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Introduction
Financial markets are an essential part of the modern capitalist society. They help
for example to allocate resources, define an equilibrium price, boost productivity,
or bring capital.

While much of economics focuses on the mechanics of trading from the macro-
scopic view, this thesis will present the so-called market microstructure approach.
It is the area of financial economics that concerns the issues of the basic prin-
ciples of market structure, investor behaviour, and price-forming process. The
market microstructure studies has grown rapidly in the past years due to the fast
transformation of the financial market environment driven by technology and
globalisation.

The understanding of the formation and consequently finding of the equilib-
rium price is a difficult task. While creating the price is undoubtedly a com-
plicated process, markets somehow manage to do it automatically, and people
exchange goods easily.

A market can be either quota-driven or order-driven. On the one hand, the
quota-driven markets only display the bid and ask prices of authorized agents;
therefore, the prices are determined in advance. If we decide to buy or sell an
asset on a quota-driven market, we are assured that we can find an opposite offer
for the announced price. On the other hand, order-driven markets are in a sense
more free and open. Orders of all buyers and sellers are shown, and other people
may see the price and quantity. However, there is no guarantee that our order
will be executed since we are the ones determining the price. There are purely
quota-driven or order-driven markets, and also a mix of both principles.

The focus of this thesis are the order-driven markets. Especially the Stigler-
Luckock model. The main aim is to slightly improve the model in order to get a
more realistic model.

Firstly, the thesis will discuss some economic theory. The law of supply and
demand will be explained together with the description of order-driven markets
and their principles. The theoretical chapter will be closed by an introduction to
the problematic of stochastic processes and game theory. All the theory will be
then used in subsequent chapters.

Secondly, the Stigler-Luckock model will be defined in chapter 2. The model
itself has its drawbacks, which will be discussed, but it is a great starting point
for further exploration. Moreover, an extension with market makers will be de-
scribed.

Thirdly, the Stigler-Luckock model will be extended by additional features
that will be studied to get a somewhat deeper understanding of financial mar-
kets in chapter 3. The development and exploration of the new model and its
behaviour using Monte Carlo simulations is the core of this thesis. The main
contribution of this thesis lies in an investigation of various strategies and finding
the best one, which may help us to learn more about the markets.

Hopefully, this thesis will help its reader to understand more how the financial
markets function, and how agents trading on them behave.
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1. Theoretical background
As proposed in the introduction, the thesis is focusing on market behaviour, its
microstructure, and price forming process. Hence, some background theory must
be established first. First, the concept of supply and demand will be described
followed by some fundamental properties of contemporary markets. Then, a few
topics from mathematics related to the financial markets will be touched, namely
the theory of stochastic processes and game theory. The theory will be useful in
the following parts of the thesis in chapter 2 and chapter 3.

1.1 Supply and demand
People were in need of exchanging goods since the old-aged concept of division of
labour. However, there are important questions regarding the process, such as:
How to determine the price? How much of one resource is needed to get some
amount of another resource? Who decides that?

There is a simple though smart answer—the power of supply and demand.
This concept dates back to the 19th century to the French economist Leon Wal-
ras who published a comprehensive theory of exchange, production, money, and
market in general. Among others, he introduced the theory of supply and de-
mand [Walras, 2014]1. While supply somehow represents the amount of a product
available to be sold (for a specific price), the demand represents the amount of
the product desired to be bought (for a specific price). Interaction between these
two powers results in the formation of a price. Consequently, supply and demand
dictate the allocation of resources and help to distribute assets around the world.

The law of supply and demand is one of the key principles of economics. The
main thought is simple: On the one hand, a resource that has high supply and
low demand has a lower price. On the other hand, a resource that has low supply
and high demand has a higher price.

More rigorously: supply is a function that represents the dependence of the
amount of supplied goods on its price, and demand is a function that repre-
sents the dependence of the amount of demanded good on its price. Supply is
an increasing function of the price, and demand is a decreasing function of the
price. To be completely correct, this monotonicity rule applies to the majority of
goods, but there are a few exceptions—commodities whose demand is increasing
with price or whose supply is decreasing with price—for example, luxurious wares
whose purpose is giving social status rather than being used. Namely, a decre-
ment in the price of a painting undoubtedly results in decreased demand, not
increased demand. However, those exceptions are quite rare, and we will focus
on traditional goods from now on.

The supply and demand are usually considered to be continuous and strictly
monotonic functions of the price level. Those assumptions are quite natural and
have been used since their recognition by Walras [2014] in the 19th century. The
market’s behaviour is dependant on the shape and also the mutual position of
those 2 curves—they can either intersect or not. In general, they are supposed

1The original book dates back to 1874. The source for this thesis was its translated and
edited version from 2014.
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to be intersecting each other, and the intersection point is called the equilibrium
(or even the Walrasian equilibrium). The point represents a pair of Walrasian
price xW and Walrasian quantity VW for which supply and demand are equal
(illustrated in Figure 1.1). Let us denote supply by λ+(x) and demand by λ−(x),
where x is a price. Then

λ+(xW ) = λ−(xW ) = VW .

The price that is determined by the equilibrium is called the equilibrium price.
The equilibrium price is a goal because it maximizes the possible executable
volume of trades. The possible volume of trades as a function of price is always
bounded by the minimum of the two supply and demand.

Demand Supply
Price

Quantity

Equilibrium

�

�

�

�

Text

Figure 1.1: Illustration of supply and demand curves with an intersection point.

If the supply and demand curves do not intersect at any point of their do-
main, there is either excessive supply (demand is entirely lower than supply) or
insufficient supply (demand is entirely higher than supply) for all price-quantity
pairs (see Figure 1.2).

Note that the continuity assumption is usually not fulfilled in real life. Both
prices and quantities are generally discrete variables, which makes it impossible
for the functions to be continuous. For example, the so-called “minimum price
variation”, i.e. the smallest difference between two prices, for quoting and entry
of orders in securities traded, on the New York Stock Exchange is [NYSE Rules]:

(a) $0.01 for securities priced more (or equal) than $1.00, and
(b) $0.0001 for securities priced less than $1.00.

The Walrasian price is determined when supply matches the demand. How-
ever, Bouchaud and Donier [2015] remind that this description of a market is
only static and one crucial ingredient is absent—the transactions themselves.
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Figure 1.2: Illustration of supply and demand curves without intersection.

Walrasian theory does not explain what happens after the transaction. The Wal-
rasian auction is a concept in which each market participant calculates its demand
for all possible prices. That information is sent to an auctioneer who sets the price
in order to match the total demand and the total amount of the good. This auc-
tion setting can be viewed as a limiting case when the time between transactions
is infinitely long. However, in order to understand the market and price-forming
process, it is necessary to consider also the dynamics of the market, which is the
main goal of this thesis as well.

1.2 Order book
The theory of supply and demand is accepted among economists and finance ex-
perts. However, the financial market and price-forming process itself may appear
as a black box since the supply and especially the demand are not easily mea-
surable. Nevertheless, price of an asset is formed automatically and “painlessly”
despite the fact that all the processes behind it are complicated and complex.

So, how does it work in real life? How is the price determined?
Nowadays, millions of transactions happen every second all around the world.

For example, roughly 360 billion shares were traded on the New York Stock Ex-
change alone in years the 2002 and 2003 [Biais et al., 2005]. The majority of trades
happens in an entirely different manner than in the times when the Walrasian
supply and demand was defined. Trading increased in volume and speed, and
the physical exchange was sidelined. Special institutions—stock exchanges—were
established to replace traditional markets and to provide a suitable environment
for buyers and sellers to meet and realize trades. On top of that, electronic and
algorithmic trading is on the rise which is making trading quicker than ever before
(see the trend in the example from data from BIS2 in Figure 1.3).

As mentioned in the beginning, there are initially two types of markets—
quota-driven and order-driven. The main focus of this thesis are the order-driven

2The Bank for International Settlements is an international financial institution that is owned
by 60 member central banks (including the Czech National Bank), which was established in 1930
in order to serve the central banks as an environment for cooperation and to better collectively
understand the world economy. Its headquarters are in Basel, Switzerland, and its members
represent about 95% of world GDP [BIS brochure].
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Figure 1.3: Electronification of foreign exchange market in per cents (source: BIS
Markets Comittee, 2018).

markets that are characterized by openly displaying all offers of buyer and sellers
including prices and amounts.

Each order-driven market has a so-called order book. It can be imagined as
an electronic database where buyers and sellers record their offers. Those offers
are called orders, and they express an intention of a trader to carry out some
transaction on the market. Abergel et al. [2016] define the order book as a “file
in a computer” that is containing all available information about the incoming
orders. Each order must have at least these characteristics—a sign (buy or sell),
a price, a quantity, and a time stamp. Other authors (e.g. Bouchaud and Potters
[2002]) simply define that order book is a list of all buy and sell orders with their
corresponding price and volume, at a given instant of time.

First, let us distinguish two basic types of orders. This elemental division
is used by many authors across the field (e.g. Chakraborti et al. [2011], Maslov
[2000], or Luckock [2003]). The first kind is called a limit order and is determined
by its quantity and price. The trader arrives on the market, and she either likes
the current best price and buys (or sells) the asset instantly. Alternatively, the
current price is unsatisfactory, and she decides to wait for the price to become
more suitable (lower in the case of buying, higher in the case of selling). In
other words, the limit order is executed if and only if the price on the market
reaches the desired order’s price. The second basic type of orders is called Market
order. Its main characteristic is that the order must be executed immediately.
Nevertheless, the definition is not consistent. Maslov [2000] defines the market
order as an order of a somewhat impatient trader that needs to sell or buy the
asset instantly and who takes without thinking the best price that is currently
on the market. Luckock [2003] does not explicitly distinguish between limit and
market orders. A new order has a sign, price, and volume, and the classification is
determined by the price. If the order can be executed immediately, it is referred to
as a market order. This happens if there is a suitable opposite limit order already
on the market, i.e. a sell limit order with a lower price or a buy limit order with
a higher price. On the contrary, if the order cannot be executed immediately, it
is referred to as a limit order. It is placed on the market where it waits for its
execution.

Evidently, only limit orders stay on the market, so the order book is sometimes
referred to as a Limit Order Book (LOB).
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Abergel et al. [2016] add a so-called cancellation order to the two previously
mentioned. This is an order to cancel an existing limit order. Cancelling of orders
happens quite often in real life for various reasons, e.g. the limit order is in the
order book for some significant time, or the trend has changed, and the price of
the limit order is no longer realistic.

However, these terms and procedures will be used in the whole thesis, so it is
necessary to give them a proper definition to avoid misunderstanding.

Definition 1. An order to sell a quantity ω of an asset for a price p that is not
settled immediately is called a sell limit order (SLO).

An order to buy a quantity ω of an asset for a price p that is not settled
immediately is called a buy limit order (BLO).

Definition 2. An order to sell a quantity ω of an asset for a price p that is settled
immediately is called a sell market order (SMO).

An order to buy a quantity ω of an asset for a price p that is settled immediately
is called a buy market order (BMO).

Nowadays, each stock market has slightly different procedures and principles,
as summarized by Plačková [2011]. There are some strictly order-driven markets,
for example: the Computer Assisted Trading System (CATS) in Toronto, the
Cotation Assistée en Continu (CAC) in Paris, or the Automatic Order Matching
and Execution System (AMS/3) in Hong Kong. By comparison, the New York
Stock Exchange (and stock exchanges in the USA in general) uses a different
approach. The individual orders are paired by specialists, and any information
regarding the content of the order books is not publicly accessible.

Now, let us define some terminology that is common to all markets.

Definition 3. Let t represent time. Then let

(i) the bid price b(t) be defined as the maximum of all buy limit orders that are
in the LOB at the time t,

(ii) the ask price a(t) be defined as the minimum of all sell limit orders that are
in the LOB at the time t,

(iii) the spread s(t) be defined as the difference between the bid and ask at time
t, i.e. s(t) = b(t) − a(t),

(iv) the mid price m(t) be defined as the average of the bid and ask. m(t) =
a(t)+b(t)

2 ,
(v) the tick (or tick size) be a measure of the minimal possible upward or down-

ward movement of the price of a security

An illustration of an order book with the previously defined terms is in Fig-
ure 1.4. Note that some authors use the word “bid” simply for any buy limit
order and the word “ask” for any sell limit order.

The previous description of the order book, orders, and their properties was
from a financial and economic point of view. However, the so-called market mi-
crostructure resembles in many ways the physics of small particles. The field
studying the financial markets from the physicists’ perspective is called econo-
physics. It has gained quite a lot of attention in the past few decades. Its basis
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Figure 1.4: Illustration of limit order book with bid and ask (source: Todd et al.
[2016]).

are reaction-diffusion processes [Slanina, 2013], and the orders can be considered
as particles placed on a line. Naturally, there are two different groups of orders—
buy and sell orders. They can be presented as two types of particles with an
opposite charge. Challet and Stinchcombe [2001] compare these three analogies
between particles and orders:

• depositing: placing an order,
• evaporating: cancelling an order,
• annihilation: transaction (two opposite orders are deposited at the same

price and then immediately disappear from the market).

The order book shows the volume of an asset that is requested to by sold or
bought exactly for some specific price x. Traders may also be interested in the
volume that is on the market for that price or “better” (lower for sell orders and
higher for buy orders). That information is derived by simply summing all the
volumes of orders with price p and “better”. By doing so for all possible prices,
we get a so-called cumulative order book.

Now, let us take a look at some real-life example of an order book. However,
the order book is an ever-changing and unstable system. Its evolution is ruled
not only by observable and analytical variables but also by a random noise. In
order to reliably capture the shape of the order book, Bouchaud and Donier
[2015] chose to gather all orders in the Bitcoin market for five months (from May
2013 to September 2013) every 15 minutes. Then, they obtained a “relative”
order book by placing the current mid price in the middle (price 100), and by
consequently deriving a “relative” price for all orders, expressed as a ratio to the
mid price. Finally, they computed an average order book and average cumulative
order book (Figure 1.5). The order book can be linearly approximated around
the mid price. They choose the Bitcoin market because traders there are much
less strategic than in more mature financial markets and display their orders in
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the visible order book even quite far from the current price—which leads us to a
phenomena broadly seen in most of the financial markets.

Figure 1.5: Top: The average shape of the limit order book on the Bitcoin
market. The data are centred around the current mid-price, and come from 15
minute snapshots of the order book from May 2013 to September 2013. Bottom:
Cumulative order book of the same data. (Note that bid means buy limit order,
and ask means sell limit order). Source: Bouchaud and Donier [2015]

Bouchaud and Donier [2015] point out that even though the concept of order
books is close to Walras’s idealisation of supply and demand, order books still
have one fundamental issue: agents do not necessarily reveal their intentions by
placing orders. The orders are placed only by agents who are in urgent need to
buy or sell. The order book approximates the real supply and demand only in
a window very close to the current price. However, the order book around the
current price is distorted by influence of market makers and high frequency traders
whose orders reveal very little about the true underlying supply or demand. In
other words: the classical shape of the order book as a representation of the
supply and demand is problematic both far and close to the middle price. The
shape of the LOB far from the mid price does not reflect the true supply and
demand because traders do not want to show their intentions, and the shape
closer to the mid price is affected by trading strategies of other players.

1.2.1 Examples of order books’ procedures
Each stock exchange has different rules and procedures. In order to illustrate some
basic principles, we will introduce a few stock exchanges with their timetables.

9



London stock exchange
The leading electronic trading system on the London stock exchange is so-

called SETS. It is an order book that combines electronic order-driven trading
with integrated market maker liquidity provision3. A trading day on the London
Stock Exchange is divided into these sections [LSE Trading Hours]:

• 7:50-8:00 Entry phase: orders enter the market but will not be matched
up until 8:00 when the Opening auction occurs and a so-called execution
price is set to maximize the executable volume. The content of the order
book remains undisclosed during the Entry phase,

• 8:00-12:00 Continuous trading: regular trading period when orders may
be entered, amended, and cancelled,

• 12:00-12:05 Intraday auction: the order book’s content is undisclosed
again, and orders are not matched until the end of the auction (similar to
Entry phase),

• 12:05-16:30 Continuous trading: similar to the one in the morning,
• 16:30-16:35 Closing auction call: similar to the Opening auction, orders

may be entered, amended, and cancelled but will not be matched
• 16:35-16:40 Closing price crossing session: orders are matched, and

consequently the Closing price is settled.

New York stock exchange
The most renowned American stock exchange is the one in New York. The

trading day there has these sections [NYSE Trading Hours]:

• 7:30-9:30 Pre-opening session: orders may be entered and cancelled but
not matched. At 9:30 all matching orders are executed at a single price that
is settled in order to match maximum executable volume of orders,

• 9:30-15:45 Pre-Imbalance: regular trading period when orders can be
entered, amended, and cancelled,

• 15:45-16:00 Post-Imbalance: continuous trading period in which spe-
cial orders (Market-On-Close and Limit-On-Close) may be entered but not
cancelled or amended,

• 16:00 Closing Cross Price: closing auction in which Closing price is
calculated.

1.3 Stochastic processes
Many parameters regarding the topic of financial markets and order books can
be viewed as random processes. Parameters such as the mid price, bid, ask, price
of a new order, time between orders, etc. are random variables changing in time.
Depending on the model, time can be either discrete or continuous. The theory
in this section was obtained from and inspired by the lecture notes by Lachout
and Prášková [1998].

3liquidity provision will be further explained in section 2.4
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Definition 4. Let (Ω, A, P) be a probability space, (S, S) be a measurable space,
and T ⊂ R. A family of random variables {Xt, t ∈ T} defined on (Ω, A, P) with
values in S is called stochastic (or random) process.

If T = Z = {0, ±1, ±2, . . . } or T ⊂ Z, {Xt, t ∈ T} is called discrete time
stochastic process.

If T is a interval, {Xt, t ∈ T} is continuous time stochastic process.
For any ω ∈ Ω, Xt(ω) is a function on T with values in S which is called the

trajectory of the process.
The set S is called the state space of the process {Xt, t ∈ T}.

Definition 5. Let {Xt, t ∈ T} be a stochastic process such that for each t ∈ T
mean value E Xt exists. Then the function µt = E Xt defined on T is called
the mean value of the process {Xt, t ∈ T}. If E |Xt|2 < ∞ for all t ∈ T , then
the function defined on T × T by R(s, t) = E (Xs − µs)(Xt − µt) is called the
autovariance function of the process {Xt, t ∈ T}. The value R(t, t) is the variance
of the process at time t.
Example 1 (White Noise). A process {Wt, t ∈ Z} of uncorrelated random vari-
ables with zero mean value and equal finite variance is called White noise. Its
name comes from the analogy with physical properties of white light.

△
Example 2 (Brownian motion). Brownian motion is a stochastic process {Wt, t ≥
0} such that

• W0 = 0 and {Wt, t ≥ 0} has continuous trajectories,
• for any times 0 ≤ t1 < t2 < · · · < tn we have Wt2 − Wt1 ,Wt3 − Wt2 ,

. . . ,Wtn − Wtn−1 are independent random variables,
• for any 0 ≤ t < s, Ws − Wt has normal distribution with zero mean and

variance σ2(s − t), where σ2 > 0 is a constant.
Brownian motion, which is now broadly used in financial theory, was originally
derived for the description of the movement of small particles in a liquid.

△

1.3.1 Markov chains

Discrete time Markov chains

Definition 6. Let {Xn, n ∈ N0
4} be a discrete random process with values from

(S, S), where S is a countable set5. We call {Xn, n ∈ N0} a Markov chain if

P
(
Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = i0

)
=

= P
(
Xn+1 = j|Xn = i

)
= p

(n,n+1)
ij ,

(1.1)

for i0, . . . , in−1, i, j ∈ S that satisfy

P
(
Xn = i, Xn−1 = in−1, . . . , X0 = i0

)
> 0.

4N0 = {0, 1, 2, 3, . . . }
5A set S is countable if there exists an injective function f from S to the set of natural

numbers N = {1, 2, 3, . . . }, i.e. the set S has the same cardinality as some subset of N.
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The property in Equation 1.1 is called Markovian property. It can be explained
as the property guaranteeing that the future of the process is dependant only on
the present situation and not on the past.

The probabilities p
(n,n+1)
ij are called the transition probabilities from state i at

time n to state j at time n + 1. It is obviously true that

pij ≥ 0, i, j ∈ S;
∑
j∈S

pij = 1, i ∈ S. (1.2)

The matrix P(n,n+1) containing all possible combinations of transition proba-
bilities from time n to time n + 1, i.e.

P(n,n+1) =
(
p

(n,n+1)
ij

)
i,j∈S

,

is called the transition matrix. Since the time step is 1, it is sometimes referred
to as the first order transition matrix.

Transition probabilities can be naturally generalised, if we want to study
evolution of the process over wider steps:

p
(n,n+m)
ij = P

(
Xn+m = j|Xn = i

)
,

where m ≥ 1.
If the transition probabilities do not depend on time, we speak about a ho-

mogeneous Markov chain.

Definition 7. A Markov chain {Xn, n ∈ N0} is homogeneous if for all n ∈ N

pij = p
(n,n+1)
ij .

To finish the specification of Markov chains, we need to define initial distri-
bution that determines the probability distribution at time t = 0, i.e. a vector of
probabilities p = {pi, i ∈ S}, where

pi = P(X0 = i), i ∈ S.

We have
pi ≥ 0, i ∈ S;

∑
i∈S

pi = 1. (1.3)

Theorem 1 (Characterisation of Markov chains). Let {Xn, n ∈ N0} be a stochas-
tic process with state space S, where S is a countable. Let p = {pi, i ∈ S} satisfy
Equation 1.3, and let P =

(
pij

)
i,j∈S

be a matrix that satisfies Equation 1.2. Then
(Xn, n ∈ N0) is a homogeneous Markov chain with initial distribution p and tran-
sition matrix P if and only if for all finite dimensional distributions of the process
we have:

P
(
X0 = i0, X1 = i1, . . . , Xk = ik

)
= pi0pi0i1 . . . pik−1ik

,

for all i0, i1, . . . , ik ∈ S and for all k ∈ N0.

Proof. See page 17 in Lachout and Prášková [1998].
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It can be derived that for homogeneous Markov chains, the transition matrix
over n steps P(n) can be simply computed as

P(n) = Pn,

where Pn denoted the n-th power of the matrix P. The relation is called the
Chapman-Kolmogorov equation.

Another concept is called stationary distribution. It gives information about
the stability of the random process, and, in certain cases, describes the limiting
behaviour of the Markov chain.

Definition 8. Let {Xn, n ∈ N0} be a homogeneous Markov chain with state space
S and transition matrix P. Let π = {πj, j ∈ S} be some probability distribution
on S, i.e. πj ≥ 0, j ∈ S, ∑

j∈S πj = 1. Then π is called a stationary distribution,
if

πT = πTP,

where πT denotes the row vector that is the transpose of the column vector π.

Continuous time Markov chains

Definition 9. Let {Xt, t ≥ 0} be a discrete random process with values from
(S, S), where S is a countable set. We call {Xt, t ≥ 0} a continuous Markov
chain if

P
(
Xt = j|Xs = i, Xtn = in, . . . , Xt1 = i1

)
=

= P
(
Xt = j|Xs = i

)
= pij(s, t),

(1.4)

for all i, j, i1, . . . , in ∈ S and for all 0 ≤ t1 < t2 < · · · < tn < s < t, such that

P
(
Xs = i, Xtn = in, . . . , Xt1 = i1

)
> 0.

The probabilities pij(s, t) are called the transition probabilities from state i
at time s to state j at time t, and the probabilities pj = P(X0 = j), j ∈ S, are
the initial probabilities.

From now on, we will discuss only homogeneous Markov chains, i.e. processes
satisfying

pij(s, s + t) = pij(t), s, t ≥ 0.

Since the time is continuous, we need for all i, j ∈ S a whole set of probabilities
{pij(t), t ≥ 0}, so that ∑

j∈S pij(t) = 1 for all i ∈ S, and consequently a whole
system of transition matrices {P(t), t > 0}.

The process {Xt, t ≥ 0} is determined by the vector of initial probabilities
p(0) = {pi(0), i ∈ S} and the system of transition matrices {P(t), t > 0} if for
any times 0 < t1 < t2 < · · · < tk and for any states i0, i1, . . . , ik ∈ S, k ∈ N0, it is
true that

P
(
X0 = i0, Xt1 = i1, . . . , Xtk

= ik

)
=

= pi0(0)pi0i1(t1)pi1i2(t2 − t1) . . . pik−1ik
(tik

− tik−1).
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Similarly to discrete time Markov chains, the Chapman-Kolmogorov equation
for transition matrices holds:

P(s + t) = P(s)P(t),

for any s, t > 0.
Even though some parts of the theory are just an analogy to the discrete case,

some parts must be defined in a different way as the following theorem shows.

Theorem 2. For each i ∈ S the following limit exists:

qi = lim
h→0+

1 − pii(h)
h

≤ ∞6,

for each i, j ∈ S, i ̸= j, exist the limits:

qij = lim
h→0+

pij(h)
h

< ∞,

and for all i ∈ S we have ∑
i ̸=j

qij ≤ qi.

Proof. See page 74 in Lachout and Prášková [1998].

The numbers qij are called the transition intensities from state i to state j,
and the number qi is called the total transition rate out of state i. The matrix Q =
{qij, i, j ∈ S}, where qii = −qi is called the transition rate matrix or generator
matrix. The meaning of the transition intensities is explained in the following
theorem.

Theorem 3. Let {Xt, t ≥ 0} be a homogeneous Markov chain with countable
state space. Then for all s ≥ 0 and for all h > 0:

P(Xt = i, s ≤ t ≤ s + h|Xs = i) = e−qih,

(where e−qih = 0 if qi = ∞).
If qi = 0 then pii(t) = 1 for all t ≥ 0. If 0 < qi < ∞ then the time during which

the process remains in the state i has an exponential distribution7with parameter
qi.

Let 0 < qi < ∞, and the chain be in a state i ∈ S at time t ≥ 0. Then the
probability that the chain will firstly go to state j in interval (t, ∞) is qij/qi.

Proof. See page 76, 77, and 78 in Lachout and Prášková [1998].
6The + sign indicates a one-sided limit from right, in particularly a limit as h goes to zero

when h ranges through positive values.
7A random variable has the exponential distribution with parameter λ > 0 if it takes values

in non-negative numbers, x ≥ 0, and its probability density function is f(x; λ) = λe−λx.
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Remark. Note that for finite S, it is always true that

qi =
∑
i ̸=j

qij, for all i ∈ S,

because
0 = 1 −

∑
j∈S

pij(h), h ≥ 0.

By dividing both sides by h and by applying the limit to both side of the equality,
we get

0 = lim
h→0+

1 − ∑
j∈S pij(h)
h

=
1 − pii(h) − ∑

j ̸=i pij(h)
h

= qi −
∑
j ̸=i

qij,

where the last equality holds because limit and sum can be interchanges for finite
sums.

△

Definition 10. Let {Xt, t ≥ 0} be a random process with a finite state space S
defined on (Ω, A, P) that has right-continuous trajectories. Let Ft be a σ-algebra
generated by the family of random variables {Xs, s ≤ t}, i.e. Ft = σ{Xs, s ≤ t}.
A random variable τ : Ω → [0, ∞] is called a stopping time of the process {Xt, t ≥
0}, if [τ ≤ t] ∈ Ft for every t ≥ 0.

Theorem 4. Let τ be a stopping time of a process {Xt, t ≥ 0}. Let

F∞ = σ
( ⋃

t≥0
Ft

)
= σ{Xt, t ≥ 0}.

Then Xτ is Fτ -measurable random variable, where

Fτ = {A ∈ F∞ : A ∩ [τ ≤ t] ∈ Ft, t ≥ 0}.

Proof. See page 79 in Lachout and Prášková [1998].

Now, let us denote the times in which the transitions of a process {Xt, t ≥ 0}
occur by a sequence J1, J2, . . . , i.e.

J1 = inf{t > 0 : Xt ̸= X0},

J2 = inf{t > J1 : Xt ̸= XJ1},

...
Jn+1 = inf{t > Jn : Xt ̸= XJn}, n ≥ 0

Then, Jn, n ∈ N are obviously stopping times, because they do not depend on
the future development of the original process. Further, let us define a sequence:

Y0 = X0,

Yn = XJn , n ∈ N.
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If Jn = ∞ then we define Y∞ = YJn−1 . According to Theorem 4, Yn, n ∈ N0, are
random variables. Then, let us define a matrix Q∗ = {q∗

ij, i, j ∈ S} such that:

q∗
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qij

qi
, qi > 0, i ̸= j,

0, qi = 0, i ̸= j.

q∗
ii =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, qi > 0,

1, qi = 0.

It can be proved that the sequence {Yn, n ∈ N0} is a homogeneous discrete-
time Markov chain with set space S = {0, 1, . . . }, and transition probabilities
q∗

ij [Gichman and Skorochod, 1973]. The Markov chain {Yn, n ∈ N0} is called
embedded Markov chain of the process {Xt, t ≥ 0}. We have

P(Xt = i) =
∞∑

n=0
P

(
Yt = i, Jn ≤ t ≤ Jn+1

)
.

The embedded Markov chain is used when we are interested in an observation
of the changes in states of some continuous-time Markov process where the time
perspective is not important.

Theorem 5 (Kolmogorov’s differential equations). Let qi < ∞ for all i ∈ S, and

qi =
∑
i ̸=j

qij, for all i ∈ S.

Then the transition probabilities pij(t) are differentiable for all i, j ∈ S and t > 0
and

p′
ij(t) = −qipij(t) +

∑
k ̸=i

qikpkj(t) =
∑
k∈S

qikpkj(t) (1.5)

(Kolmogorov backward equations).
If pij(h)

h
converges to qij uniformly in i, then for each i, j ∈ S and t > 0

p′
ij(t) = −pij(t)qj +

∑
k ̸=j

pik(t)qkj =
∑
k∈S

pik(t)qkj (1.6)

(Kolmogorov forward equation).
In matrix notation:

P′(t) = QP(t),
P′(t) = P(t)Q.

Proof. See page 82 in Lachout and Prášková [1998].

Similarly to discrete time Markov chains, we can find the stationary distribu-
tion.
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Definition 11. Let {Xt, t ≥ 0} be a Markov chain with continuous time and
countable state space S and transition matrices P(t), t ≥ 0. A vector η = {ηi ≥
0, i ∈ S} such that

ηTP(t) = ηT , t ≥ 0, (1.7)

is called a invariant measures of the process {Xt, t ≥ 0}. A probability distribution
π satisfying Equation 1.7 is called a stationary distribution of the process {Xt, t ≥
0}.

A probability distribution a = {ai, i ∈ S} on S is called limiting distribution,
if for all i, j ∈ S we have

lim
t→∞

pij(t) = aj.

Theorem 6. If the limiting distribution of a Markov chain exists, it is the unique
stationary distribution.

Proof. See page 90 in Lachout and Prášková [1998].

Example 3 (Poisson process). Now, let us demonstrate the theory on a classical
example that will be used further in the thesis. The Poisson process is used for
the description of the occurrence of random events in a time interval. We are
assuming that the probability of one event happening in any interval (t, t + h] is
λh + o(h), and the probability of more than one event happening in that interval
is o(h)8, where λ > 0 is a parameter. The numbers of events in disjunct intervals
are mutually independent.

Let Nt represent the number of events in the interval [0, t]. Then {Nt, t ≥ 0}
is the Poisson process with intensity λ > 0. Obviously, the state space S = N.
It is a classical example of a continuous time Markov chain with independent
increments, i.e., for any 0 < t1 < t2 < t3 < t4, the numbers of events Nt2 − Nt1

and Nt4 −Nt3 in the intervals (t1, t2] and (t3, t4] are independent random variables.
We have for all t ≥ 0 and h > 0:

P(Nt+h − Nt = 1) = λh + o(h)
P(Nt+h − Nt = 0) = 1 − λh + o(h)
P(Nt+h − Nt ≥ 2) = o(h)

Hence, we have for all t ≥ 0 and h > 0:

P(Nt+h = j|Nt = i) = pij(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λh + o(h), j = i + 1,

1 − λh + o(h), j = i,

o(h), j > i + 1,

= 0, j < i.

The initial distribution probabilities are simply p0(0) = 1 and pj(0) = 0, j > 0.
8Symbol o(h) means that o(h)/h → 0 for h → 0+
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The transition intensities are qi,i+1 = λ, qi = −qii = λ, qij = 0 otherwise. The
transition rate matrix is then

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ 0 0 · · ·

0 −λ λ 0 · · ·

... . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The increments Nt−Ns, 0 ≤ s < t, have a Poisson distribution with parameter

λ(t − s) (see page 100 in Lachout and Prášková [1998]). Therefore, the number
of events in any interval (s, t] depends only on the length of the interval.

The embedded Markov chain {N̂n, n ∈ N0} is a homogeneous discrete-time
Markov chain with the initial distribution

p = (1, 0, 0, . . . ),

and the transition matrix

Q∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · ·

0 0 1 0 · · ·

... . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

△

1.4 Game theory
Another part of mathematics that will be further used in the models that are
subject of this thesis is so-called Game Theory. The theory is somewhere between
mathematics and economics, but it is also used to study complicated situations
in other fields such as politics, or sociology. It is used to analyse a situation and
to find the best strategy or decision.

Game refers to any social situation involving two or more individuals who are
called players Myerson [1997]. Players are assumed to be rational and intelli-
gent. Rationality represents the player’s consistency in decision-making in order
to maximize his/her utility (or expected utility), which can be, for example, a
monetary pay off or the number of MPs in parliament. A player is intelligent if
he/she knows everything about the game, and his/her decision is not random but
it is based on facts at any time.

Let us now define some terminology (inspired by Leyton-Brown and Shoham
[2008]).

Definition 12. A (finite, n-person) normal-form game is a triplet (N , X, f),
where:

• N is a finite set of n players, indexed by i,
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• X = X1 × X2 × · · · × Xn, where Xi is a finite set of actions available to
player i. Each vector x = (x1, . . . , xn) is called an action profile or strategy,

• f = (f1, f2, . . . , fn), where fi(x1, . . . , xn) is a utility function for player i,
fi : X → R.

Note that the term strategy is sometimes confusing because it may be tempting
to use it in the context of just one player, e.g. first player’s strategy in roulette
is to always bet one dollar on number 3. However, in the context of game theory,
strategy will always refer to the choice of all players, i.e. a vector and element
of X. The individual choice of any player in the strategy is called action, i.e.the
element of Xi for player i.

Both the number of players and the number of strategies is finite by definition.
Sometimes, those games are called finite games.

Games can be divided into commonly used categories according to:

• number of players
– 2 players
– n players

• cooperation of players
– Non-cooperative games: all players playing against each other,
– Cooperative games: there is a possibility of creating of at least one

coalition of 2 or more players,
• pay off

– Constant-sum game (or inaccurately Zero-sum game): The overall
profit of all players is constant for each strategy. Hence, one player’s
profit the a result of loss of other(s). Precisely: there exists k ∈ R
such that ∑n

i=1 fi(x1, . . . , xn) = k for all (x1, . . . , xn) ∈ X,
– Non-constant-sum game.

Non-cooperative games
As mentioned earlier, non-cooperative games are characterized by the absence

of any possibility of cooperation among players, so each player considers all other
players as enemies in every situation. As a result, players must choose their
actions with the highest pay offs regardless of what their opponents do, and this
can be tricky because it is not straightforward what the “best” strategy is.

In the year 1951, American mathematician and economist John Nash proposed
a solution for finding the “best” strategy [Nash, 1951], which is since then called
“Nash equilibrium”. The equilibrium is defined as a strategy for which no player
can do better by unilaterally changing his/her action (i.e. other’s actions remain
unchanged).

Definition 13. Strategy (x1, . . . , xn) ∈ X is a Nash equilibrium point if for all
i ∈ {1, . . . , n} we have:

fi(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≥ fi(x1, . . . , xi−1, yi, xi+1, . . . , xn)

for all yi ∈ Xi.
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It will be demonstrated later that such a strategy does not always exist.
Hence, we define dominance as another criterion used for comparison. One action
dominates another if it offers the player a higher pay off no matter what the
competitors do.

Definition 14. Let i ∈ {1, . . . , n}. We say that action xi ∈ Xi dominates x
′
i ∈ Xi

if
fi(x1, . . . , xi−1, xi, xi+1, . . . , xn) > fi(x1, . . . , xi−1, x

′

i, xi+1, . . . , xn)
for all (x1, . . . , xi−1, xi+1, . . . , xn) ∈ X1 × · · · × Xi−1 × Xi+1 × · · · × Xn.

We say that strategy x ∈ X dominates strategy x
′ ∈ X if

fi(x) ≥ fi(x
′)

for all i ∈ {1, . . . , n}, and there exists some j ∈ {1, . . . , n} for which

fj(x) > fj(x
′).

The domination of strategies is sometimes called Pareto domination [Leyton-
Brown and Shoham, 2008].

Nash also defines the set of undominated strategies (or Pareto optimal strate-
gies). However, a Nash equilibrium is not necessarily an undominated strategy
and vice versa, which will be be demonstrated later.

Definition 15. We say that strategy (x1, . . . , xn) ∈ X is undominated if there
does not exist any strategy (y1, . . . , yn) ∈ X such that

fi(y1, . . . , yn) ≥ fi(x1, . . . , xn)

for all i ∈ {1, . . . , n} with at least one strict inequality.

Let us now demonstrate the terms on two examples.
Example 4. The classical example used in game theory is the so-called Prisoner’s
dilemma. Imagine two criminals C1 and C2 arrested by the police for a major
crime that they have committed together. They are being questioned in solitary
confinement, and they cannot communicate with each other. However, the police
officers lack sufficient evidence to prove them guilty, so they need them to confess.
In order to get their confession, policemen offer them a deal, ‘If you betray you
partner, we will set you free, and your partner will be blamed for his and also
your crimes’. If none of them confesses, they will both be charged with some
minor crime; however, if they both decide to betray, they will both be sentenced.
So, both prisoners can choose between staying silent (S) and betrayal (B). The
sentences are:

• if both C1 and C2 betray, they both get 8 years,
• if C1 betrays but C2 remains silent, C1 will be set free, and C2 will serve

10 years (and vice versa),
• if none of them betrays, they will both serve 1 year.

The pay off matrix is then (the numbers are negative because the “best”
strategy is the one that maximizes pay off, i.e. the least years in prison):
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❍❍
❍❍❍❍C1

C2 C2 betrays
(B)

C2 remains
silent (S)

C1 betrays
(B)

❍❍❍
❍❍❍-8

-8 ❍❍❍
❍❍❍0
-10

C1 remains
silent (S)

❍❍
❍❍❍❍-10

0 ❍
❍❍❍❍❍-1

-1

Now, let us analyse all four possible scenarios:

1. (B,B):
• C1 switching to S → worse pay off,
• C2 switching to S → worse pay off,

⇒ Nash equilibrium point, but dominated by (S,S),

2. (S,S):
• C1 switching to B → improved pay off,
• C2 switching to B → improved pay off,

⇒ undominated strategy, but not a Nash equilibrium point,

3. (B,S):
• C1 switching to S → worse pay off,
• C2 switching to B → improved pay off,

⇒ not a Nash equilibrium point, and not undominated,

4. (S,B):
• C1 switching to B → improved pay off,
• C2 switching to S → worse pay off,

⇒ not a Nash equilibrium point, and not undominated.

The undominated strategy (S,S) is also the best when comparing total years
in prison summed for both prisoners. However, the inability to communicate
makes it highly risky, and the safest action is simply to betray the partner.

△

Example 5. An easy example of a game without an equilibrium is Rock-paper-
scissors. It is a game of two players P1 and P2 who both can choose between
3 actions—rock (R), paper (P), or scissors (S). Let us suppose a game of one
round of rock-paper-scissors after which the winner gets $1, the loser pays $1,
and nobody wins or loses in case of a tie. The pay off matrix is then
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❍❍
❍❍❍❍P1

P2 R P S

R
❍❍❍

❍❍❍0
0 ❍❍❍

❍❍❍-1
1 ❍❍❍

❍❍❍1
-1

P
❍❍

❍❍❍❍1
-1 ❍❍

❍❍❍❍0
0 ❍

❍❍❍❍❍-1
1

S
❍❍❍

❍❍❍-1
1 ❍❍❍

❍❍❍1
-1 ❍❍❍

❍❍❍0
0

Obviously, there is no equilibrium. For each strategy there exists a different
one for which at least one of the players can have higher pay off.

△

The strategies defined in Definition 12 and used up until now are called pure
strategies. Their extension, so-called mixed strategies, are derived by adding a
probability distribution to pure strategies.

Definition 16. Let (N, X, f) be a normal-form game, X = X1 ×· · ·×Xn, where
Xi is a finite set of actions available to player i. Let for any set A be Π(A) the
set of all probability distributions over A. Then the set of mixed strategies for
player i is Si = Π(Xi).

Even though we showed that Nash equilibrium does not always exist, Nash
[1951] proved theorem saying that a Nash equilibrium exists in every finite game
with mixed strategies.

Theorem 7. Any finite game has at least one Nash equilibrium point in the space
of mixed strategies.

Proof. The proof can be found in Nash [1951]. It is achieved by appealing to a
fixed-point theorem—a theorem saying that under some conditions a function F
has at least one fixed point x, i.e. a point for which F (x) = x.

Example 5 (Continued). Considering the rock-paper-scissors example, there is no
equilibrium among pure strategies. However, it is a common knowledge that that
the best strategy is to simply randomly choose one of the three options. The
best strategy for both players is a vector of probabilities

(
1/3, 1/3, 1/3

)
. The

expected pay off PO is then:

E [PO] = 1
3 · 0 + 1

3 · 1 + 1
3 ·

(
− 1

)
= 0.

△
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2. The Stigler-Luckock model
The Stiegler-Luckock model is the starting point of this thesis, so we will briefly
introduce it in this chapter. The main purpose of the model was to examine the
behaviour of order books and the process of forming the equilibrium price on
markets.

The very first definition of the model was proposed by George J. Stigler in 1964
in The Journal of Business [Stigler, 1964]. This famous American mathematician
was awarded the Nobel Memorial Prize in Economic Studies in 1982. His article
from 1964 mostly concerns the American stock exchange and its regulations for
which he criticized the Securities and Exchange Commission (SEC) because of the
imprecise and lax tests regarding the impacts of regulations on financial markets.
Moreover, the article introduces a simulation model of the market that helped
Stigler to demonstrate his ideas.

A few decades later, Hugh Luckock, a contemporary mathematician focus-
ing on market microstructure and high frequency trading, analysed the same
model and expanded it to its full generality [Luckock, 2003]. Interestingly, he
was probably not aware of Stigler’s model, because he does not cite it in the
article. Luckock also analyses the model using computer simulations that were
unreachable to Stigler.

Coincidentally, the Stigler-Luckock model was independently reinvented by
two other authors—Elena Yudovina in her doctoral thesis [Kelly and Yudovina,
2012] and Jana Plačková in her master thesis [Plačková, 2011]. That fact indicates
that this path is reasonable.

However, the model itself shows several drawbacks, which will be demon-
strated in the following sections, and needs to be further developed. One of the
possible ways of improving the model—a concept of “market-making”—will be
introduced, as the plain Stigler-Luckock model is significantly non-liquid.

2.1 Terminology
Even though supply and demand were thoroughly discussed earlier, let us now
specify the terminology for the models. Let P ⊂ R+

0
1 be a set representing all

possible prices, and let x ∈ P be some price. Supply represents the amount of the
asset that sellers are prepared to sell for some specific price. Therefore, supply at
price x includes all the asset that is available for sale up to price x (i.e. for x and
less). Similarly, demand represents the amount of the asset that buyers are ready
to buy for some price x, and hence it includes all the asset that is demanded for
price x and higher.

We need to give the proper definition of the terms supply and demand since
they will be used frequently in the thesis. The definitions were inspired by Luck-
ock [2003].

Definition 17. Let x ∈ P be a price. Then supply λ+(x) is equal to the expected
amount of sell orders equal and below the price level x per unit of time, and

1 R+
0 = [0, ∞)
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demand λ−(x) is equal to the expected amount of buy orders equal and above the
price level x per unit of time.

When analysing the models, we will be also looking at the order book shape.
As mentioned earlier, the order book does not perfectly mirror the underlying
supply and demand; however, we can expect that if the supply and demand
curves have a certain shape and intersect at some point, the mid price will be
around the equilibrium price, and the order book will reflect that. Hence, we will
analyse the order book and also the cumulative order book. The cumulative order
book was already mentioned in section 1.2, and it is simply just the order book
summed from the left-hand side for sell orders and from the right-hand side for
buy orders.

2.2 Description of the Stigler-Luckock model
First, let us focus on Stigler’s model. As mentioned before, the model was intro-
duced in 1964 in an article focusing on regulations of the security market in the
US [Stigler, 1964].

The model is defined in discrete time with discrete prices that are ranging
from $283

4 to $31 with a tick size of $1
4 . Therefore, there are in total L = 10

possible prices, and the order book is constrained to 10 values.
At each time step t ∈ N exactly one new order arrives on the market. Each

order is randomly assigned with a sign (buy B or sell S) that is chosen with equal
probability. Let the sign of an order be represented as a random variable A. Then

P(A = B) = P(A = S) = 1/2.

The price X of the order is uniformly distributed on the price grid, i.e. each
option has the same probability p = 1

10 . Besides that, the quantity of all orders is
simply one. The supply and demand functions for price x ∈ {$28.75, $29.00, . . . ,
$30.75, $31.00} are then:

λ+(x) = E [X ≤ x|A = S] = P(X ≤ x) =
x∑

k=28.75
P(X = k) = 1

10
(
x − 28.75 + 1

)
,

λ−(x) = E [X ≥ x|A = B] = P(X ≥ x) =
31.00∑
k=x

P(X = k) = 1
10

(
31.00 − x + 1

)
.

The functions are plotted in Figure 2.1.
The model begins with empty order book, and each order arriving on the

market is registered and stays in the LOB. The bid (resp. ask) price is established
after the arrival of the first buy (resp. sell) sell order.

Orders are not explicitly distinguished to be limit or market orders. Still, two
possible scenarios may occur after the submission of some new order. Firstly, let
us analyse a buy order at time t with a price x. Let the current value of the ask
price in the LOB be a(t). The possible scenarios are summarized in Table 2.1.
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Figure 2.1: Supply and demand curves in Stigler’s model.

BUY ORDER

x ≥ a(t) order executed for the price a(t),
opposite order removed from LOB → MARKET ORDER

x < a(t) order recorded in LOB,
waits there to be executed → LIMIT ORDER

Table 2.1: Possible scenarios in Stigler’s model after the submission of a buy
order with price x at time t depending on the current ask price a(t).

Similarly, the two possible scenarios for a sell order at time t and a price x
are in Table 2.2. (with the bid price b(t)).

SELL ORDER

x ≤ b(t) order executed for the price b(t),
opposite order removed from LOB → MARKET ORDER

x > b(t) order recorded in LOB
waits there to be executed → LIMIT ORDER

Table 2.2: Possible scenarios in Stigler’s model after a submission of a sell order
with price x at time t depending on the current bid price b(t).

In addition, each order that is not executed after time N = 25 after it was
placed is automatically cancelled. Hence, there are simultaneously at most 25
orders in the LOB.

Stigler computed manually a set of hundred trades using tables of random
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numbers [Chakraborti et al., 2011]. The outcome of the simulation demonstrated
the evolution of the order book and the movement of the bid and ask prices. It
was rather an academic example, but it was a great stepping stone for further
research.

A few decades later, Hugh Luckock was able to develop Stigler’s model to
its full generality [Luckock, 2003]. The article does not cite Stigler, so he was
probably not aware of Stigler’s model at all. The models is summarized by 5
assumptions:

(A1) all orders are for a single unit, so the buyers only need to specify the maxi-
mum price they are prepared to pay, and sellers only specify the minimum
price they are prepared to accept,

(A2) there is large number of potential traders; therefore each order is considered
to be originated from a different source and submitted independently of
others. The arrival of the orders within any specified price range is a Poisson
process,

(A3) supply and demand functions are time-independent,
(A4) traders are submitting the orders without considering the current state of

the order book; hence, expected order arrival rates are independent of the
order book configuration,

(A5) the cancellation rate of unexecuted orders is negligible.

The only major difference from Stigler’s model is the assumptions (A5). Luck-
ock argues that cancellation usually happens as a response to changed market
conditions, but the modelled market is static, and so it is unnecessary to consider
the cancellation rate.

The separation of market and limit orders is done by the same key as in
Table 2.1 and Table 2.2.

One of the major generalisations is that Luckock allows a general form of
supply and demand functions, and that there are no restrictions upon the range
of permissible prices (both discrete and continuous). The assumptions (A2)-(A4)
specify that the arrival of new sell orders at prices not exceeding x is a Poisson
process with some parameter λA(x), where λA(x) : (0, ∞) ↦→ (0, ∞) is a non-
decreasing right-continuous function (i.e. supply function). The arrival of new
buy orders of at least price x is a Poisson process with parameter λB(x), where
λB(x) : (0, ∞) ↦→ (0, ∞) is a non-increasing left-continuous function (i.e. demand
function). The values λA(x) and λB(x) represent the average number of traders
submitting orders that are executable at the price x per unit of time. Orders in
disjunct price interval are also independent, which gives us 2-dimensional Pois-
son process, where the dimensions are price and time. Besides that, the model
assumes that the excess demand λB − λA is positive for some prices and negative
for others in order to guarantee the classical supply-demand position resulting in
some equilibrium price (illustrated in Figure 1.1).

Models by both authors are characterized by traders who are acting randomly
and who are not observing the market before placing their orders. Those models
are called “zero-intelligence” models. Even though the non-strategic behaviour
in such models seems unrealistic and quite naive, the models are not as the-
oretical as they might appear. Some practical experiments were performed in
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which computers with zero-intelligence strategies competed with humans, usu-
ally business students, who traded naturally (Gode and Sunder [1993], Gode and
Sunder [1997], Tóth et al. [2007]). In spite of both groups having different ap-
proaches, the zero-intelligence agents surprisingly demonstrated the same level of
efficiency as humans. Since humans performed with the same skill as randomly
trading computers, the experiments actually question the validity of one of the
fundamental economic assumptions—that people behave like rational optimis-
ers of their own individual profits. In conclusion, the zero-intelligence models,
including the Stigler-Luckock model, are more practical and realistic than they
may seem at first.

2.3 Simulations
Let us now demonstrate the Stigler-Luckock model’s behaviour by some Monte
Carlo simulations. Firstly, a proper mathematical description of the simulated
model must be given.

The arrival of participants on the market can be described as a Poisson process
{Nt, t ≥ 0} with some overall intensity R > 0 that represents the arrival of any
market participant, i.e. both buyers and sellers. Let P be a set of all possible
prices, xmax := max{P}, and xmin := min{P}. Let us assume that P is discrete
for simplicity, and let λ± : P → [0, ∞) be supply and demand functions. More
precisely, let µ+ and µ− be finite measures on P , then supply and demand at
price x ∈ P are defined as

λ+(x) := µ+
(
{y ∈ P , y ≤ x}

)
,

λ−(x) := µ−
(
{y ∈ P , y ≥ x}

)
.

Then, µ+
(
{x}

)
is a Poisson intensity at which traders place sell orders at price

x ∈ P , and µ−
(
{x}

)
is a Poisson intensity of buy orders at a price x ∈ P . Hence,

µ+(P) = λ+(xmax) and µ−(P) = λ−(xmin) are Poisson intensities of sell and buy
orders, respectively. The overall intensity R of the Poisson process {Nt, t ≥ 0} is
then:

R = λ+(xmax) + λ−(xmin).

Let us denote the probability of arrival of a sell order by pS and the probability
of arrival of a buy order by pB. Then,

pS = λ+(xmax)
R

,

pB = λ−(xmin)
R

.

Let us denote the sign of k-th order σk ∈ {B, S}, the price of k-th order
Xk ∈ P , and the time of the arrival of the k-th order by τk ∈ R+. Then each
order is completely determined by the triplet (σk, Xk, τk), k ∈ N. Again, the
orders are distinguished to be limit or market by their price, and the price of
current bid or ask (see Table 2.1 and Table 2.2).
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It follows, that the random variables (τk − τk−1)k≥1 are exponentially dis-
tributed with parameter 1/R. Moreover, random variables (σk, xk)k≥1 are in-
dependent and identically distributed (i.i.d.), and they are also independent of
(τk)k≥1.

We were considering the market in the continuous time up until now. We may
however simplify it by studying the discrete embedded Markov chain {N̂n, n ∈
N0}, i.e. the discrete-time Markov chain that is derived by

N̂0 := 0,

N̂k := Nτk
, k ∈ N.

Now, let us run the Monte Carlo simulations of the Stigler-Luckock model for
P = {1, . . . , 100}, and measures µ+ = µ− are uniform distributions on P , i.e.

µ+
(
{x}

)
= µ−

(
{x}

)
= 1

100 ,

for all x ∈ P . Then supply and demand functions are defined as

λ+(x) = µ+
(
{y ∈ P , y ≤ x}

)
= x

100 ,

λ−(x) = µ−
(
{y ∈ P , y ≥ x}

)
= 101 − x

100 ,

for x ∈ {1, . . . , 100}.
The overall intensity of the Poisson process is then

R = λ+(xmax) + λ−(xmin) = λ+(100) + λ−(1) = 1 + 1 = 2,

and the probabilities of arrivals of sell and buy orders are

pS = λ+(xmax)
R

= 1
2 ,

pB = λ−(xmin)
R

= 1
2 .

The distribution of price of an order Xk at time τk, k ≥ 1, is then uniform on
the price grid, i.e.

Xk ∼ Unif {1, . . . , 100},

for k ≥ 1.
The mutual position of supply and demand curves is in Figure 2.2. Supply

and demand “meet” in the middle—between the prices 50 and 51. However,
there is no equilibrium price since the supply and demand are not continuous,
and their values are never equal. Demand is slightly higher when price equals 50,
and supply is slightly higher when price equals 51.

Further, we will only study the embedded process, i.e. the discrete Markov
chain for which at each discrete time n ∈ N a new trader arrives on the market.
Now, let us present the results of simulations. Comparison of resulting order
books after N = 5, 000 and N = 25, 000 time steps are in Figure 2.3. The buy
and sell orders do not meet in the middle as the supply and demand suggest.
Moreover, there is a whole interval of prices (from approximately 22 to 78), in
which all orders are executed, and orders outside of the interval are remaining
in the order book. The window’s width is the same for both simulations. The
cumulative order books corresponding to the simulations are in Figure 2.4.
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Figure 2.2: Theoretical supply and demand curves in the Stigler-Luckock Model
with full x-axis (top) and zoomed in the middle (bottom).

2.3.1 Competitive window
Luckock [2003] refers to the interval in the middle of Figure 2.4 as the competitive
window. This strange behaviour was then studied by Swart [2018]. He explains
that the competitive window appears due to high non-liquidity of the model’s
market.

The article discusses a continuous-price model in which prices assume values
in I = (0, 1). Supply and demand are denoted by λ+ and λ−, and they satisfy:

(A1) λ+ is non-decreasing, λ− is non-increasing,
(A2) λ± are continuous,
(A3) λ+ − λ− is strictly increasing,
(A4) λ± > 0 on I.

According to Walras [2014], there must exist—under those four assumptions—
a so-called Walrasian price xW ∈ I and Walrasian volume of trade VW > 0 such
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Figure 2.3: Shape of the order book in the Stigler-Luckock model after 5,000 and
25,000 time steps.

that:
λ−(xW ) = λ+(xW ) = VW .

Still, this behaviour is not detectable in the Stigler-Luckock model. The bid and
ask prices keep oscillating in a competitive window (x−, x+), for which λ−(x−) =
λ+(x+). Therefore, buyers and sellers may wait on the market much longer to
execute their order which makes the market highly non-liquid.

Luckock [2003], Swart [2018], and also Kelly and Yudovina [2012] all calculated
the precise values of the borders of the competitive window. Subtle difference is
how rigorous and how general the assumptions were. The values are

x− ≈ 0.218,

x+ ≈ 0.782.

These values are just scaled values as those from the discrete model described
earlier (in Figure 2.3). On top of that, the model suggests that the competitive
window (x−, x+) always appears in the long run. On the one hand, all buy orders
below that interval, and all sell orders above the interval are never matched and
stay in the order book forever. On the other hand, the rest of the orders are
executed eventually. This problem remains open and awaits its proof; however,
Kelly and Yudovina [2012] proved it for some models including the one simulated
before with discrete price grid.
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Figure 2.4: Shape of the cumulative order book in the Stigler-Luckock model
after 5,000 and 25,000 time steps.

2.4 Introduction of the Market makers
The results cited in the previous section indicate that the model needs some
extension to become more realistic. There are undoubtedly many directions in
which the model can be improved. The unrealistic nature of the model lies mainly
in the simple method of placing orders resulting in non-liquid behaviour.

One direction of improvement could be the introduction of so-called market
makers. In reality, a significant part of trades is realized because of speculating,
i.e. buying or selling the asset not because the traders needs it but because they
believes that the price will change and they can make a profit out of it.

Market makers are, as the name suggests, traders whose presence is vital
for the market. They “make” the market by bringing the necessary liquidity.
They are usually established companies that own enough of the particular asset
(and money of course). Consequently, they can consistently buy and sell the
asset; and as a result, deliver the liquidity. Their motivation is simple—the
fundamental principle is that they buy for less and sell for more. Besides that,
it is not extraordinary that stock exchanges themselves pay the market makers a
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so-called liquidity provision. So, not only do the market makers earn money by
buying the asset for less and selling it for more, but they also usually get paid by
the exchange institution because they are an essential component of the market.

The easiest real-life example of “market-making” are currency exchanges.
Their main business focus are currencies, even though they do not want to possess
them. They only buy them for less and simultaneously sell them for more. Their
source of profit is the difference between those two prices.

The concept of incorporating market makers (or a similar structure) in the
models is not new. There are several ways of how authors have approached the
problem. For example, Garman [1976] or Glosten and Milgrom [1985] introduced
models with only one centralized market-maker who possess a monopoly on all
trading. Those models are called a “dealership market”. Exchanges are permitted
only through that market-maker who determines the price.

Kyle [1985] introduced three types of traders. One single insider who has
unique information about the market and provides liquidity, uninformed noise
traders who trade randomly, and market makers who have more information
than the noise traders and who set prices more efficiently.

Abergel et al. [2016] used different terms for the market makers—agents who
submit limit orders are referred to as liquidity providers, while those who submit
market orders are referred to as liquidity takers. However, the authors acknowl-
edge that since the various market deregulation waves in the US in 2005 and in
the EU in 2007, there are no pure liquidity providers or takers.

Another approach was introduced by Swart and Peržina [2018] who proposed
a model with many market makers, not just one. Prior to trading, a Poisson rate
ρ ≥ 0 is defined, which represents the proportion of market makers. For ρ = 0,
the model is without market makers. The higher the parameter ρ is, the higher
is the proportion of market makers.

Then the Poisson process that is representing the arrival of a new market
participant is determined by the overall rate R:

R = λ+(xmax) + λ−(xmin) + ρ, .

where λ+ and λ− are supply and demand functions defined on some price grid P
(see section 2.3). Then the probabilities of arrivals of buyer, seller, and market
maker are

pB = λ−(xmin)
R

,

pS = λ+(xmax)
R

,

pMM = ρ

R
.

For ρ = 0, there are no market makers, and the model is the same as the one in
the previous section. For ρ > 0, the proportions change and for example when
ρ = 0.5, the probability of an arrival of a market maker is pMM = 20%.

Now, let us demonstrate the impact of market makers on simulations. We will
continue with the model simulated before (in section 2.3), i.e. P = {1, . . . , 100},
and measures the µ+ = µ− are the uniform distributions on P . The additional
parameter is the rate ρ.
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The market makers’ strategy is that once they arrive on the market, they
place one sell market order for the current bid price and one buy market order
for the current ask price. Hence, they help the market to execute more orders
and besides that earn money by selling for less and buying for more. If there
is no buy limit order or sell limit order (or both) in the order book, the market
maker simply skips that.

The crucial point is to find a proper value of the parameter ρ. Shapes of order
books with different parameter setting are in Figure 2.5.
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Figure 2.5: Shape of the order book in the Stigler-Luckock model with Market
makers after 20,000 time steps for various values of ρ. (Note that the bottom two
plots have different scale on the y-axis).

The competitive window closes as the ratio of the market makers ρ increases.
It closes eventually in the middle for ρ = 0.5. The market is then liquid enough
to create one equilibrium price around the middle. For higher values of ρ, the
order book acts strangely. The buy and sell limit orders meet on some random
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price that is usually quite far from the middle, and the order book is stuck on
that price forever (more examples are in Figure 2.6).
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Figure 2.6: Shape of the order book in the Stigler-Luckock model with ρ = 0.85
market makers after 20,000 time steps (four equilibrium prices for the same input
parameters of the model).

Hence, judging by the simulations, the ideal ratio of market makers on the
market is ρ = 0.5, i.e. the probability of an arrival of a market maker is 20%. The
competitive window closes and both buy and sell orders meet at the Walrasian
equilibrium price xW . Whereas a proper proof of this statement is complicated
(can be found in Swart [2018]), insight into the significance of the value can be
obtained quite easily.

Please note that the following few paragraphs are only descriptive without
proofs, and their purpose is only to illustrate the behaviour of the market when
ρ = 0.5. For simplicity and clarity, let us now put aside the randomness of the
process. It is justifiable by long time and the law of large numbers. Then, the
composition of market participants is: 20% of market makers, 40% of sellers, and
40% of buyers. The graphical illustration is in Figure 2.7.

The market makers however place two orders at once. The only exception is
in the beginning when the order book is almost empty, and there are not enough
limit orders yet. We will not consider this situation, because it is only temporary,
and it settles after a few steps. So, the market makers place twice as many orders
as the traders, which results in 1/3 of orders being placed by market makers, and
2/3 of orders being placed by traders (1/3 sell orders and 1/3 buy orders). Then,
the compositions of orders is as illustrated in Figure 2.8.
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Figure 2.7: Composition of market participants when ρ = 0.5.
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Figure 2.8: Composition of orders when ρ = 0.5.

Prices of orders placed by market makers depend on the current situation on
the market, but they are always market orders. Prices of orders placed by traders
are uniformly distributed, so half of them are placed above the equilibrium price
xW and half of them above. The division of orders is in Figure 2.9. Therefore,
1/6 of all orders are sell orders by traders below equilibrium, and 1/6 of all
orders are buy orders by traders above the equilibrium. Besides that, 1/6 of all
orders are sell market orders by market makers, and 1/6 of all orders are buy
market orders by market makers. The proportion of sell (resp. buy) market
orders placed by market makers is equal to the proportion of buy (resp. sell)
orders above (resp. below) the Walrasian equilibrium price. Hence, those two
groups eventually match, result in trades, and disappear from the order book.
The matching groups are highlighted in Figure 2.9 by same colour. Sell limit
orders above the equilibrium and buy limit orders below the equilibrium are then
the only orders remaining in the order book, which closes the competitive window
right in the middle.

Indeed, there are some inaccuracies. For example, the orders submitted by
traders may be market orders as well, and they can pair with some limit orders
of other traders. This was just to demonstrate the main mechanism behind the
significance of the value ρ = 0.5. As already mentioned, the proper proof is quite
complicated and can be found in Swart [2018].
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Figure 2.9: Composition of orders when ρ = 0.5 with highlighted groups that
eventually match and disappear from the order book.
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3. Competing Market Makers
The main goal of this thesis is to understand more the structure and mechanics
of financial markets using the Stigler-Luckock model as a starting point and in-
spiration of the analysis. As seen in the previous chapter, the presence of market
makers significantly improved the model since they provide highly necessary liq-
uidity. That encourages us to study their behaviour and strategies in more detail
and simultaneously to improve the Stigler-Luckock model in order to get a better
understanding of the market.

A market maker’s primary source of income is buying for less and selling
for more. As already mentioned in the previous chapter, some stock exchanges
purposedly pay a so-called liquidity provision in order to support the market
makers in trading. There is an example of transaction prices on the New York
Stock Exchange in Table 3.1. Besides that, market makers also receive a monthly
credit when conditions are met.

Category Adding Liquidity Removing Liquidity

Securities ≥ $1 $0.0045 per share –$0.0002 per share

Securities < $1 0.25 % of total dollar
value of the transaction

–0.25 % of total dollar
value of the transaction

Table 3.1: Transaction fees (negative) and credits (positive) for Electronic Des-
ignated Market Makers at New York Stock Exchange [NYSE]

3.1 Definition of the model
First of all, the model and its properties must be defined. Some of the principles
are the same as in the Stigler-Luckock model, whereas some of them are new.
The goal was simple—find a suitable model with satisfactory good strategies
while keeping it as simple as possible.

The market itself, prices, and some other features are derived from the pre-
viously described model with market makers. On top of that, there are several
approaches and concepts that will be held throughout the following models. Their
original inspiration is in the behaviour of real markets, and the aim is to draw
the models closer to reality.

The main purpose of this thesis is to compare different strategies of market
makers, and analyse the results. In order to do so, there are always at least
two different strategies for market makers in each simulation. Each strategy
is represented by single market maker, which is a notable difference from the
previously cited model. Each market maker has his/her own inventory of cash
and asset. The inventories will be compared after each simulation in order to
determine which strategy is better, i.e. which strategy increased the inventory
more.
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The arrival of participants on the market is a Poisson process {Nt, t ≥ 0}
with some overall intensity R > 0, which define the arrival rate of all any market
participant, i.e. buyers, sellers, and market makers. Let P be a discrete set of all
possible prices, xmax := max{P}, and xmin := min{P}. Let µ+ and µ− be finite
measures on P , and let λ± : P → [0, ∞) be supply and demand functions defined
as

λ+(x) := µ+
(
{y ∈ P , y ≤ x}

)
,

λ−(x) := µ−
(
{y ∈ P , y ≥ x}

)
.

Then, µ+
(
{x}

)
is the Poisson intensity of the arrival of a new sell order by

regular traders at price x ∈ P , and µ−
(
{x}

)
is the Poisson intensity of the

arrival of a new buy orders by regular traders at a price x ∈ P . Therefore,
µ+(P) = λ+(xmax) and µ−(P) = λ−(xmin) are Poisson intensities of sell and buy
orders, respectively.

In addition, the Poisson rate of the arrival of a market maker is ρ. Since
there are M market makers with different strategies in the model, we will denote
the Poisson rate of the arrival of a market maker with i-th strategy as ρi,i ∈
{1, . . . , M}. Then,

ρ =
M∑

i=1
ρi.

The overall intensity R of the Poisson process {Nt, t ≥ 0} is then:

R = λ+(xmax) + λ−(xmin) + ρ = λ+(xmax) + λ−(xmin) +
M∑

i=1
ρi.

Let us denote the probability of the arrival of a seller by pS, of a buyer by pB, of
a market maker by pMM, and of the i-th market maker by pMMi

, i ∈ {1, . . . , M}.
Then,

pS = λ+(xmax)
R

,

pB = λ−(xmin)
R

,

pMM = ρ

R
=

M∑
i=1

pMMi
,

pMMi
= ρi

R
.

Let us denote the time of the arrival of the k-th order by τk ∈ R+. The k-th
order is specified by its sign σk ∈ {B, S} (buy or sell), its price Xk ∈ P , and its
volume Vk ∈ N0

1. On top of that, it is important to distinguish the orders by the
market participant that placed them, i.e. let ωk ∈ {T, MM}, where T stands
for Trader (buyer or seller) and MM stands for Market Maker. Each order is
completely determined by the quintuple (ωk, σk, Xk, Vk, τk), k ∈ N. The random
variables (τk − τk−1)k≥1 are exponentially distributed with parameter 1/R.

1The situation when Vk = 0 will be explained further in the thesis

38



Let us denote the embedded Markov chain by {N̂n, n ∈ N0}, which is a
discrete-time Markov chain derived as

N̂0 := 0,

N̂k := Nτk
, k ∈ N,

where {Nt, t ≥ 0} is the Poisson process marking the arrivals of the market
participants on the market, and τk marks the time of the arrival of k-th order.

Traders

Let us now take a closer look at orders placed by buyers and sellers. Their
orders have simple attributes—their price X is uniformly distributed on P , and
their volume is always 1.

Markets are usually dominated by market makers who place their offers. Reg-
ular traders arrive on the market, and they either like some offer and take it,
or they do not find any suitable offer, so they wait in the background, because
they do not want to show their intentions to their competitors. Following that
principle, we will consider the presence of traders as sort of “hidden”. If a regular
trader arrives, he/she either likes the current price (i.e. realizes a market order for
the current bid or ask), or he/she prefers a different price, and he/she walks away
with no record of the order. The possible scenarios are summarized in Table 3.2.

BUY ORDER

x ≥ a(t) order executed for the price a(t),
opposite order removed from LOB → MARKET ORDER

x < a(t) trader walks away,
order disappears → NO ORDER

SELL ORDER

x ≤ b(t) order executed for the price b(t),
opposite order removed from LOB → MARKET ORDER

x > b(t) trader walks away,
order disappears → NO ORDER

Table 3.2: Possible scenarios after trader’s submission of an order with price x at
time t. The current ask price is a(t), and the current bid price is b(t).

Market makers

There are M market makers with arrival rates ρi, i ∈ {1, . . . , M}. Market
makers do not care about the actual price of the asset. Their source of income is
the spread s, i.e. difference between buy and sell prices.

Each market maker is characterized with two parameters—spread si, and true
price TPi(t), t ≥ 0, i ∈ {1, . . . , M}. The true price TPi(t), t ≥ 0, represents the
market maker’s own idea of how much the asset is actually worth, which may
change over time. The value at the beginning TPi(0) is however given to the
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market maker, which can be compared to the situation after an opening auction
in stock exchanges (see subsection 1.2.1) when the opening price is settled.

When market maker i arrives at time t, he/she places randomly a buy or sell
order at price

Xk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
TPi(τk) − si/2, σk = B,

TPi(τk) + si/2, σk = S,

Further, we will be focusing on specific strategies of market makers, and sub-
sequently deciding which strategy is better. In order to compare the strategies,
we need to keep track of each market maker’s wealth. Therefore, market makers
are assigned with a so-called inventory

Ii(t) =
(
Ai(t), Ci(t)

)
,

where t ≥ 0, i ∈ {1, . . . , M}. The inventory is a pair of random processes
representing the amount of asset Ai(t) and cash Ci(t) that is possessed by the
market maker i at time t, and that is available to be invested. This approach was
already mentioned by Garman [1976]. Each market maker is assigned with some
starting value of the inventory Ii(0) in the beginning.

Besides that, each market maker has also a so-called market inventory

IM
i (t) =

(
AM

i (t), CM
i (t)

)
,

where t ≥ 0, i ∈ {1, . . . , M}. When the market makers places a limit order, the
money (or asset) transfers from the inventory to the market inventory. This cash
(asset) are still in the possession of the market maker; however, they cannot be
invested unless the limit orders are cancelled. So, the market inventory is a pair
of random processes representing the amount of asset AM

i (t) and cash CM
i (t) that

is offered as limit orders on the market by the market maker i at time t. The
starting value for all market makers is IM

i (0) = (0, 0). When a market maker
places a limit order, the specific amount of cash or asset is transformed from Ii(t)
to IM

i (t).
Both processes Ii(t) and IM

i (t) are changing only at Poisson times τk when
someone arrives on the market.

While traders are only allowed to have unit-sized orders, market makers have
various strategies in which the volume V of orders differs. However, if their
inventory is insufficient, the order is not executed, which is represented by V = 0.

Their orders are distinguished to be limit or market by their price, and the
price of current bid or ask (see Table 2.1 and Table 2.2).

Since the true price of each market maker is changing, the market maker needs
to controls his/her own invested money and cash in order to avoid collusion. What
is meant by that is that when a new order by a market maker i arrives, the market
maker needs to check his/her limit orders currently placed on the market, and
eventually cancel some of them prior placing the new order.

All the possible situations are in Figure 3.1. In case of a new buy order with
some new price, it is reasonable to cancel all other his/her limit buy orders that
are currently on the market because they would compete with the new order.
The new order can either have a worse price (lower), and nobody would prefer
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it. Or the new order can have a better price (higher), and nobody would want
the older limit orders. Besides that, if the new order has a higher price than the
his/her currently placed limit sell orders, the sell orders must be cancelled too.
Vice versa for a new sell order.

When a order is cancelled at time t, it moves from the market inventory Ii(t)
back to the inventory IM

i (t).

New buy order

Buy limit
orders

Sell limit
orders

Buy limit
orders

Sell limit
orders

Buy limit
orders

Sell limit
orders

New sell order

Buy limit
orders

Sell limit
orders

Buy limit
orders

Sell limit
orders

Buy limit
orders

Sell limit
orders

Figure 3.1: Scheme of possible situations before placing a new buy or sell order
in which market maker needs to cancel some of his/her own limit orders placed
in the past.

Price and time priority
Two concepts will be used in the following models (and were used in models

before—for example, Parlour and Seppi [2008] or Roşu [2009]). Markets typically
impose two simple rules—price and time priority on the execution of limit orders.
Price priority determines that limit orders offering a better price (higher in case
of buy orders, lower in case of sell orders) get executed before limit orders with
worse prices. This rule is quite straightforward—nobody wants to buy or sell
for a worse price if there is a better option. However, more offers may be for
the same price. In that case, the time priority comes into action. The queuing
rule of “first in, first out” imposes that the oldest limit orders are executed first,
and hence the market rewards those who provided the liquidity earlier. With an
arrival of a new market order, the price priority is applied and then, if necessary,
the time priority.

Comparison of strategies
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The main focus of this thesis is to compare various strategies of individual
market makers. The specific strategies will be explained further in this chapter.
Let us now define the competition by the game theory introduced in section 1.4.

There is a finite set of M players (market makers) indexed by i. Each market
maker has a different set of actions. Each player has a utility function fi, which
calculates the value of their portfolio as a money value of their portfolio:

fi(t) = Ci(t) + CM
i (t) + xW

(
Ai(t) + AM

i (t)
)
,

where xW is the Walrasian equilibrium price which is derived from the supply
and demand functions. The price xW may not be fixed, because it depends on
the current supply and demand. Note that utility function are usually considered
concave functions of the monetary value.

The game is non-cooperative because market makers cannot create coalitions.
It is also an inconstant-sum game because of the arrival of ordinary traders, who
also bring/take the asset on/from the market.

The behaviour of the market will be examined by Monte Carlo simulations,
whose results will be presented and commented on the following pages. All sim-
ulations were written and run using R software [R Core Team, 2018].

After each simulation at time T , the utility functions of all market makers
fi(T ), i ∈ {1, . . . , M} will be compared in order to find the market maker with
highest pay off utility function.

For each combination of strategies, the simulations were run 100 times starting
always with an empty order book.

It is however very unlikely to find the optimal strategy, and it does not need
to exist at all, as explained in section 1.4. Our main aim is rather to compare the
strategies in order to see and explain some behaviour of market makers on real
markets.

Discrete time

Further in the thesis, we will also focus on the embedded Markov chains
and study the market in discrete time. The embedded Markov chain (N̂n, n ∈
N0) describe the market in a way that at each time step n ∈ N a new market
participant arrives. The embedded Markov chains will always be denoted by the
hat sign .̂ Then we denote the embedded Markov chains to the true price TPi(t),
inventory Ii(t) =

(
Ai(t), Ci(t)

)
, and market inventory IM

i (t) =
(
AM

i (t), CM
i (t)

)
by

T̂P i(k) = TPi(τk),
Âi(k) = Ai(τk), ÂM

i (k) = AM
i (τk),

Ĉi(k) = Ci(τk), ĈM
i (k) = CM

i (τk),
Îi(k) =

(
Âi(k), Ĉi(k)

)
, ÎM

i (k) =
(
ÂM

i (k), ĈM
i (k)

)
,

where k ∈ N0 and τk is the time of the arrival of k order (τ0 := 0) in the original
process (Nt, t ≥ 0).
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3.2 Market with stationary supply and demand
First, let us continue with the same supply and demand functions already intro-
duced in models cited in chapter 2. Let P = {1, . . . , 100}, and measures µ+ = µ−
are uniform distributions on P , i.e.

µ+
(
{x}

)
= µ−

(
{x}

)
= 1

100 ,

for all x ∈ P . Then supply and demand functions are

λ+(x) = µ+
(
{y ∈ P , y ≤ x}

)
= x

100 ,

λ−(x) = µ−
(
{y ∈ P , y ≥ x}

)
= 101 − x

100 ,

for x ∈ {1, . . . , 100}.
The overall intensity of the Poisson process is then

R = λ+(xmax) + λ−(xmin) + ρ = λ+(100) + λ−(1) + ρ = 1 + 1 = 2 + ρ = 2 +
M∑

i=1
ρi,

where ρ is the Poisson rate of market makers, and ρi, i = 1, . . . , M , are Pois-
son rates of individual market makers. Let the arrivals of market makers be
distributed equally, and let M = 2, i.e.

ρi = ρ

M
= ρ

2 .

The probabilities of arrivals of sellers, buyers and market makers are

pS = λ+(xmax)
R

= 1
2 + ρ

,

pB = λ−(xmin)
R

= 1
2 + ρ

,

pMM = ρ

R
= ρ

2 + ρ
,

pMMi
= ρi

R
= ρ

2(2 + ρ) .

The orders by traders are then specified by quintuple

(ω, σ, X, V, τ) = (T, σ, XT, 1, τ) =: ΩT,

where σ ∈ {B, S} (with equal probabilities), τ ∈ R+, and distribution of price
XT is then uniform on the price grid, i.e.

XT ∼ Unif {1, . . . , 100}.

The orders by market makers are then specified by

(ω, σ, X, V, τ) = (MM, σ, XMM, V MM, τ) =: ΩMM,

where σ ∈ {B, S} (with equal probabilities), τ ∈ R+, and XMM and V MM are
individually specified.
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The Walrasian equilibrium price does not exist because the supply and de-
mand are discrete. However, if we consider them as continuous, we can calculate
a pseudo equilibrium price, which we denote by x̄

x̄

100 = 101 − x̄

100 ,

2x̄ = 101,

x̄ = 50.5.

This price will replace the non-existing Walrasian equilibrium price when calcu-
lating the utility pay off functions.

3.2.1 Discrete time
Let us now analyse the model in discrete time. This approach is reasonable
because the time perspective is not important for our study. Furthermore, the
results would be very similar according to the law of large numbers. Let us now
focus on the embedded Markov chain (N̂n, n ∈ N0).

Let the true price given to the market makers be in the middle

T̂P 1(0) = T̂P 2(0) = 50.5,

and let si be a spread of the i-th market maker. Then the price of an order by
market maker i at time step k is

XMM
i,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T̂P i(k) − si

2 , σk = B,

T̂Pi(k) + si

2 , σk = S.

The starting inventories of both market makers are the same. They both
possess 100 units of the asset and corresponding amount of cash, and they have
nothing invested, i.e.

Îi(0) =
(
Ĉi(0), Âi(0)

)
= (100, 50.5 · 100) = (100, 5050),

ÎM
i (0) =

(
ĈM

i (0), ÂM
i (0)

)
= (0, 0).

Model no. 1

Let us now start with first basic game. Both market makers have the same
constant strategy (labelled as const in plots) , i.e. T̂P i, i = 1, 2, is constant
in time. First, we only want to see the difference between wider and narrower
spreads. First market maker was given spread s1 = 9, the second s2 = 21. The
values were chosen to easily demonstrate the difference between the two strategies,
and consequently finding the dominating one (if possible).

Volume of orders of market makers is simply one (labelled as one in plots), if
the inventory is sufficient. Hence the volume of i-th market maker at time step
k is following
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V MM
i,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, σk = B and Ĉi(k) ≥ XMM
i,k ,

1, σk = S and Âi(k) ≥ 1,

0, otherwise.

Results comparing the strategies for various probabilities of an arrival of the
market makers pMM are in Figure 3.2.

Let us now describe the plots. The plot on the left-hand side represents the
content of the order book after N time steps, i.e. N arrivals of either traders or
market makers. Again, red colour is for buy limit orders and blue colour for sell
limit orders. The legend in the top right corner describes the strategy of each
market maker

• spr stands for the width of the spread,
• str stands for strategy, const means that they place orders constantly in

the same place,
• am represents the V variable (one means unit quantity every time).

Since the buy/sell prices of both market makers are constant in time in this
example, the triangles on the x-axis highlight the prices.

The plots on the right-hand side show the inventories after N time steps. The
starting values are marked with dashed lines. The columns can have two colour as
explained in the legend. While “on market” represent the proportion of cash/asset
offered currently on the market in limit orders (ÎM

i (k)), “in pocket” represents
the proportion of a portfolio that can still be invested, i.e. Îi(k). The bar on the
left belongs to the first market maker, and the bar on the right belongs to the
second market maker. The numbers in the brackets below the bars represent the
total number of realized trades—“b” buys or “s” sells.

In section 2.4, we have seen that the most suitable ratio of market makers was
20%. The previous model was however quite different, because the market makers
placed their orders with the smallest spread possible. Therefore, we cannot make
the same conclusion here.

Let us discuss the shape of the order book for a few choices of pMM (see
Figure 3.2). When the probability of an arrival of a market maker ρ is just 10%,
the order book is empty. The ratio of market makers is just too small, so they
do not place enough limit orders to satisfy all the arriving traders. The second
market maker with the wider spread earned more cash than the first one due to
the wider spread. The number of trades for both market makers is very similar.

The order book is not empty any more with 30 % of market makers, but there
are only limit orders from the second market maker. Despite the fact that the
first market maker has slightly more realised trades, the second market maker
earned more cash, still due to the wider spread.

However, the situation turns with 50 % of market makers, when the market
is over-saturated. Both market makers have their limit orders in the order book.
The market maker with smaller spread always offers better price; therefore, the
second market maker has a very small number of trades.
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BUY & SELL, N=10000, 50% MM
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Figure 3.2: State of the order book after N = 10, 000 time steps with various
probabilities of market makers pMM.

All those simulation were run 100 times. In case of 10% and 30% of market
makers, the market maker with wider spread had higher utility function

fi(τN) = Ĉi(N) + ĈM
i (N) + x̄

(
Âi(N) + ÂM

i (N)
)

for all 100 attempts. Therefore, the strategy with wider spread dominated the
strategy with narrower spread. However, the market maker with the narrower
spread had higher utility function fi for all 100 simulations for 50 %. So, we
have learned that better offering prices, i.e. smaller spread, can get us ahead of
other market makers, if the market is saturated. Still, there is always a constraint
on the smallest tick size on real markets, so the spread cannot be made smaller
infinitely.
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Interestingly in all simulations in Figure 3.2, the asset inventory did not change
much from its starting value, while on the other hand the cash inventory increased
in all cases. This disproportion results from the fact that the probabilities of
buying and selling the asset are equal. Hence, the amount of asset fluctuates
around 100. On the contrary, the amount of cash is increasing due to the effect
of buying for less and selling for more.

Model no. 2
Now, let us focus on the volume variable V MM. Is it possible to beat a com-

petitor with a smaller spread just by increasing the size of orders? We tried
a strategy that always keeps specified percentage r of the whole portfolio (not
invested and invested together) on the market (in plots represented by the abbre-
viation keep ratio r). The volume of the order is chosen such that afterwards,
the ratio of invested cash/asset is r. Therefore,

V MM
i,k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎢⎢⎢⎣ r·
(

Ĉi(k)+ĈM
i (k)

)
−ĈM

i (k)

XMM
k

⎥⎥⎥⎦ , σk = B,

⌊
r ·

(
Âi(k) + ÂM

i (k)
)

− ÂM
i (k)

⌋
, σk = S.

If V MM
i,k = 0, no order is placed. Note that the differences can never be

negative. When traders take limit orders, the ratio of invested to all cash/asset
can only decrease.

In order to compare the strategies, the first market maker has the constant
strategy with volume of order just one (str=const and am=one), and the sec-
ond market maker has the same strategy (str=const and the newly introduced
am=keep ratio r strategy for volume. We simulated the market for r = 0.5 and
r = 1 to demonstrate the strategy. It did not improve the situation in case the
of 50 %, because there is simply a large surplus of orders by the market maker
with better price. However, it resulted in significantly larger profits in the model
with a 30% ratio of market makers, as illustrated in Figure 3.3.

3.3 Market with dynamic supply and demand
The previous section gave us some hints in which direction it may be interesting
to develop our study. However, static supply and demand are quite limiting.
Prices always change, and a successful market maker’s strategy must incorporate
techniques that can react to the change reasonably and quickly. Thus, we will
change the behaviour of the traders in order to change supply, demand, and
consequently equilibrium price.

Let us now suppose two states called low and high, which are represented by
a two state Markov process (St, t ≥ 0) that jumps between states with rate ζ. In
other words, times between changes have exponential distribution with parameter
ζ. Demand is decreased in the low state, which results in a lowered price. On the
contrary, supply is decreased in the high state to increase the price. The supply
and demand are then so-called hidden Markov models. A hidden Markov model
is a stochastic process whose parameters are governed by a Markov process which
is however not part of the stochastic process we are mainly interested in

47



BUY & SELL, N=10000, 30% MM

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

0 10 20 30 40 50 60 70 80 90 100

1: spr= 9, str=const, am=one

2: spr= 21, str=const, am=keep_ratio_50

buy

sell

1 (748 s) 2 (639 s)

CASH

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

1 (815 b) 2 (666 b)

ASSET

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

in pocket

on market

(a) pMM = 30%, r = 0.5

BUY & SELL, N=10000, 30% MM

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

0 10 20 30 40 50 60 70 80 90 100

1: spr= 9, str=const, am=one

2: spr= 21, str=const, am=keep_ratio_100

buy

sell

1 (710 s) 2 (804 s)

CASH

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

1 (761 b) 2 (742 b)

ASSET

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

in pocket

on market

(b) pMM = 30%, r = 1

Figure 3.3: State of the order book after N = 10, 000 time steps. The second
market maker has additional parameter r that represents the proportion of asset
and cash constantly kept on the market.

Let P = {1, . . . , 100} be the set of possible prices. The changes are achieved
by two choices for measures:

µlow
+ ({x}) = 1

100 , µhigh
+ ({x}) = 1

200 ,

µlow
− ({x}) = 1

200 , µhigh
+ ({x}) = 1

100 ,

where x ∈ P . The supply and demand functions in the low state are

λlow
+ (x) = µlow

+

(
{y ∈ P , y ≤ x}

)
= x

100 ,

λlow
− (x) = µlow

−

(
{y ∈ P , y ≥ x}

)
= 101 − x

200 ,

and in the high state are

λhigh
+ (x) = µhigh

+

(
{y ∈ P , y ≤ x}

)
= x

200 ,

λhigh
− (x) = µhigh

−

(
{y ∈ P , y ≥ x}

)
= 101 − x

100 ,

for x ∈ P . They are plotted in Figure 3.4.
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Figure 3.4: Shape of supply and demand in the low and high states

The overall Poisson intensity of the process is

R = λhigh
+ (xmax) + λhigh

− (xmin) + ρ

= λlow
+ (xmax) + λlow

− (xmin) + ρ

= 1.5 + ρ

= 1.5 +
M∑

i=1
ρi,

where ρ is the Poisson rate of market makers, and ρi, i = 1, . . . , M , are Poisson
rates of individual market makers. Let M = 2, and let the market makers arrive
with the same rate, i.e.

ρi = ρ

M
= ρ

2 .

The probabilities of arrivals of sellers and buyers in low and high states are

plow
S = λlow

+ (xmax)
R

= 1
1.5 + ρ

, phigh
S = λhigh

+ (xmax)
R

= 1
2(1.5 + ρ)

plow
B = λlow

− (xmin)
R

= 1
2(1.5 + ρ) , phigh

B = λhigh
− (xmin)

R
= 1

1.5 + ρ

The probabilities of arrivals of market makers do not depend on the state

pMM = ρ

R
= ρ

1.5 + ρ
,

pMMi
= ρi

R
= ρ

2(1.5 + ρ) .

The orders by traders are then specified by quintuple

(ω, σ, X, V, τ) = (T, σT, XT, 1, τ) =: ΩT,
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where σT ∈ {B, S}, τ ∈ R+, and distribution of price XT is then uniform on the
price grid, i.e.

XT ∼ Unif {1, . . . , 100}.

The distribution of σT depends on the state, i.e.

σT =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B, with probability 1

3 in low state and 2
3 in high state,

S, with probability 2
3 in low state and 1

3 in high state.

The orders by market makers are then specified by

(ω, σ, X, V, τ) = (MM, σ, XMM, V MM, τ) =: ΩMM,

where σ ∈ {B, S} (with equal probability), τ ∈ R+, and XMM and V MM are
specified individually.

Again, supply and demand do not intersect because of their discreteness, so
there is no Walrasian equilibrium point. We will however need some price to value
the pay off functions of market makers. For this purpose, we take the continuous
linear interpolation of the supply and demand functions. Then, we can derive
values x̄low and x̄high:

x̄low

100 = 101 − x̄low

200
x̄high

200 = 101 − x̄high

100
3x̄low = 101 3x̄high = 202
x̄low = 33.6̄ x̄high = 67.3̄ (3.1)

3.3.1 Discrete time
Let us now consider the embedded Markov chain (N̂n, n ∈ N). Let the true price
given to the market makers be in the middle

T̂P 1(0) = T̂P 2(0) = 50.5,

and let si be a spread of the i-th market maker. Then the price of an order by
market maker i at time step k is

XMM
i,k , =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T̂P i(k) − si

2 , σk = B,

T̂Pi(k) + si

2 , σk = S.

The starting inventories of both market makers are the same. They both
possess 100 units of the asset and corresponding amount of cash, and they have
nothing invested, i.e.

Îi(0) =
(
Ĉi(0), Âi(0)

)
= (100, 50.5 · 100) = (100, 5050),

ÎM
i (0) =

(
ĈM

i (0), ÂM
i (0)

)
= (0, 0).
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Let us denote the discrete time Markov process that is marking the changes
between low and high state by (S∗

k , k ∈ N), i.e.
S∗

0 = S0,

S∗
k = Sτk

, k ∈ N,

where τk is the time of the arrival of k market participant in the original Poisson
process (Nt, t ≥ 0). The process (S∗

k , k ∈ N) has obviously two states {high,low}
and some transition matrix

P =

⎛⎜⎜⎜⎝1 − ζ∗ ζ∗

ζ∗ 1 − ζ∗

⎞⎟⎟⎟⎠ .

Then the times between changes have a geometric distribution with parameter
ζ∗. The expected value is 1

ζ∗ , and the probability of the time between changes
being k is

pk = (ζ∗)k−1(1 − ζ∗).
Simulations were again run for N = 10, 000 time steps. We want to choose the

parameter ζ∗ so that on one hand we can observe at least a few changes during
N = 10, 000 steps, and on the other hand we stay in a state for some longer time
to actually see its effect. Therefore, the parameter ζ∗ was chosen as 1/2000 in
our simulations (i.e. 5 changes on average)
Model no. 3

The final model always compares two strategies represented by two market
makers. They both have the same starting true price, inventory, market inventory,
and spread s1 = s2 = 9.

Let us now introduce a complicated strategy that will be further analysed. The
strategy has a few parameters, and our goal is to find the perfect combination
to beat the others. The strategy is labelled str=trend final in plots. The
main idea is that the market maker will change his/her value of the true price
by analysing his/her inventory and market. For example, if his/her true price is
lower than the current equilibrium, he/she should observe more buys than sells
and vice versa. Hence, he/she may want to increase his/her true price, in order to
equalise the inventory. The equalisation is also an important and realistic aspect
since the market maker’s profit depends on providing liquidity, and they cannot
risk a depletion of one of their resources.

There are four parameters: (wi, di, mi, ri) ∈ N×R+ ×N× (0, 1), i = 1, 2. The
true price of a market maker i is recalculated after every wi turns (w for wait
time) of the market maker. This parameter was incorporated in order to discover
whether it is wise to check the true price often or whether it is better to wait for
a while and see its effect.

The difference coefficient di ∈ N represents the market maker’s “conservative-
ness”. After each wi steps, the market makers calculates the disproportion in his
inventory. Let us denote the total cash and total asset of a market maker i at
time k by

ĈT
i (k) := Ĉi(k) + ĈM

i (k)
ÂT

i (k) := Âi(k) + ÂM
i (k)
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Let us denote the disproportion in the portfolio of a market maker i at time step
k by hk,i, which is the difference in the value of cash and asset from previous time
step. Then

hk,i = ĈT
i (k − 1) − T̂P i(k − 1)ÂT

i (k − 1).
The coefficient di ∈ R+ tells the market maker whether the disproportion hk,i is
significant when compared to the total value of his portfolio, i.e. if

|hk,i| ≥ di

(
ĈT

i (k − 1) + T̂P i(k − 1)ÂT
i (k − 1)

)
, (3.2)

then the difference is significant.
If the market maker decides that the difference hk,i is significant, he/she shifts

the true price by mi steps to the left or to the right (depending on the dispro-
portion) if possible. If Equation 3.2 holds then

T̂P i(k) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

{
T̂P i(k − 1) + mi, 100 − si

2

}
, ĈT

i (k − 1) > T̂P i(k − 1)ÂT
i (k − 1),

max
{

T̂P i(k − 1) − mi, 1 + si

2

}
, ĈT

i (k − 1) < T̂P i(k − 1)ÂT
i (k − 1).

The last parameter ri has the same meaning as in the models with stationary
supply and demand. It defines the volume of trade of market maker i at time k
as

V MM
i,k :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎢⎢⎢⎣ ri·
(

Ĉi(k)+ĈM
i (k)

)
−ĈM

i (k)

XMM
k

⎥⎥⎥⎦ , σk = B,

⌊
ri ·

(
Âi(k) + ÂM

i (k)
)

− ÂM
i (k)

⌋
, σk = S.

. That is, ri is the ratio of cash/asset that the market maker i tries to keep
invested in the market.

Results of simulations

Each simulation was run for N = 10, 000 time steps, i.e. 10.000 arrivals of
market participants. After each simulation, the wealth of both market makers
was compared using the utility pay off functions

fi(τN) = Ĉi(N) + ĈM
i (N) + x̄

(
Âi(N) + ÂM

i (N)
)
,

where x̄ = x̄low in case of market being in the low state at time step N , and x̄ =
x̄high in case of market being in the high state at time step N (see Equation 3.1).
The logic behind this approach is that we wanted to value the portfolio with
the current “equilibrium” price. Then, the asset is valued by the price for which
the market maker could hypothetically sell all the asset immediately. There
are obviously other different approaches. Further in plots, there will also be a
comparison based separately on cash and asset pay off. The market maker with a
higher pay off was given a “winning” point. Each pair of market makers competed
100 times in order to determine the winner. The winner was then compared with
another market maker competing with a different combination of parameters.
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Simulations were performed for different probabilities of the arrival of a market
maker (pMM =10%, 30%, 50%, and 70%). The percentage governs how often the
market makers place orders. Therefore, it may be viewed as part of the strategy
of the market makers, rather than a property of the market. The values of the
parameters were chosen from those sets:

• waiting time wi ∈ {1, 2, 5, 10, 20, 50, 100} =: W ,
• difference coef. di ∈ {0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} =: D

• shifting parameter mi ∈ {1, 2, 5, 10, 20} =: M ,
• ratio of portfolio on the market ri ∈ {0.2, 0.4, 0.6, 0.8, 1} =: R.

So, we have a finite, 2-person non-cooperative normal-form game with a finite
set of actions available to player i Xi = (wi, di, mi, ri) ∈ W × D × M × R, and
with utility functions fi, i = 1, 2. The is not constant-sum game, because the
pay-off function depends also on the behaviour of traders and on the market
conditions. We play the game for 100 independent rounds in which the winner
gets +1 point. After all 100 rounds, the action with more points is considered as
the winning action. The winning action then performed next game with different
action. Obviously, not all values of parameters can be compared. We tried many
combinations of actions, but it was impossible to try all of them due to high
technical and time requirements. Our goal was to find a dominating strategy.
However, we most likely did not find a dominating action or a Nash equilibrium
for the market makers, because it is simply impossible to try all the possible
combinations of parameters. So, the main goal of those simulations was to find
the better “direction”, i.e. go higher or lower with a certain parameter.

Some parameter were clearly better than other and worked for all probabilities
pMM, while some where trickier.

The best option among values of parameter ri was 1. The market maker who
put all his/her portfolio on the market had always higher pay off than his/her
competitor with lower proportion. That is quite understandable, because the
higher the parameter, the more orders are placed on the market, and the more
orders can be executed. The high value of the parameter also guarantees that
the market is liquid, and it prevents the situation in Figure 3.2 (a) and (b) from
happening even for smaller probability of the arrival of a market maker pMM.

Finding the optimal value of the shifting parameter mi was also quite straight-
forward. The lowest possible option (i.e. mi = 1) dominated all other actions
that were simulated. The true meaning of it is that shifting the prices of orders
by smaller steps is more beneficial than jumping large intervals. This may be ex-
plained as a sort of cautious behaviour, that prevents small and random changes
in the inventory from causing a large shift. However, the best understanding of
the importance of the low value is probably that the parameter mi goes hand in
hand with the waiting parameter wi.

The waiting time wi between recalculation of the value of the true price per-
formed best pay offs for lower values; however, value 1 did not work. The best
options were 2 and 5. An example in which 2 performed better with pMM = 10%,
and 5 performed better with higher values of pMM is illustrated in Figure 3.5.
The parameter wi determines after how many turns the market maker reevaluates
his/her idea of the true price. So, if we lower the percentage of market makers but
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keep the value of wi fixed, then measured in real time the market maker controls
the value of the true price less often. That may be the reason behind lower wi

performing better with a low percentage of market makers.

CASH ASSET TOTAL

1: strategy=trend_final, amount=keep_ratio, spread=9

2: strategy=trend_final, amount=keep_ratio, spread=9

Wins after 100 rounds (N=10000, 10% MM)

0
5
0

1
0
0

1
5
0

(a) 10 % of market makers

CASH ASSET TOTAL

1: strategy=trend_final, amount=keep_ratio, spread=9

2: strategy=trend_final, amount=keep_ratio, spread=9

Wins after 100 rounds (N=10000, 30% MM)

0
5
0

1
0
0

1
5
0

(b) 30 % of market makers

CASH ASSET TOTAL

1: strategy=trend_final, amount=keep_ratio, spread=9

2: strategy=trend_final, amount=keep_ratio, spread=9

Wins after 100 rounds (N=10000, 50% MM)

0
5
0

1
0
0

1
5
0

(c) 50 % of market makers

CASH ASSET TOTAL

1: strategy=trend_final, amount=keep_ratio, spread=9

2: strategy=trend_final, amount=keep_ratio, spread=9

Wins after 100 rounds (N=10000, 70% MM)

0
5
0

1
0
0

1
5
0

(d) 70 % of market makers

Figure 3.5: Proportion of wins in cash, asset, and both combined for strategies
(w1, d1, m1, r1) = (2, 0.3, 1, 1) and (w2, d2, m2, r2) = (5, 0.3, 1, 1).

Together with the shifting parameter mi, we get that making small changes
often is more preferable to making large changes less frequently. A comparison is
in Figure 3.6.

The last parameter difference coefficient di was the most complicated one.
At first, the simulations were run for smaller values, because it seemed more
reasonable, e.g. di = 0.05 corresponds to significant difference of 10 assets or 505
cash in the setting of starting values of inventories and true prices. The highest
pay offs were however for di = 0.3 and sometimes even di = 0.4. The comparison
for various values of pMM are in Figure 3.7, where d1 = 0.1 and d2 = 0.3. The
reason for higher values being more rewarding may lay in the conservativeness.
A more conservative market maker who does not change his opinion just because
of a small disproportion gets a higher pay off.

The absolute values of parameters undoubtedly depend on the total steps
of simulation N , on the parameter ζ∗ that determines how fast do the states
change from low to high and vice versa, and also on the spread parameters si.
Therefore, we are rather focusing on the decision between low and high values of
the parameters than on the specific absolute value of the parameter.

Obviously, all the result are based only on simulations. Therefore, we need to
be considerate when presenting the results because they are still waiting for its
proper proof. We however got a deeper insight into market makers’ strategies.

The model can undoubtedly be improved as many options are still open. For
example, the traders who do not see a suitable offer simply walk away in our
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(a) 10 % of market makers

CASH ASSET TOTAL

1: strategy=trend_final, amount=keep_ratio, spread=9
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(b) 30 % of market makers

CASH ASSET TOTAL

1: strategy=trend_final, amount=keep_ratio, spread=9

2: strategy=trend_final, amount=keep_ratio, spread=9

Wins after 100 rounds (N=10000, 50% MM)
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(c) 50 % of market makers

CASH ASSET TOTAL

1: strategy=trend_final, amount=keep_ratio, spread=9

2: strategy=trend_final, amount=keep_ratio, spread=9

Wins after 100 rounds (N=10000, 70% MM)
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(d) 70 % of market makers

Figure 3.6: Proportion of wins in cash, asset, and both combined for strategies
(w1, d1, m1, r1) = (2, 0.3, 1, 1) and (w2, d2, m2, r2) = (10, 0.3, 10, 1).
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(a) 10 % of market makers
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(b) 30 % of market makers
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(c) 50 % of market makers

CASH ASSET TOTAL
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Wins after 100 rounds (N=10000, 70% MM)
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(d) 70 % of market makers

Figure 3.7: Proportion of wins in cash, asset, and both combined for strategies
(w1, d1, m1, r1) = (5, 0.1, 1, 1) and (w2, d2, m2, r2) = (5, 0.3, 1, 1).

model. In reality, they are just waiting in the background for a suitable offer to
appear. For example, Bouchaud and Donier [2015] introduce the idea of modelling
two order books. One “visible” order book in the traditional sense that can be
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measures in stock exchanges with the drawback that it is dominated by market
makers, and one “latent” order book that contains all buy/sell intentions; and as
a result, represents the true underlying supply and demand.
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Conclusion
The main goal of the thesis was to develop and improve the Stigler-Luckock
model, and gain a deeper insight into market maker’s strategies.

New approaches were studied in this thesis to improve the original model.
Most importantly this concerned the behaviour of so-called market makers. Mar-
ket makers are an essential component of each properly functioning market. Their
purpose is to supply the market with cash and asset; therefore, they are sometimes
called “liquidity providers”.

The main focus of the thesis were simulations of a model with regular traders,
who either take an offer or leave, and with two competitive market makers. The
intention was to compare a few strategies and attempt to find the best one in a
sense of game theory.

First, a simple market with the equilibrium price in the middle was analysed.
The supply and demand functions were constant in time. The outcome was that
a market maker with a wider spread wins in market where market makers place
a small proportion of all orders, and looses in markets with a higher proportion.
Furthermore, an increased volume of orders improved the position of the market
maker with wider spread, but only in (unrealistic) markets with little liquidity.

Secondly, a more complicated market was studied—with two states that each
have a different equilibrium price. The changes are represented by a hidden
Markov model in which supply and demand are not constant in time. The simu-
lations indicated that a reasonable strategy for market makers is to watch their
inventory (i.e. cash and asset), and if they observe some disproportion between
buys and sells, increase or decrease the prices for which they buy and sell the
asset. The results of the simulations suggested that a market maker who controls
his/her inventory more frequently, and who changes the prices with just smaller
steps, earns more. It was also recommended to place orders with high volumes
because it not only provides liquidity but it is also beneficial to the market maker.
Finally, a more “conservative” approach was preferred. The meaning of the term
is that only larger disproportions in inventories should be reacted to, and the
minor ones should not cause panic.

Still, the results were only obtained by simulations. We need to be considerate
when presenting the results because they are not properly proved. The proof, if
possible at all, is however probably complicated.
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