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and invaluable advice during the whole time of writing of this thesis.

My special thanks go to Paul Wrege Bc. for the help with English grammar,
both now and throughout the years.

Last but not least I want to thank my family and friends for their endless
support.

ii



Title: Quasispin models in quantum physics

Author: Andrii Zymin

Department: Institute of Particle and Nuclear Physics
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ericky.
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Introduction

Presently group theory finds its application in almost all of different fields of
theoretical physics. It is one of the most powerful ways of researching symmetries
of physical models. By symmetries in this case we mean a set of transformations,
that will conserve the system’s original state.

Since the beginning of the 20th century symmetry methods have been used
to examine many theoretical models. One of the most profitable cases is the so-
called Lipkin model first introduced in 1965 [1]. Submitting to the SU(2) algebra,
Lipkin model contributes greatly to the research of many-fermion systems.

But Lipkin model is only a specific case of a hamiltonian, which can be ex-
pressed in terms if the generators of SU(2). As a matter of fact, SU(2) is a
dynamical algebra of much more vast class of hamiltonians. One of the main
goals of this thesis is to determine the general form of the hamiltonian, which
will allow us to investigate the dynamics of the energy levels of such systems and
its dependence on singular parameters.

The SU(2) algebra is very useful in describing simple integrable models, which
have a single degree of freedom. In spite of its simplicity, it provides us with
the ability to examine several phenomena such as quantum phase transitions,
which are transitions between phases at zero temperature, caused by varying of a
physical parameter (such as an interaction with an external field)[1, 2], excited-
state quantum phase transitions [3, 4], nonhermitian quantum mechanics [2, 5],
adiabatic and nonadiabatic dynamics [4, 6].

The SU(2) is an example algebra, used to describe collective modes of complex
many-body systems, i.e. modes in which the system behaves as a whole mass,
rather than a set of independent interacting particles. Other examples of such
algebras are the U(3) and U(4) applied in the research of molecular vibrations
and rotations (vibron models); U(6) algebra, which is the interacting boson model
(IBM) of nuclear vibrations and rotations.

The first chapter of this thesis is dedicated to the basics of group theory, where
we will prepare all the necessary instruments required for solving specific problems
concerned with the construction and finding solutions of a SU(2) hamiltonian.

In the second chapter we look at different ways of representing the SU(2)
algebra, suitable for our further calculations.

In the third chapter we will discuss the general form of a SU(2) hamiltonian
and its matrix representation.

In the fourth chapter we will research the classical limit of such a hamiltonian,
which in our case implies performing the Holstein-Primakoff transformation of the
hamiltonian and the examination of the system, where the number of particles
tends to infinity.

The final chapter is dedicated to examples of numerical solutions of specific
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cases of the SU(2) hamiltonian and the dependence of its eigenvalues on its pa-
rameters.
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Chapter 1

The fundamental notions of the
group theory and unitary
algebras

Before we write a hamiltonian based on a particular group SU(2) let us review
some basic concepts of the group theory. This whole chapter is inspired by [7, 8, 9].

The following sections contain the fundamental definitions and statements,
which are needed for the further discussion.

1.1 Group theory
Definition 1.1.1. A group is defined as a set of elements G = (Ĝ1, Ĝ2, ..., Ĝn),
for which the operation of multiplication is defined (implying a consecutive appli-
cation of the elements), and that satisfy the following conditions:

1. ∀Ĝi, Ĝj ∈ G ⇒ ĜiĜj ∈ G

2. The multiplication of the elements satisfies the law of associativity:

Ĝi(ĜjĜk) = (ĜiĜj)Ĝk

Generally speaking, elements of a group do not commute:

ĜiĜk ̸= ĜkĜi

3. There exists an element E such that ∀Ĝi ∈ G ⇒ EĜi = Ĝi

4. ∀Ĝi ∈ G ∃Ĝ−1
i such that ĜiĜ

−1
i = Ĝ−1

i Ĝi = E

Relying on this definition we define the so-called Lie groups, which are con-
tinuous groups.

Definition 1.1.2. A Lie group is a group with the property that its group opera-
tions (multiplication and inversion) are smooth maps:

G(−→ϕ )G(−→ψ ) = G(−→θ ) (1.1)

G(−→α )−1 = G(−→β ), (1.2)
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where −→
ϕ = {ϕ1, ϕ2, ..., ϕs} and −→

ψ = {ψ1, ψ2, ..., ψs} are continuous parameters
and −→

θ = f(−→ϕ ,−→ψ ), −→
β = h(−→α ) are smooth functions.

An example of a continuous group is addition of two successive rotations by
angles ϕ1 and ϕ2 in a plane:

R(ϕ1)R(ϕ2) = R(ϕ1 + ϕ2). (1.3)
It can be shown, that in a case of a continuous group, its elements can be

obtained in the following way:

Gi = ei
∑

j
αj ĝj , (1.4)

where αj is a constant and {ĝ1, ĝ2, ...} is a set of so-called generators, which are
linear operators on the given vector space.

Definition 1.1.3. Linear operators (ĝ1, ĝ2, ..., ĝs) on a s-dimensional vector space
define a Lie algebra g if they satisfy:

[ĝi, ĝj] =
∑

k

ck
ij ĝk (1.5)

and the Jacobi identity:

[ĝi, [ĝj, ĝk]] + [ĝk, [ĝi, ĝj]] + [ĝj, [ĝk, ĝi]] = 0 (1.6)

Here the binary operator [·, ·] is called commutator (or Lie brackets) and is
expressed as follows:

[ĝi, ĝj] = ĝiĝj − ĝj ĝi (1.7)
The constants ck

ij are called structure constants. The properties of a Lie
algebra and its associated group are determined by the structure constant values.

To illustrate the application of group theory let us give the example of an-
gular momentum operators. It is commonly known that the angular momentum
operators close under commutations:

[Ĵk, Ĵl] = iεklmĴm (1.8)

The structure constants in (1.8), which are represented by iεijk, are enough
to derive the spectrum of Ĵz and Ĵ2 [10]:

Ĵz |j,m⟩ = m |j,m⟩ j = 0, 1, 2...
Ĵ2 |j,m⟩ = j(j + 1) |j,m⟩ m = −j,−j + 1, ..., j − 1, j,

(1.9)

where |j,m⟩ are common eigenstates of Ĵ2 and Ĵz, and j, m are their quantum
numbers. The existence of a common eigenspace is a consequence of the fact that
this two operators commute: [Ĵ2, Ĵz] = 0.

Equations (1.8) are identical with the first condition of a Lie algebra. Here
we see that the factors iεijk are structure constants. Now, it is obvious that
substituting the ”inner” commutators accordingly to (1.8) in the Jacobi identity
we obtain:

[Ĵk, iĴk] + [Ĵm, iĴm] + [Ĵl, iĴl] = 0 (1.10)
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1.2 Casimir invariants
A vital step in finding the algebraic solution of a many-body hamiltonian is
expressing it in terms of the operators, that generate a given algebra. The so-
called Casimir invariants form an important set of operators associated with the
algebra.

Definition 1.2.1. Consider an algebra g which is generated by ĝj operators.
Then:

(∀G) ∃C = (Ĉ1, Ĉ2, ...)

such that:
(∀Ĉi ∈ C)(∀ĝj ∈ g) ⇒ [Ĉi, ĝj] = 0

Operators Ĉi are called Casimir invariants.

Usually, groups are labelled with capital letters, while corresponding algebras
with small or fraktur letters. Although this distinction is often omitted in the
literature, we will follow this convention in the subsequent text.

Later, taking a closer look at U(2), SU(2) algebras, we will show, that their
Casimir invariants are respectively: N̂ (the operator of the total number of energy
quanta of the system) and Ĵ2 (the operator of the total angular momentum of
the system).

1.3 Dynamical algebras and symmetry algebras
Before we go on with examination of other objects of the group theory, let us have
a look at the following example. Consider a hamiltonian Ĥ that is constructed
by a linear combination of operators ĝ1, ĝ2,... ĝs (for now we are not interested
in a physical motivation of this example), which are generators of some algebra
g:

Ĥ = αĝ1 + βĝ2 + ...+ ωĝs

From the definition of a Lie algebra’s operators we see, that this hamiltonian does
not commute with the generators of this algebra, even though it is constructed
purely by them. In this case we say that g is the dynamical algebra of the given
hamiltonian, since the hamiltonian is expressed in terms of its generators.

The fact that such hamiltonian does not commute with all the generators of
g tells us, that it does not possess the same symmetry. But let us say, that for a
subset of the generators the following is true:

[Ĥ, ĝl] = 0, l = 1, ..., r, r < s

If the subset {ĝl} forms an algebra, than Ĥ is invariant with respect to this
algebra. This means, that Ĥ is invariant in respect to the algebra g′ generated
by ĝl (we call it a symmetry algebra). In this case we can say, that the algebras
g and g′ form a chain

g ⊃ g′,
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where g′ is a subalgebra of g. Generally, if we have a number of subalgebras g1,
g2, g3,..., they form a chain:

g1 ⊃ g2 ⊃ g3 ⊃ ..., (1.11)

where the symmetry of the ”higher” gi includes all the symmetries of its subal-
gebras. The smallest one in the chain is the symmetry algebra of the system.

1.4 The basic properties of the U(n) and SU(n)
algebras

In the following section we will define some basic properties and objects of the
U(n) and SU(n) groups in general and various ways of their realization [7, 11].

Definition 1.4.1. The unitary group, denoted as U(n), is defined as a set of
n× n unitary matrices, satisfying:

n∑
j=1

UijU
∗
kj = δik (1.12)

or in a matrix notation:
Û Û † = Ê. (1.13)

A unitary transformation of a complex vector zi:

z′
i =

n∑
j=1

Uifzj, z ∈ C (1.14)

does not change its norm:
∑

i

|zi|2 =
∑

i

|z′
i|2.

Matrix realization

For infinitesimal transformations we can express a unitary operator Û = eiϵT̂ (see
equation (1.4)) using a power series:

Û = Ê + iϵT̂ + ... (1.15)

Taking the property (1.13) in consideration, we find that the operator T̂ should
be hermitian:

Û Û † ≈ (Ê + iϵT̂ )(Ê − iϵT̂ †) = Ê + iϵ(T̂ − T̂ †) = Ê

where we write only the terms with the lowest order in ϵ. This equation shows,
that T̂ = T̂ †. Group U(n) has n2 independent parameters. Generally speaking,
a n× n matrix would depend on 2n2 real parameters (n2 matrix elements, which
all have a real and imaginary parts). To determine the number of independent
parameters of the U(n) group, lets look at the hermitian matrix T̂ . The set of
equations given by the condition T̂ †

ij = T̂ji tells us, that the diagonal elements
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should be purely real. Thus, we can decrease the whole number of diagonal
parameters by n.

For the non-diagonal elements we get another 2(n2−n)
2 real equations. This

means that the number of the parameters can be decreased by another n2 − n.
The generators of the U(n) group can be constructed using matrices Gi

j, that
have the following look:

Gj
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0 ... 0
... ... ... ...
0 0 ... 1 ... 0
... ... ... ...
0 0 ... 0 ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (1.16)

In such a matrix the only non-zero element is on the ij position. This matrices
satisfy the condition (1.5):

[Gi
j, G

m
n ] = Gm

j δin −Gi
nδmj (1.17)

Notice that these matrices are not hermitian. There are two ways of creating
an hermitian matrix in this case:

Ai
j = Gi

j +Gj
i

Bi
j = i(Gi

j −Gj
i )

By constructing different combinations, we construct the generators of the
group. There are indeed n2 of such generators, in accord with the number of
independent elements.

Let us now define group SU(n), which is a group of unitary matrices with unit
determinant. Starting from the expansion (1.15):

Û = Ê + iϵT̂ + ..., (1.18)

where we, again, take only the lowest-order terms of ϵ into consideration, we
restrict our linear operators to only the ones with a unit determinant, thus ob-
taining:

det(Û) = det(Ê + iϵT̂ ) ≈ 1 + Tr(iϵT̂ ) = 1, (1.19)

which means that:
Tr(T̂ ) = 0 (1.20)

In the equation (1.19) we used a corollary of the Jacobi’s formula:

det(U) = det(eiϵT̂ ) = eiϵT r(T̂ ) (1.21)

Coming back to the number of independent parameters we find that the final
limitation in case of the SU(n) group is given by (1.20). The total number of
parameters is 2n2 − (n+ n2 − n+ 1) = n2 − 1.
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Differential realization

The action of the operator T̂ on an analytic function f(zi) can be expressed,
again, using power series:

T̂ f(zi) = f(z′
i) = f(zi + iϵ

n∑
j=1

Sijzj) = f(zi) + iϵ
n∑

ij=1
Sijzj

∂f

∂zi

+ ... (1.22)

Hence, to the first order in ϵ we obtain, that the operator:

ξ̂j
i = zi

∂

∂zj

(1.23)

generates the unitary transformation. As stated before, the operator T̂ is an
arbitrary hermitian operator. That means that there are n2 linearly independent
(1.23) operators.

Now, knowing that [ ∂
∂zj
, zi] = δij, operators (1.23) close under these commu-

tation relations:
[ξ̂i

j, ξ̂
m
n ] = ξ̂m

j δin − ξ̂i
nδmj (1.24)

Which, again, corresponds with (1.17), and the δij symbols play the roles of the
structure constants.

The boson realization

We define the boson creation and annihilation operators b̂i and b̂†
i , where i =

1, 2, ...n. These operators close under commutation relations:

[b̂i, b̂
†
j] = δij (1.25)

All the other commutators are equal to zero. To use the boson operators
for generating a U(n) algebra, we construct Ĝi

j operators, which have the same
properties as (1.16):

Ĝi
j = b̂†

i b̂j (1.26)
Now we define the vacuum state |0⟩ that satisfies:

b̂i |0⟩ = 0, i = 1, 2, ..., n
Here we imply the usual normalization ⟨0|0⟩ = 1.

The first-order Casimir invariants of a U(n) algebra are defined by:

Ĉ1[U(n)] ≡
n∑

i=1
ξ̂i

i (1.27)

To prove this we should simply substitute the Casimir operator in a commutator
[Ĉ1[U(n)], ξ̂l

k] with (1.27):

[Ĉ1[U(n)], ξ̂l
k] =

n∑
i=1

[ξ̂i
i , ξ̂

l
k] =

n∑
i=1

(ξ̂l
iδik − ξ̂i

kδil) = 0

The second-order Casimir invariants of a U(n) algebra are given by:

Ĉ2[U(n)] =
n∑

ij=1
ξ̂j

i ξ̂
i
j (1.28)

The verification of commutation of these operators with the generators of the
given U(n) algebra is analogical to the one for the first-order Casimir invariants.
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1.5 The SU(2) group and its associated algebra
Finally, let us briefly discuss the properties of the SU(2) algebra, which is crucial
for this work. The elements of the SU(2) group are 2×2 complex unitary matrices
with an additional condition, that their determinants are equal to 1.

From the relation derived in section 1.4 we see, that in our case of the SU(2)
algebra the matrix T̂ depends on 3 parameters. Looking back at our conclusions
(see section 1.4) about an hermitian operator T̂ , we can write the operator in the
form:

T̂ =
(

t3 t1 − it2
t1 + it2 −t3

)
= t1

(
0 1
1 0

)
+ t2

(
0 −i
i 0

)
+ t3

(
1 0
0 −1

)
= t1σ̂1 + t2σ̂2 + t3σ̂3,

(1.29)

where σ̂1, σ̂2, and σ̂3 are the Pauli matrices and the unitary transformation Û
can now be expressed:

Û = ei
∑∞

n=0 sn
σn
2 ≈ Ê + t1

σ̂1

2 + t2
σ̂2

2 + t3
σ̂3

2 (1.30)

The Pauli matrices satisfy the condition of a Lie algebra’s generators:

[σ̂i, σ̂j] = 2iεijkσ̂k (1.31)
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Chapter 2

Realizations of the SU(2) algebra

Having constructed the required mathematical apparatus, we can begin direct
work with the SU(2) algebra. The following sections are dedicated to different
ways of its realization.

2.1 The spin realization
We already know that the Pauli matrices generate the SU(2) algebra. Its realiza-
tion using these operators is the simplest and the fundamental way of representing
the SU(2) algebra. Consider a system of N particles, each of them having two
possible projections of spin to a given direction. From the theory of total an-
gular momentum [10] we know that this situation corresponds to a system of N
particles with the spin 1

2 .
The angular momentum operator Ĵx, Ĵy, Ĵz generate the SO(3) algebra that is

isomorfic with the SU(2) algebra, which means that there is an isomorfic mapping
between these two groups, and satisfy the relation (1.8).

Now, using the definitions of total spin:

Ĵx = 1
2

N∑
j=1

σ
(x)
j

Ĵy = 1
2

N∑
j=1

σ
(y)
j

Ĵz = 1
2

N∑
j=1

σ
(z)
j

(2.1)

we can prove that these operators form the SU(2) algebra, by showing that they
satisfy the condition (1.8). The Hilbert space H of such system is a direct product
of Hilbert spaces of separate particles:

H =
N⨂

j=1
Hj (2.2)

This means that the operators (2.1) can be written as a sum of single-particle
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operators:

Ĵi =
N∑

j=1
Î
⨂

Î
⨂

...
⨂

σ
(i)
j

⨂
...
⨂

Î (2.3)

where Î is the identity operator and σ
(i)
j is the one-particle operator that is sit-

uated on the i-th position in this direct product. This means that such op-
erator, being applied on a wave function (in the Dirac notation) |ψ⟩, which
will also be represented as a direct product of single-particle wave functions:
|ψ⟩ = |ψ1⟩

⨂
...
⨂ |ψN⟩, will only operate on the |ψj⟩ ket.

This means that the commutation relation (1.31) can be generalized:

[σ(i)
l , σ(j)

m ] = 2εijkδlmσ
(k)
m (2.4)

Substituting (2.1) in (1.8) we obtain:

[Ĵx, Ĵy] = [12

N∑
j=1

σ
(x)
j ,

1
2

N∑
k=1

σ
(y)
k ] = 1

4[
N∑

j=1
σ

(x)
j ,

N∑
k=1

σ
(y)
k ]

= 1
4
∑
jk

[σ(x)
j , σ

(y)
k ] = 1

4
∑
jk

2δjkσ
(z)
k = 1

2

N∑
k

σ
(z)
k = Ĵz

(2.5)

[Ĵz, Ĵx] = [12

N∑
j=1

σ
(z)
j ,

1
2

N∑
k=1

σ
(x)
k ] = 1

4[
N∑

j=1
σ

(z)
j ,

N∑
k=1

σ
(x)
k ]

= 1
4
∑
jk

[σ(z)
j , σ

(x)
k ] = 1

4
∑
jk

2δjkσ
(y)
k = 1

2

N∑
k

σ
(y)
k = Ĵy

(2.6)

[Ĵy, Ĵz] = [12

N∑
j=1

σ
(y)
j ,

1
2

N∑
k=1

σ
(z)
k ] = 1

4[
N∑

j=1
σ

(y)
j ,

N∑
k=1

σ
(z)
k ]

= 1
4
∑
jk

[σ(y)
j , σ

(z)
k ] = 1

4
∑
jk

2δjkσ
(x)
k = 1

2

N∑
k

σ
(x)
k = Ĵz

(2.7)

2.2 The boson representation
One of the ways to represent the SU(2) algebra is the so-called Schwinger repre-
sentation.

Consider a system with two types of excitations, which we will denote s and t.
The hamiltonian of such a system can be realized for example by a 2 dimensional
harmonic oscillator. First we define the creation and annihilation operators for
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”s-type” and ”t-type” bosons:

ŝ† =
√

1
2(x̂− ip̂x)

t̂† =
√

1
2(ŷ − ip̂y)

ŝ =
√

1
2(x̂+ ip̂x)

t̂ =
√

1
2(ŷ + ip̂y)

(2.8)

Using the properties of the coordinate and momentum operators, we obtain
the following properties of these operators:

[ŝ, ŝ†] = 1
[t̂, t̂†] = 1
[ŝ†, t̂†] = 0
[ŝ, t̂] = 0
[ŝ, ŝ] = 0
[ŝ†, ŝ†] = 0
[t̂, t̂] = 0
[t̂†, t̂†] = 0

(2.9)

The ŝ† and ŝ operators create and annihilate an s-type particle correspondingly.
The t̂† and t̂ operatos have an analogous action.

The operators ŝ†, ŝ, t̂†, t̂ do not form a Lie algebra by themselves, but we can
show that ŝ†, ŝ, t̂†, t̂ products do in fact generate a group associated with the
SU(2) algebra.

Using the definition of the creation and annihilation operators, we can use
them to express the angular momentum operators:

Ĵx = 1
2(t̂†ŝ+ ŝ†t̂) Ĵy = i

2(t̂†ŝ− ŝ†t̂) Ĵz = 1
2(ŝ†ŝ− t̂†t̂) (2.10)

To prove the statement we need to prove that the relation (1.8) is valid for
the new definition of the angular momentum operators. Using the commutation
relations and basic properties of commutators, particularly:

[ÂB̂, ĈD̂] = ÂĈ[B̂, D̂] + Â[B̂, Ĉ]D̂ + Ĉ[Â, D̂]B̂ + [Â, Ĉ]D̂B̂ (2.11)

We obtain:
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[Ĵx, Ĵy] = [12(t̂†ŝ+ ŝ†t̂), i2(t̂†ŝ− ŝ†t̂)]

= i

4[(t̂†ŝ+ ŝ†t̂), (t̂†ŝ− ŝ†t̂)]

= i

4([t̂†ŝ, (t̂†ŝ− ŝ†t̂)] + [ŝ†t̂, (t̂†ŝ− ŝ†t̂)])

= i

4([t̂†ŝ, t̂†ŝ] − [t̂†ŝ, ŝ†t̂] + [ŝ†t̂, t̂†ŝ] − [ŝ†t̂, ŝ†t̂])

= i

4(ŝ†ŝ− t̂†t̂+ ŝ†ŝ− t̂†t̂) = i

2(ŝ†ŝ− t̂†t̂) = i(1
2(ŝ†ŝ− t̂†t̂)) = iĴz

[Ĵz, Ĵx] = [12(ŝ†ŝ− t̂†t̂,
1
2(t̂†ŝ+ ŝ†t̂)]

= 1
4[(ŝ†ŝ− t̂†t̂, (t̂†ŝ+ ŝ†t̂)]

= 1
4([ŝ†ŝ, (t̂†ŝ+ ŝ†t̂)] − [t̂†t̂, (t̂†ŝ+ ŝ†t̂)]

= 1
4([ŝ†ŝ, t̂†ŝ] + [ŝ†ŝ, ŝ†t̂] − [t̂†t̂, t̂†ŝ] − [t̂†t̂, ŝ†t̂])

= 1
4(−t̂†ŝ+ ŝ†t̂− t̂†ŝ+ ŝ†t̂)

= 1
2(ŝ†t̂− t̂†ŝ) = i( i2(t̂†ŝ− ŝ†t̂)) = iĴy

[Ĵy, Ĵz] = [ i2(t̂†ŝ− ŝ†t̂), 1
2(ŝ†ŝ− t̂†t̂)]

= i

4[(t̂†ŝ− ŝ†t̂), (ŝ†ŝ− t̂†t̂)]

= i

4([t̂†ŝ, (ŝ†ŝ− t̂†t̂)] − [ŝ†t̂, (ŝ†ŝ− t̂†t̂)])

= i

4([t̂†ŝ, ŝ†ŝ] − [t̂†ŝ, t̂†t̂] − [ŝ†t̂, ŝ†ŝ] + [ŝ†t̂, t̂†t̂])

= i

4(t̂†ŝ− (−t̂†ŝ) − (−ŝ†t̂) + ŝ†t̂)

= i

2(t̂†ŝ+ ŝ†t̂)

= i(1
2(t̂†ŝ+ ŝ†t̂)) = iĴx

We only prove the ”positive” order of the operators in the left-side commuta-
tors. Changing the order within a commutator would result in the alternation of
the indices of the Levi-Civita tensor, thus changing the sign of the result.

Now we define several more operators, that are useful for practical calcula-
tions. These are the operator of the number of s-bosons n̂s, the operator of the
number of t-bosons n̂t and the total boson number of the given system N̂ :

n̂s = ŝ†ŝ, n̂t = t̂†t̂, N̂ = n̂s + n̂t (2.12)
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To illustrate the physical meaning of this operators, let us consider a system
consisting of ns s-type boson and nt t-type bosons: |ns, nt⟩. Operators (2.12) are
defined in the same way as shown in section 1.4. Which means, that applying
them on this state on this state we obtain:

n̂s |ns, nt⟩ = ns |ns, nt⟩
n̂t |ns, nt⟩ = nt |ns, nt⟩
N̂ |ns, nt⟩ = (ns + nt) |ns, nt⟩ = N |ns, nt⟩

(2.13)

where N is the total number of particles in the system.
The operator N̂ is in fact a linear Casimir invariant of the SU(2) algebra (see

section 1.2):

[N̂ , ŝ†t̂] = [N̂ , ŝ†ŝ] = [N̂ , t̂†ŝ] = [N̂ , t̂†t̂] = 0

A very interesting property of such a system consists in the fact that the
second power of the total angular momentum operator Ĵ2 is a function of the
total boson number operator N̂ .

To prove this we will use the definition of the Ĵ2 operator:

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z (2.14)

which is the quadratic Casimir operator of the SU(2) algebra: [Ĵ2, Ĵk] = 0, ∀k.
Now we find the sum on the right side of the equation (2.14) expressed with

boson operators and the boson number operators:

Ĵ2
x = 1

2(t̂†ŝ+ ŝ†t̂)(t̂†ŝ+ ŝ†t̂)

= 1
4(t̂†ŝt̂†ŝ+ t̂†ŝŝ†t̂+ ŝ†t̂t̂†ŝ+ ŝ†t̂ŝ†t̂)

= 1
4(t̂†ŝt̂†ŝ+ t̂†(1 + n̂s)t̂+ ŝ†(1 + n̂t)ŝ+ ŝ†t̂ŝ†t̂)

= 1
4(t̂†ŝt̂†ŝ+ t̂†t̂+ t̂†n̂st̂+ ŝ†ŝ+ ŝ†n̂tŝ+ ŝ†t̂ŝ†t̂)

= 1
4(t̂†ŝt̂†ŝ+ n̂t + n̂tn̂s + n̂s + n̂sn̂t + ŝ†t̂ŝ†t̂)

= 1
4(n̂t + n̂s + 2n̂sn̂t + t̂†ŝt̂†ŝ+ ŝ†t̂ŝ†t̂)

= 1
4(N̂ + 2n̂sn̂t + t̂†ŝt̂†ŝŝ†t̂ŝ†t̂)

Ĵ2
y = −1

4(t̂†ŝ− ŝ†t̂)(t̂†ŝ− ŝ†t̂)

= −1
4(t̂†ŝt̂†ŝ− t̂†ŝŝ†t̂− ŝ†t̂t̂†ŝ+ ŝ†t̂ŝ†t̂)

= −1
4(t̂†ŝt̂†ŝ− t̂†(1 + n̂s)t̂− ŝ†(1 + n̂t)ŝ+ ŝ†t̂ŝ†t̂)

= −1
4(t̂†ŝt̂†ŝ− t̂†t̂− t̂†n̂st̂− ŝ†ŝ− ŝ†n̂tŝ+ ŝ†t̂ŝ†t̂)

= −1
4(t̂†ŝt̂†ŝ− N̂ − 2n̂sn̂t + ŝ†t̂ŝ†t̂)
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Ĵ2
z = 1

4(ŝ†ŝ− t̂†t̂)(ŝ†ŝ− t̂†t̂)

= 1
4(n̂s − n̂t)(n̂s − n̂t) = 1

4(n̂2
s − n̂sn̂t − n̂tn̂s + n̂2

t )

= 1
4(n̂2

s − 2n̂sn̂t + n̂2
t )

Substituting the obtained expression in (2.14):

Ĵ2 = 1
4(N̂ + 2n̂sn̂t + t̂†ŝt̂†ŝ+ ŝ†t̂ŝ†t̂+ N̂ + 2n̂sn̂t − t̂†ŝt̂†ŝ− ŝ†t̂ŝ†t̂+ n̂s − 2n̂sn̂t + n̂2

t )

= 1
4(2N̂ + 4n̂sn̂t + n̂2

s − 2n̂sn̂t + n̂2
t ) = 1

4(2N̂ + 2n̂sn̂t + n̂2
s + n̂2

t )

= 1
4(2N̂ + (n̂s + n̂t)2) = 1

4N̂(N̂ + 2)

The last equality can be rewritten as: N̂
2 ( N̂

2 + 1). Comparing this to (1.9).
We find, that 2j = N or j = N

2 .

2.3 Fermion representation of the SU(2) algebra
The SU(2) algebra can be realized also in terms of fermions. Consider a system
with two energy levels, which we denote E+ and E− with N positions on each
(see fig. 2.1).

Figure 2.1: A two-energy level system

Analogically with the boson algebra we can define an operator â†
+i that will

create a particle on the i-th position on the E+ - energy level, and an operator
â+i that will correspondingly destroy a particle on that position. Operators â†

−i

and â−i act similarly on the E− - energy level. These are the so-called fermion
operators, which satisfy the following anti-commutation relations:

{â+i, â
†
+j} = â+iâ

†
+j + â†

+j â+i = δij, {â+i, â
†
−j} = 0, {â−i, â−j} = δij (2.15)

Using relations (2.15) we can again prove that linear combinations of operator
products â†

+iâ+i, â†
−iâ−i, â†

+iâ−i, â†
−iâ+i, i = (1, ..., N):
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Ĵz =
N∑

i=1

1
2(â†

+iâ+i − â†
−iâ−i) =

N∑
i=1

1
2 Ĵ

(i)
z

Ĵ+ =
N∑

i=1
â†

+iâ−i =
N∑

i=1
Ĵ

(i)
+

Ĵ− = Ĵ+
+ =

N∑
i=1

â†
−iâ+i =

N∑
i=1

Ĵ
(i)
−

(2.16)

generate the SU(2) algebra. Here by Ĵ (i) we denote single-particle ladder operator
that functions on the i-th position.

Since Ĵ± = Ĵx ± iĴy and using the anti-commutation relations (2.15) we find
that:

[Ĵx, Ĵy] = [12(Ĵ+ + Ĵ−),− i

2(Ĵ+ − Ĵ−)]

= − i

4([Ĵ+, Ĵ+] − [Ĵ+, Ĵ−] + [Ĵ−, Ĵ+] − [Ĵ−, Ĵ−]) = i

4(2[Ĵ+, Ĵ−]) = i

2[Ĵ+, Ĵ−]

= i

2[
N∑

k=1
â†

+kâ−k,
N∑

m=1
â†

−mâ+m] = i

2

N∑
k=1

N∑
m=1

[â†
+kâ−k, â

†
−mâ+m]

= i

2

N∑
k=1

N∑
m=1

(â†
+kâ−kâ

†
−mâ−m − â†

−mâ+mâ
†
+kâ−k)

= i

2

N∑
k=1

N∑
m=1

(â†
+k(δkm − â†

−mâ−k)â+m − â†
+m(δmk − â†

+kâ
†
+m)â−k)

= i

2

N∑
k=1

N∑
m=1

(â†
+kδkmâ+m − â†

+kâ
†
−mâ−kâ+m − â†

−mδmkâ−k + â†
−mâ

†
+kâ+mâ−k)

= i

2

N∑
k=1

N∑
m=1

(â†
+kδkmâ+m − â†

−mδmkâ−k − â†
−mâ

†
+kâ+mâ−k + â†

−mâ
†
+kâ+mâ−k)

= i

2

N∑
k=1

N∑
m=1

(â†
+kδkmâ+m − â†

−mδmkâ−k) = i

2

N∑
k=1

(â†
+kâ+k − â†

−kâ−k)

= i(1
2

N∑
k=1

(â†
+kâ+kâ

†
−kâ−k)) = iĴz

[Ĵz, Ĵx] = [Ĵz,
1
2(Ĵ+ + Ĵ−)] = [Ĵz,

1
2 Ĵ+] + [Ĵz,

1
2 Ĵ−]

= 1
4([

N∑
k=1

(â†
+kâ+k − â†

−kâ−k), Ĵ+] + [
N∑

n=1
(â†

+nâ
†
+n − â†

−nâ−n), Ĵ−])

= 1
4([

N∑
k=1

(â†
+kâ+k − â†

−kâ−k),
N∑

m=1
â†

+mâ−m]

+ [
N∑

n=1
(â†

+nâ+n − â†
−nâ−n),

N∑
l=1

â†
−lâ+l]) = (∗)

Lets expand the first of these commutators:
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[
N∑

k=1
(â†

+kâ+k − â†
−kâ−k),

N∑
m=1

â†
+mâ−m] =

N∑
k=1

N∑
m=1

(â†
+kδkmâ−m + â†

+mδmkâ−k) =
N∑

k=1
2â†

+kâ−k

For the second one we obtain:

[
N∑

n=1
(â†

+nâ+n − â†
−nâ−n),

N∑
l=1

â†
−lâ+l] =

N∑
n=1

N∑
l=1

(−â†
−lδlnâ+n − â†

−nδnlâ+l) =
N∑

l=1
(−2â†

−lâ+l)

Therefore:

(∗) = 1
4(

N∑
k=1

2â†
+kâ−k −

N∑
l=1

2â†
−lâ+l) = 1

2(
N∑

k=1
(â†

+kâ−k − â†
−kâ+k)

= i(− i

2

N∑
k=1

(â†
+kâ−k − â†

−kâ+k) = i(− i

2(Ĵ+ − Ĵ−)) = iĴy

[Ĵy, Ĵz] = [ i2(Ĵ− − Ĵ+), Ĵz] = [ i2 Ĵ−, Ĵz] − [ i2 Ĵ+, Ĵz]

= i

4([
N∑

m=1
â†

−mâ+m

N∑
k=1

(â†
+kâ+k − â†

−kâ−k)]

− [
N∑

l=1
â†

+lâ−l,
N∑

n=1
(â†

+nâ+n − â†
−nâ−n)]) = (∗∗)

Again, expanding the first commutator:

[
N∑

m=1
â†

−mâ+m,
N∑

k=1
(â†

+kâ+k − â†
−kâ−k)] =

N∑
k=1

N∑
m=1

(â†
−mδmkâ+k + â†

−kδkmâ+m) =
N∑

k=1
2â†

−kâ+k

The second commutator:

[
N∑

l=1
â†

+lâ−l,
N∑

n=1
(â†

+nâ+n − â†
−nâ−n)] =

N∑
l=1

N∑
n=1

(−â†
+nδnlâ−l − â†

+lδlnâ−n) =
N∑

l=1
(−2â†

+lâ−l)

Thus we obtain:
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(∗∗) = i

4(
N∑

k=1
2â†

−kâ+k +
N∑

l=1
2â†

+lâ−l)

= i

2

N∑
k=1

(â†
−kâ+k + â†

+kâ−k) = i(1
2

N∑
k=1

(â†
−kâ+k + â†

+kâ−k))

= i(1
2(Ĵ+ + Ĵ−)) = iĴx
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Chapter 3

The general form of a SU(2)
hamiltonian

Using the definitions of the angular momentum operators (2.10), we can write
the general hamiltonian with one- and two-body interactions:

Ĥ = AĴx +BĴy + CĴz +DĴ2
x + EĴ2

y + F (ĴxĴy + ĴyĴx) +G(ĴxĴz

+ ĴzĴx) + I(ĴyĴz + ĴzĴy)
(3.1)

where A,B,C,D,E, F,G, I are constants.
It is worth mentioning, that the term KĴ2

z (where K is a constant analogous
to A...I) is not a compulsory part of the hamiltonian. The fact that:

Ĵ2 = 1
4N̂(N̂ + 2) (3.2)

and the condition, that the number of particles in the given system doesn’t
change, allows us to exclude this term. We can express it as:

KĴ2
z = K(Ĵ2 − Ĵ2

x − Ĵ2
y ) = K

(1
4N̂(N̂ + 2) − Ĵ2

x − Ĵ2
y

)
(3.3)

The last two terms in the equation (3.3) will obviously just alter the constants
D and E: D′ = D −K, E ′ = E −K.

The operator Ĵ2, being applied on a state vector, will shift the hamiltonian
by a scalar number, that is proportional to the number of particles (which we
consider to be constant), thus shifting all the energy levels equally.

There is a similar reason for the exclusion of the antisymmetric terms such as
ĴxĴy − ĴyĴx. These terms are commutators of each pair of the components of the
angular momentum, which, according to (3.1) will contribute to the single-body
terms.

The choice of operators used to express the hamiltonian can be explained
by the second-quantizations theory and, again, (2.10). A one- and two-body
hamiltonian for N particles is:

Ĥ =
N∑

i=1
(1
2 p̂

2
i + Ûi) +

N∑
i<j

Vij, (3.4)
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where the first sum represents the particles’ own kinetic and potential energies
and the second one represents the two-body interactions. This hamiltonian can
be rewritten in terms of one- and two-body matrix elements:

N∑
i=1

(1
2 p̂

2
i + Ûi) →

∑
αα′

⟨α′|12 p̂
2
i + Ûi|α⟩ b̂†

α′ b̂α

N∑
i<j

Vij → 1
2
∑

α1α2

∑
α′

1α′
2

⟨α′
1α

′
2|Vij|α1α2⟩ b̂†

α′
1
b̂†

α′
2
b̂α2 b̂α1

(3.5)

where b̂†
α and b̂α are the creation and annihilation operators and |αi⟩ and |αiαj⟩

kets form a complete set of one- and two-particle states in the original configura-
tion space.

In our case, the matrix elements are included in the constants A...I. The
first-order operators in (2.14) are the SU(2) representations of the one-body part
of (3.3). The second-order and the ”mixed” ones represent the two-body part.
The presence of all ”mixed” operators guarantee the all possible combinations of
the s- and t- creation and annihilations operators.

Now, expressing the Ĵx and Ĵy via Ĵ+ and Ĵ−:

Ĵ± = Ĵx ± iĴy → Ĵx = 1
2
(
Ĵ+ + Ĵ−

)
Ĵy = i

2
(
Ĵy − Ĵx

)
,

and applying the obtained hamiltonian on the eigenkets of Ĵz:

Ĵ± |j,m⟩ =
√

(j ∓m)(j ±m+ 1) |j,m± 1⟩ ,
we can construct the hamiltonian matrix in the basis |j,m⟩, where j is fixed,
diagonalize it and find the energy spectrum.

To illustrate, let’s consider a system of two particles with a hamiltonian:

Ĥ = AĴ2
z +BĴx (3.6)

Here, the Ĵx operator represents an interaction with a magnetic field, and Ĵ2
z

represents the mutual interaction between particles.
From (3.2) we can determine that the total angular momentum quantum

number is j = N
2 = 2

2 = 1. That means that the matrix representation of (3.6) is
a 2j + 1 × 2j + 1 = 3 × 3 matrix in the basis of the Ĵz eigenkets. We find:

Ĥ =

⎛⎜⎜⎝
A B√

2 0
B√

2 0 B√
2

0 B√
2 A

⎞⎟⎟⎠
Hence, the eigenvalues of this hamiltonian are:

E1 = A,

E2 = 1
2(A−

√
A2 + 4B2),

E3 = 1
2(A+

√
A2 + 4B2)
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Chapter 4

The classical limit of the general
hamiltonian

4.1 Coherent states
In the following section we want to investigate the behavior energy levels of the
given SU(2) hamiltonian in the classical limit.

The standart way to make a transition from quantum mechanics to classical
mechanics is to look at the system in the limit:

lim
h→0

Ĥ = Hcl (4.1)

where h is the Planck’s constant, Ĥ and Hcl are quantum and classical hamilto-
nians respectively.

This transition is analogous to the one in optics: we get from wave optics
to geometrical optics putting the same condition on the wave length λ: λ → 0.
Hence |

−→
k | → 0, where −→

k is the wave vector [8].
In our case a more useful way of obtaining the classical hamiltonian is to use

the Glauber coherent states.

Definition 4.1.1. Glauber states |z⟩ are defined by:

|z⟩ = ezâ†−z̄â |0⟩ = e− |z|
2

∞∑
n=0

1√
n!
zn |n⟩ (4.2)

where the first equality is a unitary transformation of the vacuum state |0⟩.
These states have several notable properties:

⟨z1|z2⟩ = e− 1
2 |z1|2+z1z̄2− 1

2 |z2|2

1
π

∫
|z⟩ ⟨z| d2z = I

â |z⟩ = z |z⟩

The first property tells us that these states are not orthogonal, but from the
second one we know that they satisfy the resolution of identity. The last one
shows us, that the states |z⟩ are the eigenkets of the annihilation operator â.
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Consider a hamiltonian, which is a function of the SU(2) algebra generators.
We can show that the mean values of a hamiltonian in the Glauber states |z⟩
form a continuous spectrum of the classical limit of the hamiltonian.

To prove the this statement let’s perform the calculation of ⟨z|Ĥ|z⟩. Without
the loss of generality we assume that the states |n⟩ from the definition of the
Glauber states are the eigenkets if the given hamiltonian with the corresponding
eigenvalues n: Ĥ |n⟩ = n |n⟩. By calculating we obtain:

⟨z|Ĥ|z⟩ =
(
e− 1

2 |z|2
∞∑

n=0

(z̄)n

√
n!

⟨n|
)
Ĥ

(
e− 1

2 |z|2
∞∑

k=0

zk

√
k!

|k⟩
)

=
(
e− 1

2 |z|2
∞∑

n=0

(z̄)n

√
n!

⟨n|
)(

e− 1
2 |z|2

∞∑
k=0

zk

√
k!
Ĥ |k⟩

)

=
(
e− 1

2 |z|2
∞∑

n=0

(z̄)n

√
n!

⟨n|
)(

e− 1
2 |z|2

∞∑
k=0

zk

√
k!
k |k⟩

)

=
⎛⎝e−|z|2 ∑

n,k

(z̄)nzk

√
n!k!

k ⟨n|k⟩

⎞⎠ =
⎛⎝e−|z|2 ∑

n,k

(z̄)nzk

√
n!k!

kδnk

⎞⎠
=
(
e−|z|2

∞∑
k=0

(z̄z)k

k! k

)
= e−|z|2

∞∑
k=0

|z|2k

k! k

= e−r2
∞∑

k=1

(r2)k

(k − 1)! = e−r2
r2

∞∑
k=1

(r2)(k−1)

(k − 1)!

= e−r2
r2

∞∑
l=0

(r2)l

l! = e−r2
r2er2 = r2

where we denote |z| = r and l = k − 1. From the resulting relation ⟨z|Ĥ|z⟩ =
r2 = |z|2 we see that we indeed obtain a continuous spectrum.

Another interesting property, which follows the ones listed above, is the mean
value of the position and momentum operators in states |z⟩. If we express them
in the terms of ladder operators, again denoting the total number of particles as
N:

b̂† =
√
N

2 (x̂− ip̂)

b̂ =
√
N

2 (x̂+ ip̂)

we obtain:

x̂ = 1√
2N

(
b̂† + b̂

)
p̂ = i√

2N

(
b̂† − b̂

)
Now we can determine their mean values in the state |z⟩:
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⟨z|x̂|z⟩ = ⟨z| 1√
2N

(
b̂† + b̂

)
|z⟩ = 1√

2N

(
⟨zb̂†|z⟩ + ⟨z|b̂z⟩

)
= 1√

2N
(z̄ ⟨z|z⟩ + z ⟨z|z⟩) =

√
2
N
Re{z}

(4.3)

⟨z|p̂|z⟩ = ⟨z| i√
2N

(
b̂† − b̂

)
|z⟩ = i√

2N

(
⟨z|â†z⟩ − ⟨zâ|z⟩

)
= i√

2N
(z ⟨z|z⟩ − z̄ ⟨z|z⟩) = −

√
2
N
Im{z}

(4.4)

4.2 Holstein-Primakoff mapping
Let us return to the general form of an SU(2) hamiltonian (3.1). To investigate its
classical limit we are going to use the Holstein-Primakoff transformation, which
is defined by introducing new creation and annihilation operators:

b̂† =
√
N

2 (x̂− ip̂)

b̂ =
√
N

2 (x̂+ ip̂)

b̂†b̂ = N

2 (x̂2 + p̂2)

[b̂, b̂†] = 1

(4.5)

4.2.1 Holstein-Primakoff transformation
To construct our hamiltonian using these new operators, we need to express the
Ĵz, Ĵ+, and Ĵ− operators:

Ĵ+ = b̂†
√
N − b̂†b̂

Ĵ− =
√
N − b̂†b̂b̂

Ĵz = b̂†b̂− N

2

(4.6)

Using the (4.5) relations, we can find:

Ĵz = N

2 (x̂2 + p̂2 + 1)

Ĵ+ = N

2 (x̂+ ip̂)
√

2 − (x̂2 + p̂2)

Ĵ− = N

2 (x− ip)
√

2 − (x̂2 + p̂2)

(4.7)

The Ĵx and Ĵy operators are constructed as usually:
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Ĵx = 1
2
(
Ĵ+ + Ĵ−

)
= N

2 x
√

2 − (x̂2 + p̂2)

Ĵy = i

2
(
Ĵ− − Ĵ+

)
= N

2 p
√

2 − (x̂2 + p̂2)
(4.8)

From the relations for Ĵ−, Ĵ+, Ĵx, and Ĵy we see, that the values of x and p
should lie within a circumference with a radius

√
2 in a one-dimensional space

(or a hypersphere of the same radius in a n-dimensional space).
Let us prove that after the Holstein-Primakoff transformation the angular

momentum operators generate an algebra. To prove this statement we will con-
centrate on the commutators of Ĵ+, Ĵ−, and Ĵz. Performing the transformation
we obtain and using the formula (2.11) and (4.5):

[Ĵ+, Ĵ−] =
[
b̂†
√
N − b̂†b̂,

√
N − b̂†b̂b̂

]
= b̂†

√
N − b̂†b̂

[√
N − b̂†b̂, b

]
+
√
N − b̂†b̂

[
b̂†, b̂

]√
N − b̂†b̂+

[
b̂†,
√
N − b̂†b̂

]
b̂
√
N − b̂†b̂

= b̂†
√
N − b̂†b̂

(√
N − b̂†b̂b̂− b̂

√
N − b̂†b̂

)
−N + b̂†b̂

+
(
b̂†
√
N − b̂†b̂−

√
N − b̂†b̂b̂†

)
b̂
√
N − b̂†b̂

= b̂†
(
N − b̂†b̂

)
b̂−N + b̂†b̂−

√
N − b̂†b̂b̂†b̂

√
N − b̂†b̂

= Nb̂†b̂− b̂†b̂†b̂b̂−N + b̂†b̂−
(
N − b̂†b̂

)
b̂†b̂

= Nb̂†b̂− b̂†b̂b̂†b̂+ b̂†b̂−N + b̂†b̂−
(
N − b̂†b̂

)
b̂†b̂

= 2
(
b̂†b̂− N

2

)
= 2Ĵz

[
Ĵz, Ĵ+

]
=
[
b̂†b̂− N

2 , b̂
†
√
N − b̂†b̂

]
=
[
b̂†b̂, b̂†

√
N − b̂†b̂

]
= b̂†

[
b̂†b̂,

√
N − b̂†b̂

]
+
[
b̂†b̂, b̂†

]√
N − b̂†b̂

=
[
b̂†b̂, b̂†

]√
N − b̂†b̂ = b̂†

√
N − b̂†b̂ = Ĵ+

[
Ĵz, Ĵ−

]
=
[
b̂†b̂− N

2 ,
√
N − b̂†b̂b̂

]
=
[
b̂†b̂,

√
N − b̂†b̂

]
=
√
N − b̂†b̂

[
b̂†b̂, b̂

]
+
[
b̂†b̂,

√
N − b̂†b̂

]
b̂

=
√
N − b̂†b̂

[
b̂†b̂, b̂

]
= −

√
N − b̂†b̂b̂ = −Ĵ−

(4.9)

In all the calculations we imply that functions of operators can be expressed as
a power series of the operator in their argument.

Taking in consideration, that this operators behave as expected, we assume
that all the other combinations (like the one used to prove the Schwinger and the
fermion realizations) do as well.
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Now we can obtain Ĥ in terms of coordinates x and their conjugated momenta
p. Usually, calculating such hamiltonian would imply calculating commutators,
that would reduce to commutators of x and p. But using the fact, that for
multiple-particle systems:

[x̂, p̂] = i

N
(4.10)

and taking in consideration the classical limit we obtain:

lim
N→∞

[x̂, p̂] = 0 (4.11)

This equation allows us to manipulate with all terms of the obtained hamil-
tonian as if they all commute with each other. This way we get:

H = AN

2 x
√

2 − (x2 + p2) + BN

2
√

2 − (x2 + p2) + CN

2 (x2 + p2 + 1)

+ DN2

4 x2[2 − (x2 + p2)] + EN2

4 p2[2 − (x2 + p2)]

+ FN2

2 xp[2 − (x2 + p2)] + GN2

2 x
√

2 − (x2 + p2)[2 − (x2 + p2)]

+ IN2

2 p
√

2 − (x2 + p2)[2 − (x2 + p2)]

However, such hamiltonian will diverge in the classical limit with N tending
to infinity. Let us return to the hamiltonian (3.1). To resolve the divergence
problem, conventionally we set up new coefficients D′, E ′, F ′, G′, I ′, which are
related to the old ones as multiples of 1

N
: D = D′

N
, E = E′

N
, etc. This way we

obtain a hamiltonian, which converges in the classical limit:

Hcl = lim
N→∞

Ĥ

N
= A

2 x
√

2 − (x2 + p2) + B

2
√

2 − (x2 + p2)

+ C

2 (x2 + p2 + 1) + D′

4 x2[2 − (x2 + p2)] + E ′

4 p
2[2 − (x2 + p2)]

+ F ′

2 xp[2 − (x2 + p2)] + G′

2 x
√

2 − (x2 + p2)[2 − (x2 + p2)]

+ I ′

2 p
√

2 − (x2 + p2)[2 − (x2 + p2)]
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Chapter 5

Numerical calculations

Using software for numerical calculations (see Appendix 1 for the Mathematica
code) and the general form of the hamiltonian (3.1) we can research the dynamic
of it’s energy levels in dependence on the constants A...I. Let us have a look at
some of interesting special cases.

5.1 The Lipkin model

Figure 5.1: Level dynamics of the Lipkin hamiltonian (C = 1, N =30)

The hamiltonian of the so-called Lipkin model [1] is written:

Ĥ = CĴz + D′

N
Ĵ2

x (5.1)

On fig. 5.1 we look at the dynamics of its energy levels of a system consisting
of 30 particles with a constant parameter C in dependence on D′. The area that
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we are interested in is the negative half-plane.The behavior of this case has two
notable properties:

The first one is how the energy levels seem to merge under the level Hi ≈ −16,
where we denote the eigenvalues of Ĥ as Hi. The fact that the lines merge means
that at some point the energy levels start forming a degenerated spectrum. In
fact, they do not merge completely, but there remains a gap between them, which
can be seen on a bigger scale graph.

The second one is more important. From the graph we can see a drastic change
in the rate of increase of the functions in the locality of the point D′ ≈ −0.05.
Such a change implies a sharp ”turn” of the first derivative in this point, thus
this is a point where the second derivative is undergoing a non-continuos break.
The physical meaning of this break consists in a spasmodic change in the second
derivative of the energy level. Such phenomenons are called second-order quantum
phase transitions (QPT).

Using the Holstein-Primakoff transformation we can also determine the ”to-
pography” of the classical limit of energy of the hamiltonian for some specific
values of D. The classical hamiltonian in this case has the following form:

Hcl = C

2 (x2 + p2 + 1) + D′

4 x2(2 − x2 − p2) (5.2)

we obtain the following to equations:
Using (5.2) we can determine the general expression for the stationary points

of this hamiltonian. Considering the condition of a stationary point of a multi-
variable scalar function:

∇Hcl = 0

Figure 5.2: Energy ”topography” in the point of the QPT (C = 1, D’ = -0,05, N
=30)

we obtain two equations:
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∂Hcl

∂x
= Cx+ D′

2 x(2 − 2x2 − p2) = 0

∂Hcl

∂p
= Cp− D

2

′
x2p = 0,

which leads to seven combinations of couples [x, p] and their corresponding ener-
gies:

1. [0, 0], H1 = C
2

2. [±
√

C
D′ + 1, 0], H2 = C2+D′2

4D′ + C

3. [±
√

2C
D′ ,±

√
2 − 2C

D′ ], H3 = 3C
2

Keeping in mind the restrictions on x and p, also because we are interested
in cases when C > 0, and D′ < 0, we find, that only the first and second pairs
satisfy all the conditions.

For other values of D′ we see, that the former point of a global minimum
becomes a local maximum and a symmetrical pair of new local minimums appear
(fig.5.3).

Figure 5.3: Lipkin, C = 1, D’ = -2, N=30

Let us finally construct a more general model is described with a hamiltonian:

Ĥ = AĴx +BĴy + CĴz + D′

N
Ĵ2

x + E ′

N
Ĵ2

y (5.3)

The dynamic of its energy levels is depicted in fig.5.
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Figure 5.4: A,B,C = 1, E’=2

Now we can determine how the additional terms in (5.3) (compared to (5.2))
affect the ”topography” of its energy in the classical limit. Performing the
Holstein-Primakoff transformation we obtain a hamiltonian:

Hcl = A

2 x
√

2 − x2 − p2 + B

2 p
√

2 − x2 − p2 + C

2 (x2 + p2 + 1)

+ D

4

′
x2(2 − x−p2) + E ′

4 p
2(2 − x2 − p2)

(5.4)

For A = B = C = 1, E = 2 and specific values of D we obtain the following
graphs.

Figure 5.5: A=B=C=1, E’ = 2, D’ = -0,5, N=30
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Figure 5.6: A=B=C=1, E’=2, D’ = -1,N=30

We see that the additional terms in (5.3) destroy the symmetry with respect
to the beginning of the origin.
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Conclusion

In conclusion, this thesis focuses on describing systems whose dynamical algebra
is SU(2). Our goal was to review its basic notions and use them to research the
simplest cases of such systems.

Firstly, we have reiterated the basic notions of the group theory. This was
made to construct the formalism, that is required to study the SU(2) hamiltonians
and their spectrum.

Secondly, we have reviewed possible ways of physical realization of the SU(2)
algebra.

Thirdly, we have determined the general form of a SU(2) hamiltonian with
one- and two-body interactions. This was a starting point to the research of
spectrums of its specific cases. Because we were also interested in the behavior of
the hamiltonians in the classical limit, we found out that some of the constants in
its terms should be in some way related to the number of particles of the system.

Finally, using numerical simulations we studied the level dynamics of some
simple forms of the SU(2) hamiltonian, including the so-called Lipkin model.
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Appendix A

Computer code

Mathematica code used to perform numerical calculations:

j = 15 ; ( Total angular momentum of the system , which i s
equal to N/2 , where N i s the t o t a l number o f the p a r t i c l e s )
A = 0 ;
B = 0 ;
Char l i e = 1 ;
(∗ Delta =;∗)
Eho = 0 ;
F = 0 ;
G = 0 ;
H = 0 ;
Ind ia = 0 ;

Jz = Table [
m1 KroneckerDelta [m1, m2] , {m1, −j , j } , {m2, −j ,

j } ] ; ( D e f i n i t i o n o f angular momentum
operators ’ matr i ce s in the base o f e i g enke t s
o f the Jz operator )

Jplus = Table [
Sqrt [ j ( j + 1) − m2 (m2 + 1 ) ] KroneckerDelta [m1, m2 + 1 ] ,
{m1, −j , j } , {m2, −j , j } ] ;

Jminus = Table [
Sqrt [ j ( j + 1) − m2 (m2 − 1 ) ] KroneckerDelta [m1, m2 − 1 ] ,
{m1, −j , j } , {m2, −j , j } ] ;

Jx = 1/2∗ ( Jplus + Jminus ) ;

Jy = I /2∗( Jp lus − Jminus ) ;

Hamiltonian [ De l ta ] :=
A Jx + B Jy + Char l i e Jz + Delta Jx . Jx + Eho Jy . Jy
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+ F Jz . Jz + G ( Jx . Jy + Jy . Jx ) + H ( Jx . Jz + Jz . Jx ) +
Ind ia ( Jy . Jz + Jz . Jy ) ( General form o f the Hamiltonian )

GeneralEV [ Delta , i ] :=
Sort [ E igenva lues [N[ Hamiltonian [ Delta ] ] ] ] [ [

i ] ] ( i − th e i g enva lue o f the hami ltonian

as a func t i on o f parameter D)

Plot [ GeneralEV [ Delta , 1 ] , {Delta , −2, 2}
( P l o t t i ng the func t i on )

Plot [ Table [ GeneralEV [ Delta , i ] , { i , 1 , 2 j + 1} ] ,
{Delta , −2, 2} , PlotRange −> {{−2, 2} , {−20,

20}} ] ( P l o t t i ng a l l energy l e v e l s on one graph )
hami ltonian =

Jx + Jy + Jz + d Jx . Jx + 2 Jy . Jy
(A s p e c i f i c form o f the hami l tonian )

Plot [ Table [
Sort [ E igenva lues [N[ham ] ] ] [ [ i ] ] , { i , 1 , 2 j + 1} ] ,
{d , −2, 2} , PlotRange −> {{−2, 2} , {−50,

50}} ] ( P l o t t i ng a l l energy l e v e l s o f the s p e c i f i c
hami l tonian )
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