POSUDEK VEDOUCIHO NA DIPLOMOVOU PRACI
MARTIN SMOLIK: NEURAL MODELLING OF MATHEMATICAL
STRUCTURES AND THEIR EXTENSIONS

The field of Automated Theorem Proving (ATP), also called Automated Deduc-
tion (AD), stands out of the variety of other scientific fields because of its basic
relevance for virtually any other scientific discipline. In particular, to appreciate
this universal and cross-disciplinary character just recall the nature of mathematics,
which is undoubtedly a basis for hard sciences.

ATP as the field of automating mathematics or math for short naturally inherits
this fundamental relevance of math. Math is known as one of the hardest disciplines
for the human mind. ATP as the meta-science of math, ie. the science which tries
to reveal the mechanisms underlying creative mathematical achievements, might
thus be judged as even harder than math, since doing seems generally easier than
understanding the doing. This extreme hardness of ATP explains why, despite of
more than 60 years of ATP research and despite steady progress and impressive
singular achievements, there is still a long way to go until ATP and AD can be
said to match the level of top mathematicians or, more generally, of scientists in
mathematical or deductive reasoning.

Most of the existing ATP approaches are so far based on relatively simple syn-
tactic methods. They represent objects of mathematical reasoning as syntactic
trees (terms, formulas, proofs) and guide automated proof search based on syntac-
tic characterizations of such objects. This may be insufficient to capture high-level
mathematical reasoning that often concerns typical mathematical structures (mod-
els) and the validity of particular claims and properties in them. For example, one
may quickly come up with the group S3 as a counterexample to the claim that all
groups are abelian, rather than toiling with syntactic proofs and disproofs of such
a claim. And one may quickly come up with integers as a counterexample to the
claim that all finitely generated groups are finite.

It seems that trained mathematicians gradually develop a set of useful examples
and counterexamples like these and use them for fast initial evaluation of conjectures
in their theories. Can we simulate such semantic reasoning methods on computers?
We would first need to effectively represent important math structures and their
properties in computers. This is a hard task: the set of real numbers is a common
example, but it does not fit fully in today’s computers. Yet, despite the finiteness of
their brains, mathematicians still develop useful intuition about real numbers and
integers. Likely, some form of (organic) neural networks are responsible for this in
the trained brains.

The submitted thesis ”Neural modelling of mathematical structures and their
extensions” makes the first experiments to automatically train approximations of
mathematical structures as neural networks. The thesis focuses on small cyclic and
permutation groups, but it is clear that this can be generalized to arbitrary math
structures. The networks can in principle be trained only from (some) properties
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that hold about a particular structure, avoiding the necessity of exhaustive represen-
tation of large and infinite objects in computer memory. The working assumption
is that this is what trained mathematicians may often do too.

While this is clearly just the initial step in this research program, the first re-
sults are interesting. The thesis shows that training small cyclic groups is relatively
straightforward, while permutation groups are harder to learn by standard differ-
entiable methods such as backpropagation. This poses a further natural research
question: to what extent do humans use backpropagation to gain intuition about
complicated math structures? And in what representation space is the learning
done? The thesis already shows that the choice of representation may matter a lot
for the learning.

Another interesting aspect the thesis studies is the capability of the learned
representations to capture extensions. It is shown that in cyclic groups, discovering
the interpretation of a "half” element works quite reasonably, while it seems harder
for permutation groups. These first experiments again pave the way to further
experiments with training arbitrary extensions of arbitrary structures as another
important aspect of mathematicians’ research.

As usual in topics that bridge multiple scientific fields, the thesis requires the
readers to dive into areas that may be out of their zone of comfort. My long-
time experience is that the two communities, ie. (formal) mathematicians and
machine learning researchers, are used to different level of detail and formality, and
that they consider different things as (non)obvious and (un)worthy of explanation.
Based on what I have seen so far, I believe that the thesis does a relatively good
job in trying to make things accessible to both communities by including relatively
detailed background sections on model theory and neural networks. But I am sure
the thesis will still not be easily accessible to many people from both communities.

Finally, I commend the author for his courage to undertake such a dangerous and
challenging topic, and sufficiently learning the explosively growing field of neural
networks, both theoretically and practically. Getting down to programming com-
puters to do reasoning is a very nontrivial task, and there have been so far only
a handful of mathematicians that have endured that. It requires learning quite
different skills than those mastered during mathematical training, and frankly, it
may be very annoying and intimidatingly slow compared to the speed, lightness
and pleasure of doing math in one’s head. The more I am pleased by the fact
that the work resulted in findings that seem actually already interesting, and that
the project was judged interesting enough by the reviewers to be presented at the
AITP’19 conference.



