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Notation
Throughout the thesis, Ω ⊂ Rn will always denote a Lipschitz domain. Vector-
valued functions will usually have N components and depend on n variables
called x, that is u : Ω → RN , in the case of parabolic equations u : [0, T )×Ω → RN

and the first variable is called t. Variables under the integral sign are often
omitted, that is we use

∫
Ω u :=

∫
Ω u(x) dx.

• x · y =
n∑

i=1
xiyi for x, y ∈ Rn

• |x| =
√
x · x for x ∈ Rn

• A : B =
n∑

i=1

N∑
j=1

AijBij for matrices A,B ∈ Rn×N

• |A| =
√
A : A for a matrix A ∈ Rn×N

• a+ = max{a, 0}, a− = max{−a, 0} for a ∈ R ∪ {∞,−∞}

• |Ω| the Lebesgue measure of Ω

• convM the closed convex hull of the set M ⊂ RN

• (∇u)ij = ∂uj

∂xi

, i = 1, . . . , n, j = 1, . . . , N the gradient of u : Ω → RN

In the case of functions also depending on t, we only take the gradient with
respect to x.

• (∆u)j = ∆uj =
n∑

i=1

∂2u

∂x2
i

, j = 1, . . . , N the Laplace operator for u : Ω → RN

• (divF )j = divFj =
n∑

i=1

∂Fij

∂xi

, j = 1, . . . , N the divergence of F : Ω → Rn×N

• Lp(Ω,RN) Lebesgue space of functions with values in RN with the norm

∥u∥p = ∥u∥Lp(Ω,RN ) =
(∫

Ω
|u|p

) 1
p

, p ≤ 1 < ∞, ∥u∥∞ = ess sup
Ω

|u|

• W 1,p(Ω,RN) Sobolev space of functions with values in RN , with the norm

∥u∥1,p = ∥u∥W 1,p(Ω,RN ) =
(
∥u∥p + ∥∇u∥p

) 1
p

• W 1,p
0 (Ω,RN) ⊂ W 1,p(Ω,RN) the subspace of functions with zero trace

• W−1,p(Ω,RN) =
(
W 1,p

0 (Ω,RN)
)∗

the dual space

• C(Ω,RN) continuous functions with values in RN

• Ck(Ω,RN) the space of functions with continuous derivatives up to order k

• Lp([0, T ), X), W 1,p([0, T ), X), Ck([0, T ), X) corresponding Bochner spaces

• In all the function spaces, in the scalar case N = 1 we omit the RN symbol.
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0. Preface
This thesis deals with the convex hull property for systems of partial differen-
tial equations. It is the natural generalisation of maximum principles for scalar
equations. It turns out that the validity of the convex hull property for systems
requires some rather strict conditions on the structure of the coupling of the sys-
tem. On the other hand, rather surprisingly, (some) non-linearities are admissible
for the convex hull property.

The novelties in this thesis are the following. The convex hull property holds
for the parabolic p-Laplace equation. Here we prove even more: We include lower-
order terms in the equation and the non-linearity may be more general than the
one of the p-Laplacian. We also investigate the conditions for general linear ellip-
tic systems. Finally, we provide counterexamples to the convex hull property for
elliptic and parabolic linear systems. It is remarkable that the elliptic counterex-
ample needs variable coefficients in order to fail the convex hull property (as we
will demonstrate) while the parabolic counterexample has constant coefficients.
This is in line with the observations made in Kresin and Maz’ya [2012] on elliptic
and parabolic systems.

The structure of the text is as follows. Chapter 1 contains a discussion of
known results. It starts by recalling the maximum principles for scalar equations,
then it proceeds to survey known results on the convex hull property. Moreover a
new proof for Laplace equation in RN is demonstrated as an illustration. Chap-
ter 2 then contains the necessary theory for projections to convex sets, which will
serve as the essential tool for proving our main results on the convex hull prop-
erty in Chapter 3. The final Chapter 4 contains the counterexamples mentioned
above.

The notation used is rather standard, but for the sake of completeness, a list
is included at the beginning. The Appendix at the end contains a list of results
from analysis that are used throughout the text.
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1. Introduction
Recall from Notation that throughout the thesis Ω ⊂ Rn will always be a Lispchitz
domain.

1.1 Maximum principles for scalar equations
In this section we recall known maximum principles for elliptic partial differential
equations, both for classical and weak solutions. The topic has been studied
extensively, and the results for classical solutions can be found for instance in
Evans [2010], and for both classical and weak solutions in Gilbarg and Trudinger
[2001]. Our main interest will be in the weak maximum principle, since that is
the one we will attempt at generalising to the convex hull property in systems of
equations.

Theorem 1.1 (Weak maximum principle for elliptic equations, classical solu-
tions). Let us consider the differential operator L in the nondivergence form

Lu = −
n∑

i,j=1
aij

∂2u

∂xi∂xj

+
n∑

i=1
bi
∂u

∂xi

+ cu, (1.1)

where aij, bi, c ∈ C(Ω) and the matrix A = (aij)n
i,j=1 is everywhere symmetric and

uniformly elliptic, that is, there exists α > 0 such that for every x ∈ Ω

∀ξ ∈ Rn : Aξ · ξ ≥ α |ξ|2 .

Assume that u ∈ C2(Ω) ∩ C(Ω) solves

Lu = 0 in Ω. (1.2)

(i) If c ≡ 0 in Ω, then

max
Ω

u = max
∂Ω

u and min
Ω
u = min

∂Ω
u.

(ii) If c ≥ 0 in Ω, then
max

Ω
|u| = max

∂Ω
|u| .

Sketch of proof. The proof is based on the fact that the matrix A can be (at every
point x ∈ Ω) diagonalised by an orthogonal matrix O such that the diagonal
matrix D = OAOT has positive entries, and that the Hessian matrix

(
∂2u

∂xixj

)n

i,j=1
is negative definite at the point of a local maximum of u. Some care must be
taken when passing from strict to nonstrict inequality and the complete proof
can be found in [Evans, 2010, Section 6.4.1].

Remark. It is in fact sufficient to only consider subsolutions and supersolutions
to obtain the results in Theorem 1.1. In particular,

(i) if c ≡ 0 in Ω, then

Lu ≤ 0 in Ω =⇒ max
Ω

u = max
∂Ω

u, Lu ≥ 0 in Ω =⇒ min
Ω
u = min

∂Ω
u,
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(ii) if c ≥ 0 in Ω, then

Lu ≤ 0 in Ω =⇒ max
Ω

u ≤ max
∂Ω

u+, Lu ≥ 0 in Ω =⇒ min
Ω
u ≥ − max

∂Ω
u−.

Now let us turn our attention to weak solutions. The following theorem has
been adopted in a slightly modified form from [Gilbarg and Trudinger, 2001,
Section 8.1].

Theorem 1.2 (Weak maximum principle for elliptic equations, weak solutions).
Let L be a differential operator in divergence form

Lu = −div(Au) + b · ∇u+ cu,

where A ∈ L∞(Ω,Rn×n) is uniformly elliptic, that is for some α > 0 and a.e.
x ∈ Ω

∀ξ ∈ Rn : Aξ · ξ ≥ α |ξ|2 ,

b ∈ L∞(Ω,Rn), and c ∈ L∞(Ω), where c ≥ 0 a.e. in Ω.
Let u ∈ W 1,2(Ω) be a weak solution of

Lu = 0,

that is,
∀v ∈ W 1,2

0 (Ω) :
∫

Ω
A∇u · ∇v + (b · ∇u)v + cv = 0. (1.3)

Then

(i) If c = 0 a.e. in Ω, we have

u ≤ ess sup
∂Ω

u =: M, and u ≥ ess inf
∂Ω

u =: m a.e. in Ω.

(ii) If c ≥ 0 a.e. in Ω, we have

|u| ≤ ess sup
∂Ω

|u| a.e. in Ω.

Proof. Assume first that b = 0 and c = 0 a.e. in Ω. Then (u − M)+ ∈ W 1,2(Ω)
by Theorem 5.5, and even (u − M)+ ∈ W 1,2

0 (Ω) because u ≤ M on ∂Ω in the
trace sense. Thus we can use it as a test function in (1.3) and obtain

0 =
∫

Ω
A∇u · ∇(u−M)+ =

∫
Ω
A∇(u−M)+ · ∇(u−M)+,

since ∇u = ∇(u − M)+ on supp ∇(u − M)+. Hence, by using the uniform
ellipticity of A, we obtain

0 ≥
∫

Ω
α
⏐⏐⏐∇(u−M)+

⏐⏐⏐2 = α
∇(u−M)+

2

2
≥ α̃

(u−M)+
2

1,2
,

where the last inequality follows from the equivalence of the norms ∥∇(·)∥2 and
∥·∥1,2 on W 1,2

0 (Ω). Hence (u−M)+ = 0 in W 1,2
0 (Ω) and so also u ≤ M a.e. in Ω.

Now we allow b to be nonzero and still assume that c = 0 a.e. in Ω. We
proceed our proof by contradiction and assume M < ess supΩ u. We take some ℓ
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such that M ≤ ℓ < ess supΩ u. Now as before we have (u− ℓ)+ ∈ W 1,2
0 (Ω) and we

use it as a test function in (1.3), and use that ∇u = ∇(u− ℓ)+ on supp(u− ℓ)+:

0 =
∫

Ω
A∇(u− ℓ)+ · ∇(u− ℓ)+ + (b · ∇(u− ℓ)+)(u− ℓ)+.

Let us denote Ωℓ := supp ∇(u − ℓ)+. By using the uniform ellipticity of A,
boundedness of b and the Hölder inequality,

α
∇(u− ℓ)+

2

2
≤
∫

Ωℓ

|b|
⏐⏐⏐∇(u− ℓ)+

⏐⏐⏐ ⏐⏐⏐(u− ℓ)+
⏐⏐⏐

≤ ∥b∥∞

∇(u− ℓ)+


2

(u− ℓ)+


L2(Ωl)
.

Now necessarily ∥∇(u− ℓ)+∥2 > 0, because otherwise ∥(u− ℓ)+∥ = 0 (by the
equivalence of norms on W 1,2

0 (Ω)) and that would contradict our choice of ℓ.
Hence we can divide and get

α
∇(u− ℓ)+


2

≤ ∥b∥∞

(u− ℓ)+


L2(Ωℓ)
. (1.4)

Now let us recall the Sobolev embeddings and the embedding of Lebesgue spaces
on a bounded domain (see Appendix).

Let q := 2n
n−2 in the case n ≥ 3, and let 2 < q < ∞ in the case n = 2. Then we

have the continuous embedding W 1,2(Ω) ↪→ Lq(Ω). Then, using this embedding
and the equivalence of norms on W 1,2

0 (Ω), we have∇(u− ℓ)+


2
≥ C

(u− ℓ)+


1,2
≥ C̃

(u− ℓ)+


q

for some C, C̃ > 0.
Now, since q > 2 and Ωℓ is bounded, we have the continuous embedding

Lq(Ωℓ) ↪→ L2(Ωℓ) with the constant |Ωℓ|1/2−1/q, hence(u− ℓ)+


L2(Ωℓ)
≤ |Ωℓ|

1
2 − 1

q

(u− ℓ)+


Lq(Ωℓ)
≤ |Ω|

1
2 − 1

q

(u− ℓ)+


q
.

Putting the last two inequalities into (1.4), we obtain

αC̃
(u− ℓ)+


q

≤ ∥b∥∞ |Ωℓ|
1
2 − 1

q

(u− ℓ)+


q
.

Again, ∥(u− l)+∥q > 0 because otherwise we would have contradiction with our
choice of ℓ, so we can divide and after rearranging the terms

(
αC̃

∥b∥∞

) 2q
q−2

≤ |Ωℓ| .

Note closely that the left-hand side does not depend on ℓ. Thus we can take the
limit ℓ → ess supΩ u and obtain

(
αC̃

∥b∥∞

) 2q
q−2

≤ |Ωsup| , where Ωsup =
⋂

ℓ<supΩ u

Ωℓ ⊂
⋂

ℓ<supΩ u

supp(u− ℓ)+.
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Therefore we see that necessarily u = supΩ u on Ωsup. But since |Ωsup| > 0, this
means that ∇u = 0 on Ωsup. But this is a contradiction, since by the definition
of Ωℓ we have that ∇(u− ℓ)+ = ∇u is nonzero on Ωℓ ⊃ Ωsup.

To prove the second inequality, just observe that −m = max∂Ω −u and apply
the just proved to −u in place of u. This proves (i).

Finally, we allow c ≥ 0. Denote M̃ := ess sup∂Ω u
+ and m̃ := ess inf∂Ω −u−.

Suppose for contradiction that M̃ < supΩ u and take M̃ ≤ ℓ̃ < supΩ u. Then we
use (u− ℓ̃)+ ∈ W 1,2

0 (Ω) as a test function in (1.3) and, similarly as before∫
Ω
A∇(u− ℓ̃)+ · ∇(u− ℓ̃)+ + (b · ∇(u− ℓ̃)+)(u− ℓ̃)+ = −

∫
Ω
cu(u− ℓ̃)+

Now we examine the right-hand side. We know ℓ̃ ≥ 0, so if u < 0, then also
(u− ℓ̃)+ = 0, hence the function under the integral sign is everywhere nonnegative
and thus

−
∫

Ω
cu(u− ℓ̃)+ ≤ 0.

Now we can proceed exactly as in the case c = 0 and obtain u ≤ M̃ a.e. in Ω.
Then, we notice that −m̃ = ess sup∂Ω(−u)+, so we have −u ≥ −m̃. Thus we have
|u| ≤ max{M̃,−m̃} = ess supΩ max{u+, u−} = ess supΩ |u|. This proves (ii).

Remark. As can be seen from the proof, we may again consider only weak super-
solutions and subsolutions to obtain the inequalities. We say that

Lu ≤ (≥) 0 in the weak sense,

provided that

∀v ∈ W 1,2
0 (Ω), v ≥ 0 a.e. :

∫
Ω
A∇u · ∇v + (b · ∇u)v + cv ≤ (≥) 0. (1.5)

Then we have (inequalities Lu ≥ (≤) 0 below are in the weak sense)
(i) if c = 0 a.e. in Ω, then

Lu ≤ 0 =⇒ u ≤ ess sup
∂Ω

u, Lu ≥ 0 in Ω =⇒ u ≥ ess inf
∂Ω

u a.e. in Ω,

(ii) if c ≥ 0 a.e. in Ω, then

Lu ≤ 0 =⇒ u ≤ ess sup
∂Ω

u+, Lu ≥ 0 in Ω =⇒ u ≥ ess inf
∂Ω

−u− a.e. in Ω.

Now we also mention the maximum principle for a “prototypical” nonlinear
elliptic equation, namely, the p-Laplace equation, where 1 < p < ∞:

∆pu := div(|∇u|p−2 ∇u) = 0. (1.6)

A function u ∈ W 1,p(Ω) is a weak solution of (1.6) if

∀v ∈ W 1,2
0 (Ω) :

∫
Ω

|∇u|p−2 ∇u · ∇v = 0.

This equation arises as the Euler-Lagrange equation for the functional

I(w) =
∫

Ω
|∇w|p , w ∈ W 1,p(Ω).

The solutions of the scalar p-Laplace equation satisfy the (both weak and strong)
maximum principle (see for instance Tolksdorf [1984], Lindqvist [2006]).
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We conclude this section by summarising the types of maximum principles
for various types of scalar equations, and the analogous notions for systems of
equations. Note that by “boundary” we mean for elliptic equations (on Ω) simply
∂Ω, but for parabolic equations (on [0, T ] × Ω), we mean the parabolic boundary
({0} × Ω) ∪ ([0, T ] × ∂Ω).

• Weak maximum principle. The values of every solution do not exceed
its maximum on the boundary.

• Strong maximum principle. A solution cannot attain its maximum in
Ω, unless it is constant.

• Maximum modulus principle. For any solution u, the function |u| sat-
isfies the weak maximum principle.

The two maximum principles have a minimum principle version, just by replacing
“maximum” with “minimum”. Of course, one has to be more careful about the
meaning of “maximum on the boundary” and “attain its maximum” when talking
about weak solutions, because by their very definition they are in some Sobolev
spaces and don’t have pointwise values.

We will not say much about strong maximum principle, the interested reader
may refer for instance to Evans [2010] or Gilbarg and Trudinger [2001].

Our main interest lies in the weak maximum principle and its generalisation
to systems of equations as the convex hull property. We can state the weak
maximum and minimum principles at once by words saying “the solution lies in
between its boundary values”. This sentence can be immediately understood in
the setting of systems of equations, when the solutions attain values in RN – just
interpreting “lies in between” as “is a convex combination”. A strong version of
the convex hull property is possible, we list it below but do not investigate it any
further in the thesis. Another possibility is considering |u| instead of u to obtain
a scalar function and to have maximum modulus principle as above.

Hence for systems of equations, we have

• Convex hull property. The values of any solution lie in the convex hull
of its boundary values.

• Strong convex hull property. If a solution attains an extremal point
of its boundary values, then it is constant (recall that x ∈ M ⊂ RN is an
extremal point of M if it is not an interior point of a line segment contained
in M).

• Maximum modulus principle. For any solution u, the function |u| sat-
isfies the weak maximum principle.

Again, if we are talking about weak solutions only, some care must be taken when
giving precise meaning to these words. The convex hull property will be rigorously
stated in the corresponding theorems to follow. We shall not be concerned with
the strong convex hull property and the maximum modulus principle will only be
mentioned when referring to a book on this topic. Our main area of study will
be the convex hull property for systems of equations.
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1.2 Some results on the convex hull property
Here we will review some of the research that has been done on the convex hull
property. Recall that by convM we denote the (closed) convex hull of the set M .

First we take a look on the paper Bildhauer and Fuchs [2002], where the au-
thors prove the convex hull property for minimizers of certain variational prob-
lems. Their result is the following.

Theorem 1.3. Let f ∈ C2(Rn×N , [0,∞)) satisfy the condition

∀Z,U ∈ Rn×N : λ(1 + |Z|2)
s−2

2 |U |2 ≤ ∇2f(Z)(U,U) ≤ Λ(1 + |Z|2)
q−2

2 |U |2

with constants 0 < λ < Λ and exponents 2 ≤ s < q. Consider the functional

J(u) =
∫

Ω
f(∇u), u ∈ W 1,s(Ω,RN).

Let u0 ∈ W 1,s(Ω,RN) satisfy J [u0] < ∞. Then there exists a unique minimizer

umin = argmin
w∈u0+W 1,s

0 (Ω,RN )
J(w)

and it satisfies the following convex hull property: If u0(Ω) ⊂ K, where K ⊂ RN

is a compact convex set, then also umin(Ω) ⊂ K.

Proof. See Bildhauer and Fuchs [2002].

In another paper Diening et al. [2013], the convex hull property for finite ele-
ment minimizers is established. It assumes Ω ⊂ Rn to have polyhedral boundary
and that Ω is triangulated into (finitely many) n-simplexes by T . The (finite di-
mensional) space V(T )N ⊂ C(Ω,RN) then consists of piecewise affine functions,
affine on each of the simplexes in T . Further V0(T )N ⊂ V(T )N are the functions
with zero boundary values. The minimizing problem is defined by the functional

J(V ) =
∫

Ω
F (x, |∇V (x)|) dx, V ∈ V(T )N ,

where the crucial assumption on F is its monotonicity in the second argument.
Under this assumption, the minimizer of J among all functions in V(T )N

with the same boundary values satisfies the convex hull property (some additional
assumptions to guarantee the existence are also to be found in the paper):

Theorem 1.4. Let G ∈ V(T )N and suppose that

U = argmin
V ∈G+V0(T )N

J(V ).

Then U satisfies the convex hull property U(Ω) ⊂ convU(∂Ω).

Idea of the proof. The idea is to take the projection of U to the convex set
convU(∂Ω) and showing that U is in fact equal to this projection. For details,
see Diening et al. [2013].

The approach taken in the proof is the same as we will apply later in Chapter 3.
The essential ingredient in making the proof work is the estimate of the gradient
of the projection of U . We will show this inequality in a more general setting (for
Sobolev functions) in Theorem 2.8.
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1.3 Systems of equations
Let us now turn our attention to systems. In the book Kresin and Maz’ya [2012],
the authors have identified the structural conditions for elliptic and parabolic
systems that are equivalent with the claim that every classical solution u satisfies
the weak maximum modulus principle

max
Ω

|u| = max
∂Ω

|u| . (1.7)

First the authors discuss the case of elliptic systems with constant coefficients
n∑

j,k=1
Ajk

∂2u

∂xj∂xk

= 0, (1.8)

where each Ajk ∈ RN×N is a constant matrix. The condition equivalent to the
maximum modulus principle is that it is a “scalar elliptic equation repeated N
times”. More precisely, provided that Ω has C1 boundary, the condition is that
we have the decomposition

Ajk = ajkA, j, k = 1, . . . , n. (1.9)

where A ∈ RN×N and (ajk)n
j,k=1 ∈ Rn×n are positive definite matrices, see [Kresin

and Maz’ya, 2012, Theorem 2.4]. (Compare with our counterexample for the
convex hull property in linear elliptic systems, Example 4.1.)

Next, there is a result in the case of variable coefficients with lower order
terms,

n∑
j,k=1

Ajk
∂2u

∂xj∂xk

−
n∑

j=1
Aj

∂u

∂xj

− A0u = 0, (1.10)

where now Ajk, Aj and A0 are (N ×N)-matrix valued functions in Ω with suffi-
cient smoothness, and also Ω is sufficiently smooth. Now the condition equivalent
to the maximum modulus principle holding on every subdomain ω ⊂ Ω is again
that we have the decompoisition (1.9) at every point, where A and (ajk)n

j,k=1 are
positive-definite matrix valued functions, and moreover a certain “ellipticity-like”
inequality holds for the lower order terms. This inequality may in the case of no
lowest order term, A0 = 0, be replaced by the requirement that Aj’s are multiples
of A:

Aj = ajA, j = 1, . . . , n. (1.11)
For details, see [Kresin and Maz’ya, 2012, Theorem 2.15, Corollary 2.4]

The authors’ result for a parabolic system with variable coefficients resembles
the one above, with one exception: the matrix A in the decomposition has to be
the identity matrix. More precisely, the equation studied is the same as in the
elliptic case, with the t-derivative term added:

∂tu−
n∑

j,k=1
Ajk

∂2u

∂xj∂xk

+
n∑

j=1
Aj

∂u

∂xj

+ A0u = 0. (1.12)

Then the validity of the classical parabolic maximum modulus principle is the
equivalent to the stronger decomposition requirement

Ajk = ajkI, j, k = 1, . . . , n,

10



where (ajk)n
j,k=1 is a positive-definite matrix valued function and I ∈ RN×N is the

identity matrix, and an inequality for the lower order terms analogous to the one
above. Again, in the case A0 = 0, this inequality can be replaced by requiring

Aj = ajI, j = 1, . . . , n. (1.13)

For details, see [Kresin and Maz’ya, 2012, Theorem 8.8, Corollary 8.1].
Now let us focus on our main subject of interest, the convex hull property.

The convex hull property says that the solution lies in the smallest convex set
which contains boundary values, whereas maximum modulus principle says that
the solution lies in the smallest ball centered at the origin which contains the
boundary values. Thus the convex hull property is clearly a stronger property.

The above cited characterisations of maximum modulus principle suggest that
there is not much freedom to be had in the coefficients of linear systems if we want
to obtain the convex hull property. In fact, there is even less freedom – we will see
in Example 4.1 that we essentially can’t allow mixing of the different components
of u and hence that will require us to have coefficients which are formed by blocks
of n copies of some positive-definite matrix on the diagonal. We will prove the
convex hull property for these kind of elliptic systems in Theorem 3.1, under the
condition that the matrices are (possibly variable) scalar multiples of the same
positive definite matrix. In parabolic systems, we also cannot allow mixing of
the components, not even with constant coefficients, as will be shown in Example
4.2.

The twist is, however, even though we cannot do much for the coefficients
of linear systems, what we can do is allow some type of non-linearities. The
prototypical example here is the already mentioned p-Laplace equation. But,
as we will see in our main result for parabolic systems, Theorem 3.6, we can
take more general scalar non-linearities – in the highest-order term as well as in
lower-order terms (under some suitable assumptions on their growth).

1.4 Motivation: Convex hull property for the
Laplace equation in RN

As a motivation for studying the convex hull property, let us first illustrate it on
the example of the Laplace equation in RN , that is,

∆u = 0. (1.14)

In this case the convex hull property can be obtained by using the maximum
principle for scalar Laplace equation in every direction.

Lemma 1.5. Let h ∈ RN . Then for any u ∈ C2(Ω,RN) we have

h · ∆u = ∆(h · u)

Proof. Simply caluclate

h · ∆u =
N∑

k=1
hk

n∑
i=1

∂2uk

∂xi∂xi

=
n∑

i=1

∂2

∂xi∂xi

N∑
k=1

hkuk = ∆(h · u).

11



Theorem 1.6 (Convex hull property for Laplace equation in RN). Suppose that
u ∈ C2(Ω,RN) ∩ C(Ω,RN) solves the Laplace equation

∆u = 0 in Ω.

Then u(Ω) ⊂ conv u(∂Ω).

Proof. Choose a vector h ∈ RN , |h| = 1. Denote v = h · u. Then by the previous
lemma, ∆v = h · ∆u = 0. Thus v satisfies the scalar Laplace equation and thus
by the maximum principle (Theorem 1.1),

v(Ω) ⊂ (−∞,max
∂Ω

v].

This in fact means that, since v = h · u,

u(Ω) ⊂
{
x ∈ RN : h · x ≤ max

y∈u(∂Ω)
h · y

}
.

(See Figure 1.1 for illustration.)

Figure 1.1: Maximum principle in the direction h

Hence
u(Ω) ⊂

⋂
h∈RN ,|h|=1

{
x ∈ RN : x · h ≤ max

y∈u(∂Ω)
y · h

}
=: M.

It remains to show that M = conv u(∂Ω).
Clearly conv u(∂Ω) ⊂ M , because M is an intersection of convex sets, each

containing u(∂Ω).
On the other hand, we know that conv u(∂Ω), is the intersection of all closed

half-spaces containing u(∂Ω). Every closed half-space is of the form

Hh,ℓ := {x ∈ RN : x · h ≤ ℓ}

for some h ∈ RN , |h| = 1 and ℓ ∈ R. If ℓ < max
y∈u(∂Ω)

y · h, then Hh,ℓ ̸⊂ u(∂Ω). So
M ⊂ conv u(∂Ω) and the proof is finished.

1.5 Introduction to the projection method
To properly motivate the use of projections, we begin this section by redoing the
proof of Theorem 1.2 in such a way that the choice of test function can be directly
generalised to systems of equations. Also the statement is worded differently to
resemble the convex hull property. For simplicity, we omit the lower order terms.

12



Theorem 1.7 (Maximum principle for linear second-order elliptic PDE). Con-
sider the problem

−div(A∇u) = 0 in Ω,
where A ∈ L∞(Ω,RN×N) is uniformly elliptic, that is, for some α > 0 and a.e.
x ∈ Ω

∀ξ ∈ RN : Aξ · ξ ≥ |ξ|2 . (1.15)
Let u ∈ W 1,2(Ω,RN) be a weak solution of this problem, that is,

∀v ∈ W 1,2
0 (Ω) :

∫
Ω
A∇u · ∇v = 0. (1.16)

Denote
M = ess sup

∂Ω
u, m = ess inf

∂Ω
u.

Then
u ∈ [m,M ] a.e. in Ω.

Proof. We put w = (u−M)+ −(m−u)−, then w ∈ W 1,2(Ω) because positive and
negative part are 1-Lipschitz functions and we have Theorem 5.5. Moreover, we
see that w has zero trace (since m ≤ u ≤ M a.e. on ∂Ω), so even w ∈ W 1,2

0 (Ω) and
we can use it as a test function in (1.16). So we obtain, since ∇u = ∇(u−M)+

on supp(u−M)+ and −∇u = ∇(m− u)+ on supp(m− u)+:

0 =
∫

Ω
A∇u ·∇w =

∫
Ω
A∇(u−M)+ ·∇(u−M)+ +

∫
Ω
A∇(m−u)− ·∇(m−u)−

≥ α
∇(u−M)+

2

2
+ α

∇(m− u)−
2

2
≥ α̃

(u−M)+
2

1,2
+ α̃

(m− u)−
2

1,2
.

Hence
(u−M)+ = 0 and (m− u)− = 0 a.e. in Ω,

which simply means that

u ∈ [m,M ] a.e. in Ω.

Let us now see how the approach in this proof can be generalised to systems of
equations. If we denote K = [m,M ], then K is the convex hull of the boundary
values of u. Let ΠK : R → K be the projection to K, that is,

ΠK(x) = argmin
y∈K

|y − x| = x− (x−M)+ + (m− x)−.

If w = (u−M)+ − (m−u)− as in the proof above, we have ΠKu = u−w. Hence
the test function used in the proof is w = u − ΠKu. So the idea when u takes
values in RN can be essentially the same: take K to be the convex hull of the
boundary values of u, and if ΠK : RN → K is the projection of RN to K, use
u− ΠKu as the test function in the equation (it turns out that u− ΠKu ∈ W 1,2

0
because ΠK is Lipschitz and u = ΠKu on the boundary) and try to prove that
u = ΠKu in W 1,2(Ω,RN).

But there are some caveats. In the proof of Theorem 1.2 we have used that
∇u = ∇(u−M)+ − ∇(m− u)−, provided that u /∈ [m,M ]. However, in RN , it is

13



not true that ∇u = ∇(u − ΠKu) if u /∈ K. It only holds that (as we will see in
Theorem 2.8)

∇u : ∇ΠKu ≥ |∇ΠKu|2 . (1.17)

We can try to prove the convex hull property only using this inequality instead,
but we may run into problems. For instance, if the highest-order term in the
equation is −div(A∇u), then the corresponding term after using the test function
u − ΠKu is

∫
Ω A∇u : ∇(u − ΠKu). First, we would want ∇ΠKu in place of ∇u,

but if A is linear and elliptic, we may write it as∫
Ω
A∇u : ∇(u−ΠKu) =

∫
Ω
A∇(u−ΠKu) : ∇(u−ΠKu)+

∫
Ω
A∇ΠKu : ∇(u−ΠKu)

and estimate the first term by ellipticity. But the second term cannot be directly
estimated by (1.17) because of the A. However, if the modify the projection ΠK

so that it will instead yield the inequality

A∇ΠKu : ∇(u− ΠKu) ≥ A∇ΠKu : ∇ΠKu, (1.18)

we could estimate the second term. One plausible idea would be to take a different
inner product on RN and make the projection with respect to it. But we cannot
take “inner product with respect to A” because it even formally doesn’t make
sense – A is a linear operator A : Rn×N → Rn×N , not an N ×N matrix. What we
can do is to use that the inequality (1.17) holds with ∂/∂xi in place of ∇, and to
use it for each partial derivative separately to somehow obtain (1.18). What limits
us is that we need to use the same projection for all of the partial derivatives (the
same one we use for the test function). This somehow forces us to only consider
the case that A has diagonal blocks of (possibly variable) scalar multiples of the
same N × N matrix. What could further interest us is whether this matrix can
be variable. This would lead us to using variable projection, that is projecting
with respect to a different projection at every point. Now a different difficulty
arises, the inequality (1.18) simply does not hold with variable projection. We
will see this in more detail later, just before Example 4.1.
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2. Projections to convex sets
In this chapter we develop the theory for projections of Sobolev functions to
closed convex sets. First, we prove some properties of projections based on the
(geometrically very intuitive) Theorem 2.2. Second, we apply this to Sobolev
functions, using the approximation by difference quotients. The crucial result to
be used in the proofs in Chapter 3 is the inequality in Theorem 2.8.

2.1 Properties of projections in Hilbert spaces
Even though we will use all the listed properties only in RN , we will state them
in the setting of Hilbert spaces, as it causes no further complications.

Definition 2.1. Let H be a Hilbert space with the inner product ⟨ , ⟩ and the
induced norm ∥ ∥. Let K ⊂ H be a nonempty closed convex set. We define the
projection of H to K, denoted by ΠK : H → K, by setting for x ∈ H

ΠKx = argmin
y∈K

∥x− y∥ .

Remark. It is known from the theory of Hilbert spaces that ΠK is well-defined.

Theorem 2.2. Let H be a Hilbert space and K ⊂ H be a nonempty closed convex
set. Then

∀x ∈ H, z ∈ K : ⟨x− ΠKx, z − ΠKx⟩ ≤ 0. (2.1)

K

z

ΠKx

x

Figure 2.1: Theorem 2.2

Proof. Let x ∈ H and z ∈ K. We have ΠKx = argminy∈K ⟨x− y, x− y⟩. Thus
for any h ∈ (0, 1) we obtain (since (1 − h)ΠKx+ hz ∈ K from convexity):

⟨x− ΠKx, x− ΠKx⟩ ≤ ⟨x− ((1 − h)ΠKx+ hz), x− ((1 − h)ΠKx+ hz)⟩
= ⟨(1 − h)(x− ΠKx) + h(x− z), (1 − h)(x− ΠKx) + h(x− z)⟩

= (1−h)2 ⟨x− ΠKx, x− ΠKx⟩+h2 ⟨x− z, x− z⟩+2h(1−h) ⟨x− ΠKx, x− z⟩ .

So

(2h− h2) ⟨x− ΠKx, x− ΠKx⟩ ≤ h2 ⟨x− z, x− z⟩ + 2h(1 − h) ⟨x− ΠKx, x− z⟩ .

Since h > 0, we can divide by it and get

(2 − h) ⟨x− ΠKx, x− ΠKx⟩ ≤ h ⟨x− z, x− z⟩ + 2(1 − h) ⟨x− ΠKx, x− z⟩ .
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Passing to the limit as h → 0+ yields

2 ⟨x− ΠKx, x− ΠKx⟩ ≤ 2 ⟨x− ΠKx, x− z⟩ .

Finally, subtracting the right hand side and dividing by 2 gives

⟨x− ΠKx, x− ΠKx− (x− z)⟩ = ⟨x− ΠKx, z − ΠKx⟩ ≤ 0.

Corollary 2.3. Let H be a Hilbert space and K ⊂ H be a nonempty convex
closed set. Then for all x, y ∈ H

⟨x− y,ΠKx− ΠKy⟩ ≥ ∥ΠKx− ΠKy∥2 . (2.2)

Proof. From Theorem 2.2, putting z := ΠKy ∈ K, we obtain the inequality

⟨x− ΠKx,ΠKx− ΠKy⟩ ≥ 0.

Switching the roles of x and y, we also have

⟨y − ΠKy,ΠKy − ΠKx⟩ ≥ 0.

Adding these two inequalities gives

⟨x− y + ΠKx− ΠKy,ΠKx− ΠKy⟩ ≥ 0.

Finally, subtracting ⟨ΠKx− ΠKy,ΠKx− ΠKy⟩ = ∥ΠKx− ΠKy∥2 yields the re-
sult.

Corollary 2.4. Let H be a Hilbert space and K ⊂ H be a nonempty convex
closed set. Then ΠK : H → H is 1-Lipschitz. That is,

∀x, y ∈ H : ∥ΠKx− ΠKy∥ ≤ ∥x− y∥ .

Proof. Let x, y ∈ H. If ∥ΠKx− ΠKy∥ = 0, the inequality is trivial. Otherwise
from Corollary 2.3 and the Cauchy-Schwarz inequality we have

∥ΠKx− ΠKy∥2 ≤ ⟨x− y,ΠKx− ΠKy⟩ ≤ ∥x− y∥ ∥ΠKx− ΠKy∥ .

Dividing by ∥ΠKx− ΠKy∥ shows the claim.

2.2 Projections of Sobolev functions
We begin this section by recalling a result from the theory of Sobolev spaces. It
will enable us to apply the properties of projections studied above to projections
of Sobolev functions having values in RN .

Definition 2.5 (Difference quotients). For a function u : Ω → RN we define

∆h
i u(x) = u(x+ hei) − u(x)

h
,

for all h > 0, i ∈ {1, . . . , n}, and x ∈ Ω such that x+ hei ∈ Ω.
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Theorem 2.6 (Difference quotients and weak partial derivative). Let 1 ≤ p < ∞,
and u ∈ W 1,p(Ω,RN). For δ > 0 denote

Ωδ := {x ∈ Rn : dist(x, ∂Ω) > δ}.

Then for any δ > 0 it holds that

∆h
i u → ∂u

∂xi

in Lp(Ωδ), as h → 0.

In particular,
∆h

i u → ∂u

∂xi

a.e. in Ω, as h → 0.

Proof. Can be found in [Gilbarg and Trudinger, 2001, Section 7.4]

Following is a special case of Theorem 5.5 on composing Sobolev and Lipschitz
functions, applied to the projection ΠK .
Corollary 2.7. Let 1 ≤ p ≤ ∞ and let K ⊂ RN be nonempty, closed and convex.
Then for u ∈ W 1,p(Ω,RN) it holds that ΠKu ∈ W 1,p(Ω,RN).
Proof. Follows directly from Theorem 5.5, using the fact that ΠK : RN → RN is
Lipschitz by Corollary 2.4.

Now let us formulate a version of Corollary 2.3 for projections of Sobolev
functions.
Theorem 2.8. Let 1 ≤ p < ∞ , u ∈ W 1,p(Ω,RN) and let K ⊂ RN be nonempty,
closed and convex. Then

∇u : ∇ΠKu ≥ |∇ΠKu|2 a.e. in Ω. (2.3)

Remark. We will often be using the inequality (2.3) in the form

∇(u− ΠKu) : ∇ΠKu ≥ 0.

Proof. Let x ∈ Ω and choose i ∈ {1, . . . , n}. Find δ > 0 such that for every
|h| < δ we have x+ hei ∈ Ω. Then for such h, Corollary 2.3 gives

(u(x+ hei) − u(x)) · (ΠKu(x+ hei) − ΠKu(x)) ≥ |ΠKu(x+ hei) − ΠKu(x)|2 .

After dividing by h2, this reads with the difference quotient notation as

∆h
i u(x) · ∆h

i ΠKu(x) ≥
⏐⏐⏐∆h

i ΠKu(x)
⏐⏐⏐2 .

By Corollary 2.7, ΠKu ∈ W 1,p. Hence by Theorem 2.6, ∆h
i u(x) → ∂u

∂xi
(x) and

∆h
i ΠKu(x) → ∂ΠKu

∂xi
(x) for a.e. x ∈ Ω, as h → 0. Thus passing to the limit as

h → 0 gives for a.e. x ∈ Ω

∂u

∂xi

(x) · ∂ΠKu

∂xi

(x) ≥
⏐⏐⏐⏐⏐∂ΠKu

∂xi

(x)
⏐⏐⏐⏐⏐
2

.

Summing over i = 1, . . . , n gives
n∑

i=1

∂u

∂xi

(x) · ∂ΠKu

∂xi

(x) ≥
n∑

i=1

⏐⏐⏐⏐⏐∂ΠKu

∂xi

(x)
⏐⏐⏐⏐⏐
2

for a.e. x ∈ Ω, which is exactly our claim.
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Definition 2.9. For a matrix A ∈ RN×N we define the bilinear form ⟨ , ⟩A on
RN by putting ⟨v, w⟩A = (Av) ·w. If A is positive definite, then ⟨ , ⟩A is an inner
product on Rm and in this case we denote the induced norm by | |A, and for a
nonempty closed K ⊂ RN the projection ΠA

K : RN → K defined by

ΠA
K(x) = argmin

y∈K
|y − x|A .

Theorem 2.10. Let u ∈ W 1,2(Ω,RN) and let A ∈ RN×N be a positive definite
matrix. Let K ⊂ RN be nonempty, and closed convex. Then for a.e. x ∈ Ω

A
∂u

∂xi

(x) · ∂ΠA
Ku

∂xi

(x) ≥ A
∂ΠA

Ku

∂xi

(x) · ∂ΠA
Ku

∂xi

(x), i = 1, . . . , n.

Proof. We can proceed as in the proof of Theorem 2.8, just replacing the Eu-
clidean inner product · with ⟨ , ⟩A and the projection ΠK with ΠA

K .
More precisely, fix i ∈ {1, . . . , n} and let x ∈ Ω. Choose δ > 0 such that

x+ hei ∈ Ω for |h| < δ. Then for all such h, from Corollary 2.3 we obtain⟨
u(x+ hei) − u(x),ΠA

Ku(x+ hei) − ΠA
Ku(x)

⟩
A

≥
⏐⏐⏐ΠA

Ku(x+ hei) − ΠA
Ku(x)

⏐⏐⏐2
A
.

Dividing by h2 and using the difference quotient notation gives⟨
∆h

i u(x),∆h
i ΠA

Ku(x)
⟩

A
≥
⏐⏐⏐∆h

i ΠA
Ku(x)

⏐⏐⏐2
A

We know by Theorem 2.6 that ∆h
i u(x) → ∂u

∂xi
(x) and ∆h

i ΠA
Ku(x) → ∂ΠA

Ku

∂xi
(x) for

a.e. x ∈ Ω, as h → 0. Hence for a.e. x ∈ Ω we have⟨
∂u

∂xi

(x), ∂ΠA
Ku

∂xi

(x)
⟩

A

≥
⏐⏐⏐⏐⏐ ∂u∂xi

(x)
⏐⏐⏐⏐⏐
2

A

.

This finishes the proof.

Theorem 2.11. Let 1 ≤ p < ∞ , u ∈ W 1,p(Ω,RN) and let K ⊂ RN be nonempty,
closed and convex. Then for every i ∈ {1, . . . , n}

∂ΠKu

∂xi

· (u− ΠKu) = 0 a.e. in Ω. (2.4)

Proof. We proceed similarly as before. By applying twice Theorem 2.2 we have
(for x ∈ Ω and h small enough so that x± hei ∈ Ω)

(ΠKu(x) − ΠKu(x− hei)) · (u(x) − ΠKu(x)) ≥ 0,
(ΠKu(x) − ΠKu(x+ hei)) · (u(x) − ΠKu(x)) ≥ 0.

Dividing by h and passing to the limit h → 0, Theorem 2.6 gives for a.e. x ∈ Ω

−∂ΠKu

∂xi

(x) · (u(x) − ΠKu(x)) ≥ 0,

∂ΠKu

∂xi

(x) · (u(x) − ΠKu(x)) ≥ 0.

Hence the result.
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Now since we will be concerned with parabolic equations, we need also to
treat the time-derivative term. Extra care must be taken when dealing with the
time derivative, this can be overcome by using convolution in time, as will be
demonstrated below.

Lemma 2.12. Let u ∈ C1((0, T ) × Ω,RN) and let K ⊂ RN be nonempty, closed
and convex. Then

(u− ΠKu) · ∂tΠKu = 0 a.e. in [0, T ] × Ω.

Proof. For x ∈ Ω, t ∈ (0, T ) and 0 < h < min{t, T − t} it follows from Theorem
2.2 that

(
u(t, x) − ΠKu(t, x)

)
·
(
ΠKu(t, x) − ΠKu(t− h, x)

)
≥ 0,(

u(t, x) − ΠKu(t, x)
)

·
(
ΠKu(t, x) − ΠKu(t+ h, x)

)
≥ 0.

Similarly as before, we divide by h and pass to the limit h → 0 to get for a.e.
t ∈ (0, T ) (

u(t, x) − ΠKu(t, x)
)

· ∂tΠKu(t, x) ≥ 0,

−
(
u(t, x) − ΠKu(t, x)

)
· ∂tΠKu(t, x) ≥ 0.

This proves the claim.

Theorem 2.13. If u ∈ W 1,p([0, T ],W−1,p(Ω,RN)) ∩ C([0, T ], L2(Ω,RN)), then

∫ t2

t1
⟨∂tu, u− ΠKu⟩ dt =

∫
Ω

|u(t2) − ΠKu(t2)|2

2 dx−
∫

Ω

|u(t1) − ΠKu(t1)|2

2 dx,

for 0 ≤ t1 < t2 ≤ T .

Proof. Formally the proof follows by the last lemma. Since we may not write
∂t(ΠKu), we use a mollifier in time. Let first 0 < t1 < t2 < T . Then (for
δ < min{t1, T − t2}) and uδ(t, x) :=

∫
u(s, x)ψδ(t− s) ds, where ψ is the standard

mollifier. By the lemma above, we find that
∫ t2

t1
⟨∂tuδ, uδ − ΠKuδ⟩ dt =

∫
Ω

|uδ(t2) − ΠKuδ(t2)|2

2 dx−
∫

Ω

|uδ(t1) − ΠKuδ(t1)|2

2 dx.

Passing with δ → 0 implies the result by the convergences of the convolution
operator (see [Evans, 2010, Chapter 5]). Indeed by Corollary 2.4 we find that
ΠKuδ → uδ in the very same spaces as uδ → u.
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3. Convex hull property
This chapter covers our main results on the convex hull property.

3.1 Elliptic systems with diagonal blocks
Definition 3.1 (Elliptic convex hull property). Let u ∈ W 1,p(Ω,RN). Then we
say that u satisfies the convex hull property on Ω if u(x) ∈ conv u(∂Ω) for a.e.
x ∈ Ω. Here the set conv u(∂Ω) must be understood in the sense that it is the
smallest closed convex set C ⊂ RN such that u|∂Ω(x) ∈ C for a.e. x ∈ ∂Ω, where
u|∂Ω is the trace of u and a.e. is meant with respect to the surface measure on
∂Ω.

Theorem 3.2 (Convex hull property for elliptic diagonal systems). Suppose that
A = (Aαβ

ij )i,j=1,...,n;α,β=1,...,N ∈ L∞(Ω,R(n×N)×(n×N)) has the form

Aαβ
ij (x) =

⎧⎨⎩Bαβai(x), if i = j,

0, if i ̸= j,

where B = (Bαβ)N
α,β=1 ∈ RN×N is positive definite and ai ∈ L∞(Ω), i = 1, . . . , n

satisfy ai ≥ c > 0 a.e., where c is a constant. Let u ∈ W 1,2(Ω,RN) be a weak
solution to the equation

−div(A∇u) = 0 in Ω, (3.1)

that is,
∀v ∈ W 1,2

0 (Ω,RN) :
∫

Ω
A∇u : ∇v = 0. (3.2)

Then u satisfies the convex hull property on Ω.

Proof. Put K = conv u(∂Ω), where this set is understood as in Definition 3.1 and
take w = u − ΠB

Ku. Now, since ΠB
K is Lipschitz by Corollary 2.4, Theorem 5.5

gives w ∈ W 1,2(Ω,RN). Moreover, because u = ΠB
Ku a.e. on ∂Ω, we have even

w ∈ W 1,2
0 (Ω,RN). So we can use w as a test function in (3.2) and obtain

0 =
∫

Ω
A∇u : ∇w =

∫
Ω
A∇(u− ΠB

Ku) : ∇(u− ΠB
Ku) +

∫
Ω
A∇ΠB

Ku : ∇(u− ΠB
Ku).
(3.3)

From positive definiteness of B we get γ > 0 such that

∀ξ ∈ RN : Bξ · ξ ≥ γ |ξ|2 .

Now we consider the first term in (3.3) and compute, using the positive definite-
ness of B and ai ≥ c

∫
Ω
A∇(u− ΠB

Ku) · ∇(u− ΠB
Ku) =

∫
Ω

n∑
i=1

aiB
∂(u− ΠB

Ku)
∂xi

· ∂(u− ΠB
Ku)

∂xi

≥ cγ
∫ n∑

i=1

⏐⏐⏐⏐⏐∂(u− ΠB
Ku)

∂xi

⏐⏐⏐⏐⏐
2

= cγ
∇(u− ΠB

Ku)
2

2
≥ γ̃

u− ΠB
Ku
2

1,2
,
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for some γ̃ > 0, where the last inequality follows from the equivalence of the
norms ∥∇(·)∥2 and ∥·∥1,2 on W 1,2

0 (Ω,RN).
Regarding the second term in (3.3), we use Theorem 2.10 and get

∫
Ω
A∇ΠB

Ku : ∇(u− ΠB
Ku) =

∫
Ω

n∑
i=1

aiB
∂ΠB

Ku

∂xi

· ∂(u− ΠB
Ku)

∂xi

≥ 0.

Hence, looking back at (3.3) we see that
u− ΠB

Ku


1,2
≤ 0, so u = ΠB

Ku a.e.
in Ω and thus u ∈ K a.e. in Ω. This shows that u satisfies the convex hull
property.

3.2 Nonlinear parabolic systems
Now we will consider parabolic equations. Throughout this section, let T > 0
and put Q = (0, T ] × Ω.

Definition 3.3 (Parabolic boundary). We denote by

∂parQ = ({0} × Ω) ∪ ([0, T ] × ∂Ω)

the parabolic boundary of Q.

In the following we consider measurable functions a : [0, T ]×Ω×RN ×Rn×N →
R, such that

λ |ξ|p−2 ≤ a(t, x, z, ξ) ≤ Λ |ξ|p−2 for all (t, x, z, ξ) ∈ [0, T ] × Ω × RN × Rn×N

with some λ,Λ > 0 and

b = (b1, . . . , bn), where bi : [0, T ] × Ω × RN × Rn×N → R,

|b| ≤ Ca
1
2 for some C > 0,

c = c : [0, T ] × Ω × RN × Rn×N → [c0,∞) with c0 ∈ R.

Now we consider weak solutions to

∂tu− div(a∇u) + b∇u+ cu = 0 in Q. (3.4)

Definition 3.4. We call u ∈ Lp([0, T ),W 1,p(Ω,RN)) ∩ C([0, T ), L2(Ω,RN)) with
∂tu ∈ Lp([0, T ),W−1,p(Ω,RN)) a weak solution to the equation (3.4) if∫

Ω
u(t2, x)φ(t2, x) dx−

∫
Ω
u(t1, x)φ(t1, x) dx−

∫ t2

t1

∫
Ω
u(t, x)∂tφ(t, x) dx dt

+
∫ t2

t1

∫
Ω
a(t, x, u(t, x),∇u(t, x))∇u(t, x) : ∇φ(t, x) dx dt

= −
∫ t2

t1

∫
Ω

∇ub(t, x, u(t, x),∇u(t, x)) · φ+ c(t, x, u(t, x),∇u(t, x))u(t, x) · φ dx dt
(3.5)

for all 0 ≤ t1 < t2 ≤ T and φ ∈ C1([t1, t2],W 1,p
0 (Ω)).
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We also need to properly define the convex hull of (parabolic) boundary values
u(∂parQ). The first part in the definition corresponds to u({0} × Ω), the second
to u([0, T ] × ∂Ω).

Definition 3.5. Let u ∈ Lp([0, T ),W 1,p(Ω,RN)) ∩ C([0, T ), L2(Ω,RN)). Then
we define u(∂parQ) to be the smallest closed convex set C ⊂ RN satisfying the
conditions

(1) u(0, x) ∈ C for a.e. x ∈ Ω,

(2) ∀δ ∈ (0, T ): uδ([0, T − δ] × ∂Ω) ⊂ C, where uδ : [0, T − δ] × ∂Ω → RN is the
continuous function defined by uδ = 1

δ

∫ t+δ
t u(s)|∂Ω ds, where u(s)|∂Ω is the

trace of u(s) ∈ W 1,p(Ω,RN).

Theorem 3.6 (Convex hull property for certain nonlinear parabolic systems).
Let u ∈ Lp([0, T ),W 1,p(Ω,RN)) ∩ C([0, T ), L2(Ω,RN)) with
∂tu ∈ Lp([0, T ),W−1,p(Ω,RN)) be a weak solution to (3.4). Then

(i) If c = 0 a.e. and K = conv u(∂parQ), then u(Q) ⊂ K.

(ii) Otherwise if K = conv(u(∂parQ) ∪ {0}), then u(Q) ⊂ K.

Remark. In the case that a(t, x, u,∇u) = |∇u|p−2, b = 0, c = 0, we obtain the
parabolic p-Lalpace equation

∂tu− ∆pu = ∂tu− div(|∇u|p−2 ∇u) = 0.

Proof. We use the test function u − ΠKu ∈ Lp([0, T ),W 1,p
0 (Ω,RN)) in the weak

formulation (3.5) and obtain for fixed 0 ≤ t2 < T

0 =
∫ t2

0

(
⟨∂tu(t), (u(t) − ΠKu(t))⟩  

(t)

+
∫

Ω
a∇u(t) : ∇(u(t) − ΠKu(t))  

(a)

+
∫

Ω
(b∇u(t)) · (u(t) − ΠKu(t))  

(b)

+
∫

Ω
cu(t)(u(t) − ΠKu(t))  

(c)

)
dt.

Now let consider each term separately. Using Theorem 2.13 we find

(t) = ⟨∂tu(t), (u(t) − ΠKu(t))⟩ = 1
2∂t

∫
Ω

|u(t) − ΠKu(t)|2.

Further, using Theorem 2.8 and the assumption a ≥ 0 a.e. we have

(a) =
∫

Ω
a∇(u(t)−ΠKu(t)) : ∇(u(t)−ΠKu(t))+

∫
Ω
a∇ΠKu(t) : (∇u(t)−ΠKu(t))

≥
∫

Ω
a |∇(u(t) − ΠKu(t))|2 .
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Now we use the Cauchy-Schwarz and Young inequalities and the assumption
|b| ≤ Ca

1
2 to obtain for every ε > 0:

(b) =
∫

Ω
(b∇(u(t) − ΠKu(t))) · (u(t) − ΠKu(t)) +

∫
Ω
(b∇ΠKu(t)) · (u(t) − ΠKu(t))

≥ −
∫

Ω
|b| |∇(u(t) − ΠKu(t))| |u(t) − ΠKu(t)|

+
∫

Ω

n∑
i=1

bi
∂ΠKu(t)
∂xi

· (u(t) − ΠKu(t))  
=0 (Theorem 2.11)

≥ −C
∫

Ω
a

1
2 |∇(u(t) − ΠKu(t))| |u(t) − ΠKu(t)|

≥ −C
∫

Ω
εa |∇(u(t) − ΠKu(t))|2 − C

∫
Ω

1
4ε |u(t) − ΠKu(t)|2 .

Finally, for the last term, we distinguish the two cases from the statement of the
theorem

(i) Here c = 0 a.e., so clearly (c) = 0.

(ii) Here c ≥ c0 ≥ −c−
0 a.e. and 0 ∈ K, so from Corollary 2.3 we have

(c) =
∫

Ω
c(u(t)−ΠKu(t)) ·(u(t)−ΠKu(t))+c(ΠKu(t)−0) ·(u(t)−ΠKu(t))

≥ −c−
0

∫
Ω

|u(t) − ΠKu(t)|2 .

Either way (c) ≥ −c−
0
∫

Ω |u(t) − ΠKu(t)|2. So, putting it all together, we obtain

1
2∂t

∫
Ω

|u(t) − ΠKu(t)|2 + (1 − Cε)
∫

Ω
a |∇(u(t) − ΠKu(t))|2

−
(
C

4ε + c−
0

) ∫
Ω

|u(t) − ΠKu(t)|2 ≤ 0.

Now we fix ε ≤ 1
C

, so that 1 − Cε ≥ 0 and we obtain

∂t

∫
Ω

|u(t) − ΠKu(t)|2 ≤ 2
(
C

4ε + c−
0

) ∫
Ω

|u(t) − ΠKu(t)|2 .

If we denote η(t) :=
∫

Ω |u(t) − ΠKu(t)|2, this reads as

η′(t) ≤ 2
(
C

4ε + c−
0

)
η(t).

Since η(0) = 0, the Gronwall inequality implies η(t) = 0, t ∈ [0, T ). Thus
∥u(t) − ΠKu(t)∥L2(Ω,RN ) = 0 for a.e. t, in particular u(t) = ΠKu(t) a.e. in Ω for
a.e. t, which finishes the proof.
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4. Counterexamples for linear
systems
Here we show two counterexamples to the convex hull property. They illustrate
that we cannot obtain the convex hull property neither for elliptic linear systems
nor for parabolic linear systems, if we do not make any other assumption than
ellipticity. In the parabolic case, even the assumption of constant coefficients is
not enough.

4.1 Elliptic systems
The projection approach will not in general work for systems of elliptic equations

−div(A∇u) = 0, (4.1)
where A : Rn → R(n×N)×(n×N) is uniformly elliptic, that is

∀ξ ∈ Rn×N : A(x)ξ : ξ ≥ α |ξ|2 .

We illustrate it on the following example

u′′
1 = 0,

(au′
1 + u′

2)′ = 0,

which is (4.1) for n = 1, N = 2, A(x) =
(

1 0
a(x) 1

)
. It is straightforward

to check that the matrix A is elliptic, provided |a(x)| < 2. Here it would be
desirable to take at every point x the projection ΠA(x)

K defined by setting ΠA(x)
K y =

argminz∈K |z − y|A(x), where | |A(x) is the norm defined by the elliptic matrix
A(x), that is |w|A(x) = w2

1 + λ(x)w1w2 + w2
2. Now the issue is that this family of

projections does not satisfy the crucial inequality (analoguos to Theorem 2.10)

A(x)∇u(x) : ∇ΠA(x)
K u(x) ≥ A(x)∇ΠA(x)

K u(x) : ∇ΠA(x)
K u(x), (4.2)

or even the weaker version (obtained from the previous one by Cauchy-Schwarz
inequality)

|∇u(x)|A(x) ≥ |∇ΠA(x)
K u(x)|A(x). (4.3)

To see this, take K = R× (−∞, 0] and the constant function u(x) = (0, 1). Then
clearly ∇u = 0, but by computation, for z = (z1, 0) ∈ ∂K we have

|u(x) − z|2A(x) = z2
1 + a(x)z1 + 1 = (z1 + a(x)/2)2 − a(x)2/4 + 1,

so we see that the minimum is attained at z1 = −a(x)/2, so ΠKu(x) = (−a/2, 0).
Therefore ΠA(·)

K u(·) is not constant if a is not constant, hence its gradient is
nonzero somewhere and (4.3) cannot hold.

So far we have only showed that our particular method fails. But the convex
hull property for the solutions of (4.1) under no other assumptions in fact does
not hold, as the following example shows.
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Example 4.1. Consider (4.1) for n = 1, N = 2, A(x) =
(

1 0
a(x) 1

)
, that is,

u′′
1 = 0,

(a(x)u′
1 + u′

2)′ = 0.

As we noted above, A(x) is elliptic if |a(x)| < 2. We put a(x) = −x and take
ε ∈ (0, 1), so that A(x) is elliptic on the interval Ω = (0, 2ε). Then

u1(x) = x, u2(x) = 1
2x

2 − εx

is a smooth solution which on the interval Ω = (0, 2ε) satisfies the boundary
condition

u1(0) = 0, u1(2ε) = 2ε,
u2(0) = 0, u2(2ε) = 0.

Then conv u(∂Ω) = conv{u(0), u(2ε)} = {(2εt, 0) : t ∈ [0, 1]}, in particular
conv u(∂Ω) ⊂ {(x, y) ∈ R2 : y ≥ 0}. But u2(x) = x(1

2x − ε) < 0 for x ∈ Ω.
Therefore the convex hull property u(Ω) ⊂ conv u(∂Ω) is not satisfied. More-
over, notice that u does not even satisfy the weaker “component-wise maximum
principle” u(Ω) ⊂

[
min
∂Ω

u1,max
∂Ω

u1

]
×
[
min
∂Ω

u2,max
∂Ω

u2

]
.

Remark. We may make the matrix in the above example symmetric. We keep all
the notation from Example 4.1. Fix C > 1 and consider the system of equations

(Cv′
1 + a(x)v′

2)′ = 0,
(a(x)v′

1 + v′
2)′ = 0.

This system corresponds to the symmetric matrix
(
C a(x)
a(x) 1

)
, which is elliptic

for |a(x)|2 < C. Or, after dividing the first equation by C, this system corresponds

to the matrix Ã(x) =
(

1 a(x)
C

a(x) 1

)
. Let v be a solution to this system on the

interval Ω = (0, 2ε) that satisfies the same boundary condition as u,

v1(0) = 0, v1(2ε) = 2ε,
v2(0) = 0, v2(2ε) = 0.

Now we have
−(Au′)′ = 0, −(Ãv′)′ = 0. (4.4)

We want to show that if C is large enough, then v does not satisfy the convex
hull property, either.

For this, notice from (4.4) that

−(Ã(u′ − v′))′ = −(Ãu′)′ = −((Ã− A)u′)′

Now multiply this by u−v, integrate by parts and obtain (recall that u(0) = v(0),
u(2ε) = v(2ε))∫ 2ε

0
Ã(u′ − v′) · (u′ − v′) =

∫ 2ε

0
(Ã− A)u′ · (u′ − v′) =

∫ 2ε

0

a

C
u′

2(u′
1 − v′

1) (4.5)
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On the left-hand side we use the uniform ellipticity of Ã, so for some α > 0

α
∫ 2ε

0
|u′ − v′|2 ≤

∫ 2ε

0
Ã(u′ − v′) · (u′ − v′).

On the right-hand side we employ the Hölder inequality and also the Young
inequality to obtain∫ 2ε

0

a

C
u′

2(u′
1 − v′

1) ≤ 1
C

∥a∥∞ ∥u′∥2 ∥u′ − v′∥2 ≤ 1
C2 ∥a∥2

∞
1

2α ∥u′∥2
2 + α

2 ∥u′ − v′∥2
2 .

Putting this together yields

∥u′ − v′∥2 ≤ 1
C

∥a∥∞
1
α

∥u′∥2

Since ∥u′∥2 does not depend on C and u = v on the boundary, we find (by
the fundamental theorem of calculus) that ∥u− v∥∞ ≤ ∥u′ − v′∥2. Hence with
C → ∞ we find that ∥u− v∥∞ → 0. Therefore for C large enough we have a
point where v is also negative, so v does not satisfy the convex hull property (or
even the component-wise maximum principle), either.

4.2 Parabolic systems
In the case of linear parabolic systems

∂tu− div(A∇u) = 0

we present a counterexample with constant coefficients A ∈ R(n×N)×(n×N).

Example 4.2. Consider the following initial/boundary value problem.

∂tu1 − ∂2u1

∂x2 = 0 in Q = (0, π) × (0,∞) (4.6)

∂tu2 − a
∂2u1

∂x2 − ∂2u2

∂x2 = 0 in Q (4.7)

u1(x, 0) = sin x, x ∈ (0, π) (4.8)
u1(0, t) = u1(π, t) = 0, t ∈ (0,∞) (4.9)

u2(x, 0) = sin x, x ∈ (0, π) (4.10)
u2(0, t) = u2(π, t) = 0, t ∈ (0,∞) (4.11)

where 0 < a < 2 is constant. Then the linear system is parabolic, similarly as
in the previous section. Now u1 is a solution of the heat equation (4.6) subject
to the initial condition (4.8) and homogeneous boundary conditions (4.9). We
obtain, for instance by separation of variables, that

u1(x, t) = e−t sin x.

Plugging this into the second equation (4.7), we have

∂tu2 − ∂2u2

∂x2 = f, where f(x, t) = a
∂2u1

∂x2 (x, t) = −ae−t sin x. (4.12)
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So u2 is the solution of the nonhomogeneous heat equation (4.12) subject to the
initial condition (4.10) and homogeneous boundary condition (4.11). Hence we
obtain, for instance by the method of variation of constants in the homogeneous
solution, that

u2(x, t) = e−t sin x(1 − at).

Now for t0 > 1/a and any x0 ∈ (0, π) we have u2(x0, t0) < 0. But u(∂parQ) ⊂
[0, 1] × [0, 1], so necessarily u(x0, t0) /∈ conv u(∂parQ). (We use the notation
∂parQ = ((0, π) × {0}) ∪ ({0, π} × [0,∞).) This shows that u does not satisfy the
parabolic convex hull property and, as before, not even the weaker component-

wise maximum principle u(Q) ⊂
[

min
∂parQ

u1,max
∂parQ

u1

]
×
[

min
∂parQ

u2,max
∂parQ

u2

]
.
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5. Conclusion
As is demonstrated above, the convex hull property poses a rigid requirement
on the coupling of the system. It is curious that we could prove the convex hull
property for linear elliptic systems under the (up to an orthogonal change of vari-
ables) same condition as Kresin and Maz’ya [2012] did for systems with constant
coefficients. This indicates that convex hull property for linear elliptic systems is
equivalent to the (a priori weaker) maximum modulus principle. Recall also that
our parabolic counterexample was with constant coefficients which again reflects
the very same conditions for parabolic systems (with constant coefficients) as in
Kresin and Maz’ya [2012] for the maximum modulus principle. This motivates
the following

Conjecture. For linear systems (both elliptic and parabolic), the structure con-
ditions on the coefficients for the convex hull property is equivalent to the one for
the maximum modulus principle.

A further question could be whether these structure conditions are equivalent
to a-priori L∞-estimates. That is, the estimate of the L∞ norm of u by the L∞

norm of its boundary values (possibly up to a constant).
As for non-linear equations, we have seen in Theorem 3.6 that a non-linearity

(as a scalar multiplier) does not break the convex hull property. So it seems
reasonable to conclude with the following take-away message:

It is the structure of the coupling that destroys the convex hull property and
not the non-linearity.
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Appendix
Here is a summary of the standard results referred to from the thesis. They can
be found for instance in Evans [2010] or Gilbarg and Trudinger [2001].

Theorem 5.1 (Equivalent norms on W 1,p
0 ). The two norms ∥·∥1,2 and ∥∇(·)∥2

are equivalent on W 1,p
0 (Ω,RN).

Lemma 5.2 (Young’s inequality (with ε, p = 2)). For a, b ∈ R and ε > 0 it holds
that

ab ≤ εa2 + b2

4ε.

Theorem 5.3 (Hölder’s inequality). For u ∈ Lp(Ω,RN), v ∈ Lp′(Ω,RN), where
1/p+ 1/p′ = 1, we have

∥uv∥1 ≤ ∥u∥p ∥v∥p′ .

Theorem 5.4 (Gronwall’s inequality). Let η be a nonnegative absolutely contin-
uous function on [0, T ] and φ, ψ ∈ L1([0, T ]) statisfy φ, ψ ≥ 0 a.e. and

η′(t) ≤ φ(t)η(t) + ψ(t), a.e. t ∈ [0, T ].

Then
η(t) ≤ e

∫ t

0 φ
(
η(0) +

∫ t

0
ψ
)
, t ∈ [0, T ].

Theorem 5.5 (Composition of W 1,p and Lipschitz functions). Let 1 ≤ p ≤ ∞
and let f : Rm → Rk be Lipschitz. Then for any u ∈ W 1,p(Ω,Rm) it holds that
f ◦ u ∈ W 1,p(Ω,Rk). Moreover,

∂(f ◦ u)
∂xi

= f ′(u) ∂u
∂xi

a.e. on the set where the derivative f ′(u(x)) exists.

Theorem 5.6 (Embedding of Lebesgue spaces on bounded domain). Let 1 ≤
p < q < ∞ and |Ω| < ∞. Then

∀u ∈ Lp(Ω) : ∥u∥q ≤ |Ω|
1
p

− 1
q ∥u∥p .

Theorem 5.7 (Embeddings of Sobolev spaces).

(i) If 1 ≤ p < n, then there is a constant C such that

∀u ∈ W 1,p(Ω) : ∥u∥ np
n−p

≤ C ∥u∥1,p .

(ii) If 1 ≤ q < ∞, then there is a constant C such that

∀u ∈ W 1,n(Ω) : ∥u∥q ≤ C ∥u∥1,n .
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