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Introduction

The first proton-proton (pp) interactions at higher energies were observed in the CERN
Intersecting Storage Rings (ISR), the world’s first hadron collider, in 1971. A lot of
interesting experiments have been performed since that time. The purpose of all these
experiments is to learn more about structure of fundamental particles. A number of
remarkable properties were discovered. In the following the attention will be devoted
mainly to elastic proton interactions. Two of four fundamental interactions (forces) play
significant role in such a case - the electromagnetic and the strong interactions.

First of them, the electromagnetic, is also called the Coulomb interaction. Protons, as
charged particles with electric charge +e, are repelled mutually by this interaction. The
second interaction, the strong interaction, is attractive and is called hadronic or nuclear
because this strong interaction stick together different nucleons (i.e. protons and neutrons)
in a nucleus. This force, nuclear interaction, is stronger than other known forces so that
the protons and the neutrons are bound together in a nucleus. The strong interaction
is short-ranged in contrast to the Coulomb interaction which is regarded as long-ranged.
Hadronic force overcomes the electric repulsion between protons in the nucleus.

Elastic scattering is in principle the most simple scattering where the same incident
particles come out after the collision. Characteristics of these processes such as cross
section depend only weakly on energy. On the other hand the average number of produced
particles in inelastic collisions and corresponding cross section depend strongly on energy.
The elastic processes represent always a significant part of processes at any energy. There
is, however, a smaller part of inelastic processes that exhibit similar energy behavior.
They are denoted as diffractive processes. One assumes that one particle or both the
incident particles are brought to an excited state in the collision that decay then into
several secondary particles, all moving in original directions. One speaks about single or
double diffraction. The majority of the rest of collision processes are denoted as non-
diffractive inelastic. In contrast to diffractive ones, they are strong energy dependent and
the final state particles have large transverse momenta.

In spite of the fact that since 1971 many experimental data have been gathered there
is no reliable theory of pp diffractive processes. There are only several different models
which more or less well describe present experimental data on phenomenological grounds.
To learn more about the structure of fundamental particles it is necessary to improve
and extend present experimental data of diffractive processes. New hadron collider LHC
(Large Hadron Collider) is being built now at CERN and should be finished at the end
of this year. It will provide high intensity proton collisions with center of mass energy up
to 14 𝑇𝑒𝑉 .
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Introduction

The five experiments, with huge detectors, will study what will occur if the corres-
ponding LHC beams collide. One of them is TOTEM (TOTal Elastic and diffractive cross
section Measurement) that will be devoted mainly to study of elastic processes. As dis-
cussed in Letter of Intent in 1997 [1], the TOTEM experimental programme was proposed
to measure (see also [2] and [3])

∙ the total proton-proton cross section with an absolute error of 1 mb
by using the luminosity independent method. It requires simultaneous
measurement of pp elastic scattering at low momentum transfer and of the
total inelastic rate.

∙ elastic scattering in the largest possible interval of four-momentum trans-
fer from the Coulomb region −𝑡 ≈ 10−3𝐺𝑒𝑉 2 up to the nuclear region
−𝑡 ≈ 10𝐺𝑒𝑉 2

∙ the diffractive dissociation, including single and double diffraction

Until now all experiment elastic data have been analysed with the help of West and
Yennie’s formula that have been shown to be not sufficiently general. Some corresponding
problems will be studied and demonstrated in the present thesis by analysing previous
experimental elastic proton-proton data (at energy of 53 𝐺𝑒𝑉 ) with use of one more
general formula under different additional conditions involved in West-Yennie formula.
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Chapter 1

Two-Body Elastic Scattering

1.1 Conventions

In this thesis, we will employ commonly used formalism of four-momentum to describe
kinematics of particles (see [4] or [5])

𝑃 = (𝐸,p) (1.1)

where 𝐸 is total energy of a particle and p is its three-momentum. We will use natural
units ~ = c = 1. Scalar product of these four-momenta is defined as follows

𝑃 2 = 𝑔𝜇𝜈 𝑝
𝜇𝑝𝜈 = 𝐸2 − p2 (1.2)

where the metric tensor 𝑔𝜇𝜈 is

𝑔𝜇𝜈 =

⎛⎜⎜⎝
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ . (1.3)

Due to our choice of natural units ~ = c = 1 the energy E and magnitude of p (which
we will denote by p) have the same units 𝐺𝑒𝑉 .

1.2 Kinematics

A special case of two-body reaction is the elastic scattering

1 + 2 → 1′ + 2′ (1.4)

where the two scattering particles remain in the same state but in a different kinematic
configuration. The four-momentum of the ith incoming (outgoing) particle is denoted by
𝑃𝑖 (𝑃

′
𝑖 ) for 𝑖 = 1, 2 (see Fig. 1 in the case of center of mass system (CMS)).
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Two-Body Elastic Scattering
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Figure 1: Two-body elastic scattering in
center of mass system (CMS).

Due to (see Ref. [4]):

∙ the conservation of four-momentum (which is the same as conservation of energy
and three-momentum)

𝑃1 + 𝑃2 = 𝑃 ′
1 + 𝑃 ′

2; (1.5)

∙ the mass shell conditions
𝑃 2
𝑖 = 𝑚2

𝑖 , (1.6)

𝑃 ′2
𝑖 = 𝑚2

𝑖 , (1.7)

for elastic scattering, the mass 𝑚𝑖 (i = 1, 2) is invariant mass of the ith-particle;

∙ fixation of a reference frame,

the kinematics of the given process is fully described by two independent variables. It is
possible to choose these two parameters among the three Mandelstam variables, defined
as

𝑠 = (𝑃1 + 𝑃2)
2, (1.8)

𝑡 = (𝑃1 − 𝑃 ′
1)

2, (1.9)

𝑢 = (𝑃1 − 𝑃 ′
2)

2. (1.10)

From these relations we can easily derive identity

𝑠+ 𝑡+ 𝑢 =
4∑︁

𝑖=1

𝑚2
𝑖 . (1.11)

Only two of three Mandelstam variables are thus independent. We shell use s and t as it
is common. It is further convenient to choose CMS, because the variable s is the square
of the total center of mass energy of colliding particles and the variable t is the squared
momentum transfer in this reference frame. In case of pp elastic scattering, which we
are interested in, the magnitudes of three-momenta of incoming and outgoing particles
in CMS are the same (denote them by p, resp. p’) and they have equal masses m. The
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1.3 Scattering amplitude

relations between the CMS scattering angle 𝜗 and three-momentum p (see Fig. 1) and
variables s and t are

𝑠 = 4(p2 +𝑚2) (1.12)

𝑡 = −2p2(1− cos 𝜗). (1.13)

We see from the last relation (1.13) that

− 4p2 ≤ 𝑡 ≤ 0, (1.14)

i.e. the value of t is not positive and its minimal value may be −4p2, in contrast to s
which is always positive because it is the total center of mass energy of colliding particles.

In high energy limit (i.e. for 𝑠 → ∞) the mass m can be neglected in comparison to
p2 in formula (1.12) and it yields

𝑠 ≈ 4p2. (1.15)

1.3 Scattering amplitude

The motion of two spinless particles is two-body problem which is equivalent to two
independent one-body problems. The easy one is translation motion of the centre of mass
of these two particles and the second one, more complicated, is relative motion of these
two particles in CMS. This relative motion may be solved as motion of a particle with
reduced mass 𝜇 = 𝑚1𝑚2

𝑚1+𝑚2
in an interacting potential 𝑉 (r) of the two particles. In the

case of pp scattering 𝜇 equals to the half of mass of one proton. This modified rotation
motion is standardly described with use of time independent part of Shrödinger equation
as follows, see [4] or [6],

− ~2

2𝜇
△𝜓(r) + 𝑉 (r)𝜓(r) = 𝐸𝜓(r) (1.16)

where E is energy of the particle with reduced mass 𝜇. One of two asymptotic solution
of this equation, i.e. solution for 𝑟 � ∞, without the normalisation condition, is

𝑒𝑖k.r. (1.17)

This wave function corresponds to initial state of incoming particle in the time 𝑡 � −∞
with reduced mass 𝜇 interacting via the potential 𝑉 (r). Similarly the second asymptotic
solution of Eq. (1.16)

𝑓(k, k′)
𝑒𝑖k𝑟

𝑟
(1.18)

correspond to final state of scattered particle in the time 𝑡 � ∞. The vectors k, resp. k ’,
in Eqs. (1.17) and (1.18) are the wave vectors of the incoming, resp. outgoing, particle
and k2 is defined as 2𝜇

~2𝐸. Energy conservation requires k2 = k’2 = k2 for elastic scattering.
Function 𝑓(k, k′) in Eq. (1.18) is the so called scattering amplitude and it is a complex
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Two-Body Elastic Scattering

function. Differential cross section is in quantum mechanics commonly defined with use
of this scattering amplitude as

𝑑𝜎

𝑑Ω
= |𝑓(k, k′)|2 (1.19)

where 𝑑Ω is differential space angle. In the relativistic theory of the two particle scatter-
ing process the equation for differential cross section (1.19) is commonly transformed to
Mandelstam variables s and t as follows (see [5])

𝑑𝜎(𝑠, 𝑡)

𝑑𝑡
=

𝜋

𝑠𝑝2
|𝐹 (𝑠, 𝑡)|2 (1.20)

where we have introduced now scattering amplitude 𝐹 (𝑠, 𝑡) in s and t variables. The
complex scattering amplitude 𝐹 (𝑠, 𝑡) can be characterized by two real functions, the
modulus |𝐹 (𝑠, 𝑡)| and the phase 𝜁(𝑠, 𝑡), in this way

𝐹 (𝑠, 𝑡) = 𝑖|𝐹 (𝑠, 𝑡)|𝑒−𝑖𝜁(𝑠,𝑡). (1.21)

1.4 Eikonal model and impact parameter space

The total elastic scattering amplitude of two charged and spinless nucleons may be defined
with the help of Fourier-Bessel transformation according to Glauber [6] or Islam [7] as

𝐹 (𝑠, 𝑡 = −𝑞2) = 𝑠

4𝜋𝑖

w

Ω𝑏

𝑒𝑖𝑞.⃗𝑏[𝑒2𝑖𝛿(𝑠,𝑏) − 1]𝑑2𝑏 (1.22)

where Ω𝑏 represents the two-dimensional Euclidean space of the impact parameter �⃗�, the
vector �⃗� is defined as k− k’ and eikonal 𝛿(𝑠, 𝑏) is proportional to

𝛿(𝑠, 𝑏) ∼
∞w

𝑏

𝑉 (𝑠, 𝑟)𝑟𝑑𝑟√
𝑟2 − 𝑏2

. (1.23)

Potential V(s,r) corresponds to potential between particles at individual corresponding
positions during their motions. Relation (1.23) holds for energy-dependent spherically
symmetric potential V(s,r) that might be generally complex. The distribution of elastic
processes in the impact parameter space is given then by

𝐷(𝑠, 𝑏) = |ℎ𝑒𝑙(𝑠, 𝑏)|2 (1.24)

where the amplitude ℎ𝑒𝑙(𝑠, 𝑏) for 𝑏 ≥ 0 is given by the Fourier-Bessel transformation with
respect to finite region of kinematically allowed region of 𝑡 ∈ (𝑡𝑚𝑖𝑛, 0)

ℎ𝑒𝑙(𝑠, 𝑏) =
1

16𝜋𝑝
√
𝑠

0w

𝑡𝑚𝑖𝑛

𝐹𝑁(𝑠, 𝑡)𝐽0(𝑏
√
−𝑡)𝑑𝑡 (1.25)

where 𝐽0(𝑥) is Bessel function of zeroth order
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1.4 Eikonal model and impact parameter space

𝐽0(𝑥) =
1

2𝜋

2𝜋w

0

𝑒𝑖𝑥𝑐𝑜𝑠𝜙𝑑𝜙. (1.26)

If the distribution of elastic processes 𝐷(𝑠, 𝑏) has (for given s value) its maximum at
impact parameter 𝑏 = 0, i.e. for head-on collisions of two particles, we speak about
central behavior of elastic collision. In the case when this distribution has maximum at
some 𝑏 > 0 we denote this situation as peripheral behavior of elastic collision.
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Chapter 2

Interference between the Coulomb
and hadronic scattering

High-energy elastic scattering of nucleons is realized not only due to the strong hadronic
interaction but in the case of charged hadrons also as the result of the Coulomb interaction.
Coulomb and nuclear scattering can be characterized by common differential cross section
that may be measured. Elastic differential cross section of charged nucleons is being then
currently described with help of total elastic scattering amplitude 𝐹𝐶+𝑁(𝑠, 𝑡), according
to Eq. (1.20).

2.1 West-Yennie formula

The total amplitude 𝐹𝐶+𝑁(𝑠, 𝑡) is commonly written as the sum of hadronic amplitude
𝐹𝑁(𝑠, 𝑡) and Coulomb amplitude 𝐹𝐶(𝑠, 𝑡) known from QED which are mutually bound
with the help of relative real phase 𝛼𝜑(𝑠, 𝑡) as follows

𝐹𝐶+𝑁(𝑠, 𝑡) = 𝐹𝐶(𝑠, 𝑡)𝑒𝑖𝛼𝜑(𝑠,𝑡) + 𝐹𝑁(𝑠, 𝑡) (2.1)

where 𝛼 = 1/137.036 is the fine structure constant. The total amplitude 𝐹𝐶+𝑁(𝑠, 𝑡) is not
therefore mere sum of hadronic and Coulomb amplitude. West and Yennie [8] applying
the method of Feynman diagram technique (one photon exchange) derived further in the
case of charged point-like particles and of high energy limit (i.e. for 𝑠→ ∞) for the phase
function 𝜑(𝑠, 𝑡) the formula being now used in the form

𝜑(𝑠, 𝑡) = ∓

⎡⎣ln(︂−𝑡
𝑠

)︂
−

0w

−4𝑝2

𝑑𝑡′

|𝑡− 𝑡′|

(︂
1− 𝐹𝑁(𝑠, 𝑡′)

𝐹𝑁(𝑠, 𝑡)

)︂⎤⎦ . (2.2)

It means that at the given energy the t-dependence of the relative phase between the Cou-
lomb and hadronic amplitudes is determined practically by the t-dependence of hadronic
component 𝐹𝑁(𝑠, 𝑡) entering into the integrand of Eq. (2.2).
Assuming some assumptions concerning the t-dependence of hadronic amplitude 𝐹𝑁(𝑠, 𝑡)
and adding two electric form factors 𝑓1(𝑡) and 𝑓2(𝑡) describing the same electric structure
of the both colliding hadrons into the Coulomb amplitude, i.e.
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2.1 West-Yennie formula

𝐹𝐶(𝑠, 𝑡) = ± 𝛼𝑠

𝑡
, (2.3)

the mentioned authors were able to calculate integral (2.2) analytically. Thus for the
total amplitude (2.1) with relative phase given by (2.2) only then derived the simplified
formula

𝐹𝐶+𝑁
𝑊𝑌 (𝑠, 𝑡) = ± 𝛼𝑠

𝑡
𝑓1(𝑡)𝑓2(𝑡)𝑒

𝑖𝛼Φ +
𝜎𝑡𝑜𝑡
4𝜋

𝑝
√
𝑠(𝜌+ 𝑖)𝑒𝐵𝑡/2 (2.4)

which seemed to be more convenient for the analysis of experimental data then (2.1) and
the original WY formula (2.2). In the relation p is the value of the momentum in CMS,
the parameter B is called diffraction slope, 𝜎𝑡𝑜𝑡 is the total cross section and 𝜌 is the
ratio of the real part to the imaginary part of the hadronic amplitude which is assumed
to be independent of t as well as the diffraction slope B. The form factors 𝑓1(𝑡) and
𝑓2(𝑡) correspond to the electric structure of two colliding nucleons. The phase 𝜑(𝑠, 𝑡) in
Eq. (2.4) equals then

𝜑(𝑠, 𝑡) = ∓
[︂
ln

(︂
−𝐵𝑡
2

)︂
+ 𝛾

]︂
(2.5)

where 𝛾 = 0.577215 is Euler’s constant. The upper (lower) sign in Eqs. (2.2), (2.3), (2.4)
and (2.5) corresponds to the scattering of particles with the same (opposite) charges.
The simplified WY formula contains a dominant imaginary part of hadronic amplitude
at all values of momentum transfer t because the parameter 𝜌 is regarded as small, see
Table 1 in Chapter 3. Formulae (2.5) for the relative phase 𝜑(𝑠, 𝑡) and (2.4) for the total
elastic scattering amplitude 𝐹𝐶+𝑁

𝑊𝑌 (𝑠, 𝑡) contain only three free, unknown, parameters,
i.e. 𝜌, B and 𝜎𝑡𝑜𝑡. The formula (2.4) is assumed to hold for small values of absolute value
of momentum transfer t.

The second term on the right hand side of equation (2.4) represents the hadronic amplitude
𝐹𝑁
𝑊𝑌 (𝑠, 𝑡) which was derived under the following three assumptions

(i) the influence of spins of all the particles involved can be neglected;

(ii) the t-dependence of the modulus of the elastic hadron amplitude is purely exponen-
tial in the whole kinematically allowed region of momentum transfer, i.e.

|𝐹𝑁
𝑊𝑌 (𝑠, 𝑡)| ∼ 𝑒𝐵𝑡/2; (2.6)

(iii) the real and imaginary parts of the elastic hadron amplitude exhibit the same
t-dependence at all kinematically allowed values of t, i.e. the quantity 𝜌 is t-
independent.

The first assumption (i) has been discussed in [9] or [10]. According to these papers the
spins effects have negligible effect in the case of forward elastic hadron pp scattering in
ISR energy range of

√
𝑠, i.e. from 23.5𝐺𝑒𝑉 to 62.5𝐺𝑒𝑉 , and in all high-energy elastic
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Interference between the Coulomb and hadronic scattering

hadron scattering with non-polarized hadrons. The first assumption (i) seems, therefore,
not to represent practically any important limitation.

On the other hand the second and third assumptions (ii) and (iii) are much more
important. The purely t-dependence of hadronic amplitude |𝐹𝑁

𝑊𝑌 (𝑠, 𝑡)| determines ac-

cording to Eq. (1.20) the corresponding differential cross section
𝑑𝜎𝑁

𝑊𝑌

𝑑𝑡
and approximately

corresponds to observed experimental data for the pp elastic scattering at the ISR energies
(where the diffractive structure - existence of diffractive minimum - has been experiment-
ally confirmed) only for t running from the forward direction to diffractive minimum. The
purely experimental t-dependence is without any doubt in contradiction to high energy
elastic nucleon experimental data. The purely exponential t-dependence at all kinematic-
ally allowed values of momentum transfer was assumed and thus simplified West-Yennie’s
formula (2.4) has been derived in an inconsistent way [11].

In spite of this fact the simplified WY formula is currently used for the analysis of
differential cross section data in the interference region only (i.e. in the case of elastic
nucleon scattering for |𝑡| ≤ 0.01𝐺𝑒𝑉 2 at present high energies). For higher values of |𝑡|
it is believed that the influence of Coulomb scattering can be - on the basis of the WY
simplified formula - completely neglected and another formulae with different t depend-
ence of hadronic amplitude 𝐹𝑁(𝑠, 𝑡) (non pure exponential dependence) are commonly
used. However, let as stress again that the theoretical assumptions used in the derivation
of simplified WY amplitude are not fulfilled by the experimental data and its current ap-
plication in this way can be hardly justified. And this is the reason why the more general
formula removing these discrepancies should be used for the analysis of data at all values
of t simultaneously.

Simplified West and Yennie’s formula can be used only as a rough approximation at
very small |𝑡| and thus this formula can not be used, of course, to test these two assump-
tions in the whole kinematically allowed region of t. We will use more general approach
which should hold in the whole kinematically allowed region of momentum transfers,
see next section, to test the assumptions involved in West and Yennie’s approach. The
analysis will be then done in Chapter 3.

2.2 More general formula

The deficiencies from the experimental as well as theoretical point of view may be removed
if one starts from the eikonal formula shown in Sect. 1.4. Due to Eq. (1.22) the total
amplitude 𝐹𝐶+𝑁(𝑠, 𝑡) is fully determined by the total eikonal 𝛿𝐶+𝑁(𝑠, 𝑏). Taking into
account the relation (1.23) for eikonal the total eikonal 𝛿𝐶+𝑁(𝑠, 𝑏) is given by the sum of
individual eikonals 𝛿𝐶(𝑠, 𝑏) and 𝛿𝑁(𝑠, 𝑏) for Coulomb and hadronic eikonals

𝛿𝐶+𝑁(𝑠, 𝑏) = 𝛿𝐶(𝑠, 𝑏) + 𝛿𝑁(𝑠, 𝑏). (2.7)

Eq. (2.7) is in agreement with the additivity of potentials, i.e. Coulomb and hadronic
potential, and with linearity of potential 𝑉 (𝑠, 𝑟) in expression (1.23). The Coulomb and
hadronic elastic scattering (the elastic differential cross section) is thus fully determined
by the total potential which is simply given by the sum of both the potentials. The
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2.2 More general formula

’interference’ between Coulomb and hadronic scattering follows thus from the mere sum
of corresponding potentials. More general formula for total elastic amplitude of charged
hadrons was then derived in the framework of the eikonal model by Kundrát and Lokaj́ıček
[12]:

𝐹𝐶+𝑁
𝐾𝐿 (𝑠, 𝑡) = ± 𝛼𝑠

𝑡
𝑓1(𝑡)𝑓2(𝑡) + 𝐹𝑁(𝑠, 𝑡)[1∓ 𝑖𝛼𝐺(𝑠, 𝑡)] (2.8)

where

𝐺(𝑠, 𝑡) =

0∫︁
𝑡𝑚𝑖𝑛

𝑑𝑡′
{︂
ln

(︂
𝑡′

𝑡

)︂
𝑑

𝑑𝑡′
[𝑓1(𝑡

′)𝑓2(𝑡
′)] +

1

2𝜋

[︂
𝐹𝑁(𝑠, 𝑡′)

𝐹𝑁(𝑠, 𝑡)
− 1

]︂
𝐼(𝑡, 𝑡′)

}︂
(2.9)

and

𝐼(𝑡, 𝑡′) =

2𝜋∫︁
0

𝑑Φ′′𝑓1(𝑡
′′)𝑓2(𝑡

′′)

𝑡′′
; (2.10)

here 𝑡′′ = 𝑡 + 𝑡′ + 2
√
𝑡𝑡′ cosΦ′′. The minimal kinematically allowed value 𝑡𝑚𝑖𝑛 in (2.9)

equals −𝑠 + 4𝑚2 according to relations (1.12) and (1.14). The upper (lower) sign in
(2.8) corresponds again to the scattering of particles with the same (opposite) charges.
Formulae (2.8),(2.9) and (2.10) should hold generally for any s and t with the accuracy
up to terms linear in 𝛼 in contrast to West and Yennie’s formula (2.4) which could be
used only as a rough approximation at very small |𝑡|. The expression in the last bracket
of Eq. (2.8) may be so regarded as the first term in the Taylor series expansion of the
exponential 𝑒∓𝑖𝛼𝐺 and one can write within the same precision

𝐹𝐶+𝑁
𝐾𝐿 (𝑠, 𝑡) = 𝐹𝐶(𝑠, 𝑡) + 𝐹𝑁(𝑠, 𝑡)𝑒∓𝑖𝛼𝐺(𝑠,𝑡). (2.11)

This is analogical formula to formula (2.1). The relative phase 𝛼𝜑(𝑠, 𝑡) in (2.1) is real but
the function 𝐺(𝑠, 𝑡) may be now generally complex.

To express proton form factors 𝑓1(𝑡) = 𝑓2(𝑡) in the case of pp scattering in the large
region of t we can employ t-dependent Borkowski’s electric proton form factors

𝑓1(𝑡) = 𝑓2(𝑡) =
4∑︁

𝑗=1

𝑔𝑗
𝑤𝑗 − 𝑡

(2.12)

where parameters 𝑔𝑗 and 𝑤𝑗 entering into the form factors have been extracted from the
measured electron-proton elastic scattering cross sections (see [13]). The integral 𝐼(𝑡, 𝑡′)
defined by Eq. (2.10) can be now determined analytically (see [9] or [12]) as follows

𝐼(𝑡, 𝑡′) =
4∑︁

𝑗,𝑘=1

𝑔𝑗𝑔𝑘𝑊𝑗𝑘𝐼𝑗𝑘 (2.13)

where for 𝑗 ̸= 𝑘
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Interference between the Coulomb and hadronic scattering

𝐼𝑗𝑘 =2𝜋

[︃
(𝑃𝑗 − 1)2√︀

𝑃𝑗(𝑃𝑗 − 𝑃𝑘)(𝑃𝑗 − 𝑈)
+

(𝑃𝑘 − 1)2√
𝑃𝑘(𝑃𝑘 − 𝑃𝑗)(𝑃𝑘 − 𝑈)

+

+
(𝑈 − 1)2√

𝑈(𝑈 − 𝑃𝑗)(𝑈 − 𝑃𝑘)

]︃ (2.14)

and

𝐼𝑗𝑗 = 2𝜋

[︃
(𝑃𝑗 − 1)(3𝑃𝑗 + 𝑃 2

𝑗 − 𝑈 − 3𝑃𝑗𝑈)

2𝑃
3/2
𝑗 (𝑃𝑗 − 𝑈)2

+
(𝑈 − 1)2√
𝑈(𝑈 − 𝑃𝑗)2

]︃
. (2.15)

It holds further that

𝑃𝑗 =
𝑤𝑗 + (

√
−𝑡+

√
−𝑡′)2

𝑤𝑗 + (
√
−𝑡−

√
−𝑡′)2

, 𝑈 =

(︂√
−𝑡+

√
−𝑡′√

−𝑡−
√
−𝑡′

)︂2

(2.16)

and

𝑊𝑗𝑘 =
1

[𝑤𝑗 + (
√
−𝑡−

√
−𝑡′)2][𝑤𝑘 + (

√
−𝑡−

√
−𝑡′)2][

√
−𝑡−

√
−𝑡′]2

. (2.17)

Formula (2.8) for the total elastic scattering amplitude is convenient for any t dependence
of hadronic amplitude 𝐹𝑁(𝑠, 𝑡) without any limitation. It can be either used for the
analysis of differential cross section data at all values of t simultaneously in a unique way
if the hadronic amplitude 𝐹𝑁(𝑠, 𝑡) is suitably parametrized. On the contrary to simplified
WY formula it does not contain the characteristic quantities 𝜎𝑡𝑜𝑡, 𝜌 and B explicitly. But
they can be derived easily from the hadronic amplitude as it will be shown for 𝜌 and B
in the next chapter.

Or, the general formula (2.8) can be also used for the determination of the diff. cross
section data at any values of t if the hadronic amplitude 𝐹𝑁(𝑠, 𝑡) is specified within the
framework of another phenomenological model description.
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Chapter 3

Analysis of experimental data under
different conditions

Until now the most analysis of elastic experimental data have been based on the basis of
West-Yennie formula only. In the following we should like to demonstrate some differences
when different formulae are made use of. We shall go back to 𝑝𝑝 experimental data
obtained earlier at energy of 53 GeV that is represented by the measured total elastic
differential cross section. We will start from formula (see (1.20))

𝑑𝜎(𝑠, 𝑡)

𝑑𝑡

⃒⃒⃒⃒
𝐾𝐿

= 𝐶𝑛𝑜𝑟𝑚
𝜋

𝑠𝑝2
|𝐹𝐶+𝑁

𝐾𝐿 (𝑠, 𝑡)|2 (3.1)

where the formula (2.8) for the total elastic amplitude 𝐹𝐶+𝑁
𝐾𝐿 (𝑠, 𝑡) will be applied to. The

parameter 𝐶𝑛𝑜𝑟𝑚 corresponds to one percent systematic error of measured cross section.
This parameter will be fitted within the bounds from 0.99 to 1.01 and it will not be
explicitly mentioned in the following. We shall fit experimental data of the measured
elastic differential cross section in region of −𝑡 from 0.00126 𝐺𝑒𝑉 2 to 9.75 𝐺𝑒𝑉 2 (243
points) taken from [14] and [15]. We will add some limiting conditions involved in West-
Yennie’s formula to more general formula (2.8).

The goal will consist in establishing the 𝑡-dependence of function 𝐹𝐶+𝑁
𝐾𝐿 (𝑠, 𝑡) at

√
𝑠 =

53𝐺𝑒𝑉 under different conditions when the influence of individual limiting assumptions
contained in West-Yennie approach will be tested in comparison to general case.

To determine function 𝐹𝐶+𝑁
𝐾𝐿 (𝑠, 𝑡) we shell use 𝑡-dependent Borkowski’s electric proton

form factors (2.12), with parameters 𝑔𝑗 and 𝑤𝑗 taken from [13], for the form factors
𝑓1(𝑡) = 𝑓2(𝑡) involved in (2.8). The integral 𝐼(𝑡, 𝑡′) in (2.8) will be analytically computed
with use of formula (2.13). Now, if we have expression for proton form factors, the only
unknown function in the r.h.s. of Eq. (2.8) for the total amplitude 𝐹𝐶+𝑁

𝐾𝐿 (𝑠, 𝑡) is the
elastic hadronic amplitude 𝐹𝑁(𝑠, 𝑡). Because there is not any reliable theory of elastic
processes, the only way how to establish the hadronic amplitude is to parameterize it and
then fit it to measured data. Since the hadronic amplitude is complex function we will
have to parameterize two real functions, the phase 𝜁𝑁(𝑠, 𝑡) and the modulus |𝐹𝑁(𝑠, 𝑡)|,
see Eq. (1.21) which will be introduced later.

To perform the necessary comparison we will assume in the general case that both
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Analysis of experimental data under different conditions

the corresponding quantities, i.e. ratio 𝜌 of the real part to the imaginary part of the
hadronic amplitude and diffractive slope 𝐵, are 𝑡-dependent quantities. To show the
difference between differential cross section computed with use of more general formula
under different condition and differential cross section computed with use of the simple
West-Yennie’s formula we will calculate the 𝑡-dependence of ratio

𝑅(𝑡) =

⃒⃒⃒⃒
⃒ 𝑑𝜎𝑑𝑡

⃒⃒
𝐾𝐿

− 𝑑𝜎
𝑑𝑡

⃒⃒
𝑊𝑌

𝑑𝜎
𝑑𝑡

⃒⃒
𝑊𝑌

⃒⃒⃒⃒
⃒ . (3.2)

To compute this quantity we need to know parameters 𝜎𝑡𝑜𝑡, 𝜌 and 𝐵 involved in West-
Yennie’s formula (2.4). We will use the values of these parameters derived in [16] from
experimental data, see Table 1.

Parameter Value

𝜎𝑡𝑜𝑡 [𝑚𝑏] 42.38 ± 0.15

𝜌 0.077 ± 0.009

𝐵 [𝐺𝑒𝑉 −2] 12.87 ± 0.14

Table 1: The values of the parameters
involved in West-Yennie’s formula, taken
from [16].

We will present here the results of the analysis with some values of free parameters taken
from Table 1 which specify the hadronic amplitude 𝐹𝑁(𝑠, 𝑡). Similar results have never
been published yet.

An estimation of the values of all free parameters specifying the hadronic amplitude
has been performed by the modified programs developed in Ref. [12]. The numerical
minimization of the 𝜒2 values in all cases has been performed with the help of the MINUIT
program [17]. The corresponding statistical errors of the free parameters were determined
by the HESSE procedure.

3.1 Generalization of quantities 𝐵 and 𝜌

The diffractive slope 𝐵 and quantity 𝜌, i.e. the ratio of the real part to the imaginary part
of the hadronic amplitude, are supposed to be constant in the whole region of kinematically
allowed momentum transfer 𝑡 in the case of simplified West and Yennie formula (2.4)
while these quantities exhibit important 𝑡 dependencies. In general case the 𝑡-dependent
quantity 𝜌(𝑠, 𝑡) may be defined simply as (see, e.g., [12])

𝜌(𝑠, 𝑡) =
ℜ𝐹𝑁(𝑠, 𝑡)

ℑ𝐹𝑁(𝑠, 𝑡)
. (3.3)

It is also possible to define the 𝑡-dependent diffractive slope 𝐵 as

𝐵(𝑠, 𝑡) =
2

|𝐹𝑁(𝑠, 𝑡)|
𝑑

𝑑𝑡
|𝐹𝑁(𝑠, 𝑡)|. (3.4)
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3.2 Standard phase

In the West-Yennie formula two assumptions are contained that both these quantities are
constant in the whole interval of all 𝑡 values. We will study in the following how the final
fit is influenced by one or the other assumptions. We will do this in two ways. We will fit
these constant quantities with other free parameters to experimental data and then we
will also fix them at the values from Table 1 and fit the rest of free parameters.

As constant quantity we will denote 𝑡-independent quantity in the next sections.

3.2 Standard phase

First of all we will analyse experimental data using more general formula (2.8) on condition
of standard hadronic phase

𝜁𝑁 = arctan
𝜌0

1−
⃒⃒⃒

𝑡
𝑡𝑑𝑖𝑓𝑓

⃒⃒⃒ (3.5)

which is commonly used in West-Yennie formula (see, e.g., [9] or [12]) even thought con-
stant hadronic phase (constant quantity 𝜌, see Sect. 2.1) have been assumed to derive this
formula. More general formula do not require this kind of parameterization of hadronic
phase. The parameter 𝑡𝑑𝑖𝑓𝑓 will be fixed on value -1.375 𝐺𝑒𝑉 2 and so only one parameter
𝜌0 determines hadronic phase. It only remains to parametrize the modulus of hadronic
amplitude |𝐹𝑁(𝑠, 𝑡)| for analysis of experimental data. The modulus of hadronic phase
|𝐹𝑁(𝑠, 𝑡)| can be parametrized as

|𝐹𝑁(𝑠, 𝑡)| = (𝑎1 + 𝑎2𝑡)𝑒
𝑏1𝑡+𝑏2𝑡2+𝑏3𝑡3 + (𝑐1 + 𝑐2𝑡)𝑒

𝑑1𝑡+𝑑2𝑡2+𝑑3𝑡3 . (3.6)

This choice of parameterization should be sufficiently flexible to describe experimental
data. The fitted values of free parameters describing hadronic phase given by parameter-
izations (3.5) and (3.6) are shown in Table 2 (Fit I). Quantity 𝑅(𝑡) corresponding to Fit I
is in Fig. 3. Calculated 𝑡-dependent diffractive slope 𝐵(𝑡) defined by Eq. (3.4) is in Fig. 2
and finally corresponding differential cross section for pp scattering given by Eq. (3.1) is
in Fig. 4 (green line).

3.3 Constant quantity 𝜌

In this section we will analyse experimental data using the more general formula (2.8) un-
der the assumption that the quantity 𝜌 is independent of momentum transfer 𝑡. According
to Eqs. (1.21) and (3.3) one can also write for the hadronic phase 𝜁𝑁(𝑠, 𝑡)

𝜁𝑁(𝑠, 𝑡) = arctan 𝜌(𝑠, 𝑡). (3.7)

It yields the hadronic phase 𝜁𝑁 is constant if 𝜌 is constant. Constant 𝜌 is thus parameter
which fully describe the phase 𝜁𝑁(𝑠, 𝑡). The modulus |𝐹𝑁(𝑠, 𝑡)| will be parametrized again
as (3.6). The values of parameters fitted to experimental data are in Table 2 (Fit II).
The case when the parameter 𝜌 is fixed on the value from Table 1 and the others free
parameters are left free is in Table 2, see Fit III. Quantities 𝑅(𝑡) corresponding to these fits
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Figure 2: 𝑡-dependence of the diffractive slope
defined by Eq. (3.4) and corresponding to Fit I
(full line) and to Fit IV (dashed line), i.e. to
the fits with standard phase, see Sect. 3.2, and
to the fit with standard phase and constant dif-
fractive slope, see Sect. 3.4.

Figure 3: 𝑡-dependence of the quantity 𝑅(𝑡)
defined by Eq. (3.2) corresponding to Fit I (full
line) and to Fit IV (dashed line), i.e. to the fit
with standard phase, see Sect. 3.2, and to the
fit with standard phase and constant diffractive
slope, see Sect. 3.4.

are in Fig. 7. The diffractive slope corresponding to Fit II is in Fig. 5 and the diffractive
slope corresponding to Fit III is in Fig. 6. Finally corresponding differential cross section
given by Eq. (3.1) is in Fig. 4 (green line).

3.4 Constant diffractive slope 𝐵

In the case of purely exponential modulus of hadronic amplitude (see (2.6))

|𝐹𝑁(𝑠, 𝑡)| = 𝑎1𝑒
𝑏1𝑡 (3.8)

𝑡-independent diffractive slope (3.4) equals 2𝑏1 and it is thus constant. On the other hand
if the diffractive slope 𝐵(𝑠, 𝑡) is constant then we can determine modulus of hadronic
amplitude from Eq. (3.4). This equation is now differential equation with constant coef-
ficients for 𝑡-dependent hadronic modulus |𝐹𝑁(𝑠, 𝑡)|. The solution is |𝐹𝑁(𝑠, 𝑡)| = �̃�1𝑒

𝐵𝑡/2.
The parameters 𝑎1, 𝑏1 and �̃�1 are 𝑡-independent but they may be s dependent. They are
constant for fixed s. In other words constant diffractive slope 𝐵 is equivalent to purely
exponential modulus of hadronic amplitude.

To analyse experimental data under assumption of constant diffractive slope 𝐵 only
we thus use parameterization (3.8) for modulus of hadronic amplitude. To parameterize
fully hadronic phase 𝜁𝑁 we use standard phase (3.5). Obtained fit (Fit IV) is in Table 2.
Quantity 𝑅(𝑡) corresponding to this fit is in Fig. 3. The diffractive slope corresponding to
this fit is in Fig. 2 and finally corresponding differential cross section given by Eq. (3.1)
is in Fig. 4 (red line).
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3.5 Constant 𝐵 and 𝜌
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Figure 4: Elastic differential cross section for pp scattering at energy of 53 𝐺𝑒𝑉 . Green line
corresponds to Fit I, Fit II and Fit III (non important differences are between these fits) i.e. to
non-constant but 𝑡-dependent diffractive slope defined by Eq. (3.4). Red line corresponds to
Fit IV and Fit V (non important differences between these fits again). Blue line corresponds
to Fit VI. These last three fits contain assumption of constant diffractive slope (3.4). Right
figure is left figure zoomed into region of -t up to 3 𝐺𝑒𝑉 2.

3.5 Constant 𝐵 and 𝜌

In the case of constant diffractive slope 𝐵 and quantity 𝜌 we use parameterization (3.8) for
hadronic amplitude and (3.7) for hadronic phase. The parameters fitted to experimental
data are in Table 2 (Fit V). Fit VI corresponds to constant parameters 𝐵 and 𝜌 fixed on
the values taken from Table 1. Quantities 𝑅(𝑡) corresponding to these fits are in Fig. 8.
The constant diffractive slope corresponding to Fit V resp. Fit VI is in Fig. 5 (red full
line) resp. in Fig. 6 (red dashed line). Differential cross sections given by Eq. (3.1) and
corresponding to these two fits are in Fig. 4 (red line for Fit V and blue line for Fit VI).

Elastic differential cross sections corresponding to non-constant diffractive slope 𝐵,
see Fig. 4, are for large values of -t practically given by the hadronic interaction. The
Coulomb interaction has neglectable effect. On the contrary, in the case of fits with
constant diffractive slope (see again Fig. 4) the effect of hadronic interaction may be
neglected for large values of -t compared to the Coulomb interaction. It is of course in
disagreement with our assumption that the hadronic interaction is short-ranged and much
more stronger then the Coulomb interaction; the elastic differential cross section for large
values of momentum transfer -t should be given only by the strong interaction.

In Sec. 1.2 we have mentioned that the momentum transfer -t must be lower then kin-
ematically allowed maximum value. The maximum value of momentum transfer -t may
be limeted further on the basis of the fact that elastic collisions are always accompagnied
by inelastic processes. They are only inelastic processes for lower values of impact para-
meter that would correspond to high values of -t (in the case of high energies of colliding
particles which we are interested in). One should ask how much the later limitation differs
from the formel and also how the size of colliding protons affect the physically allowed
region of momentum transfer.
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Analysis of experimental data under different conditions

Figure 5: 𝑡-dependence of the diffractive slope
defined by Eq. (3.4). Green full line corresponds
to Fit II i.e. to the fit with free constant quant-
ity 𝜌, see Sect. 3.3. Red full line corresponds
to Fit V i.e. to the fit with free constant both
constant diffractive slope 𝐵 and 𝜌, see Sect. 3.5.

Figure 6: 𝑡-dependence of the diffractive slope
defined by Eq. (3.4). Green dashed line cor-
responds to Fit III i.e. to the fit with constant
quantity 𝜌 taken from Table 1, see Sect. 3.3.
Red dashed line corresponds to Fit VI i.e. to
the fit with both constant diffractive slope 𝐵
and 𝜌 taken from Table 1, see Sect. 3.5.
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Figure 7: 𝑡-dependence of the quantity 𝑅(𝑡)
defined by Eq. (3.2) corresponding to Fit II (full
line) and to Fit III (dashed line), i.e. to the fit
with free constant 𝜌 and to the fit with constant
𝜌 taken from Table 1, see Sect. 3.3.

Figure 8: 𝑡-dependence of the quantity 𝑅(𝑡)
defined by Eq. (3.2) corresponding to Fit V (full
line) and to Fit VI (dashed line), i.e. to the fit
with free constant both 𝐵 and 𝜌 and to the fit
with constant both 𝐵 and 𝜌 taken from Table 1,
see Sect. 3.5.
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3.5 Constant 𝐵 and 𝜌
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Analysis of experimental data under different conditions

3.6 Luminosity at the LHC

The luminosity L is a constant quantity which in elastic processes bounds together a
counting rate Δ𝑁(𝑡), the number of counts per unit of time in a small interval around
momentum transfer Δ𝑡 with the corresponding differential cross Sect. [18]

Δ𝑁(𝑡) = 𝐿
𝑑𝜎

𝑑𝑡
. (3.9)

The normalization factor 𝐿 has units of (area)−1(time)−1. The differential cross section
defined by Eq. (1.20) is determined with the help of the total elastic scattering amplitude
𝐹𝐶+𝑁(𝑠, 𝑡), which can be calculated at small values of 𝑡 either according to the WY sim-
plified approach or by the eikonal more precise approach. Experimentally, the luminosity
at the LHC are planed to be determined at the 𝑡 lying inside the interference region. Our
results plotted in Figs. 3, 7 and 8 show that if such an approach of luminosity determ-
ination, based on the estimation of simplified WY total elastic amplitude, is used then
the luminosity would be burned by a systematic error approaching the value of 4 ÷ 5 %,
similarly as in [19] which overcomes the planed luminosity determination at the LHC
planned to 1 - 1.5 %, see [1], [2] and [3].

3.7 Interference term

Eq. (2.11) may be rewritten into the form

𝐹𝐶+𝑁
𝐾𝐿 (𝑠, 𝑡) = 𝐹𝐶(𝑠, 𝑡) + 𝐹𝑁(𝑠, 𝑡) + 𝐹 𝐼(𝑠, 𝑡) (3.10)

where we have introduced interference term 𝐹 𝐼(𝑠, 𝑡). The importance of this term for
elastic differential cross section given by Eq. (3.1) may be represented by fraction

𝑓(𝑠, 𝑡) =
|𝐹𝐶+𝑁

𝐾𝐿 (𝑠, 𝑡)|2 − |𝐹𝐶(𝑠, 𝑡)|2 − |𝐹𝑁(𝑠, 𝑡)|2

|𝐹𝑁(𝑠, 𝑡)|2
. (3.11)

Fits I, II and III match best to experimental elastic differential cross section of all the
six performed fits, see Fig. 4. These fits do not contain assumption of constant but 𝑡-
dependent diffractive slope 𝐵 defined by Eq. (3.4). Relative contribution of interference
term to elastic cross section represented by fraction 𝑓(𝑠, 𝑡) corresponding to Fit I, Fit II
and Fit III is plotted in Fig. 9. Differences between these fractions 𝑓(𝑠, 𝑡) are significant
mainly before and around region of diffractive dip (−𝑡 ∼ 1.3𝐺𝑒𝑉 2).
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3.7 Interference term

Figure 9: Relative contribution of the interference term for pp scattering at energy of 53 𝐺𝑒𝑉 .
Blue full line corresponds to Fit I, see Sect. 3.2. Green full resp. dashed line corresponds to
Fit II resp. Fit III, see Sect. 3.3. Right figure is left figure zoomed into the region before and
around diffractive dip, i.e. in the region of −𝑡 ∼ 1.3𝐺𝑒𝑉 2.
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Chapter 4

Conclusion

Until now practically all performed analysis of elastic high-energy hadron scattering have
been based on West-Yennie simplified formula. In the presented analysis we have used
experimental data obtained for 53 𝐺𝑒𝑉 proton-proton collisions and demonstrated the
differences caused by individual assumptions on which the given simplified West-Yennie
formula has been based.

Fit I and Fit II (and also Fit III) have the same parameterization of modulus of
hadronic amplitude but they have different expression for hadronic phase. Fit I contains
standard t-dependent hadronic phase (3.5) and Fit II involves constant hadronic phase;
nevertheless, corresponding chi-squares are similar, see Table 2.

The fits with assumption of constant diffractive slope B, which is involved in West-
Yennie formula, i.e. Fit IV, V and VI have much worse chi-square compared to Fit I, II
and III (with t-dependent diffractive slope), see Table 2.

The purely exponential t-dependence of hadronic modulus, which is equivalent to
constant diffractive slope B, corresponds to observed experimental data for the pp elastic
scattering only for t running from the forward direction to diffractive minimum. The
purely exponential t-dependence of hadronic modulus is without any doubt in contra-
diction to high-energy elastic nucleon experimental data for higher absolute values of
momentum transfer |𝑡|, see Fig. 4.

Choice of parameterization of modulus of hadronic amplitude is thus much more sig-
nificant in describing experimental data of differential cross section compared to paramet-
erization of phase of hadronic amplitude.

The fractions 𝑓(𝑠, 𝑡) for these fits have an anomaly at −𝑡 ∼ 1.3 𝐺𝑒𝑉 2 (before and
around the diffractive dip) as we can see in Fig. 9. This effect shows that the influence of
Coulomb scattering at higher |𝑡| values can be hardly neglected.

Our results also show that the luminosity can be burdened by 4 ÷ 5 % systematic
error if determined by the standard methods based on the application of simplified WY
total scattering amplitude.
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