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Introduction
There is no guarantee that a mathematical physicist understands how the world
works. Indeed, many object which constitute the world are simply well beyond
the reach of their field. Objects such as a toaster, medieval Japanese poetry and
people, to name a few. And yet, mathematical physicists seem to seek some sort
of a universal understanding as they strongly tend to generalize, blurring the
edges of Popper’s notion of science. A serious case of platonism, one can almost
hear the judging voice of either an experimental physicist or a metaphysician.
In a reaction to such categorizations, the author wishes to remark on a different
motivation for investigations in the field of mathematical physics.1

The author does not believe there is a mythical deeper truth in highly mathe-
matical formulations of physical theories. The statement is that a richer episte-
mology unfolds. It is essential to differentiate between richness and redundancy.
A rich mathematical formalism both simplifies the considered physical statements
and unfurls beyond them.

The intriguing object of research is the very interplay of different approaches,
a more physically oriented one and an abstracted mathematical one. It is not
the truths of the objective world we aim to study, on the contrary, we intend
to research the subject itself, the human. The purpose is not to understand the
world, but to understand human’s understanding of the world and the role of
language (mathematics) in this context. This thesis will serve as an illustration
of such approach with the standard narrative: a motivation rooted in physics, de-
velopment of a general mathematical theory, examples of applications in physics.
The topic is the modern theory of generalized geometry. We will study Dirac
structures, Dirac reduction and in particular, generalized complex stuctures.

Geometry indeed has the long-standing tradition of being considered a some-
what platonic frame of reference. From the days of ancient Greece to coordinate-
free formulations of general relativity. Generalized geometry has roots in the work
of Theodore James Courant, its early pioneer (see Courant [1990]), among whose
motivations was to formulate Hamilton’s equations with general constraints. The
proper perspective turned out to be considering the Whitney sum of the tangent
and the cotangent bundle TM ⊕ T ∗M . Further development soon began, the
essential figures were Zhang-Ju Liu, Alan Weinstein and Ping Xu (see Liu et al.
[1995]). The central notion of the Courant algebroid was introduced. In early
2000s, Nigel Hitchin (see Hitchin [2002]) together with his students (e.g. Gualtieri
[2004]) developed the complex branches of generalized geometry. Complex and
symplectic geometry was unified. Emerging applications in mathematical physics
include topological field thoeries, Cattaneo et al. [2010], or supergravity, Jurčo
and Vysoký [2016].

The author hopes this thesis may serve as an introduction to generalized
complex geometry for anyone with the knowledge of basic differential geometry.

1And even more so, physical mathematics.
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1. Differential geometry
preliminaries and notation
remarks
We presuppose knowledge of elementary differential geometry. Regarding nota-
tion and conventions, we refer to the textbook of Fecko [2006], chapters 1-13, 17,
19 and Nakahara [2003], chapter 9. However, we wish to remark on a few choices
of notation which might otherwise be unclear or ambiguous.

• The image of a morphism f is denoted by Im (f) and the kernel of f is
denoted by ker (f).

• A span of a collection of vectors X1, . . . , Xn is denoted by Span(X1, . . . , Xn).
The dual of a vector space V is denoted by V ∗, the natural annihilator is
Ann(V ). Isomorphic vector spaces V , W are denoted V ≃ W . A factorspace
or quotient of two vector spaces1 V,W is denoted as A/B or A

B
.

• The notion of an exact sequence2 will be used for a collection of morphisms
f, g and vector spaces A,B,C

0 A B C 0f g

such that f is a monomorphism and g is an epimorphism and Im (f) = ker g.
Note that for such a sequence, C ≃ B/Im (f).

• We say manifolds M , N are equivalent if and only if they are diffeomorphic,
which is denoted as M ≈ N . By a chart, we will refer either to the pair
(U,ϕ), where U ⊂ M is homeomorphic to Rn and ϕ : U −→ Rn is the
coordinate homeomorphism, or to ϕ itself. We will refer to U as the domain
of the chart. It is imporant that even though we might choose to describe
any manifold by local complex coordinate charts, we do not presuppose
complex differentiability of the transition maps.

• The algebra of smooth functions on a manifold M , f : M −→R is denoted
as C∞ (M).

• A vector bundle over a manifold M denoted as π : E−→M or simply E.

• When mentioning fibre-wise properties of a vector bundle, they are satisfied
for each single fibre Fx separately. Vector bundles E, E ′ over the same base
manifold which are equivalent as bundles and also fibre-wise isomorphic are
denoted as E ≃ E ′. A subbundle L of E is denoted as L < E.

• The space of smooth sections of a vector bundle E is denoted as Γ (E).
1Or vector bundles, where the quotient is considered fibre-wise.
2We will only consider short exact sequences.
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• The contraction or pairing of elements X, ξ of two mutually dual bundles
is equivalently denoted as: ξ (X) ≡ ⟨ξ,X⟩ ≡ iXξ. For A being a tensor
section A ∈ Γ

(︂
T k

l M
)︂

of type (k, l), by iXA, A(X, •, . . .) or A(X) we denote
inserting X into the first argument.

• We will often think of tensor sections as bundle morphisms. E.g. for a
2-form ω ∈ Ω2 (M), which is a section ω : Λ2 (M)−→M we consider the
morphism ω : TM−→T ∗M defined as ω(X) for X ∈ TM . The composition
of such morphism is, for clarity3, denoted by the ◦ symbol, e.g. ω◦ω−1 = 1.
A dual morphism ω∗ is defined in such a manner that:

⟨ω(X), Y ⟩ = ⟨X,ω∗(Y )⟩

for ∀X, Y ∈ Γ (TM). In such formalism, a symmetric4 tensor satisfies
g∗ = g, a skew tensor is satisfies ω∗ = −ω.

• Throughout the thesis, Einstein summation convention is used. We note
that any tensors denoted in index notation are to be thought of as their
coordinate forms. In case we wish to formulate formulae in a coordinate-
free way, we do so index-free as well.

• The wedge product ∧ : Ωp × Ωq−→Ωp+q on is defined as:

∧ ··=
(p+ q)!
p!q! A ◦ ⊗

where A is the projection to the space of anti-symmetric p-forms. The Lie
derivative is defined on Ωp (M) by Cartan’s formula: LX ··= iXd + diX .

• A restriction of a function X to a subset of its domain A ⊂ B is denoted
as X|A. It is worth noting that for sections of tensor bundle, we will talk
about two different kinds of restrictions denoted similarly.
For a submanifold Q ↪→ M and a tensor section σ : M −→ T k

l M , the
restriction σ|Q is the section evaluated on the submanifold σ (q), q ∈ Q ↪→
M . A stronger kind of restriction is, for example, α|T Q which dictates the
arguments of a 2-form α as a morphism TM −→ T ∗M can only be taken
from TQ.

3To distinguish them from coordinate matrix multiplication or contraction in other indeces.
4Here we only consider tensors with two arguments of the same type.
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2. Hamiltonian and complex
geometry
To introduce one into generalized geometry1, rather than presenting the technical
starting-points in the very beginning, we intend to choose a somewhat anachronic
narrative. That is to show traces of a possible generalization of known geometries
while the proper technical language will emerge.

We will summarize what defines Poisson and symplectic geometry and how
they arise from classical mechanics. Futher on, we will present an overview of
complex geometry. In an attempt to unify these seemingly unrelated structures,
we find ourselves at the beginning of our studies of generalized geometry.

2.1 Hamilton’s equations
It is an awe-inspiring epistemological journey that leads one from the very New-
ton’s laws of motion to the 20th century’s geometry of space and momentum.
We, however, restrain oureselves to the modern formulations and demonstrate
the correspondence of the linear partial differential equations of first order defin-
ing dynamics widely known2 as the canonical Hamilton’s equations and abstract
structures on manifolds, namely the Poisson structure and the symplectic struc-
ture. The references for this chapter are the comprehensive textbooks of Fecko
[2006] and Nakahara [2003].

Let xj, pj denote the canonically conjugate3 coordinates (of the position and
the momentum) on the phase space, which is the 2n-dimensional cotangent
bundle T ∗Q of an n-dimensional configuration manifold4 Q. Let ẋj, ṗj denote
the total time derivative of the coordinates. Then the Hamiltonian function
H ∈ C∞ (T ∗Q), which corresponds to the total energy of a system, satisfies the
Hamilton’s equations.

ẋj = ∂H

∂pj

,

ṗj = −∂H
∂xj

,

for ∀j = 1, . . . , n.
Let us further work only with a time-independent Hamiltonian function and

configuration manifold Q

1And as is our intention, generalized complex geometry in particular.
2And widely used across numerous areas of contemporary physics.
3For xj given, pj are defined in such a way that p = padxa is invariant under a change of

coordinates xj ↦→ x̃j
(︁
xj
)︁
.

4Where Q is defined by a set of holonomic constraints, i.e. constraints independent of
momentum.
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One can define the time evolution field Xt on the phase space, which is a
tangent section Xt : T ∗Q −→ TT ∗Q which acts as the total derivative with
respect to time on C∞ (TT ∗Q).

Xt ··= ẋj ∂

∂xj
+ ṗk

∂

∂pk

⇐⇒ Xt (f) ··= ḟ , ∀f ∈ C∞ (TT ∗Q) .

Then the Hamilton’s equations can be read as a specification of Xt.

Xt = ∂H

∂pj

∂

∂xj
− ∂H

∂xk

∂

∂pk

.

2.1.1 Poisson and symplectic geometry
Definition (Lie bracket). Let V be a vector space over a field K. Then the
operation [, ] : V × V −→ V is called a Lie bracket if it satisfies the following
axioms for ∀A,B,C ∈ V , ∀r, s ∈ K.

• Linearity5 [A, rB + sC] = r[A,B] + s[A,C]

• Skew-symmetry [A,B] = −[B,A]

• Jacobi identity [[A,B], C] + [[C,A], B] + [[B,C], A] = 0

Definition (Poisson bracket). Let M be a manifold. Then the Poisson bracket
is defined as a Lie bracket {, } : C∞ (M) × C∞ (M) −→ C∞ (M) which is a
derivation of the C∞ (M) algebra, i.e.:

{f, gh} = {f, g}h+ g {f, h}

for ∀f, g, h ∈ C∞ (M).

It is straight-forward to show that the bracket defined in canonical coordinates
as:

{f, g} = ∂f

∂pk

∂g

∂xk
− ∂f

∂xj

∂g

∂pj

is a Poisson bracket on C∞ (T ∗Q).
One can reformulate the Hamilton’s equations using the Poisson bracket.

ẋj =
{︂
H, xj

}︂
,

ṗj = {H, pj} .

Given the Poisson bracket obeys the chain rule, a time evolution of an arbi-
trary smooth function f ∈ C∞ (T ∗Q) is given as:

ḟ = {H, f} .

If we consider that any derivation of C∞ (T ∗Q) is a tangent section on T ∗Q,
we realize that we have obtained a tangent section {H, •} which acts as the total
derivative in the direction of time evolution. In other words:

Xt = {H, •} .
5Skew-symmetry provides the bracket with bilinearity, i.e. linearity in both arguments.
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Definition (Poisson structure). A bivector section Π ∈ Γ (T 2
0M) is said to be a

Poisson structure if and only if there exists such Poisson bracket {, } that:

{f, g} = Π (df, dg)

for ∀f, g ∈ C∞ (M).

In canonical coordinates, it can be shown that:

{H, f} = ∂

∂pj

∧ ∂

∂xj
(dH, df) .

In other words, if we define the Poisson structure:

Π = ∂

∂pj

∧ ∂

∂xj
,

we can rewrite Hamilton’s equations once again:

Xt = Π (dH) .

Another way to arrive at a coordinate-free formulation is to consider the
following coordinates on the phase space T ∗Q.(︂

z1, . . . , z2n
)︂
··=
(︂
x1, . . . , xn, p1, . . . , pn

)︂
.

The Hamilton’s equations now read:

żj = ∂H

∂zn+j
,

żn+j = −∂H
∂zj

,

for ∀j = 1, . . . , n.
We note there is a mechanism that switches betwen the first n coordinates

and the second n coordinates. Let us formulate it by a skew 2n× 2n matrix.

Ωab ··=
(︄

0 −1
1 0

)︄
.

We also note that the right hand side of the Hamilton’s equations is the
components of the cotangent section dH and the left side is the components of
Xt. Now we can write:

Ωab (Xt)b = (dH)a .

One can easily show that in canonical coordinates, the matrix Ωab corresponds
to the components of the non-degenerate closed 2-form:

Ω = dpj ∧ dxj.

The coordinate-free formulation of the Hamilton’s equations which we will
further consider is the following.

Ω (Xt) = −dH.

Let us abstract the mathematical structure of Hamilton’s equations.

7



Definition (Symplectic structure). Let M be an even dimensional manifold.
Then a global 2-form Ω ∈ Ω2 (M) is said to be a symplectic structure if and
only if it is non-degenerate and closed.

Definition (Hamiltonian field). Let M be a manifold equipped with a symplectic
structure Ω and a fixed function H ∈ C∞ (M). Then a tangent section XH ∈
Γ (TM) is a Hamiltonian field with respect to the function H if and only if it
satisfies the Hamilton’s equations:

Ω (XH) = −dH.

We can now pinpoint the physical statement behind Hamilton equations in
the following manner:

Xt = XH .

The time evolution field Xt is the Hamiltonian field XH with respect to the Hamil-
tonian function H, which is the total energy of the system.

Remark. Inverting a non-degenerate 2-form Ω, we obtain a bivector: −Ω−1 = Π.
It can be shown that:

dΩ = 0⇐⇒ Π (d•, d•) satisfies the Jacobi identity.

In other words, a symplectic structure inverts into a non-degenerate Poisson struc-
ture and vice versa.

2.2 Complex geometry
In this section we present an overview of complex geometry, i.e. structures in-
duced by the concept of complex differentiation on manifolds, which are genuinely
richer than ordinary differential structures on real manifolds. Throughout the
whole section, we follow Nakahara [2003].

Let us begin on the level of linear algebra by introducing an endomorphism
which, in a way, ”behaves like the imaginary unit.” Soon, we will see how this
complex-like structure arises naturally on complex manifolds.

The imaginary unit i is characterised by the property:

i2 = −1.

Similarly, on a vector space:

Definition (Complex endomorphism). Let J be an endomorphism of a real vector
space V . We say it is a complex endomorphism if and only if:

J2 = −1.

We can immediately see its only eigenvalues are +i and −i. To work with
complex numbers on a real vector space, we must complexify it:

8



Definition (Complexified vector space). For a real vector space V of dimension
m, we call the space V with values in C a complexified vector space V ⊗ C
of dimension 2m.

Remark. An endomorphism A on V is naturally extended to V ⊗ C:

A (v + iw) ··= A (v) + iA (w) .

We refer to Nakahara [2003] as we state that such an endomorphism exists
only on even-dimensional vector spaces and decomposes V ⊗ C into two disjoint
eigenspaces of dimension m.

V ⊗ C = V + ⊕ V −.

Now we insert such algebraic structure into each fibre of a manifold.

Definition (Almost complex structure). Let M be an even-dimensional man-
ifold. Then an almost complex structure is defined as a tensor section J
of type (1, 1) such that in any fibre TxM of the tangent bundle it is a complex
endomorphism.

If we fibre-wise complexify the tangent bundle into TM⊗C, we can recognize
the two eigenbundles of J :

Proposition 2.2.1 (Complex structure). Let M be a manifold equipped with a
smooth almost complex structure J . Then its complexified tangent bundle TM⊗C
of dimension 2m is decomposed into two disjoint subbundles of dimension m.

TM ⊗ C = TM+ ⊕ TM−,

TM± ··= {X ∈ TM ⊗ C | J (X) = ±iX} .

Similarly, we decompose the space of local sections by a diagonal action of J .

Once the decomposition integrates into submanifolds, we call J an integrable
complex structure or simply a complex structure.

Definition (Complex structure). Let M be a manifold equipped with a smooth
almost complex structure J . We say J is a complex structure if and only if its
eigenbundles are involutive.[︂

TM+, TM+
]︂
⊂ TM+,

[︂
TM−, TM−

]︂
⊂ TM−.

It is simple to see that we can equivalently talk about the involutiveness of
TM+ alone.
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2.2.1 Complex manifolds
Now we set off from a different perspective following Nakahara [2003], sections
8.1, 8.2, 8.3. That is, the perspective of complex analysis on manifolds.

Definition (Holomorphic function). A smooth function f : Cm−→C is said to
be holomorphic when it satisfies the Cauchy-Riemann equations.

∂ℜ (f)
∂xj

= ∂ℑ (f)
∂yj

,
∂ℑ (f)
∂xj

= −∂ℜ (f)
∂yj

.

Definition (Complex manifold). A manifold M is a a complex manifold if
and only if every transition function is a holomorphic function.

In other words, any pair of complex coordinates xj +iyj, uk +ivk, must satisfy
the Cauchy–Riemann equations on the intersection of their domains.

∂uk

∂xj
= ∂vk

∂yj
,

∂vk

∂xj
= −∂u

k

∂yj
.

We can define a smooth tensor section of type (1, 1) by the fibre-wise endo-
morphism J : TxM−→TxM .

J

(︄
∂

∂xj

)︄
··=

∂

∂yj
, J

(︄
∂

∂yj

)︄
··= −

∂

∂xj
.

Note that J2 = −1. We demonstrate that J is in fact a globally defined almost
complex structure.

Let us show that J is defined independently of a chart. For simplicity, we
formulate only a sketch of the proof: for m = 1 with coordinates x + iy, u + iv
and only for the first defining relation, the general proof is analogous.

J

(︄
∂

∂u

)︄
= J

(︄
∂u

∂x

∂

∂x
+ ∂u

∂y

∂

∂y

)︄
= ∂u

∂x
J

(︄
∂

∂x

)︄
+ ∂u

∂y
J

(︄
∂

∂y

)︄

= ∂v

∂y

(︄
∂

∂y

)︄
− ∂y

∂x

(︄
− ∂

∂x

)︄
= ∂

∂v
.

We made use of the Riemann-Cauchy equations. The above calculations have
demonstrated how J can be thought of as a global tensorial incarnation of the
Cauchy-Riemann equations. This observation may gently hint towards the fol-
lowing proposition.

Now we state an essential theorem6 of complex geometry, which relates the
geometric notion of a complex structure and the analytic properties of a complex
manifold.

Theorem 2.2.2 ( Newlander and Nirenberg [1957] ). A manifold is complex if
and only if it admits a complex structure.

6Or more precisely, its corollary. See Nakahara [2003], section 8.7 for a brief discussion.
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Let us introduce an extremely useful coordinate system on complex mani-
folds. For local complex coordinates xj + iyj we define the holomorphic and
antiholomorphic coordinates, respectively:

z ··= xj + iyj, z ··= xj − iyj.

This naturally induces the following local frames.

∂

∂zj
= 1

2

(︄
∂

∂xj
− i ∂

∂yj

)︄
, dzj = dxj + idyj,

∂

∂zj
= 1

2

(︄
∂

∂xj
+ i

∂

∂yj

)︄
, dzj = dxj − idyj.

Now it is clear that a function f is holomorphic if and only if:

∂f

∂zj
= 0 ⇐⇒ ∂

∂xj
(ℜ (f) + iℑ (f)) + ∂

∂yj
(iℜ (f)−ℑ (f)) = 0.

In other words, a holomorphic function depends only of the holomorphic coordi-
nates f = f (z).

One can easily see that the (anti)holomorphic coordinates diagonalize the
complex structure J .

J

(︄
∂

∂zj

)︄
= i

∂

∂zj
, J

(︄
∂

∂zj

)︄
= −i ∂

∂zj
.

In other words:

J = idzj ⊗ ∂

∂zj
− idzj ⊗ ∂

∂zj
.

And locally, on a neihbourhood U ⊂M :

Span
(︄
∂

∂zj

)︄
= Γ

(︂
TU+

)︂
, Span

(︄
∂

∂zj

)︄
= Γ

(︂
TU−

)︂
.

A corollary is that the complex conjugation is a canonical isomorphism of the
eigenbundles of J , TM+ and TM−.

Now we procede to describe the (anti)holomorphic decomposition of differen-
tial forms on a complex manifold. A general p-form will be locally constituted
by r holomorphic differentials dzj1 , . . . , dzjr and s antiholomorphic differentials
dzk1 , . . . , dzks , such that r + s = p.

ω = 1
r!s!ωj1...jrk1...ksdzj1 ∧ . . . ∧ dzjr ∧ dzk1 ∧ . . . ∧ dzks

We say ω is a differential form of degree7 (r, s).

ω ∈ Ωr,s (M) .
7Let us clarify that a differential form of degree (r, s) is a tensor section of type (0, r + s).
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For a global coordinate-free definition, we refer to Nakahara [2003].

The exterior derivative d locally acts on Ωr,s (M) as:

dω = 1
r!s!

(︄
∂

∂za
ωj1...jrk1...ksdza + ∂

∂zb
ωj1...jrk1...ksdzb

)︄
∧dzj1∧. . .∧dzjr∧dzk1∧. . .∧dzks .

We can decompose the operator d : Ωr+s (M)−→Ωr+s+1 (M) into two oper-
ators changing the holomorphic and the antiholomorphic degree separately. We
define the Dolbeault operators ∂, ∂, such that:

d = ∂ + ∂ ∂ : Ωr,s (M)−→Ωr+1,s (M)
∂ : Ωr,s (M)−→Ωr,s+1 (M)

The local action is clearly:

∂ω = 1
r!s!

(︄
∂

∂za
ωj1...jrk1...ksdza

)︄
∧ dzj1 ∧ . . . ∧ dzjr ∧ dzk1 ∧ . . . ∧ dzks

∂ω = 1
r!s!

(︄
∂

∂zb
ωj1...jrk1...ksdzb

)︄
∧ dzj1 ∧ . . . ∧ dzjr ∧ dzk1 ∧ . . . ∧ dzks

Directly from the definition, one shows that the Dolbeault operators are nilpo-
tent just as d is and that they anticommute.

Lemma 2.2.3. The Dolbault operators satisfy the following relations.

∂∂ = 0, ∂∂ = 0, ∂∂ = −∂∂

Proof. Let ω ∈ Ωr,s (M).

0 = ddω =
(︂
∂ + ∂

)︂ (︂
∂ + ∂

)︂
= ∂∂ω +

(︂
∂∂ + ∂∂

)︂
ω + ∂∂ω (2.1)

The proposition follows, as the equation above must be satisfied for ∂∂ω ∈
Ωr+2,s (M), ∂∂ ∈ Ωr,s+2 (M) and

(︂
∂∂ + ∂∂

)︂
ω ∈ Ωr+1,s+1 (M) separately.

2.2.2 Kähler geometry
In the section, further following Nakahara [2003], sections 8.4, 8.5, we introduce
a metric compatible with the complex structure. We show how the two objects
can be combined into a symplectic structure.

Definition (Hermitian metric). Let g be a Riemannian metric on a complex
manifold (M,J). We say it is hermitian if and only if:

g (JX, JY ) = g (X, Y ) .

It can be shown that every complex manifold admits a hermitian metric.

Definition (Kähler structure). On a complex manifold (M,J) equipped with a
hermitian metric g, we define the Kähler structure Ω as:

Ω (X, Y ) ··= g (JX, Y )

for ∀X, Y ∈ Γ (TM).
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Properties of the Kähler structure

• It is an antisymmetric 2-form of degree (1, 1), Ω ∈ Ω1,1 (M).

• Ω ∧ . . . ∧ Ω constitutes an everywhere non-vanishing volume form, i.e. a
complex manifold is orientable.

• Ω is a symplectic form if and only if8 dΩ = 0. Then we say g is a Kähler
metric and (M,J, g) is a Kähler manifold.

• On a Kähler manifold, we call the triple (J, g,Ω) a Kähler triple. This
triple constitutes the following commuting diagram.

TM T ∗M

TM

g

J Ω

In an inverse manner, we can obtain a Kähler metric and its inverse from J
and Ω.

Lemma 2.2.4. Let (J, g,Ω) be a Kähler triple on a Kähler manifold M . Then
the following diagrams commute.

TM T ∗M T ∗M TM

TM T ∗M
Ω−1

g−1 g

−ΩJ −J∗

Proof. The first diagram is obtained by inverting non-degenerate morphisms.
The second diagram is obtained through dualization of the original diagram and
inversion of non-degenerate morphisms. Note that g∗ = g, Ω∗ = −Ω and J−1 =
−J .
An explicit proof that J∗ ◦ Ω = g, for ∀X, Y ∈ Γ (TM) is:

⟨J∗ (Ω (X)) , Y ⟩ = ⟨g (J (X)) , J (Y )⟩ = g (J (X) , J (Y )) = g (X, Y )
= ⟨g (X) , Y ⟩ .

Kähler geometry is the source of another interseting phenomenon. That is,
the complex structure of a manifold enables one to construct symplectic 2-forms
from scalar potentials.

Definition (Kähler potential). On a Kähler manifold M equipped with a Kähler
structure Ω, a function K ∈ C∞ (M) is a Kähler potential when it satisfies:

Ω = i∂∂K.

Note that ∂∂K ∈ Ω1,1 (M). By lemma 2.2.3, one obtains that d∂∂K = 0. It
is clear that once ∂∂K is non-degenerate, one obtains a symplectic structure. We
refer to Nakahara [2003] as to why every Kähler structure has a potential K.

8Note that both g and J are non-degenerate and Ω is always a 2-form.
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Remark. Let us remark on what conditions are to be met for K to induce a global
Kähler structure. Let Kα, Kβ be functions defined on two overlapping domains
of charts defining the coordinates zj, wj respectively. Then once

Kα

(︂
zj, zj

)︂
= Kβ

(︂
wj, wj

)︂
+ φαβ

(︂
wj
)︂

+ ψαβ

(︂
wj
)︂
,

where φαβ is a holomorphic function of wj and ψαβ is antiholomorphic, a global
2-form is induced as:

∂∂Kα = ∂∂Kβ.

2.3 Complex structure of Hamilton’s equations
As we have already seen an example of complex and symplectic geometry in-
tertwining in Kähler geometry, we might wonder whether there is a complex
structure at work hidden in Hamilton’s equations. Generally, we cannot assume
the symplectic structure is a Kähler structure. We can, although, try to play with
the algebraic structure of the equations themselves and change the perspective.

First observation is: while a complex structure J2 = −1 is an endomorphism,
Hamilton’s equations are constituted by the symplectic 2-form and the Poisson
bivector switching between TT ∗Q and T ∗T ∗Q.

XH = Π (dH) ,
Ω (XH) = −dH.

But recall that we already encountered a similar problem before. The original
coordinate form of Hamilton’s equations switches between the xj and pj coordi-
nates. To formulate this mechanism more elegantly, we introduced the (xj, pj)
coordinates and formulated the ”switching mechanism” by an antidiagonal ma-
trix on those new coordinates - the Poisson structure or the symplectic structure.

Analogically, we can consider the pair (XH , dH) and the antidiagonal matrix

JH ··=
(︄

0 Π
Ω 0

)︄

acting on sections of TT ∗Q⊕ T ∗T ∗Q. The action on (XH , dH) is determined
by Hamilton’s equations.

JH

(︄
XH

dH

)︄
=
(︄

0 Π
Ω 0

)︄(︄
XH

dH

)︄
=
(︄
XH

−dH

)︄
.

We see JH is indeed an almost complex structure:

J2
H =

(︄
0 Π
Ω 0

)︄(︄
0 Π
Ω 0

)︄
=
(︄

Π ◦ Ω 0
0 Ω ◦ Π

)︄
=
(︄
−1 0
0 −1

)︄
.

Note that we can think of the action as a rotation by π
2 in TT ∗Q ⊕ T ∗T ∗Q.

That is, on the complexified vector bundle TT ∗Q ⊕ T ∗T ∗Q ⊗ C, this can be
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translated to the multiplication by the complex unit i. We obtain such action by
formally rotating one of the components of (XH , dH) into the imaginary direction.

(XH , dH) ↦−→ (XH , idH) .

Now, truly:

JH

(︄
XH

idH

)︄
=
(︄

0 Π
Ω 0

)︄(︄
XH

idH

)︄
=
(︄
iΠ (dH)
Ω (XH)

)︄
=
(︄
iXH

−dH

)︄
= i

(︄
XH

idH

)︄
.

We can reformulate Hamilton’s equations in this complex setting.

Proposition 2.3.1 (Hamilton’s equations on TM ⊕ T ∗M ⊗ C). Let M be the
phase space, H ∈ C∞ (M) the Hamiltonian function, Ω : TM ⊗ C−→ T ∗M ⊗
C the canonical symplectic form and Π : T ∗M ⊗ C −→ TM ⊗ C the Poisson
structure defined by Ω ◦ Π = −1. Then a tangent section XH ∈ Γ (TM ⊗ C) is
the Hamiltonian field if and only if (XH , idH) is a section of the +i-eigenbundle
of the almost complex structure JH on TM ⊕ T ∗M ⊗ C.

JH =
(︄

0 Π
Ω 0

)︄
.

Remark. Note that for a given vector field X we can generate sections of the
+i-eigenbundle as (X,−iΩ (X)) or for a given function f as (−iΠ (df) , df).

Natural questions now arise.

• Is JH integrable?

• What do other geometric structures look like on the TM ⊕ T ∗M bundle?

• What is the internal structure of TM ⊕ T ∗M?

In the following chapter, we shall attempt to show that all of these questions
do have surprisingly enriching answers.
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3. Generalized geometry
This chapter serves as an introduction to generalized complex geometry. Nothing
of vital importance is left out and all1 propositions are proved carefully. Never-
theless, many interesting aspects of the theory are beyond the scope of this thesis.
The entire chapter is but a mere reformulation of the comprehensive and beauti-
fully pedagogical thesis of Marco Gualtieri2 and selection of the most important
topics, the reference is Gualtieri [2004].

We begin with a research of the linear algebra of V ⊕ V ∗ and a natural sym-
metric product on it. Then we move on to manifolds and TM⊕T ∗M and through
the definition of the Courant bracket [[, ]], we discover the Courant algebroid struc-
ture. We construct the generalized complex structure and in the end, we mention
the notion of generalized submanifolds.

3.1 Linear algebra of V ⊕V ∗

We shall consider pairs of vectors and covectors (X, ξ), X ∈ V , ξ ∈ V ∗, which are
elements of V ×V ∗ or more suggestively V ⊕V ∗. We shall denote (X, ξ) ≡ X⊕ξ,
as such formalism hints at how the symmetric product will be defined.

3.1.1 Canonical symmetric product
There is indeed a natural canonical way to define a symmetric bilinear product
on V ⊕ V ∗.

Definition (Symmetric bilinear product on V ⊕ V ∗). For a real vector space V
of dimension m, we define the symmetric product:

⟨, ⟩ : V ⊕ V ∗−→R,

⟨X ⊕ ξ, Y ⊕ η⟩ ··=
1
2 (iXη + iY ξ) .

The product is bilinear, symmetric3, non-degenerate and its matrix represen-
tation is: ⟨︄(︄

X
ξ

)︄
,

(︄
Y
η

)︄⟩︄
= 1

2
(︂
X ξ

)︂(︄0 1
1 0

)︄(︄
Y
η

)︄
.

We can identify the dual of V ⊕ V ∗ using the ⟨, ⟩ product. This might justify
that the notation is identical to that of a pairing on a vector space.

1Exceptions being one very general modification of the Frobenius’ theorem and one very
technical lemma with a proof similar to that of an already proved one.

2As every definition and proposition in the chapter are credited to Marco Gualtieri , he will
not be cited throughout the text.

3We could define an antisymmetric product as ⟨X ⊕ ξ, Y ⊕ η⟩− ··=
1
2 (iXη − iY ) but it is the

symmetric one that turns out to have properties we will prove useful.
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The signature of the matrix is (m,m). Therefore, ⟨, ⟩ defines the orthogonal
group O (V ⊕ V ∗) = O (m,m). In other words, we are given symmetries of
V ⊕ V ∗ to study4.

Proposition 3.1.1 (Orthogonal Lie algebra on V ⊕ V ∗). An element of the Lie
algebra R ∈ so (V ⊕ V ∗) of the orthogonal group SO (V ⊕ V ∗) is of the form:

R =
(︄
A β
B −A∗

)︄
,

B∗ = −B,
β∗ = −β,

where A ∈ End(V ) and the homomorphisms B : V −→ V ∗ and β : V ∗−→ V
are defined by a skew 2-form B ∈ Λ2V ∗ and a skew bivector β ∈ Λ2V .

Proof. Given that a Lie algebra of an orthogonal group on a vector space is its
own faithful representation, we can characterize5 it as:

so (V ⊕ V ∗) = {R | ⟨R (A) , B⟩ = −⟨A,R (B)⟩ , A,B ∈ V ⊕ V ∗}

Now we directly check the properties of the homomorphisms A, A′, B, β in the
general form of an endomorphism on V ⊕ V ∗:

R =
(︄
A β
B −A′

)︄
,

We have:
⟨A (X) + β (ξ)⊕B (X)− A′ (ξ) , Y ⊕ η⟩

= ⟨−A (Y )− β (η)⊕−B (Y ) + A′ (η) , X ⊕ ξ⟩

Therefore:
⟨A (X) , η⟩ = ⟨A′ (η) , X⟩
⟨B (X) , Y ⟩ = −⟨B (Y ) , X⟩
⟨β (ξ) , η⟩ = −⟨β (η) , ξ⟩

In other words, so (V ⊕ V ∗) = End(V )⊕ Λ2V ⊕ Λ2V ∗.

Now we can recover orthogonal automorphisms by exponentiation. We define
two essential symmetries.

Definition (B-transform). The B-transform eB ∈ SO (V ⊕ V ∗) is the expo-
nential6 of a two-form B ∈ Λ2V ∗.

eB ··=
(︄

1 0
B 1

)︄
,

eB : X ⊕ ξ ↦−→ X ⊕ ξ +B (X) .

4In Gualtieri [2004], an orientation is defined easily. And even though we will not need the
explicit formulation, we can work with SO (V ⊕ V ∗) = SO (m, m) as it is a more simple space.

5See Fecko [2006], 12.1.10
6We will sometimes refer to e−B as a B-transform, for it will turn out to be more a convenient

terminology.
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Definition (β − transform). The β-transform eβ ∈ SO (V ⊕ V ∗) is the expo-
nential of a skew bivector β ∈ Λ2V .

eβ ··=
(︄

1 β
0 1

)︄
, eβ : X ⊕ ξ ↦−→ X + β (ξ)⊕ ξ.

3.1.2 Maximal isotropic subspaces
As we will be soon able to see, every important structure on V ⊕ V ∗ will be
equvialent to the specification of a maximal isotropic subspace with respect to
the canonical symmetric pairing ⟨, ⟩.

Recall we are working in the vector space of dimension dim (V ⊕ V ∗) = 2m.

Definition (Maximal isotropic subspace). A vector subspace L < V ⊕ V ∗ is a
maximal isotropic subspace if and only if:

⟨A,B⟩ = 0 ∀A,B ∈ L dim (L) = m

Example. For E ≤ V , the space E ⊕Ann(E) < V ⊕ V ∗ is a maximal isotropic.

Definition. Let E ≤ V and ω ∈ Λ2E∗ we define

L (E,ω) ··= {X ⊕ ξ ∈ E ⊕ V ∗ | ξ|E = ω (E)} .

Observe that L (E,ω) is a maximal isotropic subspace. For X + ξ, Y + η ∈
L (E,ω):

⟨X + ξ, Y + η⟩ = 1
2 (iXη + iY ξ) = 1

2 (ω (Y,X) + ω (X, Y )) = 0.

The most generic examples are L (0, 0) = V ∗ and L (V, 0) = V .

Proposition 3.1.2. For every maximal isotropic subspace L, there exist E ≤ V
and ω ∈ Λ2E∗ such that L = L (E,ω).

Proof. Let us construct E and ω.
Define E ··= πL, where πL chooses the V part of an element of V ⊕ V ∗.
Now we define ω : E −→ E∗ so that it maps any e ∈ E to ε ∈ E∗, such that
e⊕ ε ∈ L.

ω : e ↦−→ πV ∗

(︂
π−1

V (e) ∩ L
)︂
.

Or schematically:

e {e⊕ ξ | ξ ∈ V ∗} e⊕ ε ε
π−1

V

ω

πL π∗
V

Remark. For E = V , the maximal isotropic subspace L (V, ω) is the ω-transform
of V , L (V, ω) = eω (V ) which is the graph of ω on V .

Example. For a symplectic manifold (M,Ω) of dimension m, let us consider
n ≤ m independent local sections E = Span(X1, . . . , Xn). If we take L (E|x,Ω),
we obtain a maximal isotropic subspace of TxM ⊕ T ∗

xM . For m = n, we have
L (E|x,Ω) = eΩ (TxM) .
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3.1.3 Generalized complex endomorphisms
We naturally introduce complex endomorphisms on V ⊕ V ∗ so that they respect
the SO (V ⊕ V ∗) structure.

Definition (Generalized complex endomorphism). We say an endomorphism J :
V ⊕ V ∗⊗C−→V ⊕ V ∗⊗C is a generalized complex endomorphism if and
only if:

• It is complex: J2 = −1.

• It is orthogonal: JJ∗ = 1 with respect to the canonical symmetric product.

Acting on the orthogonality formula by J, we obtain an equivalent character-
ization.

Proposition 3.1.3. J is a generalized complex endomorphism if and only if:

• It is complex: J2 = −1.

• It is skew: J∗ = −J with respect to the canonical symmetric product.

Remark. An endomorphism on V ⊕ V ∗ is skew if and only if it is an element
of so (V ⊕ V ∗). See the proof of proposition 3.1.1 and consider that it is the
canonical symmetric product ⟨, ⟩ that identifies V ⊕ V ∗ with its dual. A dual
morphism is an ⟨, ⟩-adjoint morphism.7

As a complex endomorphism, J has two eigenspaces corresponding to the
eigenvalues +i, −i. We will use them to associate a maximal isotropic subspace
of V ⊕ V ∗ with J.

Definition (Unreal subspace). A subspace of the complexified vector space L ≤
V ⊕ V ∗ ⊗ C is unreal8 if it satisfies L ∩ L = 0.

Proposition 3.1.4 (Unreal maximal isotropic subspace). Defining a generalized
complex endomorphism is equivalent to specifying an unreal maximal isotropic
subspace.

Proof. Given J is a complex endomorphism, its +i-eigenspace ≡ L is indeed
unreal as L is the −i-eigenspace. We will show it is a maximal isotropic subspace
of V ⊕ V ∗ × C as well. The dimension of L is m and for A,B ∈ L:

⟨A,B⟩ = ⟨JA, JB⟩ = ⟨iA, iB⟩ = −⟨A,B⟩
⇒ ⟨A,B⟩ = 0.

Conversely, given two disjoint m-dimensional subpsaces L, L, which satisfy the
isotropy condition, we can define J as multiplication by +i, −i on L, L respec-
tively.

As we provide important examples of generalized complex endomorphisms,
we show how such structures encompass both complex and symplectic structures
on V and their modifications.

7Equivalently on V ⊕V ∗⊗C, complexification doesn’t interfere with the orthogonal structure.
8In the terminology of Gualtieri [2004], this corresponds to the real index zero.
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Example (Symplectic structure as JΩ). As we have already demonstrated in
section 2.3, the endomorphism:

JΩ =
(︄

0 −Ω−1

Ω 0

)︄
.

defined by a symplectic9 2-form Ω ∈ Λ2 (V ∗) is complex: J2
Ω = −1. It is also skew

with respect to the canonical pairing: we can check that both the antidiagonal
elements satisfy the conditions of proposition 3.1.1. We have also concluded that
elements in the form X ⊕ −iΩ (X) constitute the +i-eigenbundle, which can be
verified easily by action of JΩ.

LΩ = {X ⊕−iΩ (X) | X ∈ V ⊗ C} .

L is thus an unreal maximal isotropic subspace of V ⊕ V ∗ ⊗ C defining the
symplectic structure on V .
Definition (B-symplectic 2-form). For a symplectic 2-form Ω on V and B ∈
Λ2V ∗, we define the B-symplectic 2-form by the endomorphism:

e−BJΩe
B =

(︄
−Ω−1 ◦B −Ω−1

Ω +B ◦ Ω−1 ◦B B ◦ Ω−1

)︄
.

It is again a generalized complex endomorphism, as it is complex:
e−BJΩe

Be−BJΩe
B = e−B(−1)eB = −1.

and skew, as B-transforms are orthogonal. The corresponding unreal maximal
isotropic subspace is:

e−B (LΩ) = {X ⊕− (B + iΩ) (X) | X ∈ V ⊗ C} .

Example (Complex endomorphism as JJ). Let us have a complex endomorphism
J on V . We define the diagonal endomorphism:

JJ ··=
(︄
J 0
0 −J∗

)︄
.

JJ too is a generalized complex endomorphism, as it is complex:

J2
J =

(︄
J 0
0 −J∗

)︄(︄
J 0
0 −J∗

)︄
=
(︄
J2 0
0 (J∗)2

)︄
=
(︄
−1 0
0 −1

)︄
and skew, it satisfies the conditions of proposition 3.1.1.
We can see the unreal maximal isotropic subspace of V ⊕ V ∗ ⊗ C defining the
complex endomorphism on V ⊗ C is the +i-eigenbundle:

LJ = V 1,0 ⊕ V ∗0,1

A B-transformed generalized complex endomorphism is, similarly:

e−BJJe
B =

(︄
J 0

B ◦ J + J∗ ◦B∗ −J∗

)︄
.

For the same reasons as in the case of B-symplectic structure, this is clearly again
a generalized complex endomorphism. The corresponding +i-eigenspace is:

e−B (LJ) =
{︂
X ⊕ ξ −B (X) | X ⊕ ξ ∈ V 1,0 ⊕ V ∗0,1

}︂
.

9On the level of linear algebra, dΩ = 0 does not make sense. On V , we will use the word
symplectic to refer to non-degenerate skew 2-forms.
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3.2 TM ⊕ T ∗M as a Courant algebroid
We shall transfer the linear algebra of V ⊕ V ∗ into every fibre over the base
manifold M . It is a natural choice to identify V with a tangent space, as we did
in section 2.3. A rich structure beyond linear algebra is to be discovered, which
provides one with integrable generalized complex structures.

3.2.1 Lie algebroids
An essential aspect of geometry, that is, an essential difference between plain
vector spaces and the tangent bundle TM , is the ability to view elements of TM
as directions on M and the space of sections Γ (TM) as derivations of C∞ (M).
Let us generalize this notion.

Definition (Lie algebroid). A vector bundle ℓ over a smooth manifold M is a
Lie algebroid if and only if it is equipped with:

• A Lie bracket [, ]ℓ involutive on Γ (ℓ)

• An anchor ϱ : ℓ−→TM

The anchor is a smooth bundle map such that on the space of sections, it induces
a Lie algebra homomorphism:

ϱ ([A,B]ℓ) = [ϱ (A) , ϱ (B)] .

for ∀A,B ∈ Γ (ℓ).
The anchor mediates an action of sections of ℓ on smooth functions on M .

[A, fB]ℓ = f [A,B]ℓ + (ϱ (A) f)B

for ∀A,B ∈ Γ (ℓ) and ∀f ∈ C∞ (M).

These axioms provide a consistent way to perform directional derivatives of
C∞ (M) in directions associated with sections of a quite arbitrary vector bundle ℓ.

Example. The tangent bundle TM itself is a Lie algebroid with the anchor
ϱ = id.

Example. An integrable subbundle TQ ι
↪→TM is a Lie algebroid with the anchor

ϱ = ι, the natural inclusion.

Remark. A lie algebroid can have both a higher or a lower dimension than the
tangent bundle.

One typically constructs involutive structures to produce submanifolds. So
will we.

Definition (Generalized foliation). A generalized foliation disjoints M into
leaves of a dimension varying throughtout M . A leaf is a connected submanifold
of M .
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Proposition 3.2.1 (Generalized Frobenius’ theorem, Sussmann [1973]). Let △D

be a distribution spanned by a collection of smooth vector fields X1, . . . , Cn ∈
D ⊂ Γ (TM). Then if for ∀X ∈ D there exists a neighbourhood U and a set of
functions ci

k ∈ C∞ (U) such that:[︂
X,X i

]︂ ⃓⃓⃓
U

=
∑︂

k

ci
kX

k
⃓⃓⃓
U

for i = 1, . . . , n, then it is integrable into a generalized foliation.

That is, for ∀x ∈M , there exists a leaf Q ↪→M such that △D|x = TxQ.

Corollary 3.2.2. A Lie algebroid integrates into a generalized foliation.

Proof. An anchor produces a distribution ϱ (ℓ) = △D. Since ϱ is a smooth bundle
map, △D is spanned by smooth vector fields ϱ (Γ (ℓ)). We can always choose a
local basis A1, . . . , An ∈ Γ (ℓ), then ϱ (A1) , . . . , ϱ (An) span △D and by the Lie
algebra homomorphism property of the anchor, we get:

[ϱ (A) , ϱ (B)] = ϱ ([A,B]ℓ) = ϱ

(︄∑︂
k

cij
k A

k

)︄
=
∑︂

k

cij
k ϱ
(︂
Ak
)︂
.

With cij
k being the structure constants of the Lie algebra (ℓ, [, ]ℓ). Proposition

3.2.1 provides integrability.

3.2.2 Courant bracket
Our aim is now to introduce a bracket on TM ⊕ T ∗M to serve two purposes.

• It should be compatible with the canonical orthogonal structure on TM ⊕
T ∗M , which generates fibre-wise generalized complex endomorphisms as
isotropic subspaces.

• It should generate Lie algebroids to provide an integrable structure for
generalized complex endomorphisms.

In the proofs of the technical lemmata in this section, we will use the following
differential geometry identities heavily:

LX = iXd + diX , L[X,Y ] = [LX ,LY ] , i[X,Y ] = [LX , iY ] .

Definition. On sections of TM ⊕T ∗M−→M we define the Courant bracket:

[[X ⊕ ξ, Y ⊕ η]] ··= [X, Y ]⊕ LXη − LY ξ −
1
2d (iXη − iY ξ) .

Definition. The Courant anchor is the projection ϱ : TM ⊕ T ∗M−→TM .

Properties of the Courant bracket:

• [[, ]] is antisymmetric.

• [[, ]] is preserved by the Courant anchor ϱ ([[A,B]]) = [ϱ (A) , ϱ (B)] .
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• For X, Y ∈ Γ (TM) : [[X, Y ]] = [X, Y ], while for ξ, η ∈ Γ (T ∗M): [[ξ, η]] = 0.

Unfortunately, the antisymmetric bracket and the anchor fail to form a Lie
algebroid because [[, ]] is not a Lie bracket as it does not generally satisfy the
Jacobi identity. We will show to which extent it fails and where it does not. For
this purpose, let us define a different bracket on sections of TM ⊕T ∗M in efforts
to recover the Jacobi identity.

Definition. On sections of TM⊕T ∗M−→M we define the Dorfman bracket:

(X ⊕ ξ ◦ Y ⊕ η) ··= [X, Y ]⊕ LXη − iY dξ.

Lemma 3.2.3. The Dorfmann bracket (◦) satisfies the property:

(A ◦ (B ◦ C)) = ((A ◦B) ◦ C) + (B ◦ (A ◦ C)) .

Proof. For A = X + ξ, B = Y + η, C = Z + ζ ∈ Γ (TM ⊕ T ∗M).

((A ◦B) ◦ C) + (B ◦ (A ◦ C))
= [[X, Y ], Z] + [Y, [X,Z]]⊕ L[X,Y ]ζ − iZd (LXη − iY dξ)

+ LY (LXζ − iZdξ)− i[X,Z]dη
= [X, [Y, Z]]⊕ LXLY ζ − LXiZdη − LY iZdξ + iZdiY dξ
= [X, [Y, Z]]⊕ LX (LY ζ − iZdη)− i[Y,Z]dξ

= (A ◦ (B ◦ C)) .

Note that for an antisymmetric bracket, this property is equivalent to the Ja-
cobi identity. Unfortunately, the Dorfman bracket is generally not antisymmetric.

Lemma 3.2.4. Courant bracket is the antisymmetrization of the Dorfman bracket.

Proof. Let A = X ⊕ ξ, B = Y ⊕ η ∈ Γ (TM ⊕ T ∗M):

1
2 ((A ◦B)− (B ◦ A)) = 1

2 ([X, Y ]− [Y,X])⊕ LXη − LY ξ − iY dξ + iXdη

= [X, Y ]⊕ 1
2 (LXη − LY ξ + diY η − LY ξ − diXη + LXη)

= [[A,B]]

However, as it turns our, under some conditions, the two brackets merge and
their desired properties combine into a Lie bracket.

Lemma 3.2.5. For A,B ∈ Γ (TM ⊕ T ∗M):

[[A,B]] = (A ◦B)− d ⟨A,B⟩ .
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Proof. Let A = X ⊕ ξ, B = Y ⊕ η ∈ Γ (TM ⊕ T ∗M).

(A ◦B)− d ⟨A,B⟩ = [X, Y ]⊕ LXη − iY dξ − 1
2 (iXη + iY ξ)

= [X, Y ]⊕ LXη − iY dξ − 1
2 (iXη − iY ξ)− diY ξ

= [X, Y ]⊕ LXη − LY ξ −
1
2 (iXη − iY ξ)

= [[A,B]]

Corollary 3.2.6. On an isotropic subbundle L < TM ⊕ T ∗M , the Courant
bracket is a Lie bracket.

A last formula defining a Lie algebroid remains to be checked: (how) can we
perform derivatives of C∞ (M) in ϱ (TM ⊕ T ∗M) directions?

Lemma 3.2.7. For A,B ∈ Γ (TM ⊕ T ∗M) and f ∈ C∞ (M):

[[A, fB]] = f [[A,B]] + (ϱ (A) f)B − ⟨A,B⟩ df.

Proof. Let A = X + ξ, B = Y + η.

[[X ⊕ ξ, f(Y ⊕ η)]] = [X, fY ]⊕ LXfη − LfY ξ −
1
2d (iX(fη)− ifY ξ)

= f [[X ⊕ ξ, Y ⊕ η]] + (Xf)Y ⊕ (Xf)η

− (iY ξ) df − 1
2 (iXη − iY ξ) df

= f [[X ⊕ ξ, Y ⊕ η]] + (Xf)(Y ⊕ η)− ⟨X ⊕ ξ, Y ⊕ η⟩df.

Corollary 3.2.8. On an isotropic subbundle L, let A,B ∈ Γ (L), f ∈ C∞ (M).

[[A, fB]] = f [[A,B]] + (ϱ (A) f)B.

From corollaries 3.2.6, 3.2.8, we conclude that an isotropic subbundle L <
TM ⊕ T ∗M together with the Courant bracket [[, ]] and the Courant anchor ϱ
is a good candidate for a Lie algebroid. There is, although, another condition
of a global nature that needs to be satisfied. That is, of course, the Courant-
involutiveness of L. The following objects will turn out to be perfect indicators
of involutive subbundles in section 3.2.4.

Definition. We define the Jacobiator and the Nijenhuis operator on sections
of TM ⊕ T ∗M as:

Jac(A,B,C) ··= [[[[A,B]] , C]] + c.p.

Nij(A,B,C) ··=
1
3 (⟨[[A,B]] , C⟩+ c.p.)

where A,B,C ∈ Γ (TM ⊕ T ∗M) and c.p. denotes cyclic permutations.
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We observe that Jac(A,B,C) = 0 for ∀A,B,C ∈ Γ (L) if and only if the
Jacobi identity is satisfied on the subbundle L < TM⊕T ∗M . Now we prove that
it is in fact satisfied on TM ⊕ T ∗M up to an exact term.
Lemma 3.2.9. For A,B,C ∈ Γ (TM ⊕ T ∗M) it holds that:

Jac(A,B,C) = dNij(A,B,C)
Proof. First, we observe that the Dorfman bracket annihilates closed 1-forms:
(µ ◦ C) = 0 for ∀C ∈ Γ (TM ⊕ T ∗M), µ ∈ Ω1

closed (M).
Then we prove the following identity using lemma 3.2.5

[[[[A,B]] , C]] = ([[A,B]] ◦ C)− d ⟨[[A,B]] , C⟩
= (((A ◦B)− d ⟨A,B⟩) ◦ C)− d ⟨[[A,B]] , C⟩
= ((A ◦B) ◦ C)− d [[A,B]] , C.

Now we can directly compute Jac(A,B,C) in terms of Nij(A,B,C). We will
use lemmata 3.2.2 and 3.2.3 and the fact that cyclic permutation c.p. annihliates
certain terms. In the end, we use the identity we have just proved.

Jac(A,B,C) = [[[[A,B]] , C]] + c.p.

= 1
4(((A ◦B) ◦ C)− (C ◦ (A ◦B))− ((B ◦ A) ◦ C)

+ (C ◦ (B ◦ A)) + c.p.)

= 1
4((A ◦ (B ◦ C))− (B ◦ (A ◦ C))− (C ◦ (A ◦B))

− (B ◦ (A ◦ C)) + (A ◦ (B ◦ C)) + (C ◦ (B ◦ A)) + c.p.)

= 1
4((A ◦ (B ◦ C))− (B ◦ (A ◦ C)) + c.p.)

= 1
4(((A ◦B) ◦ C) + c.p.)

= 1
4([[[[A,B]] , C]] + d⟨[[A,B]] , C⟩+ c.p.)

= 1
4(Jac(A,B,C) + 3

4d(Nij(A,B,C))).

The following property of the Courant bracket will serve as the last puzzle
piece to uniquely specify a general underlying mechanism.
Lemma 3.2.10. Let A,B,C ∈ Γ (TM ⊕ T ∗M). Then we have:

ϱ(A)⟨B,C⟩ = ⟨[[A,B]] + d⟨A,B⟩, C⟩+ ⟨B, [[A,C]] + d⟨A,C⟩⟩.
Proof. Let A = X ⊕ ξ, B = Y ⊕ η, C = Z ⊕ ζ. First, we consider lemma 3.2.5:
⟨[[A,B]] + d⟨A,B⟩, C⟩+ ⟨B, [[A,C]] + d⟨A,C⟩⟩ = ⟨(A ◦B) , C⟩+ ⟨B, (A ◦ C)⟩.

Then we proceed:
⟨(A ◦B) , C⟩+ ⟨B, (A ◦ C)⟩

= 1
2(i[X,Y ]ζ + iZ (LXη − iY dξ) + i[X,Z]η + iY (LXζ − iZdξ))

= 1
2 (LXiY ζ + LXiZη) = 1

2iXd (iY ζ + iZη) = ϱ(A)⟨B,C⟩.
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3.2.3 Courant algebroid
Let us now define a general structure with the properties of TM⊕T ∗M equipped
with the Courant bracket [[, ]], the canonical symmetric product ⟨, ⟩ and the
Courant anchor ϱ.
Definition (Courant algebroid). A Courant algebroid is a vector bundle E−→
M equipped with a skew bracket [[, ]] on its sections, a symmetric non-degenerate
fibre-wise product ⟨, ⟩ and a smooth bundle map ϱ : E −→ TM . This induces a
differential operator D : C∞ (M)−→Γ (E) via the definition ⟨Df, A⟩ = 1

2ϱ (A) f .
For ∀A,B,C ∈ Γ (E), ∀f, g ∈ C∞(M), these structures must satisfy:

(a) ϱ ([[A,B]]) = [ϱ(A), ϱ(B)] .

(b) Jac(A,B,C) = D(Nij(A,B,C)).

(c) [[A, fB]] = f [[A,B]] + (ϱ(A)f)B − ⟨A,B⟩Df.

(d) ⟨Df,Dg⟩ = 0.

(e) ϱ(A)⟨B,C⟩ = ⟨[[A,B]] +D⟨A,B⟩, C⟩+ ⟨B, [[A,C]] +D⟨A,C⟩⟩.
The collection of data (TM ⊕ T ∗M, ⟨, ⟩, [[, ]] , ϱ) is a motivating example of a

Courant algebroid. The axioms (b), (c) and (e) are satisfied by the lemmata 3.2.9,
3.2.7, 3.2.10 respectively and the induced differential operator is the gradient
D = d.
Remark. A Courant algebroid can be thought of as an attempt to merge the
notion of a quadratic Lie algebra (V, [, ] , ⟨, ⟩), where ⟨[X, Y ], Z⟩+⟨Y, [X,Z]⟩ = 0
and a Lie algebroid (L, [, ] , ϱ). By lemma 3.2.10, the original quadratic Lie
algebra property is satisfied by the Dorfman bracket on isotropic subbundles.

We might wonder whether the fibre-wise symmetries of the canonical product
⟨, ⟩ preserve the global structure of a Courant algebroid, the Courant bracket.
Let us examine the essential example, the B-transform.
Proposition 3.2.11. A B-transform is an automorphism of the Courant alge-
broid TM ⊕ T ∗M if and only if B is closed.
Proof. Given the symmetric product snd the anchor are clearly compatible with
eB, we only need to check that the Courant bracket is preserved by B-transforms.
Let X ⊕ ξ, Y ⊕ η ∈ Γ (TM ⊕ T ∗M), let B be a smooth 2-form.[︂[︂

eB(X ⊕ ξ), eB(Y ⊕ η)
]︂]︂

= [[X ⊕ ξ + iXB, Y ⊕ η + iYB]]
= [[X ⊕ ξ, Y ⊕ η]] + [[X, iYB]] + [[iXB, Y ]]

= [[X ⊕ ξ, Y ⊕ η]] + LXiYB −
1
2diXiYB

− LY iXB + 1
2diY iXB

= [[X ⊕ ξ, Y ⊕ η]] + LXiYB − iYLXB + iY iXdB
= [[X ⊕ ξ, Y ⊕ η]] + i[X,Y ]B + iY iXdB
= eB ([[X ⊕ ξ, Y ⊕ η]]) + iY iXdB.

Thus the Courant bracket is preserved if and only if iY iXdB = 0 for ∀X, Y ∈
Γ (TM). That is, precisely for dB = 0.
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3.2.4 Dirac structures
Observation: If we were to find a subbundle L < TM ⊕ T ∗M closed under the
Courant bracket, it would be itself a Courant algebroid. If L happened to be
isotropic as well, it would have the structure of a Lie algebroid.10

• [[A,B]]⏞ ⏟⏟ ⏞
Skew

= (A ◦B)⏞ ⏟⏟ ⏞
Jacobi identity

−d ⟨A,B⟩⏞ ⏟⏟ ⏞
=0

is a Lie bracket.

• ϱ ([[A,B]]) = [ϱ(A), ϱ(B)] .

• [[A, fB]] = f [[A,B]] + (ϱ(A)f)B − ⟨A,B⟩⏞ ⏟⏟ ⏞
=0

df.

Proposition 3.2.12 (Courant-involutiveness conditions). Let L < TM ⊕ T ∗M
be an isotropic subbundle. Then the following statements are equivalent:

• L is Courant-involutive

• Nij|L = 0

• Jac|L = 0

Proof.
• Let L be involutive. =⇒ ⟨[[A,B]] , C⟩ = 0 =⇒ Nij|L = 0.

• Let Nij|L = 0. =⇒ By lemma 3.2.9: Jac|L = dNij|L = 0

• Let Jac|L = 0. =⇒ L is involutive, as we prove by contradiciton:
Let ⟨[[A,B]] , C⟩ ≠ 0. Then for ∀A,B,C ∈ secL, ∀f ∈ C∞ (M):

0 = Jac(A,B, fC) = dNij(A,B, fC) = 1
3fd ⟨[[A,B]] , C⟩+ 1

3 ⟨[[A,B]] , C⟩ df.

Given that df need not be 0 for ∀f ∈ C∞ (M), we arrive to a contradiction.

Further on, we will study a certain class of isotropic subbundles of Courant alge-
broids which will induce generalized complex endomorphisms.

Definition (Dirac structures).

• An almost Dirac structure is a maximal isotropic subbundle of a Courant
algebroid.

• A Dirac structure is a Courant-involutive11 almost Dirac structure.

Remark. By proposition 3.2.11, B-transform of a Dirac structure is clearly again
a Dirac structure for closed B.

Remark. A real Dirac structure is a subbundle L < E, a complex Dirac structure
is a subbundle L < E ⊗ C. Complexification is, of course, compatible with the
Courant algebroid structure and isotropy.

10See lemmata 3.2.5, 3.2.7 and section 3.2.1.
11In other words, it is by proposition 3.2.1 integrable into a generalized foliation.
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Example (Foliated geometry). Let △ < TM be a smooth distribuition of a
constant rank. Then

L△ ≡ △⊕ Ann(△) < TM ⊕ T ∗M

is a maximal isotropic subbundle, i.e. an almost Dirac structure.

Proposition 3.2.13. △ is integrable if and only if L△ is a Dirac structure.

Proof. We need to prove that for ∀A,B,C ∈ secL△, A = X ⊕ ξ, B = Y ⊕ η, C =
Z ⊕ ζ:

Nij|L△
= 0⇐⇒ [△,△] ⊂ △,

as we use proposition 3.2.12 and because an involutive distribution is integrable
by the Frobenius’ theorem.

⟨[[A,B]] , C⟩ =
⟨︃

[X, Y ]⊕ LXη − LY ξ −
1
2d (iXη − iY ξ , Z ⊕ ζ

⟩︃
= 1

2
(︂
i[X,Y ]ζ + iZLXη − iZLY ξ

)︂
= 1

2
(︂
i[X,Y ]ζ + iZiXdη + iZdiXη − iZiY dξ − iZdiY ξ

)︂
= 1

2
(︂
i[X,Y ]ζ + η (Z)X − η (X)Z − i[X,Z]η

− ξ (Z)Y + ξ (Y )Z + i[Y,Z]ξ)

= 1
2
(︂
i[X,Y ]ζ − i[X,Z]η + i[Y,Z]ξ

)︂
.

Thus if and only if [△,△] ⊂ △ we have Nij|L△
= 0⇔ L△ is a Dirac structure.

Example (Presymplectic geometry). The tangent bundle TM itself is trivially
a Dirac structure. A B-transform by a 2-from ω yields a new almost Dirac
structure:

Lω = eω (TM) .

Note that by proposition 3.2.11, Lω is a Dirac structure if and only if ω is a
presymplectic structure.

Example (Poisson geometry). Let us consider the symplectic 2-form Ω. If we
invert it into a Poisson structure Π, we can modify the Dirac structure T ∗M by
a β-transform.

LΠ = eΠ (T ∗M) .

We do not a priori know whether a β-transform will preserve the Courant alge-
broid structure (it does preserve isotropy), but in this case, we can use what we
know about the symplectic 2-form Ω : TM −→T ∗M . eΩ (TM) is a dirac struc-
ture and given that Π : T ∗M −→TM is the inverse morphism, it must generate
the same pairs X ⊕ ξ. Thus:

LΠ = eΠ (T ∗M) = eΩ (TM) = LΩ.

28



Remark. The integrability of eΩ (TM) relies on the closure of Ω = Π−1. Hence,
so does the integrability of eΠ (T ∗M). But as we know, Π constitutes the Poisson
bracket by the formula Π (df, dg) = {f, g} and the Jacobi identity of {, } is
equivalent to the closure of Ω. We refer to Gualtieri [2004] for a general proof
that eΠ (T ∗M) is a Dirac structure if and only if Π is a Poisson tensor.12

Proposition 3.2.14 (Involutiveness of L (E,ω)). Let L be an almost Dirac struc-
ture fibre-wise defined by a subbundle E < TM and a 2-form ω as L = L (Ex, ω|x).
L is a Dirac structure if and only if E is involutive and ω is closed.

Proof. Let φ : E−→TM be the inclusion. Let σ ∈ Ω2 (M) be a smooth extension
of ω, so that: φ∗σ = ω. We define dE on sections of ΛE∗ so that φ∗ ◦d = dE ◦φ∗.
Let A = X ⊕ ξ, B = Y ⊕ η ∈ Γ (L) arbitrary, thus ξ|E = ω (X), η|E = ω (Y ).
L is involutive if and only if for [A,B] = K ⊕ κ, it holds that K ∈ Γ (E) and
κ|E = ω (K).
Note that K = [X, Y ], which mean K ∈ Γ (E) if and only if E is involutive.
Then κ|E ∈ [ω (K) , it following difference must vanish:

κ|E − iKω = φ∗
(︃
LXη − LY ξ −

1
2d (iXη − iY ξ)

)︃
− i[X,Y ]φ

∗σ

= iXdEφ
∗η − iY dEφ

∗ξ − 1
2dE (iXiY ω − iY iXω)− φ∗ [LX , iY ]σ

= iXdEφ
∗η − iY dEφ

∗ξ − dE (iXiY ω)
− φ∗ (iXdiY σ + diXiY σ − iY iXdσ − iY iXσ )
= iY iXdEω

Thus ω must be closed.

3.2.5 Generalized complex geometry
The author does indeed hope that the right definition of a generalized complex
structure is utterly obvious at this point.

Definition (Generalized complex structure).

• A generalized almost complex structure is an almost complex struc-
ture J on TM⊕T ∗M⊗C orthogonal with respect to the fibre-wise canonical
symmetric product ⟨, ⟩.

• A generalized complex structure is a Courant-involutive almost com-
plex structure.

Remark. By proposition 3.1.3, we know that instead of orthogonality, we can
require skewness, which is also equivalent to J ∈ so (TM ⊕ T ∗M ⊗ C).

Proposition 3.1.4 leads us to its global version: the +i-eigenbundle of the
generalized complex structure is a Courant-involutive unreal maximal isotropic
subbundle L < TM ⊕ T ∗M ⊗ C, in other words:

12Even though we will work with general Poisson tensors in the next chapters, any Poisson
induced Dirac structure with a physical relevance will be provided its integrability by the
canonical symplectic form Ω. Either by inversion, or later, by a ”reduction” of the Ω−1 tensor.

29



Proposition 3.2.15.
A generalized complex structure is13 an unreal Dirac structure.

Example (Symplectic geometry). As we know from section 3.1.3, a generalized
almost complex structure defined by a non-degenerate 2-form Ω is the fibre-wise
endomorphism:

JΩ =
(︄

0 −Ω−1

Ω 0

)︄
.

or equivalently its +i-eigenbundle, the almost Dirac structure:

LΩ = e−iΩ (TM) .

The integrability of e−iΩ (TM) is equivalent to the closure14 of Ω, as e−iΩ is a
B-transform by −iΩ.

Definition (B-symplectic structure). A B-symplectic structure is a B-transform
of e−iΩ (TM) by a real 2-form B ∈ Ω2 (M).

e−BJΩe
B =

(︄
−Ω−1 ◦B −Ω−1

Ω +B ◦ Ω−1 ◦B B ◦ Ω−1

)︄
,

e−B (LΩ) = e−(B+iΩ) (TM) .

It is clear that the B-symplectic structure is a generalized complex structure
if and only if B is closed.

Example (Complex geometry). The generalized almost complex structure de-
fined by an almost complex structure J is the fibre-wise endomorphism:

JJ =
(︄
J 0
0 −J∗

)︄
.

or equivalently its +i-eigenbundle, the almost Dirac structure:

LJ = TM1,0 ⊕ T ∗M0,1 ≡ TM1,0 ⊕ Ann
(︂
TM1,0

)︂
.

Regarding integrability, by proposition 3.2.13 we can see that:[︂
TM0,1, TM0,1

]︂
⊂ TM0,1

J is a complex structure.
⇐⇒ LJ is a generalized

complex structure.

Remark (Generalized Kähler geometry). We only remark on the generalization
of Kähler geometry onto a Courant algebroid. Let us have the Kähler triple:

13As the word structure suggests, generalized complex structure is a notion that is supposed
to describe a certain relationship betwen objects (which distinguishes their totality from a mere
collection). The author believes it is reasonable to say the structure is the very decomposition
of the Courant algebroid into unreal subbundles as much as it is either one of them or the
bundle morphism that realizes the decomposition.

14This is equivalent to the fact that Ω defines an integrable distribution Ann(Ω) ⊂ Γ (TM).
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TM T ∗M

TM

g

J Ω

We can combine the symplectic Kähler structure Ω and the complex structure J
to construct a Riemannian metric g or its inverse g−1 (see proposition 2.2.4).

TM T ∗M T ∗M TM

TM T ∗M
Ω−1

g−1 g

−ΩJ −J∗

We can analogically consider the corresponding generalized complex structures
JΩ, J∗

J = −JJ to construct a Riemannian metric G on TM ⊕ T ∗M .

TM ⊕ T ∗M TM ⊕ T ∗M

TM ⊕ T ∗M

G

−JΩJJ

We can check that:

−JJJΩ = −
(︄
J 0
0 −J∗

)︄(︄
0 −Ω−1

Ω 0

)︄
=
(︄

0 J ◦ Ω−1

J∗ ◦ Ω 0

)︄
=
(︄

0 g−1

g 0

)︄

In general, one can consider two arbitrary commuting generalized complex struc-
tures two produce Riemannian metrics on TM ⊕ T ∗M . For further details, see,
of course, Gualtieri [2004].

3.2.6 Twisting
Some almost Dirac structures fail to be Courant-involutive yet might still inte-
grate into a generalized foliation. If we modify the Courant bracket (and thus
the whole Courant algebroid structure) we can obtain an involutive structure.

Definition (Twisted Courant bracket). For a real closed 3-form H ∈ Ω3
closed (M),

we define the twisted Courant bracket on sections of TM ⊕ T ∗M as:

[[X ⊕ ξ, Y ⊕ η]]H ··= [[X ⊕ ξ, Y ⊕ η]] + iY iXH

Without a proof 15, we state the following lemma refering to Gualtieri [2004],
section 3.7, and Ševera and Weinstein [2001].

Lemma 3.2.16. Let A = X⊕ξ, B = Y ⊕η, C = Z⊕ζ ∈ Γ (TM ⊕ T ∗M) For the
Nijenhuis operator and Jacobiator defined by the twisted Courant bracket [[, ]]H ,
we have:

JacH (A,B,C) = dNijH (A,B,C) + iZiY iXdH

Proposition 3.2.17 (Twisted Courant algebroid). The collection of data
(TM ⊕ T ∗M, ⟨, ⟩, [[, ]]H , ϱ) defines a Courant algebroid for a closed 3-form H.

15Involving analoguous calculations to those in the proof of lemma 3.2.9.
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Proof.

(a) ϱ ([[A,B]]H) = [ϱ(A), ϱ(B)] is satisfed trivially.

(b) JacH(A,B,C) = D(NijH(A,B,C)) holds for dH = 0.

(c) [[A, fB]]H = f [[A,B]]H +(ϱ(A)f)B−⟨A,B⟩Df is satisfied by the tensoriality
of H

(d) ⟨Df,Dg⟩ = 0 holds trivially.

(e) ϱ(A)⟨B,C⟩ = ⟨[[A,B]]H +D⟨A,B⟩, C⟩+ ⟨B, [[A,C]]H +D⟨A,C⟩⟩ is satisfied
by the antisymmetry of H.

Proposition 3.2.18 (B-transforms of a twisted Courant bracket). For a 2-form
B ∈ Ω2 (M) and a closed 3-form H ∈ Ω3

closed (M), a B-transformed twisted
Courant bracket behaves in the following manner.[︂[︂

eB (A) , eB (B)
]︂]︂

H
= eB

(︂
[[A,B]]H+dB

)︂
for ∀A,B ∈ Γ (TM ⊕ T ∗M).

Proof. For A = X ⊕ ξ, B = Y ⊕ η, see proof of proposition 3.2.11 to obtain:[︂[︂
eB (A) , eB (B)

]︂]︂
= eB ([[A,B]]) + iY iXdB,

Now we just add the twisting:[︂[︂
eB (A) , eB (B)

]︂]︂
+ iY iXH = eB ([[A,B]]) + iY iXdB + iY iXH.

Considering the action of B-transform on the cotangent elements iY iXdB+iY iXH
is an identity, one obtains the proposition.

In other words, a B-transform adds a dB-twist.

For clarity, consider the following example: dB = H and a Dirac structure L
closed under the regular Courant bracket. Now perform the e−B transform, by
proposition 3.2.18:

Γ (L)× Γ (L) Γ
(︂
e−B (L)

)︂
× Γ

(︂
e−B (L)

)︂

Γ (L) Γ
(︂
e−B (L)

)︂
e−B

[[,]]H−dB [[,]]H

e−B

As one substitutes H − dB = 0, we obtain the following proposition:

Proposition 3.2.19. Let L be an almost Dirac structure. Then it is Courant
involutive if and only if e−B (L) is closed under the dB-twisted Courant bracket.
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3.3 Generalized submanifolds
Let us now study how the action generalized complex structures on a Courant
algebroid TM ⊕ T ∗M affects submanifolds of M .

3.3.1 Generalized tangent bundle
A subbundle of TM defines a submanifold Q if it can be thought of as TQ upon
restriction. Additional geometric structure of the submanifold can be encoded
into the behaviour of TQ under bundle morphisms.

Definition (Complex submanifold). A submanifold Q ↪→M is a complex sub-
manifold with respect to a complex structure J on M if and only if:

J : TQ −→ TQ.

This is a natural definition, consider TQ = TM1,0|Q. For a complex struc-
ture J , it is an involutive subbundle stable under J and thus integrates into a
submanifold.

Definition (Lagrangian submanifold). A submanifold Q ↪→ M is Lagrangian
with respect to a 2-form ω if and only if:

TQ = TQω ⇔ TQω ⊆ TQ, TQω ⊇ TQ,

where
TQω ··=

{︂
X ∈ Γ

(︂
TM |Q

)︂
| ω(X, Y ) = 0,∀Y ∈ Γ (TQ)

}︂
.

Proposition 3.3.1. A submanifold Q ↪→M is Lagrangian if and only if

Ω : TQ −→ Ann(TQ) Ω−1 : Ann(TQ) −→ TQ

Proof.

• Ω : TQ −→ Ann(TQ) says Ω(X), ∀X ∈ Γ(TQ) annihilates ∀Y ∈ Γ(TQ).
This is equivalent to saying TQ ⊆ TQΩ.

• Ω−1 : Ann(TQ) −→ TQ provides one with Ω−1(ξ) = X, ∀ξ ∈ Γ(Ann(TQ))
X ∈ Γ(TQ). By action of Ω, we obtain ξ = Ω(X),∀ξ ∈ Γ(Ann(TQ)) )
X ∈ Γ(TQ). That is TQΩ ⊆ TQ.

Analogically, we can define a submanifold by a subbundle L of TM ⊕ T ∗M
such that the ϱ (L) can be thought of as TQ. The behaviour of L will, again,
encode additional structure.

Definition (Generalized tangent bundle). For a submanifold Q ↪→M , the gen-
eralized tangent bundle is defined as:16

TQ ··= TQ⊕ Ann(TQ)
16For Qα being a leaf of a foliation,

⋃︁
α TQα is a Dirac structure. See proposition 3.2.13.

This makes the definition a natural choice, along with the fact that Ann(TQ) naturally defines
TQ itself.

33



Definition (Generalized complex submanifold). A submanifold Q ↪→ M is a
generalized complex submanifold17 with respect to a generalized complex
structure J on M if and only if:

J : TQ −→ TQ.

Example (Complex submanifold). It is clear that Q ↪→M is a complex sub-
manifold if and only if the generalized tangent bundle TQ is stable under the
genralized complex structure

JJ =
(︄
J 0
0 −J∗

)︄
,

as J∗ naturally decomposes T ∗M |Q into TQ and Ann(TQ).18

Remark. Note that the +i-eigenbundle is a generalized tangent bundle.

Example (Lagrangian submanifold). Q ↪→M is a Lagrangian submanifold if and
only if the generalized tangent bundle TQ is stable under the genralized complex
structure

JΩ =
(︄

0 −Ω−1

Ω 0

)︄
.

This fibre-wise endomorphism clearly induces the action:

Ω : TQ −→ Ann(TQ) Ω−1 : Ann(TQ) −→ TQ

This is, by proposition 3.3.1, equivalent to Q being Lagrangian.

17Gualtieri [2004] uses the term generalized complex submanifold when he refers to a sub-
manifold equipped with a 2-form which ”remembers” twisting.

18One can think of it as T ∗M |Q = T ∗M1,0
⃓⃓
Q
⊕ T ∗M0,1

⃓⃓
Q

.
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4. Dirac reduction
This chapter is dedicated to the study of reduction of generalized geometry onto
submanifolds. We reproduce the reasoning of Courant [1990].

4.1 Induced maximal isotropic subspaces
In the generalized setting, we have described various geometries by Dirac struc-
tures, i.e. Courant-involutive maximal isotropic subbundles. First, let us study
how a maximal isotropic subspace L < V ⊕ V ∗ passes onto a subspace W ⊕W ∗

for W < V on the level of linear algebra.

We aim to express the reduced space L ∩ (W ⊕W ∗) as a quotient space. To
obtain such result, consider that we need to get rid of the surplus cotangent part
Ann(W ).

Ann(W ) = (W ⊕ V ∗)⊥ ⊂ W ⊕ V ∗

where ⊥ denotes orthogonality with respect to ⟨, ⟩. Thus we can form the
quotient space:

W ⊕ V ∗

(W ⊕ V ∗)⊥ = W ⊕ V ∗

(Ann(W )) ≃ W ⊕W ∗

This relation constitutes an exact sequence:

0 Ann(W ) W ⊕ V ∗ W ⊕W ∗ 0i π

where i is an the natural inclusion and π is defined on W⊕V ∗ by: π (w ⊕ α) =
w ⊕ α|W . We can see the sequence is indeed exact:

kerπ = {α ∈ V ∗ | α|W = 0} = Ann(W ) = Im (i)

We define LW as the image of the restricted subspace L under π.

LW ··= π (L ∩ (W ⊕ V ∗))

We obtain LW as a quotient space if we take the projection of the above
sequence onto L, which constitutes another sequence included in the original
sequence such that they commute.

0 Ann(W ) W ⊕ V ∗ W ⊕W ∗ 0

0 L ∩ Ann(W ) L ∩W ⊕ V ∗ LW 0

i π

i π

As the new sequence is clearly exact again, we get a natural isomorphism:

LW ≃
L ∩ (W ⊕ V ∗)
L ∩ Ann(W )

We procede to prove this guess indeed provides us with a maximal isotropic
subspace.
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Proposition 4.1.1 (Reduced maximal isotropic subspace, Courant [1990]). Let
L be a maximal isotropic subspace. Then LW is a maximal isotropic subspace.

Proof. Given the signature of the canonical pairing is split, (m,m), we have to
prove that: LW = L⊥

W .

• If we take an arbitrary x ∈ LW , then there exists y ∈ L ∩ (W ⊕ V ∗) such
that π (y) = x. Given that L = L⊥, we know that y ∈ (L ∩ (W ⊕ V ∗))⊥.
Now consider that π preserves ⟨, ⟩:

0 = ⟨y1, y2⟩ = ⟨π (y1) , π (y2)⟩ = ⟨x1, x2⟩

Thus: x ∈ LW ⇒ x ∈ L⊥
W , i.e. LW ⊂ L⊥

W .

• Consider a ∈ L⊥
W ⊂ W ⊕W ∗ arbitrary. Again, there exists y ∈ W ⊕ V ∗

such that π (y) = A.
Given that ⟨, ⟩ is preserved by π, we obtain y ∈ (L ∩ (W ⊕ V ∗))⊥, indeed:

a ⊥ LW ⇔ π (y) ⊥ LW ⇔ π (y ) ⊥ π (L ∩ (W ⊕ V ∗))⇔ y ⊥ L∩(W ⊕ V ∗) .

Thus we have: y ∈ (L ∩ (W ⊕ V ∗)⊥ ∩ (W ⊕ V ∗)
=
(︂
L⊥ + (W ⊕ V ∗)⊥

)︂
∩ (W ⊕ V ∗)

= (L+ Ann(W )) ∩ (W ⊕ V ∗)
= L ∩ (W ⊕ V ∗) + Ann(W )

Therefore we can find x ∈ L ∩ (W ⊕ V ∗) and Z ∈ Ann(W ), such that
y = x+ z.
It is easy to see that π (y) = π (x+ z) = π (x), therefore:

a = π (x) =⇒ a ∈ π (L ∩ (W ⊕ V ∗)) .

That is: L⊥
W ⊂ LW .

Now we demonstrate that the reduced subspace LW induces a restricted 2-
form.

Proposition 4.1.2 (Courant [1990]). Let L = L (E,ω) for a subspace E < V
and a 2-form ω : E−→E∗. Then LW = L (E ∩W,ω|E∩W ).

Proof. For w ⊕ α ∈ L ∩ (V ⊕W ∗) we have w ∈ E ∩W , α|E∩W = ωX, that is,
from ω defined on E, we pass to the reduced 2-form ω|E∩W .
It is simple to see that the denominator of LW , L∩Ann(W ) does not change the
induced 2-form: the dual L∩Ann(W ) elements it factorises out are not an image
of any non-zero element of W ∩ E under ω.

Remark. Consider that for L unreal, the reduced structure is clearly unreal as
well (unrealness is preserved by intersections and factorisations). Thus this Dirac
reduction mechanism generates reduced generalized complex endomorphisms.
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4.2 Dirac reduction on manifolds
Let us consider a submanifold Q ↪→M . From a Dirac structure L on M , we can
construct the maximal isotropic distribution:

LQ ··=
L ∩

(︂
TQ⊕ T ∗M |Q

)︂
L ∩ Ann(TQ)

LQ is a reduced Dirac structure if and only if it is also a subbundle and
is Courant-involutive. For L unreal, LQ is a reduced generalized complex
structure under the same conditions. The first condition is provided by a fibre-
wise constant dimension:

Proposition 4.2.1 (Courant [1990]). Let L be a Dirac structure on M , Q ↪→M .

L ∩
(︂
TQ⊕ T ∗M |Q

)︂
has constant dimension

⇐⇒ L ∩ Ann(TQ)
has constant dimension

Proof. The two distributions are fibre-wise orthogonal complements.

We see that once one of the conditions od proposition 4.2.1 is satisfied, the
quotient space LQ is a bundle.

Proposition 4.2.2 (Integrability of the reduced Dirac structure, Courant [1990]).
Let L be an almost Dirac structure on M , LQ a reduced almost Dirac structure
on M . Then LQ is integrable if L is integrable.

Proof. We express LQ as L (TQ ∩ L, ι∗ω) for the inclusion ι : TQ ∩ L−→πT ML
and check the conditions of proposition 3.2.14. The tangent part is involutive,
because both TQ and πT ML|Q are involutive. The restricted 2-form is closed,
because ω is closed and dι∗ω = ι∗dω = 0.

Proposition 4.2.3 (Characteristic distribution of a reduced Dirac structure,
Courant [1990]). Let L be a Dirac structure. Then for the reduced Dirac structure
LQ and the induced 2-form ω̃ we have:

char(ω̃) = LQ ∩ TQ ≃
L ∩ (TQ⊕ Ann(TQ))

L ∩ Ann(TQ) .

Proof. LQ ∩ TQ is the part of TQ which is mapped trivially by the action of ω̃,
i.e. the char(ω̃). Furthermore, for L = L (E,ω) we have:

LQ ∩ TQ ≃ {X ∈ LQ | X ∈ TQ}

≃

{︂
X + ξ ∈ L | X ∈ TQ, ξ|T Q = 0

}︂
L ∩ Ann(TQ)

≃ {X + ξ ∈ L | X ∈ TQ, ξ ∈ Ann(TQ)}
L ∩ Ann(TQ)

≃ L ∩ (TQ⊕ Ann(TQ)
L ∩ Ann(TQ) .
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4.3 Poisson reduction
Let us investigate the specific case of L being a graph of a Poisson structure Π.
The question is: does Dirac reduction yield another graph of a Poisson structure?

Proposition 4.3.1 (Dirac reduction of a Poisson structure, Courant [1990]). Let
Q ↪→M be a submanifold and Π : T ∗M −→TM a Poisson structure on M with
a Dirac structure L being its graph. Then the reduced Dirac structure LQ defines
a Poisson structure on the submanifold Q if the following conditions hold:

(a) ker (Π) ∩ Ann(TQ) has a constant dimension.

(b) TQ ∩ Π (Ann(TQ)) ≃ 0.

Proof. We will show that the first condition will provide the reduced dirac struc-
ture LQ with a fibre-wise constant dimension. I.e. it is a well-defined bundle and
a well-defined Dirac structure.
The second condition ensures us that the induced Dirac structure can be thought
of as a graph of a Poisson structure on Q.

(a) By proposition 4.2.1, LQ is a bundle if L∩Ann(TQ) has constant dimension.
We also see that for L being a graph of Π:

L ∩ Ann(TQ) ≃ {ξ ∈ L | ξ ∈ Ann(TQ)}
≃ {ξ ∈ ker Π | ξ ∈ Ann(TQ)}
≃ ker (Π) ∩ Ann(TQ)

(b) We observe that LQ ∩ TQ, the purely tangent part of LQ, cannot be con-
stituted as a graph of a bivector, which would necessarily need to map
a zero 1-form onto a non-zero tangent vector. Thus we get a condition
LQ ∩ TQ ≃ 0, which is a consequence of the one given in the proposition:

0 ≃ LQ ∩ TQ ≃
L ∩ (TQ⊕ Ann(TQ))

L ∩ Ann(TQ)
⇑

0 ≃ L ∩ (TQ⊕ Ann(TQ))
≃ TQ ∩ Π (Ann(TQ))

We made use of Proposition 4.2.3. Then we observed that the space of all
pairs X ⊕ ξ such that Π (ξ) = X is isomorphic to the space spanned by X
alone.

Remark. Consider a non-degenerate Poisson structure which is an inverse of
a symplectic structure. As it defines a Dirac structure as a graph of a 2-form,
the reduced Poisson structure must be in principle inverse of a symplectic form.
The non-degeneracy of the induced symplectic form is precisely the condition
TQ ∩ Π (Ann(TQ)) ≃ LQ ∩ TQ ≃ 0.
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5. Generalized geometry in
physics
In the final chapter, we provide examples of generalized geometrical structures
emerging in mathematical physics (or physical mathematics, one might say).

First, a Dirac reduction of a generalized complex structure will open the
way for a research of the underlying geometry of a two-dimensional harmonic
oscillator. Then we show that the process of Dirac reduction naturally induces
structures used by string theorists to provide a way to work with incompatible
objects. Finally, we describe a way to associate generalized complex structures
with second order PDEs familiar to a physicist.

5.1 Symplectic reduction of an oscillator
The phase space of a particle in two dimensions is the cotangent bundle T ∗R2

diffeomorphic to R4. It is equipped with the canonical symplectic form Ω which
determines the dynamics through Hamilton’s equations. We intend to examine a
system with a constant value of energy.

In particular, we are interested in the case of a particle in a parabolic potential,
i.e. the linear harmonic oscillator. In canonically conjugate coordinates1, the
Hamiltonian reads

H = p2
1 + p2

2 + x2
1 + x2

2

up to a rescaling 2. Setting H constant, without loss of generality H
!= 1, we

have constrained the phase space onto a unit sphere.

S3 ι
↪→ T ∗R2

A natural question of a geometer is: what is ι∗(Ω)?

It is simple to see that ι∗ (Ω) must be degenerate, even from the sole fact that
a symplectic matrix cannot be defined on an odd dimensional vector space. We
will demonstrate what is the obstruction in the language of generalized geometry
and Dirac reduction.

First, we recall that we have a generalized complex structure defined by Ω
as the +i-eigenbundle of JΩ (see section 3.2.5), the graph L = e−iΩ (TM). Now
we will try to reduce this structure onto S3, having Ann(TS3) = Span(dH), the
induced Dirac structure is LS3 (see proposition ??).

LS3 = e−iΩ (TM) ∩ (TS3 ⊕ T ∗M |S3)
e−iΩ (T ∗M) ∩ Span(dH) |S3

1The positions of indeces aren’t important in this case.
2Generally we have a mass factor in the p2 term and the potential strength factor in the x2

term. We can factor both out by an opposite rescaling of the xi and the pj coordinates, which
is a canonical transformation. The scale of the whole function H just changes the scale of the
constrained sphere.
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To study the induced presymplectic structure ι∗ (Ω), we compute its charac-
teristic distribution by proposition 4.2.3.

char(ι∗Ω) ∼=
e−iΩ (TM) ∩ (TS3 ⊕ Span(dH) |S3)

e−iΩ (TM) ∩ Span(dH) |S3

∼= e−iΩ (TM) ∩
(︂
TS3 ⊕ Span(dH) |S3

)︂
∼=
{︂
X − iΩ (X) ∈ TS3 ⊕ T ∗M |S3 | − iΩ (X) ∈ Span(dH)

}︂
∼=
{︂
XH − iΩ (XH) ∈ TS3 ⊕ T ∗M |S3

}︂
∼= Span(XH) ∩ TS3.

Note that ι∗ (XH) = XH , i.e. it is tangent to the sphere because it is annihi-
lated by Ann(TS3) = Span(dH),

⟨XH , dH⟩ = −Ω (XH , XH) = 0.

Thus:
char(ι∗Ω) ∼= Span(XH) .

We have arrived to the information that the characteristic distribution of
ι∗ (Ω) is fibre-wise isomorphic to the span of XH . We can simply check that it is
precisely the span of XH . First we have:

ι∗ (dH) = dι∗ (H) = 0.

Hamilton’s equations provide us with ι∗Ω (XH) = ι∗ (−dH) = 0.

We could have found that XH is annihilated by a simple and natural guess,
but the result also tells us XH spans the whole characteristic distribution3. The
mechanism would also work for multiple Hamiltonian fields XH1 , . . . , XHn .

5.1.1 Hopf fibration
In what follows, we will demonstrate thatXH is the only field that spans char(ι∗Ω)
by constructing a factorspace on which the induced structure is symplectic again.
We arrive to such results in four steps:

• Complexification of the phase space.

• Recognition of a Lie group structure of S3.

• Factorization of S3 by the action generated by XH .

• Construction of a Kähler structure on the factorspace.
3This is a also one of the results of the theory of symplectic reductions, where the essential

mechanism are the moment maps.
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The underlying geometric structure that will emerge is known as the Hopf fibra-
tion.

It is convenient to introduce the following complex coordinates on T ∗R2 ≈ C2

for the reason that symplectic and complex geometry will intertwine.

z1 ··= p1 + ix1, z1 = p1 − ix1,
z2 ··= p2 + ix2, z2 = p2 − ix2.

In the new coordinates, the S3 constraint reads

H = z1z1 + z2z2
!= 1

Following Nakahara [2003], example 4.12, for every point in the phase space,
we can define the matrix U :

(x1, x2, p1, p2)←→
(︄
p1 + ix1 − (p2 + ix2)
p2 − ix2 p1 − ix1

)︄

(z1, z2, z1, z2)←→
(︄
z1 −z2
z2 z1

)︄

The S3 constraint now produces matrices with detU != 1.

detU = p2
1 + p2

2 + x2
1 + x2

2

detU = z1z1 + z2z2

We can check that for detU != 1, the matrix is also unitary:(︄
z1 −z2
z2 z1

)︄(︄
z1 z2
−z2 z1

)︄
=
(︄
z1z1 + z2z2 0

0 z1z1 + z2z2

)︄
!=
(︄

1 0
0 1

)︄

That is, we can associate each point on the constant energy sphere in the
phase space of a two dimensional oscillator with a special unitary matrix.

S3 ≈ SU(2) .

This hints towards the fact that one can model spin by a two dimensional
oscillator. This approach is known as the Schwinger’s model.

As it will be useful for further calculations, let us now formulate Hamilton’s
equations explicitely in the complex coordinates.

Ω = dp1 ∧ dx1 + dp2 ∧ dx2

= 1
2d (z1 + z1) ∧

1
2id (z1 − z1) + 1

2d (z2 + z2) ∧
1
2id (z2 − z2)

= − 1
4idz1 ∧ dz1 + 1

4idz1 ∧ dz1 −
1
4idz2 ∧ dz2 + 1

4idz2 ∧ dz2

= i

2 (dz1 ∧ dz1 + dz2 ∧ dz2)
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We can see the explicit form of the Hamiltonian field XH from Hamilton’s
equations Ω (XH) = −dH.

dH = d (z1z1 + z2z2) = z1dz1 + z1dz1 + z2dz2 + z2dz2

Ω (XH) = i

2 (Xz1dz1 −Xz1dz1 +Xz2dz2 −Xz2dz2)

⇓

XH = 2i
(︄
z1

∂

∂z1
+ z2

∂

∂z2
− z1

∂

∂z1
− z2

∂

∂z2

)︄

Now we can get rid of the XH field on S3 ≈ SU(2). Taking XH |e we obtain
an element of the Lie algebra XH |e ∈ su (2). By exponentiating this element, we
get the Hamiltonian action as a subgroup of SU (2). We see that this group is
U (1) as its algebra is one-dimensional and we can construct every element as:

exp (itXH |e) ∈ U (1) , t ∈ R

That is because XH is Hermitian XH = XH and the group elements are
unitary.

exp (itXH |e) = exp (−itXH |e) = exp (itXH |e)
−1 .

Therefore, on the coset space SU(2)/U(1) π←− SU(2) we have π∗ (XH) = 0
and the characteristic distribution is trivialized.

Now we procede to show that on SU (2)/U (1), the symplectic form Ω induces
another symplectic form directly - we construct the reduced 2-form.

First, we need to recognize the geometric structure of SU(2)/U(1) that will
enable us to introduce a convenient coordinate system.

Proposition 5.1.1 (Fecko [2006], 13.2.8). SU(2)/U(1) ≈ S2.

Proposition 5.1.2 (Nakahara [2003], example 9.9). S2 ≈ CP1.

On CP1, we can introduce the coordinates:

z ··=
z1

z2
, z = z1

z2

on CP1 \ {z2 = 0}. An atlas is completed by a complementary chart

z′ ··=
z2

z1
, z′ = z2

z1

on CP1 \ {z1 = 0}.

We follow Nakahara [2003], example 8.8, as we define the function K on CP1

and study its properties.

K ··= zz + 1, K =
2∑︂

j=1

⃓⃓⃓⃓
zj

z2

⃓⃓⃓⃓2
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We can see that on the z′ chart, we have:

K′ = z′z′ + 1, K′ =
2∑︂

j=1

⃓⃓⃓⃓
zj

z1

⃓⃓⃓⃓2
Therefore:

K′ =
⃓⃓⃓⃓
z1

z2

⃓⃓⃓⃓2
K

If we then consider logK, we see it transforms as:

logK′ = logK + log
(︃
z1

z2

)︃
+ log

(︃
z1

z2

)︃
.

Now, given that log
(︂

z1
z2

)︂
is annihilated by ∂ and log

(︂
z1
z2

)︂
by ∂, i∂∂ logK

defines a natural global symplectic form on CP1 (see section 2.2.2).

i∂∂ logK′ = i∂∂ logK

Definition. For K = zz′ + 1, we define the Fubini-study 2-form on CP1 by:

ΩK ··=
i

2∂∂ logK.

For the inclusion ι and the projection π:

T ∗R2 S3 CP1,ι π

we formulate the main proposition4 of this section.

Proposition 5.1.3. For the canonical symplectic structure Ω ∈ Ω2 (T ∗R2) and
the Fubini-study 2-form ΩK ∈ Ω2

(︂
CP1

)︂
it holds that:

π∗ (ΩK) = ι∗ (Ω)

Proof. For T ∗R2 ≈ C2, we shall work in the following setting5

C2 \ {0}

S3

CP1

π̃

π

ι

In other words, we define π̃∗ such that ι∗ ◦ π̃∗ = π∗.
The explicit actions are:

π̃∗ : f (z, z) ↦−→ f
(︃
z1

z2
,
z1

z2

)︃
,

ι∗ : (z1z1 + z2z2) ↦−→ 1,
ι∗ : (z1dz1 + z1dz1 + z2dz2 + z2dz2) ↦−→ 0.

4This is a classical exercise in symplectic geometry, e.g. see the textbook da Silva [2008],
homework 20.

5We consider C2 \ {0} so that its every point can be mapped onto a complex line.

43



Now we calculate π∗ (ΩK).

ΩK = i

2∂∂ logK = i

2∂
(︃ 1

1 + zz
dz
)︃

= i

2

(︄
1

1 + zz
− zz

(1 + zz)2

)︄
dz ∧ dz = − i2K

−2dz ∧ dz,

π̃∗ (dz ∧ dz) = d
(︃
z1

z2

)︃
∧ d

(︃
z1

z2

)︃
=
(︃ 1
z2

dz1 −
z1

z2
dz2

)︃
∧
(︃ 1
z2

dz1 −
z1

z2
dz2

)︃
= 1
z2z2

(︃
dz1 ∧ dz1 −

z1

z2
dz1 ∧ dz2 −

z1

z2
dz2 ∧ dz1 + z1z1

z2z2
dz2 ∧ dz2

)︃
.

Then we calcualte the action of ι∗ on separate terms:

ι∗
(︃ 1
z2z2

)︃
= z1z1 + z2z2

z2z2
= z1z1

z2z2
+ 1 = π̃∗ (K)

ι∗
(︃
−z1

z2
dz1 ∧ dz2

)︃
= z1

z2
dz1 ∧ dz2 − dz2 ∧ dz2,

ι∗
(︃
−z1

z2
dz2 ∧ dz1

)︃
= z1

z2

(︃
z2

z2
dz2 + z1

z2
dz1

)︃
∧ dz1

= −z1

z2
dz1 ∧ dz2 + z1z1

z2z2
dz1 ∧ dz1.

Thus:
π∗ (dz ∧ dz) = ι∗ ◦ π̃∗ (dz ∧ dz)

=
(︃

1 + z1z1

z2z2

)︃(︃(︃
1 + z1z1

z2z2

)︃
dz1 ∧ dz1 +

(︃
1 + z1z1

z2z2

)︃
dz2 ∧ dz2

)︃
= (π∗ (K))2 (dz1 ∧ dz1 + dz2 ∧ dz2) .

Finally, recall that: Ω = i
2 (dz1 ∧ dz1 + dz2 ∧ dz2).

π∗ (ΩK) = i

2π
∗
(︂
K−2

)︂
(π∗ (K))2 (dz1 ∧ dz1 + dz2 ∧ dz2)

= i

2 (dz1 ∧ dz1 + dz2 ∧ dz2)

= ι∗ (Ω)

A single thing left to do is to remark on how the structure S3 π−→CP1 or equiv-
alently SU(2) π−→S2 constitutes a principle bundle (refering to Fecko [2006]). The
U (1) group is the principle fibre inserted into the total space SU(2), the quotient
is the base space SU(2) /U(1) ≈ S2.

This is known as the Hopf fibration, denoted in the form:

U(1) SU(2) SU(2)/U(1)π

Or the most usual form:
S1 S3 S2π

It so happens that the Hamiltonian action exp (itXH |e) provides the U (1) ≈
S1 fibre of the constant energy sphere S3 in the phase space of a two-dimensional
oscillator, as we have just demonstrated.
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5.2 Dirac bracket in string theory
Let us present a situation when a Poisson bracket fails to meet the physical as-
sumptions and a structure called a Dirac bracket arises. This may serve as a
motivation to show how the mechanisms of Dirac reduction resolve such prob-
lems naturally.

On T ∗Rn, Poisson brackets are given, induced by the canonical symplectic
form, satisfying the canonical relations:

{xµ, pν} = δµ
ν , {xµ, xν} = 0, {pµ, pν} = 0.

We refer to Ardalan et al. [2000] as we present the boundary conditions of an
open string ending on a brane.

cα = pα − Fαβx
β.

An antisymmetric 2-form Fαβ is set to be constant and non-degenerate.

A string theorist is troubled at this moment, as the constraints are incompat-
ible with the canonical Poisson structure.

{cµ, cν} =
{︂
pµ − Fµαx

α, pν − Fνβx
β
}︂

= −{pµ, Fνρx
ρ} − {Fµσx

σ, pν}
= −{pµ, Fνρ} − {pµ, x

ρ}Fνρ − {Fµσ, pν}xσ − {xσ, pν}Fµσ = 2Fνµ.

To enforce the constraints is to set cµ = 0, µ = 1, . . . n, but we then obtain a
contradiction {0, 0} = 2Fνµ for Fνµ non-degenerate. The solution to this problem
is a modification of the Poisson bracket.

{f, g}D := {f, g} − {f, cα}Cαβ {cβ, g} , Cµν := {cµ, cν}−1

We denote this new bracket with a subscript D, as it is what we will later call
a Dirac bracket. We also see that in our case Cµν = 1

2 (F−1)νµ.

The modified bracket is indeed compatible with the constraints:

{cµ, f}D = {cµ, f} − {cµ, cα}Cαβ {cβ, f} = {cµ, f} − {cµ, f} = 0.

The rather surprising corollary is:

{xµ, xν}D = {xµ, xν} − {xµ, cρ}Cρσ {cσ, x
ν} = 1

2δ
µ
ρ

(︂
F−1

)︂σρ
δν

σ = 1
2
(︂
F−1

)︂νµ
.

This corresponds to the non-commutativity of the center of mass coordinates
of an open string.

Let us now study the discussed mathematical phenomena in a more precise
and illuminating setting.

Definition (Poisson-incompatible constraints). Let Q ↪→ M denote a leaf of
a foliation induced by a set of independent constraints {c1, . . . , cd} and let Π :
T ∗M −→ TM be a Poisson structure on M , {, } its associated Poisson bracket.
The constraints are called Poisson-incompatible if and only if the {cα, cβ}
matrix is non-degenerate.
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Definition (Dirac bracket, cite ). Let Q ↪→M denote a leaf of a foliation induced
by a set of Poisson-incompatible constraints {c1, . . . , cd} . Then for the incompati-
ble Poisson bracket {, } on M, a Poisson bracket {, }D is called a Dirac bracket
if and only if:

{cµ, f}D

⃓⃓⃓
Q

= 0

for ∀f ∈ C∞(M). And
{f, g}D|Q = {f, g}|Q

for ∀f, g ∈ C∞(M) independent of the constraints.

It is clear that the bracket used in string theory satisfies the conditions of
a Dirac bracket. Given its action is either trivial or equvialent to that of the
original Poisson bracket, it is indeed itself a Poisson bracket as well.

Remark. In local coordinates, it can be shown that a Dirac bracket is defined
uniquely. Indeed, if we locally decompose T ∗M into {dc1, . . . , dcd} and its or-
thogonal component, we see that the components of its Poisson tensor are defined
uniquely. Therefore the {, }D bracket can be refered to as the Dirac bracket.

5.2.1 Induced Dirac bracket
Now we intend to show that the Dirac bracket is induced by Dirac reduction. The
following reflections will serve two purposes. Firstly, to demonstrate the power of
Dirac reduction. Secondly, to illuminate the nature of Dirac bracket and possibly
convince the reader that its introduction in string theory is not merely a techni-
cal trick not to be trusted but a natural outcome of the interplay of a Poisson
structure and incompatible constraints.

We will reformulate the definition of the Dirac bracket in more geometric
terms and in the context of Courant’s investigations of Dirac reduction treated
in section 4.3. First, we will introduce a decomposition of TM used in a similar
context by Calvo et al. [2010].

Lemma 5.2.1. Let Q ↪→ M denote a leaf of a foliation induced by a set of
Poisson-incompatible constraints {c1, . . . , cd} , let Π : T ∗M −→ TM be the incom-
patible Poisson structure on M , {, } the associated Poisson bracket. Then

TQ⊕ Π(Ann(TQ)) = TM |Q

Proof. Denote c ≡ {c1, . . . , cd} and dc ≡ {dc1, . . . , dcd}
Consider that TQ = Ann(dc) and Π(Ann(TQ)) = Span({c, •}).
First, note {cα, •} is a derivation of C∞(M) and can be thus thought of as a

section of TM. Given that {cα, cβ} is non-degenerate, we obtain Span({c, •}) ∩
Ann(dc) = 0

Now we only need to check Ann(dc)+Span({c, •}) = T M |Q , this is provided
by the dimensionality: dim(Ann(dc)) = m− d and dim(Span({c, •})) = d, while
the dimension of the fibre of TM |Q is precisely m .
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In the end of our reduction procedure we would like to obtain a bracket that
yields zero anytime an incompatible contraint is one of its arguments. Even be-
fore the reduction, we observe that mixed inputs - a constraint cα and a function
f independent of constraints - result in trivial results automatically: {cα, f} = 0.

We need to realize that the functions independent of constraints are pre-
cisely f, such that df ∈ T ∗Q, while the constraints define the foliation as:
Span (dc1, . . . , dcd) = Ann(TQ). In this setting we can state the following lemma.

Lemma 5.2.2 (Mixed arguments). For an incompatible Poisson structure Π and
constraints {c1, . . . , cd} defining a sumbanifold Q ↪→M, it holds that:

Π (dcα, df) = 0

for ∀df ∈ T ∗Q, ∀α = 1, . . . , d

Proof. Consider lemma 5.2.1 and the following linear algebra reasoning; U =
V ⊕W and Ann(U) = 0, then Ann(V ) = W ∗. Now we have

TQ⊕ Π(Ann(TQ)) = TM |Q ⇒ T ∗Q = Ann(Π(Ann(TQ)))

That is df ∈ T ∗Q ⇔ ⟨df,X⟩ = 0 for X ∈ Π(Ann(TQ)). Once we have
Span (dc1, . . . , dcd) = Ann(TQ) we obtain:

0 = ⟨df,Π (dcα)⟩ = Π (dcα, df) = {cα, f}

In other words, we have shown that an incompatible Poisson structure decom-
poses T ∗M |Q by diagonal action into T ∗Q and Ann(TQ). (A different formulation
can be found in Goldberg [1999].)

The definition of the Dirac bracket essentially states that the associated Pois-
son strucutre ΠD acts only on T ∗Q and in the same way as the original Π. Such
structure is indeed induced by Dirac reduction, as we now procede to prove. (A
different proof that the Dirac bracket arises upon restriction can be found in
Calvo et al. [2010].)
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Proposition 5.2.3 (Induced Dirac bracket). Let Π : T ∗M −→ TM be a Poisson
structure on M, {, } its associated Poisson bracket. Let Q ↪→ M denote a leaf of
a foliation induced by a set of Poisson-incompatible constraints.

Then a Poisson structure Π|T ∗Q is induced on Q by a Dirac reduction of Π.

Proof. By lemma 5.2.1 we are given the decomposition TQ ⊕ Π(Ann(TQ)) =
TM |Q.

We see that a Poisson structure is induced as we invoke proposition 4.3.1 and
check its conditions:

• A level set Q should satisfy ker(Π) ∩Ann(TQ) having constant dimension.
This is equialent to Π(An(TQ)) having constant dimension. Considering
proposition 5.2.1, we observe

dim(Π(Ann(TQ))) + dim(TQ) = dim
(︂
TM |Q

)︂
and note that dim(TQ) and dim

(︂
TM |Q

)︂
are constant.

• TQ ∩ Π(Ann(TQ)) ≃ 0 clearly holds as well.

As to why the induced structure is indeed Π|T ∗Q; the induced Dirac structure is

LQ =
L ∩

(︂
TQ⊕ T ∗M |Q

)︂
L ∩ Ann(TQ) ,

see chapter 4. Let us first take care of the part that is yet to be factorized.
Sections of L are pairs Π (ξ)⊕ ξ, sections of L ∩

(︂
TQ⊕ T ∗M |Q

)︂
are thus

Π (ξ)⊕ ξ, Π (ξ) ∈ Γ (TQ) .

Now we make use of lemma 5.2.1 and observe that Π (Ann(TQ)) ∩ TQ = 0. In
other words, ξ /∈ Ann(TQ). Now we can see the factorization does not change
anything. Given that T ∗M |Q = T ∗Q⊕ Ann(TQ), we have sections of LQ:

Π (ξ)⊕ ξ, ξ ∈ Γ (T ∗Q) .

The induced Dirac structure is a graph eΠ (T ∗Q), i.e. it defines the Poisson
structure Π|T ∗Q.

Have we, by proposition 5.2.3 really induced a Dirac bracket? We did obtain
the desired action on T ∗Q but we didn’t obtain any action on Ann(TQ), while
we would like it to be trivial. We propose we are free to extend this ’no action’
to a trivial action.

The following reasoning is heavily based on the proof that Dirac bracket is
induced upon restriction given by Calvo et al. [2010]. In the constrained system,
we a priori consider functions f, g ∈ C∞(Q). The action of the restricted Poisson
bracket can be written down as {f̃ , g̃}, where f̃ , g̃ are extensions of f, g to C∞(M).
Now we simply consider such extensions that df̃ , dg̃ stay in T ∗Q.

Therefore, instead of extending the action of the induced Poisson structure
we essentially extend all functions in C∞(Q) trivially into Ann(TQ) (armed with
the Occam’s razor) and the Poisson bracket we have induced is simply consistent
with such a choice as it is only defined on T ∗Q. This construction provides one
with the Dirac bracket.
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5.3 Monge-Ampère equations
We demonstrate a way to associate a second order partial differential equation
(PDE) of two real variables with a 2-form on T ∗R2 with rich geometric properties
that will later be discussed in the setting of generalized geometry. We refer to
the work of Banos [2007] from which all the key concepts and definitions are taken.

The solution of the two dimensional Monge-Ampère equations is defined
as a function f ∈ C∞ (R2) such that for a given 2-form ω ∈ Ω2 (T ∗R2):

(df)∗ω = 0

To examine what is truly happening, observe that the pull-back (df)∗ goes in the
opposite way to df, which is a section of T ∗R2.

T ∗R2 is described by the independent conjugate coordinates (xi, pj) . The key
to associate the solution f to a solution of a PDE is to realize that as the action
of (df)∗ is to be read as

(df)∗ : ω
(︂
xi, pj

)︂
↦−→ ω

(︄
xi,

∂f

∂xj

(︂
xi
)︂)︄

.

(df)∗ inserts dependent coordinates
(︂
xi, pj (xi)↔ ∂f

∂xj (xi)
)︂
. And it is the 2-

form ω that specifies the PDE.

An example is called for at this moment. Let us show how the 2-form ω =
dp1 ∧ dx2 + dx1 ∧ dp2 is associated with the Laplace equation f,11 + f,22 = 0

0 = (df)∗ω = df,1 ∧ dx2 + dx1 ∧ df,2 = f,11dx1 ∧ dx2 + dx1 ∧ f,22dx2

= (f,11 + f,22) dx1 ∧ dx2

On the cotangent bundle we are provided with the canonical symplectic form
Ω = dp1 ∧ dx1 + dp2 ∧ dx2; we might ask what PDE it represents.
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0 = (df)∗Ω = df,1 ∧ dx1 + df,2 ∧ dx2 = (−f,12 + f,21) dx1 ∧ dx2

Any smooth function f satisfies this condition. This observation will be im-
portant later in context of the following construction. We can define the 2-form
ω by the canonical symplectic form Ω and a tensor A : TR2 −→ TR2 as:

ω = Ω(A•, •)

Now the Monge-Ampère equations take the following form.

(df)∗Ω(A • •) = 0

Before we move on to a generalized setting, let us present an example relevant
in fluid mechanics.

Example (The Tricomi equation). Let us have the PDE:

f,11 + x1f,22 = 0

It is clearly associated with ω = dp1 ∧ dx2 + x1dx1 ∧ dp2.

0 = (df)∗ω = df,1 ∧ dx2 + x1dx1 ∧ df,2 =
(︂
f,11 + x1f,22

)︂
dx1 ∧ dx2

One can easily find such an endomorphism A that ω = Ω(A•, •) in (canonical)
coordinate formulation.

(ω) =

⎛⎜⎜⎜⎝
0 0 0 x1

0 0 −1 0
0 1 0 0
−x1 0 0 0

⎞⎟⎟⎟⎠ (Ω) =

⎛⎜⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠
Then we are looking for such A that its component matrix satisfies (ω) =

(A)T (Ω). This is satisfied by:

A = ∂

∂x1 ⊗ dx2 − x1 ∂

∂x2 ⊗ dx1

− x1 ∂

∂p1
⊗ dp2 + ∂

∂p2
⊗ dp1

(A) =

⎛⎜⎜⎜⎝
0 1 0 0
−x1 0 0 0

0 0 0 −x1

0 0 1 0

⎞⎟⎟⎟⎠
Indeed:

(A)T (Ω) =

⎛⎜⎜⎜⎝
0 −x1 0 0
1 0 0 0
0 0 0 1
0 0 −x1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0 0 0 x1

0 0 −1 0
0 1 0 0
−x1 0 0 0

⎞⎟⎟⎟⎠
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5.3.1 ω-symplectic structure
Further following Banos [2007] we will define the generalized solution of Monge-
Ampère equations and present a generalized complex structure Jω such that it
will constitute the generalized solution as its generalized complex submanifold.
We will demonstrate some of the properties of Jω in a more direct and explicit
manner than Banos [2007]. Furthermore, we will show that the generalized com-
plex structure is in fact a B-transform of the anti-diagonal symplectic generalized
complex structure and we will use this observation to formulate Monge-Ampère
equations in the language of twisted submanifolds.

A geometric way to study the solution f of the Monge-Ampère equations is to
examine the graph of df as a submanifold of T ∗R2. A region of T ∗R2 described
by a pair of coordinates (xi, pj ↔ f,j) on which ω acts trivially is a graph of df
for (df)∗ ω = 0. (What ensures that it is truly a manifold will be discussed later.)

A physical interpretation is at hand. One of the many phenomena the Laplace
equation describes is incompressible curl-free frictionless fluid. We can then de-
fine a potential φ such that the fluid velocity field vi (xj) is its gradient φ,j. The
graph of df is the manifold defined as (xi, vj ↔ φ,j) , fluid velocity throughout
space.

For simplicity, we will further denote T ∗R2 ≡M .

Definition (Generalized solution of Monge-Ampère equations, Banos [2007]). A
generalized solution of the two dimensional Monge-Ampère equations (df)∗ω=
0 is a two-dimensional submanifold Q ↪→M lagrangian with respect to ω ∈ Ω2(M)
and the canonical symplectic 2-form Ω ∈ Ω2(M). That is

TQ = TQω TQ = TQΩ

Note that the graph of df for (df)∗ω = 0 is a two-dimensional submanifold
lagrangian with respect to ω . The lagrangian property says every pair of sections
of the tangent bundle of Q is annihilated by ω (i.e. TQ ⊆ TQω) and that it is
the complete set of such points in M ≡ T ∗R2 (i.e. TQω ⊆ TQ).

The TQ = TQΩ condition only picks out smooth solutions.

As we introduce the fibre-wise endomorphism A such that ω = Ω(A•, •), we
see that the generalized solution is a submanifold Q lagrangian with respect to
Ω and stable under A.

Let us define a generalized almost complex structure by action on TM⊕T ∗M .

Definition (Monge-Ampėre structure). We will refer to the fibre-wise endomor-
phism Jω on TM ⊕ T ∗M as the Monge-Ampère structure.

Jω ··=
(︄
−A −Ω−1

ω̃ A∗

)︄

where ω̃ ··= Ω ((1 + A2) •, •) and ω = Ω(A•, •) with Ω being a symplectic structure
on M.
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If we think of the tensors as bundle morphisms, the following notation will be
useful. Ω(A•, •) ≡ Ω ◦ A, Ω ((1 + A2) •, •) ≡ Ω ◦ (1 + A2).

Lemma 5.3.1. For the bundle morphisms defined by the 2-forms Ω, ω̃ and the
tensor A, the following equations hold.

Ω ◦ A = A∗ ◦ Ω, A ◦ Ω−1 = Ω−1 ◦ A∗, ω̃ ◦ A = A∗ ◦ ω̃.

Proof. The first equation is proved directly:

⟨Ω(A(X)), Y ⟩ = ⟨A(X),Ω∗(Y )⟩ = ⟨A(X),−Ω(Y )⟩ = ⟨X,−A∗(Ω(Y ))⟩ ,
⟨Ω(A(X)), Y ⟩ = ⟨ω(X), Y ⟩ = ⟨X,−ω(Y )⟩ = ⟨X,−Ω(A(Y ))⟩.

The other two equations are its immediate consequences.

Proposition 5.3.2. The Monge-Ampère structure Jω is a generalized almost
complex structure.

Proof. We check the conditions from section 3.2.5.

• It is skew: J∗
ω = −Jω because Jω ∈ so (TM ⊕ T ∗M). Indeed, we check

the conditions of proposition 3.1.1 we see that the diagonal elements are
bound as required and both −Ω−1 and ω̃ are skew. (ω̃ is a composition of
a symmetric and a skew morphism.)

• It is complex : J2
ω = −1. With the use of lemma 5.3.1 we can compute J2

ω

directly:

J2
ω =

(︄
−A −Ω−1

ω̃ A∗

)︄(︄
−A −Ω−1

ω̃ A∗

)︄

=
(︄

A2 − Ω−1 ◦ ω̃ A ◦ Ω−1 − Ω−1 ◦ A∗

−ω̃ ◦ A+ A∗ ◦ ω̃ −ω̃ ◦ Ω−1 + (A∗)2

)︄

=
(︄
A2 − Ω−1 ◦ Ω ◦ (A2 + 1) 0

0 −Ω ◦ (1 + A2) ◦ Ω−1 + (A∗)2

)︄

=
(︄
−1 0
0 −

(︂
1 + (A∗)2

)︂
◦ Ω ◦ Ω−1 + (A∗)2

)︄
=
(︄
−1 0
0 −1

)︄
.

Now we can briefly inspect the +i-eigenbundle of Jω which is an almost Dirac
structure that equivalently defines the generalized almost complex structure. In
Banos [2007] it is constructed in a straightforward manner:

{(X ⊕ ξ)− iJω(X ⊕ ξ) | X ⊕ ξ ∈ Γ (TM ⊕ T ∗M)}

Given that J2
ω = −1, we can see that multiplication by i is indistinguishable from

the action of Jω on this set.
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To show under what conditions the generalized complex structure integrates
into a submanifold, Banos [2007] refered to general results of Crainic [2004]. We
obtain the same result by showing that Jω is in fact a B-transformation of the
symplectic generalized complex structure JΩ by the 2-form ω (see section 3.2.5).
In other words:

Proposition 5.3.3. The Monge-Ampère structure Jω is an ω-symplectic struc-
ture.

e−ωJΩe
ω = Jω.

Proof. We transform the Jω structure in an inverse manner and obtain JΩ with
a repeated use of lemma 5.3.1.

eωJωe
−ω =

(︄
1 0
ω 1

)︄[︄(︄
0 −Ω−1

ω̃ 0

)︄
+
(︄
−A 0
0 A∗

)︄]︄(︄
1 0
−ω 1

)︄

=
(︄

Ω−1 ◦ ω −Ω−1

ω̃ + ω ◦ Ω−1 ◦ ω −ω ◦ Ω−1

)︄
+
(︄

−A 0
−ω ◦ A− A∗ ◦ ω A∗

)︄

=
(︄

Ω−1 ◦ ω − A −Ω−1

ω̃ + ω ◦ Ω−1 ◦ ω − ω ◦ A− A∗ ◦ ω −ω ◦ Ω−1 + A∗

)︄

=
(︄

Ω−1 ◦ Ω ◦ A− A −Ω−1

Ω ◦ A2 + Ω + ω ◦ Ω−1 ◦ ω − ω ◦ A− A∗ ◦ ω −ω ◦ Ω−1 + A∗

)︄

=
(︄

0 −Ω−1

+Ω ◦ A2 + Ω + Ω ◦ A2 − Ω ◦ A2 − Ω ◦ A2 −A∗ ◦ Ω ◦ Ω−1 + A∗

)︄

=
(︄

0 −Ω−1

Ω 0

)︄
= JΩ.

Considering proposition 3.2.11 that says B-transformations by closed 2-forms
preserve Courant integrability, we obtain the desired corollary.

Corollary 5.3.4. The Monge-Ampère structure Jω is integrable if and only if ω
is closed.

Before we prove the link between Jω and the generalized solution of Mong-
Ampère equations Q, we remark that ω associated with the Laplace equation
ω = dp1 ∧ dx2 + dx1 ∧ dp2 and the Tricomi equation ω = dp1 ∧ dx2 + x1dx1 ∧ dp2
are both closed.
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Proposition 5.3.5 (Banos [2007]). A generalized complex submanifold of the
generalized complex structure Jω is a generalized solution Q ↪→M of the Monge-
Ampère equations on M defined by a closed 2-form ω.

Jω : TQ−→TQ⇐⇒ TQΩ = TQ, TQω = TQ.

Proof. Let us symbolically formulate Jω-stability in a matrix form:(︄
−A −Ω−1

ω̃ A∗

)︄(︄
X
ξ

)︄

=
(︄

−A(X)− Ω−1(ξ)
Ω(X) + Ω (A2(X)) + A∗(ξ)

)︄
!
∈
(︄

TQ
Ann(TQ)

)︄

for ∀X ∈ Γ (TQ), ∀ξ ∈ Γ (Ann(TQ)).

In other words, we have the A-stability of TQ :

A : TQ −→ TQ A∗ : Ann(TQ) −→ Ann(TQ)

and the associated A∗-stability of the decompostion of T ∗M |Q into T ∗Q and
Ann(TQ). Similarly, the following action of the symplectic form Ω.

Ω : TQ −→ Ann(TQ) Ω−1 : Ann(TQ) −→ TQ

which is by proposition 3.3.1 equivalent to TQ = TQΩ.
We know that TQ = TQΩ and A-stability is equivalent to TQ = TQΩ and TQ =
TQω.
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Conclusion
We motivated the studies of generalized geometry in an attempt to unify the
framework of complex geometry and the structures defining Hamilton’s canonical
equations, which led us to a fibre-wise complex endomorphism on TM⊕T ∗M⊗C.
Then we proceded to introduce generalized complex geometry following the work
of Gualtieri [2004]. We presented the canonical symmetric product and the
Courant bracket and we showed how they interact on a Courant algebroid, which
is the natural structure of TM⊕T ∗M . Dirac structures were introduced as a way
to describe integrable structures on a Courant algebroid including the generalized
complex structure. Afterwards, we mentioned the notion of a generalized com-
plex submanifold and presented Courant’s investigations of reductions of Dirac
structures onto submanifolds, Courant [1990].

In the final chapter, we presented how the discussed structures and mecha-
nisms can serve as interpretational frames and tools in physics and related areas.
We investigated the characteristic bundle of a reduced symplectic structure as
a generalized complex structure by the process of Dirac reduction. We rigor-
ously demonstrated how Dirac reduction resolves compatibility issues of Poisson
structures and constrained systems, which is a problem known from symplectic
geometry and modern string theory. In the end, following Banos [2007], we de-
scribed how a solution of the Monge-Ampère equations can be thought of as a
generalized complex submanifold and proved some partial results in alternative
ways.

The author does hope the thesis presents generalized complex geometry as a
rich mathematical theory with strong ties to concepts from mathematical physics
in a comprehensible way. To decide whether its somewhat platonic and reduc-
tionist nature – which invites one to generalize and unify – is appropriate to serve
as a principal motivation for a mathematical physicist or is a mere accompanying
phenomenon of a rich epistemology is left to the reflective reader.
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