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Abstract: Cryptography based on semirings can be one of the possible approaches
for the post-quantum cryptography in the public-key schemes. In our work, we
are interested in only one concrete semiring — tropical algebra. We are examining
one concrete scheme for the key-agreement protocol — tropical Stickel’s protocol.
Although there was introduced an attack on it, we have implemented this attack
and more importantly, stated its complexity. Further, we propose other variants
of Stickel’s protocol and we are investigating their potential for practical usage.
During the process, we came across the theory of tropical matrix powers, thus we
want to make an overview of it due to the use in cryptography based on matrices
over the tropical algebra semiring.
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Introduction

Cryptography is a rapidly developing discipline and there are plenty of cryp-
tographic schemes based on different principles. The domain of most schemes
(at least of most of the commonly known) are finite fields.

The cryptography is divided into two main parts — public-key cryptography
and private-key cryptography. We are using both in ordinary life, usually working
together to achieve some goal.

A lot of today’s public-key cryptographic schemes are based on the discrete
logarithm problem or the integer factorization. Unfortunately, both these prob-
lems are proposed to be broken by quantum computers in the near future. That
is the reason why many researchers are interested in so-called post-quantum cryp-
tography. And it seems that some of the schemes based on semirings instead on
the finite fields are suitable candidates for post-quantum cryptography because
they can stand against quantum computers (Gnilke [2014]).

In this thesis, we would like to explore some of the schemes of public-key
cryptography based on semirings. We have chosen the specific semiring — Tropical
algebra. This is a part of algebra which is popular in the last decades but it is
still not fully understood. The semiring of tropical algebra consists of the set
of real numbers with the special element ¢ and two tropical operations. The
first operation is tropical addition which is done by taking the minimum of two
numbers. The second operation is tropical multiplication which works as standard
addition.

Tropical algebra is a relatively new and modern branch of algebra. Today,
tropical algebra is mostly used in tropical geometry (Maclagan and Sturmfels
[2015]) for studying algebraic varieties.

An important feature of tropical operations for the cryptography is the fact
that there is no inverse of tropical addition.

The main motivation of our thesis is to pick one or two concrete propos-
als of the algorithms from some basic public-key cryptography areas, which are
adapted for tropical algebra, and fully describe them. Both from the mathemati-
cal point of view (why are they working, their complexity) and from the practical
point of view (security and possible attacks). The main aim of this thesis is to
decide whether these protocols are good candidates for the public-key cryptogra-
phy schemes. Alternatively, we can find out if there exists some other promising
variation on these algorithms.

We hope that our work brings inspiration for further research in the direction
of cryptography based on tropical algebra.

In the second chapter of our thesis, we focus mainly on an article written
by |Grigoriev and Shpilrain [2014] where there are two cryptographic schemes
described. We will examine the one for the key agreement. An attack on this
protocol is suggested in the article of Kotov and Ushakov| [2018]. We would like
to further explore both — the protocol and the possible attack. This protocol
was only proposed without any discussion about the size of parameters and both
protocol and the attack were presented without any statement of its computation
complexity. We would like to replicate the attack and verify the results given by
Kotov and Ushakov| [201§]. But more importantly, we will focus on the estimation



of the complexity of both — the original key-agreement protocol and the attack
on it.

It turned out that the proposed key-agreement protocol does not seem to be
suitable for practical use even when we consider another value of the parameters
than the ones suggested in |Grigoriev and Shpilrain| [2014]. That is why we came
up with another variant of the key agreement protocol, we are calling it Fast
Stickel’s protocol. This protocol is less complex thus the complexity of the attacks
proposed in Kotov and Ushakov| [2018] is supposed to be exponential with respect
to the running time of Fast Stickel’s protocol.

The fourth chapter describes attacks on Fast Stickel’s protocol. It uses prop-
erties of tropical matrices which are summarized in the third chapter. We found
out an attack on the key agreement protocol which has exponential complexity
in the size of matrices. Since too large matrices are not practical, we consider
this attack as an effective one.

As we will show, even when we change the Fast Stickel’s protocol to work
with more complex matrices the complexity of an attack stays the same.

The last chapter is devoted to computational problems such as the discrete
logarithm problem and Diffie-Hellman problems.



1. Definitions

In this chapter, we will list some of the definitions used in the rest of the thesis
and we will recall the basics of cryptography needed for understanding the cryp-
tographic parts.

1.1 Algebraic basics

Definition 1 (Ring). A ring is a set R with two binary operations + (addition)
and - (multiplication) that meet the following conditions:

e (R,+) is an abelian group:
- (a+b)+c=a+ (b+c) holds for all a,b,c € R
-a+b=0b+a foralla,be R

- 30 € R such that a+0=a for alla € R
- Ya € R there exists an additive inverse —a € R such that a + (—a) =0

e (R,-) is a monoid:
- (a-b)-c=a-(b-c) holds for all a,b,c € R
- dl € R such thata-1=1-a=a for everya € R

o Multiplication is distributive:

~a-(b+c)=(a-b)+ (a-c) holds for all a,b,c € R

- (a+b)-c=(a-c)+(b-c) forall a,b,c € R
Definition 2 (Semiring). We say that (R, +,-) is a semiring when (R, +,-) differs
from a ring in the fact that (R,4+) needs not to be an abelian group but only
a commutative monoid. That means that we do not have additive inverses in

general. Because of that, we need to add one more property to the semiring
definition:

o Multiplication by 0 annihilates R:

1.2 Tropical algebra

The concrete semiring we will work with is called the tropical semiring (alterna-
tively min-plus algebra) due to the non-standard definition of the binary opera-
tions in it.

Definition 3 (Tropical operations). We call the operation & a tropical addition
and the operation ® a tropical multiplication, when:

z @y = min(z, y)
rTOYy=r+y



for all z,y € SU{e} where (S,+, <) is a linearly ordered commutative group and
e>z forall z€ S.
The neutral element for @ is denoted by . We will call it the tropical zero.
The identity element for ® is called the tropical one and is denoted by 1.

Lemma 1 (Properties of tropical operations). Both operations & and © are
associative and commutative, the operation ©® is distributive over ®. Furthermore,
the value of the neutral element for the operation @ is co and the value of 1 is 0.

Proof. Associativity, commutativity and distribution are striaghtforward:

e @ is associative:
(a®b)P®c = min(min(a,b), c) = min(a, b, ¢) = min(a, min(b, c)) = a® (bPHc)
e @ is commutative:
a®b=min(a,b) =min(b,a) =bBa
e ( is associative:
(a@b)oc=(a+b)+c=a+(b+c)=a® (bOc)
e (© is commutative:

a®Ob=a+b=b+a=00a

® is distributive:

a® (bdc)=a+min(b,c) =min(a+b,a+c¢c)=(a®b) ® (a ®c)
(a®b) ®c=min(a,b) +c=min(a+c¢,b+c)=(a®c)® (bOc)
The value of the tropical one is 0, because:
a©0=00a=a
The value of the tropical zero element is oo:
a® e =min(a,00) =a
a®e=a+0c0=00+a=¢
O

Definition 4 (Tropical semiring). We call the structure (SU{e}, ®,®) a tropical
semiring for the linearly ordered commutative group (S, 4+, <).

In most cases, we will work with the tropical algebra (Z U {oo}, ®, ®).

We do not have an inversion of addition in tropical algebra, but we can still
invert multiplication, which we denote as ©@. We can also define a tropical expo-
nentiation in an intuitive way:

a@b=a—-"»

aA“"=a0...0a
—_———

n-times

We can also work with tropical matrices and tropical polynomials in the sim-
ilarly intuitive way.



FExample 1. Let us have two tropical matrices A and B of the same size 2 x 2:
A= a1l Aa12
ag1 Q22
big b1
B={," ’
(bm ba 2

Computing the product of these two matrices is done as:

AGOB= 11 Aa12 o bl,l b1,2 _
Q21 A22 52,1 52,2
_ (al,l Obi1@arg®byy a1 Obia®as® b2,2>

a1 ©bi1 @ags©ba a1 ©bio®ase ® by

FExample 2. By the term tropical polynomial, we mean classical polynomial with
tropical evaluating. Example of such polynomial p can be:

p(z) =2 @30ra (-2)
If we want to evaluate p in x = 1, we get:
p(1)=12®301® (=2) =min(1-2,3+1,-2) = —2

Remark. In the whole thesis, we work with the tropical operators evaluating
priority just like in the classical case. Thus ® has a higher priority than @.

1.3 Graphs and matrices

In Section 2 we will work with graphs of tropical matrices, so here is a good place
to recall some terminology from the graph theory.

Definition 5 (Precedence graph). For the matriv A = (a;;), a;; € ZU{e} of the
size n. X n we define a directed weighted graph I'y = (V, E) where V- ={1,...,n}
and (i,7) € E whenever a;; # €. The weight of the edge (i,7) is a value of a; ;.
We call ' 4 the precedence graph of A.

Definition 6 (Directed walk). In a directed graph G = (V, E), we call the se-
qUENCE V1, €1,V2, €2, ..., Un_1,Cn_1,Un, fore; € B, v; €V a directed walk if it holds
that every e; is an edge from v; to viy1.

Definition 7 (Directed path). The walk is called a path whenever all vertices and
edges in it are different up to the first and last vertex — the path can be closed.

Definition 8 (Strictly connected graph). We say that the graph is strictly con-
nected if there exists a path from i to j of finite weight for everyi,j € V.

Definition 9 (Weight of a walk). The weight of a walk is a sum of weights of all
edges in the given walk.

Definition 10 (Cheapest k-step walk). The walk which contains k edges and
leads from v; to v; in a weighted graph G is called the cheapest one (or the shortest
one) if its weight is the minimum of weights of all walks from i to j that contain
precisely k edges.



Definition 11 (Critical cycle). A cycle inT 4 is called critical if it has the smallest
average weight per step of all the cycles in I'y. The average weight of the cycle
is computed as a sum of weights of all edges in the cycle divided by the number
of edges in the cycle.

Definition 12 (Critical graph). For the matrizc A we define the critical graph
of A as the union of critical cycles from I'4.

1.4 Cryptography

Because the original motivation for our work was to explore some cryptography
schemes, we would like to recall cryptography basics for those who are not familiar
with them.

The main goal of cryptography is to construct a secure communication be-
tween two parties via an insecure communication channel.

In classical cryptography, this is achieved by using some common key known
only to these two parties between whom is the transported data encrypted. An ex-
ample of this symmetric cryptography is an AES cipher. The main disadvantage
of symmetric cryptography is the fact that both parties have to share the secret
key.

A totally different part of cryptography is asymmetric (public-key) cryptog-
raphy. The goal of asymmetric cryptography is to allow communication between
parties which do not know each other and do not have the possibility to exchange
a secret key via a secure channel (such as a personal meeting). Asymmetric cryp-
tography is usually used for the initialization of the communication, namely for
verifying both parties to each other and for the agreement on the key which will
be used later for some symmetric cipher. That is because encrypting data is much
faster by using some of the symmetric algorithms.

Public-key cryptography consists of numerous protocols and algorithms. For
example the message encryption, key-agreement protocols, digital signatures,
party authentication, etc. In our work, we will use some protocols of the first two
types — for encrypting and decrypting messages and key-agreement protocols.

One of the keystones of the public-key cryptography are one-way functions.
The one-way function is defined as a map f : S — S such that everyone can
compute f(x) relatively fast but it is hard to recalculate = from f(z). An example
of such a function can the be multiplication — we can compute a product of two
primes, but the inversion (factorization) is hard.

1.4.1 Public-key encryption scheme

The idea of a public-key encryption scheme is that party A publishes its public
key. Then everyone is able to encrypt the message in such a way, that only party
A is able to decode it by using a private key which cannot be derived from the
public one in a simple way.

Public-key encryption scheme consists of three algorithms: G, &, D and lives
on some set M called the message space. We will denote the set of all possible
keys as .



e Key generation algorithm G — the output of the algorithm is a pair of keys
(Kp, K;) € K. K, is called the secret (private) key and is known only to
the key owner. On the other hand, the public key K, is known to everyone.

e FEncryption algorithm £ — the encryption algorithm outputs a ciphertext
message for the plaintext input and public part of the key. The encryption
is a function £ : K x M — M.

e Decryption algorithm D — decrypts the ciphertext by using the private part
of the key and an encrypted message. It is a function D : K x M — M.

We demand the correctness — decryption of encrypted message yields the
original message:

D(E(m, K,), K;) =m

for every key (K,, K,) € K and every message m € M.
One of the most known examples of the public encryption scheme is the RSA
scheme.

1.4.2 Key-agreement protocol

The key-agreement protocol is used for establishing the common key for later
usage in symmetric cryptography. It is used in the case when parties have no
opportunity to exchange data via a secure channel. There are many different
approaches on how to achieve this. One of the most used ones is Diffie-Hellman
key exchange protocol.

Diffie-Hellman protocol is based on the discrete logarithm problem.

Definition 13 (Discrete logarithm problem). Let us have a cyclic group G = (g).
For an element h € G compute such m € N that h = ¢g™.

One can easily compute ¢" for a given n € N. But it is believed that the
discrete logarithm problem is hard to compute, at least in a correctly chosen
group, for example the multiplicative groups of Z, or cyclic subgroups of elliptic
curves over finite fields.

Algorithm 2 (Diffie-Hellman key exchange protocol). The cyclic group G = (g)
1s publicly known.

1. Party A picks random a € N, party B picks random b € N
2. A computes g* and sends it to B.
3. B sends g° to A.

4. Both parties can now compute the same secret key (g°)® = (g)° = g®

At the end of the algorithm, both parties share the same key. This key
can not be computed easily without the knowledge of a or b. Thanks to the
discrete logarithm problem, the attacker is unable to compute these numbers
(in a reasonable time) only from g, g%, ¢°.



1.5 Difference logic

In the next chapter, we will need to reduce a certain problem to the problem
called “difference logic”. Because it is not a commonly known problem we will
introduce it here. We took inspiration from the second chapter of the paper
Bjorner et al.| [2008].

Definition 14 (Integer difference logic). The objective of the difference logic prob-
lem is to verify the existence of a solution of a system of inequalities of the form

;i —x; < ¢ Ee{l,...,m} i,j€{1,...,n} i j

where x1,...,x, € Z are variables and ¢; are constant integers. If the solution
exists, find such integer values of all x;,vy; to satisfy all inequalities in the system,
otherwise, output with failure.

This problem can be reduced to the problem of finding the shortest path
between every pair of vertices of a directed graph. This is a commonly known
problem which can be solved in polynomial time. The reduction is done as follows:

Claim 3 (Reduction of the difference logic problem). We will construct a directed
weighted graph G = (V, E) relevant to the given difference logic problem:

e V={s1,...,n}

o For each inequality x; — x; < ¢y in the difference logic system add an edge
(1,7) of weight ¢y into E.

e Foreachi € {l,...,n} add (i,s) of the weight 0 into E.

If G contains a cycle with negative weight, then there is no solution to the rel-
evant difference logic problem. If G does not contain any negative cycle, then we
can find a value of x; as the minimal weight of the path from i to s.

Proof of this claim can be found in the article Bjgrner et al.| [2008] as Propo-
sition 1.

Finding minimal weights for paths between every two vertices in a graph
with n vertices is a polynomial problem solvable in an asymptotic time O(n?) by
Floyd-Warshall algorithm (Floyd [1962]).



2. Tropical variation of Stickel’s
key exchange protocol

Stickel’s algorithm (Stickel [2005]) is one of many approaches to establish the key
exchange. The original algorithm works in a nonabelian group but it is vulnera-
ble to the linear algebra attack as was shown in (Shpilrain [2008]). In the same
paper, the authors suggested the usage of semigroups with a lot of non-invertible
elements. The concrete implementation of such protocol was presented in (Grig-
oriev and Shpilrain| [2014]. Their algorithm works with a semigroup of matrices
over the tropical algebra. We will be interested in this proposal.

2.1 Algorithm description

Let us have two participants A and B who want to agree on a secret key via an
unsecured channel for encrypted communication. Both sides have their public
keys which are known to everybody. All the parameters used in the following
algorithm are also publicly known.

Algorithm 4 (Tropical variation of Stickel’s key exchange protocol). Let R be
the semigroup of n X n matrices over the tropical algebra, and let A, B € R be
public matrices such that A® B # B® A

1. A picks two random tropical polynomials py(x), pe(x) of degrees taken uni-
formly randomly from {1,...,d} and sends U = p;(A) @ p2(B) to B

2. B picks two random tropical integer polynomials q;(x), go(x) of degrees taken
uniformly randomly from {1,...,d} and sends V = q1(A) ® q2(B) to A

3. A computes Ky = p1(A) ©V © pa(B)
4. B computes Kp = q1(A) ©U © ¢2(B)

After Algorithm [4]successfully ends, both sides A, B share a computed common
key K = Ky = Kp

Suppose that tropical operations (® and @) require a constant time to com-
pute when working with integers. Let us compute the time complexity of the
given algorithm.

Theorem 5 (The time complexity of Stickel’s algorithm). The time complezity
of Algorithm |/ is O(nd)

Proof. First of all, we have to calculate the complexity of tropical matrix opera-
tions:

e Matrix addition: to add two matrices in R we have to calculate minimums
of n? pairs of integers. It is in O(n?).

e Matrix multiplication: to multiply two matrices in R we have to calculate
a minimum of n results of integer addition for every matrix cell it is in O(n?).

10



e Scalar multiplication of a matrix from R is in O(n?).

In Algorithm 4] we have to evaluate tropical polynomials. The result of the
polynomial evaluation is also a matrix in R. To compute it in the worst scenario,
we have to compute all first d powers of the given matrix, multiply them by
a scalar integer and sum it all together. The complexity of computing all d
powers is in O(n?d). Indeed, powers can be precomputed and saved into a memory
to avoid computing the powers for every monomial separately. So it remains for
i € {1,...,d} to take the i-th power of the matrix and multiply it by a scalar.
And finally, sum it all together. It takes d scalar multiplications and d matrix
additions. Altogether, the polynomial evaluation is in O(n3d).

The most expensive operation in Algorithm {4 is the polynomial evaluation
which is carried out only constant times. The total complexity of Algorithm [4]is
O(nd). O

The goal of a passive attacker to Algorithm 4| is to compute the common
key with knowledge of the public parameters of the protocol and messages sent
during the key exchange — matrices A, B, U, V. It suffices to find matrices X,
Y satisfying the following three equations:

X0A=A0X
YOB=BoY (2.1)
XeoY=U

Now, we can easily compute K as:

XoVoY=Xo0qa(4)o@B)oY =qn(A)oX0Y 0 q¢q(B)=
=q(A)OU O @B)=Kg=K

Finding matrices X, Y as a solution of a system of linear equations would
be easy if we worked in a ring of matrices over a field. But since we compute
in a tropical algebra where addition is not invertible, this approach should not
work.

2.2 Simple heuristic attack

When computing powers for matrices in R, values of matrix entries are likely
to drop, especially if many of entries are negative. This behavior follows from
Theorem [14] which is described in the chapter about powers of tropical matrices.
A matrix with many negative entries tends to have also a negative value of the
parameter ¢ from Theorem [14]

Such behavior leads to the fact that a value of a polynomial of high enough
degree is given only by a monomial of the highest degree. This is because every
lower monomial usually has each matrix entry value higher than the leading
monomial. Thus for the polynomial p of degree d with a leading coefficient ¢y
and the matrix A we get with high probability:

p(A) =cq© A%?

11



This can be used in the following attack designed by Kotov and Ushakov (see
Kotov and Ushakov| [2018]). In the attack, we use the fact that the tropical mul-
tiplication of scalars is easily invertible — it is the same as the usual subtraction.

Algorithm 6 (Simple heuristic attack on Stickel’s protocol). The input of the al-

gorithm is an integer d (mazimal allowed degree of polynomials) and matrices
A, B, U.

1. For every i € {0,...,d} and for every j € {0,...,d} compute the matriz
T = U — A% @ BY

2. If T™ is constant for some ¢ € Z, T = c® (1)nxn, then set

X =coAY
Y = BY

and output with SUCCESS.
3. Else return FAILED.
Algorithm implementation in Python:

def simpleAttack(A, B, U, d):
Ai = A.getPowers(d) #Ai = 0, A”1, ... , A~d]
Bj = B.getPowers(d) #Bj 0 1, ... , B7dl
for i in range(0,d+1):
for j in range(0,d+1):
T =1U - (Ai[i] * Bj[j1)
if(T.isConstant()):
X = T.M[0][0] =* Ai[il #T.M[x,y] =
Y = Bj[j]
if (checkSolution(A,B,U,X,Y)):
return True

|
O

return False

This attack relies on the fact that with high enough probability the following
inequalities hold (in every matrix entry):

cgy, © A% < ;@AY ie{0,...,d —1}

) 2.2
CdQQBQdZSCiQBQl iG{O,...,dQ—l} ( )
where d; is the degree of p; and ds is the degree of ps.

Theorem 7 (Conditions of the success of Algorithm @ Algorithm @ yields the
solution (outputs with SUCCESS) if the inequalities hold for both matrices A
and B.

Proof. We will denote the degree of p; as d; and the degree of p, as d,. When
both inequalities [2.2] hold then the matrix U is computed as:

U =pi(A) ®pa(B) =cg, © A" @ ¢y, © B2 =k © A" @ BO%

12



for k = cq, + cq,.
Because dy,d; € {0,...,d} we must definitely find such 4,j in the first step
of Algorithm [g] that the matrix T is:

TIU—AQiQBQj:C@(]l)an

for some ¢ € Z. Therefore T has to be a constant matrix.
Now we need to verify that the conditions [2.1{ are met for the pair (i, 7).

1. X®A = A® X. This condition holds because of X = ¢® A®* and therefore
XOA=cOA 0 A=cO AT =cO A0 A" =A0co A = A® X.

2. Y ®B=B®Y. This condition is clear because Y is a power of B.

3. X®Y =U. This is true from the calculation of U and due to the fact that
i:dl andj:dg.

O

Theorem 8 (The time complexity of Simple heuristic attack). Time complexity
of Algorithm [6 is in O(n3d?).

Proof. The algorithm contains two nested loops, each one runs d + 1 times
in the worst case. The main work is done in the inner loop — matrix multi-
plication, which has a complexity O(n3). While this is done in two nested loops,
the complexity of loops is in O(n3d?). We avoided computing the i-th matrix
power every time in the inner loop by precomputation all needed powers before
loops, which corresponds to d times matrix multiplication, which is in O(n3d).
But this complexity is lower than the total complexity of loops.

Altogether, the total complexity of Algorithm [f]is in O(n®d?). O

2.2.1 Experiment

Although authors of the heuristic attack come with results of measured attack
time and attack accuracy, we would like to explore how the attack is affected
by a change of parameters n, d and size of the coefficients of polynomials. In Kotov
and Ushakov| [2018] there are considered only n = 10, d = 10 and coefficient sizes
equal to 103 and 10'°.

We have run the attack implemented in Python on the desktop computer with
Intel iCore 3.4 GHz processor and 16.0 GB RAM. We have run the algorithm for
various sizes of n between 5 and 30 and for d between 5 and 100. We have chosen
the maximal sizes of coefficients of polynomials as 10°.

As expected from asymptotic estimation, the running time of Algorithm H4] is
not very different from the running time of Algorithm [6] and with higher n it
increases very fast. For the maximum size of parameters, the successful attack
takes about 4 times longer than the key agreement. This makes this variant
of the key-exchange protocol unsuitable for practical use.

A little bit more interesting is the success rate of Algorithm [6 It can be
seen from results (Figure , that the success rate of the attack is very quickly
growing towards 100% with increasing n and d. Because the attack relies on the
occurrence of inequalities [2.2] it fails thanks to:
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Figure 2.1: Results of Algorithm [f]

e Small d: with small d there is not enough time for the matrix to make every
entry negative. Further, coefficients of polynomials also play an important
role. For example, if ¢;_; is negative and ¢4 is positive then it is possible
that for some i, j occurs:

€d © (Ad)z] = Cd-1 © (Ad_1>i,j

P

e Small n: with small n there is a bigger probability that most of the matrix
entries will be positive. In that case, it is not guaranteed that the values
of entries will decrease with the increasing power of the matrix.

2.3 Variant of the protocol with non-negative
numbers

What happens if we slightly change the Stickel’s algorithm to work only with non-
negative numbers? In the algorithm, we will generate only non-negative matrix
entries and polynomials coefficients. Rest of the algorithm stays the same. With
this change, we will not change the functionality nor the complexity of the algo-
rithm.

But now, while computing powers of the matrix, there are no negative numbers
and so the behavior of the matrix is less predictable. This has a big impact
on Algorithm [6] because there is only a small probability that there exists one
monomial which gives us the total value of the polynomial evaluation. When we
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run the simple attack on the non-negative variant of Stickel’s protocol we get
a very low success rate of the algorithm.

Success rate of the attack

Attack succes
[percentage)

oW

Maximal allowed degree of polynomials

Figure 2.2: Results of Algorithm [f] for non-negative numbers

There is an attack suggested in [Kotov and Ushakov [2018] which deals also
with non-negative protocol and which has a 100% success rate. Their algorithm
is looking for z;,y;, 7, j € {0, ..., d} which satisfy the following equality:

d

]

To achieve this, we have to solve the following system of equations. For
the matrices T% = A®* ® B® — U and every k,l € {1,...,n} it has to hold:

r%%n{xi+yj +T,§’j} =0
We will denote minimum of the entries in the matrix 7%/ as m; ;:
mi; = mk?ln Tii
Further, we compute (d + 1)? sets of minimum entries of 7%7:
Py ={(k,1); Tgd = mi )

Now, from these sets, we generate covers of the set {1,...,n} x {1,...,n}
and for every cover C' we get the following system of equalities and inequalities:

xr; + Y; = —myj, Pi,j eC
T +y; > —m,j, P ¢C

(2.3)

For a given C, system [2.3] does not always have a solution. A smaller amount
of equalities gives us a bigger probability that this system is consistent and can
be solved by linear algebra tools. The optimum is a minimal cover. But finding
the minimal cover is a NP-complete problem (Chew).
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In the article written by Kotov and Ushakov| [2018], they solve the system
by finding all covers of {1,...,n} x{1,...,n}, ordering them by the number
of sets used in the cover and other criteria. After that, they are trying the covers
one after another until one of them yields the solution of 2.3] This approach — to
generate all covers — works fine for parameter d = 10 because the size of most of
the P, ; is small and so there are about 700 covers on average (according to their
measurement). But because there may be exponentially many covers (in d) the
attack time will probably grow exponentially with d. When we run their imple-
mentation of the attack, we waited only one second for the solution when d was
10, nearly 20 seconds for the solution for d = 20 and more than 200 seconds for
d = 30. The size of the matrix was always the same: n = 10.

2.4 General attack

It seems that Stickel’s protocol could be resistant against attacks proposed in [Ko-
tov and Ushakov| [2018] as long as entries of matrices A and B are non-negative.
But if we do not require 100% success rate of the attack we can construct Algo-
rithm [9] which is only a slight modification of the attack proposed by [Kotov and
Ushakov| [2018]. The complexity of our attack is not exponential with respect
to the running time of tropical Stickel’s protocol.

In our attack, we will not be searching through all covers. We will just pick
one, which should be close to the minimum one, and test if it yields a solution.
With this approach, we get a relatively high success rate and whenever we get
the solution, we get it relatively fast.

Algorithm 9 (Attack on Stickel’s protocol with non-negative numbers). Input
of the algorithm is the mazimal allowed degree of polynomials d and matrices
A, B,U.

1. For everyi € {0,...,d}, for every j € {0,...,d} compute matriz T* as
T% = A © B¥ —U

2. For all T compute the set P;; as:

Py = { (k.05 T3 = min T}

3. Find such pairs (i,j) that P;; has to be in any cover of the set {1,...,n} x
{1,...,n}. By this we mean that if for (k,1) € {1,...,n} x{1,...,n} there
exists just one P, j such that (k,l) € P, ;, then add this P, j into the cover
C.

4. Iterate the following until C' is a cover of {1,...,n} x {1,...,n}:

(a) pZCk (aa b) from {17 cee an}X{L e ’n} SUCh th(lt (a’b) g_f {U P7 P < C}
(b) Find the set Cop = {P,j;(a,b) € P}
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(¢) Find such P, j € C, that P,; has the mazimal size among sets in Cg
and append this P; j into C

5. Try to find a solution of the system[2.3:

T +y;=—mi;, PjeC
Ti+y; > —myj, Py ¢ C

6. Return SUCCESS iff the solution exists

In our implementation, we left the solution of the 5-th step of the algorithm
for the SAT solverfll

As we will show in Theorem [I0] the time needed by the attack depends mainly
on computing all matrices 7%/ the rest of the algorithm is really fast. In experi-
ment measurements, we checked that the success rate of the attack is around 70%
(see figure which is high enough. The success rate could be further improved
by devoting more efforts to search for the minimal cover or trying more covers
candidates for the one which yields the solution.

Theorem 10 (Time complexity of the attack on Stickel’s protocol). The time
complezity of Algorithm[q is O(n*d?)

Proof. The first step of the algorithm is to compute all T% for all i € [0,d], for
all j € [0,d]. For this it is needed:

e Precompute all the powers of matrices A and B. For every matrix it is
needed to perform d tropical multiplications, altogether the complexity
of precomputing the powers is O(n3d).

e For computing one of the 7%/ we need to perform one tropical matrix mul-
tiplication and one classical matrix subtraction. So for one T we have
complexity O(n?), for every T we obtain the complexity O(n3d?).

From this, we have the complexity of the first step: O(n*d?).

The second step of the algorithm is easy — we just have to find minimum values
in every matrix 7. For that, it is needed to look at every value of the matrix.
And for finding all the pairs (k,!) where the minimum is achieved we have to look
at every value once more. Altogether, the time complexity of step 2 is O(n?d?)
because we have to go through d? matrices with n? entries.

Because we need to check if a concrete pair (k,!) is in P, ; we can implement
P, ; as a field of size n x n. If (k,l) € P,; then P, ;[k,l] = 1, else we set the value
of P, ;[k,l] = 0.

We have implemented step 3 as follows:

e Fill array a of the size n x n with zeros.
e For every P, ; and for every (k,l) € P,; increment alk, (| by 1.

o If a[k,l] = 1 then find the only one P, ; that (k,l) € D ;.

173 Solver library for python: https://pypi.org/project/z3-solver/
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So we need to iterate over every member of every P;; which includes n?(d + 1)?
members. And then, in the last part of this sub-algorithm, we iterate through
every P, ; and we are looking for the one where P, ;[k,[] = 1. This can be done
also in O(nd?).

The maximum number of iterations of substeps of step 4 is limited by n?.
The maximal size of the cover C' can be n?. We note which tiles of the field
{1,...,n} x{1,...,n} are covered into some field ¢ of size n x n. In the substep
(b) we iterate through (d + 1)? sets P;; and check whether the value of P, [a, b]
is equal to 1. In the substep (c), we list through the sets P, ; of C,, there are no
more than (d + 1)? of them. We need to find out the number of 1 in P, ;. This
could be done during the calculation of P;; and saved into some auxiliary field
of size (d+ 1) x (d + 1) without affecting the complexity. The total complexity
of step 4 is in O(n?d?).

The 5-th step of the algorithm is tricky. We left the solving of the system of lin-
ear inequations and equations on the SAT solver because the number of equalities
and inequalities is low enough for solving by it. But we can compute the com-
plexity of this step.

We have a system of linear integer equalities and inequalities. There are all
together (d+1)? of them with a total number of 2(d+1) variables. We will reduce
this into integer difference logic problem (see Definition similarly as in Miné
[2006]. We will define 2(d + 1) variables: Zo,...,Z4,7o,.-.,94- The variable
Z; corresponds to the negative form of x;. The variable g; corresponds to the
variable y;. From every equality of the shape z; + y; = —m, ; we can create two
inequalities: x; +y; < —m, ; and z; +y; > —m; ;. Then we will process through
all inequalities and transform them into the form suitable for the difference logic:

® Tty = —mi;  — Ty — Y <My

® T, +y; < —Mmy; ; — gj —z; < —my ;

Now we have built a set of inequalities which meets entry conditions of a difference
logic problem. That problem is solvable in polynomial time depending on the
number of variables. We have 2d variables, so using, for example, Floyd—-Warshall
algorithm we will get the complexity of this step in O(d?).

The total complexity of Algorithm [9]is O(n3d®). O

From these results, we came to the conclusion that the suggested tropical
scheme for key agreement is not suitable for real usage. We have an attack which
works with high success rate and its complexity is only polynomially worse than
the key agreement protocol (Algorithm .
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At this point, we would like to briefly explore another variant of the Stickel’s
protocol. The main disadvantage of the original tropical protocol is the need for
the evaluation of matrices by polynomials. When it would be enough to compute
only one matrix power (for each matrix) we would get logarithmic time for the key
generation because there exists a fast algorithm for computing powers — binary
exponentiation. In the attacks that we were discussing, it is needed to precompute
all the matrix powers which had to be done one after another. So we would get
a fast algorithm against slow attacks and one could think about the practical
usage of the algorithm as an implementation of a secure key-agreement protocol.

Algorithm 11 (Fast Stickel’s key exchange protocol). Let R be the semiring of
n X n matrices over the tropical integers, and let A, B € R be public matrices
such that A® B # B ® A.

1. A picks two random positive integers ay, ay and sends U = A® © B9 o B.
2. B picks two random positive integers by, by and sends V = A®" @ B> to A.
3. A computes Ky = A OV © BY%2,

4. B computes Kg = A® © U ® B®%.
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In the whole algorithm, we generate random integers (a1, as, by, by) of the maximal
value d.

Since the algorithm works mainly as the original tropical Stickel’s algorithm,
it is not hard to compute its complexity.

Claim 12 (Complexity of the Fast Stickel’s algorithm). The fast tropical Stickel’s
protocol has time complezity in O(n®log(d)).

Proof. Using the binary exponentiation we recompute the complexity of com-
puting U and V. Because there is needed to carry on only O(log(d)) matrix
multiplications when calculating A®?, the time complexity of computing A®? is
O(n3log(d)). Still, we need to compute only a constant number of matrix pow-
ers and do some matrix multiplications in the rest of the algorithm, the total
complexity of Algorithm [11]is O(n?log(d)). O

Both attacks which we presented are based on computing all matrix powers
from 0 to some unknown d. The essence of the simple attack (Algorithm @ was
to find out the exact maximum degrees of the polynomials generated during the
Stickel’s algorithm. Because now the calculation of U (and V respectively) is only
a product of two matrices and it is not complicated by a polynomial evaluation, we
would get a deterministic attack with 100% success rate when using Algorithm [6]
But its complexity would stay in O(n3d?). So the complexity of the attack is
exponential against the complexity of the key exchange protocol (Algorithm
in d. And it makes sense to fix the matrix size n and to think of the attack
complexity only in the parameter d.

We tried to run the attack (Algorithm [6) on Protocol [L1] with a low absolute
value of matrix entries. We found out that, despite the fact that the chosen
exponents a;, b; were really large, the attack came out with a positive result very
fast. When we let it list the found exponents, the results were really surprising.
The attack found the matrix 7' constant for really low powers (only about 5)
of matrices A and B. That inspired us for the further exploration of the matrix
powers behavior in the next chapter.
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3. Tropical matrix powers

In this chapter, we will focus on computing matrix powers in tropical algebra.

In the whole chapter, we will stay focused only on square matrices with integer

entries and our tropical algebra stays over the set Z U {oco}. Because of the zero

element of the tropical algebra, matrices may contain the tropical zero (co) value.
Let us recall the matrix multiplication in a tropical semiring.

= (CL,’J ® bl,j Da® b2,j b---Da;,O bmj)

ij=1,..n

(min(am +b1j,ai2 +bajy oo Qi + bnyj))

(m,jn(az‘,k + by 5)

i7j:17"'7n

)i,jzl,...,n

3.1 Congruence of tropical matrices

We will start with an easy example.

Ezxample 3. Let us look at what happens during the computation of powers
of the matrix of size 2 x 2 when the values of its entries are ordered: a;; <
a1z < agy < aza

A= a1 Aa12
21 Q22
A®2 . min(2a171, ay2 + a2,1> min(al,l + a1,2,01.2 + a/2’2)
min(ag,l + Q11,022 + CL271) IIliIl(CLQ}l + ai 2, 2(12,2)

. 2a1 1 a1+ a1
a1+ a1 Qo+ as;
403 — (m1n(3a171, ajq+ais+az) min(2ay 1 + 12,411 + a12 + az2) )

min(2a; 1 + ag1, @12 + 2a21) min(ai; + a12 + asy,a12 + az1 + aso)

o 3ai,1 2a11 + a2
2a11 +az1 a1+ ay +asg

And if we continued with higher powers, we would have noticed that difference
of consecutive powers is always the same. That means that for every ¢ > 3 holds:

A®T . AGG=1) (al,l Gl,1>

11 Qi1

In other words, we can express the i-th power of the matrix A as a tropical
scalar multiple of the (i — 1)-th power of the matrix A:

A% =, @ ACG-D)

Let us define some terms for further usage:
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Definition 15 (Constant matrix). We will call the matriz constant whenever all
of its entries have the same value ¢ for some c € Z. We will denote the fact that
the matriz A of size n X n is constant (for given c) as:

A=c® (1)nxn

The surprising fact from the last section of the previous chapter leads us
to the definition of constantly different matrices. We could call A, B € Z"*"
constantly different iff it holds that A — B = ¢ ® (1),x, for some ¢ € Z. This
definition is good enough when we do not work with the tropical zero element .
For that we need a better definition of constantly different matrices:

Definition 16 (Constantly different matrices). If for A,B € (Z U {oo})™ "
and some ¢ € Z holds that A = ¢ ® B, then we call these two matrices con-
stantly different.

Nonnegative powers of a matrix define a subsemigroup of ((Z U {oo})™*" ®).
As we have seen in the previous Example [3| it can happen that the semigroup
will contain constantly different matrices. We can define congruence on this
semigroup:

Definition 17 (Tropical matrix congruence). On the set of integer square ma-
trices (ZU{o0})™*™ we define the congruence =. We say A = B when A =c©® B
for some ¢ € Z (A and B are constantly different).

It is easy to verify that this relation is congruence.

Now we would like to look at the semigroup generated by some matrix under
this congruence. If we take the semigroup generated by matrix A from Exam-
ple (3| then the quotient semigroup ((A)—, ®=) is finite and has only 3 elements
(AP0, ACL A©2).

Not surprisingly, not every matrix behaves like the matrix given in Example[3]
FExample 4. The matrix which has different entries on diagonal and tropical ze-
ros off-diagonal generates an infinite sub-semigroup of ((Z U {c0})™*", ®) under
the congruence =.

Ezxample 5. Let us have a matrix B of size 2 x 2 with entries:

27
#= (]
Then when we are computing powers of B we can discover that for every ¢ > 13
it holds that B® — B®(~1) is a constant matrix (for smaller 4 this does not hold).
This means that:
[((B)=,0=)[ =13

FExample 6. Let us have a matrix C of size 2 X 2 with entries:

()

If we compute powers of C' we will not find any ¢ € N for which C®* and C®¢~Y are
constantly different. But on the other hand, if we check the result of C® —C®(~2)
for ¢ > 4 then we will find out that it is a constant matrix.

From the previous examples, we obtain an intuitive question. What are all the
possible structures of quotient semigroups (under the congruence =) generated
by tropical matrices? What are the conditions for the semigroup to be finite?
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3.2 Structure of quotient semigroups generated
by tropical matrices

In the previous examples, we have presented two different types of quotient semi-
groups ((A)=, ®=). The first is an infinite semigroup, the second is a semigroup
composed of a tail and a cycle. Of course, a semigroup generated by the identity
matrix (I,x,,®) has only one element, but when considered as a quotient semi-
group with the congruence = it corresponds with the second type having a tail
of the length 0 and a cycle of the length 1.

Figure 3.1: Two types of quotient semigroups of integer tropical matrices

For a tropical square matrix, we can define cyclicity and transience which
characterize a structure of a finite semigroup generated by this matrix under
the congruence = as we will see in Definition [I9]

3.2.1 Cyclicity theorem

We would like to characterize the criterion for the type of the quotient semi-
group created by the given tropical matrix. This topic is covered in the article
Supertropical matriz algebra II1: Powers of matrices and their supertropical eigen-
values (Izhakian and Rowen| [2011]). We will recapitulate the main ideas from
it and we will expand them more in the following subsections.

Let us recall that we can represent a matrix by its precedence graph (see
Definition . This will be useful for an illustration of how the matrix powers are
computed. Thanks to the definition of tropical multiplication, we can execute
the computation of matrix powers on its precedence graph. We will start with
matrix multiplication:

Claim 13. Let us have three matrices A, B,C € (ZU{o0})"*" such that A® B =
C. Let I'4,I'p be precedence graphs of corresponding matrices. Then c;; equals
to the weight of the cheapest path of the length 2 from i to j, when we take the first
step in a graph T4 (from i to some vertex x) and the second step in I'p (from x
to j). When no such path exists, then ¢; ; = 0o.
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This implies that when computing powers of a matrix A, the value of the entry
a’y in A™ corresponds to the weight of the cheapest walk of the length m from
the vertex i to the vertex j in I'4.

Definition 18 (Irreducible matrix). We call matriz A irreducible whenever I 4
1s strictly connected.

The behavior of matrix powers for an irreducible matrix is described in Cyclic-
ity theorem, which is referred to as a given fact in many papers on the tropical
algebra. But to locate the exact citation with proof was not easy, and finally, we
managed to find it in |Gaubert| [1994] as Theorem 1.2.3. We present it here in the
context of our work as follows:

Theorem 14 (Cyclicity theorem). If the matriz A € (ZU{oo})™ ™ is irreducible,
then there exist ¢ € Z and p € N such that for k € N high enough it holds that:

A@(k+p) —cO A@k

Definition 19 (Index of cyclicity and transience of a matrix). The smallest
possible p € N from Theorem is called cyclicity (or the index of cyclicity) of A
and we will denote it as pa. The smallest possible k € N is called transience (or
the index of transience) of A and will be denoted as ta.

We will see later in this chapter that the value of p4 can be computed from the
precedence graph of A (see Lemma . Further, we will see in Proposition ,
that ¢ = A\(A)®P4 where A\(A) is an average cost of one step in a critical cycle
of T'4. There exists an upper bound for the value of ¢4, we present it in Claim [17]

This implies that every tropical matrix from Z"*" creates a finite semigroup
under the congruence =. What about matrices which contain a tropical zero
element? While the precedence graph stays strictly connected, then such a matrix
corresponds to a finite semigroup, again by Theorem [14]

3.2.2 Quotient semigroups with a cycle

For this moment, we will focus only on matrices with strictly connected prece-
dence graphs. We want to estimate the length of a cycle and a tail of the semi-
group generated by such a matrix with respect to =.

The length of the cycle

Let A be a matrix of size n x n and, for simplicity, let A be from Z"*". From
Cyclicity theorem, we know that this matrix is cyclic and p denotes cyclicity of A.
What does cyclicity mean for I'4?

Critical cycles are important for the cyclicity of matrices. We can interpret
entries in the k-th power of a given matrix as the cost of the cheapest k-step walk
in its precedence graph. Thanks to that, the walk has to contain some cycle when
the power grows because the number of edges in the graph is limited by the size
of the matrix. It can be shown that, for high enough power, the cheapest k-step
walk will contain one of the critical cycles because they have the smallest average
cost per step which outweighs the cost needed for getting to and from the cycle
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(for a detailed explanation see Chapter 4 — Critical Bound of |Charron-Bost et al.
[2017]).

For this moment, let us suppose that I'4 contains only one critical cycle.
In that case the length of the critical cycle equals to cyclicity of the matrix
as follows from Lemma . Let . be the length (in the meaning of the count
of edges) of that critical cycle. When we have the cheapest k-step walk in I'4
from ¢ to 7 which contains a critical cycle, the cheapest (k + [.)-step walk in I'4
from 7 to j is supposed to differ only in one more pass through the cycle. For
small k (compared to the number of vertices of I'4) this extension of the walk does
not have to go through the critical cycle in every case. But it should illustrate
the behavior of powers of A.

From that, one would suggest that the maximum cyclicity of A can be n.
The cycle with the smallest average weight can go through every vertex only
once. But things are getting more complicated when we have a matrix with I'4
which contains more critical cycles as we illustrate in the following example.

Example 7. Let us have the following matrix:

100 1 10 10 10

1 100 10 10 10
A=110 10 100 1 10
10 10 10 100 1

10 10 1 10 100

Figure 3.2: The precedence graph of the matrix A from Example

It can be seen that I'4 contains two cycles with the average weight 1. The
first one (we will call it ¢;) is 1 — 2 — 1, the second one is 3 -4 — 5 — 3 (we
will call it ¢3).

It is clear that when we are powering A to the k for 2 | k then the cheapest
walk 1 — 1 of the length & uses only ¢;. On the other hand, for 3 | k, the cheapest
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walk 3 — 3 uses only ¢5. When we tried to compute powers of A, we have noticed
that the first different powers which are constantly different are 2 and 8 and it
holds that A®® — A®2 = 6 (1)5x5. And, as we will describe in Lemma , thanks
to the fact that both cycles in the critical graph of A are disjoint the cyclicity
of A is indeed equal to 6.

From what we have seen so far (and is further described in De Schutter| [1999)]),
we can formulate the following statement:

Claim 15 (Cyclicity estimation). For a tropical irreducible matriz of size n x n
holds that its cyclicity p is a divisor of the least common multiple of lengths
of critical cycles in T 4.

So we have some upper bound for matrix cyclicity. We look at I'4, identify
critical cycles and compute upper bound as the least common divisor of their
lengths. That it is only an upper bound can be seen from the following example
of a matrix with intersecting critical cycles.

Example 8. Let us have the following matrix:

100 1 1
A= 1 100 10
10 1 100

Then the critical graph of A looks like this:

Figure 3.3: The critical graph of the matrix A from Example

The matrix A has two critical cycles: 1 - 2 - land 1 — 2 — 3 — 1.
But the cyclicity of A is only 1 because 2 and 3 are co-prime numbers. This

follows from Lemma and we can verify it by calculation. We can see that
AP — A% =1 © (1)3x3, thus the cyclicity of A is 1.

In De Schutter [1999] in Section 3, there is a guide on how to compute the
cyclicity of the given matrix in Section 2. First of all, we need to find a critical
graph of I'y. Then, for its every connected component, we need to compute
its cyclicity as the greatest common divisor of lengths of its elementary cycles.
And finally, we have to find the least common multiple of cyclicities of these
components.

Lemma 16. Let A be an irreducible tropical matriz and ' 4 its precedence graph.
Let Cy be the critical graph of I'a. Let Cq,...,C,, be disjoint connected components
of Ca. For every component C; we can compute its cyclicity p; as the greatest
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common divisor of lengths of its elementary cycles. The index of cyclicity pa
of the matriz A can be computed as:

pa = lcm(pla cee 7pm)

Further, we can compute \(A), A\(A) € Q which denotes an average cost per
step in a critical cycle of A. Let ¢y be an arbitrary critical cycle in T 4. Let l; be
the number of edges in ¢; and wy be a total cost of ¢;. The value of \(A) can be

computed as:
wy

b

As is described in De Schutter| [1999], the cyclicity can be computed with time
complexity O(n?) where the size of the given matrix is n x n. To compute the
cyclicity, it is needed to run three algorithms. One for computing the average
weight of a step in a critical cycle. Then we need to construct the critical graph
of the matrix. And finally, one can compute the cyclicity from the critical graph
by the algorithm constructed in Denardo| [1977].

Later, we will use an upper bound for the cyclicity, which is exp(%) according
to Lemma 3.7 from De Schutter| [1999).

A(A)

Transience of a matrix

To estimate the length of a tail of a quotient semigroup is more complicated.
We know that every irreducible matrix is cyclic and therefore for every matrix
A there exists k for which every cheapest k-step walk from ¢ to j in I'4 contains
some of the critical cycles. Such k will give us the upper bound for the transience
of A.

It can happen that A contains two cycles, one with the smallest average weight
and another one with average weight only slightly larger. Eventually, with high
enough power of A, every cheapest walk ¢ — 7 will contain the critical cycle.

Fxample 9. Let us slightly change matrix A from Example

100 2 10 10 10

1 100 10 10 10
B=1]110 10 100 1 10
10 10 10 100 1

10 10 1 10 100

Now, the cycle with the smallest average weight is 3 - 4 — 5 — 3 and we
will call it ¢;. The average cost per step of ¢; is 1. The second cheapest cycle is
1 — 2 — 1 (cz) with an average cost per step equal to 1.5.

Let k be a multiple of 6. We are constructing the k-step cheapest walk from
1 to 1. First, we can try the walk which contains only edges between vertices 1
and 2 — it uses the cycle c;. We can see that for small & it is really the cheapest
k-step walk from 1 to 1. The cost of this walk is %

On the other hand, we can try another walk — which uses the cycle ¢;. It starts
at 1, goes to 3, cycle in ¢; for % times and finally goes from 3 to 2 and back to
1. The total cost of this walk is 18 + k.

When we compare these two walks, we can compute that the second one is
cheapest for £ > 36. And by calculation, we can verify that 36 is transience of A
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because A9 — A9 =3 © (1)545 and there are no lower powers of A which are
constantly different.

From the example, it can be seen that the transience of a matrix depends
on the average cost per step of a critical cycle and average cost per step of the cycle
with the second lowest cost per step. The next theorem (see original Theorem 4.3
in Nowak and Charron-Bost| [2014]) gives us an upper bound for the transience.

Claim 17 (An upper bound for matrix transience). Let A be an irreducible trop-
ical square matrix of size n. Then the transience of A is at most:

2n2||A|

2@ - n(A)

where ||A|| is the difference between the mazimum and minimum finite entry
in the matriz A.

Remark. In the previous claim, the symbol \(A) means an average weight per
step in a critical cycle (as in Lemma[16). And Xy(A) is an average weight per
step in a non-critical cycle with the least average weight per step.

The following proposition provides us the value of ¢ from Cyclicity theorem.

Proposition 18. Let A be an irreducible matrixz with the index of transience t
and cyclicity pa. For k,l € Z such that k,l > tax and k =1 (mod pa) it holds
that:

A@k _ )\(A)@(k—l) 0 A@l

Proof. From Theorem 2.1 and Theorem 2.3 of De Schutter| [1999] follows that:
ACtatpa — )\(A)QPA ® ACta (3.1>
We can express k and [ in the following manner:

k=1tas+ ugpa + vi
l=ts+wpa+u

where ug, u; € Ng and vy, v, € {0,...,pa — 1}. This decomposition is unambigu-
ous. Because k =1 (mod p4) we know that v, = v;.
The rest is clear from equality [3.1} O

3.2.3 Quotient semigroups without a cycle

Now we will focus on matrices without a strictly connected precedence graph.
Every reducible tropical matrix can be transformed into the following form by
renumbering indexes of rows and columns (see Proposition 3.10 in Izhakian and
Rowen| [2011]). If the matrix is supposed to be reducible, there has to be a tropical
zero block in the matrix.

By Cip ... Cipo
€ B, . 02,(7%2)
€ € B,



Every B; is a square irreducible matrix and C; ; are rectangle matrices of a suit-
able size.

A special example of a reducible matrix is the matrix with non-zero blocks
only on the diagonal, such as this one:

By ¢ €
e By €
€ e B,

All B;’s are square irreducible matrices.

Such a matrix creates an infinitely large semigroup in general, but its blocks
are independent of each other and are cyclic.

A matrix with non-zero blocks above the diagonal is more complicated. When
computing powers of this matrix, blocks on the diagonal stay independent of ev-
erything else. Values in blocks above the diagonal are dependent on other entries
of the matrix. But as we will show, they behave similarly like cyclic matrices.
Let us illustrate this with an example:

Example 10. Let us have a matrix X of size 5 x 5 in a triangular form with blocks
A, B, C' which do not contain element €. A and B are square matrices of sizes
2 and 3. We will denote matrix entries in the following way:

11 A12 C13 Cia Cip
Q21 Q22 C2 Co4a C2

A C ) ) 3 , )5

X = = € € b3z b3y b3s
€ B ) 5 )

€ g b4,3 54,4 b4,5

€ € b5,3 b5,4 55,5

We can construct a precedence graph of matrix X. It consists of 5 vertices and
is composed of two complete subgraphs corresponding to blocks A and B. Edges
from block A to block B are given by entries of the block C.

From I'x it can be clearly seen that blocks A and B are dependent only
on themselves. When computing the k-th power of X, all walks of length k& which
both start and end in the block A contain only vertices 1 and 2 due to the absence
of edges from B to A. Similarly for the block B.

What happens with block C'? The entries in the k-th power of X correspond-
ing to block C are given as a weight of the cheapest k-step walk from one of the
vertices of A to one of the vertices of B. Again, thanks to the absence of edges
from down to up, we can see that such a walk consists of ¢ steps A, one step on
a C edge and n — ¢ — 1 steps in B.

Then for high enough k, every k-step cheapest walk from a (vertex in block
A) to b (vertex in block B) will contain some of the critical cycles. This means
that when comparing blocks of X* and X*P (for p = lem(pa, ps) where py is
cyclicity of A and pg is cyclicity of B), the blocks are constantly different. But
the constant differs for each block.
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Figure 3.4: The precedence graph of matrix X from Example

Definition 20 (Partially constant matrix). We call the matrixz partially constant
when it is in an upper-diagonal form, it has square blocks on diagonal (other
blocks are given by the sizes of diagonal blocks) and its every block is constant.

We will try to show that there is a relation for reducible matrices similar
to the congruence = for the irreducible matrices. For simplicity, we will focus
only on matrices in the upper triangular form with two blocks on the diagonal.
We believe that it can be proven that matrices with more blocks on the diagonal
behave similarly.

Hypothesis 1. Let us have a reducible tropical matrixz X in the upper triangular
form with two blocks on diagonal.

A C
()
There exist ng € N, o, 8,7 € Z and p € N such that for every n > nq it holds

that:

X O+p) <a®p © A 7®p © é)

€ 8% o B
where
A C
X@(n) _ -
(2 5)

Moreover, it holds that v = o + 5.

We will give some arguments about why this hypothesis should hold.

The claim is clear for the blocks on diagonal thanks to the fact that their
values are independent on other entries of X. Blocks A and B are cyclic matrices
and we can take ng as the maximum of transiences of A and B. For a matrix with
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non-zero blocks only in the diagonal the value of p is the least common multiple
of cyclicities of these blocks (as follows from [Izhakian and Rowen| [2011]). We
suppose that this stays true also for the block above the diagonal.

It is likely that the following should be true for the value of v. It seems that
v =a®f (v is minimum of o and ). We know that « is an average weight
of one step in a critical cycle of the matrix A. And accordingly, [ is an average
weight of one step in a critical cycle of matrix B.

How do entries of C' look like? From Figure it is clear that they correspond
to the weight of the cheapest n-step walk from some point in the subgraph of A
to some point in the subgraph of B. First a steps are in A, one step is an edge
from A to B and then there are b steps in B (and it holds that a + 14 b = n).
Because n is big enough, the walk should use critical cycles in A or B. If @ > f3,
then it most likely uses critical cycles in B and vice versa. It seems to be true,
that when computing a bigger power of X the walk uses more steps in the better
critical cycle. From that, we think that v = a & .

We can prove the following claim. When Hypothesis|1|is true then there exists
a relation for reducible matrices similar to the congruence =.

Claim 19. Let us have some reducible tropical matrix X in the upper irreducible
form with two blocks on the diagonal.

A C
= (5)
Suppose that there exist n,p € N, o, 8 € Z such that:

X Ontp) _ (CY@A (O‘@ﬁ>96’>

5 OB
where
()
Then the following holds:
X Op+1) _ (04 OA (a® B)© 5')
€ OB

A
X@(n+1) — ~
e B

Proof. Our interest is only in the block over the diagonal because the values
in the blocks on the diagonal are given only by matrix A (respectively B). And
the behavior is given by the cyclicity of A (respectively B).
First of all, from
X"oX=X0oX"

it holds that B B _ _ -
AoCoCoOB=AcCoCeoOB=C
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Let us suppose that 5 < . Then a® = 5. Now we can compute X ©+p+1)
as:

XOm+p) — Y @ xOmtp) — (A C) . <a OA (a®p)o C) _

e B e 6@@
_(a0d (a@poAcCofOCOB) _
R BoB =
_(a0A BO(AGCRCOB)) _ (a0A ol
- e B@B/ o c B@B’

When o < 3 we can get the following equality in a similar way as the previous
one:

XOm+ptl) — x o xOm+p) — (@ OA a® Q’
€ b8 B

The theorem is proven and it holds that

X@(n+p+1) _ a® ;T/ (a D 5),@ 5”
€ BoO DB

[]

Definition 21. Let us have two square reducible tropical matrices X,Y of the
same size, both composed of 4 blocks. We denote blocks on the diagonal of X as X;
and Xs, the block above the diagonal is marked as X3.

We will denote X =, Y if there exist a, B € Z such that:

v — a0 X (@) O X;
B € B o Xy

The defined relation =, s is not congruence but it is only equivalence.
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4. Back to Fast Stickel’s protocol

In the previous chapter, we got a theoretical explanation for the reason why
the simple attack on Protocol [L1] was so successful.

Let us recall the essence of Fast Stickel’s protocol (Algorithm . Tropical
square matrices A and B are publicly known. Party A choose two random positive
integers a; and ay which are its secret key and computes the matrix U = A% &
B® and sends it to B. Party B choose two random positive integers b; and b,
which are its secret key and computes V = A®" © B and sends it to A. The
common key can be obtained as K = A1 0V © B9 = A% o U @ B®",

4.1 Irreducible matrices

Matrices tested in Protocol [[1l were irreducible with low matrix entries and thanks
to that the quotient semigroups had short tails. So the attack always works if
chosen exponents a;, b; are greater than the length of a tail of the correspond-
ing matrix. When the chosen coefficients are not bigger than lengths of tails,
the attack fails.

Algorithm 20 (Attack on Fast Stickel’s protocol). The input of the algorithm
are matrices A, B,U,V of size n X n. Both matrices A and B are irreducible.
U and V are matrices computed in Protocol [11].

e Find the cyclicities pa, pg of the matrices A and B

e Find the value v — the difference between the mazximal and minimal finite
entry in A and B.

o Putly=Ilp=2n*(1+nv).

o Try to find such integers is € {0,...,pa—1} and ip €{0,...,pp — 1} that
T = U — A®Uatia) o BOUs+is) 45 o constant matriz. If no such i, ip exist,
return with failure.

o Let T=c® (1)pun. Then for X = c® ACLatia) 'y = BOUs+in) ye get the
secret key K as
K=X0oVoY

Theorem 21 (Algorithmworks). Let t 4 be transience of the matriz A and tg
the index of transience of B. In the case that ay >t and ay > tg, Algorithm[2(
finds the secret key computed by Fast Stickel’s protocol.

Proof. First of all we need to check that [4 > t4 and [g > tg. Let us recall the
upper bound fog the index of transience of an irreducible matrix from Claim [17]
It is 2n% + %.

What is the least possible value of denominator? Both A(A) and As(A) can
be expressed as A(A) = £, A\y(A) = £2 where m, m, € N are the lengths of some
cycles and k, ko € Z are the costs of the cycles. And it holds that A(A) < Az(A).

Further, it has to be true that m < n, mo < n. From all this, we know that

AA) = Ma(A)] > .
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And that is the reason why 4 = Ip = 2n?(1 + n?v) > max{t,tp}.

The matrix U was computed as U = A®" © B®%2, Because we are searching
through the whole interval of cyclicity and we are above transiences, there has
to besuch iy € {0,...,pa— 1} that A®% = A®Ua+ia) and such ip € {0,...,pp —
1} that B®2 = BOUs+is)  Therefore X 0 Y = U. O

Theorem 22 (Time complexity of Algorithm . The time complexity of Algo-
rithm |20) is in O(n®(exp(22) + log(n)log(v))) where n is the size of the matrices
and v is the difference between the maximal and minimal finite matriz entry.

Proof. In the first step of the algorithm, we need to compute the cyclicities of both
matrices. It can be done in O(n?) (De Schutter| [1999)]).

Further, we need to compute A4 (and B®'2, which has the same complex-
ity). Because I, = 2n?(1 + n?v) we need to perform log(2n?(1 + n?v)) matrix
multiplications which is in O(n®log(n)log(v)).

In the fourth step, we need to try p4 values of i4 and pg values of ig. The
upper bound for matrix cyclicity is exp(?) according to De Schutter| [1999]. Alto-
gether, we need to process at most exp(%”) matrix multiplications which has the
complexity (’)(exp(%”)n?’ ). We have precomputed values of A®'4 and B2, we can
also precompute first p4 powers of A (and pg powers of B) in time O(exp(%)n?’).

Altogether the complexity of Algorithmis in O(n?(exp(22)+log(n)log(v))).

O

When we compare the complexity of the attack with the complexity of Pro-
tocol [11] which is O(n?log(d)), then the attack seems to be inappropriate. But
the complexity of the attack mainly depends on the fourth step of Algorithm [20]
A randomly generated matrix would not have exponentially large cyclicity be-
cause it is not likely that there would be more disjoint critical cycles of large
lengths in a random matrix. If we consider that there is only one critical cycle
in the randomly generated matrix, then the cyclicity will be at most n and the
complexity of the attack will be in O(n®log(v)). That is only quadratically worse
in n than the key agreement protocol. And moreover, the complexity of the at-
tack is independent on d (though it depends on the logarithm of the size of the
matrix entries).

From the previous consideration, Protocol [11] is not suitable for practical use
when the matrices are randomly generated. If we want to use Protocol [L1] we
need to select special matrices with high cyclicity.

4.2 Reducible matrices

If we would like to avoid the attack on the cyclicity, one could suggest gener-
ating reducible matrices. These can not be used in a simple attack, are they?
We have come up with a way how to break the scheme with reducible matri-
ces in some cases. We slightly modified Algorithm [20| to be able to work with
partially different matrices.

The key agreement algorithm with reducible matrices works similarly as the
algorithm with irreducible ones. We generate two matrices A, B in the following
form:
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Al Ag Bl B3
A_<€ A2>’8_<€ BQ)

where A, By are square matrices of size ny x ny, A, By are square matrices
of size ny X ny and As, Bz are matrices of size ny X no.

Let t4, be transience of the diagonal block A; and let ¢p, be the index of tran-
sience of the diagonal block B;. In the rest of the chapter, we will denote
ta = max{ta,,ta,} and tp = max{tp,,tp,}.

Similarly for the cyclicities: let pa, be cyclicity of the diagonal block A; and
let pp, be the index of cyclicity of the diagonal block B;. We will denote ps =
lem{pa,,pa,} and pp = lem{pp,,ps,}- Now p, is something like an equivalent
of the cyclicity of A, similarly for the matrix B.

Further, we will denote by \; the average cost of one step in a critical cycle
of the block A; and by u; the average cost of one step in a critical cycle of the
block B;.

We were thinking about alternating the attack on the protocol with irreducible
matrices to be able to work also with the reducible ones. But then, we have
noticed that the scheme with reducible matrices is simply breakable by linear
algebra.

4.2.1 Attack on the scheme with reducible matrices

We have constructed the following algorithm for breaking the Fast Stickels’s pro-
tocol with reducible matrices:

Algorithm 23 (Attack on Fast Stickel’s protocol with reducible matrices). The
input of the algorithm are matrices A, B,U,V of sizenxn. A and B are reducible
with 2 blocks on the diagonal. U and V' are matrices computed in Protocol [11]

1. Find the cyclicities pa,,Da,,PB,,PB, 0f all the corresponding matrices given
by blocks Ay, As, By, Bs. During the process, find \1, Aa, j41, j12 as the average
costs of one step in the critical cycles of the corresponding blocks.

2. Find the value py as the least common multiple of pa,,pa,. And accordingly
pg for the matriz B.

3. Putly =lg = 2n*(1 + n’v).

4. Try to find all pairs of integers (ia,ip) whereia € {la,...,la+pa—1} and
ip € {lg,...,lp + pp — 1} for which the matriz T = U — A®(4) & BOin)
has constant matrices on the diagonal. If no such ia,ip exist, output with
failure.

5. For every such a pair (ia,ig) when T has constant matrices on the diagonal,

do:

o Try to find an integer solution of the following system with unknowns

ay, g’
Ao\ (a1 —ia _ [
Ao pa) \az —ip Q2
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where aq is the value of constants in the first diagonal block of T and
s 1s the value of constants in the other diagonal block of T'.

e [f no integer solution exists, try another pair of i4,1p.

o Verify whether A®*®B®* = U holds. If not, try another pair (ia,ig).
If yes, output with SUCCESS and returns the values of a; and as.

6. If the algorithm has not ended yet, output with failure.

This algorithm has no guaranteed success if the powers of matrices A and B
are not high enough or if the matrix from the linear system which we are solving
in the 5-th step is not regular.

Theorem 24 (Algorithm 23| works). Algorithm |23 breaks the Fast Stickel’s pro-
tocol when a; > ta, ay > tg and A\ps # piAe.

Proof. Let us have the matrix U = A®" & B®* where a; > t4 and ay > tp.
Thanks to the fact that pa = lem{pa,,pa,} and pp = lem{pp,,pp,}, there
have to exist i4 € {la,...,la+pa— 1} and ip € {lp,...,lp +pp — 1} such that

ay =ix (modpy) =12

4.1
ay =ip (mod pg,) i=1,2 (4.1)

when lA Z tA and lB 2 tB.
Thus we can decompose ay, as,i4 and ig in the following manner:
alztAi‘i‘kAipAi‘i‘CAi 1=1,2
as =tp, + kp,pp, + cp, i=1,2
Z'A:f}Ai—i-/{};lipAi—i-CAi 1=1,2
Z.B:tBi‘i_kJBipBi‘{'cBi 1= 1,2

where all kyu,, kp,, k), k. € No, all c4; € {0,...,pa, — 1} and similarly all
cg, €{0,...,pp, — 1}.

Now we will proceed simultaneously for both diagonal blocks. By U; we
mean the ¢-th diagonal block of U. When we look at the differences of U; and
AP © BY'P | we can see from Proposition [18] that for i € {1,2} it holds:

Ui—A-@iA ® BQiB = APu ® BY%2 _ AQiA ® BQiB —
— )\?(al—iA) ® ’u?(ag—iB) ® A?iA ® Bi@iB . AiQiA o) B?iB _ (42)
= (WO 0 w7 ) © (Lo

That means that we can find a matrix 7" which has constant blocks on the
diagonal.

T = ap © (]]‘)nl Xmy T3
€ 65} @ <]]-)n2><n2

We can rewrite equations into standard algebra and we will get the following:

)\Z'<Cl1—l',4)+,ui((l2—2’3) = Q4 Z:1,2
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These are giving us the system of two equations with unknown a; and as

Ao far—1 831
() (i) - () =

Values of a; and as are uniquely determined by «; and as whenever the first
matrix has non-zero determinant, therefore we need Aijpo # 11 Aa. O

The test of equality U = A®" © B®® in the 5-th step of Algorithm is
performed because we do not know whether congruences follow from the
solvability of system [£.3] in integers.

Theorem 25 (Time complexity of Algorithm . The time complexity of Algo-
rithm |25 is in O(n®(exp(22) + log(v)log(n))), where n is a size of matrices and
v 1s the difference between the maximal and minimal finite matrixz entry.

Proof. Many steps of this algorithm are similar to the previous one. So from the
proof of Theorem 22 we know that the time complexity of the first two steps
is in O(n®). Also, we know that there are exp(%*) candidates for the matrix
T. We can precompute A®4 and B®® and also first pa (and pg) powers of
matrices A (and B) in time O(n?(exp(2) + log(v)log(n))). But thanks to that,
the complexity of the computation of the matrix 7" consists only from three matrix
multiplications.

The complexity of the 5-th step is not important for the total complexity
of Algorithm [23| because we just have to solve the linear system of the constant
number of equations and variables.

Altogether the complexity of Algorithmis in O(n?(exp(22)+log(v) log(n))).

O

From the comparison of complexities of Algorithm 20] and Algorithm [23] we
can see that the reducibility of the input matrices does not change the time
complexity of the attack on Fast Stickel’s protocol.
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5. Computational problems with
tropical matrices

In this section, we would like to present some of the computational problems
which can be examined in the semigroup of tropical matrices. One of the most
famous problems is the discrete logarithm problem (DL), see Definition[13] In the
introductory section, we have also introduced readers to the definition of Diffie-
Hellman protocol. It is based on the Diffie-Hellman problem:

Definition 22 (Computational Diffie-Hellman problem). Let G be a cyclic group
with a generator g. Then CDH problem is: for the given hy,hy € G, where for
x,y € Nis hy = g%, hg = g¥, compute h € G such that h = g*¥.

This problem is believed to be hard (in some structures such as cyclic groups
with multiplication modulo a prime number). But surprisingly, it makes sense
to define also the following problem:

Definition 23 (Decisional Diffie-Hellman problem). Let G be a cyclic group with
a generator g. Then DDH problem is: for the given hi,ho,h € G, where for
z,y,2 € Nis hy = g%, ho = ¢¥ and h = g* decide if g* = g™.

Together with the discrete logarithm (DL) problem, we have three similar
problems and we can be interested in the relations between them. What is known
is the following proposition (for more info and propositions with proofs see Bellare
and Rogaway| [2005]:

Claim 26. For the fized group G = (g) it holds that if you can solve DL problem
effectively then you can solve effectively also CDH problem. And if you can solve
CDH problem effectively you can also effectively solve DDH problem.

Unfortunately, there is not too much known about the opposite direction
of relations between these problems in a general group G.

Diffie-Hellman problem can be generalized for the usage in semigroups, see
for example Maze et al.| [2005]. That leads us to the following problems in the
semigroup generated by tropical matrices. These problems are similar to the
original Diffie-Hellman problems.

Definition 24 (Semigroup Diffie-Hellman related problems). Let S = (S, ) be
a semigroup. Let A and B be one-generated subsemigroups of S, thus A = (a)
and B = (b) where a,b € S. Let C be a set defined as

C=A-B={uw|ueAvebB}
Then we can state the following problems:
(P1) Given c € C, find such i,j € Ny that ¢ = a'b’.
(P2) Given c € C find such a; € A, by € B that ¢ = a1b;.

(P3) Given ¢ € C and d € C find such e € C that e = ajasbeby where ¢ = aby
and d = asbs.
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As we can recall from previous chapters, the third problem is the exact foun-
dation stone of Stickel’s protocol. We will see that the decomposition in (P3) is
ambiguous but the result is independent on the exact decomposition of ¢ and d.

In our case, the semigroup S is the semigroup of square tropical matrices
of the size n x n over tropical algebra semiring. Semigroups A and B consist
of powers of some tropical matrices.

FExample 11. The decomposition of tropical matrices from semigroup C is am-
biguous. Let us have matrices A, B € S such that:

(1)
(1)

We will denote A = (A) and B = (B). It is clear that A® B # B ® A. Let C be
a semigroup C = A ® B. Let us have a matrix C' = A®3 ©® B2,

6 6
=5 3)
We can see that there is another decomposition of C: C' = A®! © B®4,

Remark. Let us notice that we can define an operation x on C. For C,D € C,
C=A,0DB), D=Ay® By where A, Ay € A, By, By € B we have:

CxD=A0A,0By® B

The result of x is independent on the decomposition of matrices C, D. It can be
shown that this operation is commutative and associative.

How these problems are related is obvious from one side. (P1) is at least as
hard as (P2) and (P2) is at least as hard as (P3) in every semigroup, not only
in tropical matrices. But is there any difference in their complexity in tropical
algebra semigroup? And which are the best estimations which we have on the
complexities of these problems?

We were able to determine the complexity of solving the discrete logarithm
problem in the cyclic tropical matrix semigroup. That means we want to find
such i € Ny that for the given A; € A it holds that A®" = A;. The discrete
logarithm problem is known to be hard in some structures (for example a finite
field with operations modulo large prime number). But in semigroups, it depends
on the concrete semigroup (and its operation — semigroup action, see Maze et al.
[2005]). We would like to explore the semigroup of tropical matrices.

For the simplicity, we will stay focused only on irreducible tropical matrices.
As we have shown in the previous chapter in the attack on Fast Stickel’s protocol,
it is very likely that the reducibility of matrices does not affect the complexity
of the problem. And the complexity of such an algorithm is the same or similar
to the complexity of an algorithm which works only with irreducible matrices.

Because powers of tropical matrices tend to behave linearly (values of all
entries are increasing or decreasing linearly) due to the cyclicity, the discrete
logarithm problem in the tropical matrix semigroup seems to be easy to solve.
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Claim 27 (Discrete logarithm problem for tropical matrices). For the given
irreducible matriv Ay € A we can find i € Ny such that A% = A, in time
O(n"log(v) + exp(2)n?).

Proof. What is certainly needed is to compute the cyclicity of A, denoted as pa,
and A(A) — cost per step in a critical cycle of A. This can be done in O(n?).
Now we need to find out whether the power of A; is above the transience of A
or not. We can test if A; © A®P4 — A, is a constant matrix. Because the up-
per bound for matrix cyclicity is exp(%), the computation of A®P4 takes time
in O(n*log(exp(2))) = O(n*). So the check can be done in O(n?).

If we are under the index of transience, we just try all possible powers of matrix
A until we find the right one. Thanks to the upper bound for transience, which
is O(n*log(v)), this can be done in time O(n”log(v)) where v is the difference
between the maximal and minimal finite entry of A.

If we are above the transience ¢4 we can use the cyclicity property. Unfor-
tunately, we do not know anything about the values of matrix entries between
AP and A®'A*TPA These can increase (or decrease) or they can oscillate. We
have to find such ¢ between t4 and t4 + pa that A; — A is a constant matrix.
Due to the upper bound for p4 we need to process O(exp(%)) matrix multipli-
cations (and subtractions), so the complexity of this part of the algorithm is in
O(exp(2)n?). We do not need to calculate exact t 4, the upper bound 2n*(1+n%v)
is good enough.

When we have ¢, we can compute the value of i. Let ¢ be a value of entries
in the constant matrix 4; — A®*. Then i = ¢ + ﬁ

The total complexity of finding the discrete logarithm is in O(n” log(v) +
exp(2)n?). O

We can see that the discrete logarithm problem is hard in the semigroup
generated by an irreducible tropical matrix (in the case that there is not a bet-
ter algorithm than ours). But it relies on the cyclicity of the generator. But
as we have discussed in the previous chapters, randomly generated matrices are
supposed to have a small index of cyclicity. And it is questionable if it is prac-
tical to work with large matrices even if we generate the ones with a high index
of cyclicity.

Remark. The complexity of the discrete logarithm problem is commonly ex-
pressed in k where k is a size of a finite cyclic group. Since we are working
with infinite large semigroups we have no such parameter. So it is maybe a little
surprising that the complexity depends only on the generating matriz A and not
on the power of A;.
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Conclusion

In our work, we were interested in the cryptographic scheme for the key-agreement
protocol. The original scheme was introduced by |Grigoriev and Shpilrain [2014].
The main objective of our work was to explore this scheme determine its com-
plexity and security. As for the attacks, they are based on the work of |Kotov and
Ushakov]| [201§].

What was done

At the beginning of the second chapter, we have recalled tropical Stickel’s pro-
tocol introduced by |Grigoriev and Shpilrain [2014] and have computed its time
complexity. Next, we have summarized the Simple heuristic attack (Algorithm
introduced by Kotov and Ushakov| [2018] and computed its complexity. We have
also implemented this attack in Python (see attachments) and run our experi-
ment to see the attack success rate for different sizes of parameters. As was said
in |Grigoriev and Shpilrain [2014], this attack had not worked when all the values
of matrix entries were non-negative.

This problem has a solution in the attack developed also by |Kotov and
Ushakov| [2018]. This attack works fine for the parameters originally designed
for the key-agreement protocol. And it is not heuristic, unlike Algorithm 4 We
have downloaded the sources of the attack and run it with bigger parameters.
As expected, the running time of the algorithm took a big amount of time with
a large parameter size. We have confirmed that generally the attack needs to solve
the NP-complete problem of finding the minimal cover.

We were able to avoid this in Algorithm [0, but we had to compromise from
the 100% success rate. We have obtained an algorithm with high enough success
rate which was able to work also for bigger values of parameters. And of course,
we have computed the complexity of this attack.

To sum it up, for Stickel’s protocol introduced by |Grigoriev and Shpilrain
[2014] we have heuristic attack which works with high enough success rate. And
its complexity is only polynomially worse than the time of the protocol we are
attacking.

At the end of the second chapter, we came up with Fast Stickel’s algorithm (Al-
gorithm . This key-agreement algorithm should have exponentially less time
complexity than attacks on Algorithm [} But during the experiment in Python,
we have noticed that the running time of the Simple attack (Algorithm [6]) is
lower than it should be. And it was due to the matrix cyclicity which we have
summarized in the third chapter.

The task of the third chapter was to introduce the reader with the behavior
of powers of tropical matrices. This chapter summarized some claims about trop-
ical matrix powers, mainly about matrix cyclicity and transience. We presented
some ideas about why should things work the way they appear, but we have not
been always able to give exact proofs of our claims.

In the fourth chapter, we have returned back to Fast Stickel’s protocol. Using
the results from Chapter 3, we have constructed an attack which uses the cyclicity
to break Algorithm The time complexity of this attack is exponentially worse
than the running time of Algorithm [11], but only for the matrices with a high
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index of cyclicity. We have discussed that only specially generated large size
matrices would have such a high index of cyclicity. And we would like to use
smaller matrices with larger values of other parameters.

Then we tried to change Algorithm [11]to work with reducible matrices which
do not generate a cyclic semigroup. However, we have come up with the attack
breaking this variant of Fast Stickel’s protocol. And this attack is surprisingly
trivial. We tried only matrices composed of 2 x 2 blocks but this attack would
also deal with matrices composed of more blocks. The main result of this chapter
was the discovery that the (ir)reducibility of the input matrices of Algorithm
does not have an impact on the complexity of the attack.

In the last chapter, we have presented some computational problems which
can be examined in the semigroup of tropical matrices. The result of this chap-
ter is the estimation of the complexity of the discrete logarithm problem in the
semigroup of matrices over tropical algebra semiring.

What has not been done

In the article by Grigoriev and Shpilrain| [2014], there is also a suggestion of a sche-
me for asymmetric encryption. At first we wanted to examine also the protocol
for the public-key encryption, but during the work with the Stickel’s protocol we
have noticed the behavior of the tropical matrix powers and we have come across
the theory of the matrix cyclicity. That led us to the other variant of the Stickel’s
protocol so we have decided to only focus on the scheme for the key-agreement
protocol. If we had more time we would have implemented also algorithms and
attacks on the Fast Stickel’s protocol. For now, we are satisfied by the theoretical
description and some calculations for the confirmation that our ideas work.

Inspiration for further research

Except for the asymmetric encryption scheme from |Grigoriev and Shpilrain| [2014]
one could be interested in the questions which we asked in the last chapter. There
is needed to find relations between problems (P1), (P2) and (P3) and state their
complexity in semirings.

During the process of writing our thesis, authors of (Grigoriev and Shpilrain
[2014] published a sequel of their work in the article Grigoriev and Shpilrain
[2019], where they proposed another key exchange protocols over tropical alge-
bra. Again, their protocols are proposed without any detailed discussion about
complexity and justification of the size of parameters.
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A. Attachments

We have implemented a library for basic computations in tropical algebra. Fur-
ther, we give an implementation of attacks on Stickel’s protocol. The code was
written for Python 3.7.

A.1 The Python implementation of attacks on
Stickel’s protocol

Tropical library

We have declared and implemented three classes in the file tropical_algebra.py:

e T_int is a class for representing the tropical integers. It overloads standard
operations and provides their implementation in tropical algebra.

e Matrix is a class for representing the tropical matrices. It overloads stan-
dard operations and provides their implementation in tropical algebra. The
init function can read the matrix from the file or it can generate an identity
matrix of a given size.

e Polynomial is a class for representing the tropical polynomials over the
tropical matrices. It implements functions for reading polynomials from
the file or reconstructing it from the coefficient list and the function for
evaluating the polynomial in a tropical matrix.

Together with some functions (such as for generating random matrices and

polynomials), this library provides the background for Attack @

Key agreement library

File key_exchange.py contains functions used for the simulation of Stickel’s pro-
tocol (Algorithm [)) and in an attack to it:

e generateKeys() for generating all random matrices and polynomials dur-
ing the protocol. It takes parameters for maximal and minimal matrix
entries and coefficients of polynomials, size of the matrices and maximal
allowed degree of the polynomials.

e computeKeyPart () for computing matrices U and V.

e computeCommonKey () for computing the common key from data known
to one of the parties.

e simpleAttack() for the run of Algorithm [6] uses also an auxiliary function
checkSolution() for checking the correctness of the output.
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Simple attack

File simple_attack.py simulates many runs (the count is given by the constant
RUNS) of Attack [6] on randomly generated instances of Stickel’s protocol. There
are 4 parameters:

e The parameter n. This parameter determines the size of the matrices.
Algorithm runs for sizes in {5,10,...,5(n — 1)}.

e The parameter d. This parameter determines the maximal allowed degree
of polynomials. Algorithm runs for sizes in {5, 10,...,5(d — 1)}.

e The parameter c_poly. This parameter determines the size of the polyno-
mial coefficients. It is in the interval {—10P°Y .. . 10%PoY — 1},

e The parameter c_matrix. This parameter determines the size of the matrix
entries. It is in the interval {—10¢-matrix — j(e-matrix _ 1}

The algorithm writes into the console the progress (values of tested n and d)
together with a result of the attack run (1 = success, 0 = failed). The results are
saved into the file simpleAttackResults in the following format:

R;n;d;cp;cm;T_1;T.2
where R is the result of the run, c_p is equal to 10°P°Y, c_m is equal to 10°-matix,
T_1 is the time taken by the key-agreement protocol and T_2 is the time taken
by the attack run.

Regular attack

File attack.py simulates many runs (the count is given by the constant RUNS)
of Attack [9] on randomly generated instances of Stickel’s protocol. The structure
is similar to the simple attack. There are 4 parameters but only c_poly and
cmatrix differ from the simple attack:

e The parameter c_poly. This parameter determines the size of the polyno-
mial coefficients. It is in the interval {0, ..., 10°P°Y — 1},

e The parameter c_ matrix. This parameter determines the size of the matrix
entries. It is in the interval {0, ..., 10¢-matrix — 11,

The algorithm writes into the console the progress (values of tested n and d)
together with a result of the attack run (1 = success, 0 = failed). The results are
saved into the file atackResults in the same format as in simpleAttackResults.

To run this attack, it is required to have the following two third-party libraries
installed:

e Numpy for Python 3.7.

e 23— we have used the verison 4.6.0 for 32 bit system. Compiled library for
Windows can be downloaded from GitHub [

thttps://github.com/Z3Prover/z3
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