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Introduction
Various types of games have long been a test bed for artificial intelligence. Super-
human artificial intelligence was already created for number of games such as
Chess [Campbell et al., 2002], Checkers [Schaeffer et al., 1996], and more recently
Go [Silver et al., 2016]. These three specifically are all perfect information games
(all players know the precise state of the game). Imperfect information adds
another level of complexity to a game and therefore makes it more difficult to
play. Heads-up no-limit Texas hold’em poker is an imperfect information game
comparable in size to Go. The first bot to beat professional human players in it
was Deepstack [Moravč́ık et al., 2017].

Apart from creating artificial agents for specific games, some research has also
been focused on creating agents capable of playing general games. This is called
general game playing (GGP) [Genesereth and Thielscher, 2014]. In GGP agents
are provided with game rules just before each match. Since the rules are not
known at the time of creating the agent, it must be able to play well in variety
of games in order to be successful.

While Deepstack was built specifically for poker, at its core is a general algo-
rithm for playing two-player zero-sum games with imperfect information – con-
tinual resolving. The goal of this thesis is to evaluate how well does
continual resolving perform in the context of GGP.

In Chapter 1 we introduce the definitions and prior work used throughout
the rest of the thesis. In Chapter 2 we present our generalized version of the
continual resolving algorithm from Deepstack. In Chapter 3 we describe the
details of our implementation – most notably the various hyperparameters of
supported algorithms. In Chapter 4 we briefly explain the console interface of
the application we created for the evaluation. The design of our experiments
and the results are presented in Chapter 5. In Chapter 6 we discuss some of
the possible shortcomings of continual resolving’s performance. In Chapter 7 we
list related work and other approaches to general game-playing with imperfect
information.
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1. Notation and background
In this chapter we introduce prior work in the area, notation and theoretical
background, which we will use throughout the rest of the thesis. The notation is
mostly the same as in the original papers. When different papers use conflicting
notation, we choose one of them.

1.1 Game Theory
First we need to formalize games and their properties. We rely on the notion of
extensive games, which is widely used in this context.

Definition 1 (J. Osborne and Rubinstein [1994], p. 200; Zinkevich et al. [2007]).
A finite extensive game consist of the following:

• A finite set of players N.

• A finite set of sequences H, such that empty sequence is in H, and all
subsequences of a sequence in H are also in H. The sequences are pos-
sible histories of actions taken by the players, with ∅ being the initial
state of the game. The set of actions available after history h is denoted
A(h) = {a|(h, a) ∈ H}, if A(h) = ∅ then h is terminal history. The set of
terminal histories is denoted Z.

• A function P : H \Z → N ∪{c} that assigns a player to each non-terminal
history. If P (h) = c then the action after h is determined by chance.

• A function fc that assigns a probability distribution fc(·|h) over A(h) for
each h where P (h) = c. fc(a|h) is the probability that action a is taken
after history h.

• For each player i ∈ N a partition Ii of {h ∈ H|P (h) = i} so that ∀I ∈
Ii∀s, t ∈ I : A(s) = A(t). For I ∈ Ii we denote A(I) = A(h) and P (I) = i
for any h ∈ I, and Ii(h) = I if h ∈ I. I is an information set of player i.

• For each player i ∈ N a utility function ui from Z to real numbers R.

We also need to define several other properties of extensive games:

• An extensive game has perfect information if all information sets for all
players contain exactly one history (i.e. players are able to distinguish all
histories), otherwise the game has imperfect information.

• An extensive game has perfect recall if all players retain all of their past
knowledge (i.e. each of their information sets contains only histories with
the same sequence of the owner’s actions and information sets), otherwise
the game has imperfect recall.

• A two-player extensive game is called zero-sum if ∀z ∈ Z : u1(z) = −u2(z).

4



In this thesis we will consider only finite two-player zero-sum perfect recall
extensive games with imperfect information.

Player’s behavior is described by a strategy. Strategy σi of player i in an
extensive game with imperfect information is a probability distribution over A(Ii)
for all Ii ∈ Ii, and Σi is a set of all such strategies. Combined strategy profile of
all players is denoted σ = (σ1, · · · , σn), σ−i denotes strategies of all players but i.

Given a strategy profile σ, reach probability of history h is defined as
πσ(h) = ∏︁

sa⊑h
σP (s)(IP (s)(s), a) (assuming σc = fc and Ic(s) = {s}). We will

also use partial reach probability πσ
i (h) containing only probabilities of player i

and πσ
−i(h) which contains probabilities of all players but i.

The expected utility of player i is ui(σ) = ∑︁
z∈Z

πσ(z)ui(z). The goal of
a player is to select their strategy, such that it maximizes their expected utility.
However, the strategies of the other players are unknown in the general case.
One possibility to overcome this is to instead maximize their worst case expected
utility. This idea is formalized by Nash equilibrium.

Definition 2 (Zinkevich et al. [2007]). Nash equilibrium in two-player extensive
game is strategy profile σ = (σ1, σ2) such that:

u1(σ) ≥ max
σ′

1∈Σ1
u1(σ′

1, σ2) u2(σ) ≥ max
σ′

2∈Σ2
u2(σ1, σ′

2)
Furthermore σ is ϵ-Nash equilibrium if:

u1(σ) + ϵ ≥ max
σ′

1∈Σ1
u1(σ′

1, σ2) u2(σ) + ϵ ≥ max
σ′

2∈Σ2
u2(σ1, σ′

2)

Nash equilibrium is considered to be a solution to the game, since no player
can gain by unilaterally changing their strategy.

Strategy σi is best response to σ−i if ui(σi) ≥ max
σ′

i∈Σi

ui(σ′
i, σ−i) and the set

of best response strategies is denoted BRi(σ−i). In a zero-sum game, we define
exploitability as ϵσ = u1(BR(σ2), σ2) + u2(σ1, BR(σ1))1. It can be shown that
any strategy profile has non-negative exploitability, and only Nash equilibrium
strategy profile has zero exploitability. It can therefore be used as a measure of
distance from a Nash equilibrium.

1.2 General Game Playing
The goal of general game playing [Genesereth and Thielscher, 2014] is to construct
artificial agents capable of playing different games well, without having prior
knowledge of them. Rules of the game are provided to the agents right before
the match. This results in agents more general than traditional agents designed
specifically for one game.

Common way to describe game rules in GGP is the Game Description Lan-
guage [Love et al., 2008]. GDL is a variant of Datalog, and it allows us to write
declarative rules of the game and reason about them. However, original GDL is
limited to deterministic games with complete information. This was addressed by

1Alternative definition, which divides the sum by 2, also appears in literature, but, as far as
we can tell, this version seems to be more prevalent in CFR related literature.
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GDL-II [Thielscher, 2010], which is able to describe stochastic games with incom-
plete information. Both versions are limited to finite, discrete games and assume
simultaneous actions of all players, although sequential games can be modeled
easily by forcing no-op actions on all but the acting player.

GDL represents game states as sets of facts that hold in them. A game is
described by predicates which specify the initial state, legal actions for all players
in non-terminal states, state transitions given state and actions of all players,
terminal states, and pay-off for all players in the terminal states.

GDL also specifies how matches are run. Each match is handled by a game
manager. At the start of the match, the game manager sends to all players their
role, the game description in GDL, as well as time limits for computation before
the start of the game and for each action. At each turn, the game manager
informs all players about the actions taken by the other players in the previous
turn, which allows the players to reconstruct the current game state, and asks
them to submit their actions for the current turn. If a player fails to submit a legal
action to the game manager before the time limit runs out, the game manager
selects a random action from the player’s legal actions. When a terminal state is
reached, the game manager informs the players that the game ended and again
includes the actions taken in previous turn.

GDL-II adds a random player, handled by the game manager, which selects
one of its legal actions with uniform probability at each turn. This makes it
possible to describe stochastic games (rational non-uniform probability distribu-
tions can be modeled by duplicating actions). To add imperfect information, the
game manager no longer informs the players about the precise actions taken by
the other players, but instead sends so called percepts when moving to the next
turn. The game rules in GDL-II specify which percepts should be generated for
which players for given state and actions. The perfect-recall information sets are
determined by a sequence of player’s actions and percepts.

1.3 Counterfactual Regret Minimization
Before we can explain how Deepstack works, we have to first introduce counterfac-
tual regret minimization. Counterfactual regret minimization (CFR) [Zinkevich
et al., 2007] is an iterative algorithm for approximating Nash equilibria in two-
player zero-sum perfect recall extensive games with imperfect information. It
extends the concept of regret minimization by introducing counterfactual regret
and thus making it more suitable for extensive games.

Regret minimization defines average overall regret of player i at time T as:

RT
i = 1

T
max
σ∗

i ∈Σi

T∑︂
t=1

(ui(σ∗
i , σt

−i)− ui(σt))

where σt is current strategy profile at time t. The resulting approximate
solution after T iterations is the average strategy:

σT
i (I, a) =

∑︁T
t=1 πσt

i (I)σt
i(I, a)∑︁T

t=1 πσt

i (I)
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It is known that if both player’s average overall regrets in a zero-sum game
are less than ϵ at time T then σT is 2ϵ-Nash equilibrium. Minimizing the regret
therefore leads to strategies closer to Nash equilibrium.

Given strategy profile σ counterfactual values are defined as:

vi(σ, h) =
∑︂

z∈Z,h⊑z

πσ
−i(h)πσ(h, z)ui(z)

vi(σ, I) =
∑︂
h∈I

vi(σ, h)

Let σ(I→a) be a strategy profile equal to σ, except that action a is always
selected in information set I. CFR then defines immediate counterfactual
regret for player i at time T and information set I as:

RT
i,imm(I) = 1

T
max

a∈A(I)

T∑︂
t=1

(vi(σt
(I→a), I)− vi(σt, I))

Let RT,+
i,imm(I) = max(RT

i,imm(I), 0), Zinkevich et al. [2007] proves that RT
i ≤∑︁

I∈Ii

RT,+
i,imm(I) and minimizing RT

i,imm on each information set independently min-

imizes RT
i .

CFR works by maintaining cumulative counterfactual regret for all informa-
tion sets and actions:

RT
i (I, a) = 1

T

T∑︂
t=1

(vi(σt
(I→a), I)− vi(σt, I))

Strategy profile σT +1 is selected proportionally to positive cumulative regret at
time T . This process is called regret matching:

σT +1
i (I, a) =

⎧⎨⎩
RT,+

i (I,a)∑︁
b∈A(I) RT,+

i (I,b)
if∑︁b∈A(I) RT,+

i (I, b) > 0
0 otherwise

(1.1)

If regret matching is used to select strategies for player i, then RT
i,imm(I) ≤

∆u,i

√︂
|Ai|/

√
T , where |Ai| = max

h∈H : P (h)=i
|A(h)| and ∆u,i = max

z∈Z
ui(z) −min

z∈Z
ui(z)

[Zinkevich et al., 2007]. It follows that after T iterations of CFR, the exploitability
of the average strategy σT is O(1/

√
T ).

Vanilla version of CFR with alternating updates is presented in Algorithm 1.
It can be modified in many ways – such as using different regret matching schemes,
chance sampling, discounting cumulative strategy and regret from earlier itera-
tions, etc. We will now introduce some modified versions.

1.3.1 CFR+

CFR+ [Tammelin et al., 2015] is an improved version of CFR which was used to
solve heads-up limit Texas hold’em poker. It doesn’t use any sampling and uses
alternating updates as is the case in Algorithm 1. It uses weighted average to
compute the average strategy σT = 2/(T 2 + T )∑︁T

t=1 tσt. Finally, it uses regret
matching+, which tracks only positive regret – Qt(a) = (Qt−1(a) + ∆Rt(a))+ and
selects the next strategy σt+1 proportionally to Qt (as in Equation 1.1).
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Algorithm 1 Vanilla CFR with alternating updates [Lanctot, 2013]
1: Initialize cumulative regret tables ∀I, a : rI [a]← 0
2: Initialize cumulative strategy tables ∀I, a : sI [a]← 0
3: Initialize strategy profile ∀I, a : σ1(I, a)← 1/|A(I)|
4:
5: function CFR(h, i, t, π1, π2)
6: if h is terminal then
7: return ui(h)
8: else if h is chance node then
9: return ∑︁

a∈A(h)
σc(h, a) CFR(ha, i, t, σc(h, a) · π1, σc(h, a) · π2)

10: end if
11: Let I be the information set containing h.
12: uσ ← 0
13: uσI→a

[a]← 0 for all a ∈ A(I)
14: for a ∈ A(I) do
15: if P (h) = 1 then
16: uσI→a

[a]← CFR(ha, i, t, σt(I, a) · π1, π2)
17: else
18: uσI→a

[a]← CFR(ha, i, t, π1, σt(I, a) · π2)
19: end if
20: uσ ← uσ + σt(I, a) · uσI→a

[a]
21: end for
22: if P (h) = i then ▷ Alternating update
23: for a ∈ A(I) do
24: rI [a]← rI [a] + π−i · (uσI→a

[a]− uσ)
25: sI [a]← sI [a] + πi · σt(I, a)
26: end for
27: σt+1(I)← RegretMatching(rI) as defined in Equation 1.1
28: end if
29: return uσ

30: end function
31:
32: function Solve
33: for t = 1, . . . , T do
34: for i ∈ {1, 2} do
35: CFR(∅, i, t, 1, 1)
36: end for
37: end for
38: end function
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1.3.2 Linear and Discounted CFR
While CFR+ uses cumulative strategy discounting (later iterations have larger
weight), Brown and Sandholm [2018] proposed Linear CFR (LCFR) which dis-
counts regrets as well. This allows the solver to faster recover from mistakes done
in early iterations. LCFR is CFR with linear weights for regrets and cumulative
strategy. The authors also explore the possibility of LCFR+, but conclude that
it performs worse in practice.

To bridge the gap between LCFR and CFR+, they introduce Discounted
CFR (DCFR). DCFR has three hyperparameters – α, β and γ. At iteration t of
DCFRα, β, γ accumulated positive regrets are multiplied by tα

tα+1 , negative regrets
by tβ

tβ+1 , and accumulated strategy by ( t
t+1)γ. CFR, CFR+ and LCFR can all be

emulated by DCFR∞,∞,0, DCFR∞,−∞,1, and DCFR1,1,1 respectively.
The authors also claim that CFR+ performs better with t2 weights instead of

t for the average strategy, and that DCFR1.5,0,2 performs consistently better than
this modified CFR+.

1.3.3 Monte-Carlo CFR
All the CFR variants we introduced so far need to traverse the whole game tree in
each iteration. This can lead to poor early performance, and it also means that
the solution is improved in long steps. Lanctot et al. [2009] presented Monte-
Carlo CFR (MC-CFR), which instead divides the terminal histories into blocks
and samples one block in each iteration. Iterations are therefore shorter and
progress towards the solution more gradual.

To define MC-CFR more formally – let Q = {Q1, . . . , Qr} be set of subsets
of Z, such that ⋃︁r

i=1 Qi = Z. Each Qi is called a block, and the probability of
sampling Qi is qi > 0.

Let q(z) = ∑︁
j : z∈Qj

qj be the probability of sampling z ∈ Z, ZI be the subset
of Z with predecessors in I, and z[I] be the predecessor of z in I. Sampled
counterfactual value of I given block Qj is:

˜︁vi(σ, I|j) =
∑︂

z∈Qj∩ZI

1
q(z)ui(z)πσ

−i(z[I])πσ(z[I], z)

The algorithm then works by sampling a single block at each iteration and
using sampled counterfactual values for regret updates. Information sets not
intersecting the sampled block do not have to be updated, since their sampled
counterfactual values are 0 by definition.

There are many ways to choose Q and sampling probabilities. Lanctot et al.
[2009] proposed outcome sampling, which samples one terminal history per iter-
ation, and external sampling, which samples only actions external to the player
(ie. opponent’s and chance actions) in each iteration. There is also average strat-
egy sampling [Gibson et al., 2012], which samples external actions the same way
as external sampling, but also samples a subset of player’s actions according to
modified player’s average strategy.

In this thesis we will use outcome sampling. As we already said, in out-
come sampling each block Qj contains a single terminal history. The sampling
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probability qj is defined as a reach probability given sampling strategy profile
qj(z) = πξ(z). ξ is usually chosen as:

ξ(h, a) =

⎧⎪⎨⎪⎩
ϵ · 1

|A(h)| + (1− ϵ) · σt(I(h), a) if P (h) = i

fc(h, a) if P (h) = c
σt(I(h), a) otherwise

(1.2)

where t is the current iteration, i is the player updated at this iteration, and
ϵ ∈ (0, 1] is an exploration factor. This can lead to sampling probabilities of some
blocks being zero. However, for those blocks the counterfactual reach probability
πσt

−i(z) is zero and therefore sampling them wouldn’t have any impact on the
regrets. Lanctot et al. [2009] proved a probabilistic regret bound applicable to
this choice of sampling probabilities.

Online version of MC-CFR with outcome sampling is described in Algo-
rithm 2.

1.3.4 Variance Reduction in MC-CFR
One of the problems with MC-CFR, especially with outcome sampling, is that
sampled counterfactual values can have high variance. Schmid et al. [2018] pro-
posed using baselines to decrease the variance, and shows this leading to signifi-
cantly better long-term convergence.

Let bi(I, a) be a baseline value of taking action a in information set I for
player i, ˆ︁bi(I, a) be a baseline estimate, such that E[ˆ︁bi(I, a)] = bi(I, a), andˆ︁vi(σ, I, a) be an estimated counterfactual value of doing the same (i.e. ˜︁vi(σ, I, a)
from MC-CFR). The idea is to use baseline-enhanced estimate of counterfactual
value ˆ︁vb

i (σ, I, a) = ˆ︁vi(σ, I, a)−ˆ︁bi(I, a)+ bi(I, a) instead of ˆ︁vi(σ, I, a). With proper
choice of baseline, this will result in reduction of the estimated counterfactual
value’s variance.

VR-MCCFR also uses baseline values to estimate counterfactual values of
actions that were not sampled in given iteration. For outcome sampling2 this
leads to the following definitions:

ˆ︁bi(I, a|z) =
{︄

bi(I, a)/ξ(h, a) if ha ⊑ z, h ∈ I
0 otherwise

ˆ︁ub
i(σ, h, a|z) =

⎧⎪⎪⎨⎪⎪⎩
bi(I(h), a) + ˆ︁ub

i (σ,ha|z)−bi(I(h),a)
ξ(h,a) if ha ⊑ z

bi(I(h), a) if h ⊏ z, ha ̸⊑ z
0 otherwise

ˆ︁ub
i(σ, h|z) =

⎧⎪⎨⎪⎩
ui(h) if h = z∑︁

a∈A(h) σ(I(h), a)ˆ︁ub
i(σ, h, a|z) if h ⊏ z

0 otherwise

ˆ︁vb
i (σ, h, a|z) =πσ

−i(h)
q(h)

ˆ︁ub
i(σ, h, a|z)

It is important to note that, unlike in the definition of ˜︁vi(σ, h, a|z), the denom-
inator in the definition of the baseline-enhanced sampled counterfactual value is

2VR-MCCFR can also be adapted to other sampling techniques.
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q(h) instead of q(z). This is because the tail part of the sampling probability is
already included in ˆ︁ub

i(σ, h, a|z).
Baseline value bi(I, a) should be chosen such that it approximates or correlates

with E[ˆ︁ui(σ, I, a)]. Schmid et al. [2018] recommends using exponentially decaying
average of ˆ︁ub

i(σt, ha|z) with decay rate 0.5.

1.4 Online game playing
Counterfactual regret minimization is intended to approximate a Nash equilib-
rium strategy for the whole game in advance (offline). However this is not suit-
able for online game playing (such as in GGP). In online setting an agent is given
a time limit to select an action at each of its decision points encountered during
a match. Additionally, there is usually some amount of pre-play time available
to the agent for initialization.

1.4.1 Online MC-CFR
A very simple approach to online game playing is to solve the game from scratch
using one of the offline techniques while playing.3 MC-CFR is especially useful for
this, because of it’s shorter iterations and better early convergence. Lisý et al.
[2015] introduced online outcome sampling MC-CFR (OOS MC-CFR), which
uses incremental game tree building (to avoid spending time up-front to initialize
regret-tables, etc.) and allows in-match targeting to concentrate more iterations
to the part of the game tree it is currently in.

Incremental game tree building starts with only the root information set in
memory. When a new information set is encountered during outcome sampling,
it is evaluated using a playout policy (e.g. uniform random playout) and added
to memory. Information sets visited during the playout phase are not added to
memory.

If targeting is used, a scenario is decided prior to each iteration – with tar-
geting probability δ outcome sampling is limited to the targeted part of the
game tree, and with probability (1 − δ) regular outcome sampling is used. The
algorithm maintains both targeted (s1) and untargeted (s2) sampling probabil-
ity for current history – the corresponding overall sampling probability is then
q(h) = δs1 + (1− δ)s2.

Lisý et al. [2015] presented two targeting schemes – information set targeting
(IST) and public subgame targeting (PST). Given the player’s current informa-
tion set I, information set targeting targets z ∈ Z such that ∃h ∈ I : h ⊑ z. This
targeting scheme is possible in any game, however it can have convergence issues.

Public subgame targeting targets terminals consistent with the current public
subgame. Public subgame is a set of states with the same sequence of public
actions, which are actions observable by all players (e.g. bets in poker). However,
some games have no public actions (e.g. incomplete-information Goofspiel) and
therefore do not support public subgame targeting.

As targeting changes during a match, the sampling probability of targeted part
of the game increases leading to lower weight in cumulative regret and strategy.

3We refer to this general approach as online solving throughout the thesis.
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This make it difficult to correct mistakes done in early iterations, which had much
higher weight. To overcome this issue, OOS MC-CFR increases the weight of
iterations after changing the targeting. It also uses explorative regret matching,
which combines the regret-matched strategy with uniform strategy with small
weight γ = 0.01, to ensure strategy is improved even in information sets with
π−i = 0.

Pseudo-code for the resulting algorithm is presented in Algorithm 2.

1.4.2 Deepstack
Deepstack [Moravč́ık et al., 2017] for heads-up no-limit Texas hold’em poker
consists of three parts – continual resolving, depth limited lookahead and sparse
lookahead trees.

Continual resolving is a general algorithm for playing two-player zero-sum
games with imperfect information and perfect recall. Each time it has to act
it determines the current subgame, solves it using CFR, plays according to the
obtained strategy, and discards it afterwards. More specifically, it uses CFR-D
gadget to construct and resolve the subgame.

CFR-D [Burch et al., 2014] is an algorithm for offline solving of large games
using decomposition to subgames. However, only the CFR-D gadget – the mock
game solved at each step of continual resolving – is important for us. To define
a sugbame, CFR-D first extends the definition of information set to augmented
information sets. Augmented information set for player i contains histories which
have the same sequence of player i’s information sets and actions. Unlike infor-
mation sets, the augmented information sets are also defined for histories where
player i is not the acting player, while being equivalent to regular information
sets in histories where player i is acting (assuming the game has perfect recall).
Given history s in a subgame, history t is in the same subgame if s ⊑ t or s, t ∈ Ip

for augmented information set of any player p.
Now we know which histories to include in a subgame, but to run CFR we

need a single initial history. This is where the CFR-D gadget comes in. Let us
assume we are trying to resolve a strategy for player 1 in subgame S. Let R be
the set of histories at the root of S. Let CBRi(σ−i) be a counterfactual best
response to σ−i – that is a best response such that σi(I, a) > 0 if and only if
vi(I, a) ≥ maxb∈A(I) vi(I, b). To construct the CFR-D gadget for this subgame
we also need vR

2 (I) = v
⟨σ1,CBR2(σ1)⟩
2 (I) for all augmented information sets I ∈ IR

2 ,
and πσ

−2(r) for all r ∈ R.
The gadget begins with initial chance node, which leads to opponent’s choice

node ˜︁r with probability πσ
−2(r)/k for all r ∈ R, where k = ∑︁

r∈R πσ
−2(r). The

probabilities are normalized by k to ensure that they sum to 1. Payoff function in
terminal histories is multiplied by k to undo the normalization. The opponent has
two available actions in ˜︁r – follow (F) and terminate (T). ˜︁r ·T is a terminal state
with payoff ˜︁u2(˜︁r · T ) = kvR

2 (I(r))/∑︁h∈I(r) πσ
−2(h). This means that ˜︁u2(I · T ) =

vR
2 (I) for all I ∈ IR

2 . Follow action leads to r from the original game.
Burch et al. [2014] showed that combining the original trunk strategy with

resolved subgame strategy results in a strategy with bounded exploitability.
The next component of Deepstack is depth limited lookahead. Since we only

need to compute the strategy at the root of a subgame, it is possible to replace
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CFR beyond certain depth with a heuristic evaluation function, which returns
estimated counterfactual values for both players. In Deepstack this function is
approximated using a deep neural network. Moravč́ık et al. [2017] proves that if
the error of the evalution function is less than ϵ and T iterations of depth-limited
CFR are used for the re-solve, then the resulting strategy has exploitability less
than k1ϵ + k2/

√
T for game-specific constants k1, k2.

Finally, the sparse lookahead tree means, that Deepstack only considers a sub-
set of all available actions at each information set. More specifically for Texas
hold’em poker it considers only fold, call, 2 or 3 bet actions, and all-in. This
significantly reduces the size of re-solved trees, however it also means that the
exploitability bound from previous paragraph does not hold anymore.
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Algorithm 2 Online Outcome Sampling MC-CFR [Lisý et al., 2015]
1: Returns (tail reach probability, root-to-leaf sampling probability, payoff)
2: function OOS(h, πi, π−i, s1, s2, i)
3: if h is terminal then
4: return (1, δs1 + (1− δ)s2, ui(h))
5: else if h is chance node then
6: (a, ρ1, ρ2) ← Sample(h, i)
7: (x, l, u) ← OOS(ha, πi, ρ2π−i, ρ1s1, ρ2s2, i)
8: return (ρ2x, l, u)
9: end if

10: Let I be the information set containing h.
11: (a, ρ1, ρ2) ← Sample(h, i)
12: if I is not in memory then
13: Add I to memory
14: σ(I)← Unif(A(I))
15: (x, l, u)← Playout(ha, δs1+(1−δ)s2

A(I) )
16: else
17: σ(I)← RegretMatching(rI)
18: π′

P (h) ← σ(I, a)πP (h)
19: π′

−P (h) ← π−P (h)
20: (x, l, u) ← OOS(ha, π′

i, π′
−i, ρ1s1, ρ2s2, i)

21: end if
22: x′ ← σ(I, a)x
23: ˜︁uσ ← ux′/l
24: for a′ ∈ A(I) do
25: if P (h) = i then
26: if a′ = a then
27: ˜︁uσI→a′ ← ux/l
28: else
29: ˜︁uσI→a′ ← 0
30: end if
31: rI [a′]← rI [a′] + π−i · (˜︁uσI→a′ − ˜︁uσ)
32: else
33: sI [a′]← sI [a′] + π−iσ(I,a′)

δs1+(1−δ)s2
34: end if
35: end for
36: return (x′, l, u)
37: end function
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2. General Continual Resolving
In this chapter we describe our generalized version of continual resolving. To
adapt continual resolving to general games we need a CFR solver and a way to
construct the proper CFR-D subgame gadget each time it is our turn to act. In
the previous chapter we have described several variants of CFR, which we can use.
MC-CFR with outcome sampling should be especially suitable for general game
playing. It has much shorter iterations compared to original CFR, which makes
it easier to fulfill the time constraints for selecting an action. And unlike depth-
limited CFR, which can also have short enough iterations, it does not require
a game-specific evaluation function.

In order to construct a CFR-D gadget for our turn, we need to know which
histories are at the root of the smallest subgame containing our information set,
opponent’s counterfactual values vR

2 (I) for corresponding augmented information
sets, and πσ

−2(h) for all root histories. We precompute this information for our
next turn during the current resolving. The first resolving is done in the original
game and thus does not need a gadget to be constructed.

Given history s in the subgame, history t is also in the subgame if s ⊑ t, or
s and t are both members of the same augmented information set Ip for some
player p. Therefore, a history s is at the root of a subgame if it is either the root
of the whole game, or if s = ha and {P (h), P (ha)} = {1, 2}. If either P (h) = c
or P (ha) = c then h and ha are in the same augmented information set for at
least one of the players. This also means, that there are games, which only have
one subgame – the whole game, and that the closest subgame may be the same
for multiple successive turns.

Now that we know how to recognize subgame roots, we need to map our
information set to a set of root histories of the closest subgame. We do this by
traversing the current subgame gadget until we find our next turn in a different
subgame. This gives us a set of histories {(ri, si)|i = 1, . . . , n} such that si is
our next turn and ri is the subgame root closest to si. We can then construct a
map from {I1(si), I2(si)|i = 1, . . . , n} to sets of corresponding root histories. And
finally merge all subgame roots with non-empty intersection. In the next turn we
can simply obtain the subgame roots from the map. If our current information
set is not in the subgame map, it means we are still in the same subgame as in
the previous turn.

The opponent counterfactual values and our reach probabilities are approxi-
mately estimated during the resolving of the current subgame. We use self-play
values instead of best-response values, and an arithmetic mean of values from each
iteration instead of values for the average strategy (same as Deepstack [Moravč́ık
et al., 2017]). The counterfactual values are estimated as:

vR
2 (I) = 1

T

T∑︂
t=1

∑︂
h∈I

vσt

2 (h)

Similarly for reach probabilities:

πσT

−2(h) = 1
T

T∑︂
t=1

πσt

−2(h)
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3. CFRPlayground
CFRPlayground is the application we built to evaluate performance of general
continual resolving. The application is written in Java 8, it uses the Gradle build
system [gra] and picocli [pic] for its console interface.

3.1 GGP framework
To implement general versions of CFR and continual resolving, we first need
a framework for general games. This framework is designed for the specific
requirements of general continual resolving. It supports two-player stochastic
games with incomplete information. Even though continual resolving further re-
quires zero-sum games with perfect-recall, these properties are not enforced by
the framework for simplicity.

A game tree consists of states1 and it is traversed by taking actions legal in
those states. Taking an action in a state can result in some information being
revealed to one or both players. This is done by the state generating percepts
when an action is taken. Each action can result in several percepts. Each percept
is visible to only one player, public percepts are implemented by duplicating the
percept for both players. Player i’s perfect recall information set contains states
with the same sequence of player i’s actions and percepts on the paths from
the root of the game to the states. Imperfect recall information sets are also
allowed by the framework, in which case multiple sequences are part of a single
information set (e.g. it does not matter in which order a player marks fields in
latent tic-tac-toe).

ICompleteInformationState and IInformationSet are the two main in-
terfaces which represent this structure. ICompleteInformationState provides
information about the game state it represents – namely whether the state is
terminal, the acting player, the legal actions, the state transitions and percepts
for each legal action, the action distribution if the state is random, the payoffs if
the state is terminal, and information sets for both players.

IInformationSet generally represents a sequence of owning player’s actions
and percepts (or even multiple such sequences in games without perfect recall).
It provides the legal actions when the owner is acting, as well as transition in-
formation for legal actions and valid percepts. When the owning player is acting
it corresponds to the information set as defined in extensive games. Otherwise,
it only serves as an intermediary for tracking past actions and percepts until the
owner’s next turn.

Actions and percepts are represented by IAction and IPercept interfaces
respectively. Finally the whole game is represented by IGameDescription which
provides the initial state and initial information sets for the game.

Classes implementing these interfaces should be immutable and serializable,
and should correctly implement hashCode and equals methods.

This design is very similar to the game model used by GDL-II. That is because
we originally intended to support GDL-II, however as our focus shifted more to

1Histories correspond to paths from the initial state, whereas states are the nodes of the
game tree. Both terms are used interchangeably.
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continual resolving, it became clear that it would not serve a practical purpose
in terms of evaluating continual resolving on general games. We therefore built
this simpler framework, which allowed us to avoid the overhead of GDL-II during
evaluation. Its similarity to GDL-II’s model should make it relatively easy to
embed GDL-II into it.

Compared to GDL-II it is limited to two-player games, however unlike GDL-II
it allows arbitrary distribution of actions in random states (GDL-II only supports
uniform distribution). It is also specifically designed for CFR and continual
resolving, and may not be suitable for other types of players. Most notably
it would not be suitable for players using neural networks to learn about a game,
as it does not expose any game features that could be used as inputs for a neural
network. This could of course be added, but we chose to avoid it, as the context
of general game playing makes it unfeasible to train a neural network during
game-play anyway.

3.2 Games
The games we implemented are all zero-sum, mostly with imperfect recall (be-
cause of more straight-forward implementation). Perfect recall support can be
added to a game by wrapping it in PerfectRecallGameDescriptionWrapper,
which forces information sets to correspond to sequences of actions and percepts
as defined in the previous section.

3.2.1 Leduc Poker
Leduc poker is a simplified two-player poker game. Players start with M1 and
M2 chips respectively. At the beginning of each game they both place 1 chip in
the pot. Each player is given one private card from a deck of two suites of cards,
each containing C cards. Then the first (of two) betting round begins with the
first player. Bet size for this round is two chips. In a betting round a player can
fold at any time2, which results in immediate win by the other player. A player
can also call, which matches the opponent’s last bet (or zero if opponent did not
bet any additional chips). Finally, a player can raise, which matches opponent’s
last bet and also places additional chips into the pot for the opponent to match.

When the first betting round finishes, a public card is drawn from the deck
and revealed to both players. Then the second betting round is opened with the
first player. Bet sizes for this round are four chips. If a player does not have
enough chips to fully match the opponent’s bet and chooses to match it (either
by call or raise), all of his remaining chips are transferred to the pot and any extra
chips returned to the opponent (so that both players have the same amount of
chips in the pot). The maximum number of raises in a betting round is B.

When the second betting round ends, the player with the same card as the
public one wins. If no player has the same card, then the one with the higher
card wins. Otherwise, it is a draw and both players get their chips back. The
winner gets all the chips from the pot (payoff is chips won - chips bet). The game
is implemented with imperfect recall and it is parameterized by (M1, M2, B, C).

2Other common version is to allow folds only when the player must place additional chips
to the pot to continue playing.
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3.2.2 II-Goofspiel
Incomplete information Goofspiel is also a card game. Each player has a deck of
cards 1 . . . N , and there is a sorted public deck of cards 1 . . . N (with 1 on top).
At each turn players privately bid one of the cards from their private decks. The
higher bidder wins the top card from the public deck, which is then removed
from the public deck and both private cards are discarded. If both players bid
the same card, nobody wins the public card (it is still removed). Both players
are informed if the turn was a win, a loss or a draw, but not which card did the
opponent bid. The winner is the player with the higher sum of won public cards.
If the sum is the same for both players, the game results in a draw. The payoff
is +1/-1 for win/loss or 0 for draw. The game is implemented with perfect recall
and it is parametrized by N .

3.2.3 Princess and Monster
Princess and monster (PAM) is a pursuit-evasion game. Our implementation
uses 3×3 grid with horizontal and vertical connections (no diagonal connections)
as the playing field. The princess starts at position [0, 0], the monster starts at
position [2, 2]. At each turn the princess moves first, followed by the monster.
Each move must be from the currently occupied field to a connected field (staying
on the same field is not allowed). There is a maximum of T turns in the game.
If the monster and the princess occupy the same field at any time, the monster
wins. If that does not happen in any of the T turns, the princess wins. The payoff
is 2T for the princess if she wins, or (2T − princessMoves−monsterMoves) for
the monster if it wins. The players do not receive any percepts. The game is
parameterized by T and it is implemented with imperfect recall.

3.2.4 Latent Tic-Tac-Toe
Latent tic-tac-toe is similar to a perfect information tic-tac-toe. Our version is
played on 3 × 3 grid. Players take turns in marking fields on the board. The
first player to get 3 marks in a row, a column or on a diagonal wins. If neither
player manages to do that and there are no more free fields left, or the first player
manages to do it first and the second player also does it the very next turn, the
game ends in a draw. Unlike in the classical tic-tac-toe, player moves are delayed
until after the opponent makes the next move. After that the move is publicly
revealed and it must not conflict with previously revealed moves. If the move
conflicts it is simply discarded. The payoff is +1/− 1 for win/loss or 0 for draw.
The game is implemented without perfect recall and it has no parameters.

3.2.5 Rock-Paper-Scissors
Rock-paper-scissors is a very simple game, that we include only for debugging
purposes. In our version each player chooses a number from the interval [1, N ],
where N is an odd number. If both players choose the same number, the game
ends in a draw. Otherwise, the player with the higher number wins if the differ-
ence between the higher number and the lower number is greater than (N −1)/2.
The payoff is +1/− 1 for win/loss or 0 for draw.
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3.3 Solvers
The two solvers implemented in our application are based on CFR and MC-CFR.
They can be further customized by variety of different hyperparameters. In gen-
eral both solvers maintain a map of information set data used during solving. This
includes the current strategy, the cumulative strategy and the regret matching.
MC-CFR additionally stores baseline values for both players.

Both solvers allow a caller to register event listeners which are called each time
a state is entered and left. Both callbacks include information about probabilities
of reaching the state (separately for both players and chance), the leave callback
also includes the utility of the state under current strategy (which we will need to
implement continual resolving). To allow a caller to gather additional information
about the states, the solver does not work directly with the states, but instead
uses a IGameTraversalTracker provided by the caller, which the solver uses to
traverse the game tree.

3.3.1 Regret Matching
General regret matching configuration is represented by a factory which imple-
ments IRegretMatching.IFactory. It is then used to create IRegretMatching
objects for each information set encountered in the game. IRegretMatching
accumulates regret for the information set’s actions, and is used to construct
a regret-matched strategy. We provide the following regret matching algorithms:

• Regret matching,

• regret matching+,

• discounted regret matching – parameterized by discounting exponents α, β
for positive and negative regrets respectively (as described in 1.3.2),

• explorative regret matching – parameterized by the exploration factor γ
and the underlying regret matching algorithm (one of the above).

3.3.2 CFR
Our CFR implementation is close to the version described in Algorithm 1. It addi-
tionally supports both alternating and simultaneous updates, cumulative strategy
discounting (as described in 1.3.2), and depth-limited CFR. When depth-limited
CFR is used, the solver must be provided with a depth limit and an utility
estimator factory (IUtilityEstimator.IFactory). The purpose of the utility
estimator is to estimate the utility of a given state under a Nash equilibrium
strategy. The estimator can also limit which states it is able to estimate, in
case a fixed depth limit is not sufficient for given use-case (such as in continual
resolving).

Since the GGP context makes it difficult to come up with a meaningful utility
estimator in time, we only include RandomPlayoutUtilityEstimator which es-
timates the utility of a state by sampling N terminal states from the given state
and returning the expected utility of those states under uniform random strategy.
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3.3.3 MC-CFR
Our MC-CFR implementation is based on Algorithm 2. It uses outcome sam-
pling, incremental game tree building and a uniform random playout to evaluate
information sets visited for the first time. However, unlike OOS MC-CFR it
does not assign higher weight to future iterations when the in-match targeting
is changed. It also supports the same cumulative strategy scheme as our CFR
implementation. Additionally, it uses baselines to estimate utility of non-sampled
actions (as described in 1.3.4). The two implemented baselines are exponential
decaying average and no baseline (which returns zero for all actions and is thus
equivalent to MC-CFR without variance reduction).

Another improvement is CFR-D-aware sampling. Which is a modification
of the underlying sampling scheme (in this case outcome sampling, but it could
also be adapted for other sampling schemes). When CFR-D-aware sampling
encounters an opponent choice state from CFR-D, it samples both the terminate
and the follow action. We do this because sampling an action from the initial
chance node can be relatively expensive compared to regular states because of
its size. We therefore do not want to ”waste” an iteration on simply sampling
a terminal history right below it.

The full list of supported hyperparameters is as follows:

• regret matching,

• cumulative strategy discounting exponent γ (as described in 1.3.2),

• exploration probability e ∈ (0, 1],

• targeting probability t ∈ [0, 1],

• in-match targeting scheme (we only provide information set targeting),

• baseline.

3.4 Players
A general player is represented by IPlayerFactory, which is responsible for cre-
ating IPlayer objects for specific game and role. At the beginning of a match
both players have some time to initialize. During the game the players are re-
sponsible for maintaining their own respective information sets, so that they can
infer the legal actions when it is their turn to act. They do this by updating
their information set whenever they receive a percept or take an action. Players
are given only a limited amount of time to select an action each time they act,
however this limit is not currently enforced.

3.4.1 Continual Resolving Player
Continual resolving player is our implementation of general continual resolving
described in Chapter 2. The player is parameterized by an object implementing
ISubgameResolver.IFactory. This factory is used to create a resolver for each
visited subgame. Our resolver factory produces resolvers, which use one of the
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solvers from the previous section to resolve a given subgame. A resolver is pro-
vided with information necessary to construct a CFR-D subgame gadget. Once
it constructs the gadget, it first initializes information necessary to construct all
the possible next subgame gadgets. This includes the subgame map (which maps
information sets to corresponding subgame root states), the reach probabilities
for each subgame root state, and opponent’s counterfactual values for each op-
ponent’s augmented information set at the root of a subgame. Then it runs the
solver until the time limit for action selection runs out and returns the cumula-
tive strategy as well the aggregated information necessary to construct a subgame
gadget for any of the next possible subgames. If the player acts multiple times in
one subgame, it uses the same resolver and simply improves the strategy for the
subgame.

If the underlying supports targeting (i.e. it is a MC-CFR solver with t > 0),
the resolver will provide it with information set targeting.

3.4.2 Solving Player
Solving player is parametrized by one of the solvers described in the previous
section. During init and each action selection, the player simply runs the solver
in the whole game until the time limit runs out and improves the cumulative
strategy. Then it selects an action according to this strategy. If the solver sup-
ports targeting, the player will provide it with information set targeting for each
action selection. We did not implement public subgame targeting, because not
all games have public subgames (in our case goofspiel, and princess and mon-
ster), and because, unlike information set targeting, it is of no use to continual
resolving.

3.5 Player evaluators
The purpose of a player evaluator is to estimate the strategy played by a given
player in a given game. For offline solvers this is trivial, since they give us
strategy for the whole game directly. A player, on the other hand, modifies his
strategy during each action selection and may not even store a strategy for the
whole game. We therefore have to aggregate it. This can be done precisely by
traversing the game tree, computing a strategy in each of the player’s information
sets, and aggregating them together to obtain a strategy for the whole game. This
approach is implemented in TraversingEvaluator.

However since this approach is unfeasible for larger games. We therefore
also include the aggregate method described by Lisý et al. [2015]. It works by
playing many matches against a random opponent and aggregating strategies
for information sets which are likely to be similar to the ones that would be
computed by the exact method. For the solving player, unless information set
targeting is used, we include all the player’s information set with the same number
of his previous actions, since they would have the same amount of solving time
to compute a strategy. If information set targeting is used then we include only
the targeted information and the player’s information sets directly under it . For
continual resolving we use a similar approach, but limited to the current subgame.
This is implemented in GamePlayingEvaluator.
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3.6 Configuration
Because our application has a console interface, we need a way to assemble the
objects described above from a textual description. Since many of those objects
also have complex dependencies we cannot just use simple command-line options
for each hyperparameter. The configuration should be short and easily readable.
While there are different textual formats for configuration – such as XML or
JSON – we were unable to find one that would be quite right for our use-case.
We therefore designed our own from scratch.

We used ANTLR 4 parser generator [ant] to write a grammar and generate
a parser for it. The grammar supports integers, floats, booleans, strings, objects
and arrays. An object has a name and any number of positional and key-value
parameters. We use the generated parser to construct an abstract syntax tree.

ContinualResolving{VR-MCCFR{rm=RM,e=0.7,bl=ExpAvg{0.3}}}

Figure 3.1: Example of a configuration string with nested complex objects, posi-
tional and key-value parameters.

The abstract syntax tree is then passed to a configurable factory along with
a requested type of the object to be configured. The factory directly supports
primitive types. To support additional types, it must be provided with an identi-
fier, a list of possible parameters and a function to assemble the object given the
parameters (which are first processed by the factory). The factory then traverses
the abstract syntax tree and tries to assemble the object.
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4. User manual
In this chapter we briefly describe commands available in the console interface of
our application. More details, including the precise command-line options, can
be found by using the built-in help command. More details can also be found in
Appendix A.4.

The application includes three evaluation commands – solve, evaluate and
cfrd-eval. All of these commands include a warm-up phase, save evaluation
results to a file, and support quiet and dry-run modes. In the quiet mode a com-
mand does not write text to the standard output. In the dry-run mode the
evaluation results are not saved to a file.

The solve command is used to evaluate performance of an offline CFR solver
on a given game by running the solver for specified amount of time and periodi-
cally evaluating the exploitability of the accumulated strategy. The final strategy
can also be saved to a file.

The evaluate command is used to evaluate performance of a player on
a given game using a given player evaluator (traversing or game-playing eval-
uator). Traversing evaluator saves the evaluation results directly to a CSV file.
Game-playing evaluator instead serializes the results (including the aggregated
strategy). Results from multiple game-playing evaluations with matching settings
can be merged together (using the merge-gp-results command), and converted
to a CSV file (using the gp-to-csv command).

The cfrd-eval command is used to evaluate performance of a combined trunk
strategy and a strategy resolved from a CFR-D subgame gadget. A trunk strategy
can be either loaded from a file or computed by a given solver in a given time-limit.
Once a trunk strategy is obtained, the game tree is traversed in order to find out
the information necessary to construct a CFR-D subgame gadget (opponent’s
counterfactual values and our reach probabilities). The counterfactual values can
be computed either precisely (using counterfactual best response as in Burch et al.
[2014]), or approximately (using just the trunk strategy). To specify a subgame
to be resolved and a resolving player, a user provides a sequence of action indices.
These indices correspond to a single game state. The resolving player is the acting
player of this state, and the subgame is the smallest CFR-D subgame containing
this state. The combined strategy is obtained by taking the trunk strategy and
replacing all the resolving player’s information set strategies from the subgame
with the corresponding resolved strategy.

The other commands are run (which runs a single match of a given game and
two given players), tournament (which runs multiple matches with given settings
and aggregates the results), game-info (which returns information about the size
of a given game), and of course help.
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5. Experimental evaluation
In this chapter we evaluate the performance of continual resolving in different
games. We start by evaluating offline performance of CFR with different hy-
perparameters. We then select several of the best solvers for use in the online
evaluation. We again start by selecting the best values for online-specific hyper-
parameters. Finally, we compare continual resolving to online CFR. All evalua-
tion is done in perfect-recall variants of selected games. We used GNU Parallel
[Tange, 2018] to run the evaluation jobs concurrently on up to two Linux ma-
chines with 24-core Xeon E5-2680 v3 (48 HT threads) processors, and 128 GB
and 256 GB RAM respectively. JDK 11.0.2 was used for all evaluation runs. The
results of the experiments are attached to the thesis. More details can be found
in Appendix A.1.

5.1 Solver hyperparameter selection
As we described in Chapter 3, our CFR and MC-CFR solvers have a variety
of hyperparameters. Some of those hyperparameters are present in both CFR
and MC-CFR. However, we evaluate them separately because of the differences
between the two algorithms. Given the large number of possible combinations
of hyperparameter value choices, we optimize each hyperparameter on its own,
combine the best values together and compare them to configurations used in
other papers.

The following games have been selected for the evaluation:

Game |H| |I| |∆u| |A|
PerfectRecall{LatentTicTacToe{}} 4854291 342196 2 9
IIGoofspiel{6}1 2006323 166002 2 6
PerfectRecall{LeducPoker{100,100,3,30}} 4362901 50640 38 3
PerfectRecall{PrincessAndMonster{8}} 2570339 3218 28 4

Table 5.1: Command-line configuration keys for selected games and their proper-
ties.2 ∆u = ∆u,1 = ∆u,2 for zero-sum games. Additionally, for all selected games
|A1| = |A2|, where |Ai| = max

h∈H : P (h)=i
|A(h)|.

Each solver was tested in all games with time limit of 30 minutes, which al-
lowed us to reach approximately 109 visited states in all games. The accumulated
strategy was evaluated every 30 seconds.

5.1.1 CFR
Our CFR implementation has the following hyperparameters: a regret matching
algorithm, alternating/simultaneous updates and cumulative strategy discounting
exponent. Results for each hyperparameter are averaged over four runs.

1II-Goofspiel is implemented with perfect recall.
2Game parameters are explained in 3.2.
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We start by comparing alternating and simultaneous updates. We used the
basic regret matching and no cumulative strategy discounting for both cases.

108 109

10−1

100

Ex
pl

oi
ta

bi
lit

y
IIGoofspiel

108 109

10−1

100

LTTT

108 109

100.6

100.7

Visited states

Ex
pl

oi
ta

bi
lit

y

Leduc Poker

108 109

100

101

Visited states

PAM

alternating simultaneous

Figure 5.1: Comparison of alternating and simultaneous updates in CFR.

In Figure 5.1 we can see that neither option is clearly better than the other,
however given the much better performance of alternating updates in goofspiel,
and princess and monster we chose alternating updates for our solver candidates.

Next we compare different values of cumulative strategy discounting expo-
nents. When cumulative strategy σ is updated at iteration t+1 with discounting
exponent γ, it is multiplied by

(︂
t

t+1

)︂γ
before accumulating the current strategy.

Sensible values for γ are from the interval [0, +∞). We try values from 0 to 3
with 0.3 increments. We use regret matching+ and alternating updates for the
comparison.

Figure 5.2 shows that apart from zero, the other values have similar perfor-
mance. Upon closer inspection we concluded that values between one and two
seem to work best, we selected 1.5.
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Figure 5.2: Comparison of different cumulative strategy discount exponents for
CFR.

Finally, we have to choose a regret matching algorithm. We do not consider
explorative regret matching at this stage. That leaves us with regret matching,
regret matching+, and discounting regret matching. Discounting regret matching
(DRM) has two hyperparameters α and β. At each iteration t accumulated
positive regret is multiplied by tα

tα+1 before adding new regret, similarly for β
and negative regret. Therefore, the higher the value, the less is the corresponding
regret discounted. This formulation allows DRM to emulate both regret matching
(DRM∞, ∞) and regret matching+ (DRM∞, −∞).

We evaluate each DRM hyperparameter separately with cumulative strategy
discounting exponent equal to two and alternating updates and the other hyper-
parameter fixed to ∞. The results for α are in Figure 5.3. We selected α = 1.5,
which is among the best values in three of the tested games. The results for β
are in Figure 5.4. We selected β = 0.5, which is among the best values in all four
tested games.
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Figure 5.3: Comparison of different α for DCFRα, ∞, 2.
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Figure 5.4: Comparison of different β for DCFR∞, β, 2.
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If we put all the selected hyperaparameters together, we get our candidate
– DCFR1.5, 0.5, 1.5 with alternating updates. We now compare it with configura-
tions we found in other papers. The CFR configurations are further described in
Table 5.2.

The results are in Figure 5.5. We can see, that both CFR+ variants are among
the best solvers in all the games we tested. Our DCFR candidate also performed
quite well, and it managed to beat CFR+ in some games. In the end we selected
DCFR1.5, 0.5, 1.5 and CFR+ 1 for online evaluation.

CFR Original CFR with simultaneous updates
CFR au Original CFR with alternating updates
Deepstack CFR CFR with regret matching+, simultaneous updates and no

cumulative strategy discounting. Deepstack additionally dis-
cards strategy from early iterations, which we do not sup-
port.

CFR+ 1 Original CFR+ (with cumulative strategy discounting expo-
nent equal to 1)

CFR+ 2 As above but with cumulative strategy discounting exponent
equal to 2 (as suggested by Brown and Sandholm [2018])

DCFR1.5, 0, 2 Discounted CFR configuration suggested by Brown and
Sandholm [2018]

LCFR Linear CFR [Brown and Sandholm, 2018]

Table 5.2: Table of standard CFR configurations.
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Figure 5.5: Comparison of our CFR candidate to options used by other papers.

5.1.2 MC-CFR
Our implementation of MC-CFR with outcome sampling supports the following
hyperparameters: a regret matching algorithm, a cumulative strategy discounting
exponent, an exploration probability, and a baseline for variance reduction in
MC-CFR. Results for each hyperparameter are averaged over 20 runs.

We start by comparing different values of the cumulative strategy discounting
exponent. We do this with regret matching, exploration probability equal to one
and no baseline.

The results in Figure 5.6 indicate that values 0 and 0.3 are among the best. We
chose 0.3, so that we have some discounting to better support in-match targeting
in the online setting (since we do not increase the weight of future iterations when
the targeting is changed).
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Figure 5.6: Comparison of different cumulative strategy discount exponents for
MC-CFR.

Next we compare different values of the exploration probability. Our MC-
CFR implementation uses alternating updates. Actions at iteration t, which
updates player i, are sampled from the distribution described in Equation 1.2.
The evaluation is done with regret matching, no cumulative strategy discounting
and no baseline.

The results are shown in Figure 5.7. We chose exploration probability 0.7,
which is among the best in all tested games.

As with CFR, we only evaluate different DRM configurations, since it can
emulate the other regret matching algorithms we considered. The evaluation for
both α and β was done with exploration probability 1, no cumulative strategy
discounting, no baseline and the other hyperparameter fixed to ∞.

The results are in Figure 5.8 and Figure 5.9. We selected 1 as the best value
for both hyperparameters.

The final hyperparameter is the decay factor for exponentially-decaying av-
erage baseline for VR-MCCFR. The evaluation was done with regret matching,
exploration probability 1 and no cumulative strategy discounting. The results
are in Figure 5.10. We selected 0.3 as the best value.

31



108 109

10−1

100

Ex
pl

oi
ta

bi
lit

y

IIGoofspiel

107 108 109

10−1

100

LTTT

107 108 109

10−0.5

100

Visited states

Ex
pl

oi
ta

bi
lit

y

Leduc Poker

108 109

100

101

Visited states

PAM

0.1 0.2 0.3 0.4 0.5 0.6
0.7 0.8 0.9 1.0

Figure 5.7: Comparison of different exploration probabilities for MC-CFR.
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Figure 5.8: Comparison of different α for MC-CFR with DRMα, ∞.
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Figure 5.9: Comparison of different β for MC-CFR with DRM∞, β.
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Figure 5.10: Comparison of different decay factors for exponentially-decaying
average baseline for VR-MCCFR.
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This gives us our two candidates – MC-CFR with DRM1, 1, cumulative strat-
egy discounting exponent 0.3, exploration probability 0.7, and either no baseline,
or exponentially-decaying average with decay 0.3. We again wanted it to compare
to some standard configurations, however in this case there were not any clear
candidates. In the end, we used mostly approximations of configurations men-
tioned in Schmid et al. [2018], however since the paper did not specify details such
as the cumulative strategy discounting, we had to guess there. The configurations
are listed in Table 5.3. All the configurations use exploration probability 1.

MC-CFR Basic MC-CFR
MC-CFR+ MC-CFR with regret matching+

MC-DCFR1.5, 0, 2 MC-CFR with DRM1.5, 0 and cumulative strategy discount-
ing exponent 2

MC-LCFR MC-CFR with DRM1, 1 and cumulative strategy discounting
exponent 1

VR-MCCFR VR-MCCFR with regret matching and exponentially decay-
ing average baseline with decay 0.5

VR-MCCFR+ VR-MCCFR with regret matching+, cumulative strategy
discounting exponent 1, and exponentially decaying average
baseline with decay 0.5

Table 5.3: Table of standard MC-CFR configurations.

Figure 5.11 shows that our candidates were the two best configurations in
all the games we tested, with the VR-MCCFR candidate being better than the
MC-CFR candidate. However, we used both candidates for the online evaluation.

All four candidates are compared in Figure 5.12. The MC-CFR candidates
have a clear advantage in early convergence, however they get overtaken by CFR
in the later stages. Note that the CFR lines are longer, because we limited the
evaluation by time, rather than visited states, and CFR traverses the game tree
more efficiently than MC-CFR.
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Figure 5.11: Comparison of our MC-CFR candidates to options used by other
papers.
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5.2 Player hyperparameter selection
Our CFR and MC-CFR implementations both have online-specific hyperparam-
eters. That is the depth-limit and utility estimation function for CFR, and in-
formation set targeting probability for MC-CFR. On top of that we also consider
explorative regret matching as it was previously used for OOS MC-CFR [Lisý
et al., 2015]. We again optimize each hyperparameter independently, and sepa-
rately for both players (continual resolving and online solving).

The evaluation was done on two sets of games – one set of smaller games for
the traversing evaluator (Table 5.4), and another set of larger games for the game-
playing evaluator (Table 5.5). Since latent tic-tac-toe was too large, we include
two variants of leduc poker – one with higher number of cards in each suite, and
another one with higher number of allowed raises in each betting round – to keep
the number of games the same. Strategies aggregated by game-playing evaluator
were restricted the intersection of information sets contained by all strategies
for given game (that is strategies for all players and their time-limits). This is
especially important when comparing continual resolving to online solving, which
produces a strategy for the whole game and is therefore able to cover a bigger
part of the game-tree in a single match.

Game |H| |I| |∆u| |A|
IIGoofspiel{4} 2229 738 2 4
PerfectRecall{LeducPoker{100,100,4,3}} 6529 840 50 3
PerfectRecall{LeducPoker{100,100,1,7}} 11635 616 14 3
PerfectRecall{PrincessAndMonster{5}} 11283 146 16 4

Table 5.4: Command-line configuration keys for selected games and their proper-
ties. ∆u = ∆u,1 = ∆u,2 for zero-sum games. Additionally, for all selected games
|A1| = |A2|, where |Ai| = max

h∈H : P (h)=i
|A(h)|.

Game |H| |I| |∆u| |A|
IIGoofspiel{5} 55731 9948 2 5
PerfectRecall{LeducPoker{1000,1000,14,3}} 62749 7920 170 3
PerfectRecall{LeducPoker{100,100,1,12}} 58225 1776 14 3
PerfectRecall{PrincessAndMonster{6}} 72531 402 20 4

Table 5.5: Command-line configuration keys for selected games and their proper-
ties. ∆u = ∆u,1 = ∆u,2 for zero-sum games. Additionally, for all selected games
|A1| = |A2|, where |Ai| = max

h∈H : P (h)=i
|A(h)|.

5.2.1 Explorative regret matching
Explorative regret matching adds a uniform strategy to the regret-matched strat-
egy with a small weight γ. We evaluate different values of γ separately for con-
tinual resolving and online solving. We use CFR+ as the underlying solver in
both cases. The evaluation is done on the games from Table 5.4 using traversing
evaluator.

39



The results are in Figure 5.13 and Figure 5.14 for continual resolving and
online solving respectively. However, there does not seem to be any benefit in
using explorative regret matching with either player.
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Figure 5.13: Comparison of different exploration weights for explorative regret
matching with continual resolving.
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Figure 5.14: Comparison of different exploration weights for explorative regret
matching with online solving.

5.2.2 Information set targeting
Information set targeting is only applicable for MC-CFR solvers. It works by
sampling the targeted portion of the game (in this case the states contained in
a current information set and their descendants) with higher probability. At the
beginning of each MC-CFR iteration a scenario is decided – with probability t
the iteration will be targeted, otherwise it will be not be targeted. If the iteration
is targeted, only states from the targeted portion of the game can be sampled.

We again evaluate different values of t for both players separately. We use the
VR-MCCFR candidate from the offline evaluation as the underlying solver. The
evaluation is done on the games from Table 5.4 using traversing evaluator.

The results for continual resolving are in Figure 5.15. The results seem to be
very game-dependent and there is no clear best option. We chose t = 0 which is
among the reasonably behaving options.

The results for online solving are in Figure 5.16. They are certainly more
consistent than the results for continual resolving. While t = 0 seems to be the
best option, we chose t = 0.1 which is very close in terms of performance, however
it should give the player a better chance in larger games.
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Figure 5.15: Comparison of different information set targeting probabilities with
continual resolving.
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Figure 5.16: Comparison of different information set targeting probabilities with
online solving.
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5.2.3 Depth-limited CFR
Depth-limited CFR works by replacing the computation below certain depth with
an evaluation function. It therefore cannot be used with online solving, since there
we need to compute a strategy for the whole game. In our case we only have
a uniform random playout evaluation function. We evaluate different numbers of
samples used for each evaluation and different depth-limits (higher depth-limit
= less iterations, but more precise estimates). We use CFR+ as the underlying
solver. The evaluation is done on the games from Table 5.5 using game-playing
evaluator with 1000 matches per evaluated value.

First we evaluate the different numbers of samples. The results are in Fig-
ure 5.17. However, there seems to be almost no difference between the options.
Therefore, we chose to use only 1 sample for the evaluation function.

Next we evaluate different depth-limits. A depth-limit for continual resolving
must be high enough to reach our next turn in another subgame (in order to
collect the information necessary to advance to another subgame). This is ensured
automatically (see Appendix A.5 for more details). A depth limit d therefore
means that the solver will go to at least such depth, but possibly more. The
minimal depth-limit for a CFR-D gadget is 4 (initial chance node → opponent’s
choice node → our node → opponent’s node → our node in another subgame).

The results are in Figure 5.18. There again seems to be almost no difference
between the options. We therefore chose d = 0 (as little as necessary).
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mation for depth-limited CFR with continual resolving.
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5.3 Final evaluation
In the previous section we selected online-specific hyperparameters for our players.
Now we can compare their relative performance. But first we compare the MC-
CFR variants to CFR ones for baseline comparison. The evaluation is done on
the games listed in Table 5.5 using the game-playing evaluator with 1000 matches
per player configuration. Players had 1 second of pre-play time and between 0.5
and 20 seconds of additional time per move.

Figure 5.19 shows that except for Leduc poker with higher amount of possible
bets, the MC-CFR variants of continual resolving outperform the ones using
depth-limited CFR with the uniform random playout as an evaluation function.
This is not unexpected, given that the evaluation function is very naive.
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Figure 5.19: Comparison of continual resolving with different solvers.

On the other hand, Figure 5.20 shows that online solving performs better with
CFR solvers. However, this is likely due to the smaller size of the tested games.
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Figure 5.20: Comparison of online solving with different solvers.

Figure 5.21 compares continual resolving and online solving, with both using
the VR-MCCFR solver. Continual resolving seems to perform better in both
variants of Leduc poker, which unlike the other two games have public actions
and consequently smaller subgames. This is especially visible in the Leduc poker
with higher amount of possible bets, which has even smaller subgames than the
other Leduc poker variant, but has much more of them. On the other hand, in
princess and monster the only public information is how many turns have been
played so far, leading to subgames with roots corresponding to states with the
same depth.

However, it is possible that the advantage of continual resolving in games with
smaller subgames could be diminished by using public subgame targeting for the
solving player.
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Figure 5.21: Comparison of continual resolving and online solving with VR-
MCCFR as the underlying solver.

Finally, we compare head-to-head performance of different players on games
from Table 5.1, which we used for the offline evaluation. The players had 10
seconds of pre-play time and additional 30 seconds per move. We ran 20,000
matches for each game and each pair of players (10,000 for both role assignments).
The players are described in Table 5.6.
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Player Description
CR Continual resolving (our VR-MCCFR candidate).
OOS IST Our online solving candidate.
RND A uniform random player.
VR-MCCFR A player based on a fixed strategy precomputed for each game

by our offline VR-MCCFR candidate in 40 seconds.

Table 5.6: Description of players in the head-to-head comparison.

LP RND OOS IST VR-MCCFR
CR 0.704 ± 0.046 -0.037 ± 0.048 -0.056 ± 0.047

RND -0.873 ± 0.048 -0.854 ± 0.048
OOS IST -0.006 ± 0.052

IIGS RND OOS IST VR-MCCFR
CR 0.653 ± 0.010 -0.008 ± 0.013 -0.006 ± 0.013

RND -0.547 ± 0.011 -0.548 ± 0.011
OOS IST -0.011 ± 0.013

PAM RND OOS IST VR-MCCFR
CR 2.564 ± 0.144 -0.268 ± 0.149 -0.615 ± 0.150

RND -1.523 ± 0.147 -1.531 ± 0.146
OOS IST 0.028 ± 0.148

LTTT RND OOS IST VR-MCCFR
CR 0.852 ± 0.005 0.022 ± 0.007 0.011 ± 0.007

RND -0.750 ± 0.007 -0.757 ± 0.007
OOS IST -0.009 ± 0.007

Table 5.7: Head-to-head performance of different players in larger games. The
first number in each cell indicates mean payoff for the row player when playing
against the column player in the given game. The second number is a 95%
confidence interval.
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6. Discussion
In the previous chapter we evaluated the performance of continual resolving and
compared it to online solving. However we have seen that the performance of
continual resolving can be disappointing and often worse than that of online
solving, which is a much simpler algorithm. In this chapter we examine this in
greater detail.

One of the obvious disadvantages of our implementation of continual resolving
compared to online solving is that it cannot use the pre-play time as efficiently
as online solving. Online solving is able to improve the strategy for the whole
game directly during the pre-play time, whereas in continual resolving we throw
the trunk strategy away when we enter a new subgame. In this way the improve-
ment to the trunk strategy can only indirectly improve the subgame strategies
by creating better estimates of the opponent’s counterfactual values required for
the construction of the CFR-D gadgets.
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Figure 6.1: Comparison of impact of pre-play time on exploitability of continual
resolving and online solving.

Figure 6.1 shows how increasing the pre-play time affects the exploitability
of the overall strategy for both continual resolving and online solving when the
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action time remains fixed to 300 ms. Both the continual resolving and the online
solving players use our VR-MCCFR candidate from the offline evaluation round.
The evaluation is done in the games from Table 5.4 using traversing evaluator.

While the online solving player reliably improves with more pre-play time, the
continual resolving player only really improves in the two Leduc poker games.
This could be because the estimates of the opponent’s counterfactual values for
the subgame gadgets have already converged (probably PAM), or because of some
more complex interaction between an improving trunk strategy and a subgame
strategy that remains similar regardless of the improvement to the trunk strategy.

Another aspect to the player’s performance is if the extra time used for each
action selection actually helps compared to just constructing a strategy for the
whole game during the pre-play time and the time the for the first action selection
(we refer to this as the first action strategy). We would most definitely want
player’s overall strategy to improve with each additional action selection (even
though the benefit of the later action selections may be smaller because they can
no longer change the strategy in the previous steps).

We compared the overall strategies produced by continual resolving and online
solving separately against their first action strategies. It can be done because our
implementation of continual resolving always uses the whole game to compute
a strategy for the first action, even if it could use a smaller subgame (e.g. when
it is acting second). We do this, because otherwise the pre-play time would be of
very limited value to the continual resolving player.

Both the continual resolving player and the online solving players are our VR-
MCCFR based candidates from the online evaluation round. The evaluation is
done in the games from Table 5.4 using traversing evaluator with pre-play time of
300 ms. Given the small size of the games, this is a sort of worst-case scenario for
this comparison, because both players are able to construct a first act strategy
for the whole game. In larger games where this would not be possible with the
given time constraints, the additional action selection steps would likely have
more benefit.

Figures 6.2 and 6.3 compare the exploitabilities of the first action strategy
and the final strategy for continual resolving and online solving respectively. We
can see that neither player is making consistent improvements to their first action
strategy, however the continual resolving player seems to be almost consistently
bad in this regard.

We suspect that this could be at least partially caused by the CFR-D gadget.
While it guarantees that combining a Nash equilibrium strategy for the subgame
gadget with the resolving player’s trunk strategy will not increase the exploitabil-
ity for the resolving player (provided that the assumptions made by CFR-D are
met), this may not be the case when the subgame strategy is not a Nash equilib-
rium. Furthermore, we do not use a counterfactual best response (CBR) strategy
for the opponent when calculating their counterfactual values for the subgame
gadget (which is required by CFR-D). We instead use their average strategy from
the trunk and instead of the exact counterfactual values for the average strategy,
we use the average of the counterfactual values from each iteration.
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Figure 6.2: Comparison of exploitability of first action’s strategy and final strat-
egy for continual resolving.
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Figure 6.3: Comparison of exploitability of first action’s strategy and final strat-
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To illustrate possible behaviors of CFR-D gadgets in different subgames, we
evaluated a single step of CFR-D in a given subgame with a fixed trunk strategy.
The trunk strategies were precomputed separately and used to compute the val-
ues necessary for the CFR-D gadget. The opponent’s counterfactual values for
the CFR-D gadget were computed either using the counterfactual best response
(these results are marked with CBR), or just using the opponent’s strategy in the
trunk. The combined strategy was then created by taking the trunk strategy, and
replacing strategies for each of the resolving player’s information set inside sub-
game with the corresponding subgame strategy. The opponent’s strategy remains
the same as in the trunk.

We use CFR+ in these experiments to avoid the non-determinism of MC-CFR.
Apart from the exploitability plots for the combined strategies, we also include
exploitability plots of the subgame strategies in the corresponding subgame gad-
get. A subgame is identified by a sequence of actions leading from the root of
the game to one of the root states in the subgame.1 The resolving player is the
acting player in that state.

Figure 6.4 shows that the combined strategy may not properly converge to
the trunk when the opponent’s counterfactual values are not computed from the
opponent’s CBR strategy. The results were measured in latent tic-tac-toe, with
subgame given by the following sequence of actions: Mark(0,0), Mark(0,0),
Mark(0,1). The trunk strategy was computed using CFR+ in 23 iterations (that
is approximately 108 visited states) with exploitability equal to 0.0969.
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Figure 6.4: Example of a subgame where the combined strategy does not properly
converge with approximate counterfactual values in the subgame gadget.

We can see that while both subgame gadgets converge at a similar rate, the
subgame gadget constructed using CBR recovers the trunk strategy early, while
the subgame gadget which uses just the opponent’s trunk strategy does not seem
to be able to recover the trunk strategy.

However, as shown in Figure 6.5, this does not always have to be the case.
1While the command-line interface expects the sequence to be encoded as an array of action

indices, we report them here as pseudo-code for better readability.
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This result is again from latent tic-tac-toe, but this time the subgame is given
by the sequence: Mark(0,0), Mark(0,0). We used the same trunk strategy as in
the previous case. We can see that in this larger subgame the combined strategy
manages to improve the trunk strategy even when not using the CBR values.
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Figure 6.5: Example of a subgame where the combined strategy improves the
trunk strategy.
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Figure 6.6: Example of a subgame where the combined strategy quickly recovers
the trunk strategy, but does not improve it.

Figure 6.6 shows a result where the trunk strategy is recovered very quickly
(in just 9 iterations of CFR+ without even using CBR values). Even more in-
terestingly it is the same subgame as in Figure 6.4, but with a different trunk
strategy. Here we used a strategy which we computed using VR-MCCFR for the
tournament in the previous chapter. The strategy was computed in about 4.4
million iterations of VR-MCCFR (or 3.2 · 107 visited states) and it’s exploitabil-
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ity is 0.1485. This result suggest that even with similar exploitabilities, some
strategies may be easier to resolve than others.

Figure 6.7 shows a result where the combined strategy’s exploitability does not
seem to converge to the exploitability of the trunk strategy even when using CBR
values. However since the combined strategy’s exploitability cannot be higher
that the trunk strategy’s exploitability when the subgame strategy reaches a Nash
equilibrium and CBR is used, we can only conclude that it would likely take a long
time. The result is measured in II-Goofspiel with 5 cards. The subgame is given
by this sequence of actions: Bet(0), Bet(0). The trunk strategy was computed
using CFR+ in 420 iterations (or 2.3 · 107 visited states) and it’s exploitability is
0.0289.
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Figure 6.7: Example of a subgame where the combined strategy improves over
time, but it is not able to recover the trunk strategy.

Finally, we wanted to see the impact of randomly noised counterfactual val-
ues in the subgame gadget on the exploitability of the combined strategy. First
we computed the standard opponent’s counterfactual values (using CBR) for the
CFR-D subgame gadget. Then each of these values was multiplied by a factor
drawn independently for each counterfactual value from N (1, σ) for a given stan-
dard deviation σ. We repeated this for 50 iterations (each iteration starting with
the original counterfactual values) for each value of σ. The relative noise allows
us to use the same standard deviation for all the games, even though their utilities
can be quite different.

We again used CFR+ to resolve the subgames. The evaluation was done on
games from Table 5.1. We used the strategies we precomputed for the tournament
in the previous section as trunk strategies. The action sequences specifying the
subgames are in Table 6.1.

The results in Figure 6.8 are as expected – more precise counterfactual values
lead to better performance. As the standard deviation of the noise gets higher, the
convergence slows down and in extreme cases the exploitability of the combined
strategy might converge to a higher value than that of the trunk strategy. It
is also noteworthy that even without the noise, the convergence in princess and
monster is slow.
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Figure 6.8: Comparison of how randomly noised counterfactual values in CFR-D
gadget affect exploitability of the combined strategy.

Game Subgame specification
IIGoofspiel Bet(0), Bet(0)
Latent Tic-Tac-Toe Mark(0), Mark(0)
Leduc Poker Deal(0,1), Deal(0,2), Call(), Raise()
Princess and Monster Move(1,0), Move(1,2)

Table 6.1: Table of subgame specifications for the evaluation of the impact of
randomly noised counterfactual values on the exploitability of resulting combined
strategies.
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7. Related work
The most closely related work is Monte Carlo Continual Resolving for Online
Strategy Computation in Imperfect Information Games [Sustr et al., 2018]. It
adapts continual resolving for general imperfect information games and uses MC-
CFR as the underlying solver. Overall it is similar to our approach with some mi-
nor differences in the implementation of continual resolving (eg. it uses a weighted
average to estimate opponent’s counterfactual values for the CFR-D gadget).

Additionally, it provides a theoretical analysis of the algorithm. For us the
most interesting part is the probabilistic upper bound on exploitability of con-
tinual resolving’s strategy quoted in Theorem 1. Each additional resolving adds
a non-negative member to the upper bound on overall exploitability. Our own
results from the previous chapter [Figure 6.2], where we compare the exploitabil-
ity of the first action’s strategy to the overall strategy produced by continual
resolving, point to a similar behavior.

Theorem 1 (Sustr et al. [2018]). With probability at least (1 − p)N+1, the ex-
ploitability of strategy σ computed by MCCR satisfies

expli(σ) ≤
(︂√

2/
√

p + 1
)︂
|Ii|

∆u,i

√
Ai

δ

(︄
2√
T0

+ 2N − 1√
TR

)︄
,

where T0 and TR are the numbers of MCCR’s iterations in pre-play and each
resolving, N is the number of required resolvings, δ = minz,t qt(z) where qt(z) is
the probabilty of sampling z ∈ Z at iteration t, ∆u,i = maxz,z′ |ui(z)− ui(z′)| and
Ai = maxI∈Ii

|A(I)|.

Another algorithm for online gameplay of imperfect information games is In-
formation Set Monte Carlo Tree Search (ISMCTS) [Cowling et al., 2012]. It
adapts Monte Carlo tree search to imperfect information games by searching
a tree of information sets instead of a game tree. However, unlike continual
resolving, this algorithm is not guaranteed to find a Nash equilibrium strategy.

Finally, there is the Hyperplay algorithm [Schofield et al., 2012], which is more
focused on general game-playing. It maintains a collection of perfect information
models of the game. It then uses a perfect information algorithm on those models,
combines their decisions to obtain an action selection for the game and updates
the model collection. It was further improved by HyperPlay-II [Schofield et al.,
2013], which calculates expected payoff of a strategy in the imperfect information
game, instead of a perfect information sample. However, even the improved
version is short-sighted when valuing information [Chitizadeh and Thielscher,
2018].
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Conclusion
In this thesis we presented a generalized version of the continual resolving al-
gorithm from Deepstack [Moravč́ık et al., 2017]. We evaluated its performance
across different games and compared it to the performance of online solving. How-
ever, continual resolving only seems to be better than online solving in games with
narrow subgames (like poker). As the subgames grow larger, the advantage of
continual resolving diminishes. Furthermore, online solving would likely perform
better in games with narrow subgames if public subgame targeting was used.

The main advantage of continual resolving seems to be in the original Deep-
stack use-case – playing a large game by resolving strategy for each step us-
ing a pre-computed evaluation function (which can be compactly represented by
a neural network) and depth-limited CFR. On the contrary, CFR and MC-CFR
would have to store a strategy for the whole game, which makes them impractical
for large games. This is however not as useful in general game playing because it
is difficult to create a suitable evaluation function for a general game.

As a side result, we have also compared the performance of various CFR
and MC-CFR variants, and demonstrated possible convergence issues with the
CFR-D gadget.

As part of the thesis, we developed CFRPlayground – a Java application
which provides tools for evaluating CFR-based solvers and players in general
games. This application is open source and could be a useful starting point for
evaluating other CFR-based algorithms in both online and offline setting.

Future work could be focused on improving the CFR-D gadget (or trying
other gadgets, as was already suggested by [Moravč́ık et al., 2017]). Another
possibility is to explore other sampling schemes for the underlying VR-MCCFR
solver to try to improve the long-term convergence of outcome sampling (and its
variance), while maintaining its early convergence.
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A. Appendix

A.1 Attached files
The thesis comes with files attached to it. They are structured as follows:

• /bin/ – CFRPlayground’s executables,

• /data/ – aggregated experiment results used to draw plots in Chapter 5
and Chapter 6,

• /docs/ – javadoc documentation for the source code,

• /experiment-results/ – raw experiment results as produced by CFRPlay-
ground, and job files with the corresponding CLI arguments,

• /src/ – CFRPlayground’s source code,

• agg_results.py – a python script which aggregates the raw results from
CFRPlayground.

A.2 Experiment results data model
The experimental results are outputs of 4 different CFRPlayground’s commands –
solve, evaluate, tournament, and cfrd-eval. Each of these commands reports
slightly different data. The final results are stored as CSV files in a directory
structure, which captures some of the command’s settings.

A.2.1 Solve command
The solve command is used to evaluate a solver in a game with time limit given
in seconds and evaluation frequency in milliseconds. The results are stored in the
following path relative to the specified results directory (brackets are replaced by
corresponding parameters):
/{game}/{solver}/{timeLimitS}-{evalFreqMs}-{dateKey}-{resultPostfix}.

csv

The game and solver parameters are replaced by the canonical configuration
key of the selected game/solver. The result postfix can be used to add a comment
to the result file (we used it to prevent file-name collision during the parallel
evaluation).

The CSV file has the following columns:

• intended_time – time (ms) after which the solver should have been evalu-
ated (a multiple of evaluation frequency),

• time – time (ms) after which the solver was actually evaluated,

• iterations – number of iterations the solver has done,

• states – number of states the solver has visited,
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• exp – exploitability of the solver’s average strategy,

• avg_regret – the solver’s average regret.

A.2.2 Evaluate command
The evaluate command is used to evaluate a player in a game with given pre-
play time and several time-limits for action selection (all in milliseconds). The
result’s format depends on the specified evaluator.

Traversing evaluator stores results directly in the following CSV file:
/{game}/{player}/tr-{initMs}-{dateKey}-{resultPostfix}.csv

Game-playing evaluator instead stores results as a serialized object, which
includes the aggregated strategy. This allows the evaluation to be split into
multiple jobs and then merged together using the merge-gp-results command.
Finally, the merged results are converted to a CSV file using the gp-to-csv
command, which stores in the following path:
/{game}/{player}/gp-{initMs}-{intendedTimeMs}-{gameCount}-{dateKey}-

conv.csv

The CSV files from both of these evaluators have the following columns:

• intended_time – intended time limit for each action selection (ms),

• time – average action selection time (ms),

• intended_init_time – intended pre-play time (ms),

• init_time – average pre-play time,

• states – total number of states visited during the evaluation (depends on
the evaluator, only relative comparison with the same evaluator is signifi-
cant),

• init_states – average number of states visited during the pre-play time,

• path_states – average number of states visited during action selections for
a single match (excluding pre-play time),

• path_states_min – minimum number of states visited during actions se-
lections for a single match,

• path_states_max – maximum number of states visited during actions se-
lections for a single match,

• exp – exploitability of the overall strategy,

• first_act_exp – exploitability of the first action strategy.
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A.2.3 Tournament command
The tournament command is used to run multiple matches of a game between
two players with pre-play time and action selection time given in milliseconds.
The results are stored in the following CSV file:
/{game}/{initMs}-{timeLimit}-{dateKey}-{resultPostfix}.csv

Each data row in the CSV file is a result of a single match. The CSV file
contains the following columns:

• player1 and player2 – configuration keys for players 1 and 2,

• intended_init_time – intended pre-play time (ms),

• intended_time – intended action selection time (ms),

• init1 and init2 – actual pre-play times for players 1 and 2,

• time_sum1 and time_sum2 – sum of action selection times for players 1 and
2,

• actions1 and actions2 – number of action selections for players 1 and 2
in the match,

• payoff1 and payoff2 – payoffs for players 1 and 2 (so that the command
works even for non-zero-sum games).

A.2.4 CFRD-Eval command
The cfrd-eval command is used to evaluate a single step of CFR-D. The results
are stored in the following CSV file:
/{game}-{subgame}/{solver}-{useCBR}-{cfvNoise}/{timeLimitS}-{evalFreqMs

}-{dateKey}-{resultPostfix}.csv

The CSV file contains the following columns:

• intended_time – time (ms) after which the solver should have been evalu-
ated (a multiple of evaluation frequency),

• time – time (ms) after which the solver was actually evaluated,

• iterations – number of iterations the solver has done,

• states – number of states the solver has visited,

• exp – exploitability of the combined strategy in the whole game,

• avg_regret – the solver’s average regret,

• trunk_exp – exploitability of the trunk strategy in the whole game,

• subgame_exp – exploitability of the solver’s average strategy in the subgame
gadget.
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A.2.5 Aggregated data
To plot the data, we need to aggregate results from multiple runs. The results
can be aggregated using the attached agg_results.py script. It requires python
3 with pandas and numpy libraries installed. The results are grouped by the
directory structure (game and solver/player), and by intended time (and intended
init time – if available), the values in the columns are replaced by the average of
the grouped results. Columns for 5th and 95th percentile values are added for
exploitability and several other attributes.

A.3 Building from source
To build CFRPlayground executable from source code you need to have appro-
priate versions of Java development kit (8+) and Gradle installed (4.9+). Then
you can simply run the following command in the source directory:

$ ./gradlew installDist

It will automatically download the dependencies, build the executable and
place it in the /build/install/CFRPlayground/bin/ directory.

A.4 Usage examples
We will now go over some the most common usage scenarios which we used
during the evaluation. The experiment results also contain job files with the CLI
arguments used to generate them, which can provide additional help. The job
files do not contain the executable name (in order to work with different paths).
A simple way to execute the jobs using GNU parallel is like this:

$ parallel {} -q --res-postfix {#} ::: ./build/install/CFRPlayground/
bin/CFRPlayground :::: jobs.txt

This will execute CFRPlayground for each line in jobs.txt and pass addi-
tional arguments – -q for quiet mode, and --res-postfix set to sequence number
of the job (to prevent conflicts in names of the result files).

To get the list of available CLI commands run:
$ ./CFRPlayground help

The parameters of a command can be obtained by running:
$ ./CFRPlayground help COMMAND

Most commands also have non-primitive parameters – such as games and
players/solvers. These are constructed from a string specification using one of the
factories for the type requested by the command. Information about the available
types and implementations is provided by the config-help command. Without
any parameters this command will list available configurable types. The list of
implementations for a given type can be obtained by adding -t TYPE parameter
to the command. The TYPE can be a substring of the full type name – the
command will simply list implementations for each matching type. Finally, each
implementation can have multiple factories with different parameters. The list of
available factories and their parameters for an implementation can be obtained by
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running the config-help command with parameter -i IMPLEMENTATION where
IMPLEMENTATION is the full implementation name. Note that configuration keys
are case-sensitive.

Let us assume, that we want to run a single match. By using the help
command with no parameters, we find out, that this is done by the run command.
We then run help run to obtain the list of parameters:
$ ./CFRPlayground help run
Usage: ./CFRPlayground run [-hV] --player1=<player1> --player2=<player2

> -g=<game>
Runs given game with given players

Options:
-g, --game=<game> game to be played (IGameDescription)

--player1=<player1> player 1 (IPlayerFactory)
--player2=<player2> player 2 (IPlayerFactory)

-i, --init=<init> Init time (ms)
-t, --time-limit=<timeLimit>

Time limit per move (ms)
-h, --help Show this help message and exit.
-V, --version Print version information and exit.

We can see that we need to specify game (configuration string for one of
the implementations of IGameDescription) and two players (implementations of
type IPlayerFactory). Using config-help -t we can list the available imple-
mentations for these two types, select the ones we want, and find their parameters
using config-help -i. The final command can look like this:
$ ./CFRPlayground run -g "PerfectRecall{LeducPoker{7}}" --player1=

RandomPlayer --player2="ContinualResolving{CFR{rm=RM+,cse=1}}" -i
1000 -t 1000

Which runs a single match of perfect-recall Leduc poker where the first player
is a uniform random player and the second player is a continual resolving player
with CFR+ solver. Note that depending on your shell, you may have to quote
the configuration strings to prevent unwanted shell expansion.

A.5 Continual resolving with a depth-limit
When continual resolving is used together with depth-limited CFR, it must be
ensured, that the depth-limit is sufficiently high, so that the player’s next turn in
another subgame is visited during the resolving. This is necessary to aggregate
the values required by the CFR-D gadget.

However, no fixed depth-limit is sufficient for all possible games. To solve
this issue, CFRPlayground includes a utility estimator wrapper (Continual-
ResolvingUtilityEstimatorWrapper), which ensures that the condition is met,
before it allows the rest of the computation to be replaced by the underlying
utility estimator. It can be used in a configuration string like this:
ContinualResolving{CFR{ue=CRUEW{RandomPlayout{1}},dl=0,rm=RM+,au=true,

cse=1.0}}
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Note that the depth-limit can now be 0. In that case the wrapper ensures,
that the effective depth-limit is the minimal depth-limit required by continual
resolving in the particular game.
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