
MASTER THESIS

Vítek Veselý

Physics of extended objects in strong
gravitational fields

Institute of Theoretical Physics

Supervisor of the master thesis: RNDr. Martin Žofka, Ph.D.
Study programme: Physics

Study branch: Theoretical Physics

Prague 2019



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ........ date ............ signature of the author

i



I would like to thank my supervisor Martin Žofka for his useful and valuable
advice, for his dedication in circumstances which would prevent many from finding
time for our research and for his warm approach.

ii



Title: Physics of extended objects in strong gravitational fields

Author: Vítek Veselý

Department: Institute of Theoretical Physics

Supervisor: RNDr. Martin Žofka, Ph.D., Institute of Theoretical Physics

Abstract: We study several different models of extended bodies in gravitational
fields. Firstly, we revisit the glider model of a dumbbell-like oscillating body.
We develop an independent scheme to integrate the equations of motion. We
study the radial fall of a Newtonian spring, calculate the position shifts of the
spring and find the critical value of the spring constant which cannot overcome
the tidal forces. We argue that the relativistic glider model is unphysical due to
its behaviour in the critical regions.
Secondly, we show that Dixon’s theory of extended bodies predicts a geodesic
motion of the centre of mass in maximally symmetric spacetimes. We prove that
a system of test particles can be described by a conserved stress-energy tensor and
we evaluate the position shifts of the glider model in the maximally symmetric
spacetimes, showing its disagreement with Dixon’s theory. We thus conclude
again that the glider model must be rejected.
And thirdly, we study a model of an extended body consisting of interacting
particles, which is in accord with Dixon’s theory. We calculate the position
shifts for this model and show that the model does not predict any measurable
swimming effect. Finally, we estimate the numerical error of the calculation by
finding the position shifts of the model in maximally symmetric spacetimes.

Keywords: general relativity, extended bodies, Dixon’s formalism, relativistic
glider.

iii



Contents

Introduction 2

1 Remarks on the relativistic glider 4
1.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Alternative method of computation of the shifts . . . . . . . . . . 7
1.3 Computation of the critical values of the parameter ω and the

behaviour of the model near the critical regions . . . . . . . . . . 14
1.4 Radial fall of a Newtonian spring in a central gravitational field . 16
1.5 Mechanical energy of the dumbbell glider . . . . . . . . . . . . . . 20
1.6 Apparent divergence of the position shifts in the low-frequency region 24

2 Dixon’s formalism for extended bodies and its applications 26
2.1 The theory of bitensors . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Extended bodies in Dixon’s theory . . . . . . . . . . . . . . . . . 28
2.3 Integrating the geodesic deviation equation . . . . . . . . . . . . . 29
2.4 Extended body in a maximally symmetric spacetime . . . . . . . 30
2.5 The stress-energy tensor of a test particle . . . . . . . . . . . . . . 32
2.6 Conservation laws for the test particle . . . . . . . . . . . . . . . 33
2.7 The relativistic glider in the de Sitter universe . . . . . . . . . . . 35

3 Discrete spring model of an extended body 39
3.1 Radial geodesics in the Schwarzschild spacetime . . . . . . . . . . 40
3.2 Deriving the geodesic equation from the action . . . . . . . . . . . 41
3.3 Radial geodesic equation in the de Sitter spacetime . . . . . . . . 43
3.4 Kinematics of the decay and the recombination of test particles . 44
3.5 Discrete spring model in the Schwarzshild spacetime . . . . . . . . 45
3.6 Discrete spring model in the (anti-)de Sitter universe and discus-

sion of computational errors . . . . . . . . . . . . . . . . . . . . . 48

Conclusions 52

Bibliography 56

A Appendix 58

1



Introduction
One of the oldest problems in physics is to predict the path of an object if we
know its initial conditions and all the forces acting on it. In Newtonian mechan-
ics, an object whose size is negligible and which is not influenced by any outer
force moves at a constant velocity in a straight line. In fact, the centre of mass
of any complex system behaves as a point particle moving in a force field which
is the vector sum of all outer forces acting on all the individual parts of the
body. Without any outer force or in case of a homogeneous force field, the centre
of mass moves as if it were a single test particle with the total mass of the system.

In general relativity, a free test particle is an object of a negligible size whose
motion is influenced only by gravity, which manifests itself as the curvature of
spacetime. Such free test particles move along geodesics. However, because the
individual parts of any finite body move in an external gravitational field, the
centre of mass of a body whose size cannot be neglected does not behave as a
single particle. In a general gravitational field, it is difficult to even define the
centre of mass of a complex extended body because the notion of simultaneity of
two distant events is not well-defined.

In the Newtonian case, the theory of extended bodies moving in gravitational
fields has been of interest for the constructors of satellites in orbit because a
controlled deformation of the object can alter its orbital parameters. The first
paper discussing the tether-control of satellites appeared in the 1960s (see [1] for
a review of literature) and the research continues to this day [2-4]. There have
even been several in-orbit experiments (for example, the Gemini XI mission and,
more recently, STARS-C aboard the ISS [5]).

In general relativity, there are two main effects resulting in a deviation from
geodesic motion for an extended body: swinging and swimming. The swing-
ing effect is present even in the Newtonian gravity. It describes how the body
can gain energy in the gravitational field by expanding and contracting at ap-
propriate moments just like a child on a swing gains energy by moving their body.

The swimming effect was first introduced by Jack Wisdom in [17]. The au-
thor argues that an extended body can change its position in a gravitational field
because it is moving on a curved manifold. The object can achieve a net dis-
placement simply by performing cyclical motion. The author also provides an
example of a tripod swimming in the Schwarzschild spacetime. The swimming
effect is purely relativistic in its nature. However, there have been papers which
applied the same procedure as Wisdom to a tripod in the de Sitter universe [7]
and obtained a similar result for the displacement. The authors argue that this
result disproves Wisdom’s original findings because it contradicts the predictions
of a general theory of extended bodies presented by Dixon [8-10].

The predictions of general relativity for the motion of extended bodies can also be
used to distinguish the characteristics of a given gravitational background which
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would remain undetectable in a single-particle approach. For example, molecules
oscillating near the ISCO orbit in an accretion disk near a black hole may be of
interest [6].

In the Newtonian case, the controlled deformations of an extended body are
often described by a controlled Lagrangian. The theory behind this approach
has been studied since the 1990s, see, for example, [11-13]. Several papers have
tried to apply a similar description to the problem of extended bodies undergoing
controlled deformations in general relativity [14-16]. We studied the results of
[14] in detail in the bachelor thesis [18] and published some of the results in [20].
The paper is attached as an appendix to the present thesis.

The aim of the present thesis is to study some of the proposed models of ex-
tended bodies in general relativity as well as their counterparts in the Newtonian
theory and to further investigate these models. At the same time, we shall study
some general predictions for the motion of a body described by a stress-energy
tensor and we shall confront the studied models with these results.

The thesis is organised as follows: in Chapter 1, we study the model presented in
[14] in further detail. We develop an independent scheme to calculate the net po-
sition shifts of the model, use the scheme to find the limits of the description and
also study a simple energy-conserving model in the Newtonian gravitational field
to better understand the behaviour of the model in the critical regions. Chapter
2 introduces the general theory of extended bodies as presented by Dixon and ap-
plies the theory to a system of free particles which interact only during collisions.
Furthermore, we confront the predictions of the glider model from [14] with the
results of Dixon’s theory for objects moving in maximally symmetric spacetimes.
In Chapter 3, we present a model of an extended body consisting of particles
moving along geodesics, which undergo decays and collisions and compare the
predictions of this model to the glider model of [14] and to the results of Dixon’s
theory.
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1. Remarks on the relativistic
glider
In the first chapter, we study the predictions of a simple relativistic model of
an extended body called the relativistic glider. This model was introduced in a
paper by E. Guéron and R. A. Mosna [14]. The authors propose a dumbbell-like,
oscillating test object moving radially in the Schwarzschild spacetime.

We studied this model in [18], where we numerically solved the proposed equa-
tions of motion of the body to independently verify the results of [14] and to find
the predictions of the model in the extreme cases of the relevant parameters where
the relativistic effects become significant. This includes the region of very fast
and very slow expansion rates of the body and the case of multiple oscillations.
Furthermore, we showed how the maneuver affects the speed of the dumbbell.

The glider model is interesting because its predictions vary from the predictions
of a similar model in the Newtonian gravitational field. Specifically, it predicts
that the relativistic body can slow down its fall by performing an expansion and
a contraction with a predetermined deformation function. This slowing down is
present even at speeds which are much lower than the local value of the speed of
light.

On the other hand, the Newtonian model predicts that the net displacement
of the body is always negative, i.e., that the extended body falls faster than a
reference point particle. Unlike its relativistic counterpart, the Newtonian effect
vanishes for faster oscillations of the body, which allows us allow us to distinguish
observationally between the two theories, perhaps providing information about
the central gravitating object.

Apart from this, we also applied the model to the case of a body oscillating
perpendicularly to the trajectory of its centre of mass. This case may be of in-
terest to the constructors of satellites because the displacement effect is several
orders of magnitude larger than in the case of the radial oscillations. However,
the Newtonian swinging effect is the dominant effect in this case and, therefore,
this model is not suitable for studying the relativistic effects.

Since its publication, there have been objections to the glider model of [14] and
to the examples of the swimming effect proposed by Wisdom [7] because an
analogous analysis predicts the appearance of the swimming effect in maximally
symmetric spacetimes where no net displacement of any extended body is possi-
ble as we show in Chapter 2.

Our original goal was to expand the results of the model in the critical regions.
In this chapter, we propose an independent scheme which expresses the displace-
ment of the body as a correction to geodesic motion, significantly increasing the
numerical credibility of the results because the net displacement is no longer ex-
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pressed by subtracting two very close values.

We also study a simple spring model in the Newtonian gravitational field. The
results are then used to interpret the predictions of the glider model and, ulti-
mately, to show that the glider model is insufficient in the most interesting cases
where the net displacement apparently diverges and the swinging effect could be
observable.

1.1 Description of the model
The glider consists of two equal mass points which interact via a massless rod,
whose length can be modified by an engine. The body falls radially in the
Schwarzschild spacetime with mass M . We shall use the coordinate time t as
the independent variable parametrization of the motion. For further discussion
about the choice of the independent variable see [18]. We shall use the following
Lagrangian to derive the equations of motion:

Ld = − m

√
(

1 − 2M

rd

)
− 1

1 − 2M

rd

(
drd

dt

)2

− m

√
(

1 − 2M

rd + l

)
− 1

1 − 2M

rd + l

(
drd

dt
+ dl

dt

)2

, (1.1)

where rd is the coordinate position of the lower point of the glider and l is the
coordinate length of the body. We must realise, that in this case l(t) does not
represent a degree of freedom of the system but a fixed function of time. The
engine inside the glider ensures that the prescribed coordinate distance is main-
tained throughout the maneuver. This description falls under the category of the
so-called controlled Lagrangians.

Although the theory of controlled Lagrangians is mostly accepted in the New-
tonian description, it can be a source of unphysical effects in relativistic theo-
ries because it requires the non-causal behaviour of the bond. The prescribed
deformation function l(t) represents a coordinate distance on a given spacelike
hypersurface of constant t, but there is no causal way either of the endpoints of
the body could know the position of the other on that hypersurface.

Moreover, the description cannot even realistically account for any transfer of
energy between the masses because it lacks any kinetic term for the bond. De-
spite all this we shall accept this model in this chapter to study its predictions
in both the weak-field, slow-motion regime where its Newtonian limit should be
physical, and in the highly relativistic case. Eventually, we shall show several
more of its problems.

Our main goal is to study the effect of non-locality of the body on its motion.
Specifically, we shall compare the motion of the dumbbell with the motion of a test
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point particle with the same initial conditions and described by the Lagrangian:

Lp = −m

√
(

1 − 2M

rp

)
− 1

1 − 2M

rp

(
drp

dt

)2

. (1.2)

The principle of stationary action with this Lagrangian leads to the radial geodesic
equation for the Schawrzschild metric as we show in Chapter 3. To quantify the
deviation from the geodesic motion we use the quantity δr, which we shall call
position shift. It is defined by:

δr = rd + l

2 − rp. (1.3)

Another relevant variable is the velocity shift δṙ, sometimes referred to as differ-
ential velocity:

δṙ = ṙd + l̇

2 − ṙp. (1.4)

The dot represents a derivative with respect to t. Both of these functions are
defined in terms of coordinates, they are therefore non-covariant. However, both
of the relevant coordinates r and t have a well-understood physical interpreta-
tion for a stationary observer at radial infinity. The position shift describes the
difference of position of the dumbbell and that of the point mass whenever the
endpoints of the dumbbell coincide. If the dumbbell is expanded, the position
shift represents the coordinate position of the geometric centre of the dumbbell
relative to the point mass.

The results depend on the choice of the deformation function. The authors of the
original paper [14] used:

l(α, ωt) = δl exp
[

(1 + α − 2ωt)2

(1 + α2)ωt(−1 + ωt)

]
, (1.5)

where δl is the maximal length of the dumbbell, α is an asymmetry parameter of
the function and ω is another parameter, which is related to the periodicity and
rate of expansion of the dumbbell because the deformation function vanishes for
ωt = 1. This function, however, is not very suitable for numerical computations
since it is not analytic at the endpoints of motion where the dumbbell shrinks to
a point. Therefore, we used this form of the deformation function:

l(α, ωt) = δl

2 (1 − cos [2πωt{α(ωt − 1) + 1}]) (1.6)

with similar interpretations of the parameters. Further discussion about the
choice of the deformation function can be found in [18] but an important prop-
erty of both of them is that the value of the function as well as the first derivative
vanishes for t = 0 and t = 1/ω. We shall sometimes refer to ω as “frequency”
even though we usually consider only one expansion-contraction stroke of the
dumbbell, not any kind of periodic motion.
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Figure 1.1: The selected shape of the deformation function of the dumbbell for
five different values of the asymmetry parameter α. The dumbbell shrinks back to
a single point after the time 1/ω and the rate of its expansion also vanishes there.
For negative α, the dumbbell expands rapidly and then shrinks back slowly. The
opposite is true for positive α.

The goal is to solve numerically the equations of motion for the dumbbell for
t ∈ [0, 1/ω] for different values of α and then evaluate the position shift and the
velocity shift at the end of the integration. The original paper explored the po-
sitions shifts for ω’s ranging from about 0.001M−1 to 0.07M−1. For frequencies
above 0.02M−1 the position shifts reached a plateau which the authors described
with the following semi-empirical formula:

δr ≈ Γ(α)δl2

R2
0
M, (1.7)

with Γ(α) being a dimensionless function of the asymmetry parameter. The
body is dropped from r = R0 with a vanishing initial velocity. In particular, the
numerical values of the relevant length scales are: R0 = 120M , δl = 5 × 10−3M .
We shall explore this model in further detail and focus on some interesting parts
of the plots of the shifts.

1.2 Alternative method of computation of the
shifts

Let us first address the issue of the validity of the results obtained by direct nu-
merical evaluation. In [18], we have already expressed our concerns about the fact
that the final presented values of the position and velocity shifts are expressed as a
result of subtraction of the positions of the free-falling body and the glider, which
are very close. It is therefore reasonable to question the numerical error of these
values. To this end, we integrated the equations of motion using several different
numerical methods as well as two different mathematical software programmes
(Wolfram Mathematica and Maple). We then concluded that the numerical error
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Figure 1.2: This figure depicts the evolution of the dumbbell in the Penrose
diagram. The initial conditions and parameters were chosen rather extreme to
make the diagram more legible. In this motion, ω = 1

107M−1, the maximal length
is δl = 8M and the initial position rd(0) = 19M . Neither of the two endpoints
of the dumbbell can cross the event horizon in finite coordinate time because the
horizon coincides with t → ∞.

from the computation is orders of magnitude lower than the relevant position and
velocity shifts and thus, that the presented results are a genuine feature of the
solutions of the equations of motion.

However, it is still desirable to find a method which would not rely on the sub-
traction of the two close values. In this section, we present an alternative method
which will allow us to compute the sought values using an expansion of the solu-
tion into an infinite series. We shall begin by creating a general framework which
will allow us to compute the position shift of the dumbbell as a deviation from
the geodesic motion.

We consider an action dependent on a small dimensionless parameter ϵ.

S =
∫

L(q, q̇, t; ϵ)dt (1.8)

Here, t is the independent variable, q represents the dependent function of t
which should extremize the action. We consider only a 1-dimensional problem
but this framework can be easily generalized to multidimensional problems. Dot
represents a total derivative with respect to the independent variable t. The full
equation of motion for q = q(t) is:

δL

δq
= d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= ∂2L

∂q̇2 q̈ + ∂2L

∂q∂q̇
q̇ + ∂2L

∂t∂q̇
− ∂L

∂q
= 0. (1.9)

We assume that we can express the solution of 1.9 as an infinite series:

q(t) =
∞∑

n=0
qn(t)ϵn. (1.10)
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We can plug this Ansatz into 1.9 and since we want to satisfy this equation for
an arbitrarily small value of ϵ, we can expand the left-hand side of the equation
into an infinite series in ϵ as well.

∞∑
n=0

En(qi, q̇i, t)ϵn = 0 (1.11)

The terms En(qi, q̇i, t) in the expansion do not depend on ϵ. The zeroth-order
term in the expansion is:

E0 = ∂2L

∂x2
2
q̈0 + ∂2L

∂x1∂x2
q̇0 + ∂2L

∂t∂x2
− ∂L

∂x1
. (1.12)

For clarity, we changed the notation of the partial derivatives of the Lagrangian
with respect to the dependent variable. The partial derivative with respect to x1
represents the derivative with respect to q and x2 is the derivative with respect to
q̇. All the derivatives of the Lagrangian are evaluated at (x1, x2, t; ϵ) = (q0, q̇0, t; 0).

We can see that the zeroth term of the expansion is identical to the left-hand
side of the equation of motion for the original Lagrangian with ϵ = 0. Similarly,
we can express the first-order term:

E1 = ∂3L

∂x1∂x2
2
q̈0q1 + ∂3L

∂x3
2
q̈0q̇1 + ∂3L

∂ϵ∂x2
2
q̈0 + ∂2L

∂x2
2
q̈1

+ ∂3L

∂x2
1∂x2

q̇0q1 + ∂3L

∂x1∂x2
2
q̇0q̇1 + ∂3L

∂ϵ∂x1∂x2
q̇0 + ∂3L

∂x1∂t∂x2
q1+

+ ∂3L

∂t∂x2
2
q̇1 + ∂3L

∂ϵ∂t∂x2
− ∂2L

∂x2
1
q1 − ∂2L

∂ϵ∂x1

(1.13)

and so on. Since the right-hand side of the original equation of motion does not
depend on ϵ, each term En in the expansion of the left-hand side must be equal
to 0 for any t. We thus get an infinite set of equations En = 0 for the functions
qi = qi(t). These equations are coupled. However, the k-th equation depends only
on qi for i ≤ k. We can thus solve the zeroth-order equation for q0(t), then plug
this solution into E1, solve for q1(t) and continue in this manner with the next
terms. Let us assume for simplicity that the initial conditions for q = q(t) are
independent of ϵ, such as q(t = 0) = r0, q̇(t = 0) = v0. Then the initial conditions
for the functions qi(t) are: q0(t = 0) = r0, q̇0(t = 0) = v0 and qi(t = 0) = 0,
q̇i(t = 0) = 0 for i > 0. If the initial conditions do depend on ϵ, one can expand
the initial conditions into an infinite series and find the initial conditions for all
the functions qi(t). We can also notice the structure of the partial equations of
motion Ek = 0. Except for k = 0, the k-th equation of motion is an inhomoge-
neous linear differential equation for qk(t) and we have thus effectively linearized
the equations of motion.

We could also ask whether it is possible to obtain the partial equations of motion
directly from the original Lagrangian if we plug in the expansion of the solution.

L(q, q̇, t; ϵ) = L(
∞∑

n=0
qn(t)ϵn,

∞∑
n=0

q̇n(t)ϵn, t; ϵ) (1.14)
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We can now expand the Lagrangian into an infinite series of partial Lagrangians:

L(
∞∑

n=0
qn(t)ϵn,

∞∑
n=0

q̇n(t)ϵn, t; ϵ) =
∞∑

n=0
Ln(t)(qi, q̇i, t)ϵn. (1.15)

The first three terms in the expansion are:

L0 = L(q0, q̇0, t; 0), (1.16)

L1 = ∂L

∂x1
q1 + ∂L

∂x2
q̇1 + ∂L

∂ϵ
, (1.17)

L2 =1
2

∂2L

∂x2
1
q2

1 + ∂2L

∂x1∂x2
q1q̇1 + ∂2L

∂ϵ∂x1
q1 + 1

2
∂2L

∂x2
2
q̇2

1+

+ 1
2

∂2L

∂ϵ2 + ∂2L

∂ϵ∂x2
q̇1 + ∂L

∂x1
q2 + ∂L

∂x2
q̇2.

(1.18)

Once again, all the partial derivatives of the Lagrangian are evaluated at the
point (x1, x2, t; ϵ) = (q0, q̇0, t; 0) and the k-th partial Lagrangian Lk depends only
on qi(t) and its derivatives for i ≤ k. If we try to find the equation of motion for
q0(t) as:

δL0

δq0
= d

dt

(
∂L0

∂q̇0

)
− ∂L0

∂q0
= 0, (1.19)

we find out that we obtain the same equation as from the expansion of the
original equation of motion, i.e., E0 = 0. Similarly, we could expect to find the
k-th equation of motion as:

δLk

δqk

= 0. (1.20)

Unfortunately, this approach is wrong because even for the first equation we only
obtain:

δL1

δq1
= E0. (1.21)

The correct way to find the first partial equation is to differentiate L1 with respect
to q0.

E1 = δL1

δq0
(1.22)

Similarly, we can verify that we obtain the first three partial equations of mo-
tion after a longer but straightforward computation from the second partial La-
grangian L2 as:

E0 = δL2

δq2
,

E1 = δL2

δq1
,

E2 = δL2

δq0
.

(1.23)

It seems reasonable to assume that, in general, we can obtain the left-hand side
of the (k − i)-th partial equation of motion Ek−i by differentiating the k-th par-
tial Lagrangian Lk with respect to the i-th function qi(t). However, we were not
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able to prove this relation in the general case and so we shall apply this former
expansion method in the rest of the present section.

We can now apply this procedure to the problem of a falling dumbbell described
by the Lagrangian 1.9. We shall rewrite the deformation function as l(t) = δl·λ(t).
Now, we can expand the solution in terms of δl or more precisely δl/M , which
would be our ϵ as per above. The new variable λ(t) is now of a similar order as
rd(t)/M .

We can expand the sought solution according to our scheme. We shall only
use the first three terms of the expansion:

rd(t) = r0(t) + r1(t)
δl

M
+ r2(t)

(
δl

M

)2

. (1.24)

If we now evaluate the relevant equations of motion according to our scheme, we
find out that the zeroth equation of motion is twice the geodesic equation for a
free-falling point expressed from 1.2. This is no surprise because we already know
that the zeroth equation corresponds to the equation of motion for the original
Lagrangian with the expansion parameter set to 0. In our case, if we set δl = 0,
we are left with twice the Lagrangian for a free-falling particle. This confirms that
in the lowest order of the expansion, the dumbbell falls as a free point particle
along a geodesic.

The equation for the first correction is much more complicated. Furthermore, it
is only possible to express the solution of the radial geodesic for the Schwarzschild
spacetime as a parametric solution or as an inverse function t = f(r0), where f
is expressed in terms of an integral. Fortunately, we can guess the solution of the
equation for the first correction. If we set:

r1(t) = −λ(t)
2 M, (1.25)

the equation for the first correction is satisfied identically. This solution also
vanishes at the beginning as required by the initial conditions and is therefore
our desired correction. Since our deformation function λ(t) vanishes for ωt = 1
for any value of the parameter α, the first correction does not contribute to the
position shift of the dumbbell.

In a similar way, we can evaluate the equation of motion for the second cor-
rection. In the end, we are only interested in the numerical values of the position
shifts. We don’t need to worry about the problems with expressing the solution
of the radial geodesic equation. We can simply use the numerical solution for
our equation. We can and will, however, use the exact solution for r1(t). If we
numerically integrate the equation of motion for the second correction, we obtain
a non-vanishing value for r2(t) at ωt = 1. This value after multiplying by δl/M
corresponds to the lowest non-vanishing order of correction. This fact explains
the dependence on δl in the semi-empirical formula 1.7.

The computed values of the position shift correspond very well with the results
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Figure 1.3: Position shifts of the dumbbell in the relativistic case calculated by
an alternative approach using a Taylor expansion of the equations of motion.
The results coincide very well with the values calculated by directly integrating
the full equations of motion and subtracting the position of the free-falling point
particle. The obtained shift is a result of the second-order correction to the
geodesic motion in the expansion in δl.

from the direct integration, which confirms that the results are not distorted by a
numerical error in a significant way. The main benefit of the expansion approach
is its high speed of integration compared to the numerical solution of the original
equation of motion. Additionally, it is much more robust numerically, enabling
us to find the solution for a broader range of the parameters.

We also tried to use this approach to find an analytic expression for the function
Γ(α) in 1.7. For high frequencies, the free-falling particle doesn’t have enough
time to start falling very fast, so we tried to approximate the geodesic motion
with a constant r0(t) = R0. Unfortunately, the correction r2 vanishes with this
approximation. After using higher-order corrections for the geodesic motion, we
were able to reconstruct the positions shifts but the equations of motion were too
complex for us to find any analytic expression for the function Γ(α).

We also applied this procedure to the Newtonian case and once again, the zeroth-
order solution corresponds to the problem of a free-falling particle in the central
Newtonian gravitational field, the first-order correction is the symmetric motion
of the endpoints of the dumbbell around the reference point and the second-
order correction is the lowest non-vanishing contribution to the position shift and
differential velocity.
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Figure 1.4: Velocity shifts of the dumbbell in the relativistic case calculated by an
alternative approach using a Taylor expansion of the equations of motion. Once
again, one can clearly see that δṙ does not vanish for the larger values of the
parameter ω and it is almost independent of the sign of α. Again, the results
coincide with the data obtained from direct integration of the equation of motion,
confirming thus that the values are not heavily distorted by a numerical error.

Figure 1.5: Position shifts of the dumbbell in the Newtonian case calculated by
an alternative approach using a Taylor expansion of the equations of motion.
Also in this case, the shifts come from the second-order correction to the motion
of the free-falling body.
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Figure 1.6: Velocity shifts of the dumbbell in the Newtonian case calculated by an
alternative approach using a Taylor expansion of the equations of motion. Simi-
larly to the relativistic case, the differential velocity is always negative indicating
a greater velocity of the dumbbell towards the gravitational centre.

1.3 Computation of the critical values of the pa-
rameter ω and the behaviour of the model
near the critical regions

After establishing the validity of the results of the numerical integration of the
equations of motion, we can now proceed with further analysis of the model of
the dumbbell-like body. In particular, we are most interested in the behaviour of
the model in the limiting regions of the possible values of the parameter ω. The
authors of the original paper [14] showed the apparent divergence of the position
shifts δr in the region of small values of ω without further discussing its signifi-
cance.

This rapid decrease of the position shift cannot, however, be a true divergence
in the sense that there exists a limiting value of the parameter for which the ab-
solute value of the position shift becomes larger than any scale for a very simple
reason. The position shift is calculated as a result of two finite values of the co-
ordinate positions of the two test objects. Since the position shift is negative, the
dumbbell is even lower than the point mass which starts from rest at R0 = 120M
and falls towards the gravitational centre. This means that the position shift is
clearly bounded from below. Nevertheless, we shall still refer to this behaviour
as “divergence”.

Similarly, the differential coordinate velocity δṙ is bounded for both objects by
the local value of the coordinate speed of light. This, of course, is not true for the
Newtonian case. The position shift divergence is present in both the relativistic
and Newtonian cases. In the latter, we speculated that the behaviour is linked
to the existence of a critical value of the parameter ω where the physics changes.
In particular, after a time t = 1/ω the point particle reaches the gravitational
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centre where the acting force diverges. This means that the model clearly has to
become invalid at this point, if not sooner. On the other hand, the relativistic
objects are slowed near the event horizon of the black hole, which they cannot
cross in finite coordinate time due to the nature of the coordinate system. Fur-
thermore, we noticed that the divergence in the differential velocity also happens
in both theories although it appears for much lower values of the parameter ω in
the relativistic case.

The authors of [14] also mention possible problems with causality for large values
of ω but they never discuss the critical values or the behaviour of the relevant
variables in this region. In [18], we already tried to compute the critical values of
ω by approximating the spacetime as flat and using the critical frequencies from
the Minkowski spacetime. We concluded that in the relativistic case the position
shifts stay almost constant up to the critical values of ω for each α at which point
the equations of motion become singular and we are not able to continue with
the integration.

We found this conclusion to be false by further inspection of this region. First of
all, the expansion of the solution from the previous section allowed us to compute
the critical values much more precisely. The equations of motion become singular
if either of the parts of the dumbbell reaches the speed of light. Above the event
horizon, this condition translates to:⏐⏐⏐⏐⏐dr

dt

⏐⏐⏐⏐⏐ = 1 − 2M

r
, (1.26)

where r is the position of either end of the dumbbell. We shall use the first-
order correction from the expansion of the solution for r = r(t), i.e., r(t) =
rp(t) ± δl · λ(t)/2. We make one more approximation to calculate the critical
values. For the largest values of the parameter ω the free-falling particle does
not have enough time to start moving before the time t = 1/ω and thus, we can
assume that rp(t) ≈ R0. Finally, λ is a function of both t and ω. However, it
depends only on the product of these two variables, λ(t, ω) = λ(tω) ≡ λ(x) with
x ∈ [0, 1]. The critical causality condition then reads:

ω · δl

2

⏐⏐⏐⏐⏐dλ

dx

⏐⏐⏐⏐⏐ = 1 − 2M

R0 ± δl · λ(x) . (1.27)

This equation has the form ωg(x) = h(x). We can safely divide the equation by
g(x) since g(x) = 0 indicates the slowest expansion rate of the dumbbell, not the
fastest. We are looking for the smallest value of ω which satisfies this equation.
We can therefore differentiate the equation with respect to x and find the extremal
value by setting the derivative equal to 0. This leads to the equation:

g′(x)h(x) = g(x)h′(x). (1.28)

This equation can be solved numerically for x for any value of α, R0 and δl. We
typically find two roots for each endpoint of the dumbbell and thus 4 roots in
total. We then compute ω for each of these roots and the critical value is the
smallest of these values.
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Figure 1.7: Position shifts in the relativistic case in the whole set of accessible
values of the parameter ω. One can observe an apparent divergence in the regions
of large and small values of ω. The position shift is positive for positive values of
the asymmetry parameter α on the plateau. The values of the parameter ωc are
estimates of the critical frequencies at which one of the endpoints of the dumbbell
exceeds the speed of light.

This approach offers a more precise estimation of the critical values of the param-
eter ω. We were then able to carefully approach these values while integrating
the equations of motion of the dumbbell and we discovered a second divergence
of the position shifts in the relativistic case near these critical values.

To conclude, we ultimately computed the position shifts for all possible values
of the parameter ω. The results are shown in Figures 1.3, 1.8, 1.9 and 1.10.
The Newtonian model predicts only the low-frequency divergence and the po-
sition shifts are always negative whereas the relativistic model predicts positive
displacement, i.e., slower fall of the glider. This result seems to indicate the
presence of the swimming effect.

1.4 Radial fall of a Newtonian spring in a cen-
tral gravitational field

In this section, we shall study a simple model of a classical body falling radially in
a central gravitational field. The body consists of two equal masses m connected
by a massless spring with a spring constant k ·m. We chose this rescaling because
we want to divide the Lagrangian by the mass m. This means that after the
division the Lagrangian is independent of the mass of the endpoints. We denote
the rest length of the spring l0. The system is described by a classical Lagrangian:

Ls = 1
2

(
dr1

dt

)2

+ 1
2

(
dr2

dt

)2

+ M

r1
+ M

r2
− 1

2k(r2 − r1 − l0)2. (1.29)
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Figure 1.8: Differential velocity in the relativistic case. The apparent divergence
for the slow expansion of the dumbbell begins at a smaller value of the parameter
ω in comparison with the position shifts. The shift is always negative, which
indicates a greater velocity towards the gravitational centre, almost independent
of the sign of α and decreases more rapidly for the larger values of ω.

Figure 1.9: Position shifts in the Newtonian case. There isn’t any apparent
divergence for arbitrarily large values of the parameter ω. However, we can
observe the apparent divergence in the region of small ω’s. The dashed line
represents a critical frequency ωc ≈ 6.8 × 10−4/M for which it would take a point
mass falling from rest from R0 = 120M time t = 1/ωc to reach the gravitational
centre.
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Figure 1.10: Differential velocities in the Newtonian case. The shifts are always
negative and almost independent of the sign of α but in contrast with the rel-
ativistic case, they vanish for large values of ω. Once again, we can observe an
apparent divergence as we approach the critical value ωc.

The coordinates r1 and r2 describe the positions of the endpoints of the spring.
We can simplify the Lagrangian by applying a suitable coordinate transformation:

X =1
2(r1 + r2),

l =r2 − r1.
(1.30)

The inverse transformation is then:

r1 =X − l

2 ,

r1 =X + l

2 .

(1.31)

Since the two endpoints of the spring have the same mass, the coordinate X
describes the position of the centre of mass of the body and l is the length of the
dumbbell. We can now rewrite the Lagrangian of the system as:

Ls =
(

dX

dt

)2

+ 1
4

(
dl

dt

)2

+ M

X − l

2

+ M

X + l

2

− 1
2k(l − l0)2. (1.32)

We would like to simulate the fall of the glider with this model to better un-
derstand the behaviour in the critical regions. Therefore, we must select the
parameters of the motion to be similar to the conditions of the glider. The spring
should start in a compressed state when the two endpoints coincide, i.e., l(0) = 0.
Without the gravitational field the spring would oscillate with an amplitude of
the length 2l0. Therefore we set l0 = δl/2. The total mechanical energy of the
system is obviously conserved throughout the evolution.
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The body will be dropped from X(0) = R0 = 120M , starting from rest Ẋ(0) =
l̇(0) = 0. We shall integrate the equations of motion for the spring numerically.
Because the gravitational field influences the spring, the oscillations of the body
are no longer harmonic. We can, however, control the speed of the relative motion
of the endpoints of the spring indirectly through the rescaled spring constant k.

To compare the motion of the spring to the motion of the glider, one would
like to wait until the spring shrinks back to a single point, stop the integration
at this time and find the difference of the position of the spring in the gravita-
tional field X and the position of a single mass dropped from the same height.
Unfortunately, this is not possible because in the presence of the inhomogeneous
gravitational field with the initial conditions described above the spring never
shrinks back to a single point.

We have to think of a different condition for ending the integration of the equa-
tions of motion. We are looking for the first local minimum of the length of the
spring after the first expansion, in other words, we are going to check if l̇(t) = 0
and at the same time l̈(t) ≥ 0. If these conditions are met, we stop the integration
and we denote the time at this point as tf .

Finally, we evaluate X(tf ) and subtract the position of a free-falling point at
the time tf . We denote this quantity as the position shift δr. The desired re-
sult of this computation is the comparison of this dependence with Figure 1.9.
However, our independent variable in this case is not a frequency parameter ω
but the spring constant k. We shall therefore define ω(k) = 1/tf (k) and plot
the dependence of δr on this parameter ω. We also plot the inverse dependence
k = k(ω) in Figures 1.11 and 1.12.

It is obvious that the position shift and the differential velocity depend on the
parameter ω in a similar manner as in the case of the Newtonian glider and are
always negative. The magnitude of the shifts is similar in both cases, too. This
confirms that the existence of the swinging effect in the Newtonian case can be
achieved even in this energy-conserving model. Once again, there is an apparent
divergence for small values of ω. In this case, we understand much better the
physical nature of the existence of a specific critical value of the spring constant.
The parameter ω is controlled through k. A smaller value of the spring constant
results in a smaller value of ω. However, a weaker spring is also less efficient in
pulling the endpoints of the spring back together.

If we try to achieve an arbitrarily small value of ω, we hit a critical spring constant
kc, where the spring is no longer able to start contracting after it expands for the
first time. If we choose a spring constant smaller than this critical value, the body
will always expand, the conditions for stopping the integration are never satisfied
and the lower endpoint of the body will eventually reach the gravitational centre.
We show this behaviour in Figure 1.13. We found the critical value of the spring
constant by the method of bisection. We were looking for a local minimum of
the length of the spring in time. If such a minimum exists, the spring constant
is above the critical value. On the other hand, if there is no local minimum, the
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Figure 1.11: Dependence of the position shift of the cente of mass of a spring on
the parameter ω. In this case, ω is not a free parameter of the motion, we can
only control it through the spring constant k. The inverse of this dependence is
also presented in this figure. Similarly to the glider model, there is an apparent
divergence for small values of the parameter ω and the shift vanishes for large k
and ω.

spring always expands and the chosen value is below the critical value. We found
the critical value of the scaled spring constant k for the chosen starting position
and rest length to be kc

.= 5.8 × 10−6M−2.

This critical spring constant kc corresponds to a critical spring constant ω, which
does not have an analogy in the model with the glider. The engine deforming
the glider can change its power and thus it will always pull the endpoints of the
body back together. While doing that, the engine will however exert a mechan-
ical force on the body and change its total mechanical energy at the expense of
its own power source. In the following section, we study the dependence of this
work done by the engine on the parameter ω.

1.5 Mechanical energy of the dumbbell glider
As we saw in the previous chapter, a simple Newtonian model predicts that a
dumbbell interacting via a massless spring falling in a central gravitational field
never shrinks back to a single point. The glider model with controlled Lagrangian
on the other hand prescribes that the two masses coincide after the maneuver.
The glider, therefore, acts as a spring with a varying spring constant.

This fact also suggests that the total mechanical energy of the glider probably
isn’t conserved. Let us explore this hypothesis. The total conserved mechanical
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Figure 1.12: Dependence of the differential velocity of the centre of mass of a
spring on the parameter ω. The course of the function δṙ = δṙ(ω) is once again
very similar to the glider model.

Figure 1.13: Time evolution for three chosen values of the rescaled spring constant
k. There exists a critical value kc

.= 5.8 × 10−6M−2 of the spring constant. If
we study the fall of a spring with a lower spring constant, the spring will always
expand and there is no relevant time when we should compare its position to the
free-falling point.
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energy for a radially falling Newtonian test particle is:

EN = 1
2m

(
drp

dt

)2

− Mm

rp

. (1.33)

We define the total mechanical energy of the dumbbell as the sum of such terms
for both endpoints. At the end of the stroke, both endpoints have the same
energy because of the properties of the deformation function enforcing a zero rel-
ative velocity of the endpoints. Therefore, the total energy is simply twice that
of the lower endpoint.

In the relativistic case, geodesic motion conserves the projection of the four-
momentum on the timelike Killing vector field ξµ

(t):

Er = −gµνpµξν
(t) = −m

dt

dτ
gtt. (1.34)

However, we chose the time coordinate t as the independent variable, which means
that we have to express the zeroth component of the four-velocity. We can use
the normalization condition of the four-velocity:

gtt

(
dt

dτ

)2

+ grr

(
dr

dτ

)2

=

=
(

dt

dτ

)2
⎡⎣gtt + grr

(
dr

dt

)2
⎤⎦ = − 1.

(1.35)

From this we can express:
dt

dτ
= 1√−gtt − grr

(
dr

dt

)2
. (1.36)

Finally, we obtain a formula for the energy of the test particle with t as an
independent variable:

Er = −mgtt√−gtt − grr

(
drp

dt

)2
. (1.37)

For the Schwarzschild spacetime, this quantity is equal to:

Er =
m

(
1 − 2M

rp

)
√1 − 2M

rp

−

(
drp

dt

)2

1 − 2M

rp

. (1.38)

The calculated energy variations for the relativistic and Newtonian cases are pre-
sented in Figures 1.14 and 1.15, respectively. We can see that the energy of the
system grows in the process. This means that the bond has to add mechanical
energy to the system. More importantly, the energy input diverges in the crit-
ical regions. The glider would require an infinite energy source to execute the
maneuver. The glider model is not sufficient in these critical regions.
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Figure 1.14: Variation of the mechanical energy of the relativistic glider after a
single stroke. The energy input from the engine diverges in the critical regions of
large and small values of the parameter ω. Since the position shift in the critical
regions is negative, the gravitational energy of the dumbbell is smaller than that
of a free particle. This means that the relevant contribution to the change of the
mechanical energy comes from the kinetic part, which indicates that the dumbbell
is approaching the speed of light.

Figure 1.15: Variation of the mechanical energy of the Newtonian glider after a
single stroke. The energy input diverges only for small ω’s, there is no upper
limit for ω in the studied interval.
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Figure 1.16: The position shift of the dumbbell in the relativistic case as a function
of both t and ω. The edge of the 2D surface highlighted in black corresponds
to the projected plot δr(ω). The apparent divergence is partially caused by the
increasing time interval of the evolution of the body with decreasing ω.

1.6 Apparent divergence of the position shifts
in the low-frequency region

In the previous chapter we could clearly see that the presence of apparent di-
vergences is linked to the fact that the model acquires an infinite energy in the
critical regions. If the body approaches the gravitational centre in the Newtonian
case, the gravitational force becomes infinite and thus the engine must compen-
sate this force in order to maintain the prescribed length of the body.

In the relativistic case, if our parameter approaches the critical value ωc, the parts
of the body are pushed near the speed of light and, once again, the engine must
exert arbitrarily large force to achieve this. Moreover, we can see the divergence
of the energy input in the critical region of small ω’s in the relativistic case as well.

However, from Figure 1.7 it is obvious that the low-ω divergence is quicker than
the one near the upper limit of the achievable values. This is because in this
case, there are two factors at play. Apart from the energy input, there is a purely
geometrical reason for the divergence.

The position shift as defined by 1.3 is a function of both t and ω. However,
in the final plots we only show δr = δr(ω, t = 1/ω). Then, the slope of this
projection is given by:

d
dω

δr(ω) = ∂

∂ω
δr(t, ω)

⏐⏐⏐⏐⏐
t=

1
ω

− ∂

∂t
δr(t, ω)

⏐⏐⏐⏐⏐
t=

1
ω

1
ω2 . (1.39)

Because the partial time derivative is negative, the second term drives the posi-
tive divergence of the slope in the projection. In Figure 1.16, we can see the full
3D plot of δr and the projected line.

To conclude, the presence of an apparent divergence in the low-frequency region
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is influenced by this geometrical effect. We can expect this kind of behaviour for
many similar models if we study the net displacements as a function of a “fre-
quency” parameter. The glider model of [14] predicts unphysical behaviour of the
bond because it requires infinite energy input in the critical regions. It is thus
desirable to find a model of an oscillating body which satisfies the conservation
of energy as well as the causality conditions.
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2. Dixon’s formalism for
extended bodies and its
applications
We showed in the previous chapter that the total mechanical energy of the two
endpoints of the glider [14] is not conserved. Moreover, in the critical regions of
the parameter ω the energy input grew divergently, which led us to the conclusion
that the glider model is not applicable since we want to model an isolated body
whose parts only act on one another and do not gain any energy from the outside
or lose it. This means that the body can only store energy in the potential of the
bond.

The example with a spring in a Newtonian gravitational field shows that the
mechanical energy of the endpoints can change if the energy of the bond changes.
One could therefore ask whether it is possible to assign some form of a potential
or kinetic energy to the bond which would be conserved and which would explain
the motion of the endpoints and the position shift.

In order to answer this question, we have to develop a framework which will
allow us to analyse the motion of an extended body described by a general stress-
energy tensor. This leads us to the theory of extended bodies developed by
William Graham Dixon.

In the 1970s, Dixon published a series of papers [8-10] in which he found a system
of equations describing any extended body described by a conserved symmetric
stress-energy tensor. This scheme involves a set of differential equations for the
evolution of the momenta of the tensor. The first paper in the series shows how
to define the total four-momentum and the spin tensor of an extended body as
observed by an arbitrary observer.

In the following papers in the series, Dixon goes on to define the forces acting on
the extended body in an external gravitational and electro-magnetic fields. He
thus obtains a full set of evolution equations for the momenta.

We are mostly interested in the results of the first paper in the series because
it also shows several important results for extended bodies moving in maximally
symmetric spacetimes, i.e., the de Sitter and anti-de Sitter universes. Because
the presented description and the results may not be known to the reader, we
shall derive Dixon’s prediction for a body in a maximally symmetric spacetime
with our choice of the signature of the metric and the Ricci identity.

In the second half of this chapter, we shall explore how one can apply Dixon’s
formalism to the problem of a system of test particles moving in a given gravita-
tional background. Finally, we shall confront the results of Dixon’s theory with
the predictions of the glider model in maximally symmetric spacetimes.
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2.1 The theory of bitensors
In this first section we shall discuss the definition and properties of bitensors as
set by Synge [21] and DeWitt and Brehme [22]. This theory will help us develop
an approach to extended bodies laid out by Dixon. Let us consider a manifold
M. A biscalar is a function defined for a set of ordered pairs of points (x, z) ∈ M.
Similarly, a bitensor is an object defined at two points of the manifold which trans-
forms as a tensor with the change of the coordinate system near one of the points.

An example of a biscalar is the world function biscalar. We only consider such
ordered pairs of points in the spacetime (x, z) which can be uniquely connected
by a geodesic x(u). The world function biscalar is defined as:

σ(x, z) = 1
2(u2 − u1)

∫ u2

u1

[
−gαβ(x(u))dxα

du

dxβ

du

]
du, (2.1)

where the integral is calculated along the geodesic connecting the two points. This
definition is independent of the chosen affine parametrization of the geodesic. The
endpoints of the geodesic are chosen as: x = x(u1) and z = x(u2). One has to
distinguish which tensor indices belong to which of the pair of points. To this
end, we shall use the indices α, β, ... at the point x and the indices κ, λ, ... at
the point z. We denote the derivatives of the world function biscalar simply by
adding the indices:

σαβκ(x, z) = ∇κ∇βασ(x, z). (2.2)
We can notice that the covariant derivatives at the point x commute with those
at z for any bitensor.

The integral in 2.1 is extremal for perturbations of the path between the fixed
points x, z. This means that if we perturb the path x(u) including the endpoints,
the perturbation in the biscalar will be:

δσ = (u2 − u1)
[
−gµν(x(u))dxµ

du
δxν(u)

]u2

u1

. (2.3)

At the same time:
δσ = ∂σ

∂xµ
δxµ + ∂σ

∂zµ
δzµ. (2.4)

Comparing these expressions together, we get:

∂σ

∂xα
=(u2 − u1)gαβ(x)ẋβ(u1),

∂σ

∂zκ
= − (u2 − u1)gκλ(z)ẋλ(u2).

(2.5)

We represent the tangent vector of the geodesic by ẋα. We can use our index
notation to distinguish the tangent vector at the two endpoints. Moreover, we
choose the special parametrization u1 = 0, u2 = u. Thus, the relations can be
written in the compact form:

σα =uẋα,

σκ = − uẋκ.
(2.6)

27



The norm of the tangent vector does not change along a geodesic. This means
that the argument of the integral in 2.1 is a constant and thus the integral can
be easily calculated.

σ(x, z) = −1
2u2gαβẋαẋβ. (2.7)

Consequently, we can express:

2σ = −σκσκ = −σασα. (2.8)

We can see that σα is a vector at x tangent to the geodesic connecting x and z.
The length of this vector is equal to the that of the geodesic. This vector is a
natural generalization of the position vector of z relative to x from the Minkowski
spacetime.

2.2 Extended bodies in Dixon’s theory
Dixon’s formalism describes the motion of extended bodies in general relativity
through a set of differential equations for different moments of the body. The
interpretation of the results can also help us understand better what we should
expect in specific cases of extended bodies such as a system of interacting par-
ticles. In general, Dixon’s formalism allows an interaction of the body with an
external electromagnetic field. For simplicity, we shall only assume an electrically
neutral body in a gravitational field.

The extended body is described by a symmetric stress-energy tensor T αβ defined
on the spacetime (M, g), which satisfies the conservation laws:

T αβ
;β = 0. (2.9)

We also have to assume that the body is finite in the sense that the support of
T αβ is a worldtube W , which satisfies the following condition: the intersection
of an arbitrary hypersurface Σ with W lies in an open set N of M which is
a normal neighbourhood of each of its points, and whose inverse image under
the exponential map at any point p ∈ N is bounded. This rather complicated
condition ensures that the body is finite in the spatial dimensions and that the
spacelike geodesics within the body are well-behaved. For further details and the
definition of a normal neighbourhood see [23].

The formalism does not require the extended body to be a test body, the stress-
energy tensor can be the source side of the Einstein equations or its part.

Assume that there is a Killing vector field ξα in the spacetime, i.e.:

Lξgαβ = ξα;β + ξβ;α = 2ξ(α;β) = 0. (2.10)

Lξ denotes the Lie derivative along the vector field ξα. We can easily see that:

∇β(T αβξα) = 0. (2.11)
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Let Σ be an arbitrary spacelike hypersurface. Let us define the scalar function:

G(Σ) =
∫

Σ
T αβξα

√
−gdΣβ. (2.12)

Because the body is finite in the spatial directions, the application of the Stokes’s
theorem gives the independence of G on the choice of particular hypersurface Σ.
This quantity is therefore a constant of motion for the extended body.

2.3 Integrating the geodesic deviation equation
In this section, we shall show how the theory of bitensors can be used to integrate
the equation of geodesic deviation. Consider once again a Killing vector field ξα

and any geodesic x(u). Using 2.10 and the Ricci identity for covectors, it can be
easily shown by permuting the indices that the Killing field satisfies:

ξα;βγ + Rµ
γαβξµ = 0, (2.13)

where Rµ
γαβ is the Riemann tensor. Multiplying this equation twice by the

tangent vector ẋβ of the geodesic, we get:

D2ξα

du2 + Rµ
γαβẋβẋγξµ = 0. (2.14)

This is the equation of geodesic deviation. The solution is determined by spec-
ifying the initial value ξα(0) and the first derivative Dξα/du at one point of the
geodesic x(u = 0). From 2.10, we can also easily obtain:

Dξα

du
= ẋβξ[α;β]. (2.15)

Now consider the set of all points which can be uniquely connected with x = x(0)
by a geodesic. For given initial values of ξα and ξ[α;β], we can use the equations
2.15 and 2.14 to define a vector field in all points of a normal neighbourhood of x.

Now consider a 1-parameter class of geodesics x(u, v) with the affine parame-
ter u, where v labels the different geodesics. We shall denote:

ẋα =∂xα

∂u
,

ηα =∂xα

∂v
.

(2.16)

We know that ηα then satisfies the geodesic deviation equation 2.14. From the
theory of bitensors we know that:

σα(x(0, v), x(u, v)) = uẋα, (2.17)

where we used our index notation to distinguish the derivatives at x(0, v) and
those at x(u, v). Applying a covariant derivative with respect to v to this equa-
tions gives us:

σα
ληλ + σα

βηβ = u
Dẋα

dv
. (2.18)
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From 2.16:
Dẋκ

dv
= Dηκ

du
. (2.19)

We also define the inverse matrix −1σκ
α satisfying:

−1σκ
ασα

λ = δκ
λ. (2.20)

We can use this to rewrite 2.18 as:

ηκ = −−1σκ
ασα

βηβ + u−1σκ
α

Dηα

du
. (2.21)

For v = 0, this gives us the solution of the geodesic deviation equation 2.14 along
the geodesic x(u, 0) from an initial value and derivative of ηα at x(0, 0). But we
can choose the geodesic x(u) arbitrarily and, therefore, we can define the vector
field by this relation in the whole normal neighbourhood of x(0).

For convenience, we define:

Kκ
α = − −1σκ

βσβ
α

Hκ
α =−1σκ

α.
(2.22)

Then we can rewrite 2.21 as:

ηκ = Kκ
αηα + uHκ

α

Dηα

du
. (2.23)

Finally, when we apply this to the case of a Killing vector field, we obtain:

ξκ = K α
κ ξα + H α

κ σβξ[α;β]. (2.24)

2.4 Extended body in a maximally symmetric
spacetime

In this section, we shall define the four-momentum and the spin tensor for an
extended body moving in a maximally symmetric spacetime, i.e., the (anti-)de
Sitter universe or the trivial case of the Minkowski spacetime. The conservation
laws then imply the existence of a worldline with special properties, whose phys-
ical interpretation will be obvious.

We begin by choosing an arbitrary hypersurface Σ and any point x ∈ W ∩ Σ.
Then, using our assumptions, 2.24 holds everywhere in W ∩ Σ. We define the
four-momentum and the spin tensor of the extended body relative to x as:

pα(x, Σ) =
∫

Σ
K α

κ T κλ√
−gdΣλ, (2.25)

Sαβ(x, Σ) = 2
∫

Σ
σ[βH α]

κ T κλ√
−gdΣλ. (2.26)

These objects transform as a vector and a tensor at the point x, respectively. We
can rewrite the constant of motion 2.12 using these definitions as a product of
tensors defined at x:

G = pαξα + 1
2Sαβξ[α;β]. (2.27)

30



Since we know that G does not depend on the point x or the hypersurface Σ,
we can restrict the dependence of pα and Sαβ. We choose a foliation of the
spacetime Σ(s) and a worldline x(s) such that x(s) ∈ W ∩Σ(s). For the moment,
we can even consider spacelike or null worldlines and we do not require s to be the
proper interval along the worldline. The four-momentum and the spin tensor are
defined along x(s) and thus we can differentiate 2.27 with respect to s. Denoting
vα = dxα/ds and using 2.13, we get:

ξα

[
Dpα

ds
− 1

2SβγRα
δβγvδ

]
+ 1

2ξ[α;β]

[
DSαβ

ds
+ 2p[αvβ]

]
= 0. (2.28)

This equation must hold for any choice of the Killing vector field. If the spacetime
is maximally symmetric, the values of ξα and ξ[α;β] can be arbitrary and thus the
expressions in the brackets have to vanish for any choice of the foliation and the
worldline.

Dpα

ds
= 1

2SβγRα
δβγvδ, (2.29)

DSαβ

ds
= −2p[αvβ]. (2.30)

The Riemann tensor in the maximally symmetric spacetime can be expressed as:

Rαβγδ = k(gαγgβδ − gαδgβγ) (2.31)
and thus the first equation takes the form:

Dpα

ds
= kSαβvβ. (2.32)

These equations can be integrated along the chosen worldline from the initial
values of pα and Sαβ at the point x. This means that the particular choice of
the foliation Σ(s) does not matter. We could have also used any worldline x(s),
therefore, as a vector and tensor fields, the four-momentum and the spin tensor
have to satisfy the equations:

pα;β = kSαβ, (2.33)

Sαβ;γ = −2p[αgβ]γ. (2.34)
The first equation shows that pα is a Killing vector field and thus it satisfies 2.13.
But then for k ̸= 0, 2.33 implies 2.34. This means that the only restriction on pα

is that it is a Killing vector field and after the choice of pα, the equation 2.33 can
be used to calculate Sαβ, which identically satisfies 2.34.
Let us assume that there is a point x0 where:

pαpβ;α = 0. (2.35)

Then for k ̸= 0 by 2.33 also:
pαSαβ = 0. (2.36)

Denote L0 the integral curve of the Killing field pα going through x0. Then 2.35
will hold along L0 and L0 is a geodesic with the tangent vector pα. Moreover, the
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magnitude of the vector does not change.

The dominant energy condition for T αβ is sufficient for the existence of the point
x0 satisfying 2.35 [8]. Dixon goes on to prove that this worldline is then unique
except for one special case, which we shall not discuss here. Let us only state
that this case is not physically relevant. The single remaining worldline is also
timelike and can be associated with the centre of mass of the extended body. In
maximally symmetric spacetimes, the centre of mass thus moves along a geodesic.
This answers our question about possible swimming effects in these cases: if we
define the centre of mass according to this definition then the net displacement
of the centre of mass with respect to a geodesic motion with the same initial con-
ditions vanishes unless the conservation laws are violated, i.e., unless the system
loses or gains energy.

The evolution equations for the four-momentum and the spin tensor along L0
reduce to:

Dpα

ds
= 0, (2.37)

DSαβ

ds
= 0. (2.38)

2.5 The stress-energy tensor of a test particle
In the previous sections we saw how the conservation laws restrict the motion of
an extended body described by a general stress-energy tensor. In this section, we
apply the results to the case of a set of test particles moving on a given back-
ground. To this end, we have to find a stress-energy tensor of such a system.

The stress-energy tensor can be derived from the Lagrangian. Let us consider a
single test particle. We shall use the action for the trajectory parametrized by
the coordinate time x0 = t. The trajectory is zµ(t). We justify using the coordi-
nate time as the independent variable in Chapter 3. The action for the geodesic
motion is:

Sp = −m
∫ √

−gαβ
dzα

dt

dzβ

dt
dt. (2.39)

To find the stress-energy tensor, we need to find the Lagrangian density. We have
to add the integration over the spatial coordinates. Moreover, the invariant vol-
ume element has to be multiplied by the square root of the negative determinant
of the metric tensor. The action then takes the form:

Sp = −m
∫ ⎡⎣ 1√

−g

√
−gαβ(z(t))dzα

dt

dzβ

dt
δ(3)(x⃗ − z⃗(t))

⎤⎦√
−gd4x. (2.40)

The vectors represent the spatial coordinates, g is the determinant of the met-
ric tensor and, finally, δ(3) is the three-dimensional delta distribution. The La-
grangian density for the free test particle then is:

Lp = − m√
−g

√
−gαβ(z(t))dzα

dt

dzβ

dt
δ(3)(x⃗ − z⃗(t)). (2.41)
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By definition, the stress-energy tensor can be obtained in the following form:

Tµν = − 2√
−g

∂ (√−gLp)
∂gµν

. (2.42)

By differentiating the equation gαρgρβ = δα
β we find the formula:

∂gµν

∂gαβ
= −gµαgνβ. (2.43)

We can now easily find the stress-energy tensor of the test particle:

T µν = m√
−g

dzµ

dt

dzν

dt√
−gαβ(z(t))dzα

dt

dzβ

dt

δ(3)(x⃗ − z⃗(t)). (2.44)

2.6 Conservation laws for the test particle
The key assumption of Dixon’s theory of extended bodies is that the stress-energy
tensor satisfies the conservation laws:

T µν
;ν = 0. (2.45)

The conservation laws are in general four differential equations for the system.
We can ask whether they are equivalent to the equations of motion and whether
they fully determine the evolution of the system. For example, if T µν is the
stress-energy tensor of the electromagnetic field, the conservation laws are equiv-
alent to the first set of Maxwell’s equations. A general antisymmetric tensor in
four dimensions has 6 independent components. Thus if we use the tensor of the
electromagnetic field as the field variable, the 4 conservation laws do not fully
determine the evolution. However, if we accept the existence of the four-potential
and treat it as the right field variable, the conservation laws are sufficient.

Similarly, the conservation laws for the perfect fluid imply the continuity equa-
tion as well as the Euler equation for the fluid. However, they do not restrict the
equation of state of the fluid. If we treat the pressure as a separate variable, the
conservations laws do not fully describe the evolution of the system.

Let us inspect how much the conservation laws for the test particle restrict its
motion. We can express the four-divergence in the following form:

T µν
;ν = 1√

−g

(√
−gT µν

)
,ν

+ Γµ
νσT νσ. (2.46)
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From 2.44 we can evaluate:

1
m

(√
−gT µν

)
,ν

=

⎛⎜⎜⎜⎜⎝
dzµ

dt

dzν

dt
δ(3)(x⃗ − z⃗(t))√

−gαβ(z(t))dzα

dt

dzβ

dt

⎞⎟⎟⎟⎟⎠
,ν

=

⎛⎜⎜⎜⎜⎝
dzµ

dt
δ(3)(x⃗ − z⃗(t))√

−gαβ(z(t))dzα

dt

dzβ

dt

⎞⎟⎟⎟⎟⎠
,t

+

⎛⎜⎜⎜⎜⎝
dzµ

dt

dzi

dt
δ(3)(x⃗ − z⃗(t))√

−gαβ(z(t))dzα

dt

dzβ

dt

⎞⎟⎟⎟⎟⎠
,i

= −
3∑

i=1

dzµ

dt
δ(2)−i(x⃗ − z⃗(t))δ′(xi − zi(t))dzi

dt√
−gαβ(z(t))dzα

dt

dzβ

dt

+
d2zµ

dt2 δ(3)(x⃗ − z⃗(t))√
−gαβ(z(t))dzα

dt

dzβ

dt

+

+

dzµ

dt

(
1
2gρσ,τ

dzρ

dt

dzσ

dt

dzτ

dt
+ gρσ

d2zρ

dt2
dzσ

dt

)
(

−gαβ(z(t))dzα

dt

dzβ

dt

)3
2

δ(3)(x⃗ − z⃗(t))+

+
3∑

i=1

dzµ

dt
δ(2)−i(x⃗ − z⃗(t))δ′(xi − zi(t))dzi

dt√
−gαβ(z(t))dzα

dt

dzβ

dt

.

(2.47)

Here, δ′ is the derivative of the delta distribution and δ(2)−i is the two-dimensional
delta distribution without the i-th dimension. The first and last terms in this
expression cancel. The conservation laws take the form:

T µν
;ν = m√

−g

⎡⎢⎢⎢⎢⎣
d2zµ

dt2√
−gαβ(z(t))dzα

dt

dzβ

dt

+ Γµ
ρσ

dzρ

dt

dzσ

dt√
−gαβ(z(t))dzα

dt

dzβ

dt

+

+ dzµ

dt

1
2gρσ,τ

dzρ

dt

dzσ

dt

dzτ

dt
+ gρσ

d2zρ

dt2
dzσ

dt(
−gαβ(z(t))dzα

dt

dzβ

dt

)3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
δ(3)(x⃗ − z⃗(t)).

(2.48)

This means that if we want to satisfy the conservation laws, the expression in the
brackets has to be equal to 0.

d2zµ

dt2 + dzµ

dt

1
2gρσ,τ

dzρ

dt

dzσ

dt

dzτ

dt
+ gρσ

d2zρ

dt2
dzσ

dt

−gαβ
dzα

dt

dzβ

dt

+ Γµ
ρσ

dzρ

dt

dzσ

dt
= 0. (2.49)
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The general form of the non-affine parametrization of the geodesic equation is:

d2zµ

dp2 − dzµ

dp

d2τ

dp2

dτ

dp

+ Γµ
ρσ

dzρ

dp

dzσ

dp
= 0, (2.50)

where τ is the affine parameter and p is the non-affine parameter. In our case,
we have:

dτ

dt
=
√

−gαβ
dzα

dt

dzβ

dt
. (2.51)

This means that 2.49 is the geodesic equation parametrized by the coordinate
time. The conservation laws for the stress-energy tensor of a free test particle are
equivalent with the geodesic equation.

If we were studying a system of several independent test particles, the stress-
energy tensor would be a sum of the individual terms 2.44. To satisfy the conser-
vation laws, each particle has to move along a geodesic. However, the particles
can decay or collide if they meet while preserving the total four-momentum dur-
ing the process.

The glider model from Chapter 1 cannot satisfy such conservation laws during
the gliding maneuver because the endpoints don’t follow a geodesic. One could
still hope that the conservation laws can be saved by somehow including the
stress-energy tensor of the bond into the description. In the following section, we
show that this is not possible.

2.7 The relativistic glider in the de Sitter uni-
verse

Dixon’s theory predicts that in maximally symmetric spacetimes the centre of
mass of any extended object described by its stress-energy tensor field, which
satisfies conservation laws, moves along a geodesic and thus no swimming or
swinging effect can be measured. Furthermore, this trajectory of the centre of
mass with the desired properties is unique.

We shall use these results to test the glider model from Chapter 1 by apply-
ing a similar computation in the de Sitter and anti-de Sitter universes. The
Lagrangian for a single test particle is:

Lp = −m

√1 − Λ
3 r2

p − 1

1 − Λ
3 r2

p

(
drp

dt

)2

, (2.52)

where Λ is the cosmological constant, which can be positive (de Sitter) or neg-
ative (anti-de Sitter). The coordinate time does not correspond to the proper
time of a distant static observer. Not only that but in the de Sitter case, an
asymptotic static observer is not even physical because there is a cosmological
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horizon located at rH =
√

3/Λ. However, the coordinate time can be associated
with the proper time of a stationary observer at r = 0.

Similarly to the Schwarzschild spacetime, no object can cross the horizon in a
finite coordinate time. The glider Lagrangian can be written in a similar manner:

Ld = − m

√1 − Λ
3 r2

d − 1

1 − Λ
3 r2

d

(
drd

dt

)2

− m

√1 − Λ
3 (rd + l)2 − 1

1 − Λ
3 (rd + l)2

(
drd

dt
+ dl

dt

)2

.

(2.53)

The choice of the deformation function l(t, ω, α) is the same as in Chapter 1.
We once again integrate the equations of motion numerically for the duration of
one stroke of the glider for different values of the parameters ω and α. We then
compare the position shift δr and the differential velocity δṙ to a free test particle
falling from the same position with the same initial four-momentum.

In our numerical computations, we choose the position of the horizon in the
de Sitter case to be rH = 300. This means that the length units are rH/300 =
1/
√

30000 | Λ |. We used the same expression as the length scale also for the anti-
de Sitter case. We denote this expression by L. We choose the initial position
R0 = 120L and the initial coordinate velocity of the glider is 0. The maximal
coordinate length of the glider is δl = 5 × 10−3L.

The results of the computations are shown in Figures 2.1, 2.2, 2.3 and 2.4. In the
anti-de Sitter case we cannot use the smallest values of the parameter ω because
the free particle and the glider reach r = 0 in a finite time and the coordinate
system is singular there. We can see that the net displacements do not vanish at
the end of the motion. We can also notice that the shift is positive for negative
values of the asymmetry parameter α in the de Sitter universe. In this case the
free object is driven towards the horizon and thus the position shift happens in
the same direction as the total displacement of the body. One could ask whether
we chose the correct geodesic to compare the net position of the glider. This has
to be the case because the glider is a point object at the beginning.

This result directly contradicts Dixon’s theory. Furthermore, it shows that we
cannot include any extra term to account for the energy of the bond, which would
satisfy the conservation laws. We have already seen that in this model, the total
mechanical energy is not conserved in the Schwarzschild case. The only possibility
for the particles to perform the prescribed motion is that there is an outer force
changing their four-momentum. The description based on controlled Lagrangians
is not an acceptable relativistic model.
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Figure 2.1: Position shifts for the glider in the de Sitter spacetime. The shifts
are positive for negative values of the asymmetry parameter α. This is because
the free body moves towards the cosmological horizon. This net displacement
directly contradicts the results of Dixon’s theory.

Figure 2.2: Differential velocity for the glider in the de Sitter spacetime. We can
see that the differential velocity is positive in this case. The velocity shifts should
also vanish according to Dixon’s theory.
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Figure 2.3: Position shifts for the glider in the anti-de Sitter spacetime. There is
no divergence of the position shifts because there are no horizons in the spacetime.
We had to disregard the results for the smallest values of the parameter ω because
the test objects reach r = 0 in a finite time.

Figure 2.4: Differential velocity for the glider in the anti-de Sitter spacetime.
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3. Discrete spring model of an
extended body
Predictions of the glider model are in conflict with the results of Dixon’s theory.
The description requires non-local interaction between the endpoints of the body,
which then leads to problems with causality and energy conservation. Ultimately,
one has to question the validity of all predictions of the model. Can the swim-
ming effect of the glider be reproduced using a more physically acceptable model?

In this chapter, we shall study a model of an oscillating extended body which
interacts only locally and which can be described by a conserved stress-energy
tensor. The system consists of several test particles which decay, collide and
recombine. Each particle moves along a geodesic unless it goes through one of
these processes.

Such systems have been studied in [19], where the author also shows how the
momenta of such a system satisfy the equations of Dixon’s theory. To achieve an
attracting interaction between the particles, one has to introduce intermediate
particles with negative rest masses. These negative masses can be understood as
a discrete tension moving through the bond between the particles with positive
masses.

Our aim is to use this model to describe a body performing motion similar to
the glider and to compare the predictions of the two models regarding the final
position shift. This means that we have to once again compare the final position
of the body to that of a single free test particle with the same initial conditions.
To avoid any problems with the definition of the centre of mass of the system, the
whole process has to start with a single particle and end when all of the involved
particles recombine to form a single particle again.

To evaluate the position shift we have to once again subtract values of the position
of the system and the reference particle, which are very close. From the previous
chapter we know that the system of colliding and decaying particles which follow
a geodesic can be described by a conserved stress-energy tensor. For this model
we can thus use the predictions of Dixon’s theory. By studying the behaviour of
the model in maximally symmetric spacetimes, where the effect must vanish, we
can check its consistency and evaluate the error of the obtained results introduced
by the numerical methods and representations of numbers.

In this chapter, we shall first derive the necessary equations of motion, i.e., the
geodesic equations, in the chosen spacetimes (Schwarzschild, de Sitter and anti-
de Sitter) using proper time and coordinate time as the independent parameter
of motion. We shall also prove that the geodesic equation parametrized by the
coordinate time can be derived from the action. We discuss the kinematics of
decay and recombination of particle pairs. Finally, we shall find the predictions
of the position shift for the discrete spring model in the three chosen spacetimes
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and compare them to the glider model.

3.1 Radial geodesics in the Schwarzschild space-
time

All the particles always follow geodesic motion in the proposed model. It is thus
useful to derive an explicit form of the radial geodesic equation, which we shall
later solve numerically.

The model starts with a single particle with a specific initial position and ve-
locity, decaying into a pair of identical particles moving in opposite directions.
The first pair of particles moves freely until they decay, too. In the model, the
decay occurs after the particle lives for a specific proper time τ0. For this part
of the process we shall, therefore, use the proper time of each particle as the
independent parameter. We start from the usual form of the geodesic equation:

d2xµ

dτ 2 + Γµ
αβ

dxα

dτ

dxβ

dτ
= 0. (3.1)

Because we are interested in the radial fall, the only relevant coordinates are r
and t of the standard Schwarzschild coordinate system. First, we evaluate the
necessary Christoffel symbols:

Γt
tr =

M

r2

1 − 2M

r

,

Γr
tt =

(
1 − 2M

r

)
M

r2 ,

Γr
rr =

−M

r2

1 − 2M

r

,

Γt
tt =Γt

rr = Γr
rt = 0.

(3.2)

Finally, we can write down the explicit form of the geodesic equations:

d2t

dτ 2 +
2M

r2

1 − 2M

r

dt

dτ

dr

dτ
= 0, (3.3)

d2r

dτ 2 −

M

r2

1 − 2M

r

(
dr

dτ

)2

+
(

1 − 2M

r

)
M

r2

(
dt

dτ

)2

= 0. (3.4)

This system of ordinary differential equations can be partially integrated because
there are two independent conserved quantities: energy and normalization of the
four-velocity. Nevertheless, it is sufficient and often numerically more stable to
use these second-order equations for our purpose.
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In further stages of the process, one has to check when some of the moving
particles collide. Each of the particles has a different proper time and, therefore,
it is more convenient to use the coordinate time as the independent variable. To
do this, we have to find the equation of the radial geodesic parametrized by the
coordinate time. Let us first express:

d2r

dτ 2 = d
dτ

(
dr

dt

dt

dτ

)
= d2r

dt2

(
dt

dτ

)2

+ dr

dt

d2t

dτ 2 . (3.5)

From 3.3 we can express:

d2t

dτ 2 =
−2M

r2

1 − 2M

r

dr

dt

(
dt

dτ

)2

. (3.6)

Finally, substituting these two expressions into 3.4 and dividing by the common
factor, we obtain:

d2r

dt2 −

3M

r2

1 − 2M

r

(
dr

dt

)2

+
(

1 − 2M

r

)
M

r2 = 0. (3.7)

This form of the equation only works for regions where t is a valid time coordinate,
i.e., above the event horizon. We know that no particle can cross the event horizon
in finite coordinate time and, therefore, the equation of motion should work for
an arbitrarily long time interval.

3.2 Deriving the geodesic equation from the ac-
tion

The geodesic equation can be derived from the action using the variational prin-
ciple:

S =
∫ √

gαβ
dxα

dτ

dxβ

dτ
dτ. (3.8)

We do not consider variation of the independent parameter τ . The independent
parameter is often chosen as the proper time but this choice is not necessary
because the action is invariant under reparametrization. If we choose a different
independent variable λ = λ(τ), the action is:

S ′ =
∫ √gαβ

dxα

dλ

dxβ

dλ

(
dλ

dτ

)2 dτ

dλ
dλ =

∫ √
gαβ

dxα

dλ

dxβ

dλ
dλ. (3.9)

However, one can still doubt whether we can use one of the coordinates as the
independent variable since it is one of the sought functions. Let us check this
explicitly in the case of radial geodesic motion in the Schwarzschild spacetime.

41



The Lagrangian for this problem is:

L =

√1 − 2M

r
− 1

1 − 2M

r

(
dr

dt

)2

. (3.10)

Let us denote the derivative with respect to t by a dot. We shall now find the
Euler-Lagrange equation for this Lagrangian.

∂L

∂r
= M

r2

1 + ṙ2(
1 − 2M

r

)2

(
1 − 2M

r

)1
2
√1 − ṙ2(

1 − 2M

r

)2

. (3.11)

∂L

∂ṙ
= −ṙ

(
1 − 2M

r

)3
2
√1 − ṙ2(

1 − 2M

r

)2

. (3.12)

d
dt

(
∂L

∂ṙ

)
= −r̈

(
1 − 2M

r

)3
2

⎡⎢⎢⎢⎣1 − ṙ2(
1 − 2M

r

)2

⎤⎥⎥⎥⎦
3
2

+

+ ṙ2M

r2

3 − ṙ2(
1 − 2M

r

)2

(
1 − 2M

r

)5
2

⎡⎢⎢⎢⎣1 − ṙ2(
1 − 2M

r

)2

⎤⎥⎥⎥⎦
3
2

.

(3.13)

Putting these expressions together and multiplying by the common denominator
we obtain:

−r̈ +
3M

r2

1 − 2M

r

ṙ2 −
(

1 − 2M

r

)
M

r2 = 0, (3.14)

which is Equation 3.7. Thus, we showed that the time coordinate can be used
as the independent variable as long as it is not degenerate, i.e., as long as it is
a monotonous function of the proper time. The equation for the radial geodesic
parametrized by the coordinate time can thus be derived from the variational
principle.
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3.3 Radial geodesic equation in the de Sitter
spacetime

As we showed in the previous chapter, an extended body cannot deviate from
the geodesic motion in maximally symmetric spacetimes. It is therefore a good
test for any model of an extended body and for the numerical software to try to
obtain this net zero position shift in the (anti-)de Sitter spacetime.

To use the proposed model in the de Sitter spacetime, we have to find the radial
geodesic equation parametrized by both the proper time and the coordinate time.
The derivation is very similar to the Schwarzschild case.

Γt
tr =

−1
3Λr

1 − Λ
3 r2

,

Γr
tt = −

(
1 − Λ

3 r2
)

1
3Λr,

Γr
rr =

1
3Λr

1 − Λ
3 r2

,

Γt
tt =Γt

rr = Γr
rt = 0.

(3.15)

The geodesic equation parametrized by the proper time is then:

d2t

dτ 2 −

2
3Λr

1 − Λ
3 r2

dt

dτ

dr

dτ
= 0, (3.16)

d2r

dτ 2 +
1
3Λr

1 − Λ
3 r2

(
dr

dτ

)2

− 1
3Λr

(
1 − Λ

3 r2
)(

dt

dτ

)2

= 0. (3.17)

Finally, the geodesic equation in the coordinate time is:

d2r

dt2 + Λr

1 − Λ
3 r2

(
dr

dt

)2

− 1
3Λr

(
1 − Λ

3 r2
)

= 0. (3.18)

In this case, the time coordinate can be used in the static region under the horizon,
which is located at rh =

√
3/Λ in the de Sitter case. In the anti-de Sitter case

(negative Λ), there are no event horizons and t can be used as the independent
variable everywhere. The time coordinate no longer represents the proper time
of a distant stationary observer since the spacetime is not asymptotically flat. It
is, however, the proper time of an observer stationary at r = 0.
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3.4 Kinematics of the decay and the recombi-
nation of test particles

In the proposed model, all particles follow geodesics until they decay or collide
with another particle. We shall only consider simple two-body decays and fu-
sions. In this section, we shall discuss the kinematics of these processes. Let us
consider a general 1+1 spacetime with a diagonal metric such as the radial part
of the Schwarzschild or the de Sitter spacetime.

Let us start with the collision and fusion of two particles of masses m1 and
m2. The mass of the product is M . Let us denote µi = mi/M . The motion of
the product must respect the conservation of the total four-momentum:

dt

dτ
=µ1

dt1

dτ1
+ µ2

dt2

dτ2
,

dr

dτ
=µ1

dr1

dτ1
+ µ2

dr2

dτ2
.

(3.19)

Here, the coordinates without a subscript correspond to the product of the colli-
sion and the coordinates with the subscript correspond to the colliding particles,
t is the timelike coordinate and r is the spacelike coordinate.

Typically, the collision is described using t as the independent variable since,
this way, it is easier to check if the relevant particles meet. We can express the
components of the four-velocity for any particle from the normalization:

dt

dτ
= 1√−gtt − grr

(
dr

dt

)2
(3.20)

and thus
dr

dτ
= dr

dt

dt

dτ
. (3.21)

The last equation can then be used to find the coordinate velocity of the product
as well. Even though we assumed that we know the mass of the fusion product,
it is not necessary. The mass of the product can be calculated from the normal-
ization of the four-velocity.

The decay process is similar. Once again, the total four-momentum has to be
conserved according to 3.19. This time, the coordinates without any subscript
correspond to the decaying particle and the ones with a subscript correspond to
the decay products. The components of the four-velocity of the decaying particle
are known as well as the masses and we have to calculate the four-velocities of
the products.

The normalization of the four-velocity for the products will give us two addi-
tional equations. Together with 3.19 these equations can be solved to find the
components of the four-velocities. For example, we can derive the following equa-
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tion for the spatial component of the four-velocity:

−4µ2
1

µ4
2

gtt

(
dt

dτ

)2

− A2 − 2AB
dr1

dτ1
= −4µ2

1
µ4

2
grr

(
dr1

dτ1

)2

(3.22)

with
A = µ2

1 − µ2
2 + 1

µ2
2

, (3.23)

B = 2µ1

µ2
2

grr
dr

dτ
. (3.24)

This is a quadratic equation for the spatial component of the four-velocity of the
first product. There are two solutions in general because for a stationary decaying
particle, the product can go to the left or to the right. The temporal component
of the four-velocity can then be expressed from the normalization as:

dt1

dτ1
=

√1 + grr

(
dr1

dτ1

)2

−gtt

. (3.25)

Finally, we can use 3.19 to calculate the four-velocity of the second product.
If necessary, one can then express the coordinate velocity of the products by
inverting 3.21.

3.5 Discrete spring model in the Schwarzshild
spacetime

We are now ready to test the proposed model with decaying particles in a given
gravitational background. First, we shall study its behaviour in the Schwarzschild
spacetime. The process consists of several parts.

In the beginning, we have a stationary particle located at the position R0. We
choose its initial position to be R0 = 120M as it was in the glider model of [14].
This particle decays into two particles of the same mass and the products move in
the radial direction along a geodesic with the initial velocity given by the energy
of the primary decay. The initial magnitude of the velocity (both the component
of the four- and coordinate velocities) is the same for both particles, only pointing
in opposite directions.

This initial velocity is, in fact, a function of the masses of the products and
the decaying particle. However, we shall not calculate it in this way. Rather,
we simply prescribe the initial spatial components of the four-velocity for both
particles. The time component of the initial four-velocity u0 can be calculated
from 3.25.

We integrate 3.4 and 3.3 for the chosen period of the proper time for both parti-
cles τ0. This parameter would correspond to the decay rate for the particle but
we shall treat it as a free parameter. After this interval of the proper time, both
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particles decay into a particle with a positive mass and an exotic particle with
a negative mass. Note that this decay happens at different coordinate times for
the lower and higher particles. We consider the masses of the new products or,
more specifically, their ratios to the mass of the decaying particle µ1, µ2 to be
free parameters of the model. The components of the velocity of the products are
calculated using 3.22 and 3.25. This means that there are two kinds of decaying
particles: the initial static particle decays into two standard identical particles.
These particles then undergo the exotic decay. These conditions are necessary to
achieve the oscillating motion of the body.

Since we want to invent a system mimicking the behaviour of a classical os-
cillating spring that can exhibit tension, we have to use particles with negative
rest masses because this decay has the effect that it pulls the non-exotic particles
back together. The decay involving only particles with positive rest mass would
only push some of the involved particles farther apart. Our goal is to fuse the
particles back into one so that we can evaluate its position shift.

After both moving particles decay, all four of the created particles follow geodesic
motion. For an appropriate choice of the masses, the exotic particle moves very
fast towards the other pair. We are looking for the moment when one of the
exotic particles reaches the non-exotic particle from the second pair. Therefore,
it is more convenient to use the coordinate time as the independent variable and
integrate 3.7 for all four particles at once.

We require that the exotic particles can only interact with the classical ones
and they pass through one another and move towards their non-exotic partners.
When one of them reaches the target particle, they collide and recombine. This
process further pulls the non-exotic particle back. The four-velocity of the prod-
uct is given by the conservation of the total four-momentum again. For a short
period of time, we integrate the geodesic equations for the three particles until
the second exotic particle reaches its target. We calculate the recombination in
a similar manner.

Finally, we let the two resulting particles, which are now moving towards each
other, collide, at which point we stop the integration and evaluate the position
of the product. There are in total four parameters of this process: the initial
velocity of the particles u0, the decay time τ0 and the two masses of the products
µ1, µ2. One could also include the initial position and velocity of the primary
decaying particle among the parameters but we shall only consider one set of ini-
tial conditions for now just as we shall only consider one set of initial conditions
for the reference particle. We would like to compare the results of this model
to the glider model from [14] and from Chapter 1. The glider model assumes a
fixed maximal length of the body δl. We can approximately fix the corresponding
quantity by setting u0 = δl/2τ0 since this would work in flat spacetime for low
velocities. The maximal length is chosen to be δl = 5 × 10−3M in accordance
with [14].

The masses µ1, µ2 have to be chosen appropriately because if the negative mass of
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the exotic particle isn’t high enough then the decay and recombination processes
won’t be able to pull the particles back together and the gravitational pull of the
black hole would prevail. We chose µ1 = 2 and µ2 = −2/5. By this choice, the
part of the motion from the exotic decay till the final merger happens very fast
in comparison to the rest of the process. This allows us to easily control the total
duration of the process because it is approximately equal to τ0.

This choice effectively restricts us to a single value of the asymmetry parame-
ter α from the glider model [14]. However, this corresponds to the positive values
of the asymmetry parameter, for which the glider model yields the most interest-
ing predictions with the largest swimming effect, i.e., a positive shift δr.

To be able to compare our results with [14] we would like to plot the depen-
dence of the position shift on a parameter with the dimension of frequency. The
whole process takes some interval of the coordinate time ∆t, which is a function
of the free parameters described above. We shall denote ω = 1/∆t and plot the
position shift as a function of this ω although the actual changing parameter is τ0.

The calculated position shifts are presented in Figure 3.1. One can clearly see
that the shifts appear even in this model. The results of Dixon’s theory do not
exclude this possibility. However, contrary to the predictions of the glider model,
the shift is always negative and vanishes for large values of ω. Once again, we
notice an apparent divergence of the shifts in the region of small ω’s, while the
high-frequency region seems to be divergence-free. In this case, all of the particles
follow geodesic motion with sub-luminal velocities because we prescribe the value
of a component of the four-velocity, which is not bounded. The total stress-energy
tensor of the system is conserved in terms of the covariant derivative as shown
in Chapter 2. The geometric effect as the source of the divergence described in
Chapter 1 is present even in this case.

However, the set of achievable values of ω is bounded from both sides. We cannot
access arbitrarily small ω because if the time of decay τ0 is too large, the particles
fall too close to the event horizon (or possibly even under it). The particles then
either recombine under the horizon, which takes an infinite interval of the coordi-
nate time, or the tidal forces then pull the particles so much apart that the decays
and recombinations cannot pull them back together. On the other hand, if we
choose the time decay τ0 too small, since we fix u0 = δl/2τ0, the initial component
of the four-velocity is very large. This means that the time-dilation effect becomes
very significant. Although it takes the particles only a short period of the proper
time to decay, the process takes much longer in terms of the coordinate time.
This indicates that there is a maximal value of the possible value of ω for fixed
values of the other parameters. We calculated the position shifts even up to this
critical upper value of the parameter ω and the position shifts always approach
net 0 displacement with increasing ω unlike in the case of the glider model of [14].

We cannot run into trouble with causality and energy divergence described in
Chapter 1 because the model simply prevents accessing unphysical values of the
parameter ω. Since the position shift is always negative, our results contradict

47



Figure 3.1: Position shifts calculated for the discrete spring model. These values
were computed for the masses ratios µ1 = 2, µ2 = −2/5. Even though the
particles move apart from each other for a long time and then very rapidly shrink
back to a single point, which corresponds to the positive values of the asymmetry
parameter from the glider model [14], the position shift is always negative and
has a similar dependence on the “frequency” ω as the Newtonian glider.

the results of the glider model [14]. Moreover, the calculated position shifts are
relatively smaller compared to the glider model. We effectively calculated the
results only for one value of the asymmetry parameter because controlling the
value of ω is rather easy in this model if we want to effectively achieve positive
values of α. The situation would be significantly more complicated if we wanted
to control ω while also effectively achieving the negative value of the asymmetry
parameter.

Our model does not require super-luminal exchange of information among the
different parts of the extended body. The predictions are thus more credible
than the results of the glider model. Ultimately, the present model does not
reproduce the positive values of the position shifts from the glider model in the
high-frequency region for positive values of the asymmetry parameter. Therefore,
we conclude that the swinging effect can only make the fall worse for the doomed
swinger as they inevitably approach the horizon.

3.6 Discrete spring model in the (anti-)de Sitter
universe and discussion of computational er-
rors

In this section we shall test the model of the extended body with decaying par-
ticles in the de Sitter and anti-de Sitter spacetimes. The main purpose of this
exercise is to check our numerical calculations and estimate the error of the com-
putation. Dixon’s theory predicts no net displacement of the centre of mass as
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shown in the previous chapter. The reference geodesic from Dixon’s theory coin-
cides necessarily with the trajectory of a free test particle with the same initial
conditions, because the body starts as a single particle.

We used Wolfram Mathematica to integrate the equations of motion and to com-
pute the position shifts. Any calculated position shift has to be either a result
of an error in the code or a numerical error. An error in the code can also result
from a bias of the integration method implemented in the software.

We choose our length scale in the same way as we did in the case of the glider
model [14], which means that our length unit is L = 1/

√
30000 | Λ |. In the de

Sitter case, the cosmological event horizon is then located at rH = 300L. The
initial position of the body and the reference point particle is set arbitrarily to
R0 = 120L in both cases. The reference particle starts its motion from rest and
thus the two initial moving particles of the extended body have the same magni-
tude of the initial velocity, only with opposite directions.

The whole process goes through the same phases as it did in the Schwarzschild
spacetime. In the anti-de Sitter universe we have to make sure that neither of the
involved particles goes through the centre of the coordinate system r = 0 where
the description breaks down because of the nature of the coordinate system. This
means that the process must not take too much coordinate time and the particles
must not move away from each other at too large velocities.

The main difference from the previous case is that we have to use the formu-
lae derived for the case of (anti-)de Sitter case, i.e., the geodesic equations 3.16,
3.17 and 3.18. Similarly, we have to use the proper form of the kinematics for-
mulae to calculate the relevant quantities for the decay and recombination of the
involved particles. Otherwise, the calculation is very similar to the Schwarzschild
case. The initial particle decays into two identical particles which move away
from each other with an initial spatial component of their four-velocity u0 for an
interval of their proper time τ0. They both decay into a standard particle and an
exotic particle with mass ratios µ1 = 2, µ2 = −2/5. The exotic particles recom-
bine with the non-exotic particle from the other pair, which pulls the particles
together once again. Finally, the two remaining particles collide, at which point
we evaluate the net position displacement of the whole system compared to the
position of a single test particle moving along a geodesic.

Once again, the phase of the motion from the exotic decay till the end of the
process takes very short time because of the choice of the mass ratios. This al-
lows us to easily control the total duration of the process through τ0 while keeping
u0 = δl/2τ0. The maximal length is set to δl = 5 × 10−3L. We present the final
position shifts δr in Figures 3.2 and 3.3 as functions of ω = 1/∆t, where ∆t is
the total duration of the process in terms of the coordinate time.

We computed the position shifts for the values of the parameter ω up to 1L−1. As
expected, the calculated net displacement does not vanish completely in either of
the two cases, which indicates the presence of numerical errors in the computa-
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tion. However, the position shifts in both cases are orders of magnitude smaller
than the values calculated for the body in the Schwarzschild spacetime for a given
frequency ω.

To investigate the numerical errors, we then integrated the equations of motion
using several different numerical methods implemented in the Wolfram Math-
ematica software. Two of the methods (Stiffness Switching and Extrapolation)
showed a position shift comparable to that in the Schwarzschild case. These meth-
ods are likely to be biased because the net displacements are much smoother than
those computed with other methods, indicating that the values are not a result
of a simple rounding error. On the other hand, the methods Adams, Shooting
and Explicit Runge-Kutta all show the position shift of a similar magnitude in
both the de Sitter and anti-de Sitter cases. This net displacement error is many
orders of magnitude smaller than the Schwarzschild case and their values appear
mostly random. All three of these methods predict very similar position shifts in
the Schwarzschild case.

Additionally, we computed the position shifts using different working precisions
of the numerical methods. In the maximally symmetric spacetimes, the position
shift always became smaller with a higher working precision. On the other hand,
the values did not change very much after reaching a sufficient working precision
in the Schwarzschild spacetime. Finally, we computed the net displacement for
a non-vanishing initial velocity of the primary decaying particle. To calculate
the initial velocities of the two decay products, one cannot simply add the initial
velocity u0. The initial components of the four-velocity have to be calculated
from 3.22. We also have to compare the final position of the body to the position
of a free particle with the same initial velocity. Surprisingly, the calculated net
displacements were even smaller with a non-vanishing initial velocity.

All of these results show that the values computed for the case of the discrete
spring model in the Schwarzschild spacetime are not heavily influenced by a nu-
merical error. Because the model could not reproduce the positive position shifts
predicted by the glider model, we have to conclude that they are the result of the
unphysical characteristics of the glider model. The discrete spring model satis-
fying the sub-luminal interaction condition and energy-momentum conservation
predicts an extended body in the Schwarzschild spacetime behaves similarly to
the glider model in the Newtonian gravitational field. Moreover, the results are
in agreement with the general predictions of Dixon’s theory. We thus propose to
use the discrete spring model to test other interesting cases, particularly a system
undergoing perpendicular oscillations.
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Figure 3.2: Position shifts calculated for the model with decaying particles in the
de Sitter universe. These position shifts should vanish according to the results
of Dixon’s theory. We can see that the values are orders of magnitude smaller
than those in the Schwarzschild case 3.1 and they are mostly random, which
indicates the presence of a numerical error and a bias in the integration method.
These values can be used as a rough estimation of the error of predictions in the
Schwarzschild spacetime.

Figure 3.3: Position shifts calculated for the model with decaying particles in the
anti-de Sitter universe. These values are of similar magnitude as in the de Sitter
case.
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Conclusions
In the first chapter of the thesis we studied the predictions of a model of an os-
cillating dumbbell-like body whose length was changing as a prescribed function
of time. We developed a general scheme for finding the solution of equations of
motion derived from a Lagrangian depending on a small scale parameter ϵ. The
solution is expressed as an infinite series in terms of the small parameter. The
zeroth-order solution corresponds to the solution of the equations of motion de-
rived from the Lagrangian with ϵ = 0.

The higher-order solutions are then corrections to the zeroth-order solution. We
derived the equations up to the second order and also showed how the partial
equations of motion for the correction can be derived directly from the Lagrangian
if we express it as an infinite sum as well. We noticed that the partial equations of
motion are always linear differential equations except for the zeroth-order which
significantly reduces the numerics required to integrate the system in comparison
to the full equations of motion.

We then applied the scheme to the glider model of an extended body. We ex-
pressed the solution of the equations of motion in terms of the maximal length
of the dumbbell δl. As we expected, the zeroth-order equation is equivalent with
the radial geodesic equation in the Schwarzschild spacetime. The first-order equa-
tion can also be solved analytically. In the first order, the two particles oscillate
symmetrically around the trajectory of a free-falling test particle with the same
initial conditions.

The second-order solution is the lowest order which predicts a deviation of the
body from the geodesic motion. This explains the presence of the expression
δl2 in the semi-empirical formula for the position shifts on the plateau by the
authors of the original paper about this model. We calculated the predicted posi-
tion shifts by integrating the second-order partial equations for the glider in both
the relativistic and the Newtonian gravitational fields. The results coincide very
well with the results obtained directly by integrating the full equations of motion,
which erases any doubt about the numerical credibility of the results.

We also used the approximate solution to better estimate the upper critical values
of the frequency parameter ω for which one of the endpoints of the glider exceeds
the speed of light and the equations of motion become singular. This estimate
allowed us to carefully approach the critical values and to find a second apparent
divergence of the position shift predicted by the model. We managed to compute
the position shifts and differential velocities in the full interval of accessible values
of the parameter ω for four chosen values of the asymmetry parameter α.

To better understand the behaviour of the glider model in the critical regimes,
we studied the model of a simple dumbbell body interacting via a massless spring
in the Newtonian gravitational field. The spring does not shrink back to a single
point if it is falling in the gravitational field. Thus, we had to find a different
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condition for evaluating the position shift. We chose the moment when the spring
is maximally contracted after the first expansion. At that point, we evaluated the
position shift of the geometric centre of the spring as compared to the motion of a
single test particle with the same initial conditions. We saw that the dependence
of the position shifts on the inverse value of the total duration of the process is
similar to the predictions of the glider model in the Newtonian regime.

The spring model also revealed a problem with the description of the glider.
There exists a critical value of the spring constant, which depends on the initial
conditions of the body and for which the spring never stops expanding. We were
able to find this critical value by the bisection method. This indicates that the
bond in the glider model has to exert a diverging force on the endpoints of the
glider to pull them back into a single point in the critical Newtonian region. Sim-
ilarly, the rod pushes the endpoints near the speed of light in the high-frequency
relativistic region. We evaluated the difference in mechanical energy before and
after the maneuver. The energy input from the rod diverges in the critical regions
in both the Newtonian and the relativistic model, which indicates the unphysical
nature of the model.

The apparent divergence of the position shifts in the low-frequency region is
much faster than in the high-frequency region. We found an explanation of this
phenomenon. In addition to the troubles with the energy input from the bond,
there exists a geometrical effect in the low-frequency region, which speeds up the
divergence. The final position shifts are, in fact, only projections of a line on
a 2-dimensional surface δr = δr(t, ω) evaluated at t = 1/ω. The divergence is
partially caused be the fact that we are simply integrating for longer times in the
low-frequency region.

Ultimately, we had to abandon the predictions of the glider model in the critical
regions because the bond would have to exert an arbitrarily large force on the
body to preserve the desired deformation function of the dumbbell. This con-
stitutes a convincing hint that the relativistic glider model is untenable and the
positive shift it predicts for some values of the frequency is unphysical.

In the second chapter, we introduced the theory of extended objects in general
relativity formulated by W. G. Dixon. This theory predicts the motion of any
extended body described by a symmetric stress-energy tensor through a series
of equations for the momenta defined for the body. For our purposes, the most
important result of this formalism is that in maximally symmetric spacetimes it
is possible to define the trajectory of the centre of mass of the body, which is
always a geodesic if the conservation laws hold.

Furthermore, we derived the stress-energy tensor of a free test particle from the
action and showed that the conservation laws for this tensor are equivalent with
the geodesic equation for the particle. If we are dealing with a system of test
particles, the stress-energy tensor satisfies the conservation laws if the particles
only exchange energy and momentum in collisions while conserving locally the
total four-momentum. The particles can also decay and recombine if the total
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four-momentum is conserved.

Lastly, we used the glider model in the de Sitter and anti-de Sitter universes.
Dixon’s theory predicts that no net displacement of the centre of mass of the
system is possible if the conservation laws hold. Since the model predicts a
non-vanishing shift in both cases, we conclude that the model cannot describe
a body whose individual parts only interact with one another. To achieve the
prescribed motion of the body, an outer force has to act on the body. This force
increases the total mechanical energy of the body. This again suggests the rel-
ativistic glider model should be replaced with a physically more plausible system.

In the third chapter, we studied a model of a test extended body consisting
of several particles, where each particle moves along a geodesic until it decays
or collides with another particle. We also showed that the geodesic equation
parametrized by the coordinate time can be derived from the variational princi-
ple. The proposed system satisfies conservation constraints and does not require
a super-luminal information transfer unlike the glider model. By involving in-
termediate particles with negative masses we were able to simulate an effective
attractive force between the particles, achieving thus oscillating motion of the
system.

Through an appropriate choice of the masses of the involved particles, we were
able to achieve relative motion of the particles similar to that of the glider model
described by the deformation function with a positive value of the asymmetry pa-
rameter α. By controlling the decay time of the first pair of particles, we were able
to easily change the total duration of the process and then to plot the dependence
of the position shift on the parameter ω corresponding to the oscillation frequency.

The obtained results show a similar dependence on the parameter ω as for the
glider model in the Newtonian gravitational field. The position shift is always
negative and vanishes for larger values of ω in the Schwarzschild spacetime. There
exists an apparent divergence in the region of small ω’s but the interval of accessi-
ble values of the parameter is bounded from below because if the particles fall too
close to the event horizon or even below it, which can happen in a finite proper
time, the tidal forces become too strong and the attracting process between the
particles cannot pull them back together. The achievable values of the parameter
ω are also bounded from above because of the time dilation effect.We conclude
that there is no workable swinging effect in this case. Whatever we do, the body
always ends up closer to the black hole than the reference particle.

To estimate the numerical error of the obtained position shifts, we computed
the position shift of the body in the de Sitter and anti-de Sitter universes. Be-
cause the total stress-energy tensor is conserved, the position shifts have to vanish
according to Dixon’s theory. We changed the working precision of the methods
and saw that the calculated position shifts become smaller with increasing preci-
sion in the maximally symmetric spacetimes whereas in Schwarzschild, the shift
stayed almost constant after reaching a minimal necessary precision. We also
used several different integration methods to compute the shifts in the (anti-)de
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Sitter universe and three schemes produced values many orders of magnitude
lower than the values obtained in the Schwarzschild spacetime. Furthermore, we
calculated the position shifts for a non-vanishing velocity of the initial decaying
particle in the maximally symmetric spacetimes. Surprisingly, the position shifts
were even smaller than those calculated for a stationary initial particle.

Ultimately, we conclude that the positive position shifts obtained from the glider
model are a result of the unphysical nature of its bond. We were not able to re-
produce the swimming effect with our physically plausible discrete spring model
satisfying conservation laws and causality conditions.

In conclusion, the goal of the thesis was to study several different models of
extended bodies in general relativity and to compare their predictions. To evalu-
ate the position shifts for the different models we came up with several analytic
methods which helped us make the equations of motion more suitable for nu-
merical integration. We added several original results concerning the energy of
the proposed models as well as an explanation of the behaviour in the critical
regions. We used an energy-conserving model of an extended body and showed
that it agrees with the results of Dixon’s theory unlike the previous glider model.
In the future, we would like to study systems of extended bodies whose bond
forms a continuum, such as a smooth string. The tension in the string would
create an attractive interaction between the endpoints. Strings in general rela-
tivity have been studied for example in [24]. Another important and lively area
of physics related to the problem of extended bodies in general relativity is the
notion of self-force, i.e., the back reaction from the particle on its own motion
through its gravitational, scalar or electromagnetic field. These areas deserve our
close attention in the future studies.
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Abstract

We investigate the motion of extended test objects in the Schwarzschild 
spacetime, particularly the radial fall of two point masses connected by a 
massless rod of a length given as a fxed, periodic function of time. We argue 
that such a model is inappropriate in the most interesting regimes of high and 
low oscillation frequencies.

Keywords: geodesics, extended test bodies, harmonic oscillator, swimming 
in spacetime

(Some fgures may appear in colour only in the online journal)

1. Introduction

We revisit the problem of a non-point-like ‘glider’ moving in the gravitational feld of a com-
pact object. The studied body is dumbbell-like, consisting of two massive point particles with 
a predetermined coordinate distance as it moves freely in a fxed gravitational feld. This 
situation is of interest not only in the general relativistic case as a tool to distinguish various 
non-local effects but also in Newtonian gravity as this effect can be used to stabilize orienta-
tion of artifcial satellites and even to alter their orbital parameters. In this respect, apart from 
the seminal thoughts of Tsiolkovsky from 1895, the frst papers on tether-controlled satellites 
appeared in the 1960s (see [1] for a review of literature) with research continuing until this day 
[2–4] and there have even been in-orbit experiments (for example, the Gemini XI mission in 
1966 and, more recently, STARS-C aboard ISS [5]). Likewise, in general relativity this effect 
can infuence the trajectory of an oscillating body, pushing it into a higher or lower orbit, 
speeding up or slowing down its descent or ascent in a predefned background spacetime but 
it can also be used as a tool to investigate the properties of a given gravitational feld, perhaps 
distinguishing between various feld characteristics in the resonance regime that would remain 
below detection threshold with a single point particle approach. For instance, molecules oscil-
lating near the ISCO orbit in an accretion disk near a black hole may be of interest in this 
respect [6].
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2

Originally, our aim was to extend the previous general relativistic results and study the lim-
iting cases of extremely high and extremely low glider oscillation frequencies. Ultimately, we 
concluded that the studied model is insuffcient in the most interesting regions and should be 
replaced by a physically more plausible one. Paper [7] came to the same conclusion regarding 
a similar problem of swimming in spacetime based on a general relativistic formulation due 
to Dixon [8–10]. We concentrate on the simplest possible case of two point particles of equal 
masses, moving radially in a spherically symmetric spacetime as their distance oscillates in 
a predetermined manner and one is interested in whether the position of the glider after one 
full period is shifted with respect to a point particle moving with the same initial conditions. 
We use Lagrangian formulation to fnd the corresponding equation of motion, which we solve 
numerically.
For ultra-high frequencies we fnd an analytic approximation enabling us to see where the 

particles leave the null cone, rendering the model unphysical. We discuss the low-frequency 
region of the motion where the glider approaches the horizon and the radial shift apparently 
diverges. Our paper extends and generalizes previous results by covering a much wider range 
of frequencies, studying thus the asymptotics for both large and small frequencies, and by 
investigating the position as well as the velocity of the falling body. We argue that the model 
assuming a given form of the deformation function regardless of the resulting motion is inap-
propriate since it would require an infnite amount of energy to execute. To this end, starting 
with the Newtonian case, we propose using a harmonic oscillator with a given spring constant. 
We show that the shift for low frequencies is then bounded and the corresponding shift thus 
cannot diverge.
The paper is organized as follows: section 2 introduces the test dumbbell glider and 

Lagrangian formalism we use and summarizes previous results. We further explain our choice 
of the oscillation function. In section 3, we defne the parameters of the fall that we are inter-
ested in and investigate the velocity of the dumbbell and the case of multiple oscillations. 
Section 4 deals with the expected asymptotic behavior of the test body for very high and very 
low oscillation frequencies. In the fnal section 5, we present a physical model of the glider in 
the Newtonian setting and argue against the ad hoc model. We conclude with a summary and 
discussion of possible generalizations and open issues.

2. The glider

The glider consists of two equal point masses that interact via a device ensuring their distance 
is a prescribed oscillating function of time. We can think of the device as a massless rod of 
a certain length, which changes with time due to an engine extending or shortening the rod. 
Interestingly, the whole concept is closely related to the problem of controlled Lagrangian 
motion used in the stabilization of satellites and underwater vehicles, for instance [11–13]. It 
is well defned in Newtonian physics but in GR we need to specify which length we mean. We 
choose here to use the coordinate length of the rod. For a given length function, approaches 
based on coordinate or proper length do not represent the same problem. However, for any 
given function it is always possible to reformulate it in terms of the other length and both repre-
sent a possible falling-body problem. Another and arguably more important aspect is whether 
we should be solving the problem with respect to the coordinate time t, the proper time of one 
of the falling bodies, or any other valid coordinate, for example the proper time of the geomet-
ric center of the body. Once again, all approaches represent different but valid problems. We 
will choose to state the problem with respect to the coordinate t since we cannot use a single 
coordinate to describe both proper times anyways. It is not obvious what this representation 
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would mean for observers moving with the two parts of the falling body. However, one can 
certainly state the fnal results in terms of their proper times and this description again repre-
sents a possible motion of the body.
The problem was studied in [14–16] using Schwarzschild metric of mass M and radial fall 

within the static region outside of the horizon. Because we choose to use the coordinate time 
to describe the problem, we must be especially careful when dealing with high velocities of 
the body. The point masses do not follow a geodesic due to the force acting between them. It 
is possible that at least one of the two components of the falling body would exceed the speed 
of light at which point the problem would no longer describe a physically acceptable motion.
To describe the motion of the dumbbell body, we adopt the Lagrangian of [14]

Ld=−m 1−
2M

r1
−

dr1
dt

2

1−2Mr1
−m 1−

2M

r1+l
−

dr1
dt+

dl
dt

2

1− 2M
r1+l

, (1)

which is a sum of Lagrangians for the two point masses, which are implicitly assumed to be 
constant throughout the motion, and r1 represents the radial position of the lower end of the 
dumbbell while l is the length of the rod, both functions of coordinate time, t. It is not obvi-
ous whether or not this Lagrangian correctly describes the problem. If the two point masses 
were independent, this formulation would certainly be possible and the coordinates r1 and l 
would be used to derive the equations of motion. For instance, for l r1 we would obtain the 
geodesic deviation equation. However, in our case l is a given function of t. Nevertheless, we 
will use this approach to verify and extend the results of previous research and to identify the 
issues that may thus occur2.
Preceding papers investigate a dumbbell body whose length l=r2−r1 changes as

l(t)=δlexp
(1−α−2ωt)2

(1+α2)ωt(−1+ωt)
, (2)

which is a smooth function on t∈(0, 1/ω) and can be continued smoothly (as 0 or periodi-
cally, for instance) for arbitrary t. After the time 1/ω the two point masses will come back 
together to form a single point mass and ω thus represents the frequency at which the body 
oscillates with respect to the coordinate time t. Here, δl is the maximal coordinate distance 
between the point masses and α is a dimensionless parameter, which changes the form of 
the oscillation curve of the body, α∈(−1, 1). For α=0 the oscillations are symmetric. For 
larger α, the body will expand rapidly and then contract slowly and vice versa. However, the 
function is not very suitable for numerical integration of the equations of motion because it 
is not analytic at the endpoints of the domain. Considering that the results were previously 
found to be independent of the precise form of the deformation function, we used the follow-
ing deformation function

l(t)=
δl

2
(1−cos[2πωt{α(1−ωt)+1}]), (3)

which is also C1 if it is extended as 0 or periodically. We solved the equations  of motion 
numerically with this function and verifed that the effect described in literature still occurs 
as previously claimed. The parameter α again encodes the shape of the deformation curve.

2 We also deal with the Newtonian case where the Lagrangian is simply the sum of kinetic and potential terms for 
both interacting particles. The interaction between them enters as an external force making sure the length con-
straint is observed at all times. We get this Lagrangian from (1) as the lowest non-constant term in the asymptotic 
expansion in terms of the speed of light.
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3. The fall

We want to study how the body falling towards the gravitational center can change the pace of 
its fall by changing its length. We compare the position of the dumbbell after one oscillation 
with the position of a point particle—both of them falling freely from rest with the same initial 
radius. It has been shown that by changing the length of the body in a certain way it is possible 
to slow or accelerate the fall of the body as compared to the motion of a single mass. The shift 
is linked to an effect described by Wisdom [17] who showed how extended bodies can move 
actively in curved space-times by cyclic changes in shape. The equations of motion are solved 
numerically with initial conditions r1(0)  =  120M, ̇r1(0)=0. The maximal length of the body 
is δl=5×10−3M. We denote the shift as

δr=r1+
l

2
−rp, (4)

where rp is the position of the reference particle. If evaluated at t=1/ω when the dumbbell 
shrinks to a point, this quantity represents the coordinate distance between the position of the 
dumbbell and the position of the reference mass. For other values of t we can associate it with 
the coordinate distance between the geometric center of the dumbbell and the reference mass. 
In fgure 1, we illustrate motion of the dumbbell in a Penrose diagram of the Schwarzschild 
spacetime.
The shifts we are interested in result from subtraction of numbers that are almost equal. 

Therefore, it is reasonable to ask whether the obtained results do not come from a numerical 
error during the integration of the equations of motion. We checked our results against previ-
ously published papers; we used both Wolfram mathematica and Maple softwares; we applied 
two different integration methods in Mathematica; and we developed an independent evo-
lution scheme based on a series expansion of the difference from a reference trajectory, which 
we chose to be the single particle geodesic—all these results coincide where their domains 
overlap, with differences orders of magnitude smaller than the obtained results.
In [14] the authors present a graph that shows δr after one oscillation as a function of the 

frequency ω for various asymmetry parameters α. In the Newtonian case the position shift 
is always negative3 and its asymptotic value for high frequencies ω is 0 for any α while in 
the relativistic case δr>0 for α<0 and suffciently high frequencies, which means that the 
dumbbell body is indeed able to slow down its fall by asymmetric oscillations, confrming the 
previous conclusions. Within the parameter region dealt with in [14], our results match theirs 
for both the Newtonian and relativistic cases. Additionally, we studied much higher and lower 
oscillation frequencies to investigate the asymptotic properties of the curve: paper [14] pre-
sents results for frequencies ω<0.07/M while we managed to calculate the same quantities 
for frequencies up to almost 100/M and we present the results in section 4.
The position shifts in the Newtonian and relativistic cases are shown in fgures 2 and 3, 

respectively. Obviously, the dependence of the position shift δr on the frequency ω in the two 
cases is signifcantly different (see also [14]): for small values of ω, the oscillating body falls 
very close to the event horizon where the Newtonian motion will diverge signifcantly from 
the relativistic one while for high frequencies, we approach the velocity of light. The shifts are 
always smaller than the distance traversed by the free-falling body within the time 1/ω. This 
means that although it is possible to slow down the fall in the relativistic case, it is not possible 
for the body to climb upwards in the gravitational feld. In this respect it might be of interest to 
study an oscillating ‘climber’ instead, shot radially outwards from a given radius.

3 This means that the oscillating dumbbell always falls faster than the reference mass.
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Apart from the shift, we were also interested in the relative change of velocity after one or 
multiple oscillations since it is a crucial piece of information for subsequent evolution of the 
position of the body. For this purpose, we evaluated the quantity

δ̇r=ṙ1+
l̇

2
−ṙp, (5)

which is the difference between the coordinate velocity of the geometric center of the dumb-
bell and the coordinate velocity of the point mass. It is of interest that δ̇r is always negative 

Figure 1. Penrose diagram depicting the motion of the dumbbell in a rather extreme 

case of ω= 1
107M

−1, maximal length δl=8M, and initial distance from the center 

r1(0)  =  19M. The purple rods indicate ‘snapshots’ of the swinger at various fxed 
coordinate times throughout its oscillation cycle as it approaches the Schwarzschild 
radius.

Figure 2. Newtonian shifts after one stroke are always negative and converge to 0 for 
large frequencies and all values of α. The dashed line represents the estimate of the 

smallest frequency ω≈6.8×10−4/M for which it would take the point mass time 

1/ω to reach the gravitational center.
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after the maneuver as can be seen in fgures 4 and 5. This means that after the oscillation, the 
dumbbell is heading towards the gravitational center at a higher speed than the point particle. 
This fact may be surprising because, for α<0, the dumbbell falls a shorter distance than 
the point mass despite having a higher fnal velocity towards the center. That is because δ̇r 
is mostly positive during the oscillation for α<0 and high enough frequencies. Thus, when 
integrated over time, it yields a positive difference between the position of the dumbbell and 
the position of the reference mass.
After completing one stroke, we can evolve the dumbbell further. We have two obvious 

options: either we let the dumbbell fall as a single point mass, or we let it oscillate further. In 
the former case, if the dumbbell has enough time before hitting the horizon, it will always end 
up closer to the center than the reference particle due to its higher initial speed. In the latter 
case however, the shift will depend on α similarly to the single oscillation case and for α<0 
the dumbbell will fall a shorter distance than the point mass. All this of course only applies 
until we get too close to the horizon where our model breaks down as discussed below.

4. The fast and the slow

In fgure 3 we can see that the relativistic position shift becomes highly negative for the small-
est and highest values of the frequency ω and the same applies to the Newtonian case of 
fgure 2 and low frequencies. These are the most interesting regions where the shift would be 
readily observable since it apparently diverges. Is that really the case? Let us frst look at the 
upper end of the frequency spectrum in the relativistic case.
For very high oscillation frequencies it is possible that one of the point masses would 

exceed the speed of light, at which point the problem no longer represents a possible motion 
since—as confrmed by our numerical calculations—we would exert an infnite amount of 
work in a fnite interval of time, rendering the system unphysical, see fgure 64. Therefore, 

Figure 3. Relativistic shifts depend on α in a livelier manner: for α<0 and high 
enough frequencies they are positive. The curves feature a long plateau the height of 
which is not equal to 0 for all α’s unlike in the Newtonian case and the plateau ends 
abruptly for ωc≈100/M (the approximate critical frequencies are listed in the plot) as 
one of the point masses nears the speed of light, at which point the equation of motion 
becomes singular just like for small frequencies.

4 This, in fact, applies to both the relativistic and Newtonian cases, see also fgure 7.
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the space-time interval must always lie within the null cone for both ends of the dumbbell or, 
alternatively, their four-velocity must be time-like. For r1,2  >  2M, the borderline condition for 
becoming a null trajectory reads

dr1,2
dt

=1−
2M

r1,2 (6)
for the lower and upper ends of the dumbbell, r1 and r2. To the frst order in the expansion 
series with respect to the single particle trajectory, rp, we can write r1,2(t)=rp(t)∓l(t)/2. 
For large frequencies and initial distances from the center, we can assume the center of the 
dumbbell is stationary, i.e. rp(t)=R0. Furthermore, the deformation function (3) is of the 
form l(t,ω)=l(tω)=l(x) with x∈[0, 1], yielding

Figure 4. Differential velocity of the Newtonian dumbbell after one oscillation. The 
change is always negative and almost independent of the sign of α. As expected, as we 
approach the smallest frequencies and thus the center, δ̇r diverges.

Figure 5. Surprisingly, the differential velocity of the relativistic dumbbell is also 
always negative despite the fact that the overall shift can be positive in some cases. This 
is due to the fact that the shift results from the average differential velocity while we 
plot here only the fnal value after one full oscillation. The relativistic effect is much 
larger than its Newtonian counterpart and diverges again for very small and very large 
frequencies as one of the particles hits the null cone.

V Veselý and M Žofka Class. Quantum Grav. 36 (2019) 075011
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ω

2

dl(x)

dx
=1−

2M

(R0∓
l(x)
2)
, (7)

which we write in the form ωg(x)=h(x) providing us with a relation for ω as a function of 
x: ω=h(x)/g(x)5. The sought ω is the smallest solution of this equation so that by taking a 
derivative and setting it equal to zero we obtain an equation for x corresponding to the extre-
mum, h(x)g(x)=h(x)g(x). We solve this equation numerically for the root x0 (typically two 
roots and thus four roots in total for both particles) and then calculate ω=h(x0)/g(x0). The 
critical frequency is the smallest such ω.
We thus estimated the critical frequencies for all applicable values of α. The results are 

listed in fgure 3 and coincide with the values established in our numerical integrations. They 
set the upper limit on the region of applicability of our model. This is the frst indication that 
we must be careful about the Lagrangian we are using since it does not always describe the 
actual physics of the glider.
Let us now turn to the low-frequency section of the shift curves. In the Newtonian case 

the body will reach the gravitational center without completing a single oscillation if the fre-
quency is too low. Therefore we can expect some kind of divergence for frequencies approach-
ing a critical frequency when the body just reaches the center at time 1/ω where it encounters 
an infnite force requiring an infnite amount of energy to maintain the prescribed length of the 
dumbbell, see fgure 7. However, it is not obvious what kind of divergence we should expect. 
On the other hand, in the relativistic case the body will get closer to the event horizon at 
r  =  2M. The free-falling body cannot reach the horizon in fnite coordinate time t and neither 
can the dumbbell, which can be seen from the Penrose diagram of the space-time. We would 
thus expect the equations of motion to have a bounded solution for arbitrarily small values 
of ω. And yet, even in the relativistic case we see a divergence of the position shifts for very 
small frequencies. Where does it come from? There are two sources of this behavior—one is 

Figure 6. Total gain in energy of the relativistic dumbbell calculated as a sum of 
projections of the four-velocities of both particles on the timelike Killing vector. It 
diverges for both small and large frequencies as one of the particles approaches the 
speed of light. As expected, to accelerate a massive particle to such speeds requires ever 
more work coming from the length constraint.

5 We can safely divide by g(x)=dl(x)/dx since g(x)=0 corresponds to the lowest and not the highest dumbbell 
expansion rate.
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purely geometric while the other is again due to the Lagrangian we use. In fgure 8, we pre-
sent a 3D plot of the shift of the geometric center of the dumbbell as a function of time and 
frequency. This describes the dumbbell throughout its oscillation and during its entire motion 
while in the previous plots fgures 2 and 3 we only gave its fnal shift for t=1/ω. In fact, we 
can write

δr(ω)=δr(t,ω)|t=1
ω
=δr(

1

ω
,ω)

 (8)

Figure 7. Total gain in energy of the Newtonian dumbbell calculated as the sum of 
kinetic and potential energy of both particles. As the dumbbell approaches the center, 
keeping the prescribed length requires ever more work to be exerted by the force 
ensuring the length constraint.

Figure 8. Shift of the geometric center of the relativistic dumbbell with respect to a 
single mass trajectory, as a function of time and frequency. The edge of the surface 
highlighted in black corresponds to one full oscillation of the spring and illustrates the 
origin of the apparent divergence in fgure 3, see discussion below (9).
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and, for the slope of the curve, we obtain

d

dω
δr(ω)=

∂

∂ω
δr(t,ω)

t=1
ω

−
∂

∂t
δr(t,ω)

t=1
ω

1

ω2
.

 (9)
In our numerical calculations, the partial derivatives are fnite near the horizon and, therefore, 
we get the observed divergence. The resulting shift curve of fgure 3 is included as the black 
cut line along the surface in the 3D fgure 8 and we can see that we, in effect, run through an 
infnite time interval in a fnite interval of ω’s, producing the divergence. In fact, the same 
effect is at work in the Newtonian case as well.
There is, however, another cause of the divergence, which we have already discussed above 

for high frequencies: as we approach the horizon for small frequencies ω, one of the particles 
always hits the speed of light since it is pushed outside of the null cone by the requirement of 
a fnite coordinate length of the dumbbell, which thus cannot be prescribed in this case as it 
would again require infnite energy, see fgure 6.
The method used in [14] has also been criticised from the point of view of the covariant 

approach based on multipole expansions along the lines of Dixon et al [8–10] It is in order 
then to study a system that is based on a physically plausible Lagrangian and we thus chose 
to investigate the fall of an oscillating spring in the Newtonian setting with the same initial 
conditions.

5. The spring

We now use the classical Lagrangian describing two point particles of equal masses that move 
radially in a central gravitational feld and interact via a massless spring described by a spring 
constant k and free length l0 (we choose l0=δl/2 of (2) and (3) in order for the spring to 
mimic the motion of the dumbbell). The confguration of the system is given by the position 
of its geometric center, X(t), which is also its center of mass, and its length, l(t). The advan-
tage of this approach consists in the fact that we do not need to deal with any external forces 
or implicitly present engines with an infnite power supply. In this case energy is obviously 
conserved.

Ls=
dX

dt

2

+
1

4

dl

dt

2

+
M

X−l
2

+
M

X+l
2

−
1

2
k(l−l0)

2. (10)

We again drop the system from rest X(0)=120M,̇X(0)=0 with zero initial distance and 
relative velocity of the two particles, l(0)=0,̇l(0)=0. Since the spring itself is infuenced 

by the gravitational feld there is no single frequency at which the system would oscillate but 
we can defne the period of oscillation to be the time it takes for the spring to start expanding 
again after the frst contraction, and the frequency is then the inverse of the period. Because 
the dumbbell does not shrink to a point again (see fgure 9), we plot the shift of its geometric 
center with respect to a single particle falling with the same initial conditions after the frst 
oscillation, see fgure 10. This plot is similar to fgure 2 for a predefned deformation function 
and it confrms that in the Newtonian case the shift is always negative (the glider falls faster 
than a single mass) and its value is fairly independent across various deformation functions, 
including the spring model.
The most conspicuous feature of the plot is the apparent divergence for small frequencies, 

which it shares with both the Newtonian and relativistic cases of fgures 2 and 3, respectively, 
and which is of the same geometric origin. However, since the range of admissible frequencies 
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is bounded it is clear there is a cutoff to the divergence and the dumbbell cannot oscillate for 
lower frequencies—and thus lower spring constants. The critical frequency and spring con-
stant for our initial conditions are ωc=9×10

−4/M and kc=5.8×10
−6/M2.

Since the energy of the system is conserved, the spring can only do a limited amount of 
work, which translates to the fact that a weak enough spring never starts contracting again. 
Requiring contraction infnitely close to the center (or to the horizon in the relativistic case) 
implies infnite work done by the engine shortening the dumbbell as revealed by our integra-
tions, see fgure 7. We must therefore reject the preset deformation function approach since 
it is unphysical in the most interesting region of low frequencies where we enter the strong 
gravity regions.

Figure 9. Evolution of the length of the Newtonian spring as a function of time for 

various spring constants. There is a critical spring strength, kc=5.8×10
−6/M2, for 

which the string never starts contracting again. This is due to the fact that the returning 
force on the lower mass grows only linearly with distance from the upper particle while 
the gravitational force is non-linear and, in fact, diverges close to the center.

Figure 10. Shift of the geometric center of the Newtonian spring after one oscillation 
with respect to a single particle as a function of the effective frequency, which is a 
function of the spring constant. Although the shift, as a difference of two bounded 
values, is clearly bounded, there is again an apparent divergence for small frequencies.
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6. Conclusions

We studied motion of non-point masses on the background of the Schwarzschild black hole, 
which is closely related to the so-called swimming and swinging effects whereby an object 
is able to actively change its course through spacetime by altering its shape periodically. We 
were interested in a curious divergence observed in previous works on the subject: the relative 
shift of the test body with respect to a point mass starting its radial fall with the same initial 
conditions—this value apparently diverges for low frequencies even though, as a difference 
of two fnite values, it must be fnite. Although this feature is obviously interesting from the 
observational point of view, previous papers did not comment on it. We explained the low-
frequency ‘divergence’ as a projection of a curved cross section of a 2D surface to a 1D plot 
combined with the fact the model is no longer tenable from the point of view of physics as one 
of the ends of the dumbbell touches the null cone and requires an infnite amount of energy to 
adhere to the prescribed deformation curve.
We further noticed an analogous divergence at the high-frequency end of the plots which is 

again due to the dumbbell reaching the speed of light and we found the corresponding critical 
frequencies. To extend our calculations and include the extreme frequency ranges, we solved 
the relevant equations of motion in the form of an expansion series centered on the path of a 
point mass. The lowest order path follows the corresponding geodesic, the frst order is sym-
metric with respect to the geodesic, the second order yields the sought swinging effect, hence 
it must be proportional to δl2. This also provides an explanation of the negative shift in the 
Newtonian case as the average gravitational pull on the two ends of the dumbbell is greater than 
the pull at the center. Additionally, we studied the relative velocity of the test body, which is 
always negative after a full cycle—for positive shifts, this is counterintuitive at a glance but we 
only look at the end of the integration interval so the overall shift can have the opposite sign6.
The unsettling fact that the work exerted by the dumbbell engine diverges as it approaches 

the horizon or the center in the relativistic and Newtonian cases, respectively, together with 
the upper limit on admissible frequencies due to superluminal motion imply it is arguable that 
one should not use the implicitly troublesome model of predefned dumbbell deformation, and 
rather resort to some more physically explicit system such as a spring in the Newtonian case. 
In such a case we control the energy of the system as a whole but its specifc length at each 
moment is also infuenced by its position relative to the gravitational feld. From the point of 
view of physics, this seems to be a more plausible approach to the problem. It is however dif-
fcult to fnd a general relativistic analogue of the spring since it necessarily involves non-local 
interaction and in our future work we intend to concentrate on precisely this topic.
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