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Introduction
Science and engineering generally are nowadays connected with the field of com-
putational science more than ever before. Computational science has become a
vital part of scientific exploration and it not only allows mankind to study new
phenomena but it also makes science progress cheaper and less time-consuming.
This connection puts emphasis on the further development of new computational
methods as well as on the improvement of the older methods. To achieve either,
one must have a clear and thorough understanding of what the performance bot-
tlenecks are, what are the possibilities and ways to overcome them and, most
importantly, what effects do the changes to the methods have on the numerical
behaviour i.e. numerical stability, convergence and maximal attainable accuracy.

In this text, we are interested particularly in Krylov subspace methods (some-
times referred to as KSMs) as one of the most powerful tools for solving large
scale algebraic systems

Ax = b. (1)

Krylov subspace methods are members of iterative methods class, which makes
them less suitable for parallelization as there is a lot of communication and syn-
chronization needed on the global level. The classical approach to the perfor-
mance analysis of a method originated from its computational complexity, i.e. the
lesser the number of arithmetic operations performed is, the faster the method will
be. However, with modern possibilities of parallelism, communication complexity
is the better indicator. Hence, the goal is to reduce the number of synchronization
points in the algorithms. There are several approaches to this, including so-called
s-step methods or pipelined conjugate gradients.

Traditionally, the representation of Krylov subspace methods includes matrix-
vector multiplication and dot products (inner products) in every iteration. Both
matrix-vector multiplication and dot products are communication bounded oper-
ations, meaning that it is the data movement rather than the computational costs
that are the performance-limiting factor. This gave rise to other class of Krylov
subspace methods called communication avoiding Krylov Subspace methods (also
referred to as CA-KSMs). The goal of this thesis is to give a state-of-the-art on
part of the CA-KSMs family. In this thesis we will focus on conjugate gradients
method and the various modifications to this method that reduce communica-
tion, we will point out the so-called s-step Krylov subspace methods and give a
brief summary of recent work on their stability and convergence in finite preci-
sion. Then we will discuss possibilities to improving the performance of these
methods, particularly the preconditioning.
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1. Conjugate gradient method
In this section, we will introduce the conjugate gradient method as one of the main
Krylov subspace methods. Before doing so, we define some important terms. All
vectors and matrices are considered real in this thesis in order to make notation
simpler.

Definition 1. A symmetric real matrix A is said to be positive definite if

xT Ax > 0 (1.1)

for every x ∈ Rn.

Definition 2. Methods which use the Krylov subspaces

Kk(A, v) ≡ span{v, Av, . . . , Ak−1v}, (1.2)

to search for the approximate solution xk are said to be the Krylov subspace meth-
ods.

The n-th iteration of a Krylov subspace method can be viewed as a projection
onto the n-th Krylov space orthogonal to some other so-called constraint space.
Given initial approximation x0 and initial residual vector r0 = b − Ax0, the n-th
approximation holds xn ∈ x0 + Sn where the Sn is called the search space and
the corresponding rn⊥Ck is said to be the constraint space. The choice of this
search and constraint space determines various Krylov subspace methods. For
the conjugate gradient method the choice is

Sk = Ck = Kk(A, r0). (1.3)

1.1 Standard conjugate gradient method
Conjugate gradient method is an algorithm that is used to solve systems of linear
equations (1) where the matrix A is symmetric positive-definite and not neces-
sarily but usually sparse as well. This method was first introduced by Hestenes
and Stiefel in [9] who noticed the connection between solving the system and
minimizing a functional along some line. The functional, sometimes called the
error function, has the following form:

F (x) = 1
2xT Ax − xT b. (1.4)

In its classical form here represented as introduced by Hestenes and Stiefel in the
original work it is required to compute two dot products per iteration resulting
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in high communication costs. Now we will present the HS algorithm.
Algorithm 1.1: Hestenes - Stiefel CG

input : SPD matrix A ∈ Rn×n, vector b ∈ Rn, initial approximation
x0 ∈ Rn, stopping criterion

output: Approximate solution xn

1 r0 = b − Ax0;
2 for i = 1 to nmax do
3 αi−1 = (ri−1,ri−1)

(pi−1,Api−1) ;
4 xi = xi−1 + αi−1pi−1;
5 ri = ri−1 − αi−1Api−1;
6 βi = (ri,ri)

(ri−1,ri−1) ;
7 pi = ri + βipi−1;
8 end

From line 5 in algorithm 1.1 we can see that in order to compute the coefficient
βi one needs to have the coefficient αi already precomputed. Hence lines 3 and
6 cannot be computed in parallel, resulting in two global synchronization points
per iteration. This represents performance bottleneck on parallel systems.

One of the possible ways to reduce the number of global synchronization points
is to use some additional equalities to compute the dot products.

1.2 Three-term recurrence
Stiefel in [14] applied three-term recurrences for orthogonal polynomials with
a certain choice of density function on the residual polynomials to obtain the
three-term recurrences for the residual vectors. Let us assume that the solution
approximations are updated as xi+1 = xi + ∆xi, where the quantity ∆xi can be
rewritten as

∆xi = 1
qi

ri, (1.5)

where the values of qi distinguish different methods. Now we can use these coef-
ficients to form a polynomial of degree k:

Rn(λ) = (1 − λ

q0
)(1 − λ

q1
) . . . (1 − λ

qn−1
). (1.6)

By induction we get
xn = 1 − Rn(A)

A
b (1.7)

and finally using relation Axn − b = −Rn(A)b we obtain the residual polynomial:

rn = Rn(A)b , where Rn(0) = 1. (1.8)

Stiefel then used a recurrence from [15] to force orthogonality between the residual
polynomials:

λRi(λ) = −qiRi+1(λ) + tiRi(λ) − piRi−1(λ) (1.9)
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Note not to confuse the pi with the direction vectors from the CG method. Set
ti = pi + qi, R0 = 1, p0 = 0. Applying this to the xi+1 = xi + ∆xi formula we
obtain a three-term recurrence for the approximate solution:

xi+1 = xi + 1
qi

(ri + pi(xi − xi−1)). (1.10)

This result was later used by Rutishauser in [12] and transformed into the fol-
lowing theorem.

Theorem 1. ([12], Theorem 1) For a gradient method, the residual vector rk

may be represented as
rk = Rk(A)r0, (1.11)

where the Rk(λ) are polynomials of degree k; they are called the residual polyno-
mials of the method.

In Algorithm 1.2 we present a variant of the conjugate gradient method from
[1], where the approximate solution xi and the residual ri are computed using the
three term recurrences.

Algorithm 1.2: three-term CG
input : SPD matrix A ∈ Rn×n, vector b ∈ Rn, initial approximation

x0 ∈ Rn, stopping criterion
output: Approximate solution xn

1 r0 = b − Ax0, x−1 = x0, r−1 = r0, e−1 = 0;
2 for i = 1 to nmax do
3 qi−1 = (ri−1,Ari−1)

(ri−1,ri−1) − ei−2;
4 xi = xi−1 + 1

qi−1
[ri−1 + ei−2(xi−1 − xi−2)];

5 ri = ri−1 + 1
qi−1

[−Ari−1 + ei−2(ri−1 − ri−2)];
6 ei−1 = qi−1

(ri,ri)
(ri−1,ri−1) ;

7 end

Following observation from [1] will allow us to rewrite these recurrences in the
notation from the Algorithm 1.1. This will be useful for two reasons:

(i) to show mathematical equivalence with the standard conjugate gradient
method,

(ii) and to state the relations between other modifications of the CG method,
that are all, in fact, using the same three-term recurrence.

Claim 2. Algorithms 1.1 and 1.2 produce the same sequences of iterates xi and
residuals ri for i = 0, . . . . Moreover, we have qi = 1/ai and ei = qiβi+1 for
i = 0, . . . , where αi and βi+1 are coefficients from Algorithm 1.1.

Proof. ([1], Observation 2.1) Consider qi and ei from Algorithm 1.2. It is clear
that q0 = 1/α0 and e0 = β1q0. Let i > 1, then using notation from Algorithm
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1.1, induction and orthogonality relations between the quantities (in exact arith-
metics), we get

qi−1 = (ri−1, Ari−1)
(ri−1, ri−1)

− ei−2 = (pi−1, Api−1)
(ri−1, ri−1)

+ (βi−1pi−2, βi−1Api−2)
(ri−1, ri−1)

− qi−2βi−1

= 1
αi−1

+ β2
i−1

βi−1αi−2
− qi−2βi−1 = 1

αi−1
.

Now we can use from Algorithm 1.1 line (4) the relation for approximate solution
xi = xi−1 + αi−1pi−1 and using

xi−1 − xi−2 = xi−2 + αi−2pi−2 − xi−2

αi−2pi−2 = xi−1 − xi−2

pi−2 = xi−1 − xi−2

αi−2
,

we can obtain the three-term recurrence for the approximate solution xi

xi = xi−1 + αi−1pi−1

= xi−1 + αi−1ri−1 + αi−1βi−1pi−2

= xi−1 + αi−1ri−1 + αi−1βi−1
xi−1 − xi−2

αi−2

= xi−1 + αi−1[ri−1 + βi−1

αi−2
(xi−1 − xi−2)]

= xi−1 + 1
qi−1

[ri−1 + ei−2(xi−1 − xi−2)].

The three-term recurrence for approximate residual can be obtained the same
way.

Note that this equivalence does not hold in the finite arithmetics.
This allows us to compute αi from βi−1 with formula 1.12 which eliminates

the global synchronization phase bounded with (pi, Api) dot product.

αi = (ri, ri)
(Ari, ri) − (βi−1/αi−1)(ri, ri)

. (1.12)

One of the early approaches proposed to use the following formula

(ri, ri) = α2
i−1(Api−1, Api−1) − (ri−1, ri−1). (1.13)

Which allows us to compute βi using αi :

βi = α2
i (Api−1, Api−1) − (ri−1, ri−1)

(ri, ri)
. (1.14)

This eliminates the global synchronization phase bounded with the other dot
product (ri, ri). However, it has been observed by Saad in [13] that this leads to
an unstable algorithm.
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1.3 Methods based on additional recurrences
The Algorithm 1.2 or the idea to compute the αi from βi−1 have been reintroduced
several times by different authors. All following algorithms use the same three-
term recurrence, therefore, are all variations of the Algorithm 1.2.

In [6] authors set their goal to overleap the (pi, Api) dot product. Their
Algorithm 1.3 again leads to computing αi from βi−1. However, the authors did
not notice the connection to the work of Stiefel or the Algorithm 1.2.

(pi, Api) = (ri + βipi−1, Ari + βiApi−1)
= (ri, Ari) + βi(ri, Api−1) + βi(pi−1, Ari) + β2

i (pi−1, Api−1)
= (ri, Ari) + 2βi(ri, Api−1) + β2

i (pi−1, Api−1). (1.15)

We have used the fact that the matrix A is symmetric positive definite and using
another property of conjugate gradient method - the orthogonality of the residual
vectors i.e. (ri, ri+1) = 0, this can be simplified even further:

ri = ri−1 + αiApi1

(ri, ri) = (ri, ri−1) + αi(ri, Api−1)
= −αi(ri, Api−1) (1.16)

Algorithm 1.3: D’Avezedo and Romine
input : SPD matrix A ∈ Rn×n, vector b ∈ Rn, initial approximation

x0 ∈ Rn, stopping criterion
output: Approximate solution xn

1 initialization by performing one iteration of classical conjugate gradient
algorithm;

2 r1 = b, γ1 = (r1, r1), p1 = r1, v1 = Ap1, σ1 = (p1, v1), x2 = (γ1/σ1)p1;
3 for k = 2 to nmax do
4 sk = Ark;
5 γk = (rk, rk);
6 δk = (rk, sk);
7 βk = γk

γk−1
;

8 pk = rk + βkpk−1;
9 vk = sk + βkvk−1;

10 σk = δk − β2
kσk−1;

11 αk = γk

σk
;

12 xk+1 = xk + αkpk;
13 rk+1 = rk − αkvk;
14 end

Note the additional recurrence to avoid computing the A-multiples of the
direction vectors {pj} directly. This also requires slightly more storage.

Authors Chronopoulos and Gear in [5] introduced another algorithm based on
the three-term variant. This variant is in fact very similar to the Algorithm 1.3
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because both use additional recurrence to compute A-multiples of the direction
vectors

Api = Ari + βi−1Api−1, (1.17)

which can be an additional source of instability and can cause loss of orthogonal-
ity. Chronopolous and Gear noticed this modification has potential for parallel
computing because both dot products required in each step can be computed
simultaneously and based their s-step method on it. Following algorithm 1.4 as
given in [5] (Chapter 2, Algorithm 2.3) is, in fact, s-CG algorithm where s = 1.

Algorithm 1.4: ChG
input : SPD matrix A ∈ Rn×n, vector b ∈ Rn, initial approximation

x0 ∈ Rn, stopping criterion
output: Approximate solution xn

1 p0 = r0 = b − Ax0, a0 = (r0,r0)
(Ar0,r0) , b−1 = 0;

2 for i = 1 to nmax do
3 pi = ri + βi−1pi−1;
4 Api = Ari + βi−1Api−1;
5 xi+1 = xi + αipi;
6 ri+1 = ri + αiApi;
7 Compute and Store Ari+1;
8 Compute (ri+1, ri+1), (Ari+1, ri+1);
9 βi = (ri+1,ri+1)

(ri,ri) ;
10 αi+1 = (ri+1,ri+1)

(Ari+1,ri+1)−(βi/αi)((ri+1,ri+1)) ;
11 end

1.4 S-step method
In the so-called s-step Krylov subspace methods, the process is divided into an
outer loop and an inner loop. In the outer loop, we use s linearly indepen-
dent directions to make a new Krylov subspace basis (or, in terms of projection
process, we increase the Krylov subspace dimension by a factor of s) and then
in the inner loop, we do the vector updates. This allows us to avoid the local
orthogonality in order to achieve better data locality, hence keeping the ratio
(MemoryReferences)/(FloatingPointOperations) as low as possible.

The s-step conjugate gradient method was introduced in [5] and [4]. The
idea was to use {ri, ..., As−1ri} to increase the dimension of the i-th step Krylov
subspace {r0, ..., Aisr0} by a factor of s. These vectors are then used to get the
new s direction vectors {p1

i , ..., ps
i }. In order to obtain these, we make vectors

{ri, ..., As−1ri} A-conjugate to the preceding directions {p1
i−1, ..., ps

i−1}. Eventu-
ally, the functional 1.4 is minimized simultaneously in all new s directions. The
new residual ri+1 is then computed directly from the approximate solution xi+1,
so there is no need to compute the vectors Apj

i which can be used to compute ri+1
from ri recursively. The Algorithm 1.5 is given as in the original text [5](Chapter
4, Algorithm 4.1).

In order to compute the coefficients b
(j,l)
i and aj

i we need to solve s+1 systems
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Algorithm 1.5: s-step CG
input : SPD matrix A ∈ Rn×n, vector b ∈ Rn, x0 ∈ Rn, stopping

criterion nmax
output: Approximate solution xn

1 p1
0 = r0 = b − Ax0, ..., ps

0 = As−1r0;
2 for i = 0 to nmax do
3 select aj

i to minimize functional 1.4 in xi+1 = xi + a1
i p

1
i + ... + as

i p
s
i

over span{xi + Σs
j=1a

j
i p

j
i };

4 compute ri+1 = b − Axi+1, Ari+1, ...,As−1ri+1;
5 select {bj,l

i } to force A-conjugacy of {p1
i+1, ..., ps

i+1}, {p1
i , ..., ps

i };
6 p1

i+1 = ri+1 + b
(1,1)
i p1

i + ... + b
(1,s)
i ps

i
...
ps

i+1 = As−1ri+1 + b
(s,1)
i p1

i + ... + b
(s,s)
i ps

i

7 end

of equations of order s. Let W = {(pj
i , pl

i)}, 1 ≤ j, l ≤ s, then in the i-th iterate
inner block, the systems are of form

Wi−1bj + cj = 0
Wia = mi,

where a = [a1
i , . . . , as

i ] is a vector of steplengths, bj = [bj,1
i , . . . , bj,s

i ] and let us
define matrix B = [b1, . . . , bs]. The matrix Wi is an important element in the
analysis of loss of orthogonality between the direction vectors. It turns out, that
if the condition number of this matrix is big, one can expect larger errors in
computing the coefficient b

(j,l)
i , therefore, this might cause orthogonality loss. It

has been observed, that for s > 5 the convergence can be very slow, as the loss
of the orthogonality between the direction vectors becomes significant. This phe-
nomenon seems to be difficult to avoid while using the monomial bases. Possible
solutions will be discussed later in Chapter 3.

Now we will introduce a theorem that has two major consequences:

• the s-CG algorithm converges,

• the s-CG finds the same solution as classical CG.

Theorem 3. ([5], Theorem 4.1) Let m be the degree of the minimal polynomial
of r0, and assume m > (i + 1)s. Then the direction space Pi and the residuals Ri

generated by the s-CG process for i = 0, 1, ... satisfy the following relations:

(i) Pi is A-conjugate to Pj for j < i.

(ii) Ri is A-conjugate to Rj for j < i − 1.

(iii) Pj, Rj, j = 0, ..., i form bases for the Krylov subspace
Vi = {r0, Ar0, ..., A(i+1)s−1r0}.

(iv) ri is orthogonal to Vi−1
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Proof. (follows original proof from [5]) For i=1 the theorem follows from definition
of the quantities and the fact, that the algorithm minimizes the error function
1.4, which implies ri+1 ⊥ {ri, . . . , As−1ri}, which implies (iv) for i=1. Now we
will use induction on i. Let us assume that the theorem holds for i > 1. Because
Pi = Ri + PiB is by definition A-conjugate to the Pi−1 it suffices to show that Ri

is A-conjugate to P0, . . . Pi−2. If we write:

Pj = Rj +
j−1∑︂
k=0

lk[Rk−1],

where lk[Rk−1] is a linear combination of the vectors R0, . . . Rj−1, the proof of (i)
has been reduced to proving (ii).
Now ri = ri−1−Api−1a is orthogonal to Pi−1 (by definition) and to P0, . . . Pi−2 (by
the induction hypothesis). Hence, by (iii) ri is orthogonal to Vi−1 which proves
(iv). To prove (ii) we must show that Ri is A-conjugate to Rj, j = 0, . . . i −
2, or equivalently that ri is orthogonal to {rj, Arj, . . . , A2s−1rj}. This holds if
{rj, Arj, . . . , A2s−1rj} ⊂ Vi−1. And this holds (by the induction hypothesis on
(iii)) if the degree (A2s−1rj) ≤ is − 1, or (j + 2)s − 1 ≤ is − 1, or j ≤ i − 2. This
proves (ii).
The vectors Pj and Rj for j = 0, . . . , i are A-conjugate by blocks and they belong
to the Krylov space Vi. Within each block, the vectors are linearly independent.
If the contrary is assumed then there exists a polynomial p(λ) of degree m such
that p(A)r0 and m < (i + 1)s. Which is a contradiction. This proves (iii).

Corollary 3.1. In the exact arithmetic and given the same starting approxima-
tion x0 for both s-CG and standard CG, the approximation xi generated by s-CG
is the same as xis produced by standard CG. Specially, s-CG method converges in
at most N/s steps.

In this part, we briefly introduced the s-step CG. The Theorem 3 shows that
the method converges. The goal to increase the number of the floating point
operations over the number of memory references to improve the performance on
parallel systems is achieved. However, the outcoming algorithm includes more
computational work and has higher memory demands. We can also expect the
convergence to delay if the condition number of the matrix Wi is big. This can be
partially solved if the method is used together with some preconditioning method.
This is still to be investigated further.

1.5 Pipelined methods
Ghysels and Vanroose in [8] introduced a method that uses additional recurrences
and computations to overleap the inner products and seems to be similar to the
Algorithm 1.4 (again, it is a modification of the three-term variant) as both use
same update formulas for αi, βi and the additional recurrence for Api. However,
this method reduces the number of the global synchronization points even fur-
ther. In the Algorithm 1.6 (Algorithm 2.3 [1]) we present the pipelined conjugate
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gradient method, how this method is called.
Algorithm 1.6: pipelined conjugate gradient method

input : SPD matrix A ∈ Rn×n, vector b ∈ Rn, initial approximation
x0 ∈ Rn, stopping criterion

output: Approximate solution xn

1 r0 = b − Ax0, p0 = r0, s0 = Ap0, w0 = Ar0, z0 = Aw0, α0 = (r0,r0)
(p0,s0) ;

2 for i = 1 to nmax do
3 xi = xi−1 + αi−1pi−1;
4 ri = ri−1 + αi−1si−1;
5 wi = wi−1 + αi−1zi−1;
6 qi = Awi;
7 βi = (ri,ri)

(ri−1,ri−1) ;
8 αi = (ri,ri)

(wi,ri)−(βi/αi−1)((ri,ri)) ;
9 pi = ri + βipi−1;

10 si = wi + βisi−1;
11 zi = qi + βizi−1;
12 end

The main difference between Algorithm 1.4 and Algorithm 1.6 is that in the
pipelined method uses one additional recurrence to compute Ari. This is ben-
eficial in parallel processing because the computations in the lines (6) - (7) in
algorithm 1.6 can be computed simultaneously as the dot products do not de-
pend on the Ari and therefore only one point of global synchronization is needed.
However, these modifications (namely the additional recurrences) that enable
overlapping the inner products and reorganization to remove sequential depen-
dancy between matrix-vector products and inner products, are potential source
of numerical instabilities, as they introduce an additional loss of orthogonality of
the original conjugate gradient method.
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2. CA-KSMs
In this Chapter, we discuss the concept behind avoiding communication in Krylov
subspace methods, which is sort of similar to the idea behind the s-step conju-
gate gradient method. The main source for this section is [2], where the author
introduced new communication avoiding Krylov subspace methods including the
nonsymmetric methods and discussed their stability and convergence.

Speaking strictly mathematically, all of these methods are equivalent to their
classical counterparts. However, this equivalence does no longer hold in finite
precision. Analyses of the numerical properties of the communication avoiding
methods are yet to be done in many cases. Although, these methods share the
same basic ideas and principles, therefore some of the results can be generalized.

This CA-KSMs approach to overcome the communication bottlenecks can be
summarized into following steps:

(i) Krylov subspace base is generated,

(ii) these bases vectors are then orthogonalized in a block,

(iii) finally, s iterations are performed.

It seems that the item (i) in the list plays an important role in determining the
numerical behaviour of each method. The s-step variant of conjugate gradient
method presented earlier in the thesis uses a monomial basis {ri, . . . , As−1ri} to
lift the s dimensions out of the i-th step Krylov subspace. These bases usually
have poor condition number and the convergence has been observed to be slow
for s > 5. This is because for increasing s the monomial basis {ri, . . . , As−1ri}
converges to the eigenvector corresponding to the dominant eigenvalue of the
matrix A. Therefore, the basis becomes ill-conditioned and prevents the method
from convergence.

This lead to the proposal of using better conditioned polynomial bases. There
are several possible strategies to obtain a polynomial basis for a Krylov subspace,
for example, using Newton polynomials or Chebyshev polynomials.

In [2] it is assumed that these bases are computed via a polynomial three-term
recurrence:

ρ0(z) = 1, ρ1(z) = (z − α̂0)ρ0(z)/γ̂0, and
ρj(z) = ((z − α̂j−1)ρj−1(z) − β̂j−2ρj−2(z))/γ̂j−1, for j > 1 (2.1)

The basis vectors generation can be written in a matrix form:

AYk = YkBk. (2.2)

The matrix Bk ∈ R(i+1)×(i+1) is of the form, where the recurrence coefficients
depend on the strategy (Newton, Chebyshev,...)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α̂0 β̂0 0
γ̂0 α̂1

. . . ...
γ̂0

. . . β̂i−2 0

. . . α̂i−1 0
γ̂i−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.3)
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By condition number of a basis, we mean a condition number of a matrix, that
has the basis as its columns. Now we define the condition number of a matrix.

Definition 3. Let A be a nonsingular square matrix. The number κ(A) that
satisfies

κ(A) = ∥A∥∥A−1∥

is said to be the condition number of matrix A.

2.1 Lanczos method
Lanczos method is a special case of the Arnoldi method (applied to SPD matrix)
which is a powerful tool for finding the eigenvalues and corresponding eigenvectors
of a matrix or at least a subset of the spectrum of this matrix. To achieve this,
the Arnoldi algorithm does the Gram-Schmidt orthogonalization on the Krylov
subset basis, which is generated during the process. Let us first briefly recall the
matrix form of the Arnoldi algorithm as seen in [16]:

AVk = VkHk + hk+1,kvk+1e
T
k , (2.4)

where A ∈ Rn×n, H ∈ Rk×k is upper Hessenberg and the columns v ∈ Rn of
the matrix V ∈ Rn×k form the orthonormal base of the k − th Krylov subspace
Kk(A, v) = span(v, Av, ..., Ak−1v). Now if we apply Arnoldi algorithm to a sym-
metric matrix A ∈ Rn×n and multiply the relation 2.4 by matrix V ∗

k from the left
we can see that the matrix Hk is symmetric as well:

Hk = V ∗
k AVk = V ∗

k A∗Vk = (V ∗
k AVk)∗ = H∗

k .

Since the matrix Hk is upper Hessenberg and symmetric, it must be tridiagonal.
This leads us to the matrix form of the Lanczos algorithm:

AVk = VkTk + βk+1vk+1e
T
k . (2.5)

Algorithm 2.1: Lanczos algorithm
input : SPD matrix A ∈ Rn×n, starting vector v1 ∈ Rn, such that

∥v1∥2 = 1
output: Matrices Vi and Ti and vector vi+1 satisfying 2.5

1 u1 = Av1;
2 for i = 1 to nmax do
3 αi = vT

i ui;
4 wi = ui − αivi;
5 βi+1 = ∥wi∥2;
6 vi+1 = wi/βi+1;
7 ui+1 = Avi+1 − βi+1vi;
8 end

The finite precision behaviour of classical Lanczos method is best described in
a series of papers done by Paige (e.g. [11]). This analysis provided a methodology
to Carson who gave the first analysis of the CA-Lanczos. In her work Carson
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extends various results for classical KSMs to the CA-KSMs including bounds on
the maximal attainable accuracy, convergence, and loss of orthogonality. One of
the important results is that these bounds can be rewritten in the same way as
the bounds for the classical KSMs counterparts multiplied by a factor Γ, where
Γ depends on the condition number of the Krylov base. This indicates that if the
factor Γ is controlled and is approximately one then we can expect the same rate
of the loss of orthogonality as for classical KSMs.

In the following section we will concisely derive the CA-KSM, for thorough
introduction we refer to [2].

2.1.1 CA-Lanczos
From Algorithm 2.1 using mathematical induction on lines (6) and (7) it follows
that after (ks + 1)-th iteration (where k ∈ N and 0 ̸= s ∈ N) for j ∈ {1, ..., s + 1}
the vectors satisfy:

vsk+j ∈ Ks(A, vsk+1) + Ks(A, usk+1),
vsk+j ∈ Ks+1(A, vsk+1) + Ks+1(A, usk+1). (2.6)

For k > 0 let Vk and Uk be matrices n × (s + 1) whose columns form bases of
Ks(A, vsk+1) and Ks(A, usk+1) respectively. This allows us to define a so-called
basis matrix

Yk = [Vk, Uk]. (2.7)

Then we can write the vectors vsk+j and vsk+j by their coordinates in the Yk:

vsk+j = Ykv′
k,j,

usk+j = Yku′
k,j, (2.8)

where vectors v′
k,j and u′

k,j are the coordinate vectors. Using the basis matrix Yk,
we can define the Gram matrix

Gk = YT
k Yk,

and then use this matrix and the coordinate vectors to rewrite the dot products
from Algorithm 2.1, lines (3) and (5):

αsk+j = v,T
k,jGku′

k,j

βsk+j = ((w′)T
k,jGkw′

k,j)1/2, (2.9)

where w′
k,j is coordinate vector for the vector wsk+j i.e. wsk+j = Ykw′

k,j.
As discussed in the introduction of Chapter 2, the bases are generated us-

ing polynomial recurrences, which can be represented as a matrix Bk and the
recurrence is then written as in (2.2). Then we can write:

Avsk+j+1 = YkBkv′
k,j+1. (2.10)

To perform one inner iteration, we have to generate the basis matrix Yk and
then compute the Gram matrix Gk. Thus, iterations sk + 2 through sk + s + 1
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have the same communication costs as one iteration of the classical method. The
CA-Lanczos algorithm presented in this thesis in Algorithm 2.2 is as given by [2].

Algorithm 2.2: CA-Lanczos algorithm
input : SPD matrix A ∈ Rn×n, starting vector v1 ∈ Rn, such that

∥v1∥2 = 1
output: Matrices Vsk+s and Tsk+s and vector vsk+s+1 satisfying 2.5

1 u1 = Av1;
2 for k = 1 to nmax do
3 Compute Yk witch change of basis Bk according to 2.10;
4 Compute Gk = YT

k Yk;
5 v′

k,1 = e1;
6 if k=0 then
7 u′

0,1 = B0e1

8 end
9 else

10 u′
k,1 = es+2

11 end
12 for j = 1 to s do
13 αsk+j = (v′

k,j)T Gku′
k,j;

14 w′
k,j = u′

k,j − αsk+jv
′
k,j;

15 βsk+j+1 = ((w′)T
k,jGkw′

k,j)1/2;
16 v′

k,j+1 = w′
k,j/βsk+j+1;

17 vsk+j+1 = Ykv′
k,j+1;

18 u′
k,j+1 = Bkv′

k,j+1 − βsk+j+1v
′
k,j;

19 usk+j+1 = Yku′
k,j+1

20 end
21 end

The main result of the CA-Lanczos analysis in finite precision in [2] is the
Theorem 1 (Chapter 5,page 86). The quantity Γ̄k from this theorem which is a
measure of the conditioning of the Krylov bases generated at the beginning of each
outer loop. This suggests that if one could handle Γ̄k to make it fulfil Γ̄k = O(s)
then the bounds given by this theorem would be similar to those given earlier by
Paige. This means we can expect similar rate of loss of orthogonality. We could
use a different definition for Γ̄k in order to obtain tighter bounds, however, it is
to be pointed out that the value of these bounds is in the insight they provide
rather in their tightness.

2.2 Conjugate gradient and Lanczos algorithm
It is well known that there is a strong relation between the conjugate gradients and
the Lanczos algorithm, for more details see [16]. Applied to a symmetric positive-
definite matrix A and vector v = b−Ax0 = r0, where x0 is an initial approximation
of the solution of the system Ax = b, the Lanczos algorithm will produce an
orthonormal basis {v1, . . . , vk} of the k-th Krylov subspace Kk = (A, r0) stored
in matrix Vk = [v1, . . . , vk]. Because the approximate solution xk lies within the
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x0 + Kk = (A, r0), we can write:

xk = x0 + Vkyk

for some yk. The residual rk is orthogonal to K = (A, r0) = span{v1, . . . , vk},
therefore:

0 = V T
k rk = V T

k (r0 − AVkyk) = ∥r0∥e1 − V T
k AVkyk = ∥r0∥e1 − Tkyk,

where Tk is a tridiagonal Jacobi matrix storing the orthogonalization and nor-
malization coefficients. Hence, we can express the conjugate gradient k-th ap-
proximation as:

xk = x0 + Vkyk, ∥r0∥e1 = Tkyk.

From the CG algorithm and Lanczos algorithm, we can see that both algorithms
produce orthonormal base vectors uj such that

wj+1 ∈ Kj+1 = (A, r0), andKj = (A, r0).

for j = 1, . . . k. From the conjugate gradient algorithm, it immediately follows
that wj = rj and from comparison of the both algorithms we get vj+1 = (−1)j rj

∥rj∥ .
There is a following relation between the coefficients from both algorithms:

βj+1 =

√︂
δj

γj−1
, αj

1
γj−1

+ δj−1

γj−2
,

where γk = αk and δk = βk are renamed coefficients from Algorithm 1.1. There
is, therefore, a connection between these two methods.
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3. Techniques for improvement
There is a number of methods for improving stability and convergence for KSMs in
finite precision. Carson in [2] has shown that many of these techniques including
residual replacement, selective reorthogonalization or look-ahead method, can
be used along with CA-KSMs as well. These methods are somewhat problem-
dependent, however with some modifications and applied to suitable problem
these methods improve the CA-KSMs numerical properties while preserving the
communication savings.

The KSMs are rarely used in their unpreconditioned form. The CA-KSMs
are designed to reduce the costs of every single iteration of the method. On
the other hand, the purpose of preconditioning is to reduce the total amount of
iterations that are needed to complete the computation. These two approaches
are complementary in a way and appear to open potential for a powerful method.
However, finding parallelism in the techniques for preconditioning and making
them usable with the CA-KSMs can be challenging.

3.1 Preconditioning
Consider system (1) Ax = b, where the matrix A has a certain property (i.e. for
the conjugate gradient method, the matrix A is symmetric positive-definite and
say sparse). The goal is to modify the original system to obtain a new system
M−1Ax = M−1b, where the new system should fulfill the same properties, where
the matrix M is called the preconditioner. The original system can be written as

(M−1AM−T )(MT x) = M−1b, (3.1)

define Â = M−1AM−T , x̂ = MT x and (̂b) = M−1b. Now we can apply the KSMs
to solve the new system Âx̂ = b̂ and obtain the solution of the system (1) with
the relation x = M−T x̂. If we apply this to the conjugate gradient method, where
the matrix A is SPD, then the matrix Â of the preconditioned system is also SPD
and there is following relation between the errors:

∥x̂ − x̂k∥2
Â

= ∥x − xk∥2
A. (3.2)

This implies that if the method applied to the preconditioned system converges
fast, the approximate solutions xk = M−T x̂k of the original system converge to the
exact solution fast as well. Note that the method applied to the preconditioned
system solves a different task as it minimizes the error using the Kk = (Â, b̂)
measured in the Â-norm rather than using the A-norm and Kk = (A, b). This
raises the question of how to select a good preconditioner. The preconditioner
should meet the following requirements:

(i) MA ≈ I,

(ii) application of M−1 to a vector is inexpensive; the systems My = z and
MT y = z are solvable in O(n) operations,

(iii) if the matrix A is sparse, the preconditioner should be also sparse.
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Selecting a good preconditioner is usually problem-dependent and it is not
always clear what a good preconditioner would be. Selection M ≈ A−1 might
seem like a good idea and will improve convergence rate, but even if the matrix
A is sparse, the inverse is usually dense, which breaks locality.

3.1.1 Incomplete Cholesky and ILU factorization
One of the most important preconditioning techniques is to use a modification of
the Cholesky factorization. For an SPD matrix A there exists a lower triangular
matrix L with nonzero positive diagonal such that A = LLT . However the
sparsity of the matrix A is not necessarily transferred into the matrix L, thus the
costs of computation with the matrix L are higher. Therefore, the idea behind the
incomplete Cholesky factorization is to form a matrix C that is lower triangular
with the sparsity property of the matrix A and is similar to the matrix L in the
following sense: A ≈ CCT . This C can be then used for preconditioning the CG
method. One can use a Cholesky factorization variant known under the marking
IC(0), which computes Cholesky factorization and lays ci,j = 0 if ai,j = 0.

Using incomplete Cholesky factorization or incomplete LU factorization (ILU)
together with a CA-KSMs have been less useful than with the classical KSMs.
This is because computations involved in these methods are not generally suitable
for straightforward parallelization and lead to the search for improvements. To
use ILU along with parallel methods, it is necessary to search for possible ways
of parallelism in the computations included in ILU process. There has been some
progress towards parallelism in work of Hysom and Pothen [10], where authors
assume special properties of the original problem and use these in developing a
scalable parallel algorithm for computing the ILU. In [3] authors introduce their
completely new algorithm for computing incomplete LU decomposition on parallel
systems. Authors mention that the parallelism in their algorithm is fine-grained,
which means that the individual entries of the factorization can be computed in
parallel rather than the rows (compare to older methods) and is therefore suitable
for modern architectures with large number of processors (or graphics processing
units) that have been available only recently. The ILU is in a way related to the
Gaussian elimination and preceding methods for computing ILU were equivalent
to this. The new ILU is based on the observation that:

(LU)i,j = (a)i,j, for (i, j) ∈ S, (3.3)
where S is a set of matrix coordinates where the non-zeros are allowed. The
condition 3.3 can be written as:

min(i,j)∑︂
k=1

li,kuk,j = ai,j, for (i, j) ∈ S. (3.4)

Which leads to solving |S| nonlinear equations for |S| unknowns. There are
methods for solving these systems in parallel and in addition, we do not need a
very precise solution to obtain a good ILU preconditioner.

There has been also a lot of work done by van der Vorst (e.g. ([17])) on finding
parallelism in the preconditioning e.g. re-ordering (which can be further distin-
guished into the wavefront ordering, the multi-color ordering, multi-wavefront
ordering) or domain decomposition. However, the suitability of each method is
very problem-dependent and new preconditioning are still yet to be found.
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Conclusion
In this thesis, we gave a state-of-the-art on the communication avoiding Krylov
subspace methods. In chapter 1, multiple ways to overleap the communication
in the conjugate gradient method were presented. Namely the three-term variant
including the derivation of the three-term recurrence as given by Stiefel in [14]
and the s-step CG for which we included proof of convergence. The three-term
recurrence itself and other additional recurrences, however, introduce new sources
of instabilities into the methods. We described how the s-step method is con-
nected with modern approaches to avoiding communication in KSM. In chapter
2 we summarized and put into context with Chapter 1 the work of Carson, who
gave the first finite precision analysis of the CA-Lanczos algorithm. The inter-
esting outcome of this analysis is that when multiplied by a factor Γ, the bounds
given by Paige for the classical Lanczos algorithm hold for the CA-Lanczos as
well. This factor Γ depends on the condition number of the Krylov bases com-
puted in each step of the method. This fact can be spotted in the relations
between them and their classical counterparts for other CA-KSMs. In chapter 3
we introduced the possibilities of improving CA-KSMs. We discussed the topic
of preconditioning as it is common for KSMs to be used with some kind of pre-
conditioner. The main problem of using preconditioners with CA-KSMs is the
need to compute the preconditioner on parallel systems as well. We presented
one method of incomplete LU factorization by Chow and Patel in [3] that is based
on fine-grained parallelism. There are as well some older techniques given by van
der Vorst ([17]) or Hysom and Pothen ([10]) that are more or less suitable for
various problems. The importance of the future work on preconditioning is also
indicated by the recent benchmarks for parallel computers given in [7], where
the performance is measured for conjugate gradient method preconditioned using
a symmetric Gauss-Seidel preconditioner. Nevertheless, the problem of precon-
ditioning CA-KSMs remains an open question and it is still possible that new
techniques will be discovered.
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