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Abstract: A limit of a class of structures is an object which captures the asymp-
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struction of such objects. We present the necessary theory for each method and
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method, we utilize Ehrenfeucht-Fräıssé games to prove that all models of the
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of predicate density in two types of classes of finite linear orders with a unary
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structure, model theory

iii



Contents

Introduction 2

1 Preliminaries 3
1.1 A summary of basics of first-order logic . . . . . . . . . . . . . . . 3
1.2 Discrete linear orders with endpoints . . . . . . . . . . . . . . . . 4
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Introduction
In mathematics, there are several known constructions which come to mind when
the word ”limit” is said. The most elementary one is the metric limit, which we
get familiar with during an introductory analysis course. We can mention the
categorical limit or the ultraproduct from the more advanced ones.

While metric limit is limited to metric spaces, the categorical limit and the
ultraproduct both handle structures – categories and indexed families of struc-
tures respectively. The aim of this thesis is to explore other available methods of
construction of limits of indexed families of structures.

I did my best to keep the preliminary chapter very brief. The main focus
was to mention relevant terminology and notation in order to minimize possible
confusion later on, as I believe that 10 pages long recap of introduction to first
order logic would not target the same group of readers as the rest of the thesis.

The three main chapters of the thesis are built up with a certain format in
mind – in each chapter we present necessary theory and our definition of the limit,
possibly with some elementary general results and then move on to examples in
hopes to get a better idea of how the limit construction behaves in common
situations.
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1. Preliminaries

1.1 A summary of basics of first-order logic
A language, usually denoted by L, is a triplet of disjoint sets (FL, RL, CL) – the set
of function symbols, the set of relational symbols and the set of constant symbols
– along with an arity function n : RL ∪ CL → N+.

The set of all L-terms is the smallest set which contains every constant from
CL, every variable and which is closed upon composition of terms: if f is a
function symbol and t1, . . . tn(f) are terms, then f(t1, . . . , tn(f)) is a term.

The set of atomic L-formulas consists of strings of the form s = t, where s, t
are L-terms and of strings of the form R(t1, . . . tn(R)), where R is a relational
symbol and t1, . . . tn(R) are L-terms.

The set of all L-formulas is the smallest set containing all atomic L-formulas
which is closed upon logical connectives and quantifiers - it contains ϕ∧ψ, ϕ∨ψ,
¬ϕ, ϕ → ψ, ϕ ↔ ψ, ∀x : ϕ and ∃x : ϕ whenever it contains ϕ and ψ. An L-
formula is called an L-sentence if it only contains variables which are quantified
over by ∀ or ∃.

An L-structure A is a tuple consisting of a set A, a function fA : An(f) → A
for each function symbol f ∈ FL, a relation RA ⊆ An(R) for each relational symbol
R ∈ RL and an element cA ∈ A for each constant symbol c ∈ CL. Truth value of
a formula in a structure is defined inductively by Tarski’s definition of truth.

An L-theory is a set of L-sentences. A structure A is a model of theory T if
it satisfies every sentence of T . ThL(A) denotes the set of all L-sentences which
are true in A.

We say that ϕ is a consequence of a theory T if every model of T satisfies ϕ.
An L-theory T is said to be complete if either ϕ is a consequence of T or ¬ϕ is a
consequence of T for every L-sentence ϕ.

We will rely on one classical result of mathematical logic, which is presented
during most introductory courses in the subject.

Theorem 1 (The compactness theorem). A theory T has a model if and only if
every finite subtheory S ⊆ T has a model.

We will also use the notion of embeddings. An embedding of an L-structure A
into an L-structure B is an injective map F : A → B which preserves functions,
relations and constants of A, that is, for every choice of terms ti, every relational
symbol R, every function symbol f and every constant symbol c we have:

• RB(F (t1), . . . , F (tn(R))) iff RA(t1, . . . , tn(R)),

• fB(F (t1), . . . , F (tn(f))) = F (fA(t1, . . . , tn(f))),

• cB = F (cA).

An isomorphism is a surjective embedding.
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1.2 Discrete linear orders with endpoints
The theme of the entire thesis is an analysis of different methods of limit con-
struction through examples. We will spend a lot of time with linear orders.

Let L be the language of orders, consisting of a single binary relational symbol
≤. Sometimes we will write x ≥ y instead of y ≤ x and we shall abbreviate
x ≤ y ∧ x ̸= y by x < y.

The theory of discrete linear orders with endpoints, denoted by DiLOep, con-
sists of the following axioms:

(REF) ∀x : x ≤ x

(WA) ∀x, y : (x ≤ y ∧ x ≥ y) −→ x = y

(TR) ∀x, y, z : (x ≤ y ∧ y ≤ z) −→ x ≤ z

(LIN) ∀x, y : (x ≤ y ∨ x ≥ y)

(MIN) ∃x∀y : x ≤ y

(MAX) ∃x∀y : x ≥ y

(S) ∀x : (∃y : x < y) −→ ∃y : (x < y ∧ (∀z : x < z −→ y ≤ z)))

(P) ∀x : (∃y : x > y) −→ ∃y : (x > y ∧ (∀z : x > z −→ y ≥ z)))

The two elements asserted to exist in axioms (MIN) and (MAX) are uniquely
determined and we shall refer to them as MIN and MAX respectively, however,
we will not consider these symbols as a part of our language. Axioms (S) and (P)
allow us to define two partial functions in any model of the theory. If a is not the
minimum element of a model, then by p(a) we denote the predecessor of a and if
b is not the maximum element of a model, then by s(b) we denote the successor
of b. By pn and sn we denote the n times repeated application of functions p and
s, respectively. Let us observe that for every (except the minimum) element a of
any model of the theory we have s(p(a)) = a and similarly for every (except the
maximum) element b of any model of the theory we have p(s(b)) = b.

Throughout the entire thesis we will denote the finite linearly ordered set
1 < 2 < · · · < i by Li.
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2. Fräıssé’s amalgamation
In this chapter we will summarize the theory related to Fräıssé’s amalgamation
and we will go through two examples of application of the theory.

2.1 The theory
The entire section is based upon [2, pp.158-165]. In the following sections we will
only apply the theory to relational structures. However, we do not save ourselves
a meaningful amount of work by limiting the theory to those and so, in this
regard, we present the theory in general.

Definition 2. Let L be a language and let D be an L-structure. The age of D is
the class of all finitely generated structures embeddable into D.

A class of structures is called an age if it is an age of some structure.

Ages have several note-worthy properties. Two of them are the following:

(HP) The hereditary property:
If K is an age, A is a structure in K and B is a finitely generated structure
embeddable into A, then B is also in K.

(JEP) The joint-embedding property:
If K is an age and A,B are structures in K, then there is a structure C in
K such that both A and B are embeddable into C.

According to the following theorem, we can characterize ages of countable
structures by these two properties.

Theorem 3 (Fräıssé, 1954). Let L be a language and let K be a nonempty, up
to isomorphisms countable class of finitely generated L-structures. If K satisfies
the properties (HP) and (JEP), then K is the age of a countable L-structure.

As the text so far suggests, we are interested not in individual structures, but
rather in their isomorphism types. ”The class K is up to isomorphisms countable”
is short for ”there exist countably many structures which represent isomorphism
types of all structures in the class K”.

The proof of Theorem ?? is presented in [2]. It provides some guidance to
constructing the advertised structure and so we have an opportunity to regard
this structure as the ”limit” of the class. We can, however, achieve some sort of
uniqueness result on top of this existential one before we define the limit.

Definition 4. Let L be a language and let D be an L-structure. We say that D is
homogeneous if every isomorphism between any two finitely generated substruc-
tures of D can be extended to an automorphism of D.

Let us note that in [2] the author uses the term ultrahomogeneous. The
property that Fräıssé noticed during the study of linear orders and which allows
for the desired uniqueness result is the following:
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(AP) The amalgamation property:
If K is an age, A, B, C are structures in K and b : A→ B and c : A→ C are
embeddings, then there is a structure D in K and embeddings b′ : B → D
and c′ : C→ D such that b′ ◦ b = c′ ◦ c.

Not every age satisfies this property, but it is not hard to show that ages of
homogeneous structures do satisfy it.

Proposition 5. If D is a homogeneous structure, then the age of D satisfies
(AP).

Proof. Let K be the age of D, let A, B, C be structures from K and let b : A→ B
and c : A→ C be our chosen embeddings. These embeddings provide us with an
isomorphism c ◦ b−1 : Im(b)→ Im(c). We can extend c ◦ b−1 to an automorphism
of D because D is homogeneous. Let us call this automorphism f .

Define b′ as f|B and c′ as the canonical embedding of C into D. Then b′ : B→ D
and c′ : C → D are injective mappings. Verification of b′ ◦ b = c′ ◦ c is easy, as
b′

|Im(b) = (f|B)|Im(b) = f|Im(b) = c◦b−1. Then b′◦b = c◦b−1◦b = c and c′◦c = c.

One of the results that Fräıssé demonstrated was that properties (HP), (JEP)
and (AP) together form a characterization of ages of homogeneous structures in
the countable case and that such ages determine their countable structures up to
an isomorphism.

Theorem 6 (Fräıssé, 1954). Let L be a language and let K be a nonempty, up
to isomorphisms countable class of finitely generated L-structures. If K satisfies
properties (HP), (JEP) and (AP), then K is the age of a countable, homogeneous
structure which is uniquely determined up to an isomorphism.

The proof of this theorem is also presented in [2]. This uniquely determined
structure is generally called the Fräıssé limit of the class K and we shall denote
it by limF K.

Again, the proof itself provides some guidance to constructing the limit. There
is, however, a less straightforward approach to the matter which, in some cases,
saves us a bit of work: Given a nonempty, up to isomorphisms countable class of
L-structures K which satisfies (HP), (JEP) and (AP), we can guess what the
limit is, call it D, and verify that

• D is countable

• D is homogeneous

• K is the age of D

The uniqueness provided by the theorem guarantees that our structure is the
desired limit (up to an isomorphism).
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2.2 Fräıssé’s limit of finite linear orders
We will show that the ordered set of rational numbers is the Fräıssé limit of the
class of finite linear orders. For the entire section let L be a language of one
binary relational symbol ≤, and let K denote the class of all finite linear orders,
that is, of all structures isomorphic to Li for some i ∈ N+.

Let us note that if a language has no function symbols and finitely many
constant symbols, then for any structure in that language the terms ”finite” and
”finitely generated” are synonymous.

We shall now proceed to the verification of properties of the class K.

Lemma 7. The class K is nonempty, up to isomorphisms countable and it sat-
isfies (HP) and (JEP).

Proof. The class is obviously nonempty and the map from K to N which assigns
to each given structure its size clearly uniquely determines the isomorphism type.

The satisfaction of both properties is also easy to verify. For (HP) let us
choose a finite structure A embeddable into some Li. This structure has finitely
many, say j, elements and therefore A is isomorphic to Lj.

For (JEP) let us choose two structures Li and Lj and observe that they can
be embedded into Lmax{i,j}.

The verification of (AP) might be a bit trickier, depending on whether we
choose to use category theory or not. There is a short, high-level proof which con-
sists of diagram chasing and a longer, elementary proof which utilizes induction
and that is the proof which I chose to present.

In order to avoid awkward wording we shall allow arithmetic and ordering of
elements of different finite linear orders by canonically embedding every one of
them into natural numbers: Suppose A = {a1 < · · · < am}, B = {b1 < · · · < bn}.
Then the expression ai < bj is to be read as FA(ai) < FB(bj) where FA is an
embedding of A into N+ defined by FA : ai ↦→ i and FB is an embedding of B into
N+ defined by FB : bi ↦→ i. Similarly for arithmetic: the map definition

b′ : i ↦→ i+ c(a)− b(a)

in the proof below is short for

b′ : i ↦→ F−1
D (FB(i) + FC(c(a))− FB(b(a))),

where FB, FC, FD are canonical embeddings of B,C,D into N+.

Lemma 8. The class K satisfies (AP).

Proof. We shall prove this lemma by induction on the size of the structure A.
First let A,B and C be structures in K, let b : A → B and c : A → C be
embeddings and assume that A = {a}.

Without loss of generality we can assume that b(a) ≤ c(a). In that case we
define D to be a linear order of size max{|C|, |B|+ c(a)− b(a)} and we also define
maps b′ : B→ D and c′ : C→ D by

b′ : i ↦→ i+ c(a)− b(a),
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c′ : i ↦→ i

It is straightforward to verify that the structure D together with embeddings b′, c′

forms the desired amalgam - b′ ◦ b(a) = b(a) + c(a)− b(a) = c(a).
Now let A,B and C be structures in K, let b : A → B and c : A → C be

embeddings and suppose that A = {a1 ≤ · · · ≤ an}. Then we denote by A1 the
ordered set {a1 ≤ · · · ≤ an−1}, by B1 the ordered set {x ∈ B|x ≤ b(an−1)} and
by C1 the ordered set {x ∈ C|x ≤ c(an−1)}.

In accord with the induction hypothesis, let D1 along with embeddings c′
1, d

′
1

form an amalgam of structures A1,B1,C1 with embeddings b|A1 and c|A1 . Simi-
larly let us denote by A2 the singleton {an} and by B2 and C2 the ordered sets
{x ∈ B|x > b(an−1)} and {x ∈ C|x > c(an−1)} respectively. Then, as we did in
the first part of the proof, we construct the structure D2 along with embeddings
b′

2 and c′
2 which forms an amalgam of the structures A2,B2,C2 with embeddings

b|A2 and c|A2 .
Let D be the disjoint union of D1 and D2 which inherits orders from those

structures and orders elements of D1 to be less than elements of D2 and let b′ and
c′ be maps combined from b′

1, b
′
2 and c′

1, c
′
2 respectively. Then it is, again, easy to

verify that the resulting structure D along with embeddings b′ and c′ forms an
amalgam of A,B and C with embeddings b, c.

The picture that I usually draw when I want to present the first part of the
proof to someone is the following:

Now we know that the Fräıssé limit of the class K exists. Next we show
that the ordered set of rational numbers, as usual denoted by (Q,≤), has the
aforementioned properties.
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The fact that Q is countable is widely known and finite structures embeddable
into Q correspond to finite linear orders – to the class K.

Lemma 9. The structure (Q,≤) is homogeneous.

Proof. Let A and B be finite substructures of (Q,≤) and let f : A → B be an
isomorphism between them. Then both A and B are isomorphic to some Lm. Let
us list elements of A and B in two increasing sequences a1, . . . , am and b1, . . . , bm

and for each i ∈ {1, . . . ,m− 1} let us define a monotonically increasing bijection
fi : [ai, ai+1]Q → [bi, bi+1]Q by

fi(x) := bi + bi+1 − bi

ai+1 − ai

(x− ai)

and also monotonically increasing bijections f0 : (−∞, a0]Q → (−∞, b0]Q and
fm : [am,∞)Q → [bm,∞)Q by

f0(x) := x− a0 + b0

fm(x) := x− am + bm

It is trivial to verify that these functions can be glued together to form an
automorphism F : (Q,≤)→ (Q,≤) which extends f .

Now we may end the section by stating the theorem which we desired to prove.

Theorem 10. Let K be the class of all finite linear orders. Then limF K is
isomorphic to (Q,≤).

Proof. In Lemmas 7 and 8 we have shown that K satisfies the assumptions of
Theorem 6 and so there exists limF K. In Lemma 9 we have shown that (Q,≤)
is homogeneous and we have commented on countability of Q and on K being
the age of (Q,≤) in the paragraph before that lemma. The uniqueness part of
Theorem 6 then guarantees us that (Q,≤) is the Fräıssé limit of K, up to an
isomorphism.

2.3 Fräıssé’s limit of finite linear orders with a
unary predicate

Our second example involves introducing a unary predicate to finite linear orders.
For the rest of this section let L be a language consisting of two relational symbols:
binary ≤ and unary U .

By (Li, P ) we shall denote the structure ({1, . . . , i},≤, P ), where ≤ is the
usual linear order of {1, . . . , i} and P ⊆ {1, . . . , i} is a unary predicate. Let K
denote the class of all structures isomorphic to some (Li, P ). We will demonstrate
that the Fräıssé limit of K is (Q,≤, P ), where P is dense and co-dense.

We shall begin by verifying that the class K satisfies the desired properties.

Lemma 11. The class K is nonempty, up to isomorphisms countable and it
satisfies the properties (HP) and (JEP).
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Proof. The class is obviously nonempty.
For countability let us observe that each structure (Li, P ) determines a unique

sequence over the alphabet {0, 1} – the j-th letter of a sequence is determined by
whether the element j ∈ {1, . . . , i} satisfies P or not. A map defined by w ↦→ 1w
is injective and each sequence of the form 1w encodes a unique natural number
and therefore the class K is countable.

The property (HP) is satisfied because if A is a finite structure embeddable
into (Li, P ), say with j elements, then A is isomorphic to (Lj, R) for some unary
predicate R and therefore A belongs to K.

For (JEP) let us choose two structures (Li, P ) and (Lj, R) and observe that
they can be embedded into (Li+j, S), where S(a) is defined as P (a) for a ∈
{1, . . . , i} and as R(a− i) for a ∈ {i+ 1, . . . , i+ j}.

Lemma 12. The class K satisfies (AP).

Proof. We will prove this claim by induction on the size of A. First let A,B,C
be structures in K, let b : A→ B and c : A→ C be embeddings and assume that
A = {a}. We define D to be the linear order of size |B|+ |C| − 1 with a predicate
defined by

• UB(i) for i ∈ {1, . . . , b(a)− 1}

• UC(i− (b(a)− 1)) for i ∈ {b(a), . . . , b(a)− 1 + c(a)− 1}

• UB(b(a)) (or, equivalently, as UC(c(a))) for i = b(a) + c(a)− 1

• UB(i− (c(a)− 1)) for i ∈ {b(a) + c(a), . . . , |B|+ c(a)− 1}

• UC(i− |B|+ 1) for i ∈ {|B|+ c(a) . . . , |B|+ |C| − 1}

It is easy to see that the structure D along with embeddings b′ and c′ defined
by

b′ : i ↦→

⎧⎨⎩i if i < b(a)
i+ c(a)− 1 otherwise

,

c′ : i ↦→

⎧⎨⎩i+ b(a)− 1 if i < b(a)
i+ |B| − 1 otherwise

,

forms an amalgam of A,B,C with embeddings b, c.
The induction step works in exactly the same fashion as in the proof of Lemma

8.

We say that the predicate UA of an L-structure A is dense if A satisfies the
following first-order sentence:

∀x, y : (x < y −→ ∃z : x < z < y ∧ U(z)).
We say that a predicate is co-dense whenever its complement is dense.
Let us denote the structure (Q,≤, P ) by QP ; ≤ is, again, the usual linear

order on Q and P is a unary predicate on Q. In order to prove that limF K is
QP where P is a dense and co-dense unary predicate, we first need to show that
some such predicate exists.
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Proposition 13. There exists a unary predicate on Q which is dense and co-
dense.

Proof. It suffices to show that there exists such predicate on [0, 1]Q.
Define

P := { p2k
|k ∈ N+, p ∈ {1, 3, 5, . . . , 2k − 1}},

P ′ := { p3k
|k ∈ N+, p ∈ {1, 2, 4, 5, 7, 8, . . . , 3k − 1}}.

We will show that P and P ′ are dense and disjoint.
Suppose that a, b ∈ [0, 1]Q satisfy a < b. Then there is k ∈ N such that

1
2k

< b− a. Let p be the smallest odd natural number such that p

2k+2 > a. It is

clear that p

2k+2 ∈ P and if p

2k+2 ≥ b, then p−2 would be a smaller number which

would still satisfy our two conditions, therefore a < p

2k+2 < b, and so P is dense.
An analogous argument can be made for the density of P ′.
Now suppose that x ∈ P ∩ P ′, that is x = p

2k
for some odd p and x = q

3l
for

some q not divisible by 3. If 3l · p = 2k · q, where p is odd, then k ≤ 0 and so
p

2k
/∈ P , which is a contradiction.

We shall now prove that QP satisfies the properties of the Fräıssé limit if P is
dense and co-dense. We have already established that rational numbers form a
countable structure and it is straightforward to verify that K is the age of QP , as
a given finite structure embeddable in QP consisting of elements a1 < · · · < an,
of which ar1 , . . . arm satisfy P , is isomorphic to (Ln, R), where R = {r1, . . . , rm}.

Lemma 14. Let P be a dense and co-dense unary predicate on Q and let a, b ∈ Q
satisfy a < b. Then (a, b)Q contains infinitely many elements satisfying P and
infinitely many elements not satisfying P .

Proof. Let us assume there are only finitely many elements in (a, b)Q satisfying
P . If there was only one such element x, then the predicate P would not be dense
because there would be no P -element between a and x.

If there exist multiple P -elements, let us list them all in an increasing order
as x1, . . . , xn and observe that there has to be an element a ∈ (x1, x2), which was
not listed among x1, . . . xn. This is a contradiction.

An analogous argument can be made for the existence of infinitely many
elements not in P .

Theorem 15. If P is a dense and co-dense unary predicate on Q, then QP is
homogeneous.

Proof. Let A and B be finite substructures of QP and let f : A → B be an
isomorphism between them. We shall construct an automorphism of QP which
extends f using the well known back-and-forth method. Let us list the elements
of A and B in an increasing order as a1, . . . , am and b1, . . . , bm and extend these
lists to enumerations of rational numbers a1, . . . and b1, . . . . We will define two
sequences of maps fm, fm+1, . . . and f ′

m, f
′
m+1, . . . in order to construct the desired
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automorphism. Define the map fm as the isomorphism f and for each natural
i > m where ai is not in the domain of fi−1 define

f ′
i := fi−1 ∪ {(ai, y)},

where y is an element of Q satisfying the following properties:

• y is not in the image of fi−1

• The addition of the pair (ai, y) preserves the monotonicity of the map

• P (ai)←→ P (y)

The existence of such element is guaranteed by the previous lemma. If ai happens
to be in the domain of fi−1 we set f ′

i := fi−1.
Similarly, for each natural i > m where bi is not in the image of f ′

i , we define

fi := f ′
i ∪ {(x, bi)},

where x is an element of Q satisfying the following properties:

• x is not in the domain of fi−1

• The addition of the pair (x, bi) preserves the monotonicity of the map

• P (x)←→ P (bi)

The existence of such element is, again, guaranteed by the previous Lemma. If
bi happens to be in the image of f ′

i , we set fi := f ′
i .

Define F to be the union of fi across all natural i ≥ m. It remains to show
that F is bijective, order-preserving and P -preserving. F is P -preserving because
if there was a pair (x, y) in F such that P (x),¬P (y) or ¬P (x), P (y), then that
pair could be found in some fi, which is not allowed in our construction. Similarly
if there were two pairs (x, y), (t, u) in F such that x < t and y > u or x > t and
y < u, then those pairs could be found in some fi, which is, again, not allowed in
the construction. The fact that F is a bijection is easy to see from the way the
construction was set up – the domain of F contains each element from the list
a1, a2 . . . and the image of F contains each element from the list b1, b2, . . . , both
of which enumerate all of rational numbers.

We can now state the main theorem of this section:

Theorem 16. Let K be the class of all structures isomorphic to (Li, P ) for some
positive integer i and some P ⊆ {1, . . . , i}. Then limF K is isomorphic to QP ,
where P is a dense and co-dense unary predicate.

Proof. In Lemmas 11 and 12 we have shown that the class K satisfies the as-
sumptions of Theorem 6 and so there exists limF K. In Theorem 15 we have
shown that QP is homogeneous whenever P is dense and co-dense and we have
commented on the countability of Q and on K being the age of QP for dense and
co-dense P in the paragraph before that lemma. Theorem 6 then guarantees us
that (Q,≤, P ) with dense and co-dense P is isomorphic to the Fräıssé limit of K,
if such predicate exists. The existence of such predicate is proven in Proposition
13.
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We have also indirectly proven that any two QP and QR, where P,R are dense
and co-dense, are isomorphic, however a direct proof of this statement is no more
difficult than the proof of Theorem 15.
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3. The limit by the compactness
theorem
In this chapter we will present our own construction which demands less of the
class and we will show examples in hope to illustrate differences from other ap-
proaches.

3.1 The construction
Definition 17. Let L be a language and let K denote a sequence (Ai|i ∈ N+)
of finite L-structures, unbounded and non-decreasing in size. We define the
compactness-limit of K, or c-limit of K for short, denoted by limC K, to be the
set of all sentences ϕ for which there exists a positive integer nϕ such that every
structure of size at least nϕ in K satisfies ϕ.

Normally one would expect the limit of a class or a sequence of structures to be
a specific structure, possibly up to isomorphism. Without demanding additional
conditions from K, this does not happen in the simplest of cases – we will later
show that the c-limit of finite linear orders has infinitely many countable, non-
isomorphic models.

There is, however, a weaker property that is satisfied in some cases, includ-
ing the one we are interested in. We can demand uniqueness up to elementary
equivalence, or in the language of the c-limit itself: we can demand the c-limit to
be complete.

One immediate observation is that any model of a c-limit is infinite. This is
because the limit contains all sentences of the form

∃x1, . . . , xn : ∧
i ̸=j

xi ̸= xj.

We will denote each such sentence by ψn and denote the set of all ψn by Ψ.
To justify the definition we shall first demonstrate that the c-limit is consis-

tent.

Proposition 18. Let K be a sequence of finite structures. Then limC K has a
model.

Proof. We will prove that any finite subtheory of limC K has a model so that we
can apply the compactness theorem.

Let S be a finite subtheory of limC K. For every sentence ϕ from S there is a
natural number nϕ such that if a structure from K is of size at least nϕ, then it
satisfies ϕ. Because S is finite, we can consider the maximum of all nϕ which we
shall denote by nS. Clearly, any structure from K of size at least nS satisfies the
entire subtheory S, therefore S has a model.

The compactness theorem states that if any finite subtheory has a model, then
the entire theory has a model.

This proposition is the reason why we chose to name the limit as we did.
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3.2 Ehrenfeucht-Fräıssé games and elementary
equivalence

Throughout the examples we will rely heavily on Ehrenfeucht-Fräıssé games and
so it is justified to briefly recall the topic. A more carefully written introduction
can be found in [4, pp.52-56].

Let L be a language with no function symbols, let m be a natural number
and let A,B be L-structures. A m-round Ehrenfeucht-Fräıssé game on structures
A,B is played between two players – the Spoiler and the Duplicator.

In each of those m rounds the Spoiler picks an element of either A or B and the
Duplicator responds by picking an element of the other structure. The resulting
sequence of pairs (ai, bi) ∈ A × B is called a play. We say that the Duplicator
wins the play if it forms a partial isomorphism between A and B. Otherwise we
say that the Spoiler wins.

An unfinished play is called a position. A strategy is a set of rules which tells
the player what element to pick in every position in which he can find himself
using that ruleset. We say that the strategy is winning if the player wins whenever
he uses the strategy and we say that the player has a winning strategy if there
exists some winning strategy.

Now let FlL be the set of all formulas in some language L. The quantifier
rank, denoted by qr, is a function on FlL defined inductively as follows:

• qr(ϕ) = 0 if ϕ is atomic

• qr(ϕ1 ∧ ϕ2) = max(qr(ϕ1), qr(ϕ2))

• qr(ϕ1 ∨ ϕ2) = max(qr(ϕ1), qr(ϕ2))

• qr(¬ϕ) = qr(ϕ)

• qr(∃x ϕ) = qr(ϕ) + 1

• qr(∀x ϕ) = qr(ϕ) + 1

Definition 19. Let m be a natural number and let A and B be L-structures. We
say that A and B are m-elementarily equivalent, and denote it by A ≡m B, if
every sentence of quantifier rank at most m holds in A if and only if it holds in
B.

We say that A and B are elementarily equivalent if they are m-elementarily
equivalent for every positive integer m and we denote it by A ≡ B.

The result, attributed to Ehrenfeucht and Fräıssé, which we will use in order
to demonstrate the completeness of limits can be found for example in [4, pp.54].

Lemma 20. Let A and B be L-structures and let m be a positive integer. Then
A ≡m B if and only if the Duplicator has a winning strategy for the m-round
Ehrenfeucht-Fräıssé game on A and B.

The following theorem is a trivial consequence of this lemma.
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Theorem 21 (Ehrenfeucht, Fräıssé). Let A and B be L-structures. Then A ≡ B
if and only if the duplicator has a winning strategy for the m-round Ehrenfeucht-
Fräıssé game on A and B for every positive integer m.

Let us note that a theory T is complete if and only if every two models of T are
elementarily equivalent. This follows directly from the definition of a consequence
of a theory.

3.3 The c-limit of finite linear orders
In this section we will present a result about completeness of the c-limit of finite
linear orders with endpoints. Our approach is inspired by an approach to a
solution of a similar problem presented in [4, pp.56-57].

Let L be a language consisting of one binary relational symbol ≤ and let us
denote the sequence of finite linear orders (Li|i ∈ N+) by K for the rest of the
section. We will demonstrate that limC K is complete.

Let us note that

• when a consistent theory T has a complete subtheory, then T itself is com-
plete

• consistent theory is complete if and only if any two models of the theory
are elementarily equivalent.

Notice that DiLOep∪Ψ is a subtheory of limC K. We will show that limC K is
complete by demonstrating that any two infinite models of DiLOep are elemen-
tarily equivalent to each other. Let us begin by describing those models.

Let A be a model of DiLOep. We define a relation ∼= on A by

a ∼= b iff ∃n ≥ 0 : a = sn(b) ∨ a = pn(b).

Lemma 22. The relation ∼= on any model A of DiLOep is an equivalence.

Proof. All three properties are quite straightforward to prove.
Reflexivity follows from a = s0(a), the relation is symmetric because if a =

sn(b), then b = pn(a) and it is also transitive because if a = sn(b) and b = sm(c),
then a = sm+n(c) and if a = sn(b) and b = pm(c), then a = sn−m(c), or pm−n(c),
if n−m is negative. Therefore ∼= is an equivalence relation.

In the rest of the section we will deal mostly with ordered sets of the form
Z+ ∪ (P × Z) ∪ Z−, where Z+ denotes the ordered set of positive integers, Z−

denotes negative integers and P is a set ordered linearly by ≤P. Let us denote
any such set by LP.

On LP we define a linear order ≤LP by the following set of rules:

• The elements of Z+ inherit the order from Z and are less than all other
elements of LP.

• The elements of Z− inherit the order from Z and are greater than all other
elements of LP.

• The elements a = (p, i) and b = (q, j) of P×Z are ordered lexicographically:
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– If p <P q, then a <LP b,
– if p >P q, then a >LP b and
– if p = q, then i < j results in a <LP b, i > j results in a >LP b and
i = j results in a = b.

Any ordered set (LP,≤LP) is a model of DiLOep.

Lemma 23. Let A be an infinite model of DiLOep. Then there exists P such that
A is isomorphic to (LP,≤LP).

Proof. Assume that A = (A,≤A) is an infinite, ordered set satisfying DiLOep.
The elements MIN and MAX of the structure A are not in the ∼= relation, as
the structure is infinite.

While keeping in mind that two elements a and b are finitely distant from
each other if and only if a ∼= b, it is easy to see that

• [MIN]∼= with the order inherited from A is isomorphic to Z+

• [MAX]∼= with the order inherited from A is isomorphic to Z−

• any other equivalence class is isomorphic to Z.

Let P be a set consisting of every equivalence class but [MIN]∼= and [MAX]∼=.
Then (A,≤A) is isomorphic to [MIN]∼= ∪ P × Z ∪ [MAX]∼=, ordered in a way
which fits the description above.

Now let A be a model of DiLOep. We define a distance function of a, b from
A, denoted by d(a, b), as the usual distance of integers if a ∼= b and as∞ if a ≉ b.

Theorem 24. Let A and B be infinite models of DiLOep. Then the Duplicator
has a winning strategy for the m-round Ehrenfeucht-Fräıssé game on A and B for
every natural m.

Proof. We will demonstrate a strategy which allows the duplicator to ensure that
every position listed as a1 < · · · < ak, b1 < · · · < bk satisfies the following distance
condition for each positive integer i < k:

(D) d(ai, ai+1) = d(bi, bi+1) or both distances are at least 2m−k.

Without loss of generality we can assume that a1 is MIN of A, ak is MAX
of A, b1 is MIN of B and bk is MAX of B. If those elements are not played, then
the Duplicator can imagine that they are played in the first 2 moves and that the
length of the game is m+ 2 instead of m.

First let us observe that if two pairs (ai, ai+1) and (bi, bi+1) satisfy the condition
(D) in the k-th position, then they will satisfy that condition in the (k + 1)-th
position, because if the distances between the elements within the pairs are not
the same, then they are at least 2m−k and therefore they are at least 2m−(k+1).
From this it follows that those two pairs will satisfy the distance condition in all
future positions, if they do so in the k-th position.

Now let the spoiler pick an element a ∈ A, say between ai and ai+1. We
need to select an element b such that the partial isomorphism and the distance
conditions are satisfied, that is
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• bi < b < bi+1

• d(ai, a) = d(bi, b) or both distances are at least 2m−k−1

• d(a, ai+1) = d(b, bi+1) or both distances are at least 2m−k−1.

We consider the following cases:

• d(ai, ai+1) < 2m−k.
In that case d(ai, ai+1) = d(bi, bi+1) and we can set b := bi + d(ai, a). Con-
sequently, we have d(ai, a) = d(bi, b) and d(a, ai+1) = d(b, bi+1) and so the
condition is preserved.

• d(ai, ai+1) ≥ 2m−k.
In that case we shall, while keeping in mind that d(bi, bi+1) ≥ 2m−k, distin-
guish further:

– d(ai, a) < 2m−k−1.
In this case we can, again, set b := bi+d(ai, a) so that d(ai, a) = d(bi, b)
and we observe that d(a, ai+1) ≥ 2m−k−1 and d(b, bi+1) ≥ 2m−k−1.

– d(a, ai+1) < 2m−k−1

Then we set b := bi+1−d(a, ai+1) so that d(a, ai+1) = d(b, bi+1) and we
observe that both d(ai, a) and d(bi, b) are at least 2m−k−1.

– d(ai, a) ≥ 2m−k−1, d(a, ai+1) ≥ 2m−k−1.
In that case we select an element b between bi and bi+1 that satisfies
d(bi, b) ≥ 2m−k−1 and d(b, bi+1) ≥ 2m−k−1. Existence of such element
is warranted by the distance condition (D) itself.

If the Spoiler decides to pick an element from B, the Duplicator applies the
same strategy to A.

After the position is finished and becomes a play, we observe that the play
satisfies the partial isomorphism condition and conclude that the Duplicator wins.

Theorem 25. limC K is consistent and complete.

Proof. In Proposition 18 we have proven that the c-limit is always consistent.
Theorem 24 presents Duplicator’s winning strategy for the m-round Ehrenfeucht-
Fräıssé game on any two infinite models of DiLOep for arbitrary positive integer
m. The corollary of Lemma 20 then gives us elementary equivalence of every
two infinite models of DiLOep and so DiLOep ∪ Ψ is complete according to one
of our observations. Because limC K is consistent and contains DiLOep ∪Ψ as a
subtheory, it follows that limC K is complete as well.

Let us note that Theorem 24 and its proof work even if we choose to consider
finite models of size at least 2m instead of infinite models. The consequence of
this is that it is possible to verify the validity of a formula ϕ of quantifier rank
at most m on a linear order of size 2m. According to [3, pp.40], results of this
nature were rediscovered many times. The source references texts from Gurevich
and Rosenstein as some of the older ones.

Earlier I promised to look into isomorphisms of models of limC K.
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Theorem 26. limC K has infinitely many non-isomorphic countable models.

Proof. We have observed that limC K and DiLOep ∪ Ψ have the same models
(DiLOep ∪Ψ is complete and limC K is consistent).

In Lemma 23 we have established that infinite models of DiLOep are precisely
the models isomorphic to (LP,≤LP) for some P.

Suppose that P and P′ are finite. It is easy to observe that (LP,≤LP) and
(LP′ ,≤LP′ ) are not isomorphic to each other if |P| ̸= |P′| and that every such LP
is countable.

3.4 The c-limit of finite linear orders with a
unary predicate

Let us now consider L to be a language consisting of two relational symbols:
binary ≤ and unary U . For the rest of the section let us denote by (Li, P ) the
structure ({1, . . . , i},≤, P ), where ≤ is the usual linear order of {1, . . . , i} and
P ⊆ {1, . . . , i} is a unary predicate, and by K we denote a sequence of (Li, P )
for all positive integers i and all P ⊆ {1, . . . , i}, as in the last section of chapter
2. It does not matter how we choose to order the individual structures in the
sequence, as long as they are nondecreasing in size. One possible way was hinted
at in the proof of Lemma 11.

Observation. limC K is not complete.

Proof. First let us observe that if a sentence ϕ is a consequence of limC K, then
ϕ ∈ limC K. This follows from the definition of c-limit.

Now consider a nontrivial sentence φ about the predicate, for example

∀x : U(x).
Clearly there are structures of arbitrarily large size which satisfy this sentence

and also structures of arbitrarily large size which do not satisfy it. Therefore
neither φ nor ¬φ can be in limC K and so they cannot be a consequence of
limC K.

There is a nontrivial way to constrain the predicate in order to achieve com-
pleteness.

Let αm state that any two elements satisfying the predicate must be distanced
from each other by at least m− 1 other elements. Written by a formula:

∀x < y : (U(x)∧U(y)) −→ (∃x1 < · · · < xm−1 : x < x1∧xm−1 < y∧
m−1∧
i=1
¬U(xi))).

Also let βm state that there must be at least m elements satisfying the predicate.
Written by a formula:

∃x1, . . . xm : (∧
i ̸=j

xi ̸= xj) ∧ (
m∧

i=1
U(xi)).

We are interested in a subsequence of K consisting of structures A which
satisfy the following:
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• U(MIN)

• U(MAX)

• α⌊
√

n⌋, where |A| = n

• β⌊
√

n⌋, where |A| = n,

where U(MIN) and U(MAX) are abbreviations for the formulas which state
that the uniquely determined minimum and maximum elements satisfy U . Let
us denote such subsequence by H.

The search for a complete subtheory of limC H has proven to be difficult and
so we approach the problem differently compared to the previous section. We
will show that for each positive integer m there exists a positive integer nm such
that any formula ϕ of quantifier rank m is either satisfied by all structures of size
at least nm from H or by no structure of size at least nm from H. Then either
ϕ ∈ limC H or ¬ϕ ∈ limC H and so we will have proven that limC H is complete.

We will work with structures satisfying U(MIN) and U(MAX) and for these
we define the following notation and terminology:

• For an element a of (Li, P ) let us denote max{b ∈ (Li, P )|P (b), b ≤ a} by
a↓ and min{b ∈ (Li, P )|P (b), a ≤ b} by a↑.

• A P -successor of an element a of (Li, P ) is the smallest element b satisfying
b > a and P (b) and similarly a P -predecessor of a is the largest element
c satisfying c < a and P (c). P -predecessor of MIN and P -successor of
MAX are left undefined, we will not need them.

• Let us also define a P -distance of two elements a ≤ b of (Li, P ) as the
number of times we have to apply the P -successor function to a↓ in order
to obtain b↓. We denote this distance by dP (a, b).

Theorem 27. Let A and B be structures in H of size at least 22m+4. Then the
Duplicator has a winning strategy for an Ehrenfeucht-Fräıssé game on A,B of
length m.

Proof. We will define a strategy which allows the Duplicator to ensure that every
position listed as a1 < · · · < ak, b1 < · · · < bk, where UA(ai) ↔ UB(bi), satisfies
the following distance conditions:

(DU) ∀i < k : dUA(ai, ai+1) = dUB(bi, bi+1) or both distances are at least 2m−k

(D↑ ) ∀i ≤ k : d(ai, a
↑
i ) = d(bi, b

↑
i ) or both distances are at least 2m−k

(D↓ ) ∀i ≤ k : d(a↓
i , ai) = d(b↓

i , bi) or both distances are at least 2m−k

Again, without loss of generality we can assume that a1 is MIN of A, ak is MAX
of A and b1 is MIN of B and bk is MAX of B as if those moves were not played,
the Duplicator can imagine that they are played in the first 2 moves and that the
length of the game is m+ 2 instead of m.

It is easy to see that if the distance condition is satisfied by two pairs (ai, ai+1)
and (bi, bi+1) in some position, then those pairs satisfy the condition in all future
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positions, similarly to the proof of Theorem 24. Now let the Spoiler pick an
element a from A, say between ai and ai+1. In each of the following cases we will
select an element bU from B which satisfies UB(bU) and some distance condition
and then we find the response b to the element a based on the choice of bU in
order to preserve the condition of the play, that is:

(1) dUA(ai, a) = dUB(bi, b) or both distances are at least 2m−k−1

(2) dUA(a, ai+1) = dUB(b, bi+1) or both distances are at least 2m−k−1

(3) d(a↓, a) = d(b↓, b) or both distances are at least 2m−k−1

(4) d(a, a↑) = d(b, b↑) or both distances are at least 2m−k−1

We consider the following cases and for each of them we describe how to select
the element b and verify that the conditions are preserved.

• dUA(ai, a) < 2m−k−1,

– d(a↓, a) < 2m−k−1. Then we let bU be the element which satisfies
UB(bU) and dUB(bi, b

U) = dUA(ai, a) and we set b := bU + d(a↓, a).
We have selected bU so that dUA(ai, a) = dUB(bi, b

U). dUB(bi, b
U) =

dUB(bi, b) holds because d(a↓, a) < 2m−k−1, which is smaller than the
minimum gap between two UA-elements, therefore condition (1) is pre-
served.
Suppose that dUA(ai, ai+1) ≥ 2m−k. Then we know that dUA(a, ai+1) ≥
2m−k−1 and from dUB(bi, bi+1) ≥ 2m−k we know that dUB(b, bi+1) ≥
2m−k−1. If we assume that dUA(ai, ai+1) < 2m−k, then we obtain
dUA(ai, ai+1) = dUB(bi, bi+1) < 2m−k and consequently dUA(a, ai+1) =
dUB(b, bi+1), because dUB(bi, b) = dUA(ai, a). Therefore condition (2) is
preserved.
We have selected b by a formula which makes it easy to see that
d(a↓, a) = d(b↓, b) – condition (3) is preserved.
Suppose that d(a, a↑) < 2m−k. Then a is a UA-element because the
gaps between UA-elements are more than 2m wide. In that case b is a
UB-element and therefore d(b, b↑) = d(a, a↑) = 0. Otherwise d(a, a↑) ≥
2m−k−1 and d(b, b↑) ≥ 2m−k−1 because of the minimum gap length.
Therefore condition (4) is preserved.

– 0 < d(a, a↑) < 2m−k−1. Then let bU satisfy dUB(bi, b
U) = dUA(ai, a) + 1

and set b := bU − d(a, a↑).
dUA(ai, a) = dUB(bi, b

U) − 1 = dUB(bi, b) follows from an argument
already presented above, and so condition (1) is preserved.
The argument for dUA(a, ai+1) = dUB(b, bi+1) or both at least 2m−k was
also already presented above, and condition (2) is preserved.
b was selected in a way so it is easy to see that d(a, a↑) = d(b, b↑).
2m−k−1 ≤ d(a↓, a) < 2m−k is not possible because of the minimum size
of gaps between UA-elements. Same goes for d(b↓, b).
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– d(a↓, a) ≥ 2m−k−1 and d(a, a↑) ≥ 2m−k−1. Then we select bU so that
it satisfies dUB(bi, b

U) = dUA(ai, a) and observe that our condition war-
rants existence of an element b which is at least 2m−k−1 far away from
both bU and the UB-successor of bU .
As in all previous cases, b was selected so that dUA(ai, a) = dUB(bi, b),
therefore condition (1) is preserved.
The argument for dUA(a, ai+1) = dUB(b, bi+1) or both at least 2m−k was
already presented in the first case and so condition (2) is preserved.
The conditions (3) and (4) are trivially satisfied.

• dUA(a, ai+1) < 2m−k−1. This case is analogous to the previous one.

• dUA(ai, a) ≥ 2m−k−1, dUA(a, ai+1) ≥ 2m−k−1.
In all 3 subcases it will be clear that the conditions (1) and (2) are preserved
because of our choice of bU and also it will be clear that the conditions (3)
and (4) are preserved as analogous cases were already discussed at the
beginning of this case analysis.

– d(a↓, a) < 2m−k−1. Then let bU be an element which is at least 2m−k−1

UB-far away from both bi and bi+1 and set b := bU + d(a↓, a).
– 0 < d(a, a↑) < 2m−k−1. Then let bU be an element which is at least

2m−k−1 + 1 UB-far away from bi and at least 2m−k−1− 1 far away from
bi+1 and set b := bU − d(a, a↑).

– d(a↓, a) ≥ 2m−k−1 and d(a, a↑) ≥ 2m−k−1. Then let bU be an element
at least 2m−k−1 UB-far away from both bi and bi+1 and choose b to be
an element which is at least 2m−k−1 far away from both bU and the
UB-successor of bU .

After the position becomes a finished play, we can observe that the partial iso-
morphism condition is satisfied and so the Duplicator wins.

Theorem 28. limC H is consistent and complete.

Proof. We have observed that a c-limit is always consistent at the start of the
chapter.

For completeness, let us choose a sentence ϕ of quantifier rank m. In the proof
of Theorem 27 we have proven that for nm := 22m+4 either all or no structures of
size at least nm from H satisfy ϕ. Then either ϕ ∈ limC H or ¬ϕ ∈ limC H and so
limC H is complete.

Similarly to our note following Theorem 25, it is possible to verify the validity
of a formula ϕ of quantifier rank m in the theory limC H with the help of any
structure from H of size at least 22m+4.
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4. The forcing limit
In this chapter we will present a construction based on games. We will look into
a few examples and also mention a relevant alternative approach.

4.1 The construction
For the entire chapter let us fix a countable set A consisting of elements ai, where
i ∈ N, and also let us fix a language L without any function symbols for the
entire section. With the help of the set A we extend the language L by new
constants cai and denote such extension by L(A). Consider K to be a class of
finite L-structures Ai with universes Ai ⊆ A.

On this class we will consider the following partial order: If A and B are
structures in K, then we say that A ≤G B iff there is an embedding of A as an
L(A)-structure into B. We will be working with this partial order and possibly
some restrictions of it.

We will consider games of countable length on the class K played between
two players. For convenience, we will stick to calling them the Spoiler and the
Duplicator, as one still challenges the other to answer played moves. Each move
will have an L-structure Ai associated with itself. One player starts by choosing a
structure A0 from the class K, and in the i-th move, a player chooses a structure
of K which is greater according to the selected order of the class. We define the
resulting structure of the game as

⋃︂
i∈N

Ai.

and denote it by S.
As in our introduction of Ehrenfeucht-Fräıssé games, we will concern ourselves

with strategies. A sequence of structures Ai which results from a game between
our two players is called a play. An unfinished play is called a position. A strategy
is a set of rules which tells the player what move to make in every position in
which he can find himself in using that set of rules.

For a fixed sentence ϕ, we say that the Duplicator wins a play if and only if
the resulting structure S satisfies ϕ. We say that a strategy is winning if and only
if the player wins whenever he uses it and we say that the player has a winning
strategy if such a strategy exists.

Definition 29. Let ϕ be a formula in the language L and let K be a class of finite
L-structures Ai with universes Ai ⊆ A. We say that ϕ is enforceable in K if and
only if the Duplicator has a winning strategy for the game on the class K for the
formula ϕ.

We shall denote a game on a class K in which the Duplicator desires to force
ϕ utilizing moves X ⊆ N by GX(ϕ,K).

If the choice of X is unimportant or clear from the context, then we may write
G(ϕ,K).

It should be noted that the interesting subset of all games consists of those
where the Spoiler moves first and both players have infinitely many moves, or in
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the language of the set X: we are interested in games GX(ϕ,K), where X ⊆ N+

is infinite and coinfinite. Such games are called regular and they are equivalent
(in terms of enforceability of formulas) to games where the Spoiler plays the odd
moves and the Duplicator plays the even moves. In the scope of this thesis we
will only concern ourselves with these.

There is a more general definition of forcing presented in [1, pp.17-34], where
the author allows function symbols in the language. The text contains many
details not mentioned here, as well as a more thoroughly written paragraph about
regular games.

For the sake of the format of this thesis, we define the forcing limit of a class
K, denoted as limF O K, to be the set of all formulas enforceable in a regular game.

4.2 A few basic properties
For the purposes of this section, we shall treat a strategy for a game as an object S
which assigns a structure S(Ai, . . .A1) to any position Ai, . . .A1 which can occur
if the Duplicator uses S as his strategy.

Proposition 30. Let L be a language without function symbols, let ϕk, k ∈ N
be L-formulas and let K be a class of L-structures Ai with universes Ai ⊆ A. If
every ϕk is enforceable in K, then all formulas ϕk are enforceable in K at once.

Proof. Suppose that Sϕk
are the strategies which allow the Duplicator to win

regular games G(ϕk,K). Then the Duplicator can win every game GXk
(ϕk,K),

where Xk = {pl
k|l ∈ N+}, where pk is the k-th prime number. The combined

strategy, where the Duplicator applies Sϕk
in his every pl

k-th move, k ∈ N+, l ∈
N+, surely allows him to win the regular game GX(ϕk,K), where

X =
⋃︂

m∈N
Xm,

for every k.

An easily observable consequence of this theorem is that ϕ and ψ are not both
enforceable if they contradict each other.

In the following section we will also show an example to demonstrate that
the enforceability of ϕ ∨ ψ does not imply the enforceability of either of the two
formulas.

Proposition 31. Let L be a language without function symbols and let K be any
class of finite L-structures Ai with universes Ai ⊆ A. If every structure Ai of
the class K can be extended by every element a ∈ A \ Ai, then there is a strategy
which ensures that the universe of the resulting structure S is A.

Proof. Consider an enumeration of A, say a sequence (aj)∞
j=1. If the Duplicator

extends the structure Ai by the element aj in his j-th move, then the resulting
structure will contain all elements of A.

This strategy can be merged with other strategies as suggested in Proposition
31, despite the fact that we cannot express the desired property by a first-order
sentence.
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4.3 Examples of enforceability in different sub-
classes of linear orders

Let L be a language consisting of one binary symbol ≤ for the entire section.

Theorem 32. Let K be a class of all possible finite linear orders L ⊆ A. Then
the formula

∀x∃y : x < y

is enforceable in K.

Proof. We will show that the Duplicator has a winning strategy for a regular
game G(ψ,K), where ψ is the formula stated in the theorem.

Let us consider an enumeration of A, say (aj)∞
j=1. In each of Duplicator’s

moves he chooses the first element aj which has not been used yet and appends
it above the maximum element.

The resulting structure does not have a maximum element, for if x is the
maximum element, then let us find an index k of that element in the enumeration
(aj)∞

j=1 and consider any element with an index larger than k which the Duplicator
used. Since the game is regular, there will always be such an element.

An analogous theorem can be stated for the minimum element, therefore the
nonexistence of endpoints is an enforceable property.

Now let us look into whether the density of a linear order is an enforceable
property in various settings.

Theorem 33. Let K be a class of all possible finite linear orders L ⊆ A. Then
the formula

∀x, y : (x < y → ∃z : x < z < y)
is enforceable in K.

Proof. Let us denote that formula by ψ. We will show that the Duplicator has a
winning strategy for a regular game G(ψ,K).

Let us fix an enumeration of all elements of the set A, say as a sequence
(aj)∞

j=1. In each of Duplicator’s moves he is faced with a finite linear order Ai

on some of the elements of A, say Ai = {x1 < x2 < · · · < xn}. Duplicator’s
strategy in each move is to select the first n − 1 elements aj1 , . . . , ajn−1 of the
enumeration (aj)∞

j=1 which are not present in Ai and embed the structure Ai

within Ai+1 := {x1 < aj1 < x2 < aj2 · · · < ajn−1 < xn}.
To prove that the resulting structure S satisfies the formula ψ, we only need

to arbitrarily select two elements x, y which satisfy x < y and consider the earli-
est structure Ai which contains both of them. There has to be such a structure,
because the elements have indices in the enumeration and the Duplicator plays in-
finitely many moves, as he is playing a regular game. Then Ai+1 already contains
an element z satisfying x < z < y.

Theorem 34. Let V1, . . . , Vm ⊆ A be a disjoint decomposition of A such that
every Vi is infinite and let K be a class of all possible finite linear orders L ⊆ A
such that every two elements x, y ∈ L satisfy x < y whenever x ∈ Vi, y ∈ Vj and
i < j. Then the formula

∀x, y : (x < y → ∃z : x < z < y)
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is enforceable in K.

Proof. Let us denote that formula by ψ. We will show that the Duplicator has a
winning strategy for a regular game G(ψ,K).

Let us fix enumerations of all elements of our sets Vk, say as sequences (vk
j )∞

j=1.
In each of Duplicator’s moves he is faced with a finite linear order Ai with elements
xk

j from the sets Vk, ordered as the theorem states.
In his first move, the Duplicator makes sure that Ai+1 coincides with every

Vk by adding every missing vk
1 into an appropriate spot according to the order

condition stated in the theorem.
The Duplicator also embeds the structure Ai segment-by-segment in his every

move: Suppose that {x1 < · · · < xnk
} is a segment of Ai which contains all used

elements of Vk. Then the corresponding segment of Ai+1 is {vk
j1 < x1 < vk

j2 <
x2 < · · · < xn < vk

jnk+1}, where vk
j1 , . . . , v

k
jnk+1 are the first nk + 1 elements of the

enumeration (vk
j )∞

j=1 which have not been used yet.
To prove that the resulting structure S satisfies the formula ψ, we only need to

arbitrarily select two elements x, y which satisfy x < y and consider the earliest
structure Ai which contains both of them. There has to be a structure which
contains these two elements, because they have indices in the enumeration and the
Duplicator plays infinitely many moves. Then Ai+1 already contains an element
z satisfying x < z < y.

A slight improvement upon this theorem would be to drop the decomposition
requirement and have V1, . . . , Vm as just pairwise-disjoint, infinite subsets of A.
In that case the Duplicator can achieve his goal using the demonstrated strategy
without any change.

It should be noted that the strategy demonstrated in this proof also enforces
the nonexistence of endpoints, therefore the existence of endpoints is not an
enforceable property.

Theorem 34 can also be modified to a version with infinitely many infinite
sets Vi.

Theorem 35. Let V1, · · · ⊆ A be a disjoint decomposition of A such that every
Vi is infinite and let K be a class of all possible finite linear orders L ⊆ A such
that for x ∈ Vi, y ∈ Vj we have x < y whenever i < j. Then the formula

∀x, y : (x < y → ∃z : x < z < y)

is enforceable in K.

Proof. Let us denote that formula by ψ. We will show that the Duplicator has a
winning strategy for a regular game G(ψ,K).

Let us fix enumerations of all elements of the sets Vk, say as sequences (vk
j )∞

j=1.
In each of Duplicator’s moves he is faced with a finite linear order Ai with elements
xk

j from sets Vk, ordered as the theorem states. Suppose that k is the largest
index such that Ai coincides with Vk. The Duplicator first adds missing elements
vl

1, l = 1, . . . , k + 1 into their appropriate spots according to the condition stated
in the theorem. After this step, he embeds the structure segment-by-segment, as
he did in the previous proof: Suppose that {x1 < · · · < xnk

} is a segment of Ai

which contains all used elements of Vk. Then the corresponding segment of Ai+1
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is {vk
j1 < x1 < vk

j2 < x2 < · · · < xn < vk
jn+1}, where vk

j1 , . . . , v
k
jn+1 are the first

n+ 1 elements of the enumeration (vk
j )∞

j=1, which have not been used yet.
To prove that the resulting structure S satisfies the formula ψ, we only need to

arbitrarily select two elements x, y which satisfy x < y and consider the earliest
structure Ai which contains both of them. There has to be a structure which
contains these two elements, because they have indices in the enumeration and the
Duplicator plays infinitely many moves. Then Ai+1 already contains an element
z satisfying x < z < y.

Similarly to the note following Theorem 34, we should note that the assump-
tion of this theorem can be weakened from disjoint decomposition to pairwise-
disjoint subsets.

We can mention concrete examples to which Theorems 34 and 35 apply. In
this scope, let A := N+. For the first example, let K be the class of all linear
orders where every even number is smaller than every odd number. For a second
one, let K be the class of all linear orders where x < y iff x has fewer prime
divisors than y.

To make a non-example, we can consider K to be the class of all finite linear
orders L ⊆ A, where the order ≤K is a restriction of ≤G which preserves neigh-
bourships. More formally: A ≤K B iff b is a successor of a in B whenever b is a
successor of a in A. Let us show that in this setting it is impossible to enforce
the density of the linear order:

Theorem 36. Let K be a class of finite linear orders L ⊆ A and let ≤K be the
order of K described in the previous paragraph. Then the density of the linear
order is not enforceable.

Proof. We have previously noted that two formulas which are contradictory with
each other can not both be enforceable. It is easy to see that the resulting
structure of any play is a discrete linear order and therefore it can not be dense.

I have promised to demonstrate that enforceability of a disjunction does not
imply enforceability of either of the disjuncts. Let A := N, consider φ1 to be a
L(1, 2)-sentence stating that 1 ≤ 2, consider φ2 to be a L(1, 2)-sentence stating
that 2 ≤ 1 and let K be the class of all finite linear orders Ai ⊆ A.

We have already demonstrated that it is easy to ensure that all elements of
A are used, therefore φ1 ∨ φ2 is most certainly enforceable, however since the
Spoiler is the first one to move in any standard game, it is impossible to enforce
either of these two formulas individually.

4.4 Enforceability in linear orders with a unary
predicate

Let us now extend some of our previous theorems to their predicate versions. For
the entire section let L be a language of two relational symbols: binary ≤ and
unary U .
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Theorem 37. Let K be a class of all possible finite linear orders L ⊆ A with all
possible unary predicates. Then the formulas

∀x, y : (x < y → ∃z : x < z < y, U(z))

and
∀x, y : (x < y → ∃z : x < z < y,¬U(z))

are enforceable in K.

Proof. The proof is a slight modification of the proof of Theorem 33.
Let us denote the first formula by ψ. We will show that the Duplicator has a

winning strategy for a regular game G(ψ,K). The winning strategy for the second
formula is analogous and we can merge strategies according to Proposition 31.

Let us fix an enumeration of all elements of the set A, say as a sequence
(aj)∞

j=1. In each of Duplicator’s moves he is faced with a finite linear order Ai on
some of the elements of A, say Ai = {x1 < x2 < · · · < xn}. The Duplicator’s
strategy in each move is to select the first n − 1 elements aj1 , . . . , ajn−1 of the
enumeration (aj)∞

j=1 which are not present in Ai and embed the structure Ai

within Ai+1 := {x1 < aj1 < x2 < aj2 < · · · < ajn−1 < xn} such that every aji

satisfies U .
To prove that the resulting structure A satisfies the formula ψ, we only need to

arbitrarily select two elements x, y which satisfy x < y and consider the earliest
structure Ai which contains both of them. There has to be a structure which
contains these two elements, because they have indices in the enumeration and the
Duplicator plays infinitely many moves. Then Ai+1 already contains an element
z satisfying x < z < y and U(z).

Theorem 38. Let V1, . . . , Vm ⊆ A be a disjoint decomposition of A, let V U and
V ¬U be another disjoint decomposition of A and let K be a class of all possible
finite linear orders L ⊆ A such that for x ∈ Vi, y ∈ Vj we have x < y whenever
i < j and such that U(x) iff x ∈ V U and ¬U(x) iff x ∈ V ¬U . Then the formulas

∀x, y : (x < y → ∃z : x < z < y, U(z))

and

∀x, y : (x < y → ∃z : x < z < y,¬U(z))

are enforceable in K if all Vi ∩ V U and Vi ∩ V ¬U are infinite.

Proof. Let us denote the first formula by ψ. We will show that the Duplicator
has a winning strategy for a regular game G(ψ,K). The winning strategy for the
second formula is analogous and we can merge strategies according to Proposition
31.

Let us fix enumerations of all elements of sets Vk ∩ V U , say as sequences
(vk

j )∞
j=1. In each of Duplicator’s moves he is faced with a finite linear order Ai

with elements xk
j from the sets Vk ordered as the theorem states. In his first

move, the Duplicator makes sure that Ai+1 coincides with every Vk by adding
every missing vk

1 into an appropriate spot according to the condition stated in
the theorem.
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After this precaution is taken, the strategy is to embed the structure segment-
by-segment, as we did previously: Suppose that {x1 < · · · < xnk

} is a segment
of Ai which contains all used elements of Vk. Then the corresponding segment of
Ai+1 is {x1 < vk

j1 < x2 < · · · < vk
jn−1 < xn}, where vk

j1 , . . . , v
k
jn−1 are the first n− 1

elements of the enumeration (vk
j )∞

j=1, which have not been used yet.
To prove that the resulting structure A satisfies the formula ψ, we only need to

arbitrarily select two elements x, y which satisfy x < y and consider the earliest
structure Ai which contains both of them. There has to be a structure which
contains these two elements, because they have indices in the enumeration and the
Duplicator plays infinitely many moves. Then Ai+1 already contains an element
z satisfying x < z < y and U(z).

Similarly to the format of the previous section, this theorem can be modified
into a version with infinitely many infinite sets Vi.
Theorem 39. Let V1, · · · ⊆ A be a disjoint decomposition of A, let V U and V ¬U

be another disjoint decomposition of A and let K be a class of all possible finite
linear orders L ⊆ A such that for x ∈ Vi, y ∈ Vj we have x < y whenever i < j
and such that U(x) iff x ∈ V U and ¬U(x) iff x ∈ V ¬U . Then the formulas

∀x, y : x < y → ∃z : x < z < y, U(z)
and

∀x, y : x < y → ∃z : x < z < y,¬U(z)
are enforceable in K if all Ai ∩ AU and Ai ∩ A¬U are infinite.
Proof. Let us denote the first formula by ψ. We will show that the Duplicator
has a winning strategy for a regular game G(ψ,K). The winning strategy for the
second formula is analogous and we can merge strategies according to Proposition
31.

Let us fix enumerations of the elements of the sets Vk ∩ V U , say as sequences
(vk

j )∞
j=1. In each of Duplicator’s moves he is faced with a finite linear order Ai

with elements xk
j from the sets Vk ordered as the theorem states. Suppose that k

is the largest index such that Ai coincides with Vk. The duplicator adds missing
elements vl

1, l = 1, . . . , k+1 into their appropriate spots according to the condition
stated in the theorem. The second step of the strategy is to embed the structure
segment-by-segment, as we did in previous proofs: Suppose that {x1 < · · · < xnk

}
is a segment of Ai which contains all used elements of Vk. Then the corresponding
segment of Ai+1 is {x1 < vk

j1 < x2 < · · · < vk
jn−1 < xn}, where vk

j1 , . . . , v
k
jn

are the
first n elements of the enumeration (vk

j )∞
j=1, which have not been used yet.

To prove that the resulting structure A satisfies the formula ψ, we only need to
arbitrarily select two elements x, y which satisfy x < y and consider the earliest
structure Al which contains both of them. There has to be a structure which
contains these two elements, because the elements have indices in the enumeration
and the Duplicator plays infinitely many moves. Then Al+1 already contains an
element z satisfying x < z < y and U(z).

Both of these theorems can be modified to not require disjoint decompositions
but only pairwise-disjoint subsets for both the order and the predicate. The
conditions for enforceability can then be weakened to ”every Ai ∩ (A \A¬U) and
every Ai∩(A\AU) is infinite” and in both proofs we then enumerate through these
sets instead of Ai∩AU and Ai∩A¬U , but this change has no further consequence.
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4.5 Inductively-defined Forcing in linear orders
We have mentioned some elementary properties of the game-defined forcing in
the previous sections, such as the fact that ϕ∧ψ is enforceable iff ϕ is enforceable
and ψ is enforceable. This leads to a more abstract definition of forcing, which
can be found for example in [5].

Let L be a language and let T be a theory in L. We call a set of basic
L(A)-sentences P a forcing condition iff T ∪ P is consistent. The enforceability
of an L(A)-formula ϕ by the set P , from now on denoted as P ⊩ ϕ, is defined
inductively on the formula structure:

• If ϕ is atomic, then P ⊩ ϕ iff ϕ ∈ P

• If ϕ = ϕ1 ∧ ϕ2, then P ⊩ ϕ iff P ⊩ ϕ1 and P ⊩ ϕ2

• If ϕ = ϕ1 ∨ ϕ2, then P ⊩ ϕ iff P ⊩ ϕ1 or P ⊩ ϕ2

• If ϕ = ¬ψ, then P ⊩ ϕ iff there is no Q ⊇ P such that Q ⊩ ψ

• If ϕ = ∃x : ψ(x), then P ⊩ ϕ iff there is a term t such that P ⊩ ψ(t)

We say that a formula ϕ is weakly forced by P iff P ⊩ ¬¬ϕ and denote such
statement by P ⊩w ϕ.

We will not make an effort to rigorously relate this definition to ours, as we do
not desire any additional results based upon it, but I still think that it is worth
mentioning as an alternative to our game-related approach. The introductory
part of [5] presents a few not entirely trivial results which we do not have access
to with our game-based definition.
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Conclusion
This concludes our exploration of methods of limit construction. Regarding the
three main chapters, we have summarized the necessary relevant theory in each
of them and we have shown how the construction behaves in the case of finite
linear orders with endpoints.

In chapter 2, we spent a nontrivial amount of time by verifying the assump-
tions that the construction requires from the class of structures. That was an
investment which turned out to be justified by the uniqueness of the limit up
to isomorphism and later by the apparent robustness of the method – the intro-
duction of an additional predicate complicated the situation but did not cause
any trouble to the method itself. In this chapter it is impossible to highlight one
theorem more noteworthy than the others – the strategy leading up to Theorem
16 was an easy consequence of Theorem 6 and the proof techniques used in the
following individual pieces of the puzzle were mostly well known and straightfor-
ward.

In chapter 3, we explored a method which posed lesser requirements on the
class of structures, but also provided a weaker uniqueness result. The bulk of
the effort was concentrated into proofs about the existence of winning strategies
in Ehrenfeucht-Fräıssé games. We showed that the method is not as robust as
Fräıssé’s amalgamation – in the case with a unary predicate there are easily
definable sequences of structures which this method does not handle at all. I
consider Theorem 27 to be the highlight of this chapter, despite the fact that the
proof strategy is a variation of the non-predicate version, which is a variation of a
proof strategy demonstrated by [4], which is not new to the world of mathematics.

In chapter 4, we explored a method which required simpler conditions than
Fräıssé’s amalgamation but, by its nature, was more robust than our compactness-
related limit. It, however, generally cannot guarantee uniqueness up to isomor-
phism or elementary equivalence. The most notable result of the chapter and
possibly of the entire thesis is about the enforcability of predicate density – The-
orems 38 and 39. The length and difficulty of given proofs does, however, not
reflect this opinion.

It turns out that in our examples the forcing limit and the Fräıssé limit give
similar results: The Fräıssé limit of the class of finite linear orders is the ordered
set of rational numbers, while the forcing limit contains the formula for nonexis-
tence of endpoints and for density of the linear order. It is a well known fact that
the only countable model of the theory of dense linear orders without endpoints
is the ordered set of rational numbers (up to isomorphism, of course).

After the introduction of a unary predicate, not much changes – the Fräıssé
limit of the class of finite linear orders with all possible unary predicates is the
ordered set of rational numbers with a dense and co-dense unary predicate, while
the forcing limit contains the formulas for density and co-density of the predicate.
The forcing method does have one practical advantage over Fräıssé’s amalgama-
tion – it allows us to gather information in small pieces. The verification of
enforceability of an individual sentence seems to be easier than guessing an entire
structure and proceeding to check whether it satisfies the conditions demanded
by Fräıssé’s amalgamation.
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The outcomes of the compactness construction do not seem relatable to the
other two approaches. However, out of our three constructions, it is the only
one which preserves properties definable by first-order sentences, such as the
discreteness of the linear order.
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