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Abstract

Pairs trading is a trading strategy which tries to exploit mean-reversion

among prices of certain securities. It is market-neutral and self-financing,

and has been shown to produce high excess returns in historical backtests.

We employ the most common distance and cointegration approaches on

cryptocurrency data from an exchange called Binance spanning the year

2018. The strategy is mostly unprofitable under transaction costs, but cer-

tain combinations of hyperparameters can perform well. Overall, the dis-

tance method performs far better, being able to achieve 3% monthly profit

even in our baseline real-life conditions while the cointegration method al-

ways achieves only a slight loss. We also found that increasing the sampling

frequency of the data from daily to hourly brings mixed results.

Moreover, since we have to reuse estimates of real-life considerations

from equity markets, it is unclear if our results are truly representative

of the cryptocurrency market. The strategy is found to be very sensitive

to execution difficulties and transaction costs, making their determination

crucially important. It is somewhat easy to get returns in excess of 5%

monthly under ideal conditions, but whether this could be achieved in real

trading conditions is still unclear.
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Abstrakt

Párové obchodování je investiční strategie využívající dlouhodobého ekvilib-

ria v hodnotách cenných papírů. Navíc je tržně neutrální s nulovou čistou

investicí, a zároveň historicky vykazuje velké zisky.

S pomocí kointegrační a vzdálenostní metody analyzujeme data z burzy

jménem Binance za rok 2018. Ukazuje se, že strategie je díky transakčním

poplatkům převážně neprofitabilní, ale jisté kombinace parametrů dosahují

dobrých výsledků. Vzdálenostní metoda je obecně ziskovější a dosahuje

až 3% měsíčního zisku i v naší základní simulaci reálných podmínek, za-

tímco kointegrační metoda je vždy mírně ztrátová. Navíc se ukazuje, že

obchodování s hodinovými místo denními daty má smíšený efekt.

Naše výsledky mají do jisté míry omezenou výpovědní hodnotu, jelikož

jsme spoustu fenoménů odhadovali podle ekvivalentních konceptů z americk-

ých akciových trhů. Přitom jsme ukázali, že úspěch strategie je velice citlivý

vůči transakčním poplatkům a potížím při exekuci obchodů, což znamená,

že jejich přesné určení je kritické. Pokud bychom tyto faktory zanedbali,

dosáhnout ziskovosti i nad 5% měsíčně by bylo lehké. Nelze však říci, že by

naše výsledky byly robustní vůči podmínkám v reálném obchodování.

Klíčová slova

párové obchodování, kointegrace, statistická arbitráž, vnitrodenní obchodování,

kryptoměny, vzdálenostní metoda
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Methodology:
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Introduction

Pairs trading is a mean reversion strategy that is widely believed to origi-

nate from Morgan Stanley in the 1980s, pioneered by Gerry Bamberger and

Nunzio Tartaglia (Bookstaber, 2007).

The strategy aims to find the so-called pairs of securities which are as-

sumed to have a common long-term relationship in some of their character-

istics. Taking price as the quantity of interest, short-term deviations from

the purported relationship where the securities become mispriced compared

to what is expected in the long-run would lead a pairs trading strategy to

short the overvalued and long the undervalued security. This should later

lead to a realization of profit once the pair starts converging towards its long-

term equilibrium. Pairs trading is thus a market-neutral and mean-reverting

strategy.

The strategy proceeds in two stages. First, in the pair formation period,

it is necessary to identify suitable pairs. One thus has to find a metric that

chooses just the pairs that tend to move together with a stable long-run

relationship. Second, a measure of spread from the long-run equilibrium is

defined and a trading strategy is defined based on the values attained by

the spread. Typically, the spread is constructed so that it should, in theory,

oscillate around zero. Any extreme values attained are then a signal for

opening a position, as it should be reverting back towards zero shortly after.

Either stage of the strategy supports many different approaches that can be

freely combined.

The most frequent approaches to pairs trading are based on the distance,

cointegration or stochastic spread methods, although other methodologies

have been studied. The most renowned analysis using the distance method

was conducted by Gatev et al. (1999), whereas the cointegration method

was introduced by Vidyamurthy (2004) based on the work of Engle and

Granger (1987). Those two approaches are the most represented in academic

literature, but even for those, evidence outside of the US is scarce.

This thesis will adapt those common approaches for use on the cryp-
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toccurency market, which has, due to its novelty, so far not been studied

anywhere near the extent of the US stock market. In short, cryptocurren-

cies are a form of electronic cash that have emerged in 2008. They promise

several advantages over traditional currencies, including anonymity, speed

of transactions and low fees. However, their adoption, while improving, is

still suboptimal. They can be understood as a new asset class and can in

fact be traded like many traditional securities for which pairs trading has

already been studied.

The main contribution of this thesis is in investigating applicability of

standard pairs trading approaches on highly nonstandard cryptocurrency

data, with benchmarks set by the already existing papers on pairs trading,

such as those by Gatev et al. (2006). The most popular methods are com-

pared between each other and their overall viability on the cryptocurrency

market is investigated.

The thesis also contributes by extending the intra-day pairs trading lit-

erature using high-frequency data, and it compares various trading strategy

evaluation criteria, which have, again, been mostly studied with respect to

traditional securities.

However, it is important to note that the purpose of this thesis is not

necessarily to determine the best method for pairs trading on cryptocur-

rencies, especially when also considering selection of hyperparameters for

each method. While optimizing them could improve the performance sig-

nificantly, it is enough for us to simply demonstrate that pairs trading is a

promising strategy for cryptocurrency trading.

This bachelor thesis is structured as follows. In Section 1, we provide a

comprehensive literature review, covering both standard results in the field

as well as recent development. The next Section treats the source of our data,

as well as the preprocessing applied. In Section 3, a theoretical overview of

both distance and cointegration methods is given. Then, Section 4 discusses

the backtested trading performance of our strategy. Finally, the last section

summarizes our findings and proposes further avenues for exploration.
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1 Literature review

A certain mean-reverting behavior of stocks has been examined earlier than

pairs trading. Fama and French (1988) found long-term negative autocor-

relation in stock returns, able to predict 25-40% of 3 to 5-year return vari-

ance, which suggests either a market inefficiency or time-varying expected

returns by rational investors. Those results are supported by the work of

Poterba and Summers (1988), who found evidence for transitory compo-

nents in stock prices that support mean-reverting behavior, suggesting a

positive short-term and, again, negative long-term autocorrelation in stock

price returns.

The possible autocorrelation and its implications for the efficiency of

markets caused significant controversy. Kim, Nelson, et al. (1988) raise

objections to statistical methodology used for the previous mean-reversion

results and they argue that mean-reversion is a feature of pre-war stock

markets, but is absent in the post-war period.

Counterevidence is further refined by Jegadeesh (1991), who supports

the existence of mean-reversion even in the post-war period, but addition-

ally discovers that the effects are entirely concentrated in the month of Jan-

uary, proposing seasonality in the pattern of mean-reversion. The special

importance of January has seen much discussion in academic literature, for

example by Bondt and Thaler (1987), who show how stock portfolios com-

posed of past losers tend to outperform portfolios made of winners, with

the excess returns materializing mostly in January. This phenomenon is

attributed to market overreaction related to stock price changes.

Furthermore, it is shown that the effect is not a reiteration of the size

or risk characteristics of the winning and losing firms, although it is unclear

if time-varying discount rates (as proposed by Fama and French (1988)) do

not play an important role.

If there indeed were mean-reverting forces on the stock market, a simple

contrarian strategy should be able to perform well. Jegadeesh (1990) finds

that monthly stock returns exhibit significant negative first-order correlation
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and a significant positive higher-order correlation. Over an initial period,

a regression for stock returns is estimated, the stocks are sorted accord-

ing to forecasted returns and ten portfolios are assembled from stocks with

consecutively ranked expected returns. It is then found that the difference

between the two most extreme portfolios (one with all the lowest expected

return stocks and the other with all the highest) is 2.49% per month over a

period as long as 1934-1987, meaning that stock prices do not really follow

a random walk.

It might thus be that pairs trading is simply a case of contrarian investing,

performance of which is unexpected as it contradicts the efficient market

hypothesis. This question among others is answered in one of the first pairs

trading papers with empirical evidence written by Gatev et al. (1999), who

investigate the US stock market on data from 1962 to 1997.

They use the minimized normalized distance approach to identify po-

tential pairs and trade them when the spread exceeds two standard normal

deviations. Such a strategy turns out to be highly profitable, even after

adjustment for transaction costs to correct inaccuracies caused by bid-ask

bounce examined by Jegadeesh (1990).

Importantly, a bootstrap test is done, showing that just purely random

pairs are very unlikely to generate profit, proving that pairs trading exploits

more than just the aforementioned mean-reversion. The profitability of the

strategy is hypothesized to be caused by the Law of One Price, as pairs

trading might be understood as a relative mispricing of two close substitutes.

In a later revision of the paper (Gatev et al., 2006), the examination pe-

riod is extended by 5 years and decreasing raw returns (but with consistent

risk-adjusted returns) in more recent periods are found. Also, some com-

mon objections to the results are ruled out, such as short-sale constraints or

unrealized bankruptcy risk. Those are important because the excess returns

are in fact asymmetric in origin, being mostly generated by the short port-

folio (made of stocks that increased in value relative to their counterparts

prior to opening of the pair). Two explanations for the decreasing returns
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are offered, either they are caused by increased hedge fund competition, or

by the existence of a common (but unknown) risk factor that drives pairs

trading profits but that also decreased in significance in the later periods.

The decreasing returns have been further documented by Do and Faff

(2010), who replicated the methodology of Gatev et al. (2006), again on

data from the US stock market extended until 2010, and confirmed the

decreasing but still positive returns to pairs trading.

A large-scale study of the US and 34 other stock markets conducted by

Jacobs and Weber (2015) shows that the distance method is persistently

profitable, but with a significant time-varying component for which two

main causes are identified, time-varying arbitrage constraints and investor

attention. Of the 35 markets studied, pairs trading was the most profitable

in both emerging markets (where significant arbitrage constraints are more

likely) and in markets with a large number of eligible pairs (where there is

information overload).

Published detailed evidence for markets other outside the US is limited.

Perlin (2009) has applied the distance method to the Brazilian stock market

and again found that it significantly outperformed a naive buy-and-hold

benchmark. Similar conclusions were reached by Broussard and Vaihekoski

(2012) who also used the distance method to investigate the Finnish stock

market where multiple share classes are common, and pairs formed by those

generated particularly high profit.

While the model proposed in Gatev et al. (1999) was nonparametric and

based on simple statistical relationships, several other approaches to pair

formation and/or generating trading signals have been suggested. Elliott et

al. (2005) proposed to model the mean-reversion as an Ornstein-Uhlenbeck

process, which became known as the stochastic spread method, and Do, Faff,

and Hamza (2006) introduced a variation of the aforementioned referred to

as the stochastic differential residual, whereas Vidyamurthy (2004) outlines

a cointegration-based approach.

Liew and Wu (2013) note that methods based on correlation or cointe-
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gration force linearity on the pair’s underlying dependence structure, which

fails to appropriately describe the relationship in cases such as tail depen-

dence. They thus used copulas to model trading rules and benchmarked

it against the traditional distance/cointegration methods. Their empirical

results on a specific pair of stocks considered in the period 2009-2012 show

that the copula method achieves the best results.

Various other more complicated methods have been proposed, able to

outperform the classical approaches at least in small samples. Most recently,

advances in computing have led to applications of methods such as neural

networks or genetic algorithms with promising results, for example by Huang

et al. (2015) or Huck (2010). Hurst exponents were used by Ramos-Requena

et al. (2017) to generate returns superior to the distance and cointegration

methods using the Dow Jones index as a benchmark through 2000 to 2015.

Bogomolov (2013) proposes a new nonparametric approach based on renko

and kagi constructions, which originate from Japanese charting indicators

and that trade on the volatility of the spread process, rather than its mean.

It is shown to be theoretically profitable for the Ornstein-Uhlenbeck process

and it is also backtested on multiple datasets from Australia and the US.

The most standard models were occasionally directly compared in uni-

form setting (though many studies describing novel approaches also use clas-

sical methods as benchmarks). The breadth of both documented approaches

and used datasets means that comparability of methods is far from rigor-

ously researched.

Rad et al. (2015) examine the distance, cointegration and copula methods

on US stocks from 1962 to 2014. Returns (on both raw and risk-adjusted

basis) are found to be very similar among distance and cointegration, with

the copula method lagging behind. However, all methods except copulas

exhibit decreasing trading opportunities over time. Also, while copulas have

comparable performance to the other two methods in converged pairs, its

relatively high proportion of diverging pairs severely limit its performance.

Whether the copula method could be adjusted to negate its downsides while
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maintaining its distinguishing characteristics from the other methods is left

for further research.

Additionally, Carrasco Blázquez et al. (2018) compare the correlation,

cointegration, distance, stochastic and stochastic differential residue meth-

ods on stocks belonging to the US financial sector from 2008-2013, with the

reasoning that a market-neutral strategy such as pairs trading should be

able to perform both in and outside of crises.

Studies applying trading strategies (not just pairs trading in particu-

lar) on cryptoccurency markets are very limited in general. Lintilhac and

Tourin (2017) have, using stochastic control theory to find the optimal trad-

ing rules, constructed 4 profitable pairs trading strategies trading BTC-USD

across different exchanges, but the empirical results only include compari-

son amongst the derived strategies. Nakano et al. (2018) use artificial neural

networks for prediction of Bitcoin price direction. Depending on the mag-

nitude of predicted returns, predictions are classified into weakly/strongly

upward/downward moving and three strategies are constructed. Sensitivity

analysis of various hyperparameters of the neural network reveals that it is

fairly robust with regards to model specification and the model generally

significantly outperforms a buy-and-hold benchmark even after accounting

for transaction costs.

Most relevant research focuses on trading issues which are either more

fundamental or specific to the cryptocurrency space. For example, Feng et al.

(2018) study informed trading in Bitcoin markets. Already existing metrics

of informed trading are shown to be inappropriate for Bitcoin markets due

to its nature as an order-driven, highly volatile market with nonstationary

trading volume, and no samples of reported informed trading being available.

A new metric based on the size of buyer-initiated (seller-initiated) orders

is proposed and correlation to large positive (negative) events is observed.

Profits of informed traders are also roughly estimated to be in the hundreds

of thousands USD per event on the Bitstamp exchange alone.

Balcilar et al. (2017) try to estimate the volume-return relationship that
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has seen much attention for traditional assets. Since non-linearity and struc-

tural breaks are detected, they propose a novel nonparametric causality-in-

quantiles test that deals with the aforementioned issues. Results show that

volume can predict returns while the market is in ”normal” mode (that is,

outside of major bear/bull runs), but fails to predict volatility in either case.

The macroeconomic drivers of Bitcoin prices were discussed by Ciaian

et al. (2016). Standard supply and demand factors known from ordinary

currency price formation are able to explain Bitcoin prices to a large extent,

particularly as it became more established compared to earlier periods. On

the contrary, the impact of social awareness (measured by metrics such as

views on Wikipedia) was more prominent in the early periods and the ef-

fects are particularly pronounced in short-run speculative trading leading to

bubbles. Major financial indicators such as the Dow Jones Index or oil price

are found to be important only in the short run.

2 Data

We use historical data from Binance, a global cryptocurrency exchange

founded in 2017 that quickly rose to prominence and was one of the biggest

exchanges by early 2018. Through its public API, it provides historical trade

data at up to 1-minute resolution on all its traded pairs. The rapid increase

in BTC trading volume on Binance is displayed in Figure 1.

From the API, we pull data on Open, High, Low, Close and Volume of

each traded cryptocurrency for the year 2018. Because Binance does not

deal with fiat, all currencies are denominated in Bitcoins with the exception

of Ethereum and Bitcoin which also have pairs quoted in terms of Tether (a

cryptoccurency designed to maintain 1:1 parity with USD). The full list of

traded pairs can be found in the Appendix, Table 9.

We will restrict ourselves to cryptocurrencies that have data spanning

the whole year 2018, and we will in fact only use data from 2018/01/01 to

2018/12/31 in our whole analysis.

New coins are added to Binance throughout the whole year, making the
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Figure 1: BTC volume traded on Binance

panel data unbalanced. This is solved by simply removing the offenders to

avoid distortion in our analysis. Likewise, we also remove the the currencies

that got delisted at some point during 2018.

Moreover, our focus is only on the upper 30% percentile in terms of vol-

ume. We primarily hope this helps to minimize the magnitude of problems

related to liquidity.

Nonetheless, even with the restrictions described above, our dataset is

still of significant size. After applying both the preprocessing and volume

cutoff, there are 23 cryptocurrencies left as our final set.

While this number is seemingly low compared to, say, the number of

traded US equities, we actually have a bigger amount of data than stud-

ies using the US stock market since ours is sampled at 1-min frequency

compared to the more common daily frequency. However, for the empirical

part, only data upsampled to either hourly or daily frequency is used due to
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computational constraints.

To conclude, we will touch up on why we do not try to trade across

multiple exchanges, and instead limit ourselves to just one.

The crypto space is actually well-suited to this, particularly if we avoided

fiat altogether, since the strengths of cryptocurrencies, such as transaction

speed and low fees, tend to reduce the trading barriers between exchanges,

and arbitrage seemingly has fewer obstacles than in traditional securities.

The crypto markets are in this sense unusually global, and we do not really

get to see anything akin to things like national stock markets.

However, implementation of such a strategy would also require things

like capital management across exchanges and treatment of different envi-

ronments on each exchange, adding another layer of difficulty for implemen-

tation.

Makarov and Schoar (2018) study this sort of inter-exchange arbitrage

and find that the profits are significant, with price spreads across exchanges

much smaller when fiat is not involved. So while such a strategy appears

viable, researching it would perhaps be more valuable from the perspective of

arbitrage rather than pairs trading, as the the trading strategy itself would

remain pretty much the same and trying to use this approach would add

little value to this thesis while risking to devalue our results due to likely

being forced to gloss over other complicated issues that might arise due to

increased complexity.

3 Methodology

A pairs trading strategy is best understood in terms of two stages: pairs

formation and trading period. Each stage may be executed independently

of each other. The distance and cointegration methods are in fact fairly

similar. It will soon be seen that the most common implementations differ

only in the pairs formation stage. In the following text, we will try to stress

parts of the process that are directly equivalent between each method, as

well as point out the few present differences.
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The pairs trading procedure can be summarized as follows. First, a

distance metric is defined to detect pairs that are suitable for pairs trading.

Optionally, the dataset might first be pre-filtered, primarily to help prevent

false positives. Once suitable pairs are identified, a measure of spread is

defined that is thought to have predictable long-run properties. Positions

are then opened and closed based on the spread deviations from the long-run

equilibrium.

At most steps of the process just described, some parameters have to be

determined. For the most part, we will try to unify the parameters of choice

with other literature as much as possible for better comparability. Since

our motivation is not to find the best possible hyperparameters for optimal

performance, this is not a big issue. Most literature does not provide justifi-

cation for its choice of parameters either, and the original papers determine

them arbitrarily as well.

To better see why the methods have so much in common, consider that

the initial motivation behind pairs trading is finding pairs that ”move to-

gether” and have a ”long-run equilibrium”. Therefore if everything worked

perfectly, both methods should identify the same viable pairs which would

be traded the same, irregardless of how they were selected.

We shall now move on to details. The distance method is conceptually

simpler compared to the cointegration method, so we will cover it first.

3.1 Distance method

In order to describe the distance method, we follow the methodology from

Gatev et al. (2006). First, we decide on the backtesting period, which is split

into pairs formation and trading periods. The pairs formation comprises of

the following steps:

1. For each time-series, per-period returns are approximated using loga-

rithms:

rit = log(
Pit

Pi,t−1

). (1)
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Equivalently, we can say that our returns will be calculated from log

prices.

2. The returns over the whole backtesting period (meaning both formation

and trading periods) are then normalized by subtracting the sample

mean and dividing by sample deviation calculated from the formation

period only to avoid look-ahead bias. If we let superscript F denote

the formation period and N the normalized variable, the formula is:

r̂Nit =
rit − µ̂F

i

σ̂F
i

. (2)

3. Normalized price series is the normalized price index, set to start at

one and to evolve additively using the returns from step 2, yielding the

series R·t. An exhaustive pair-wise search across those series is then

performed to find the pairs that minimize the sum of squared devia-

tions (SSD) between their normalized price indexes and a portfolio is

constructed from equally weighted top 20 pairs with the lowest distance

measure. The SSD can be written as:

SSDij =
∑
t

(Rit −Rjt)
2 i ̸= j. (3)

Next, we take the spread between two stocks to be the difference between

their cumulatively summed normalized returns, meaning:

spreadijt = Rit −Rjt.

The spread then gets normalized. For the normalization step, we must

again make sure to only calculate the mean and standard deviation from the

formation period.

We open and close the pair position when the normalized spread crosses

a predetermined threshold. Gatev et al. (2006) uses two standard historical

deviations for opening the pair and closes the pair when the prices next

equal, equivalent to the spread crossing zero. We do the same, although it

is set arbitrarily. We then go long on the lower priced stock and short on
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the higher priced stock by equal amounts. At the end of the trading period,

the position is liquidated regardless of convergence.

In order to calculate excess returns, we follow Broussard and Vaihekoski

(2012), who use a slightly modified, but equivalent version easier to interpret

than the one originally proposed by Gatev et al. (2006). Total return of the

pair for each period can be obtained by combining returns for the long and

short position as

rijt = witr
L
it − wjtr

S
jt, (4)

where w·t stands for relative weighting with respect to the initial investment.

The weights for subsequent periods can be calculated as

wit = wi,t−1(1 + ri,t).

Inbetween threshold crossings, this setup corresponds to a buy-and-hold

strategy. While it is possible to readjust the portfolio so that the weights

are equal in each period, it would cause prohibitive transaction costs and

it is typically avoided in literature. Instead, our cashflows are realized only

upon threshold crossings or at the end of the trading period.

The opening of a pair is self-financing with zero net investment since we

go both long and short an equal amount, typically 1$, which can better be

seen as 1 unit of capital. For the purpose of calculating returns, it is assumed

that we deployed 1$ of capital for the long position and the short position

is bought on margin. Conveniently, having initial unit weights allows us to

interpret the changes in weights as percentage profit.

Importantly, such a naive structure is only approximately market-neutral.

While the capital deployed on both securities is equal, we do not know

their respective market correlation betas that would determine truly market-

neutral weighing of capital to be deployed. However, accounting for this is

an uncommon practice in related literature and for the sake of comparison,

we will follow the same schema applied in other studies. Moreover, even if we

did setup the initial weights to achieve market-neutrality, it would be gone

after the first period unless we adjusted the portfolio every period, which we

already explained is not feasible.
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On the closing of pairs, positive cashflows are realized and at the of the

trading period when all positions are necessarily liquidated, we get either

positive or negative cashflow depending on whether the pair has converged

or stayed divergent. It is worth mentioning that even the convergent pairs

could have negative profit due to transaction costs. This might happen

if the standard deviation of the spread is low so that the gain from pair

convergence is lower than transaction costs incurred.

There is one more special issue we need to take care of. Since pairs trading

is a contrarian strategy, it might be subject to bid-ask bounce (documented

for example by Jegadeesh (1990)). Our strategy sells stocks that have done

well and buys those that did not, and since we only observe prices of orders

filled at either a bid or ask quote, we need to account for the tendency that

the winner’s price is more likely to be an ask quote and the loser’s price a

bid quote. Otherwise, we might be implicitly buying losers at bid quotes

and vice versa, biasing our returns.

Following Gatev et al. (2006), we rectify this by implementing a one-

period waiting rule for the opening/closing of pairs in order to circumvent

execution difficulties. The resulting change in profits can be taken as an

approximation of transaction costs arising from the bid-ask spread.

3.2 Cointegration method

We will first clarify some key terminology in time series theory following

canonical definitions. We need to introduce stationarity, in particular with

respect to integration and cointegration. We also describe the Dickey-Fuller

test used for deciding the stationarity of a time series.

Following Wooldridge (2008), a stochastic process {xt : t = 1, 2, ..} is

stationary if for every collection of time indices 1 ≤ t1 ≤ t2 ≤ ... ≤ tn, the

joint distribution of (xt1 , xt2 , .., xtn) is the same as of (xt1+h, xt2+h, .., xtn+h)

for every integer h ≥ 1. We also recognize covariance stationarity, for which

it is necessary that the expected value and variance are constant (and finite)

across time and the covariance Cov(xt, xt+h) depends only on h. Covariance
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stationarity is largely sufficient for our desired properties of estimation. A

process that is not stationary is called non-stationary.

Using OLS on non-stationary time-series is dangerous and known to pro-

duce spurious regressions (Granger and Newbold, 1974). Such regressions

are devoid of econometric meaning, even though they might have good values

of fit such as R2 and coefficient significance. However, various estimators can

be designed that deal with non-stationarity and allow meaningful inference,

for example the Fixed effects or First difference estimators. Those include

transformations of a single non-stationary series to make it stationary.

A special feature of the generating process called cointegration, which

exploits a certain similarity of the process to another one, can reduce the

problem to estimation of stationary series and is introduced next.

In order to develop this concept, we build on the work of Engle and

Granger (1987) to establish a methodology for testing cointegration between

two non-stationary time-series, which will allow us to construct a new sta-

tionary time-series from the original two.

We will say a process is integrated of order d if the d -th difference is

covariance stationary. Then Engle and Granger (1987) define cointegration

as follows:

The components of the vector xt are said to be co-integrated of order

d, b, denoted xt ∼ CI(d, b), if all components of xt are I(d) and there exists

a vector α ( ̸= 0) so that zt = αTxt ∼ I(d− b), b > 0. The vector α is called

the co-integrating vector.

We will focus our attention only on the CI(1, 1) with a two dimensional

vector xt case from now on. We can thus interpret cointegration as the

requirement that there exists a a linear combination such that α1x1t+α2x2t

is a stationary time series, and in that case, x1t and x2t are said to be

cointegrated. We will explicitly standardize the linear combinations so that

one of the coefficients is always equal to 1.

We notice that the definition above requires that each of the time series

is I(1) by itself. Such series are said to have have a unit root. Unit-root
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processes do not exhibit mean-reversion after realization of the error term,

which means that the error term at time t continues to affect all subsequent

periods. Standard econometric methods only apply to time series without

unit roots and it is necessary to remove them prior to estimation. A common

approach to test for the presence of unit roots is the Dickey-Fuller test (for

detailed treatment, see Dickey and Fuller (1979)).

As a side note, we remark that unit roots are just one of the possible

sources of possible non-stationarity, which all tend to cause problems with

standard econometric procedures. The possibilities are endless, but the other

most commonly recognized forms are trend-stationarity, for which the series

becomes stationary after detrending, and non-stationarity in variance. The

individual forms can occur independently of each other.

The DF test is therefore not exactly a test for non-stationarity, but rather

just for one of its forms. It is somewhat common not to draw this distinction,

however.

Let us now look at specifics of the pairs trading procedure itself. The

usual reference for the cointegration method is Vidyamurthy (2004), which

we also follow. The Engle-Granger two step test (originally developed by

Engle and Granger (1987)) is used to detect cointegrated pairs.

The test for two price series xt and yt can be summarized as follows:

1. Establish individual non-stationarity For two time series to be

cointegrated, both of them must be I(1). We can assess this with the

Augmented Dickey-Fuller test, which detects unit roots. If both series

are I(1), we proceed to step 2.

2. Establish cointegration Run the OLS regression

yt = µ+ βxt + ut, (5)

and save the residuals ût. If the estimated residuals are stationary

(which can be tested using methods identical to those applied in step

1), the two series are cointegrated. Care should be taken to choose the

proper form of ADF test in both steps of the test.
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We remark that all hypothesis testing is conducted at 5% significance

level unless explicitly stated otherwise. That said, let us take a closer look

at the two steps.

In place of the general xt and yt, we will be using log prices per suggestion

of Vidyamurthy (2004), who proclaims that the assumption that logarithms

of stock prices follow a random walk is a standard one. Indeed, log prices

were used in the distance method as well.

Importantly, the distribution of the test statistic from the ADF test

applied throughout the Engle-Granger test will not have the usual Dickey-

Fuller distribution (which is already nonstandard) due to the necessity of

estimating the cointegration coefficient β. This becomes an issue because

yt and xt are generated from two different processes, whereas an ordinary

Dickey-Fuller test uses only one series from a single process (see Engle and

Granger (1987) for a more rigorous discussion).

Since yt − β̂xt = µ̂ + ût, if step 2 shows stationarity of the estimated

residuals, we get that the time series yt − β̂xt is stationary (at least at our

specified significance level). This is the cointegration method’s spread, cal-

culated as

spreadxyt = yt − β̂xt.

As in the distance method, the spread is then normalized using data from

the formation period.

If we did not use log prices during estimation in (5), the long-run equilib-

rium µ would not be invariant under percentage returns. If µ was non-zero,

an α percentage increase in both securities X and Y would also increase the

long-run mean by α percent. This however does not happen if log prices

are used since then the estimated µ is essentially an approximate percentage

difference between the two series, and taking logarithms thus makes the se-

ries more suitable for our estimation, as our spread will be invariant under

percentage changes.

Proceeding to the trading period, we trade on oscillations of the spread

around its equilibrium. The standard deviation threshold is most frequently
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set to 2, as that is what Gatev et al. (1999) used in the original paper on

the distance method.

It is also important for the estimate of β in (5) to be positive, so that

their prices “move together”. Otherwise, the pair could not be traded using

a contrarian strategy as we would have to go either long or short on both

pairs, whereas our initial motivation was to find a profitable trading strategy

regardless of market conditions (that is, a market neutral strategy).

Vidyamurthy (2004) suggests calculation of profit in period t, which can

be rearranged into change in spread, as follows below:

[log(pLt )− log(pLt−1)]− β[log(pSt )− log(pSt−1)] = spreadt − spreadt−1. (6)

Note that this is explicitly the special case when we have 1 unit of the

long pair and β units of the shorted pair. In the general case, the summands

need to be weighted according to their current weights in period t. The

calculated returns can then be summed.

Note that this formula is in no way inherent to pairs trading. It is nothing

more than just the usual portfolio return calculation, and it should not be

surprising that it is the same for both distance and cointegration methods.

By the design of our cointegration model, the initial weights assigned to

the pairs are of the form 1 : β. For the purpose of calculating returns, we

will still assume 1$ of deployed capital, with the rest of necessary capital

being borrowed.

Some issues, such as the bid ask spread, were discussed along with the

distance method and of course apply here as well. There are a couple more

problems concerning the cointegration method specifically that warrant more

thorough treatment.

The first issue to be considered is the multiple comparisons problem since

we are bound to conduct a high number of tests. Just by test construction,

we are expected to falsely reject the true null hypothesis of no cointegration

in a certain amount of tests depending on our desired significance level (i.e.

we get Type 1 errors).

To illustrate the issue, consider that the Engle-Granger test is conducted
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pairwise. In Section 2, we saw that our final dataset consists of 23 stocks.

In general, the testing procedure will be conducted number of times equal

to
n(n− 1)

2
.

In our case with n = 23, this amounts to 253 procedures. At the 5%

significance level, we thus expect to get approximately 13 pairs that are

spuriously cointegrated.

There is one more issue related to this that was not yet mentioned. The

Engle-Granger test is not symmetric with respect to the choice of xt and

yt in the regression equation, and it is possible that we might get different

results if we just permute the series.

This further accentuates our multiple comparisons problem. While there

exist symmetric cointegration tests, we will keep using the Engle-Granger

test as it is the most common choice in pairs trading literature, and treat the

asymmetry by simply testing only one ordering out of the possible two. Not

doing so would further double the number of tests, and since true cointegra-

tion is a symmetric relationship, getting different results based on ordering

would just point towards faultiness of the chosen method anyways.

Gatev et al. (2006) tries to deal with false positives by considering stocks

within the same sector. Similarly, Vidyamurthy (2004) proposes to choose

stocks exposed to common risk factors based on Arbitrage pricing theory.

Those methods are however hardly applicable to cryptocurrencies because

they are weakly related to fundamental factors, and we cannot use qualita-

tive analysis for pre-selection this way.

The second big issue is proper use of the Dickey-Fuller test. We have

already noted its proper utilization is important. If we misuse it, the risk of

spurious cointegration is increased which will in turn decrease the returns of

our strategy. Therefore in order to properly execute the Engle-Granger test

procedure, we need to understand the Dickey-Fuller test well.

The test initially considers OLS estimation of an AR(1) process

yt = ρyt−1 + ut (7)
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This process has a unit root if ρ = 1, otherwise it is either stationary

(ρ < 1) or exploding (ρ > 1). In order to test for the presence of unit

root, we consider ρ = 1 as the null hypothesis against the alternative that

ρ < 1 (stationarity), leading to a one-sided test. It is implicitly assumed that

our price series can not be an exploding time series since economic data is

unlikely to behave that way.

We can also rewrite the model by subtracting yt−1 from both sides as

∆yt = (ρ− 1)yt−1 + ut = δyt−1 + ut (8)

Testing ρ = 1 is then equivalent to testing δ = 0. The test statistic is

DF =
δ̂

SE(δ̂)
.

There are three main alternatives of the test, depending on the kind of

unit root suspected. The difference lies in the form of (7) since it might also

include a drift or a linear trend. Based on that, we distinguish three main

forms of the Dickey-Fuller test.

1. Unit root only:

∆yt = δyt−1 + ut, (9)

2. Unit root with drift:

∆yt = µ+ δyt−1 + ut, (10)

3. Unit root with drift and deterministic time trend:

∆yt = µ+ at+ δyt−1 + ut. (11)

Care must be taken to choose the proper model, especially regarding in-

terpretation of results since each specification has a different null hypothesis.

For example, the second model considers random walk with drift as the null

hypothesis process.

Improperly selected form distorts size and power of the test and prior

knowledge (perhaps coupled with visual inspection) should be used to pick
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the proper form. Non-discretionary methods are beyond the scope of this

text (see for example Enders (2014)).

Both steps of the Engle-Granger cointegration test make use of the DF

test, but each case is different. Let us first discuss its application in Step 1

for determining individual non-stationarity.

When deriving (8), notice that we what we did was subtract yt−1 from

both sides in (7). This results in a first difference on the left-hand side, but

it is not first differencing.

This is important because it means that to determine the presence of

drift and trend in the DF test formulation, it suffices to decide whether the

original generating process of the series included them.

However, we are still in a dire situation, as the number of our cryptocur-

rency time series is high enough to make visual inspection unfeasible.

Furthermore, if we picked just one series, made a decision and applied

it to all, we would be likely to misclassify the other series. Indeed, for each

form of the DF test, it is not hard to imagine that it would be possible to

find a series in our data that would appear to exhibit the desired properties.

Instead, we will rely on heuristics to decide the form. We are going to

be using the DF test with a constant included for the following reasons. It

is widely believed that stock prices have changing means, meaning at least

one of drift or trend has to be included.

First of all, notice that adding drift in (8) in fact gives us a linear trend,

since the left-hand side is differenced. Adding linear trend in (8) would

actually give us a quadratic trend in the original series, since for there to be

a linear trend in the difference, there has to be a quadratic one in levels.

Second, since we will be doing the testing with log prices, drift seems

appropriate, since a linear trend (for which we need to include drift) in

log prices means exponential trend in actual prices. If our assumptions are

based on a stylized fact like ”markets grow on average x% every year”, which

implies exponential growth, including just drift appears to be the correct

choice.
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Table 1: # of unit roots per test specification

neither µ µ+ t µ+ t+ t2

# of unit roots (n=23) 23 21 20 20

Luckily, it turns out that even if we choose the wrong form, it is not that

big of a problem. If we try all aforementioned forms of the test, the results

are not very different.

As can be seen in Table 1, in the worst case, we might inappropriately

exclude about 10% of our data. In terms of sheer magnitude, the rest of

our preprocessing has removed a much greater chunk of our original dataset.

It remains however unclear if the pairs removed are not just the ones who

would end up spuriously cointegrated.

For Step 2, the situation is a bit different. Importantly, there is a poten-

tial fallacy to be made. Since we desire to test OLS residuals coming from

(5), we might reason that such residuals have zero mean by construction and

the inclusion of neither drift nor trend is appropriate.

Whether the residuals actually have a zero mean or not depends on the

inclusion of intercept/trend in (5). We should include the intercept/trend in

either the cointegrating regression or the unit root test, but not both and the

critical values with respect to inclusion of constant/trend should be chosen

based on their presence in either the cointegrating regression or the DF test

(Harris (1995)).

Another issue to keep track of is that the DF test statistic is not t-

distributed and each type of the test has its own set of critical values. In

fact, the distribution of the test statistic has to be computed using Monte

Carlo simulation. The critical values depend on both the model selected and

the sample size. For most practical use cases, it is necessary to interpolate

critical values from a table, for example from MacKinnon (2010) or Fuller

(1995).

Up until now, we assumed that the residuals ut are homoskedastic and
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serially independent. We know from the Gauss-Markov linear model as-

sumptions that if those conditions are not fulfilled, hypothesis testing is

affected.

It turns out that heteroskedasticity does not tend to be a big problem.

Kim and Schmidt (1993) find that in finite samples with GARCH errors,

the DF tests tend to over-reject, but the problem is not very serious. Pan-

tula (1988) demonstrates that under suitable conditions, heteroskedasticity

makes no difference asymptotically. Nonetheless, a number of special tests

was constructed that outperform the default Dickey-Fuller test at least in

certain situations (Cavaliere and Taylor (2009), Ling et al. (2003)).

Serial correlation in residuals is conceptually simpler to deal with. It is

particularly relevant because autocorrelation in stock returns is well docu-

mented (for example by Jegadeesh (1990)). An extension called the Aug-

mented Dickey-Fuller test has been developed which includes a number of

lags of the dependent variable in (8) to deal with autocorrelation in residuals,

so that the resulting model is

∆yt = δyt−1 +
n∑

i=1

γi∆yt−i + ut (12)

Correctly choosing the lag structure is key to avoid further decreasing the

already low power of the test, as well as avoid size distortions.

The amount of lags can be determined either heuristically or by optimiz-

ing metrics such as the Akaike Information Criterion, Bayesian Information

Criterion or Hannan–Quinn information Criterion, which try to penalize the

structure of model parameters with regards to its performance. Another

frequently used rule of thumb is to add lags until the residuals appear to be

white noise.

For our purposes, we will use AIC. Not only it is one of the most fre-

quently used criteria, but in comparison with BIC, it has the added advan-

tage of penalizing included lags far more weakly than BIC where the penalty

scales with number of observations. The difference between other metrics is

not so clear-cut.

Since we have a huge dataset (especially when using hourly data), BIC
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might thus be prone to underfitting. Because losing observations due to

having more lags is not a big problem given the size of our dataset, we

decide to rather include more than fewer lags as autocorrelation is likely to

be a more serious issue.

However, neither approach is universally applicable and another non-

standard information criterion with more desirable properties was developed

by Ng and Perron (2001). While the asymptotic distribution of the DF test

statistic is the same regardless the amount of lags, finite sample properties

are significantly affected by the lag length as shown by Cheung and Lai

(1995) along with tabulated values.

The choice of lag length is therefore both important and without an

optimal solution. At the same time, it is clear that proper execution of the

test is most crucial as it directly influences our chosen pairs and improper

testing will make it more likely for us to trade spuriously cointegrated pairs.

The last issue we cover is that it might occur that our time series have

some missing values (and it in fact does happen). In that case, unit root

tests can not be applied, at least directly, since they rely on some sort of

serial dependence between time series values and we risk getting misleading

results.

Ryan and Giles (1998) have compared linear interpolation, shifting the

series back to ”close” the gap and filling the missing values with the last

known value. Replacement with the last observed values before the gap was

found to have the most desirable properties in a wide variety of situations,

so we will proceed analogously in case we encounter missing data for any

reason.

The Dickey-Fuller test is well studied in literature, being a common unit-

root test of choice in many applications. That said, there are several alterna-

tives for testing unit roots with different strong points, such as the Phillips-

Perron, Kwiatkowski–Phillips–Schmidt–Shin or ADF-GLS test. However,

their treatment is beyond the scope of this text and the previously discussed

Dickey-Fuller test is the one most widely used in economic literature, which
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is why we will focus on it (and it is also the test of choice originally utilised

by Engle and Granger (1987)). Of course, a better chosen testing procedure

could potentially improve performance of the strategy.

3.3 Measure of returns

As mentioned before, the calculation of returns will be based on the assump-

tion that we have used $1 of capital to trade each pair. Since short-selling

is essentially margin trading, it must be assumed that going long $1 will be

enough to borrow for the short position, meaning our required capital to

open the position is just the $1 everytime.

This is directly related to the amount of leverage we are allowed to use.

The schema used by Gatev et al. (2006), which was also described above,

relies on 2x leverage ratio (meaning that for every 1$ of deployed capital,

we are able to go 1$ long and 1$ short).

This is particularly important for the cointegration method, where the

pairs ratio is not pre-determined and the necessary leverage ratio varies.

However, we will assume that it is always possible to trade all pairs in

their respective cointegration ratios with just 1$ of deployed capital and

subsequently use it in profit calculations. However, not all literature uses

the same leverage. For an empirical study using 5x leverage, see Liu et al.

(2017).

While we have already described how to calculate individual pair returns,

we have yet to propose a measure of return for portfolios. Gatev et al. (2006)

used two different measures - return on committed capital and on employed

capital.

The idea behind committed capital is that some capital has to be set

aside for pairs that are nominated for trading, but do not actually trade and

thus generate no returns, whereas employed capital only considers pairs that

were in fact traded.

We will assume that our usage of capital is sufficiently flexible and only

calculate the employed capital portfolio return, which can be calculated as
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the average return over the desired period of n individual pairs that were

traded:

R =

∑n
i=1 ri
n

. (13)

This actually still underestimates the profit figures since a pair position

is seldom open the whole period, but our portfolio return metric treats all

profit equally regardless of over how long a period it was realized.

Apart from raw returns for each pair, risk-adjusted measures are also

reported. Earlier, we have discussed the leverage used by our trading strat-

egy. Clearly, leverage amplifies not only returns, but also volatility. While

this is going amplify the magnitude of raw returns, it will cancel out in

risk-adjusted measures of return.

First, we calculate the Sharpe ratio, by far the most popular metric for

this purpose. It can be computed as

Sharpe =
Rp − rf

σp

, (14)

where Rp is our portfolio return, rf is the risk free rate and σp is the standard

deviation of portfolio returns. As our risk-free rate, we will use 2% p.a. As

of June 2019, this is very close to the 10-year Treasury yield 1.

It is common practice to annualize daily or monthly Sharpe ratios using

a formula such as

Sharpeannual = Sharpein 1 period ∗
√
(# of periods in a year). (15)

This holds exactly only under restrictive assumptions (Lo (2003)), but

we will use it in all cases. An important thing to keep track of is that

a traditional market trading year has only 252 trading days, but crypto

markets never close, giving us 365 trading days. Upsampling from any sort

of Sharpe ratio is done analogically.

It is not immediately clear whether the Sharpe ratio is a good quality

ranking. It has been shown to be inadequate under certain assumptions,
1The yields are published by the United States Department of the Treasury

and can be found at https://www.treasury.gov/resource-center/data-chart-center/interest-

rates/Pages/TextView.aspx?data=yield.
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the consequence of which was development of other, more complex criteria

(Farinelli et al., 2008). Some of its problems include not properly accounting

for non-normal return distributions and considering both downward and

upward volatility equally.

It is also important to consider to what extent the Sharpe ratio makes

sense, particularly if we are looking to use it for comparison. It is known

that high-frequency trading strategies have high Sharpe ratios (Baron et al.,

2012), and double digit values are not uncommon.

Of course, in the context of low-frequency equity strategy returns, such

figures are absurdly high. To intuitively see why high-frequency trading

might not have a meaningful Sharpe ratio, let us consider an example. If

we imagined a strategy that essentially does just pure arbitrage across two

assets (in our setting, it might be the same cryptocurrency on two different

exchanges), its Sharpe ratio would be infinite by design, as there is no risk

involved.

The risk arbitrageurs face in practice is related to execution, since they

can not actually sell and buy in an infinitely small amount of time. Here,

a finite Sharpe ratio is essentially a deficiency of the trading procedure. In

contrast, a long-run equity strategy would not have such high ambitions.

It follows that we do not get much value out of trying to compare our

calculated Sharpe ratios to commonly cited thresholds of viability. In fact,

it is best to be careful with applying the same evaluation metrics across

different types of trading strategies, as was just seen. We will prefer to

make use of the Sharpe ratio for ranking of possible scenarios rather than

to focus on its absolute magnitude. We will soon see that even changing the

trading frequency markedly changes the risk-adjusted results.

Some of the Sharpe ratio’s fundamental deficiencies are supposed to be

corrected by more modern formulas. Hence we also compute metrics based

on lower partial moments or drawdown, namely the Sortino and Calmar

ratios, as well as Excess return on Value at Risk. However, those and other

measures of return were found to produce mostly equivalent rankings for all
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sorts of traditional assets by Eling (2008), though it is unknown if the same

holds here.

Indeed, if it was true that the rankings are pretty much the same irre-

spective of the chosen metric, there would be no need to worry about having

chosen the appropriate one since they would all be the same.

Let us shortly introduce the other, somewhat non-standard performance

ratios.

1. Calmar ratio tries to measure risk by maximum drawdown. The

ratio, when first devised by Young (1991), was meant to be calculated

over the last 36 months. Our time series is not that long and we have

to use the whole dataset. Using the entire history during computation

actually gives the so called MAR ratio. Of course, given the length of

our dataset, this distinction is moot.

The Calmar ratio can be computed as

Calmar =
CAGR

MaxDrawdown
, (16)

where CAGR is the compound annual growth rate and MaxDrawdown

is the biggest peak-to-trough decline.

2. Sortino ratio aims to only penalize downside risk rather than both

downside and upside volatility like the Sharpe ratio. First proposed by

Sortino and Meer (1991), it can be calculated as

Sortino =
Rp − rf

σd

, (17)

which is the same as the Sharpe ratio except for the denominator,

which is the standard deviation of negative returns only.

3. Value at Risk tries to estimate how much an investment might lose

at a given confidence level in a set period. Its definition is not con-

structive, leaving the specifics of calculation to practicioners.

Indeed, there are several common approaches to calculating Value at

Risk. Some of the most popular are the variance-covariance method,
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which forces an assumption of normality on returns and proceeds ana-

lytically, and the historical method, which just examines the empirical

distribution function.

The historical method has the advantage of being non-parametric,

which is why we will use it. Assuming normality would be too re-

strictive, and we will further examine to what extent would the normal

approximation be appropriate in Section 4.3.

Anyways, the historical method calculation goes along the lines of

V aR = position ∗ Q̂(c), (18)

where position is our investment, Q is the empirical quantile function

of returns and c is the confidence level (for example, 5%).

Then the Excess returns on VaR can be calculated easily:

Excess return on VaR =
Rp − rf
V aR

, (19)

where again Rp stands for realized portfolio return, rf is the risk-free

rate and V aR is as in (18).

To investigate the correlation between risk-adjusted measures, we will

turn to Spearman’s correlation coefficient, also called Spearman’s ρ. This

coefficient is analogous to the usual Pearson correlation coefficient. In fact,

it is the same up to the exception that it uses ranks rather than true values

of the data to calculate correlation.

This makes it effective for detecting not just relations that are linear, but

more generally monotonic. It thus detects a much wider class of functional

relationships between variables.

Hypothesis testing for ρ can be carried out with Fisher’s z-transformation.

It can be shown that

F (ρ) = arctanh(ρ)

has an approximately normal distribution with mean F (ρ) and standard

error 1√
n−3
.
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From there on, hypothesis testing can be carried out as usual for the

normal distribution. In particular, we can calculate z-score in order to ob-

tain approximate confidence intervals. Those can then be converted back to

confidence intervals for ρ by the inverse Fisher transformation. The result

might lack accuracy for small samples with significantly non-normal distri-

butions, however, for our needs, we will only make use of the theory outlined

above.

3.4 Sensitivity analysis

The implementations of pairs trading based on and including Gatev et al.

(2006) mostly do not attempt to find optimal hyperparameters for their

strategies. We will however try a small search among variations of the

previously discussed methods, which might be particularly important due

to the unusual nature of our data.

Furthermore, Bowen et al. (2010) have documented high sensitivity of

pairs trading profits to transaction costs and execution windows. Huck and

Afawubo (2015) explicitly compare distance and cointegration methods on

US stocks and discover that while the methodology first applied by Gatev

et al. (2006) yields negative returns, other hyperparameter choices can, par-

ticularly when using cointegration, yield great profits. It thus appears that

the conclusion of our analysis is contingent on being able to find the right

design of our trading strategy.

That said, we stress that the point of this thesis is not to find the opti-

mal hyperparameters for our implemented trading strategies, but rather to

establish whether such a hyperparameter search is a reasonable thing to do.

A proper optimization procedure would be far too demanding on computer

resources and it would contribute little, if at all, to the value of the thesis.

Since most research does not try to optimize the parameters, it follows that

even the robustness with respect to parameter mis-specification is not well

known.

Keeping this in mind, we will now describe how we are actually going to
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approach this issue in detail.

It is clear that virtually all parameters of the trading strategy can be

varied in effort to obtain the optimal result. Additionally, there is no intrinsic

reason for one set of hyperparameters to work not only across asset classes

(for example, across US equity and cryptocurrencies), but also within each

class (with different cryptocurrencies requiring different choices).

A basic list one might consider in trying to design an optimal trading

strategy could be:

• Spread threshold for pair opening

While the most common threshold for opening a position is at +-2

standard deviations of the spread, there is no reason to believe it might

have optimal properties, and is perhaps most valuable for convenience.

Indeed, according to Gatev et al. (2006), the value was chosen based

on discussion with practitioners.

• Length of training/testing period

In particular, a reasonable hypothesis to test might be that more im-

mature markets work better with shorter training/testing windows be-

cause the trading strategy gets outdated quicker, perhaps since we

expect more structural breaks, and thus more frequent retraining is

needed. However, there is a delicate balance to strike between fitting

to noise with short formation windows and inability to adapt with

longer windows.

Liu et al. (2017) calibrate its intra-day pairs trading model with a

formation period ranging from 30 to 100 days, but with just a single

day of trading period, which is highly successful. However, doing so

might turn out to be excessively computationally intensive, provided we

use a high number of tradable assets and/or high sampling frequency.

• More complicated trading strategy

For example, it might be advantageous to implement a stop-loss on

overly divergent pairs, both in terms of too high absolute values of the
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spread or perhaps too long a holding time before convergence. This

might help treat the problem of spuriously cointegrated pairs, and al-

lows us to cut losses quicker. Similarly, another possible adjustment

would be not to automatically close pairs at the end of the trading

period, perhaps conditioned on how close to the end was the position

opened.

• Various sampling frequency of prices

Structure of the market can get obscured by aggregation into bigger

chunks. We could also be interested in seasonality with respect to best

trading times of the day/month. Since crypto markets are global and

never close, we could perhaps try to find interesting patterns based on

the time of day, as different regions of the world are likely to be more

active during their local daytime.

• Further qualitative pre-selection of traded pairs

While cryptocurrencies lack the same fundamental properties as tra-

ditional securities, there is room for improvement in that regard. For

example, it should be possible to design a system of sectors (akin to tra-

ditional industry sectors) to group up the cryptocurrencies and focus

on finding suitable pairs within sectors. To illustrate the idea, it could

prove reasonable to put together all cryptocurrencies that primarily

focus on anonymity of transactions.

However, we will not concern ourselves with most of those and only

discuss a few in the empirical part. The options are limitless, and the list

above is hardly exhaustive.

Our first concern will be frequency of sampling. In fact, we have no in-

formation regarding intra-day behavior in cryptocurrency markets available

and it remains to be seen how it affects our strategies. We will also alter the

standard deviation trading trigger, as well as experiment with implementing

stop-loss on overly divergent pairs. The modified trading rules must also be

observed in tandem with things such as transaction costs.
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3.5 Transaction costs and other practical considerations

Most literature only roughly proxies transaction costs, even though they are

obviously vital to estimating viability of trading strategies. Their detailed

treatment is rather hard and modelling them properly would be far outside

the scope of this thesis. Instead, we will base our analysis of the costs

magnitude on the work of Do and Faff (2012).

The three key aspects of transaction costs are commissions, market im-

pact and short selling costs. Commissions are easy to find out since cryp-

tocurrency exchanges have explicitly listed maker/taker fees which also typ-

ically go down as a function of trading volume. For example, Binance has

a baseline of 10/10bps for maker/taker that goes down to 2/4bps at the

highest trading volume level.

Quantifying market impact is much harder and optimal real-world exe-

cution of large trades is a complicated issue. Do and Faff (2012) estimated

the market impact costs to be 20bps for US equities over a period centered

around the year 2000. We will use the same estimate, but we recognize that

it is likely inaccurate for our purposes. Nevertheless, it still provides a frame

of reference and gives us an estimate that has some grounding in reality.

In total, this gives us a one-way estimate of transaction costs of at most

30bps, which gets applied twice in case the pair closes at some point (in-

cluding at the end of the trading period).

We have yet to mention short selling costs. Those are particularly inter-

esting because most cryptocurrency exchanges do not actually support short

selling and if they do, it is usually limited to select few currencies. The data

we work with comes from Binance which does not support margin trading

whatsoever as of June 2019.

D’Avolio (2002) estimated US equities in 2000-2001 to have short loan

fees mostly below 1% per annum. However, Kraken, one of the leading

European exchanges dealing with fiat, charges a 1bp rollover fee every 4

hours. Other exchanges with margin support have comparable rates which

are all enormous compared to costs in traditional securities, making serious
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use of short-selling difficult.

That said, what we just described is just scratching the surface. In the

real world, less liquid securities would typically also have higher shorting

costs, which is a problem we will ignore entirely. Similarly, it might be rea-

sonable to model the transactions costs dynamically, perhaps making them

dependent on the trading volume of each pair or some proxy of liquidity, as

well as allowing to it to change over the course of time. Also, margin trad-

ing comes with the danger of getting margin called in case our investment

loses too much value, which might prove to be dangerous as cryptocurrencies

are assumed to be very volatile assets, and pairs trading implicitly relies on

leverage.

3.6 Introduction to cryptocurrencies

We will now try to not only briefly introduce the concept of cryptocurrencies

and related phenomena, but also outline some of the main challenges a real-

world application of pairs trading on such assets has to face that are not

present in traditional markets. Our exposition, particularly in the area of

technical details, is rather brief, but a more comprehensive introduction can

be found for example in Narayanan et al. (2016). To begin, we will talk

about Bitcoin, the first ever and still the most influential cryptocurrency.

Bitcoin is a decentralized cryptocurrency protocol first described in an

influential whitepaper by Nakamoto (2008). Its first implementation went

online in 2009. Roughly speaking, it aims to be a form of electronic cash that

is free of regulatory oversight (unlike traditional currencies issued by central

banks) by relying on decentralized consensus instead. Transactions are ver-

ified through cryptographical means which utilize computational power of

volunteers (called miners). In exchange for their processing power, miners

get Bitcoin as a reward for maintaining the network. The total amount of

Bitcoins is predetermined and mining becomes more difficult over time.

Bitcoin price is affected by multiple factors. Several of the most fre-

quently claimed price drivers were examined by Kristoufek (2015), who found
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that that fundamental factors such as usage in trade or money supply are

important, as well as interest in the form of search engine queries.

The usability of Bitcoin is limited due to multiple issues. There is a great

deal of uncertainty regarding its legal status and it is far from universally

accepted as a payment method, making the possibility of converting it to

fiat currencies crucial. There are numerous other cryptocurrencies, such as

Ethereum, Ripple or Litecoin, which have often popped up as responses to

certain technological limitations of the Bitcoin protocol, for example trans-

action speed or anonymity. Other cryptocurrencies are typically called alt-

coins. In the same vein, any cryptocurrency in general is also commonly

referred to as a coin.

There are specialized cryptocurrency exchanges which typically support

trading between Bitcoin and altcoins, but not necessarily fiat since dealing

with real-world money involves regulatory restrictions such as Know-Your-

Customer or Anti-Money-Laundering laws. Exchanges greatly differ in qual-

ities like number of tradable currencies, ease of deposits/withdrawals and

overall trustworthiness. Importantly, short-selling is a scarcely supported

feature frequently limited to only few cryptocurrencies.

Exchange quality was investigated by Moore and Christin (2013), who

examined 40 Bitcoin exchanges established prior to 2013, 18 of which have

closed, sometimes even wiping client funds, and he also showed that ex-

changes with more volume are less likely to close.

We have just described what amounts to barriers in free trade in the

crypto space. This causes price differences among individual exchanges.

Arbitrage is often limited by the technological and legal aspects discussed

above, making complete price correction difficult.

Indeed, Makarov and Schoar (2018) find that in the period from Dec

2017 to Feb 2018, arbitrage profits were over 1$ billion. At the same time,

arbitrage opportunities are primarily found across rather than within re-

gions and since spreads in crypto-to-crypto trading are far smaller than in

transactions involving fiat, it suggests that currency controls are one of the

35



main drivers of this discrepancy.

Interestingly, a lot of Bitcoin issues preventing mainstream usage, such

as unreliable regulatory framework or security difficulties, are caused by its

decentralized nature. Furthermore, highly influential groups like the largest

miners or developers of the core protocol hold great power in directing Bit-

coin’s development. For example, Eyal and Sirer (2018) shows how mining

is not secure against colliding groups, who do not even need to command

the conventionally assumed lower bound of 1/2 of total hashrate to make it

feasible for them to take control over the network.

As a consequence of the aforementioned problems, the price of Bitcoin

has seen great volatility over the course of its existence. To give an example,

Bitcoin in Jan 2017 was valued at roughly $1000 and it rose to around

$20 000 in December 2017, only to fall back to $6000 in February 2018.

The complete price history of BTC/USDT on Binance can be found in the

Appendix, Figure 5, which confirms that the dollar value varies wildly. The

total cryptocurrency market size evolved similarly, as Bitcoin tends to make

up around 50% of the total market cap, and reached a peak of $800M in Jan

2018.2

Technical problems are also much more common compared to traditional

exchanges (Chohan, 2018). Those and other significant political, legal or

technical risks are things we can not account for. This in turn is likely to

lead to overestimated risk-adjusted measures of return.

To sum up, while we can try to apply traditional trading methods on new

assets such as cryptocurrencies, the actual execution of short selling tends

to be literally impossible and there is a much higher degree of risk compared

to traditional markets.

2The market-wide statistics come from a free and widely used site

https://coinmarketcap.com/ which aggregates trading statistics from most existing exchanges.

No effort was made to verify these numbers.

36



4 Empirical results

As we touched upon earlier, two base scenarios will be considered, which we

will refer to as Scenarios 1 and 2, that are designed to mimic the methodology

applied by other studies.

The main difference between our two scenarios is the sampling frequency.

Scenario 1 uses daily data whereas Scenario 2 uses hourly data. Intra-day

pairs trading is only rarely explored in other literature. However, a recent

study by Liu et al. (2017) applied pairs trading to oil companies stocks at

5-minute intervals and achieved a remarkable 188% annualized return, albeit

with 5x leverage compared to our 2x. We thus hope to confirm that trading

on finer timescales is a promising avenue to explore.

One complication we have to face is that our dataset is actually pretty

small in the temporal dimension. Our dataset spans just the year 2018 and

since Binance was founded in late 2017, there is simply not much more data

to get.

This is aggravating because Gatev et al. (2006) uses a 12-month for-

mation period followed by a 6-month trading period. That is obviously

unreasonable for our data, meaning an adjustment is needed.

For daily data, we will instead use a 4-month formation followed by a

2-month trading period. Consecutive backtests will have the starting date

shifted by a month, meaning there will be multiple portfolios ”running at

once”.

For hourly data, we will further shorten the periods to 20-day forma-

tion followed by 10-day trading, with consecutive backtests starting 10 days

apart.

We aim to hit a balance between the length of formation and training

periods while also achieving certain robustness of results with respect to

timing of the backtest. Fundamentally, it is like conducting cross-validation

to limit the possibility of overfitting.

Of course, when using hourly data, this is somewhat easier to achieve.

The daily dataset has 365 observations per cryptocurrency, while the hourly
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dataset has 8760.

Other important parameters were already discussed earlier and we will

let them be common to both scenarios. In summary, transaction costs were

estimated to 30bps. Execution lag is 1 period. Positions are opened when

the normalized spread crosses 2 standard deviations.

A summary of both scenarions can be found in Table 2.

Table 2: Description of basic scenarios

Frequency Formation Trading Jump Tx cost Exec. lag Threshold

Daily 4 months 2 months 1 month 30bps 1 day 2 stds

Hourly 20 days 10 days 10 days 30bps 1 hour 2 stds

Furthermore, even though we report the annualized Sharpe ratio, it is

good to keep in mind that as per our discussion earlier, its magnitude by

itself is mostly meaningless, albeit we will still comment on it. We will

soon see for ourselves that changing the frequency of trading introduces a

disparity that prevents comparison.

4.1 Base scenarios

The results for our two base scenarios can be found in Table 3, which con-

tains values averaged over all the backtest periods. From now on, we will

refer to each scenario by the capitalized frequency and method, e.g. Daily

Distance. Unless specified otherwise, all statistics are calculated over the

trading period.

In some cases, we will recalculate a statistic to make it the same frequency

across all scenarios for comparability, for example the number of trades.

That said, it is time to focus on the results themselves.

The Distance method appears to be doing better in our sample overall.

In the Daily case, the monthly profit is negative at -0.01%, and a pair trades

on average only 0.469x per month, the lowest of all scenarios. Furthermore,

only 22.3% of trades are round-trip. The average length of a position is 31.7
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days (out of total 60 trading days). The performance is fairly poor risk-wise,

with an annualized Sharpe ratio of 0.17 (meaning the strategy is excessively

risky for the profit it generates) and maximum drawdown of 24.6%.

However, the Hourly Distance method is doing by far the best out of the

four backtests. The profit is very high at 2.87%, and the Sharpe ratio is 2.6

while the number of trades is higher than before at 3.29. Also, 27.9% of all

trades are now round-trip. Each position is open for about 5.5 out of 10

trading days. Interestingly, the percentage of winning trades is 0.7% lower

than in the Daily case despite the heightened profit.

Table 3: Results of base scenarios

Daily Hourly

Distance Cointegration Distance Cointegration

Monthly profit -0.01% -0.07% 2.87% -1.09%

Annualized Sharpe 0.17 -0.78 2.6 -2.8

Monthly number of trades 0.469 0.526 3.29 4.38

Round-trip trades 22.32% 21.90% 27.90% 36.37%

Length of position (days) 31.7 30.3 5.5 5.0

% of winning trades 46.25% 45.35% 45.52% 48.40%

Max. drawdown 24.64% 22.65% 13.33% 16.19%

Nominated pairs 20.0 17.4 20.0 20.0

Traded pairs 81.88% 86.33% 82.00% 92.43%

The Cointegration cases fare somewhat worse in comparison. On Daily

scale, the profit is negative at −0.07% monthly. The pairs trade on average

0.526x with 21.9% of round-trip trades, and the percentage of winning trades

is the lowest out of all 4 scenarios at just 45.3%. Unsurprisingly, the Sharpe

ratio is then also negative at −0.78.

Most interestingly, the behavior of Hourly Cointegration is quite specific.

The loss is far greater, giving −1.09% monthly loss, but its other metrics

are very positive in the sense that they are what we would hope to achieve.

It trades on average 4.38x per month, over 33% higher than the second
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highest and achieves an even more unusual 36.4% of round-trip trades. Fur-

thermore, even though it has the highest percentage of winning trades at

48.4%, it is still very unprofitable. It therefore appears that success in those

auxiliary metrics does not really translate to good returns.

In conclusion, we can say that the Hourly versions of our trading strate-

gies are at least sometimes performant while also having a higher Sharpe

Ratio and smaller drawdowns. The pairs converge much more often, sug-

gesting a lower proportion of spurious cointegrations, but this is not neces-

sarily reflected in the proportions of winning trades, nor in profit. Switching

to Hourly data helped the Distance method a lot, but Hourly Cointegration

is doing worse, meaning it is so far inconclusive with respect to whether it

is a good idea or not. But since both Daily backtests had negative profit, it

can still be considered an improvement.

Certain features of our results might be a bit tricky to interpret, so we

will now focus on discussing those at length.

We notice that the average length of position is a bit misleading. It is

always roughly half of the trading period in question, which is essentially

the effect of most pairs only closing automatically at the end of trading. If

we assume that pairs are equally likely to open during the whole trading

period, it then follows that the average holding period should be the halved

trading length.

Typically, only around 25% trades are round-trip. It would not be helpful

to calculate the average amount of time a pair is open for just the converged

pairs because their convergence times are likely to be on the lower end of

the real distribution of those times, and any produced estimate would be

biased downwards. We also are not able to tell whether a pair is taking long

to converge simply because the process is slow or because it is effectively

divergent.

Furthermore, it is not immediately clear why, despite the better auxiliary

metrics of the Hourly Cointegration method, the profit lags behind. One

possible explanation is that there are tighter and less volatile spreads among
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the pairs chosen by the Cointegration method. This causes more frequent

trading, but also limits the potential upside and results in more transaction

costs incurred. Even with convergence, the pairs can then fail to be profitable

due to other costs incurred.

On top of that, it also means that while the potential upside is small,

the downside is essentially unlimited. A single spuriously cointegrated pair

can thus have negative profit great enough in magnitude to offset many

converged pairs.

This demonstrates one more interesting aspect of pairs formation we did

not consider previously. In the presence of transaction costs, our goal is not

to just find pairs that are likely to converge back to long-run equilibrium. In

addition, the pair spread also has to be sufficiently volatile for the potential

upside to be big enough, in order to exceed costs of trading. Proper pairs

formation procedure thus also has to be a function of transaction costs.

The transaction costs we are working with here are one-off and get re-

alized when we open/close position. However, short-selling fees are charged

per unit of time. If we were to take those into account, then we would also

have to try to minimize the amount of time during which our position is

open. It could be said that we have to estimate the expected profit of a pair

from the get-go to see if its worth trading, and this condition is dependent

on exogenous factors.

It is thus unwise to consider pairs formation rules in isolation, and they

should instead be tailored to the expected transaction costs and other real-

life considerations.

Lastly, we mention the average nominated and traded pairs. The Dis-

tance cases nominate top 20 pairs everytime by design, but Cointegration

has a variable amount, although it is quite close to 20 on average anyways.

Cointegration has in general a higher percentage of traded pairs than

Distance, which is what we would expect, given that it also has a higher

number of monthly trades.

Let us now visualize the behavior of a pair during the trading period.
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Specifically, we will consider the Daily Distance backtest with formation

from 2018/01/01 to 2018/05/01 and trading period from 2018/05/01 to

2018/07/01. From that data, the pair made of WAVES and XRP has its

normalized spread and cumulative profit shown in Figure 2, with the dot-

ted lines marking the 2 standard deviations threshold for opening/closing

positions.

The pair goes Long on 2018/05/03 and successfully reverts past zero,

closing the position on 2018/05/31, by which it has accumulated 21.3%

profit. It then does not trade again during the observed period.

We notice that the shape of the profit line matches the spread line. The

exactness of this behavior is due to our simplifying assumptions, namely the

non-existence of short-selling loan fees (which would gradually be decreasing

our profit while the position is open) and no return on idle capital (which

implies the flatness of the profit curve once the position is closed).

Figure 2: Exemplary pair during trading period

Note: Both lines use different y axes. The legend shows to which side the line

belongs.
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Next, we investigate whether the ranking of pairs based on risk-adjusted

measures changes with respect to the chosen measure. If it did, we would

have to be careful about choosing the right metric, especially since our con-

clusions could be adjusted simply by choosing a convenient risk-adjusted

measure.

To this end, we use Spearman’s correlation coefficient and also calculate

an approximate 5% confidence interval, as explained in Section 3.3.

As can be seen in Table 4, the correlation appears to be very strong. It

is at most slightly lower than what Eling (2008) reported on the correlation

between different US asset classes, where he found almost exclusive above

0.95 correlation coefficient with sample sizes greater than ours across many

different classes.

That said, we reach the same conclusions. All the common alternatives

to Sharpe ratio tends to produce very similar rankings, particularly when

considering the Sortino and Excess returns on VaR metrics. The Calmar

ratio appears to be somewhat less correlated with the others, but it is most

likely an issue of the length of our dataset, meaning the ratio can not be

properly computed.

To illustrate, in order to calculate the Calmar ratio, we had to not only

annualize the return since our trading period is nowhere a year long, but also

take the maximum drawdown originally meant to be over a year just over

the trading period. We have shown earlier how annualizing Sharpe ratios

might produce dubious results due to unmet assumptions, and it likely is

also the case here, at least partly.

For some pairs, it was not even possible to calculate all the ratios. On

some occasions, a pair would have only positive returns (typically when the

position was open for only a few periods), meaning there was literally no

drawdown. As an example, the Sortino ratio would be undefined in that

case.

Many of the other metrics used by Eling (2008) would be similarly un-

defined. As it is now, we just skip the pairs where not all our used metrics
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are defined and calculate the rankings without them.

Table 4: Correlations between different risk-adjusted measures

Distance Cointegration

Sharpe Sortino Calmar VaR Sharpe Sortino Calmar VaR

Sharpe 1.0 0.98 0.92 0.98 1.0 0.98 0.94 0.99

Sortino 0.98 1.0 0.92 0.99 0.98 1.0 0.95 0.99

Calmar 0.92 0.92 1.0 0.93 0.94 0.95 1.0 0.95

VaR 0.98 0.99 0.93 1.0 0.99 0.99 0.95 1.0

The approximate 5% confidence intervals can be found in the Appendix,

Table 12. It further confirms that the correlation is likely to be very strong,

and we can conclude that the correlations are above 0.9 at a commonly

accepted level of confidence.

To conclude, let us investigate the degree of pairs formation similarity

among the two methods.

In our backtest, the distance and cointegration method have average over-

lap of chosen pairs of about 25%. This contrasts with the results in Huck

and Afawubo (2015) who examined the SP 500 with a vaguely similar back-

test design, but far smaller overlap (frequently below 1% with a maximum

of 13%).

Of course, since we consider a much smaller sample of available cryp-

tocurrencies than the number of US stocks, there are far less possible pairs

in total, meaning a higher overlap is expected. Despite that, the reality of

those facts is still very worrying by itself. Since both of our methods are

looking for pairs with the same characteristics, the inconsistency between

them is troubling.

We have already discussed the multiple comparisons problem back in

Section 3.2. In that light, one possible explanation for the just observed

situation would be that despite our best efforts, the majority of our pairings

are essentially spurious.

On top of that, we also recognize that even if a pair is cointegrated
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in the formation period, it might not be anymore in the trading period

simply because the generating process is not stationary (indicating there

was something like a structural break inbetween).

Ideally, since there are the same cryptocurrencies traded over the whole

dataset, we would like to have pair selection consistent both across methods

and across time. Clearly, those conditions are not met.

However, financial data is known to have low signal-to-noise ratios, so

having difficulties in finding the good pairs is to be expected. It is then not

too surprising that our approximately market/dollar-neutral trading strat-

egy has results such as nigh zero expected return with about 50% profitable

trades.

Since most of our ”cointegrated” pairs are likely not actually cointe-

grated, our trading results look a bit like as if we just went long/short on

random cryptocurrencies. Even if our pairs selection procedure is able to do

slightly better than random pairings, we still have to overcome hurdles such

as transaction costs, making it even harder to make consistent profit.

Table 5: Identical chosen pairs between methods

daily hourly

% of identical pairs 24.38% 22.86%

4.2 Other scenarios

We will now look at several what-if scenarios, as discussed in Section 3.4. We

hope this will shed some more on light on the performance of our strategy.

Most of the metrics apart from profit/Sharpe ratio will stay the same or

nearly the same as in the base scenarios. For example, the number of trades

does not change due to execution lag unless the trade would be initiated so

close to the end of the trading period that the position does not actually get

the chance to open in time. We drop the statistics on average and nominated

pairs completely since they never change.
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First of all, let us see what happens when we have zero execution lag,

meaning the position is opened/closed in the same period that the spread

crosses our threshold. We remind that the lag was meant to approximate

the bid-ask spread.

As can be seen in Table 6, the improvement in performance for every

of our baseline strategies is remarkable. Profit increased across the board,

and not a single case is now unprofitable. The Sharpe ratios are also greatly

improved. The Hourly Distance scores a Sharpe of 6.6 while also being by

far the most profitable, having a 6.08% monthly profit.

The Hourly Cointegration also managed to get 51% of winning trades,

the first time this metric went above 50%, and while it is over 4% more than

for Hourly Distance, the profit again lags far behind at 2.34%.

If the lag indeed approximated the bid-ask spread well, this would imply

that the spread is very significant, as our returns are now way better. Taking

it as a proxy for liquidity, it would also imply that liquidity is low.

Table 6: Results with no execution lag

Daily Hourly

Distance Cointegration Distance Cointegration

Monthly profit 0.69% 0.46% 6.08% 2.34%

Monthly profit (committed) 0.55% 0.47% 4.81% 1.15%

Annualized Sharpe 0.85 -0.23 6.6 2.4

Monthly number of trades 0.472 0.526 3.29 4.39

Round-trip trades 22.74% 22.45% 27.82% 36.14%

Length of position (days) 32.5 31.0 5.5 5.0

% of winning trades 45.94% 43.14% 46.95% 51.24%

Max. drawdown 24.34% 22.56% 13.25% 15.97%

We offer one more alternative explanation for the execution lag effect,

especially compared to other papers like Gatev et al. (2006), who found the

effect to be in the order of going from 1.44% to 0.9% in monthly profit.

While those results are akin to ours in the Daily case, the Hourly scenarios
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get much larger performance gains. The importance of undelayed execution

could, for example, be explained by the volatility of crypto pairs, causing

faster reversion speeds, meaning a one-period wait here is a ”longer” waiting

time than in US equities. Of course, one might also argue that since stock

markets are supposedly more mature and efficient, they should be reversing

faster, and the issue is not entirely clear.

Lastly, we point out that we also reported the return on committed

capital rather than just on employed capital, as was discussed in Section 3.3.

Not doing so would be somewhat unnatural since assuming no execution lag

while also not having to have capital ready on standby seems far-fetched.

It appears reasonable that if we wish to have no trade delay, we must have

capital prepared ahead of time.

This introduces a trade-off between quick and slow execution. But as

Table 6 shows, our conclusions remain pretty much unchanged. The profit

is somewhat lower when calculating return on committed capital, but still far

higher than it was in the base scenarios. Notably, Daily Cointegration even

has a higher profit than usual, which can happen due to different trading

activity of pairs in each backtest, as going from employed to committed

capital is essentially a reweighting of the results.

We take this occasion to discuss one other related and similarly subtle

issue that permeates our whole analysis. If we use only the employed capital

measure, the capital base relative to which we compute returns will be dif-

ferent for each backtest, since the number of actually traded pairs will vary.

Furthermore, while the Distance method always nominates top 20 pairs, the

Cointegration method also has variable amount of nominations. Then, once

we try to average the returns across all backtests, we weight those equally,

even though each of them considers a different amount of capital.

This means we have a problem with capital deployment. Posting a 5%

return over the trading period is quite different when we trade three pairs

total compared to when we trade twenty five pairs. This could be amended

for the Distance method if we used the committed capital measure everytime,
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but even that would not suffice for the Cointegration method due to non-

constant amount of nominated pairs. Consequently, we suggest additional

caution while interpreting the monthly profit figures.

Next, we test the importance of transaction costs. Table 13 in the Ap-

pendix shows the situation with no transaction costs.

Disregarding transaction costs has an effect quite similar to not having

any execution lag. Again, there is a dramatic improvement in performance

for every strategy. Every pair now again has positive profit, although the

Daily cases are still very moderate in that regard, scoring returns of around

0.3%. Hourly Distance is again dominant in terms of monthly profit at

5.29%, followed by the Hourly Cointegration at 1.77%.

It is also quite interesting that the Daily scenarios were helped far less

by ignoring transaction costs than the Hourly ones. This can be explained

by the difference in number of trades, since Hourly scenarios trade over 6x

more often than the Daily ones.

The results are best seen in contrast with the base scenarios. In the base

cases, only the Hourly Distance was profitable and even the returns of this

scenario doubled after leaving out transaction costs.

We remind that our transaction costs are 30bps, which is on the lower

side of estimates proposed in literature. This shows that pairs trading is

very sensitive to transaction costs, and we did not even take into account

the short-selling fees.

One thing we have not tried yet is to alter the trigger threshold, and also

introduce a stop-loss. Let us first see what effect it has on Daily scenarios

in Table 7.

The Distance method is discussed first. There are a couple interesting

patterns here in both dimensions of the table. First, we can see that the

highest trigger threshold generally wins out in raw profit followed by the

smallest threshold. Also, it appears that higher stop-loss produces better

results.

However, it is necessary to be careful, as almost all scenarios have neg-
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ative profit and if the higher threshold scenarios trade less often, they es-

sentially get to commit less mistakes, and having less negative profit is not

what we aim for, ultimately. It is noteworthy that the highest threshold is

also the only one to ever achieve positive profit.

The Sharpe ratios interpretation is also somewhat tricky. For negative

ratios, getting closer to zero can be achieved either by increasing raw returns

or by increasing volatility. However, it is quite unlikely that the changes

made to the model parametrization here would increase volatility, as they

actively limit the variance, and we have already noticed that raw returns

tend to increase with respect to both the opening threshold and stop-loss.

Therefore, we conclude that the improvement in Sharpe ratios is a positive

sign.

Table 7: Various Daily stop-loss and opening triggers

Distance Cointegration

Threshold Threshold

1 2 3 1 2 3

Stop-loss 2 Monthly profit -0.50% None None -0.37% None None

Annualized Sharpe -1.3 None None -0.82 None None

3 Monthly profit -1.22% -1.92% None -1.18% -1.48% None

Annualized Sharpe -1.1 -1.9 None -1.5 -1.9 None

4 Monthly profit -1.12% -1.74% -0.28% -0.23% -0.69% 0.75%

Annualized Sharpe -1.2 -1.6 -0.32 -0.63 -0.98 0.61

5 Monthly profit -0.33% -1.10% 0.04% -0.32% -0.86% -0.41%

Annualized Sharpe -0.21 -0.93 0.33 -0.78 -1.3 -0.65

6 Monthly profit -0.00% -0.79% 1.04% -0.07% -0.36% -0.10%

Annualized Sharpe 0.29 -0.53 1.3 -0.68 -0.9 -0.54

Note: if the threshold was equal or smaller than stop-loss, the results would not

make any sense, so we mark them as None

The Cointegration method fares a bit differently, with results slightly

less clear-cut. This would suggest that the parametrization of each method

needs to proceed differently. This further builds up on the statistics we saw
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earlier describing the percentage of round-trip trades and others, where we

saw that the two methods behave quite differently. That said, we should be

careful here as comparing values across such a small amount of options as

we have here is not very robust.

Overall however, we notice that the profits of the base case scenarios

seen in Table 3 are somewhat hard to beat. Taking a closer look at the

results with threshold set to 2 that matches our base scenarios, we see that

introducing a stop-loss actually lowers our performance significantly across

both methods, and the improvement from increasing the stop-loss trigger

can perhaps be interpreted as simply getting it out of the way.

We also notice that the scenarios with threshold set to 2 are most of the

time the least performant out of the three possible thresholds, regardless

of stop-loss. This might indicate that the baseline strategy formulation we

adopted from other literature is highly suboptimal in our case.

While we first assumed that once the normalized spread gets above 2 in

absolute magnitude, it is bound to reverse, we now see that if it gets as high

as 6, it is still not a valid reason to believe that it has diverged permanently.

It thus appears that at the very least, a reasonable stop-loss has to be set

very high.

We offer one more view on this matter. If a pair is actually cointegrated

and we stop-loss it, it is a mistake. But if it is not cointegrated, then the

spread is equally likely to go up and down no matter its value. Stop-loss in

this case would be neutral, which means that overall, stop-lossing is at best

neutral and on average harmful.

Analogous tables for the Hourly scenarios are in the Appendix, Table

15. This time, the lowest threshold is the best, regardless of stop-loss or the

method in question, and we again see a clear uptrend in performance as we

increase the stop-loss trigger. The 2 standard deviations threshold is still

the worst, as in the Daily table.

In fact, most of our previous comments still apply. In particular, intro-

ducing stop-loss appears to do more harm than good. Just going off our
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results, it appears that the way to go is a threshold of 1 with a high stop-

loss trigger. Generally, the Cointegration method has a particularly poor

performance, with its best result at −0.79%, while Distance has multiple

cases of profit above 2%, and even up to 5%.

Nonetheless, given the wealth of different reactions to parameter adjust-

ments across our scenarios, attempting to optimize through a grid-search as

we did delivers unclear results and might be just a case of data snooping.

Still, our analysis showed some promise and a more elaborate optimiza-

tion scheme might prove to be more helpful. Given the amount of possibili-

ties we outlined during our discussion on sensitivity to parametrization, our

results are just scratching the surface and we have more or less shown that

the problem does not have an immediate, high-level solution.
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4.3 Distribution of returns

Now, let us briefly discuss the distribution of returns. We have already

mentioned that normality of returns is important in many respects - be it

for metrics like Sharpe Ratio or hypothesis testing. Likewise, parametric

statistical procedures often use some assumption of normality which might

be amendable by large sample sizes via the central limit theorem, but ”large”

depends on context.

Normality can be assessed by a number of tests based on many different

characteristics, ranging from skewness/kurtosis analysis to comparing em-

pirical distribution functions. Popular options include the Jarque-Bera and

Shapiro-Wilks tests, as well as many other alternatives.

However, such tests lack power in small samples and are sensitive to even

small deviations from normality in large samples (Ghasemi and Zahediasl,

2012). Of course, CLT assures that at large sample sizes, the non-normality

is not severe in most use cases and hypothesis testing can be carried out by

asymptotic arguments, which is what we will ultimately rely on here.

First of all, let us see basic descriptive statistics of returns in Table 8.

The table lists values computed from all backtesting periods across all pairs.

There are several quantities of interest. We notice the great volatility,

seen in multiple metrics. The standard deviation is high, but what is really

telling is the kurtosis. Clearly, the returns are very strongly leptokurtic,

indicating fat tails compared to the normal distribution and a high number

of ”outliers”.

Indeed, this is further evidenced by the range - the absolute values of

both minimum and maximum are very high as well. It is possible for a pair

to lose or gain half its invested value within an hour.

However, neither strategy quite achieves a percentage of positive returns

above 50%. In spite of this, the mean return tends to be slightly above zero.

Likewise, the skewness is negative for Daily data, indicating that the left

(negative) tail is longer. However, the situation is reversed for Hourly data.
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The t-statistic for testing

H0 : mean = 0

is in favor of not rejecting the null hypothesis. No configuration has mean

return significantly different from zero at the 5% level. Our sample sizes are

quite high in all cases (roughly 5000 for Daily and 100 000 for Hourly), so

we need not worry about the underlying data distribution being non-normal

too much. But as the volatility of returns is just too high, the t-test does

not allow for rejecting any null hypotheses.

Table 8: Descriptive statistics of return distributions

Daily Hourly

Distance Cointegration Distance Cointegration

Mean -0.00007 0.00035 0.00005 -0.00003

Std 0.056 0.0537 0.0148 0.0174

Max 0.474 0.395 0.368 0.663

Min -0.713 -0.673 -0.409 -0.364

Jarque-Bera p-value 0.0 0.0 0.0 0.0

Skewness -1.91 -1.82 -0.0193 0.789

Kurtosis 27.7 29.5 51.9 68.9

Positive 47.24% 47.26% 48.78% 48.35%

t-stat -0.086 0.44 1.1 -0.47

The Jarque-Bera test rejects normality at any common significance level

with the p-value extremely close to zero. To further emphasize the breach of

normality, Figure 4 in the Appendix displays kernel density estimations (us-

ing the Gaussian kernel) compared to the normal distribution with location

and scale parameters estimated from the data in each case.

The graphical representation confirms our interpretation of higher mo-

ments. The return distribution displays a very strong peak near the mean,

but has a significant number of extreme outliers compared to the normal

distribution that is more spread out. The jaggedness of the KDEs is likely
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attributable to heavy tails making rule-of-thumb bin width selection difficult

(Buch-larsen et al., 2005).

We also include a Q-Q plot in the Appendix, Figure 6 to compare the

empirical quantiles to those of a normal distribution. The ”S” shape of our

data clearly confirms the heavier tails.

Furthermore, there is a noticeable difference in slopes between Hourly

and Daily data, both in Figure 4 and Figure 6. This is probably caused by

the different sampling frequency since the Daily returns are a sum of the

Hourly ones. This causes greater dispersion away from 0, as well as the

greater range.

Additionally, for the Hourly base scenarios, let us also group the results

by hour. Summary statistics can be found in the Appendix, Table 14. Judg-

ing off that, there appears to be a noticeable difference between the mean

returns grouped by hour of day (all hours are in UTC).

While the standard deviations of returns are relatively high, we also

include a t-statistic for testing against the null hypothesis of zero mean. We

are ultimately able to reject that null hypothesis in multiple cases, as our

number of observations is also quite high, almost 4000 for every hour. It

follows that we would also likely reject the null hypothesis of equality among

expected returns per hour, as they tend to be more distant from each other

than from zero.

A visualization can be found in Figure 3. Indeed, even by visual in-

spection, the distribution appears to be somewhat consistent across the two

methods, which is mildly supportive of the difference being real and com-

mon to both methods. The Distance and Cointegration lines have a Pearson

correlation coefficient of 0.42.

Based on that analysis, we might try to hypothesize influence of some

exogenous factors. For example, it appears that the afternoon, and particu-

larly 2-4pm, produces significant positive profits. That said, to what extent

this difference is meaningful and whether it is actually caused by different

geographies being active is far beyond the scope of this thesis.
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Figure 3: Average returns per hour of day

We will however note that analogous effects in traditional equities are

not at all uncommon. Some prominent examples include the weekend effect

(French, 1980) or the January effect (Thaler, 1987). Keeping those auxiliary

results in mind, what we found out is all the more suspect and a more

detailed investigation is a promising topic left for further research.
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Conclusion

The point of this thesis was to investigate the applicability of pairs trading,

a technique developed primarily for equity markets, to cryptocurrencies.

We took the two most common approaches, the distance and cointegration

methods, and backtested them on a year of data from Binance, one of the

largest exchanges at the time of writing.

In many ways, our results confirm the more recent literature on the topic.

The original strategy first described by Gatev et al. (1999) is not profitable,

although certain combinations of hyperparameters can be found that do

much better.

In particular, the results are very sensitive to transaction costs and execu-

tion windows. Even modest transaction costs hurt our strategies immensely,

and so does the usage of a one period execution lag. It also appears that

the distance method does much better overall, and is able to achieve good

positive profits, whereas the cointegration method only rarely has returns

above zero.

However, in ideal conditions, all the strategies perform well. Through

further fine-tuning, it might be possible to consistently profit even in spite

of transaction costs. The extent to which the execution lag is a faithful

representative of the bid-ask spread, and subsequently liquidity, is much

harder to answer.

On the other hand, we were able to confirm that all the most commonly

used risk-adjusted measure of returns are essentially equivalent, making the

choice among them inconsequential.

It also appears to be somewhat advantageous to use more granular time

series. Trading based on hourly data tends to outperform the daily case in

risk-adjusted metrics, and also in raw returns. However, we have pointed

out that Sharpe ratio does not generalize well across different classes of

strategies, and it might be more prudent to say that hourly data amplifies

the magnitude of returns.

We observe that with daily data, all our strategies have approximately
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zero profit. But if we use hourly data, the distance method becomes highly

profitable, although the cointegration method’s loss is slightly magnified. So

while this is technically an improvement as we managed to get at least some

profitable scenario, it is not ideal.

We also uncovered several deficiencies present in currently available liter-

ature that are fit for further research. Importantly, robustness of the results

is mostly ignored and risk management is neglected. This extends to not

only explicit hyperparameters like spread thresholds or lengths of periods,

but also, particularly in the cointegration method, the setup of statistical

tests. Even in the presence of several alternatives, the difference amongst

them is hardly ever explored.

Another unaccounted for uncertainty stems from applying results coming

from traditional markets to cryptocurrencies. Given that our goal was to

determine the difference between crypto and standard markets, it is without

doubt inappropriately restrictive to base our approximations of transaction

costs on research studying US equities. However, literature on the same

matters in the crypto space is lacking.

Moreover, we were unable to carry over some concepts such as pairs

pre-selection based on sector, since there are no established sectors in cryp-

tocurrencies. However, sensible sector design might be invented, based on

either qualitative analysis or unsupervised cluster analysis.

To sum up, while pairs trading appears to be viable, the lack of research

on factors exogenous to the trading strategy such as transaction costs or

execution difficulties explicitly done on cryptocurrencies means that our re-

sults do not quite fulfill our original ambitions to assess the viability of pairs

trading in cryptocurrencies.

In ideal conditions, we have shown that our strategies are highly prof-

itable. However, we have also seen how quickly can the tables turn due to

seemingly small real-life obstacles, and their precise determination is there-

fore most vital. That said, doing so is left for further research.
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Appendix A - Tables

Table 9: Cryptocurrencies on Binance

ADA, ADX, AE, AGI, AION, AMB, APPC, ARDR, ARK, ARN, AST, BAT,

BCC, BCD, BCHABC, BCHSV, BCN, BCPT, BLZ, BNB, BNT, BQX, BRD,

BTCU, BTG, BTS, BTT, CDT, CHAT, CLOAK, CMT, CND, CVC, DASH,

DATA, DCR, DENT, DGD, DLT, DNT, DOCK, EDO, ELF, ENG, ENJ, EOS,

ETC, ETH, ETHU, EVX, FET, FUEL, FUN, GAS, GNT, GO, GRS, GTO, GVT,

GXS, HC, HOT, HSR, ICN, ICX, INS, IOST, IOTA, IOTX, KEY, KMD, KNC,

LEND, LINK, LOOM, LRC, LSK, LTC, LUN, MANA, MCO, MDA, MFT, MITH,

MOD, MTH, MTL, NANO, NAS, NAV, NCASH, NEBL, NEO, NPXS, NULS,

NXS, OAX, OMG, ONG, ONT, OST, PAX, PHX, PIVX, POA, POE, POLY,

POWR, PPT, QKC, QLC, QSP, QTUM, RCN, RDN, REN, REP, REQ, RLC,

RPX, RVN, SALT, SC, SKY, SNGLS, SNM, SNT, STEEM, STORJ, STORM,

STRAT, SUB, SYS, THETA, TNB, TNT, TRIG, TRX, TUSD, USDC, VEN,

VET, VIA, VIB, VIBE, WABI, WAN, WAVES, WINGS, WPR, WTC, XEM,

XLM, XMR, XRP, XVG, XZC, YOYO, ZEC, ZEN, ZIL, ZRX

Table 10: Cryptocurrencies left after preprocessing

ADA, ARN, BNB, DASH, ENJ, EOS, ETC, ETH, IOTA, LINK, LTC, MDA,

MTL, NEO, OMG, QTUM, TRX, WAVES, WTC, XMR, XRP, XVG, ZRX

Table 11: Correlations between risk-adjusted measures for Hourly data

Distance Coint

Sharpe Sortino Calmar VaR Sharpe Sortino Calmar VaR

Sharpe 1.0 0.99 0.9 0.99 1.0 0.99 0.86 0.99

Sortino 0.99 1.0 0.91 0.99 0.99 1.0 0.86 0.99

Calmar 0.9 0.91 1.0 0.9 0.86 0.86 1.0 0.86

VaR 0.99 0.99 0.9 1.0 0.99 0.99 0.86 1.0
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Table 12: 5% confidence intervals for Spearman correlations

Sharpe Sortino Calmar VaR

Daily Distance Sharpe [1.0, 1.0] [0.98, 0.99] [0.89, 0.94] [0.98, 0.99]

Sortino [0.98, 0.99] [1.0, 1.0] [0.89, 0.94] [0.98, 0.99]

Calmar [0.89, 0.94] [0.89, 0.94] [1.0, 1.0] [0.9, 0.95]

VaR [0.98, 0.99] [0.98, 0.99] [0.9, 0.95] [1.0, 1.0]

Coint Sharpe [1.0, 1.0] [0.97, 0.98] [0.91, 0.96] [0.98, 0.99]

Sortino [0.97, 0.98] [1.0, 1.0] [0.93, 0.96] [0.98, 0.99]

Calmar [0.91, 0.96] [0.93, 0.96] [1.0, 1.0] [0.93, 0.97]

VaR [0.98, 0.99] [0.98, 0.99] [0.93, 0.97] [1.0, 1.0]

Hourly Distance Sharpe [1.0, 1.0] [0.99, 0.99] [0.88, 0.92] [0.99, 0.99]

Sortino [0.99, 0.99] [1.0, 1.0] [0.89, 0.92] [0.99, 0.99]

Calmar [0.88, 0.92] [0.89, 0.92] [1.0, 1.0] [0.89, 0.92]

VaR [0.99, 0.99] [0.99, 0.99] [0.89, 0.92] [1.0, 1.0]

Coint Sharpe [1.0, 1.0] [0.99, 0.99] [0.84, 0.88] [0.99, 0.99]

Sortino [0.99, 0.99] [1.0, 1.0] [0.84, 0.88] [0.99, 0.99]

Calmar [0.84, 0.88] [0.84, 0.88] [1.0, 1.0] [0.83, 0.88]

VaR [0.99, 0.99] [0.99, 0.99] [0.83, 0.88] [1.0, 1.0]

Table 13: Results with no transaction costs

Daily Hourly

Distance Cointegration Distance Cointegration

Monthly profit 0.31% 0.26% 5.29% 1.77%

Annualized Sharpe 0.5 -0.42 6.5 1.5

Monthly number of trades 0.469 0.526 3.29 4.38

Round-trip trades 22.32% 21.90% 27.90% 36.37%

Length of position (days) 31.7 30.3 5.5 5.0

% of winning trades 46.25% 46.66% 47.21% 50.58%

Max. drawdown 24.47% 22.52% 13.21% 16.02%
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Table 14: Summary statistics for returns by hour of day (UTC)

Distance Cointegration

Returns distribution Returns distribution

Mean Count Std T-stat Mean Count Std T-stat

Hour

0 0.00079 3886 0.017 3 0.00041 4513 0.024 1.2

1 -0.00018 4154 0.015 -0.81 -0.00091 4758 0.017 -3.8

2 0.00017 3496 0.014 0.72 -0.00071 4102 0.018 -2.6

3 -0.00032 3510 0.014 -1.4 -0.00024 4142 0.017 -0.91

4 -0.00012 3542 0.014 -0.52 0.00031 4162 0.017 1.2

5 -0.00020 3561 0.014 -0.86 0.00001 4183 0.016 0.04

6 0.00033 3593 0.013 1.5 -0.00043 4219 0.015 -1.9

7 -0.00037 3609 0.013 -1.7 -0.00013 4230 0.016 -0.52

8 0.00016 3627 0.014 0.69 0.00022 4238 0.017 0.85

9 0.00055 3646 0.013 2.6 0.00016 4272 0.016 0.68

10 0.00002 3667 0.014 0.086 -0.00039 4300 0.017 -1.5

11 -0.00011 3682 0.013 -0.52 -0.00016 4326 0.017 -0.65

12 0.00014 3701 0.014 0.57 -0.00045 4333 0.018 -1.6

13 -0.00044 3715 0.016 -1.7 0.00066 4367 0.019 2.3

14 0.00043 3730 0.016 1.6 0.00045 4384 0.018 1.6

15 0.00067 3744 0.018 2.3 0.00065 4396 0.02 2.2

16 0.00028 3772 0.016 1.1 0.00001 4428 0.018 0.051

17 0.00029 3792 0.016 1.1 0.00011 4455 0.017 0.41

18 0.00026 3800 0.018 0.9 0.00028 4456 0.015 1.2

19 -0.00025 3808 0.016 -0.96 -0.00045 4471 0.021 -1.5

20 0.00026 3824 0.016 0.99 0.00063 4486 0.017 2.5

21 -0.00003 3840 0.015 -0.14 0.00054 4490 0.016 2.2

22 -0.00045 3862 0.013 -2.1 -0.00084 4512 0.014 -3.9

23 -0.00058 3882 0.013 -2.7 -0.00033 4515 0.016 -1.4

Note: A corresponding Daily table does not exist, as it does not differentiate

among hours of day
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Table 15: Various Hourly stop-loss and opening triggers

Distance Cointegration

Threshold Threshold

1 2 3 1 2 3

Stop-loss 2 Monthly profit -5.99% None None -5.93% None None

Annualized Sharpe -4.5 None None -6.8 None None

3 Monthly profit 1.45% -2.24% None -1.53% -4.02% None

Annualized Sharpe -0.031 -5.7 None -4.0 -8.6 None

4 Monthly profit 2.11% -0.70% 0.04% -1.42% -3.29% -2.93%

Annualized Sharpe 1.8 -2.6 -0.61 -3.8 -7.4 -4.8

5 Monthly profit 3.24% 0.45% 1.16% -0.79% -2.08% -1.34%

Annualized Sharpe 3.6 -0.46 0.71 -3.5 -6.0 -2.1

6 Monthly profit 4.58% 1.86% 2.32% -0.79% -2.45% -1.83%

Annualized Sharpe 5.6 1.2 2.3 -3.7 -6.3 -2.2
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Appendix B - Figures

Figure 4: Normal and KDE approximations of return distributions

Figure 5: Price history of BTC/USDT on Binance
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Figure 6: Q-Q plot of return distribution
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