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are complaining about the food, or the ambience, or any other aspect of their
establishment, etc.

Despite the lexical information being crucial for the task, syntactic structures have
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Introduction
Expressing and understanding emotions is one of the basic human cognitive abil-
ities. Emotions are neither rational nor objective, yet they still drive our lives.
Aside from non-verbal means of expressing emotions, such as facial expression,
tone, intonation etc., verbal communication is one of the main tool to express emo-
tional meaning. There is no clear definition of what emotional meaning means,
and this notion varies from discipline to discipline. In general, emotional meaning
can be anything that is not “an objective description of any event, situation or
mental state” [Veselovská, 2017, p. 2].

It is clear that understanding subjective information in the textual data can be
used for many practical applications, such as predicting market trends, criminal
investigation, etc. The abundance of data in Information Age urges for automa-
tion of the data processing and analysis. Unfortunately, a large portion of the
data is unstructured—not organized in a way that is easy to process. Due to the
lack of predefined structure, ambiguities arise.

Aspect-Based Sentiment Analysis
Ambiguities from unstructured textual data are the focus of computational lin-
guistics. In particular, sentiment analysis is concerned with extracting subjective
information, such as emotion or opinion of the author, which is why it is also
referred to as opinion mining. In general, the two main categories of tasks of
sentiment analysis are polarity detection and subjectivity detection. Subjectiv-
ity detection aims to decide whether the information is factual or non-factual.
On the other hand polarity detection classified the information, most commonly
as positive or negative. This can be done at multiple levels, such as phrases,
sentences, documents, etc.

In this thesis, we are concerned with identifying the target (source) of the
opinion, i.e. the objects or topics towards which the opinion is expressed. This
identification can be also done on various levels. For a high-level object of eval-
uation, aspects of the target can be also identified, which is referred to as aspect
based sentiment analysis (ABSA).

The issue with ABSA is that the number of things that can be aspect is
immense, and therefore some manual categories have to be designed. We are
concerned with extraction of the targets at sentence level, also known as opin-
ion target extraction (OTE). OTE does not require any manual engineering of
categories—the task is to locate an explicit mention of a target in the data.

OTE can be useful to aggregate large amount of unstructured data, or produce
summaries automatically. This is particularly useful, in the information age, since
the amount of text that would otherwise had to be read by people is massive.

Methods in OTE
This can be accomplished using a dictionary of words and phrases that are often
being evaluated in the data, such as restaurant. However, this approach is sus-
ceptible to producing both false positives, and false negatives (a target will not
be identified). For example:
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(1) “I’ve eaten at many different Indian restaurants.”1

is a sentence from a restaurant review that, per se, does not express any opinion.
This would produce a false positive.

On the other hand, the size of the dictionary is limited, and the targets often
come from open word classes. If the target of the evaluation is a name of a place
or a dish, it will likely not be recognized, i.e. a false negative. For example:

(2) “Rao is a good restaurant, but it’s nothing special.”

“Rao” is the target of the evaluation, but unless it is a very popular place, it will
not be in any dictionary.

Therefore, we hope that modern machine learning methods can be used to
tackle those problems. Machine learning methods have been used for this task
by Hu and Liu [2004], Popescu and Etzioni [2007], Liu et al. [2015], Tamchyna
et al. [2015] and many others. Based on the previous work in the field, we
have selected two popular methods for the experiments in this thesis—conditonal
random fields (CRF) and recurrent neural networks, in particular long short-term
memory (LSTM) units.

Syntactic Features
Part of what makes this problem particularly hard is that a large context may have
to be considered. On a high-level, the pragmatic aspect needs to be considered.
Sometimes cultural knowledge is necessary to understand what is being evaluated,
particularly if the author uses irony. On the low-level, the context can be viewed
as the surrounding words.

Relations between words in phrases and sentences are studied within syntax.
In this thesis, we aim to employ those relations to improve the performance of
the aforementioned models. The objective of this thesis is not to find a
model configuration with the best possible performance, but explore
how adding features influences the performance of the models. The
features that we propose are mostly based on the syntactic relations of the words,
therefore we refer to the as syntactic, although they may not be entirely based
on syntax.

Recently, NLP methods have been shifting from heavily language dependent
methods to more universal approaches. Universal Dependencies is a linguistic
framework that is a successful example of such approach. It is designed with
automatic processing in mind, which makes it a suitable tool for the objective of
this thesis.

Straka and Straková [2017] developed UDPipe, a trainable tool for automatic
dependency parsing. Words of the sentence are organized into a tree structure
that captures how the words depend on each other. There are different kinds of
this dependency relation. For example, we can say that subject and object both
depend on some verb in a sentence, but the type of relation is different, hence
the two different terms “subject” and “object”.

We use this tool to augment the raw textual data with some additional in-
formation. Strictly speaking, we are not adding any information—it is already

1All the examples in quotation marks come from the dataset described in Section 3.1, targets
are in bold.
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in the textual data. A few thousand sentences used for a particular OTE task
may not be enough to understand the complexity of a language as a whole. We
hope that this can be used to boost performance, especially for small datasets,
similarly to how basis expansion can improve the performance of a model.

A sentence containing subjective information typically contains a sentiment
expression in addition to the target of the evaluation. Consider the following
sentences:

(3) “The waiter was attentive.”
(4) The waiter was young.

One states a subjective evaluation, the other merely states a fact.
Therefore, we used lexicons of subjective terms to help the models identify

phrases that carry some subjective meaning. Such lexicons have previously been
employed by Veselovská and Tamchyna [2014] and Tamchyna et al. [2015] for
the same task. In particular, Veselovská and Tamchyna [2014] used hand-crafted
rules based on syntactic relations which required the information whether a word
carries emotion or an opinion. In combination with the features based on the
dependency relations, the models may be able to learn similar rules to correct
some errors.

Outline
This thesis is structured as follows. Chapter 1 provides a brief overview of the
field of Sentiment Analysis and the task of this thesis. Chapter 2 describes the
motivation for the features that we propose for the experiments. The data that
we are using for the experiment are described in Chapter 3, followed by Chapter 4
that lists the work previously published for the task and the data. Chapter 5 de-
scribes the how we processed the data and evaluated the results. In Chapter 6 we
provide a description of the conducted experiments, results of which are presented
in Chapter 7.
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1. Sentiment Analysis
Sentiment analysis (SA) is a field that is concerned with extracting subjective
information from discourse. In this thesis we consider SA to be a subfield of
natural language processing (NLP)—a subfield of computer science concerned
with interaction of computers and human languages.

With the growing popularity of social networks and review websites, SA re-
cently became an area of focus due to its the practical application and the amount
of available data. SA can be helpful in automatic processing of large amount of
reviews, predicting market trends or even forensic linguistics.

1.1 Objectives
In general, SA systems can be used to extract any information that is not an
objective description of the state of the world. Two major subtasks of SA are
subjectivity classification, i.e. determining whether the utterance contains an
opinion at all, and polarity classification, i.e. determining the polarity of the
opinion. Another established tasks within SA are emotion detection and intent
analysis. Emotion detection is simply detection of emotions, such as happiness or
anger, from the piece of discourse. Intent analysis is about extracting intentions,
such as intent to complain or sell, from a piece of text.

Polarity is the type of opinion that is being expressed. Usually it is classified
either as positive or negative. Sometimes, more granular division is used, for
example accounting for neutral opinions, or a system based on a number of stars
out of 5, etc.

In addition to polarity, SA systems are often concerned with identifying opin-
ion holder, opinion target, or both. Opinion holder is the person or entity that
expresses the opinion. Opinion target is the entity that towards which the opin-
ion is directed. The entity can be inferred by the utterance and its context. For
example:

(5) “The only thing the waiters don’t do for you is wipe your chin when you
leave.”

The review again evaluates the staff, but now we can extract the expression which
refers to the target—“waiters”. This is called opinion target extraction (OTE) and
it is the focus of this thesis.

On the other hand, the target may not be explicitly mentioned in the text.
(6) “And even with it’s (sic!) Pub atmosphere they were great to my kids

too!”
The review evaluates the staff of a pub, but the staff is not explicitly mentioned.
It is true that “they” represents the staff, but this is not specific enough if the
goal is to search across millions of reviews.

1.2 Methods
In general, SA systems can be divided into 3 categories:
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1. rule-based (e.g. Veselovská and Tamchyna [2014]),

2. automatic (e.g. Tamchyna and Veselovská [2016]) or

3. hybrid (e.g. Tamchyna et al. [2015]).

Rule based methods are usually based on a fixed set of rules. More specifically,
they can based entirely on a lexicon. A lexicon is a list of subjective terms
(usually) manually extracted from a large corpora, e.g. MPQA [Deng and Wiebe,
2015]. This lexicon is then used to determine the polarity of an utterance by
some simple rule. Those systems have only limited access to the context which
is crucial, therefore these systems are not suitable for applications that require
high accuracy, as discussed by Veselovská and Hajič Jr. [2013].

In this thesis we focus on (fully) automatic systems. Unlike the rule-based
systems, automatic systems rely on machine learning methods. In order to be
used by machine learning algorithms, the raw data have to be pre-processed.
This usually means tokenization and a subsequent numerical representation of
the tokens, which also called feature extraction. We present the features that we
are investigating in Chapter 2.

1.2.1 Word Embeddings
The simplest approach is to assign number the elements in some order and simply
use those numbers. This approach has some obvious flaws, e.g. that the range
of the feature is the same as the size of the vocabulary, which is typically large.
Moreover, this does not preserve any linguistic relationships, words 2 and 3 may
be in a similar relation as 42 and 16954, but this information is “lost forever”.
Therefore, more convoluted techniques were developed, such as bag-of-words and
bag-of-n-grams that take into account frequency of words or n-grams respectively.

More recently, vector representation of words (tokens) as vectors have been
widely used. The vectors are called word vectors or word embeddings and Mikolov
et al. [2013c] showed that such vectors can be used to capture many linguistic
regularities, e.g. the vector between singular and a plural form are similar across
word pairs. Currently, the most popular methods are based on neural networks,
such as continuous bag-of-words proposed by Mikolov et al. [2013a], skip-gram
model by Mikolov et al. [2013b] and GloVe proposed by Pennington et al. [2014].

The advantage is that the embeddings can be trained once on a massive
corpora and then used for other NLP tasks including SA. This is particularly
useful, because the vectors are able to capture linguistic phenomena which may
not be present in small datasets used for a specific task. This is a motivation for
the features that we propose in Chaper 2, where we hope to make use of linguistic
theories instead of just a lot of data. We use pre-trained word vectors were made
available online.1

1For example at https://nlp.stanford.edu/projects/glove/
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2. Syntactic Features
The purpose of this thesis is to explore how adding features based on how the
words form phrases and sentences together. This is usually studied within syntax,
therefore, we refer to the features as syntactic, although, strictly speaking, they
may be considered to be part of morphology or semantics.

Most of the features that we propose are based on the notion of dependency
grammar. Dependency grammars are based on the idea that linguistic units
are connected by asymmetric binary links, i.e. the dependency relation. There
are number of theories using this notion, e.g. functional generative description
Functional generative description (FGD) by Sgall et al. [1969] or meaning-text
theory (MTT) by Meľcuk et al. [1988].

2.1 Universal Dependencies
We decided to use Universal Dependencies1 (UD) as the underlying dependency
grammar, mainly due to its growing popularity with many freely accessible tools.
The ultimate goal of UD is language parallelism, hence the name universal. UD is
a framework is designed to provide a treebank annotation that is consistent across
languages. It provides a universal inventory of categories to facilitate consistent
annotation, but it also supports language specific features. In addition, UD is
build with focus on suitability for computer processing with high accuracy, as
well as comprehensibility.

UD is based on a lexicalist view, i.e. the relations hold between words. Be-
cause of that UD describes detailed guidelines for word segmentation and tok-
enization. In addition, it provides a specification of a morpho-syntactic repre-
sentation consisting of a lemma, part-of-speech (see Section 2.1.2) and a set of
features describing a set of grammatical properties such as tense, number, etc.

The syntactic annotation that UD scheme provides is based on typed depen-
dency relations. The dependency relations form a tree (see Figure 2.1), where
one word (usually a verb) is the head of the sentence. To ease computational
processing, there is a notional node “root” (with ID 0).

Currently, UD uses 37 universal syntactic relations, which is based on the
set of relations originally proposed by De Marneffe et al. [2014]. Primarily, the
relations hold between content words, for example object is connected to the
verb by obj relation. UD avoids mediating relations between content words by
functional words, because those vary across languages. Function words are typi-
cally attached to content words by a direct dependency, for example “the” in the
phrase “the cat” is connected to “cat” by det relation. Furthermore, copulas are
considered to be auxiliary and are attached to a non-verbial predicate.

In addition to those basic dependecy relations, UD schema supports enhanced
dependencies that do not form a tree, but a general graph, which is not neces-
sarily a supergraph of the basic tree. Direct dependecies can be used for relation
extraction, i.e. to determine the relation between two entities, e.g. two people.
However, sometimes the path between the entities is too long in the UD tree.

1Complete anotation guidelines can be found at https://universaldependencies.org
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<root>

The
det
DET

service
nsubj
NOUN

was
cop
AUX

friendly
root
ADJ

and
cc
CCONJ

the
det
DET

atmosphere
nsubj
NOUN

was
cop
AUX

casual
conj
ADJ

.
punct
PUNCT

Figure 2.1: A dependency tree of a sentence from the data described Section 3.1.
The dependency relation is displayed in lower case, the POS tag is in upper cases.
The nominal subjects (nsubj) are two targets of this sentence.

Enhanced dependencies make some implicit relations between words more ex-
plicit. Unfortunately, since this part of annotation is not mandatory, many UD
treebanks do not provide enhanced dependencies.

2.1.1 Syntactic Features
UD scheme provides syntactic annotation based on 37 different dependency re-
lations (DEPREL, see Table 2.1) between words. Those relations define a tree
structure (dependency tree), where an element with dependent elements is called
the head, and the dependents are also called subordinate elements. Jakob and
Gurevych [2010] used direct dependency to extract a binary feature indicating
whether a word is dependent on an opinion expression. Veselovská [2017, p. 110]
proposed hand-crafted syntactic rules to determine the opinion target. Those
rules are language-independent to some extent, which is in line with the inter-
language parallelism philosophy.

Zhuang et al. [2006] used direct dependencies to mine feature-opinion pairs
from textual data. Kessler and Nicolov [2009] also used direct dependency to
identify which opinion (sentiment) expressions are semantically related to the
targets. They found out that frequent direct dependency path can be accurate
connections between target and the opinion expression.

Therefore, we decided to use the DEPREL of every element (token) to its
immediate head. However, distance in the tree may be longer. Motivated by
the handcrafted rules of Veselovská [2017, p. 110] we also decided to provide the
DEPREL of the immediate head to its own head, two steps up the tree. If the
element is the head of the sentence (its head is the notional root), we use a special
value “#ROOT#”. We call this feature HEAD DEPREL.
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Nominals Clauses Modifier words Function words

Core
arguments

nsubj csubj
obj ccomp
iobj xcomp

Non-core
dependents

obl advcl advmod aux
vocative discourse cop

expl mark
dislocated

Nominal
dependents

nmod acl amod det
appos clf

nummod case

Coordination conj cc
Multi-word expression fixed flat compound
Loose list parataxis
Special orphan goeswith
Other punct root dep

Table 2.1: Dependency relations used in UD schema.

2.1.2 Morphological Features
Part-of-speech Tag

Part o speech is a category of words that with similar grammatical properties,
which means that words within one category behave similarly in terms of syntactic
structure of the sentence. Therefore, providing a machine learning model with the
part-of-speech could provide some additional information for infrequent words.

Universal Dependencies currently support 17 universal part-of-speech tags (see
Table 2.2), abbreviated as UPOS. It is possible that some of those UPOS tags are
not used for some languages, but for any language at most the set of 17 UPOS
tags can be used. Language-specific part-of-speech tags (XPOS) are available in
the UD schema.

We propose to use the UPOS tag a feature, as in the work of Jakob and
Gurevych [2010]. The POS tags can provide some means for disambiguation. For
example, “pllace” can be a noun or a verb.

(7) This place is amazing.
(8) It’s difficult to place your order.

In Example 7, the noun “place” is the target of the evaluation, while in Example 8
the verb “place” is clearly not. In addition, we use the UPOS of the head element
(HEAD UPOS), which may help to identify the role of the word in a phrase.
We propose using XPOS and FEATS as features for every token as well.
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UPOS tag Part of Speech

Open word class

ADJ adjective
ADV adverb
INTJ interjection
NOUN noun
PROPN propper noun
VERB verb

Closed word class

ADP adposition
AUX auxiliary
CCONJ coordinating conjunction
DET determiner
NUM numeral
PART particle
PRON pronoun
SCONJ subordinating conjunction

Other
PUNCT punctuation
SYM symbol
X other

Table 2.2: Universal part of speech tags used in the Universal Dependency frame-
work.

Lemma

Identifying the part-of-speech is one common task of morphological analysis. An-
other common task is providing a lemma of a word in some context, e.g. sentence
or a phrase. Lemma is a canonical representation of a lexeme—a unit of lexical
meaning. For example, words cut, cuts and cutting are all a part of the same
lexeme, represented by a lemma “cut”.

UDPipe provides a lemma for every token of analyzed piece of text. Supposing
that a model has a word form and the POS tag, it should be able to “learn” the
associated lemma, therefore adding the lemma does not seem to provide any extra
information. However, the word form or the lemma of the head element could be
useful. Since we are already providing the POS of the head, we decided to use
the lemma of the head element as a feature.

2.1.3 UDPipe
In order to be used in real-world applications, the features extraction must be
automated. Straka and Straková [2017] developed a trainable tool UDPipe. It
is meant to be used for tokenization, tagging, lemmatization and dependency
parsing. It is not dependent on any specific language and therefore can be trained
on any data annotated using the UD schema.

Many fine-tuned pre-trained models are available online under CC BY-NC-SA
licence.2 UDPipe outputs analysis in the CoNLL-U format, which consist of the

2https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2998
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following

1. ID—word index starting at 1 for each new sentence,

2. FORM—surface form of the token,

3. LEMMA—lemma of the FORM,

4. UPOS—universal part-of-speech tag, see Table 2.2

5. XPOS—language-specific part-of-speech tag,

6. FEATS—a list of morphological features,

7. HEAD—ID of the head of the current word, 0 for the root,

8. DEPREL—universal dependency relation to the HEAD (or “root”),

9. DEPS—enhanced dependency graph, and

10. MISC—any other annotation

for every token.
We propose using FORM, UPOS, XPOS, DEPREL, FEATS as “raw” features,

together with additional features based on the (dependency) head, described in
the previous sections. Since the enhanced relations are not mandatory for UD
treebanks, DEPS (and MISC) are often not supported by the available models
trained on the treebanks; therefore, we refrained from using them.

<root>

The
det
DET

place
nsubj
NOUN

has
root
VERB

lovely
amod
ADJ

decorations
obj
NOUN

.
punct
PUNCT

Figure 2.2: Decorations are the object of this sentence. Moreover, a sentimentally
charged adjective is its dependent, which are clues that “decorations” is the target.

2.2 Subjectivity Lexicon
A sentence expressing an evaluating opinion typically has not only the target of
the evaluation, but also some opinion (or sentiment) expression. These may be
words typically associated with some emotion. For example:
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(9) Amazing food.
Lexicons of such emotionally charged terms are available for many languages.
However, this alone is not enough, because the word may or may not carry emo-
tion depending on the context. For example:
(10) I like the food.
(11) It looks like food.

Syntax and morphology are important when we try to determine whether
an opinion expression expresses an opinion towards an opinion target (see Fig-
ure 2.2). While in Example 10 the word “like” is used to express a positive
emotion towards the food, while in Example 11 it is merely a function word.
Note that the word has different POS in the two examples, which means that
providing UPOS a feature may help mitigate those problems.

<root>

The
det
DET

burgers
nsubj
NOUN

were
cop
AUX

amazing
root
ADJ

.
punct
PUNCT

Figure 2.3: The head is an adjective that carries a sentiment, while the target is
a subordinate element of the sentimentally charged adjective.

Jakob and Gurevych [2010] used a binary feature indicating whether a word
has “a direct dependency relation to an opinion expression”. However, they also
note that using such feature requires some automatic identification of the opinion
expression. For this purpose, corpora of subjective terms were collected for many
languages. They were already for OTE used by Veselovská and Tamchyna [2014].
They assumed that words that are present in the subjectivity lexicon carry senti-
ment. This is obviously a simplifying assumption, however, one that is necessary
if a accurate analysis of the sentence is not available.

Subsequently, Tamchyna et al. [2015] used a feature indicating whether a word
is in a subjectivity lexicon for their OTE model. We decided to use the polarity
of the word and its head. This can be useful because of the way how UD handles
copula. Rather than being the head, the copula is a subordinate element and
the adjective, which often carries the sentiment, is the head (see Figure 2.3) In
a more complicated dependency tree, the opinionated expression may be in a
relative clause, which is often attached to the same head as the subject (often the
opinion target) as in Figure 2.4 Therefore, in addition to the two aforementioned
features, we also propose to use a binary feature indicating whether any of the
other elements subordinate to the same head (“siblings”) carry sentiment.
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<root>

Service
nsubj
NOUN

was
cop
AUX

slow
root
ADJ

,
punct
PUNCT

but
cc
CCONJ

the
det
DET

people
nsubj
NOUN

were
cop
AUX

friendly
conj
ADJ

.
punct
PUNCT

Figure 2.4: “Friendly” is a word associated with positive emotions. In this sen-
tence, it is a sibling to an opinion target “service”.

2.3 Feature Overview
In the previous sections, we described motivation for features based on morpho-
logical and syntactic analysis. We use UDPipe (Section 2.1.3) for to obtain such
analysis automatically. Table 2.3

We propose using UPOS, DEPREL, FEATS and XPOS for every token. All
of these are provided by UDPipe. In addition to that, we propose using UPOS,
DEPREL and LEMMA of the (dependency) head of each token as a feature. For
the head of the sentence, which has the notional root as its head, we use a special
value “#ROOT#” for those features.

Feature Short Description

word form the surface form of the token
UPOS universal POS of the token
DEPREL dependency relation of the token to its head
XPOS language specific POS of the token
FEATS morphological features of the token
HEAD UPOS UPOS of the token’s head
HEAD DEPREL dependency relation of the token’s head to its head
HEAD LEMMA the lemma of the head
SENT sentiment of the token from a subjectivity lexicon
HEAD SENT sentiment of the head
SIBLING SENT binary feature indicating whether a sibling has sentiment

Table 2.3: An overview of proposed features.

To provide information about which words carry sentiment, we propose three
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features based on a subjectivity lexicon. The feature called SENT, is simply the
polarity of the word (or its lemma if the word form is not in the lexicon). HEAD
SENT is simply the value of SENT of the dependency head, similarly to the
features HEAD UPOS and HEAD DEPREL.

SIBLING SENT is a binary feature indicating whether any of the elements
subordinate to the same head carry sentiment. This may be useful for more
complex sentences with relative clauses, such as the one in Figure 2.4 etc.
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3. Data
Customers tend to research products or services prior to purchasing them. Un-
surprisingly, in the information age the most valuable resources are available on
the Internet. Probably the most informative are experiences of other users, which
are usually expressed as unstructured textual data. This is essential not only for
the customers, but also for the providers, who receive feedback in this manner.

Each review contains subjective information about some entity (i.e. a product
or a service). The goal of ABSA systems is to extract the entity and the polarity
of the opinion towards the entity, which allows for automatic categorization of
the feedback, identifying issues related to the products, etc. In particular, we
focus on a dataset of restaurant reviews in English.

3.1 Data from Semeval 2016 Task 5
For the experiments, we use the data set used in the Task 5 of SemEval 2016. The
full task description was given by Pontiki et al. [2016]. The data is an extended
and corrected version of the dataset from Task 12 of SemEval 2015 [Pontiki et al.,
2015], which was based on the dataset of Ganu et al. [2009]. Task 5 consisted of 3
sub-tasks, corresponding to two levels of ABSA (sentence and text levels) and a
task with an unknown domain. The data is freely available (for non-commercial
purposes) on SemEval’s webpage1.

We focus on the sentence level sub-task, which was divided into 3 slots: iden-
tification of aspect category, opinion target extraction (OTE) and polarity iden-
tification. First, the data were annotated by annotator A, “an experienced lin-
guist”. Then the data were investigated and corrected by annotator B, another
“expert linguist”. Unfortunately, Pontiki et al. [2016] does not specifies the inter-
annotator agreement, which can serve as an upper limit on the performance of
the models. The two human annotators were asked to identify the following:2

Aspect category: given by a pair of entities (e.g. food, service) and an attribute
of the entity (e.g. quality, price) from a predetermined set of entities and
aspects,

Opinion polarity: described as either positive, neutral or negative for each en-
tity and aspect pair;

Opinion target expression: the explicit mention of the entity in the sentence.

If the target expression is stated implicitly, ergo inferred in the sentence, then
the target expression is represented by a "NULL" value. For example:

(12) “MMMMMMMMMmmmmmm so delicious”

This review expresses a positive opinion towards the quality of the food, but the
entity (food) is not explicitly mentioned in the sentence.

1http://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools
2Detailed guidelines are available at http://alt.qcri.org/semeval2016/task5/data/

uploads/absa2016_annotationguidelines.pdf

16

http://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools
http://alt.qcri.org/semeval2016/task5/data/uploads/absa2016_annotationguidelines.pdf
http://alt.qcri.org/semeval2016/task5/data/uploads/absa2016_annotationguidelines.pdf


Sentences that contain opinions that cannot be described by the annotation
schema are considered to be out of scope.

The training dataset consists of 2 000 sentences and the test dataset contains
676 sentences. Each sentence is represented as a single xml element. The surface
form of the sentence is represented as a sub-element of the sentence element
named text.

<sentence id="TR#1:3">
<text>

I highly recommend this beautiful place.
</text>
<Opinions>

<Opinion target="place"
category="AMBIENCE#GENERAL"
polarity="positive"
from="34" to="39"/>

<Opinion target="place"
category="RESTAURANT#GENERAL"
polarity="positive"
from="34" to="39"/>

</Opinions>
</sentence>

Opinion targets are expressed by “opinion” elements, where its attribute “tar-
get” is the opinion target’s expression, “category” is the entity and aspect pair;
“polarity” is the polarity of the opinion towards the target. Finally, “to” and
“from” attributes represent character offsets which uniquely identify the opinion
target’s expression. Only the first occurrence of the opinion target’s expression
is covered by the “from” and “to” offsets. However, the same opinion target ex-
pression can be assigned multiple categories. In this case the “opinion” element
contains multiple “opinion” elements which differ only in their category attribute.

Using the UDPipe tokenizer and parser (see Section 2.1.3) we pre-process
the data (see the script semeval_data_preprocessing.py, Appendix A.1). The
average length of the training sequences is approximately 14 tokens where 1 is
the minimum and 66 is the maximum length. The training data contains 24 536
tokens in total, 3 220 being unique. The average sequence length in the test set is
approximately 14 tokens where 1 is the minimum and 78 is the maximum length.
The training data contains 8 453 tokens in total, out of which 1 684 are unique
(see Figure 3.1 and Figure 3.2).

The training dataset contains only 2 000 sentences. The scarcity of the data
also affects the vocabulary size that can be extracted from the training data,
which amplifies the impact of spelling mistakes.

Furthermore, 292 out of the training dataset are considered to be “out of
scope”, i.e. do not contain any annotation, because they do not fit the annotation
guidelines of the task. This is detrimental when attempting to extract explicit
mentions of targets, as it narrows the domain even further, thereby allowing only
the targets fitting a particular schema. For example, the sentence

(13) “There are many Thai places in the city but so far Toons is #1.”

17



0 10 20 30 40 50 60
Number of tokens in a sequence

0

20

40

60

80

100

Nu
m

be
r o

f s
eq

ue
nc

es

Sequence length distribution in SemEval training set

Figure 3.1: The distribution of the length of sequences (in number of tokens after
tokenization with UDPipe) for the training dataset of the restaurant reviews.

contains an explicit mention of the place (Toons) that is being evaluated. How-
ever, it is a comparative opinion, which does not fit the annotation guidelines,
and therefore the target is not annotated.

We exclude the “out-of-scope” sentences because this shifts the task from
locating the target of the expressed opinion to learning a particular annotation
schema. Jebbara and Cimiano [2017], who worked on the same dataset and also
used IOB tagging format, also selected this approach.

The training data contains 2 507 opinion targets and the test set contains
859 targets. However, those contain the same expressions under different entity
aspect pairs and also the NULL targets that are not explicitly expressed in the
text. The number of unique opinion target expressions, which we are trying to
identify, is 1 744 and 616 for training and test data respectively.

In addition, if the targets are implicitly referred through pronouns, the pro-
nouns themselves are not marked as the targets. Moreover, each target expression
is captured only once in the data, which does not allow for a training of models
that are intended for extraction of all mentions of an entity. This does not affect
the objective of this thesis, but it makes the dataset unsuitable for more complex
tasks.

3.2 Customer Reviews in Czech
To compare the results cross-linguistically we use a dataset of Czech reviews.
This dataset contains product reviews and their fragments from a Czech e-shop
with electronic devices. The data, together with the manual for annotation, are
freely available at http://hdl.handle.net/11234/1-1507.

The dataset contains 1000 positive and 1000 negative short review segments.
The segments roughly correspond to sentences, however, this is not guaranteed
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Figure 3.2: The distribution of the length of sequences (in number of tokens after
tokenization with UDPipe) for the test dataset of the restaurant reviews.

and often the segments are only nominal phrases. In addition it also contains 100
positive and 100 negative long reviews. However, we do not use those since the
objective of this thesis is to conduct the experiments for sentence level OTE.

The data are structured into XML files. All reviews are accompanied with
manually annotated targets of the evaluative phrases. If the target expression
is explicitly mentioned in the review, it is enclosed in a target tag. The whole
review or segment are enclosed in a positivesummary or a negativesummary tag,
according to the polarity of the evaluative phrase.

A review in the dataset looks like this

<positive_summary id="1000000040">
Nejlepší <target>podložka</target> pro práci

</positive_summary>

The data in the dataset are of varying length and complexity. Many of the
reviews are brief descriptions of the aspects of the products, such as:

<positive_summary id="1000000099">
<target>Kabel</target> je kabel.

</positive_summary>

<negative_summary id="1000000752">
Žádné

</negative_summary>

<positive_summary id="1000000425">
funguje :)

</positive_summary>
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On the other hand, some review segments are quite complex and/or vague
For example, the review segment

<positive_summary id="1000000471">
Výborná věc pro vytváření domácí sítě.
V nejhorším se dá použit i jako kladivo :)

</positive_summary>

does not contain any explicit mentions of the targets. It is almost impossible
to determine that the review is in fact about crimping pliers from the segment
alone.
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Sequence length distribution in the Customer reviews dataset

Figure 3.3: The distribution of the length of sequences (in number of tokens after
tokenization with UDPipe) for the Czech dataset of customer reviews.

Out of the 2 000 segments, only 870 contain at least one targets, and 2 contain
only white space. The segments contain 1 148 targets in total. We use the
script lindat_data_preprocessing.py (see Appendix A.1) to preprocess the
data using UDPipe (see Section 2.1.3) we get a dataset where the average length
of the sequence is approximately 7 tokens, minimum length is 1 and maximum is
122. The dataset contains 13 946 tokens in total, out of which 3 659 are unique.
We split the dataset randomly into training and test data containing 1 598 and
400 sentences respectively (20%).

Furthermore, the data contain a lot of spelling mistakes, the segments are
often a mixture of Czech and Slovak, sometimes even English. The reviews con-
tain spelling errors, which may cause problems for tokenization and the morpho-
syntactic analysis. Some reviews do contain diacritical marks and some do not,
which may further hinder the said analysis, however, it can be then easily turned
into a consistent format.

The annotation guidelines for the Czech data are more vague than the ones
for SemEval data (see Section 3.1) and therefore we cannot draw any conclusions
on the performance of the models across different languages for this task. We can
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only test whether similar trends can be observed after the data is enriched by the
syntactic features.

3.3 Other Datasets
Many datasets for sentiment analysis are available online. Unfortunately, most of
them are focusing on the polarity. Maas et al. [2011] created a popular dataset3 of
50 000 IMDB reviews labelled with binary sentiment labels (positive or negative)
and 50 000 unlabelled reviews. Pang and Lee [2005] created another dataset of
movie reviews, which Socher et al. [2013] enhanced with parse trees and created
Standford Sentiment Treebank with fully labeled parse trees.

Unlike for languages such as English or Spanish, up until the recent work of
Veselovská [2017], there has been no systematic research of sentiment analysis in
Czech. For Czech, Habernal et al. [2013] provided a dateset of social media posts
with manually automated polarity and two other datasets where the polarity is
based on the user ranking.

Nonetheless, the number of datasets with manually annotated opinion targets
is scarce. In addition to the English dataset from Section 3.1, SemEval 2016
released datasets with restaurant reviews in Dutch, Russian, Spanish and Turkish.
They also released an Arabic dataset for the domain of hotel reviews and a dateset
that contains English reviews of electronic devices.

In addition to the Czech dataset from Section 3.2 there are a few other
datasets that annotate opinion target expressions. Luo and Litman [2015] created
a dataset of students responses to course evaluation where “summary phrases”
are manually annotated in the text, and Luo et al. [2018] subsequently extended
the annotation scheme for the same data. The dataset by Chathuranga et al.
[2018] annotates the opinion target expression in student feedback directly with
the IOB scheme.

Opinion target extraction is often viewed as a task in lexical semantics. For
example, Wiegand et al. [2016] used German deWaC corpus to create a dataset
of opinion compound that are possible targets. This is more specific than the
general sentiment lexicons such as MPQA 3.0 subjectivity lexicon [Deng and
Wiebe, 2015] or Czech Sublex 1.0 [Veselovská and Bojar, 2013].

3Available at http://ai.stanford.edu/~amaas/data/sentiment/
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4. Related Work
In this chapter we discuss work published prior in the task of extracting the
opinion target expressions. More specifically, we focus on experiments conducted
on the datasets that we described in Chapter 3.

The objective of this thesis is not to select the best model, but explore how
adding automatically generated morpho-syntactic analysis to the models influ-
ences their performance. Sequential models have proven to be successful for the
tasks. Therefore we chose two specific discriminate models — conditional random
fields (CRF) and neural networks with long short-term memory units (LSTM).
We chose LSTM because it is widely used for a number of sequential tasks, and
CRF because it is a non-neural sequential model, which provides a point of com-
parison for such small data.

4.1 Opinion Target Extraction
Opinion target identification aims to identify the entity towards which the opinion
is expressed, not just the polarity of the opinion. This can be a high-level target
(an object, e.g. “Murg Makhani” or “laptop”) or an aspect of the object, e.g.
spice in the food or a laptop component. We focus on previous work that aimed
to extract the expression that represents the target.

OTE (a subtask of OTI) is a well-established task in NLP, similar to named
entity recognition and other subtasks of information extraction. The target ex-
pression is either the object or its aspect that is evaluated in the opinionated text,
therefore the task is sometimes also referred to as aspect term extraction (ATE).
Each expression within a segment (phrase, sentence, paragraph, etc.) can have
its own polarity, which may different than the sentiment of the segment. The
target may not be explicitly expressed in the segment, which is especially true
for pro-drop languages, such as Czech.

One of the main motivation for OTE is summarizing and grouping product
reviews, therefore the first published works on OTE, e.g. by Hu and Liu [2004]
or Popescu and Etzioni [2007], also call it “product feature extraction”. In this
thesis we are also concerned with features of restaurants, such as food and service
quality, ambience, location, etc.

4.1.1 Lexical-Based Methods
The simplest method to extract the targets is to use a corpus of terms, such
as the one by Wiegand et al. [2016]. However, such methods suffer greatly from
false positives for frequently used terms, because they do not consider surrounding
words. The presence of a term from a dictionary in itself is not enough—we would
also expect to see some opinion indicating word such as “great” or “terrible”. For
example,

(14) This restaurant is absolutely amazing.

expresses an opinion (or rather an emotion) towards the restaurant, while the
sentence
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(15) The restaurant was open since 1965.

does not, hence it is not an opinion target expression. There are more convoluted
way of constructing a lexical-based OTE extractor, e.g. Hu and Liu [2004] used
Apriori algorithm to extract frequent noun phrases. Veselovská and Hajič Jr.
[2013] provided a thorough error analysis of lexical-based classifiers for polarity
detection, but some of the reasoning can be applied to OTE as well.

To mitigate the issues of lexical-based methods, Veselovská and Tamchyna
[2014] used hand-crafted rules based on a syntactic analysis provided by a parser
and a subjectivity lexicon. In addition to aspect term extraction, they also identi-
fied aspect term polarity, aspect category detection and aspect category polarity.

4.1.2 Machine Learning Methods
Machine learning methods were successfully employed for OTE. The tasks has
been viewed as a labeling task, or a token classification problem. If task is viewed
as a token classification problem, support vector machines were successfully used
by Manek et al. [2017].

If the task is viewed to be a labeling task, sequential models are usually
used. One of the most popular methods is a sequential model CRF, e.g. used
by Chernyshevich [2014], Toh and Wang [2014], Tamchyna et al. [2015], Hamdan
et al. [2015] and Jakob and Gurevych [2010]. Another commonly used methods
is a sequential neural model with LSTM or GRU (gated recurrrent unit) units
used by Liu et al. [2015], Jebbara and Cimiano [2017].

Moreover, Huang et al. [2015] combined the two into a single approach and
Laddha and Mukherjee [2019] used it specifically for OTE. Wang et al. [2016]
proposed Recursive Neural Conditional Random Fields (RNCRF), which consists
of two components—a recurrent neural network (RNN) and a CRF layer. Where
the RNN component is based on the dependency trees of the training sentences,
which is intended to learn a high-level representation for each word in a sentence.
The CRF component is supposed to capture the context around each word.

4.1.3 Syntactic Features
Jakob and Gurevych [2010] used a CRF model with the surface form of the
tokens and the their POS tags together with two features based on a dependency
parse. The first (binary) feature is to label all tokens that are dependent on an
“opinion expression”. The latter is a (binary) feature that labels all tokens in the
nearest noun phrase to an “opinion expression”. The use of these two features
improved F-measure, while recall more than precision (see Table 4.1). However,
those features rely on the “opinion expressions” that were manually annotated.

Ding et al. [2017] used a model similar to our model described in Section 5.4 to
incorporate rules similar to the rules proposed by [Veselovská, 2017, p. 110]. They
used the rules to produce auxiliary labels that are learned and are also predicted
by a hidden layer in the network and then combined with the “ordinary” labels.

The sequential models clearly have access to the context of the potential
candidates for an opinionated expression, so they should be less likely to produce
the same kind of false positive as lexical-based methods, although they can still
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Domain Precision Recall F-measure

movies 0.79 0.48 0.60
movies + features 0.64 0.13 0.22
web-services 0.62 0.35 0.45
web-services + features 0.50 0.05 0.10
cars 0.60 0.39 0.47
cars + features 0.44 0.11 0.18
cameras 0.60 0.43 0.50
cameras + features 0.30 0.09 0.13

Table 4.1: Precision, recall and F-measure for a version of dataset with only the
tokens and POS tags and a version enhanced by the two syntactic features [Jakob
and Gurevych, 2010].

occur. This thesis aims to investigate whether features from the dependency
parser can further mitigate this problem.

4.2 English Dataset of Restaurant Reviews
The dataset described in Section 3.1 served as a material for many experiments in
sentiment analysis. The dataset was originally used for Task 5 of SemEval 2015,
with 3 different slots (see Section 3.1). However, we are only concerned with Slot
2 of the task, which is the OTE.

SemEval 2016 used precission, recall and F-meassure as metrics to compare
performance of the submitted models. The metrics were “calculated by comparing
the list of the targets that a system returned (for a sentence) to the corresponding
gold list”1. The NULL targets were discarded because “they do not correspond
to explicit target mentions”.

Table 4.2 shows the performance of the 3 best models submitted to SemEval
2016 on the english dataset of restaurant reviews. In addition it includes the
official baseline, which is based on the dictionary extracted from the training
data. Pontiki et al. [2016, p. 25, Table 3.] lists the F-measure2 of all models on
the test data from the dataset.

Model Precision Recall F-measure Citation
1. NLANG. 0.75 0.69 0.72 Toh and Su [2016]
2. AUEB-. 0.72 0.69 0.70 Xenos et al. [2016]
3. UWB 0.75 0.61 0.67 Hercig et al. [2016]
Baseline 0.51 0.39 0.44 Pontiki et al. [2016]

Table 4.2: Performance of the three best ranked models submitted to SemEval
2016 and the official baseline.

1From the “Evaluation-Validation-Submission-Baselines” available at http://alt.qcri.
org/SemEval2016/task5/index.php?id=data-and-tools

2The values of precision and recall are cited from the paper in the column citation.
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Aside from the SemEval 2016 submittions, there have been several experi-
ments using the provided datasets. Chen et al. [2017] used a model consisting of
a bidirectional long short-term memory (BiLSMT) layer stacked together with a
conditional random field (CRF) layer and reported F-measure of 0.7244.

Jebbara and Cimiano [2017] used a RNN model based on GRU, similar to the
model used in this thesis. They reported improving the F-measure from 0.6260
to 0.6586 by using character-level features to improve the performance.

In addition to the English dataset, experiments have been conducted for the
datasets in other languages. For example, Al-Smadi et al. [2019] used syntactic
and other features to improve the performance on the Arabic dataset of hotels
reviews.

4.3 Czech Dataset of Customer Reviews
The Czech dataset of customer reviews contains annotation only for polarity and
the target expressions in the reviews or review segments. Therefore, it is naturally
suitable for OTE. In fact the dataset was introduced by Tamchyna et al. [2015]
for this task specifically.

Tamchyna et al. [2015] used conditional random fields (CRF, see Section 5.3)
using manually designed rules as a feature, together with morpho-syntactic fea-
tures and subjectivity lexicon. They observed that adding those features improves
recall, but lowers precision, however, the F-measure still improves for the (short)
segments (see Table 4.3).

Features Precision Recall F-measure

surface 0.85 0.37 0.51
+morpho-syntactic 0.76 0.54 0.63
+sublex 0.78 0.55 0.65
+rules 0.77 0.58 0.66

Table 4.3: Precision, recall and f-measure obtained using various feature sets for
the segments of reviews [Tamchyna et al., 2015].

This dataset was also used by Glončák [2016] to reproduce the experiment of
Tamchyna and Veselovská [2016] on the Czech data. However, this is experiment
aimed to identify the aspect category, not OTE.
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5. Methods

5.1 Data Preprocessing
For the experiments we used two datasets of reviews, one in English and Czech.
We used the English data (on the restaurant domain) for the Subtask 2 of Taks 5
of SemEval 2016 [Pontiki et al., 2016]. The description of the dataset is provided
in Section 3.1. The Czech dataset of customer reviews of electronics is described
in Section 3.2

We used the available data to produce a sequence of OBI labels, that repre-
sent the target expression. To ensure consistency, we use UDPipe [Straka and
Straková, 2017] tokenize the data only once, before all the experiments.

IOB scheme is frequently used for the task, e.g. by Jakob and Gurevych [2010]
and Tamchyna et al. [2015]. “O” represents tokens that are outside of the target
expression, tokens that are at the beginning of the target expression are labeled
as “B” and all other tokens that are inside the expression are denoted by “I”.

The benefit of using the “B” label is that it allows to separate targets that are
adjacent to each other. However, this does happen in the English dataset only
once for the sentence:

(16) “We concluded with tiramisu chocolate cake, both were delicious.”

In this sentence, “tiramisu” and “chocolate cake” are two separate entities. The
UDPipe tokenizer also creates this problem for the sentence:

(17) “Poor customer service/poor pizza.”

This is because it fails to correctly split “service/poor” into two tokens. Arguably,
those are an anomaly and therefore we also perform the experiments with a
simpler OT scheme. We use OT scheme to denote whether a token is outside
(“O”) of a target, or a target (“T”). This is often referred to to as OI or IO scheme,
but we decided to use “T” instead of inside to avoid any confusion. However, in
the Czech dataset which consists mostly of just keywords this happens much more
often and therefore we decided to strictly adhere to IOB for the Czech dataset.

After the sentences are split into tokens, each token is assigned an “O”, “B”
or “I” label based on all the start and end offsets for all target expressions in
the respective sentence. The start offset is the number of characters from the
beginning of the sentence that are not included in the target. All tokens that
begin within the range determined by the two offsets is labeled as “B” if it is the
first token in the opinion target expression or “I” if it is any consequent token in
the expression.

Sentences that do not contain any target expressions (i.e. out of scope sen-
tences) are ignored. This leaves us with 1708 training sentences and 587 test
sentences.

In addition, we use UDPipe to extract syntactic and morphological features
described in Chapter 2.

The surface word forms whose lemma occurs only once in the data are replaced
by a special out-of-vocabulary (OOV) token. This allows the models to make
generalizations about rare words.
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The targets in the data do not overlap, which justifies the use of the IOB
scheme, with only one exception. The whole sentence1

(18) “– This is one of my top lunch spots, huge portions, fast service and
amazing margaritas!!”

is labeled as a “NULL” target. However, this does not fit the annotation guide-
lines, the “NULL” targets are not supposed to be explicitly represented in the
sentence. Therefore, we ignore this target, as well as the rest of the “NULL”
targets, because they are not explicitly expressed in the textual data.

5.2 Baseline
As the baseline for our experiments, we use a simple lexical-based model, similar
to the ones described in Section 4.1.1. Our Baseline-dictionary only labels
the exact phrases extracted from the training data. The phrases are selected so
that more specific phrases (the longest possible phrase containing the tokens) are
identified, i. e. “wine list” is preferred to just “wine”. The shortcomings of this
approach are thoroughly analyzed in the work of Veselovská and Hajič Jr. [2013].

5.3 CRF
Lafferty et al. [2001] proposed conditional random fields (CRF) for sequence mod-
eling. It is a discriminative probabilistic graphical model. For observations X and
random variables Y, CRF is a graph where each vertex v is a representative for
some Yv. Conditioned on X, Yv obey the Markov property with respect to the
graph, i.e.

p(Yv|X, Yw, v ̸= w) ≈ p(Yv|X, Yw, v adjacent to w).

The conditional distribution p(Y|X) is modeled, therefore the model is called
discriminative. The model is similar to the (generative) hidden Markov model.

The important detail is that the probability distribution is conditioned to all
the observations. Therefore, if CRF are used to label a sentence, at each node,
the decision can be based on any part of the sentence. This allows for the use of
context, unlike the dictionary model from Section 5.2. However, this may require
meticulous feature engineering.

CRF have been used for various NLP tasks in the past, such as POS tagging,
named entity recognition, and speech recognition. For OTE specifically, CRF
were utilized for example by Li et al. [2010], Jakob and Gurevych [2010] and
Tamchyna et al. [2015].

First, we need to train the CRF, i.e. estimate the conditional probabilities
p(X|Y). This can be done using iterative gradient descent algorithms, or Quasi-
Newton methods such as the L-BFGS algorithm.

However, we are interested in finding the most likely sequence of labels, rather
than determining probability of a given sequence. Fortunately, this can be done
efficiently with the Vitterbi algorithm.

1Sentence id en_MercedesRestaurant_478010602:1
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5.4 Neural Networks
Neural networks have been successfully used for various NLP tasks, including the
subtasks of sentiment analysis. The winning submission to SemEval 2015 by Toh
and Su [2015] used convolution networks for aspect category identification.

Long sentences often contain words that are in a direct dependency but far
away from each other in the surface form of the sentence. Recurrent networks
are able to “remember” information throughout a long sequence by feeding its
output back to its input. However, repeating this process many times leads to
the gradients used to train the network’s weights become too small to be useful.
Hochreiter and Schmidhuber [1997] proposed long short-term memory units to
address the vanishing gradient issue.

LSTM mitigate this problem by using three trainable gates—input, output
and forget gate. Gated recurrent units (GRU) proposed by Cho et al. [2014]
are similar to LSTM with only the forget gate, which means that they have
fewer parameters; thus they require fewer resources to train while often providing
comparable performance.

In order to allow the network to use both, past and future information (relative
to the current position in the sequence), bidirectional recurrent neural networks
were proposed by Schuster and Paliwal [1997]. The bidirectional layer has two
hidden states—one for reading the input forward and another one for backward
reading. We decided to use such bidirectional version of LSTM, abbreviated as
BiLSTM.

Figure 5.1: A scheme of a single LSTM unit. The gates are denoted by σ.2

LSTM were particularly successful in handwriting recognition and a lot of
other tasks that require learning long-distance relationships. Tamchyna and
Veselovská [2016] used a network with LSTM units to identify the aspect cat-
egory because “syntactic relationships and long-distance dependencies may play
a significant role and that such phenomena may be better modeled with a recurrent
network”. We select a similar model for the same reason. The model of Tam-
chyna and Veselovská [2016] was ranked the best out of all the models submitted
to SemEval 2016 for the task for Russian and Turkish dataset.

The model that we use is based on the model used by Liu et al. [2015] for
OTE. They found that the model with LSTM outperforms feature-rich models

2Taken from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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based on CRF. Ding et al. [2017] proposed two extensions to the model of Liu
et al. [2015] for OTE based on syntactic rules (see Section 4.1.3). To address
the issue of over-fitting and training divergence, we used dropout between the
embedding and the recurrent layer. Dropout, as proposed by Srivastava et al.
[2014], is a technique in which only subset of nodes is considered in each training
step. The subset is chosen randomly at each training step.

The model based on Liu et al. [2015], which we denote as LSTM-1 consists of
an embedding layer, which is used to transform the vocabulary into word vectors
(see Section 1.2.1). The output of the embedding layer is then fed to a BiLSTM
layer. Subsequently, the output of the recurrent layer is fed to a densely connected
hidden layer which contains one neuron for each possible label. Then the output
is passed to softmax function

σ(x) = x
∥x∥

to select the most likely label.
Another model that we use is LSTM-2. It is similar to the LSTM-1 model,

the difference is that it uses two recurrent layers. The output of the (first) hidden
BiLSTM layer is fed into the second hidden BiLSTM layer. This is inspired by
the model of Tamchyna and Veselovská [2016].

Training

Recurrent networks often suffer from exploding gradients problem, detailed by
Bengio et al. [1994]. To address this issue, we use gradient clipping [Pascanu
et al., 2013].

In addition to that, we use a decreasing learning rate scheduler. The scheduler
has a fixed number of times the learning rate is decreased. The learning rate is
decreased by a constant factor if at least some (fixed constant) improvement to
the loss has not been achieved in some given number of epochs. This may help to
get closer to a local minimum that the optimization may be oscillating around.
However, if the value of the loss function is improving, the learning rate is not
affected and therefore this technique is unlikely to hurt the performance of a
model.

5.5 Evaluation Metrics
To compare the performance of our models we use precision, recall and F-measure
for the three types of labels—“B”, “I” and “O”, where we focus mainly on the
values for “B” and “I”, as those represent the targets. This is evaluated on the
token level.

It is also possible to evaluate precision, recall and F-measure on the target
level, i.e. consider not only tokens, but the whole target expression as the in-
stance. This is what the the SemEval’s evaluation tool does.

For the data described in Section 3.1, we also used the provided tool to mea-
sure precision, recall and F-measure as they were measured in the original task
of SemEval 2016. The values measured with this tool are always measured on
the test data, and they are only meant to provide a point of comparison to the
models in the original competition.
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In addition to this, we define two “generous” metrics. A metric that we call
permissive recall is the percentage of targets in which at least one token was
labelled by “B” or “I”. Similarly, we permissive precision to be a metric, in which
is calculated by the formula

precision = true positives
true positives + false positives .

However, in permissive precision, any predicted sequence of labels that are not
“O” is considered to be a true positive, if it has any overlap with a sequence of
target labels in the gold data.

Having a dedicated test set is important for the purposes of a competition.
However, as the data are already small, we decided to use both, training and
testing dataset together to perform 5-fold cross-validation to obtain more robust
values of the metrics defined above.

5.5.1 Analysis of the Results
The goal of this thesis is to establish whether the features based on syntactic
relations, described in Chapter 2, can be used to improve the performance of the
models.

To analyze the results, we compare pairs of predictions—one produced by a
model that has access to the additional syntactic features and one that does not.
We do this by producing the difference of the confusion matrices for the basic
model and the model with syntactic features for every feature. We also compare
individual examples of missclassification that occurred on the test data set.

In addition, we would like to establish whether the models produce different
kinds of errors. Since we would like to compare pairs of observations (i.e. one
produced by the model with syntactic features) it seems that we would like to
use a paired test for this purpose.

However, there is yet no consensus on how to use statistical test for comparing
classifiers, because multiple issues arise. Firstly, the number of observations that
we have is quite small, which increases the probability of the error of the second
type—not rejecting the null hypothesis that the models are producing predictions
with the same distribution (of errors).

More importantly, most tests assume independence of the observations, in this
case the predictions of a model or an evaluation metric computed from those. It
is not clear when two models can be assumed to be independent. For a similar
reason, cross-validation cannot be used (without producing some probability of
error) to obtain more observations as their are not independent.

Dietterich [1998] recommends using McNemar’s test for the models that can
be trained only once, for example large neural models that take days to learn.
McNemar’s test [McNemar, 1947] is a test of marginal homogeneity, i.e. the null
hypothesis states that the marginal probabilities are the same. This is trivially
true if the models produce the same prediction. On the other hand, if two models
produce significantly different results, we would expect to reject the null hypoth-
esis. McNemar’s test was defined for 2 × 2 contingency tables, which means that
it is suitable only for binary classification, but the test has been extended to
accommodate for multiple categories, notably by Cochran [1950].
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6. Experiments
In this chapter, we provide an outline of the experiments we performed, following
Chapter 7 that lists the results of the experiments. Our focus is not neces-
sarily to find the model that has the best performance, but to observe
how the syntactic features that we proposed in Chapter 2 can influence
the performance of the models.

First we perform a number of experiments using cross-validation on the whole
dataset of restaurant reviews from Section 3.1. Based on those results we select
one model to evaluate against the test data provided for SemEval 2016 and an-
alyze the behavior of the model depending on whether the syntactic features are
used.

Finally, we provide the results of some of the models on the Czech dataset
(Section 3.2) to provide a point of comparison across languages.

6.1 Baseline Model
We implement a trivial model to obtain a basic point of comparison. The model
extract words and phrases from the training data. As we discussed in Section 3.1,
only the first mention of the entity is labeled. Therefore, the model labels the
first occurrence of any phrase from the vocabulary extracted from the training
data.

6.2 CRF Models
We decided to use the L-BFGS method, because it has been used by Li et al.
[2010] for the same task. After performing a few experiments with a randomly
selected validation set, we chose to use 200 iterations for the CRF models, using
0 for L1 regularization and 0.01 for L2 regularization, and we allowed transitions
that are not observed in data.

We use python-crfsuite, a python binding to CRFsuite software to train a
CRF model on the data from Chapter 3. We decided to use the previous and the
following tokens as the features, inspired by Tamchyna et al. [2015] who used 2
previous and 2 following tokens (in addition they also extracted all bigrams and
trigrams).

In addition to the word form of a current token, we provide the CRF with the
previous and the following word. This is our CRF-basic model. CRF-syntax
is a model that in addition to the aforementioned features uses the syntactic
features that we proposed in Chapter 2 for every token.

6.3 Models with LSTM
We chose 3 variations of the LSTM neural model:

1. LSTM-1—a model with a single hidden LSTM layer,

2. LSTM-emb—a LSTM-1 model with pre-trained word vectors,
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3. LSTM-2—a model with two LSTM layers.

All of these models have a basic version that only uses the surface form of the
tokens and a syntax version, using the features proposed in Chapter 2 in addition
to the surface form. We use TensorFlow 1.12.0 [Abadi et al., 2015] to implement
the models.

We use a GPU device1 to perform the experiments with the neural models
as they are computationally expensive but can be significantly sped up with
(massive) parallelism provided by the GPU devices. To allow for more efficient
processing, all the sequences should be of equal length. Based on the lengths of
sentences (in tokens) reported in Chapter 3, we chose the length of the sequences
to be 100. Sequences that are longer are trimmed from the end to 100 tokens.

We run several experiments evaluating the results on a small randomly se-
lected validation set. From the observation of the performance on the validation
set, we decided to use 64 LSTM units on the first layer for all the models, and 32
on the second layer for LSTM-2 model. Those numbers (powers of 2) are selected
with the performance of GPU units in mind.

We chose the size of the embeddings of the features to be as follows

Feature Embedding Size

word form 100
UPOS 2
DEPREL 8
XPOS 2
FEATS 8
HEAD UPOS 2
HEAD DEPREL 8
HEAD LEMMA 100
SENT 2
HEAD SENT 2
SIBLING SENT 1

Table 6.1: The sizes of the embeddings for the features of the neural models.

Similarly, we chose to train the models for 80 epochs. For the model with 2
layers, we use 200 training epochs. This is based on the performance on a vali-
dation set for both datasets. However, this model is computationally expensive,
and therefore we refrain from using it. All the other parameters can be found in
the attached configuration files.

1We used GeForce GTX 1050 for our experiments.
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7. Results
In this chapter, we provide the values of performance measures of the models for
groups of features. The models name stands for the model that has been trained
only on the word forms. The abbreviation + syntax stands for features based on
the UD analysis, that are not based on the (dependency) head, namely UPOS,
DEPREL, XPOS, and FEATS. The abbreviation + head means that features
based on the head, i.e. HEAD UPOS and HEAD DEPREL, have been used in
addition to syntax. The abbreviation + sentiment means that the features based
on the subjectivity lexicon have been added to the previous two sets of features,
namely SENT, HEAD SENT and SIBLING SENT.

7.1 Baseline model
The trivial model using phrase dictionary achieved permissive precision of 0.24
and permissive recall of 0.76.

Precision Recall F-measure

B 0.17 0.68 0.28
I 0.65 0.13 0.22

Table 7.1: Cross-validated precision, recall and F-measure for “B” label for the
CRF models on the English dataset.

7.2 English Dataset of Restaurant Reviews

7.2.1 CRF models
Table 7.2 shows the precision, recall and F-measure for the “B” label, Table 7.3
shows the same metrics for the “I” label. We omit the measures for the “O” as
the information about miss-classification of this label is already included in the
precision of the other two labels. Table 7.4 shows the values of the permissive
metrics described in Section 5.5. Those metrics depict whether a target was
identified at all, not necessarily with the right boundaries.

B Precision B Recall B F-measure

CRF 0.74 0.64 0.69
CRF + syntax 0.73 0.63 0.67
CRF + head 0.74 0.64 0.69
CRF + sentiment 0.73 0.65 0.69
CRF + head’s lemma 0.72 0.63 0.67

Table 7.2: Cross-validated precision, recall and F-measure for “B” label for the
CRF models on the English dataset.
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I Precision I Recall I F-measure

CRF 0.65 0.41 0.50
CRF + syntax 0.61 0.43 0.50
CRF + head 0.60 0.43 0.50
CRF + sentiment 0.63 0.45 0.52
CRF + head’s lemma 0.62 0.42 0.50

Table 7.3: Cross-validated precision, recall and F-measure for “I” label for the
CRF models on the English dataset.

Permissive Precision Permissive Recall

CRF 0.80 0.70
CRF + syntax 0.79 0.69
CRF + head 0.80 0.71
CRF + sentiment 0.79 0.71
CRF + head’s lemma 0.79 0.70

Table 7.4: Cross-validated permissive precision, recall for the CRF models on the
English dataset.

Binary Labels

In addition to using the IOB scheme, we also try to use binary labels, as explained
in Section 5.1. Table 7.6 shows the permissive metrics for the binary labels. The
results are almost the same as the ones for IOB labels, displayed in Table 7.4.
Table 7.5 shows the precision, recall and F-measure for the label “T” indicating a
target. The values for “T” label are higher, however, “T” represents both “B” and
“I”. Therefore, based on the permissive metrics, which does not show significant
difference in performance, in the rest of the experiments we stick to the IOB
scheme.

T Precision T Recall T F-measure

CRF 0.78 0.61 0.68
CRF + syntax 0.76 0.60 0.67
CRF + head 0.75 0.59 0.66
CRF + sentiment 0.76 0.63 0.68
CRF + head’s lemma 0.75 0.54 0.63

Table 7.5: Cross-validated precision, recall and F-measure for “T” label for the
CRF models on the English dataset.

Data Filtered on Lemma

The CRF model does not exhibit any significant difference on the English dataset
for the added features. We replace the surface forms whose lemmas occur only
once with a special out-of-vocabulary (OOV) token. In this scenario we are pur-
posely hiding the information about some tokens from one model, while providing
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Permissive Precision Permissive Recall

CRF 0.79 0.71
CRF + syntax 0.79 0.69
CRF + head 0.79 0.70
CRF + sentiment 0.79 0.72
CRF + head’s lemma 0.78 0.64

Table 7.6: Cross-validated permissive precision, recall for the CRF models on the
English dataset, using only binary labels.

at least some information to the other. This is disadvantages the model that has
only access to the word forms (especially on such a small dataset) but it tells us
whether the features can be used to infer the necessary information at all.

Now we can observe some difference in the precision, recall and F-measure for
the “B” (Table 7.7) and “I” label (Table 7.8). The permissive precision and recall
(Table 7.9) show a similar trend to the precision and recall for the labels—while
precision tends to decrease, recall tends to increase with the added features.

B Precision B Recall B F-measure

CRF + OOV 0.72 0.48 0.58
CRF + OOV + syntax 0.71 0.59 0.64
CRF + OOV + head 0.70 0.60 0.64
CRF + OOV + sentiment 0.72 0.62 0.66
CRF + OOV + head’s lemma 0.70 0.61 0.65

Table 7.7: Cross-validated precision, recall and F-measure for “B” label for the
CRF models on the filtered English dataset.

I Precision I Recall I F-measure

CRF + OOV 0.61 0.26 0.36
CRF + OOV + syntax 0.60 0.43 0.50
CRF + OOV + head 0.57 0.43 0.49
CRF + OOV + sentiment 0.57 0.44 0.50
CRF + OOV + head’s lemma 0.61 0.41 0.49

Table 7.8: Cross-validated precision, recall and F-measure for “I” label for the
CRF models on the filtered English dataset.

7.2.2 LSTM
First we perform the same experiment as for the CRF model with the unfiltered
data. The metrics for “B” and “I” are displayed in Table 7.10 and Table 7.11
respectively, the permissive metrics are in Table 7.12.
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Perm. Precision Perm. Recall

CRF + OOV 0.80 0.54
CRF + OOV + syntax 0.76 0.64
CRF + OOV + head 0.75 0.65
CRF + OOV + sentiment 0.77 0.68
CRF + OOV + head’s lemma 0.77 0.68

Table 7.9: Cross-validated permissive precision, recall for the CRF models on the
filtered English dataset.

B Precision B Recall B F-measure

LSTM-1 0.67 0.69 0.68
LSTM-1 + syntax 0.67 0.69 0.68
LSTM-1 + head 0.68 0.69 0.69
LSTM-1 + sentiment 0.67 0.69 0.68
LSTM-1 + head’s lemma 0.65 0.69 0.67

Table 7.10: Cross-validated precision, recall and F-measure for “B” label for the
LSTM-1 models on the English dataset.

Filtered Data

Our first neural model LSTM-1 with a single layer shows similar trends to the ones
observed for the CRF model on the filtered data. Table 7.13 and Table 7.14 show
the values of precision, recall and F-measure for “B” and “I” labels respectively,
Table 7.15 shows the values permissive precision and recall for the model on the
filtered data.

As Table 7.14 shows, the recall for the “I” label increased significantly. How-
ever, this is not surprising, since the model does not have acces to the surface
form of lemmas of words that occur only once, i.e. adding the lemma of the head
is a significant advantage.

7.2.3 Overview of Models
Based on the results mentioned above, we selected the set of features to be used
to be the +sentiment feature set, i.e. all the features except for the lemma of
the head. Although some results may suggest that the lemma of the head may
improve performance, it is computationally expensive, especially for a neural
model with pre-trained word vectors. In addition to the reported results, we
tried to change the parameters of the model, such as the number of LSTM units
etc. but we did not manage to achieve any significantly different results.

7.3 Performance on the SemEval Test Data
We train the LSTM-emb model with and without the syntactic features on the
training set provided for SemEval 2016 (see Section 3.1). We meassure the per-
formance of the two model on the provided test set.
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I Precision I Recall I F-measure

LSTM-1 0.55 0.43 0.48
LSTM-1 + syntax 0.55 0.41 0.47
LSTM-1 + head 0.54 0.44 0.49
LSTM-1 + sentiment 0.55 0.43 0.48
LSTM-1 + head’s lemma 0.52 0.47 0.49

Table 7.11: Cross-validated precision, recall and F-measure for “I” label for the
LSTM-1 models on the English dataset.

Perm. Precision Perm. Recall

LSTM-1 0.72 0.77
LSTM-1 + syntax 0.74 0.77
LSTM-1 + head 0.74 0.77
LSTM-1 + sentiment 0.73 0.77
LSTM-1 + head’s lemma 0.71 0.78

Table 7.12: Cross-validated permissive precision, recall for the LSTM-1 models
on the English dataset.

Table 7.19 shows the metrics that we described in Section 5.5 and used in the
previous sections to compare the models. We can see that the values are roughly
the same for both models. We can observe a slight trend similar to the previous
results, i.e. the precision goes decreases and recall increases. However, such small
differences are not sufficient to draw any conclusions.

The SemEval evaluation tool evaluates the F-measure to be 0.64 and 0.65 for
for the basic and the model with syntactic features respectively. The precision is
0.61 and 0.59, recall 0.68 and 0.68, both for the basic model and the model with
syntactic features respectively. Both outperform the baseline used for the task at
SemEval 2016 (see Table 4.2).

McNemar’s test gives a p-value of approximately 0.47. Therefore, we cannot
reject the null hypothesis that the model without and with syntactic features
produce different kinds of errors.

To explore how the individual features may have influenced the predictions,
we used graphs that we call confusion graph (see Figure 7.1). It is a difference
of of the confusion matrix of the model with syntactic features and the model
without syntactic features. Therefore, positive numbers on the diagonal indicate
that an error has been fixed, while outside of the diagonal it is indicated by
negative numbers.

To make the graph more intuitive, we display all the matrix elements that
represent an improvement in green and the rest in red. The hue is proportional
to the percentage of the changes for the specific value of the feature. For confusion
graphs for all the features and their values see Attachment A.2–A.10. Feature
values for which no change occurs are not displayed. There does not seem to be
any noticeable pattern in the amount of errors that were corrected.

There are some sentences, where the model with syntactic features produced
a better result. However, these are only anecdotal, and we cannot use them to
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B Prec. B Recall B F-measure

LSTM-1 + OOV 0.71 0.46 0.56
LSTM-1 + OOV + syntax 0.71 0.47 0.57
LSTM-1 + OOV + head 0.70 0.47 0.56
LSTM-1 + OOV + sentiment 0.68 0.50 0.57
LSTM-1 + OOV + head’s lemma 0.68 0.50 0.57

Table 7.13: Cross-validated precision, recall and F-measure for “B” label for the
LSTM-1 models on the English dataset.

I Precision I Recall I F-measure

LSTM-1 + OOV 0.52 0.17 0.25
LSTM-1 + OOV + syntax 0.56 0.20 0.29
LSTM-1 + OOV + head 0.57 0.21 0.31
LSTM-1 + OOV + sentiment 0.55 0.20 0.29
LSTM-1 + OOV + head’s lemma 0.48 0.33 0.39

Table 7.14: Cross-validated precision, recall and F-measure for “I” label for the
LSTM-1 models on the English dataset.

make the claim that the model generally improved the predcition as it introduces
new errors. The model with syntactic features managed to identify some of the
targets that the model without the features did not, for example:

(19) “As usual the omikase didn’t disappoint in freshness, although it scored
low on creativity and selection.”

(20) “The coffe (sic!) is very good, too.”

Example 20 is interesting since the target contains a spelling mistake.
On the other hand, it did not find some that the model without the features

managed to detect, such as:

(21) “Everything, and I mean everything on the menu is delectable.”

Sometimes the model identified a whole phrase, that was only partially se-
lected by the model without the features, such as Examples 22 and 23 respec-
tively.

(22) “One of the best Sushi place in town.”
(23) “One of the best Sushi place in town.”

In Examples24 the model identified only a part of the target “Creme Brulee”,
however, it is still much better than the prediction of the model without the
syntactic features (Example 25).

(24) “The appetizer was interesting, but the Creme Brulee was very savory
and delicious.”

(25) “The appetizer was interesting, but the Creme Brulee was very savory
and delicious.”
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Perm. Precision Perm. Recall

LSTM-1 + OOV 0.78 0.55
LSTM-1 + OOV + syntax 0.78 0.55
LSTM-1 + OOV + head 0.77 0.55
LSTM-1 + OOV + sentiment 0.78 0.56
LSTM-1 + OOV + head’s lemma 0.74 0.60

Table 7.15: Cross-validated permissive precision, recall for the LSTM-1 models
on the English dataset.

B Prec. B Recall B F-measure

CRF 0.74 0.64 0.69
CRF + sentiment 0.73 0.65 0.69
LSTM-1 0.67 0.69 0.68
LSTM-1 + sentiment 0.67 0.69 0.68
LSTM-emb 0.71 0.71 0.71
LSTM-emb + sentiment 0.71 0.71 0.71
LSTM-2 0.63 0.70 0.66
LSTM-2 + sentiment 0.66 0.67 0.66

Table 7.16: Cross-validated precision, recall and F-measure for “B” label for the
LSTM-1 models on the English dataset.

7.4 Czech Dataset of Customer Reviews
To provide a point of comparison, we also perform some of the experiments on
the Czech dataset. We did not run the model with the pre-trained embeddings
for the Czech data as we did not find any available embeddings of the same size
(such that they would satisfy our device restrictions).

7.4.1 CRF models
We perform the same experiments as in the Section 7.2, except for the LSTM-
emb model, due to the memory restriction of the hardware as we did not find
pre-trained word vectors for Czech that would fit into the memory of the devices
that we have available.

The results for the basic CRF model are even more discouraging than the
equivalent results for the English dataset. Table 7.20 and Table 7.21 display the
metrics for the “B” and “I” label, Table 7.22 shows the values of the permissive
metrics.

7.4.2 Overview of Models
To provide a comparison, we performed the same experiments as in the Sec-
tion 7.2.3. Table 7.20 and Table 7.21 show precision, recall and F-measure for
“B” and “I” labels respectively. Table 7.22 displays the permissive metrics.
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I Precision I Recall I F-measure

CRF 0.65 0.41 0.50
CRF + sentiment 0.63 0.45 0.52
LSTM-1 0.55 0.43 0.48
LSTM-1 + sentiment 0.55 0.43 0.48
LSTM-emb 0.66 0.46 0.54
LSTM-emb + sentiment 0.66 0.48 0.56
LSTM-2 0.50 0.50 0.50
LSTM-2 + sentiment 0.48 0.50 0.49

Table 7.17: Cross-validated precision, recall and F-measure for “I” label for the
LSTM-1 models on the English dataset.

Perm. Precision Perm. Recall

CRF 0.80 0.70
CRF + sentiment 0.79 0.71
LSTM-1 0.72 0.77
LSTM-1 + sentiment 0.73 0.77
LSTM-emb 0.75 0.81
LSTM-emb + sentiment 0.78 0.80
LSTM-2 0.70 0.79
LSTM-2 + sentiment 0.70 0.79

Table 7.18: Cross-validated permissive precision, recall for the LSTM-1 models
on the English dataset.

B Precision B Recall B F-measure

LSTM-1 0.68 0.67 0.67
LSTM-1 + sentiment 0.66 0.67 0.67

I Precision I Recall I F-measure

LSTM-1 0.58 0.42 0.48
LSTM-1 + sentiment 0.56 0.44 0.49

Perm. Precision Perm. Recall

LSTM-1 0.73 0.77
LSTM-1 + sentiment 0.72 0.79

Table 7.19: The performance measures for the
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Figure 7.1: A confusion graph for “nmod” value of the DEPREL feature, obtained
by evaluating the model on the SemEval test data.

B Precision B Recall B F-measure

CRF 0.78 0.60 0.68
CRF + syntax 0.72 0.60 0.65
CRF + head 0.71 0.59 0.64
CRF + sentiment 0.70 0.59 0.64
CRF + head’s lemma 0.74 0.57 0.65

Table 7.20: Cross-validated precision, recall and F-measure for “B” label for the
CRF models on the Czech dataset.

I Precision I Recall I F-measure

CRF 0.45 0.22 0.29
CRF + syntax 0.38 0.20 0.26
CRF + head features 0.33 0.20 0.25
CRF + sentiment features 0.36 0.20 0.26
CRF + head’s lemma 0.40 0.16 0.22

Table 7.21: Cross-validated precision, recall and F-measure for “I” label for the
CRF models on the Czech dataset.
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Permissive Precision Permissive Recall

CRF 0.80 0.62
CRF + syntax 0.73 0.63
CRF + head 0.72 0.62
CRF + sentiment 0.72 0.62
CRF + head’s lemma 0.76 0.60

Table 7.22: Cross-validated permissive precision, recall for the CRF models on
the Czech dataset.

B Prec. B Recall B F-measure

CRF 0.78 0.60 0.68
CRF + sentiment 0.70 0.59 0.64
LSTM-1 0.77 0.61 0.68
LSTM-1 + sentiment 0.78 0.61 0.68
LSTM-emb — — —
LSTM-emb + sentiment — — —
LSTM-2 0.64 0.63 0.63
LSTM-2 + sentiment 0.66 0.64 0.65

Table 7.23: Cross-validated precision, recall and F-measure for “B” label for the
LSTM-1 models on the Czech dataset.

I Precision I Recall I F-measure

CRF 0.45 0.22 0.29
CRF + sentiment 0.36 0.20 0.26
LSTM-1 0.39 0.12 0.18
LSTM-1 + sentiment 0.50 0.17 0.26
LSTM-emb — — —
LSTM-emb + sentiment — — —
LSTM-2 0.31 0.16 0.19
LSTM-2 + sentiment 0.25 0.05 0.08

Table 7.24: Cross-validated precision, recall and F-measure for “I” label for the
LSTM-1 models on the Czech dataset.
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Perm. Precision Perm. Recall

CRF 0.80 0.62
CRF + sentiment 0.72 0.62
LSTM-1 0.79 0.63
LSTM-1 + sentiment 0.79 0.63
LSTM-emb — —
LSTM-emb + sentiment — —
LSTM-2 0.67 0.65
LSTM-2 + sentiment 0.68 0.66

Table 7.25: Cross-validated permissive precision, recall for the LSTM-1 models
on the Czech dataset.
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Conclusion
In this thesis we aimed to investigate whether an automatic syntactic analysis can
be used to improve performance of the models used for opinion target extraction.
Opinion target extraction is a subtask of sentiment analysis that aspires to extract
the entity that is being evaluated in an opinionated piece of text. We did not
pursue the goal of finding the best fine-tuned model that would achieve the best
performance. Rather, we use the models to determine if the features can be used
in OTE.

For the experiments, we proposed 10 features based on the annotation schema
of Universal Dependencies. Based on the experiments, we decide to use 9 of them
as the feature set, namely UPOS, DEPREL, XPOS, FEATS provided directly by
the tool for automatic UD analysis. We also used UPOS and DEPREL of the
dependency head of each word (token). In addition to that we propose 3 features
based on a subjectivity lexicon, two of which are also based on the dependency
tree.

We used two kinds of model to conduct the experiments—CRF and a neural
model with LSTM units. We proposed 3 versions of the LSTM model. We selected
those two models specifically because they were both successfully employed in
OTE. Both are sequential models—CRF is a non-neural discriminative model,
whereas LSTM is a recurrent neural model.

For the experiments, we used the dataset designed specifically for an OTE
task at SemEval 2016. We selected two versions of the LSTM model with pre-
trained embeddings—one with the aforementioned features and one without—to
compare it to the submissions to SemEval 2016. Our model outperformed the
baseline of the competition. We also used a Czech dataset designed for the same
task to see whether the effects of the features are the same for other languages
too. Since Czech is a morphologically rich language, it is a suitable candidate for
such comparison.

Nevertheless, our results are inconclusive. We did not observe any pattern of
improvement that would appear when the features have been added to a model.
The changes in the performance are generally small and can go either direction.

We managed to use the features to improve the performance of the CRF model
if surface forms of unique words have been masked by a special OOV value. This
could be useful in cases where the surface form contains personal information and
has to be removed from the raw test, but the results of morpho-syntactic analysis
can be stored. However, this improvement did not translate well to our LSTM
models, which may suggest that the recurrent neural models are already capable
of learning some sort of dependency relations.

In some cases, the model with syntactic features managed to provide a better
prediction.

(26) “It?s (sic!) served with either a peppercorn sauce or red wine reduc-
tion, though both were indistinguishable in taste.”

E.g. in Example26 the model with the features managed to correctly identify
“peppercorn sauce” as opposed to just “sauce”, which is what the model without
the features selected. However, in the same sentence, the model with the features
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picked red wine as a target, unlike the model without the features that managed
to pick the complete target.

Although in some cases the feature might solve a particular error, it also
introduces some new errors. This is also dependent on the quality of the analysis
provided by the UD analyzer. We used a version of McNemar’s test to determine
whether the two models perform different kinds of errors, but we failed to reject
the null hypothesis that they do not.

There is no substantial basis to claim that the proposed features improve
performance of the models in general. In some specific cases they may be useful,
but further investigation is necessary to support such claim.

The number of models that we used in this thesis is quite small, as the focus
of the thesis is not to search for the best model. Every model that we pro-
posed can be fine-tuned. Other more complex models could be used to boost the
performance as well.

In addition to fine-tuning the models, it would be interesting to compare
results of the models and the syntactic features across different domains and
languages. As we discussed in Chapter 3, the number of datasets for this task is
modest. To further the investigation, it would be suitable to create new manually
annotated datasets. Another issue is that the quality of the features depends
on the quality of the syntactic analysis. Although we did not find convincing
evidence that the proposed features are useful in general, there may be some
specific configuration in which they may help.
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List of Abbreviations
ABSA aspect based sentiment analysis

BiLSTM bidirectional long short-term memory

CRF conditional random fields

DEPREL dependency relation

LSTM long short-term memory

MPQA Multi-Perspective Question Answering

NLP natural language processing

OTE opinion target expression

OOV out-of-vocabulary

SA sentiment analysis

UD Universal Dependencies

UPOS universal part-of-speech
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A. Attachments

A.1 Source Code
The electronic attachment to the thesis is the source code used for the experi-
ments.
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A.2 Confusion Tables for UPOS
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A.3 Confusion Tables for DEPREL
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A.4 Confusion Tables for XPOS
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A.5 Confusion Tables for FEATS
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A.6 Confusion Tables for HEAD UPOS
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A.7 Confusion Tables for HEAD DEPREL
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A.8 Confusion Tables for SENT
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A.9 Confusion Tables for HEAD SENT
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A.10 Confusion Tables for SIBLING SENT

B
I

O

Pr
ed

ict
ed

 la
be

l

B I OTrue label

3
1

-4

-1
2

-1

11
6

-1
7

Fa
lse

fix
ed

 -1
2 

of
 3

98
 e

rro
rs

B
I

O

Pr
ed

ict
ed

 la
be

l

B I OTrue label

2
2

-4

1
3

-4

4
1

-5

Tr
ue

fix
ed

 0
 o

f 1
76

 e
rro

rs

65


	Introduction
	Sentiment Analysis
	Objectives
	Methods
	Word Embeddings


	Syntactic Features
	Universal Dependencies
	Syntactic Features
	Morphological Features
	UDPipe

	Subjectivity Lexicon
	Feature Overview

	Data
	Data from Semeval 2016 Task 5
	Customer Reviews in Czech
	Other Datasets

	Related Work
	Opinion Target Extraction
	Lexical-Based Methods
	Machine Learning Methods
	Syntactic Features

	English Dataset of Restaurant Reviews
	Czech Dataset of Customer Reviews

	Methods
	Data Preprocessing
	Baseline
	CRF
	Neural Networks
	Evaluation Metrics
	Analysis of the Results


	Experiments
	Baseline Model
	CRF Models
	Models with LSTM

	Results
	Baseline model
	English Dataset of Restaurant Reviews
	CRF models
	LSTM
	Overview of Models

	Performance on the SemEval Test Data
	Czech Dataset of Customer Reviews
	CRF models
	Overview of Models


	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Source Code
	Confusion Tables for UPOS
	Confusion Tables for DEPREL
	Confusion Tables for XPOS
	Confusion Tables for FEATS
	Confusion Tables for HEAD UPOS
	Confusion Tables for HEAD DEPREL
	Confusion Tables for SENT
	Confusion Tables for HEAD SENT
	Confusion Tables for SIBLING SENT


