PE

A
R

FI
M

A
1.

02
E-

03
1.

02
E-

03
12

65
9

1.
22

E-
03

1.
18

E-
03

99
.3

A
R

IM
A

1.
51

E-
04

1.
50

E-
04

78
96

1.
02

E-
03

9.
07

E-
04

75
.8

A
R

IM
A

on
co

m
bi

ne
d

fit
1.

58
E-

04
1.

44
E-

04
16

20
6

1.
19

E-
03

1.
11

E-
03

83
.2

EW
M

A
5.

90
E-

05
3.

86
E-

05
71

55
1.

02
E-

03
8.

56
E-

04
89

.0
G

A
RC

H
-F

am
ily

1.
72

E-
03

1.
72

E-
03

12
09

49
7

9.
25

E-
04

7.
19

E-
04

96
.9

K
N

N
re

gr
es

sio
n

4.
53

E-
05

3.
70

E-
05

27
60

1.
21

E-
03

1.
06

E-
03

11
7.

4
K

N
N

re
gr

es
sio

n
on

co
m

bi
ne

d
fit

8.
20

E-
05

6.
41

E-
05

92
89

7.
95

E-
04

5.
77

E-
04

47
.1

M
ea

n
4.

31
E-

04
3.

88
E-

04
15

28
8

2.
56

E-
03

2.
61

E-
03

20
0.

2
M

LP
w

/
1

hi
dd

en
la

ye
r

1.
73

E-
04

1.
74

E-
04

17
26

3
1.

24
E-

03
1.

20
E-

03
98

.6
M

LP
w

/
2

hi
dd

en
la

ye
rs

3.
12

E-
04

3.
12

E-
04

12
92

73
9.

34
E-

04
8.

49
E-

04
87

.6
N

N
A

R
1.

60
E-

04
1.

61
E-

04
16

95
4

1.
03

E-
03

9.
97

E-
04

96
.2

N
N

A
R

on
co

m
bi

ne
d

fit
2.

23
E-

04
1.

82
E-

04
13

79
0

1.
05

E-
03

9.
76

E-
04

59
.6

O
ut

-o
f-s

am
pl

e
O

LS
pr

ed
ic

tio
n

4.
08

E-
04

3.
48

E-
04

13
51

2
7.

58
E-

04
6.

64
E-

04
84

.4
Si

m
pl

e
m

ea
n

co
m

bi
ne

d
fo

re
ca

st
2.

78
E-

04
2.

17
E-

04
11

55
0

1.
17

E-
03

1.
03

E-
03

99
.6

SM
A

7.
38

E-
05

6.
55

E-
05

50
05

1.
07

E-
03

9.
62

E-
04

55
.7



A. Standard errors of averages III

Ta
bl

e
A.

2:
St

an
da

rd
er

ro
rs

of
fo

re
ca

st
sa

gg
re

ga
tio

n
on

m
ed

iu
m

tr
ai

n-
in

g
su

b-
sa

m
pl

ea
nd

fo
re

ca
st

ho
riz

on
=

5
fo

rP
ar

ki
ns

on
an

d
G

ar
m

an
-K

la
ss

vo
la

til
ity

pr
ox

ie
s.

P
ar

ki
ns

on
vo

la
ti

lit
y

pr
ox

y
G

ar
m

an
-K

la
ss

vo
la

ti
lit

y
pr

ox
y

m
od

el
av

g
R

M
SE

av
g

M
A

E
av

g
M

A
PE

av
g

R
M

SE
av

g
M

A
E

av
g

M
A

PE
A

R
FI

M
A

6.
82

E-
04

6.
32

E-
04

3.
58

9
5.

57
E-

04
4.

80
E-

04
3.

03
0

A
R

IM
A

5.
95

E-
04

4.
78

E-
04

2.
10

2
5.

62
E-

04
4.

53
E-

04
2.

37
7

A
R

IM
A

on
co

m
bi

ne
d

fit
6.

47
E-

04
5.

58
E-

04
2.

90
7

8.
06

E-
04

7.
15

E-
04

3.
69

5
EW

M
A

7.
53

E-
04

6.
65

E-
04

3.
33

3
7.

97
E-

04
7.

39
E-

04
3.

45
8

G
A

RC
H

-F
am

ily
8.

94
E-

04
7.

97
E-

04
4.

19
4

9.
11

E-
04

8.
24

E-
04

4.
29

2
K

N
N

re
gr

es
sio

n
6.

10
E-

04
5.

04
E-

04
2.

54
4

5.
87

E-
04

4.
89

E-
04

4.
15

0
K

N
N

re
gr

es
sio

n
on

co
m

bi
ne

d
fit

6.
96

E-
04

6.
15

E-
04

3.
71

0
4.

10
E-

04
3.

58
E-

04
2.

72
1

M
ea

n
2.

09
E-

03
2.

10
E-

03
13

.3
88

1.
37

E-
03

1.
32

E-
03

8.
10

5
M

LP
w

/
1

hi
dd

en
la

ye
r

8.
84

E-
04

8.
56

E-
04

5.
25

0
8.

12
E-

04
7.

61
E-

04
4.

76
9

M
LP

w
/

2
hi

dd
en

la
ye

rs
5.

58
E-

04
4.

68
E-

04
2.

73
8

5.
34

E-
04

4.
67

E-
04

2.
98

8
N

N
A

R
5.

52
E-

04
4.

52
E-

04
2.

31
3

5.
97

E-
04

5.
15

E-
04

3.
37

0
N

N
A

R
on

co
m

bi
ne

d
fit

6.
81

E-
04

5.
87

E-
04

3.
71

3
2.

04
E-

03
1.

36
E-

03
7.

96
7

O
ut

-o
f-s

am
pl

e
O

LS
pr

ed
ic

tio
n

5.
26

E-
04

4.
30

E-
04

3.
30

9
5.

74
E-

04
4.

67
E-

04
3.

24
7

Si
m

pl
e

m
ea

n
co

m
bi

ne
d

fo
re

ca
st

5.
84

E-
04

4.
75

E-
04

4.
23

2
8.

91
E-

04
7.

85
E-

04
7.

92
4

SM
A

6.
20

E-
04

5.
15

E-
04

2.
95

8
6.

54
E-

04
5.

79
E-

04
3.

17
4



A. Standard errors of averages IV

Ta
bl

e
A.

3:
St

an
da

rd
er

ro
rs

of
av

er
ag

e
ra

nk
s

of
fo

re
ca

st
s

on
m

ed
iu

m
tr

ai
ni

ng
su

b-
sa

m
pl

e
an

d
fo

re
ca

st
ho

riz
on

=
5.

Sq
ua

re
d

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
A

bs
ol

ut
e

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
P

ar
ki

ns
on

vo
la

ti
lit

y
pr

ox
y

G
ar

m
an

-K
la

ss
vo

la
ti

lit
y

pr
ox

y
m

od
el

st
an

da
rd

er
ro

rs
of

av
g

ra
nk

A
R

FI
M

A
0.

79
1.

01
0.

78
0.

76
A

R
IM

A
0.

74
0.

75
0.

74
0.

71
A

R
IM

A
on

co
m

bi
ne

d
fit

0.
81

0.
73

0.
64

0.
75

EW
M

A
1.

15
1.

02
0.

99
1.

01
G

A
RC

H
-F

am
ily

0.
92

0.
80

1.
02

0.
86

K
N

N
re

gr
es

sio
n

1.
12

1.
19

0.
98

0.
73

K
N

N
re

gr
es

sio
n

on
co

m
bi

ne
d

fit
0.

70
1.

02
0.

93
1.

04
M

ea
n

1.
03

1.
09

1.
19

1.
25

M
LP

w
/

1
hi

dd
en

la
ye

r
0.

84
0.

80
0.

66
0.

82
M

LP
w

/
2

hi
dd

en
la

ye
rs

0.
80

1.
13

1.
00

1.
10

N
N

A
R

0.
95

0.
64

0.
69

0.
72

N
N

A
R

on
co

m
bi

ne
d

fit
0.

84
0.

95
0.

94
0.

99
O

ut
-o

f-s
am

pl
e

O
LS

pr
ed

ic
tio

n
1.

02
1.

18
0.

89
0.

98
Si

m
pl

e
m

ea
n

co
m

bi
ne

d
fo

re
ca

st
0.

70
0.

33
0.

50
0.

59
SM

A
1.

06
1.

07
1.

08
0.

97



A. Standard errors of averages V

Ta
bl

e
A.

4:
St

an
da

rd
er

ro
rs

of
fo

re
ca

st
sa

gg
re

ga
tio

n
on

m
ed

iu
m

tr
ai

n-
in

g
su

b-
sa

m
pl

e
an

d
fo

re
ca

st
ho

riz
on

=
10

fo
r

Sq
ua

re
d

re
-

tu
rn

an
d

A
bs

ol
ut

e
re

tu
rn

vo
la

til
ity

pr
ox

ie
s.

Sq
ua

re
d

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
A

bs
ol

ut
e

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
m

od
el

av
g

R
M

SE
av

g
M

A
E

av
g

M
A

PE
av

g
R

M
SE

av
g

M
A

E
av

g
M

A
PE

A
R

FI
M

A
1.

02
E-

03
1.

02
E-

03
14

03
7

1.
35

E-
03

1.
02

E-
03

99
.6

A
R

IM
A

1.
69

E-
04

1.
54

E-
04

90
77

1.
19

E-
03

8.
44

E-
04

78
.6

A
R

IM
A

on
co

m
bi

ne
d

fit
1.

76
E-

04
1.

48
E-

04
10

28
6

1.
22

E-
03

9.
48

E-
04

86
.1

EW
M

A
1.

29
E-

04
5.

70
E-

05
74

39
1.

42
E-

03
9.

78
E-

04
98

.9
G

A
RC

H
-F

am
ily

1.
73

E-
03

1.
74

E-
03

60
61

65
1.

24
E-

03
7.

50
E-

04
10

8.
2

K
N

N
re

gr
es

sio
n

1.
50

E-
04

7.
35

E-
05

10
79

5
1.

51
E-

03
9.

75
E-

04
95

.9
K

N
N

re
gr

es
sio

n
on

co
m

bi
ne

d
fit

1.
36

E-
04

7.
87

E-
05

82
45

1.
14

E-
03

6.
48

E-
04

64
.9

M
ea

n
4.

57
E-

04
4.

31
E-

04
93

34
2.

18
E-

03
2.

15
E-

03
16

3.
1

M
LP

w
/

1
hi

dd
en

la
ye

r
1.

85
E-

04
1.

64
E-

04
15

96
1

1.
36

E-
03

1.
03

E-
03

10
0.

4
M

LP
w

/
2

hi
dd

en
la

ye
rs

3.
07

E-
04

3.
06

E-
04

64
51

0
1.

23
E-

03
7.

75
E-

04
92

.2
N

N
A

R
1.

78
E-

04
1.

56
E-

04
14

76
7

1.
31

E-
03

9.
22

E-
04

96
.0

N
N

A
R

on
co

m
bi

ne
d

fit
2.

03
E-

04
1.

59
E-

04
12

27
5

3.
40

E-
03

1.
63

E-
03

11
8.

5
O

ut
-o

f-s
am

pl
e

O
LS

pr
ed

ic
tio

n
4.

01
E-

04
3.

66
E-

04
11

21
5

1.
21

E-
03

7.
83

E-
04

79
.1

Si
m

pl
e

m
ea

n
co

m
bi

ne
d

fo
re

ca
st

2.
56

E-
04

2.
05

E-
04

92
87

1.
28

E-
03

8.
94

E-
04

85
.8

SM
A

1.
25

E-
04

7.
84

E-
05

91
91

1.
25

E-
03

8.
37

E-
04

73
.0



A. Standard errors of averages VI

Ta
bl

e
A.

5:
St

an
da

rd
er

ro
rs

of
fo

re
ca

st
sa

gg
re

ga
tio

n
on

m
ed

iu
m

tr
ai

n-
in

g
su

b-
sa

m
pl

e
an

d
fo

re
ca

st
ho

riz
on

=
10

fo
r

Pa
rk

in
so

n
an

d
G

ar
m

an
-K

la
ss

vo
la

til
ity

pr
ox

ie
s.

P
ar

ki
ns

on
vo

la
ti

lit
y

pr
ox

y
G

ar
m

an
-K

la
ss

vo
la

ti
lit

y
pr

ox
y

m
od

el
av

g
R

M
SE

av
g

M
A

E
av

g
M

A
PE

av
g

R
M

SE
av

g
M

A
E

av
g

M
A

PE
A

R
FI

M
A

7.
63

E-
04

6.
56

E-
04

3.
02

7
7.

05
E-

04
6.

08
E-

04
2.

62
3

A
R

IM
A

5.
90

E-
04

4.
69

E-
04

2.
47

4
5.

75
E-

04
4.

52
E-

04
2.

36
2

A
R

IM
A

on
co

m
bi

ne
d

fit
6.

42
E-

04
5.

35
E-

04
3.

12
8

7.
19

E-
04

5.
75

E-
04

2.
57

3
EW

M
A

9.
59

E-
04

8.
41

E-
04

4.
58

1
9.

41
E-

04
8.

61
E-

04
4.

63
0

G
A

RC
H

-F
am

ily
8.

33
E-

04
7.

20
E-

04
4.

23
6

8.
57

E-
04

7.
52

E-
04

4.
34

6
K

N
N

re
gr

es
sio

n
6.

77
E-

04
5.

58
E-

04
1.

63
1

6.
01

E-
04

4.
95

E-
04

2.
19

8
K

N
N

re
gr

es
sio

n
on

co
m

bi
ne

d
fit

6.
91

E-
04

5.
54

E-
04

3.
41

6
5.

19
E-

04
4.

29
E-

04
1.

86
4

M
ea

n
1.

91
E-

03
1.

89
E-

03
14

.8
72

1.
39

E-
03

1.
36

E-
03

11
.4

37
M

LP
w

/
1

hi
dd

en
la

ye
r

9.
15

E-
04

8.
30

E-
04

4.
23

8
9.

04
E-

04
8.

04
E-

04
3.

98
0

M
LP

w
/

2
hi

dd
en

la
ye

rs
6.

34
E-

04
5.

07
E-

04
2.

38
9

6.
14

E-
04

5.
23

E-
04

2.
44

1
N

N
A

R
7.

32
E-

04
6.

15
E-

04
3.

09
0

7.
42

E-
04

6.
59

E-
04

3.
55

7
N

N
A

R
on

co
m

bi
ne

d
fit

6.
78

E-
04

5.
73

E-
04

2.
44

3
1.

48
E-

03
9.

26
E-

04
4.

22
2

O
ut

-o
f-s

am
pl

e
O

LS
pr

ed
ic

tio
n

6.
96

E-
04

5.
75

E-
04

2.
86

8
6.

85
E-

04
5.

75
E-

04
3.

05
2

Si
m

pl
e

m
ea

n
co

m
bi

ne
d

fo
re

ca
st

6.
31

E-
04

5.
23

E-
04

3.
56

6
8.

43
E-

04
7.

19
E-

04
6.

63
4

SM
A

6.
40

E-
04

4.
97

E-
04

3.
06

8
6.

46
E-

04
5.

43
E-

04
2.

70
3



A. Standard errors of averages VII

Ta
bl

e
A.

6:
St

an
da

rd
er

ro
rs

of
av

er
ag

e
ra

nk
s

of
fo

re
ca

st
s

on
m

ed
iu

m
tr

ai
ni

ng
su

b-
sa

m
pl

e
an

d
fo

re
ca

st
ho

riz
on

=
10

.

Sq
ua

re
d

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
A

bs
ol

ut
e

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
P

ar
ki

ns
on

vo
la

ti
lit

y
pr

ox
y

G
ar

m
an

-K
la

ss
vo

la
ti

lit
y

pr
ox

y
m

od
el

st
an

da
rd

er
ro

rs
of

av
g

ra
nk

A
R

FI
M

A
0.

92
0.

86
0.

82
0.

74
A

R
IM

A
0.

78
0.

83
0.

61
0.

61
A

R
IM

A
on

co
m

bi
ne

d
fit

0.
94

0.
64

0.
67

0.
68

EW
M

A
1.

00
0.

99
0.

79
0.

97
G

A
RC

H
-F

am
ily

1.
31

0.
87

0.
92

1.
05

K
N

N
re

gr
es

sio
n

1.
09

1.
04

1.
00

0.
92

K
N

N
re

gr
es

sio
n

on
co

m
bi

ne
d

fit
0.

76
0.

96
1.

05
1.

00
M

ea
n

0.
83

0.
97

1.
11

1.
19

M
LP

w
/

1
hi

dd
en

la
ye

r
0.

80
0.

84
0.

86
1.

01
M

LP
w

/
2

hi
dd

en
la

ye
rs

0.
71

1.
08

1.
11

0.
88

N
N

A
R

0.
88

0.
76

0.
64

0.
73

N
N

A
R

on
co

m
bi

ne
d

fit
1.

01
0.

98
1.

04
0.

97
O

ut
-o

f-s
am

pl
e

O
LS

pr
ed

ic
tio

n
0.

95
1.

06
0.

79
0.

66
Si

m
pl

e
m

ea
n

co
m

bi
ne

d
fo

re
ca

st
0.

94
0.

52
0.

53
0.

57
SM

A
1.

01
1.

03
0.

93
0.

92



A. Standard errors of averages VIII

Ta
bl

e
A.

7:
St

an
da

rd
er

ro
rs

of
fo

re
ca

st
s

ag
gr

eg
at

io
n

on
sh

or
tt

ra
in

in
g

su
b-

sa
m

pl
e

an
d

fo
re

ca
st

ho
riz

on
=

5
fo

r
Sq

ua
re

d
re

tu
rn

an
d

A
bs

ol
ut

e
re

tu
rn

vo
la

til
ity

pr
ox

ie
s.

Sq
ua

re
d

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
A

bs
ol

ut
e

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
m

od
el

av
g

R
M

SE
av

g
M

A
E

av
g

M
A

PE
av

g
R

M
SE

av
g

M
A

E
av

g
M

A
PE

A
R

FI
M

A
1.

90
E-

04
1.

13
E-

04
55

95
1.

89
E-

03
1.

35
E-

03
94

A
R

IM
A

1.
66

E-
04

1.
30

E-
04

91
99

1.
95

E-
03

1.
46

E-
03

95
A

R
IM

A
on

co
m

bi
ne

d
fit

1.
89

E-
04

1.
47

E-
04

10
16

3
2.

05
E-

03
1.

53
E-

03
91

EW
M

A
1.

94
E-

04
1.

16
E-

04
55

73
2.

15
E-

03
1.

46
E-

03
98

G
A

RC
H

-F
am

ily
1.

96
E-

03
1.

91
E-

03
78

79
70

2.
24

E-
03

1.
78

E-
03

11
8

K
N

N
re

gr
es

sio
n

1.
93

E-
04

1.
21

E-
04

86
12

2.
13

E-
03

1.
56

E-
03

90
K

N
N

re
gr

es
sio

n
on

co
m

bi
ne

d
fit

1.
91

E-
04

1.
24

E-
04

75
35

2.
07

E-
03

1.
57

E-
03

75
M

ea
n

1.
64

E-
04

1.
21

E-
04

91
82

1.
87

E-
03

1.
33

E-
03

93
M

LP
w

/
1

hi
dd

en
la

ye
r

1.
64

E-
04

1.
19

E-
04

90
71

2.
02

E-
03

1.
45

E-
03

97
M

LP
w

/
2

hi
dd

en
la

ye
rs

1.
64

E-
04

1.
19

E-
04

91
96

1.
78

E-
03

1.
25

E-
03

94
N

N
A

R
1.

68
E-

04
1.

20
E-

04
91

26
1.

86
E-

03
1.

31
E-

03
96

N
N

A
R

on
co

m
bi

ne
d

fit
2.

72
E-

04
2.

34
E-

04
12

81
7

2.
43

E-
03

1.
93

E-
03

83
O

ut
-o

f-s
am

pl
e

O
LS

pr
ed

ic
tio

n
2.

40
E-

04
2.

24
E-

04
41

10
0

3.
18

E-
03

2.
78

E-
03

19
8

Si
m

pl
e

m
ea

n
co

m
bi

ne
d

fo
re

ca
st

2.
25

E-
04

2.
13

E-
04

86
11

3
2.

17
E-

03
1.

56
E-

03
10

3
SM

A
1.

82
E-

04
1.

19
E-

04
12

51
8

2.
01

E-
03

1.
42

E-
03

10
3



A. Standard errors of averages IX

Ta
bl

e
A.

8:
St

an
da

rd
er

ro
rs

of
fo

re
ca

st
s

ag
gr

eg
at

io
n

on
sh

or
tt

ra
in

in
g

su
b-

sa
m

pl
e

an
d

fo
re

ca
st

ho
riz

on
=

5
fo

r
Pa

rk
in

so
n

an
d

G
ar

m
an

-K
la

ss
vo

la
til

ity
pr

ox
ie

s.

P
ar

ki
ns

on
vo

la
ti

lit
y

pr
ox

y
G

ar
m

an
-K

la
ss

vo
la

ti
lit

y
pr

ox
y

m
od

el
av

g
R

M
SE

av
g

M
A

E
av

g
M

A
PE

av
g

R
M

SE
av

g
M

A
E

av
g

M
A

PE
A

R
FI

M
A

1.
07

E-
03

8.
17

E-
04

1.
75

8.
97

E-
04

7.
77

E-
04

1.
92

A
R

IM
A

1.
15

E-
03

9.
37

E-
04

3.
68

8.
69

E-
04

7.
29

E-
04

3.
19

A
R

IM
A

on
co

m
bi

ne
d

fit
1.

19
E-

03
9.

56
E-

04
2.

37
8.

88
E-

04
7.

67
E-

04
3.

79
EW

M
A

1.
37

E-
03

1.
18

E-
03

2.
98

1.
07

E-
03

9.
91

E-
04

3.
02

G
A

RC
H

-F
am

ily
1.

32
E-

03
1.

10
E-

03
5.

06
9.

94
E-

04
8.

26
E-

04
4.

53
K

N
N

re
gr

es
sio

n
1.

19
E-

03
1.

01
E-

03
3.

20
9.

95
E-

04
8.

19
E-

04
2.

89
K

N
N

re
gr

es
sio

n
on

co
m

bi
ne

d
fit

1.
33

E-
03

1.
10

E-
03

4.
04

9.
69

E-
04

8.
71

E-
04

4.
32

M
ea

n
9.

99
E-

04
7.

47
E-

04
2.

26
7.

42
E-

04
5.

80
E-

04
1.

83
M

LP
w

/
1

hi
dd

en
la

ye
r

1.
13

E-
03

8.
76

E-
04

1.
90

8.
11

E-
04

6.
62

E-
04

1.
69

M
LP

w
/

2
hi

dd
en

la
ye

rs
1.

00
E-

03
7.

39
E-

04
1.

94
7.

58
E-

04
5.

83
E-

04
1.

81
N

N
A

R
1.

16
E-

03
9.

63
E-

04
3.

27
8.

84
E-

04
7.

33
E-

04
2.

30
N

N
A

R
on

co
m

bi
ne

d
fit

1.
18

E-
03

1.
01

E-
03

4.
57

9.
12

E-
04

7.
89

E-
04

4.
04

O
ut

-o
f-s

am
pl

e
O

LS
pr

ed
ic

tio
n

1.
69

E-
03

1.
56

E-
03

7.
67

2.
61

E-
03

2.
61

E-
03

16
.2

0
Si

m
pl

e
m

ea
n

co
m

bi
ne

d
fo

re
ca

st
1.

27
E-

03
1.

03
E-

03
2.

57
9.

60
E-

04
8.

05
E-

04
1.

89
SM

A
1.

34
E-

03
1.

18
E-

03
3.

66
1.

07
E-

03
9.

90
E-

04
2.

90



A. Standard errors of averages X

Ta
bl

e
A.

9:
St

an
da

rd
er

ro
rs

of
av

er
ag

e
ra

nk
s

of
fo

re
ca

st
s

on
sh

or
t

tr
ai

ni
ng

su
b-

sa
m

pl
e

an
d

fo
re

ca
st

ho
riz

on
=

5.

Sq
ua

re
d

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
A

bs
ol

ut
e

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
P

ar
ki

ns
on

vo
la

ti
lit

y
pr

ox
y

G
ar

m
an

-K
la

ss
vo

la
ti

lit
y

pr
ox

y
m

od
el

st
an

da
rd

er
ro

rs
of

av
g

ra
nk

A
R

FI
M

A
0.

68
0.

75
0.

59
0.

70
A

R
IM

A
0.

56
0.

60
0.

77
0.

65
A

R
IM

A
on

co
m

bi
ne

d
fit

0.
88

0.
94

0.
83

0.
89

EW
M

A
1.

04
0.

77
0.

92
0.

57
G

A
RC

H
-F

am
ily

0.
47

1.
03

1.
03

1.
29

K
N

N
re

gr
es

sio
n

0.
85

0.
94

0.
97

1.
00

K
N

N
re

gr
es

sio
n

on
co

m
bi

ne
d

fit
0.

88
1.

21
0.

86
1.

02
M

ea
n

0.
62

0.
66

0.
58

0.
72

M
LP

w
/

1
hi

dd
en

la
ye

r
0.

72
0.

50
0.

77
0.

53
M

LP
w

/
2

hi
dd

en
la

ye
rs

0.
75

0.
78

0.
62

0.
56

N
N

A
R

0.
83

0.
73

0.
79

0.
69

N
N

A
R

on
co

m
bi

ne
d

fit
1.

05
1.

21
0.

98
1.

10
O

ut
-o

f-s
am

pl
e

O
LS

pr
ed

ic
tio

n
0.

99
0.

77
0.

83
0.

68
Si

m
pl

e
m

ea
n

co
m

bi
ne

d
fo

re
ca

st
0.

90
0.

84
0.

67
0.

80
SM

A
0.

71
0.

90
0.

92
0.

90



A. Standard errors of averages XI

Ta
bl

e
A.

10
:

St
an

da
rd

er
ro

rs
of

fo
re

ca
st

sa
gg

re
ga

tio
n

on
sh

or
tt

ra
in

in
g

su
b-

sa
m

pl
e

an
d

fo
re

ca
st

ho
riz

on
=

10
fo

rS
qu

ar
ed

re
tu

rn
an

d
A

bs
ol

ut
e

re
tu

rn
vo

la
til

ity
pr

ox
ie

s.

Sq
ua

re
d

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
A

bs
ol

ut
e

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
m

od
el

av
g

R
M

SE
av

g
M

A
E

av
g

M
A

PE
av

g
R

M
SE

av
g

M
A

E
av

g
M

A
PE

A
R

FI
M

A
1.

53
E-

04
9.

36
E-

05
44

04
1.

59
E-

03
1.

19
E-

03
89

A
R

IM
A

1.
44

E-
04

1.
20

E-
04

10
06

0
1.

70
E-

03
1.

31
E-

03
90

A
R

IM
A

on
co

m
bi

ne
d

fit
1.

65
E-

04
1.

31
E-

04
15

01
0

1.
76

E-
03

1.
33

E-
03

75
EW

M
A

1.
57

E-
04

9.
22

E-
05

72
70

1.
81

E-
03

1.
25

E-
03

10
2

G
A

RC
H

-F
am

ily
2.

64
E-

03
2.

47
E-

03
46

79
76

2.
37

E-
03

2.
02

E-
03

12
9

K
N

N
re

gr
es

sio
n

1.
56

E-
04

9.
49

E-
05

76
03

1.
81

E-
03

1.
30

E-
03

75
K

N
N

re
gr

es
sio

n
on

co
m

bi
ne

d
fit

1.
77

E-
04

1.
17

E-
04

92
24

1.
87

E-
03

1.
37

E-
03

79
M

ea
n

1.
38

E-
04

1.
07

E-
04

10
00

9
2.

95
E-

03
2.

66
E-

03
19

9
M

LP
w

/
1

hi
dd

en
la

ye
r

1.
37

E-
04

1.
06

E-
04

99
94

1.
59

E-
03

1.
19

E-
03

85
M

LP
w

/
2

hi
dd

en
la

ye
rs

1.
37

E-
04

1.
05

E-
04

11
72

0
1.

80
E-

03
1.

36
E-

03
99

N
N

A
R

1.
41

E-
04

1.
05

E-
04

95
65

1.
68

E-
03

1.
30

E-
03

89
N

N
A

R
on

co
m

bi
ne

d
fit

2.
14

E-
04

1.
66

E-
04

15
64

2
1.

76
E-

03
1.

30
E-

03
83

O
ut

-o
f-s

am
pl

e
O

LS
pr

ed
ic

tio
n

2.
41

E-
04

2.
30

E-
04

23
25

8
1.

58
E-

03
1.

18
E-

03
92

Si
m

pl
e

m
ea

n
co

m
bi

ne
d

fo
re

ca
st

2.
93

E-
04

2.
73

E-
04

50
34

2
2.

07
E-

03
1.

60
E-

03
92

SM
A

1.
50

E-
04

9.
64

E-
05

10
78

1
1.

78
E-

03
1.

29
E-

03
85



A. Standard errors of averages XII

Ta
bl

e
A.

11
:

St
an

da
rd

er
ro

rs
of

fo
re

ca
st

sa
gg

re
ga

tio
n

on
sh

or
tt

ra
in

in
g

su
b-

sa
m

pl
e

an
d

fo
re

ca
st

ho
riz

on
=

10
fo

r
Pa

rk
in

so
n

an
d

G
ar

m
an

-K
la

ss
vo

la
til

ity
pr

ox
ie

s.

P
ar

ki
ns

on
vo

la
ti

lit
y

pr
ox

y
G

ar
m

an
-K

la
ss

vo
la

ti
lit

y
pr

ox
y

m
od

el
av

g
R

M
SE

av
g

M
A

E
av

g
M

A
PE

av
g

R
M

SE
av

g
M

A
E

av
g

M
A

PE
A

R
FI

M
A

8.
7E

-0
4

6.
7E

-0
4

2.
67

8.
3E

-0
4

7.
1E

-0
4

2.
00

A
R

IM
A

9.
9E

-0
4

8.
4E

-0
4

4.
54

8.
6E

-0
4

7.
7E

-0
4

3.
93

A
R

IM
A

on
co

m
bi

ne
d

fit
9.

7E
-0

4
7.

8E
-0

4
2.

75
8.

6E
-0

4
7.

9E
-0

4
4.

01
EW

M
A

1.
2E

-0
3

1.
1E

-0
3

3.
37

1.
1E

-0
3

1.
0E

-0
3

3.
18

G
A

RC
H

-F
am

ily
1.

8E
-0

3
1.

5E
-0

3
12

.5
7

1.
7E

-0
3

1.
4E

-0
3

11
.0

8
K

N
N

re
gr

es
sio

n
9.

6E
-0

4
7.

8E
-0

4
3.

65
8.

3E
-0

4
7.

1E
-0

4
2.

93
K

N
N

re
gr

es
sio

n
on

co
m

bi
ne

d
fit

1.
0E

-0
3

8.
3E

-0
4

3.
76

9.
0E

-0
4

7.
9E

-0
4

3.
60

M
ea

n
8.

3E
-0

4
6.

3E
-0

4
3.

13
6.

9E
-0

4
5.

7E
-0

4
2.

48
M

LP
w

/
1

hi
dd

en
la

ye
r

9.
1E

-0
4

7.
0E

-0
4

2.
73

7.
2E

-0
4

6.
0E

-0
4

2.
05

M
LP

w
/

2
hi

dd
en

la
ye

rs
8.

3E
-0

4
6.

3E
-0

4
2.

94
6.

9E
-0

4
5.

6E
-0

4
2.

39
N

N
A

R
9.

2E
-0

4
7.

4E
-0

4
3.

21
8.

0E
-0

4
6.

9E
-0

4
2.

20
N

N
A

R
on

co
m

bi
ne

d
fit

1.
1E

-0
3

9.
6E

-0
4

5.
83

8.
2E

-0
4

6.
9E

-0
4

3.
22

O
ut

-o
f-s

am
pl

e
O

LS
pr

ed
ic

tio
n

1.
6E

-0
3

1.
5E

-0
3

8.
57

2.
6E

-0
3

2.
6E

-0
3

17
.2

8
Si

m
pl

e
m

ea
n

co
m

bi
ne

d
fo

re
ca

st
1.

0E
-0

3
8.

5E
-0

4
3.

44
8.

9E
-0

4
7.

7E
-0

4
2.

39
SM

A
1.

1E
-0

3
1.

0E
-0

3
3.

15
1.

0E
-0

3
9.

6E
-0

4
2.

34



A. Standard errors of averages XIII

Ta
bl

e
A.

12
:

St
an

da
rd

er
ro

rs
of

av
er

ag
e

ra
nk

s
of

fo
re

ca
st

s
on

sh
or

t
tr

ai
ni

ng
su

b-
sa

m
pl

e
an

d
fo

re
ca

st
ho

riz
on

=
10

.

Sq
ua

re
d

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
A

bs
ol

ut
e

re
tu

rn
vo

la
ti

lit
y

pr
ox

y
P

ar
ki

ns
on

vo
la

ti
lit

y
pr

ox
y

G
ar

m
an

-K
la

ss
vo

la
ti

lit
y

pr
ox

y
m

od
el

st
an

da
rd

er
ro

rs
of

av
g

ra
nk

A
R

FI
M

A
0.

70
0.

73
0.

59
0.

70
A

R
IM

A
0.

55
0.

52
0.

84
0.

78
A

R
IM

A
on

co
m

bi
ne

d
fit

0.
87

0.
82

0.
88

0.
86

EW
M

A
0.

88
0.

71
0.

89
0.

86
G

A
RC

H
-F

am
ily

0.
50

1.
19

1.
40

1.
44

K
N

N
re

gr
es

sio
n

0.
70

0.
89

0.
81

0.
87

K
N

N
re

gr
es

sio
n

on
co

m
bi

ne
d

fit
1.

05
1.

06
0.

90
0.

84
M

ea
n

0.
61

0.
61

0.
47

0.
63

M
LP

w
/

1
hi

dd
en

la
ye

r
0.

68
0.

68
0.

69
0.

51
M

LP
w

/
2

hi
dd

en
la

ye
rs

0.
71

0.
78

0.
48

0.
51

N
N

A
R

0.
64

0.
74

0.
74

0.
67

N
N

A
R

on
co

m
bi

ne
d

fit
0.

93
1.

08
0.

68
0.

99
O

ut
-o

f-s
am

pl
e

O
LS

pr
ed

ic
tio

n
0.

88
0.

93
0.

75
0.

62
Si

m
pl

e
m

ea
n

co
m

bi
ne

d
fo

re
ca

st
0.

89
0.

69
0.

64
0.

65
SM

A
0.

84
1.

04
0.

90
0.

81


	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms
	Thesis Proposal
	1 Introduction
	2 Literature Review
	2.1 Literature on volatility forecasting
	2.2 Literature on unconventional volatility forecasting
	2.3 Literature on forecast combination

	3 Data
	4 Methodology
	4.1 Traditional time-series models
	4.1.1 Simple models
	4.1.2 AR(F)IMA models
	4.1.3 GARCH models

	4.2 Unconventional time-series models
	4.3 Forecasts combination
	4.4 Forecasts evaluation and comparison

	5 Empirical results
	5.1 Empirical Results
	5.1.1 Example results for one stock
	5.1.2 Aggregated results for all stocks


	6 Summary of aggregated results
	7 Conclusion
	Bibliography
	A Standard errors of averages

