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Abstract: Dynamic rupture modeling coupled with strong motion data fitting
offers an insight into physical mechanisms behind earthquake sources [Gallovic
et al., 2019]. Running a large number of dynamic model simulations is required
due to the nonlinearity of the inverse problem. The goal of this Thesis is a
development of an efficient forward solver for the dynamic inversions. The fi-
nite difference staggered grid code FD3D by Madariaga and Olsen [1998] served
as a basis for the development, offering sufficient speed, but rather low accu-
racy. Traction at split node implementation of the fault boundary condition and
perfectly matched layers as the absorbing boundary condition were required to
obtain desirable accuracy. In addition to the slip weakening friction law, fast ve-
locity weakening friction law has been implemented, increasing the applicability
of the code. We test the new code FD3D TSN using USGS/SCEC benchmarks
TPV5 (slip-weakening friction) and TPV104 (fast rate weakening friction) [Harris
et al., 2018], showing very good agreement with results calculated by advanced
numerical codes.
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Abstrakt: Dynamické modelováńı trhliny ve spojeńı s s vystižeńım silných
pohyb̊u umožňuje źıskat vhled do fyzikálńıch mechanismů kontroluj́ıćıch zdroj
zemětřeseńı [Gallovič a kol., 2019]. Nelinearita inverzńıho problému vyžaduje
spouštěńı velkého množstv́ı simulaćı. Ćılem této diplomové práce je vývoj efek-
tivńıho kódu pro řešeńı inverzńı úlohy. Původńı kód FD3D od autor̊u Madariagy a
Olsena [1998], použ́ıvaj́ıćı konečné difference s posunutými śıtěmi, nab́ızel dostatečnou
rychlost, ale ne přesnost. Byl použit jako základ pro daľśı vývoj. Implementace
okrajové podmı́nky na zlomu metodou trakce v p̊uleném uzlu (traction at split
node) a absorbčńı podmı́nky pomoćı metody perfektně sladěných vrstev (per-
fectly matched layers) bylo třeba k źıskáńı požadované přesnosti. Jako mod-
erńı alternativa ke skluzem slábnoućımu (slip weakening) zákonu třeńı byl im-
plementován s rychlost́ı rychle slábnoućı (fast velocity weakening) zákon, což
dále rozš́ı̌rilo škálu jev̊u, které je možné modelovat. Nový kód FD3D TSN byl
otestován pomoćı komunitńıch benchmark̊u USGS/SCEC [Harris a kol., 2018],
konkrétně TPV5 pro skluzem slábnoućı třeńı a TPV104 pro třeńı slábnoućı s
rychlost́ı. Výsledky vykazuj́ı velmi dobrou shodu s výsledky ostatńıch pokročileǰśıch
kód̊u.

Kĺıčová slova: Zemětřeseńı, Metoda konečných differenćı, Dynamické simulace
trhliny, Zemětřesný zdroj
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Introduction
Most informations about eartquakes come in the form of seismograms, which
is a time graph of ground motion measured at a concrete spot at the Earth’s
surface. Combination of two physical models is required to calculate the shape
of seismogram theoretically – a model of the propagation of seismic waves and a
model of the earthquake source. Pameters of these models can be acquired as a
solution to an inverse problem.

The elastodynamic equation describes the propagation of seismic waves through
the Earth’s body at seismic wave frequencies. Izotropic rheology is a reasonable
description of the material properties in the litosphere, leaving us with the dis-
tribution of the density and Lamé’s coefficients as model parameters.

Seismic source can be described by models of varying complexity. The point
source double couple model is on the one side of the spectrum, where the source
is described by a system of equivalent forces acting at the centroid. This leads
to parametrization of the source by a moment tensor, whose components are
provided as a solution of the inverse problem. This approach is suitable for
earthquakes happening at long distances from the seismic station (longer than
the size of the fault rupture), where inverted seismograms are obtained, and low
frequencies (lower than the corner frequency).

At local distances, when the size of the source is not negligible, more compli-
cated models are required. We distinguish two groups of such models – kinematic
and dynamic.

• Kinematic model describes the source as a discontinuity in the displacement
(slip) at a prescribed surface in the body, defining the fault. It does not
require the model parameters (time and spatial dependence of the slip) to
be physically plausible, which can lead to an ambiguity of the problem.

• Dynamic models prescribe a physical condition at the fault surface. The
rupture propagates spontaneously, with the slip being one of the outputs,
rather then inputs of the model. Popular approximation is to consider the
rupture to be a shear crack on a frictional plane embedded in an elastic
material. More complex models, including complicated geometries [Ulrich
et al., 2019], off-fault plasticity [Wollherr et al., 2018] or damage [Pelties
et al., 2015] are also studied, but to date only in the form of the forward
problem, not in an automatic inversion of seismograms.

The major obstacle in the dynamic inversion is the nonlinear relationship
between model parameters and seismograms and the high computational com-
plexity of the forward problem (rupture propagation). This limits the allowable
complexity of the physical model and achievable accuracy of its numerical solu-
tion [Mirwald et al., 2019]. Vertical planar faults are used, as other geometries
require numerical methods with irregular grids, increasing the time requirements
beyond the boundary where the dynamic inversion is feasible. Dynamic inver-
sions focused at cracks with eliptical shape [Herrera et al., 2017], decreasing the
amount of model parameters.

This Thesis describes a development of a forward model solver for the dynamic
inversion code fd3d pt by F. Gallovič (https://github.com/fgallovic/fd3d_
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pt). Result of strong motion (< 1 Hz) inversion is the distribution of the dynamic
parameters (prestress and friction law parameters). FD3D code, originally used
as a forward solver for this inversion, was developed by [Madariaga et al., 1998],
it is available at http://www.geologie.ens.fr/˜madariag/Programs/README_
fd3d_xy.html.

There were two issues with the original code – thin zone implementation of the
fault boundary condition did not compare well with other approaches [Dalguer
and Day, 2006] and the absorbing conditions at the border caused unwanted
oscillation. Both problems can be minimized, but at the cost of an increase in
the time of the calculation – the fault boundary model improves when finer grid
is chosen, effect of the reflections from the absorbing boundary conditions can be
minimized by a larger computational domain. This decreases the efficiency of the
code, therefore significant improvements are required.

Chapter 1 of this thesis contains the formulation of the elastodynamic equation
and the description of the finite difference staggered grid method. There were
no additional improvements in this part of the code, with the exception of its
OpenACC paralelization for GPU by L. Hanyk and F. Gallovic.

Chapter 2 deals with the fault boundary condition. It is formulated in Section
2.1. Two methods for its implementation – thin zone (Section 2.2) and traction
at split node (Section 2.3) are described. Thin zone method [Madariaga et al.,
1998] was originally used in the FD3D code. The traction at split node method
[Andrews, 1973] was chosen as a replacement (Section 2.3), in the version for the
staggered grid by Dalguer and Day [2007]. Incorporation of this method led to
expected improvements in accuracy in kinematic parameters such as rupture time
and slip.

The implementation of the new method revealed a large amount of energy
reflecting from the absorbing boundary conditions (placed at the edges of the
computational domain), causing continual sliding of the fault, driven by reflected
waves. This was not the case for the original code due to additional artificial
regularizations of the solution (instantaneous healing).

Update of the boundary conditions at the border was therefore also required.
Implemented methods are described in Chapter 3. Small fixes in the free surface
implementation (Section 3.1) were done, leading to slight improvements in the
arrival time of the waves reflected from the surface. The major change was
the implementation of Perfectly matched layers (Section 3.2) as the absorbing
boundaries [Collino and Tsogka, 2001]. Although the calculation is significantly
slower than for the original Clayton’s conditions [Clayton and Engquist, 1977], the
reflected waves were eliminated. Further reduction of the computational domain
around the fault was allowed, compensating the increase in resource requirements.

The friction at the fault is a leading physical effect in the dynamic model.
The slip-weakening friction law (Section 2.4) was used in dynamic simulations
for decades and was also included in the original FD3D code. Empirical rate and
state laws [Ruina, 1983] were offered as an alternative, describing much broader
range of phenomena, from pulse-like beahviour of the rupture to seismic cycles.
Their numerical implementation is more complicated, requiring solving additional
differential equation at the fault boundary [Kaneko et al., 2008].

Modern high speed friction experiments [Di Toro et al., 2004, Goldsby and
Tullis, 2011] offer an additional insight into the friction at earthquake sliding
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speeds. The fast decrease of friction strength is observed, related to the flash
heating of the fault surface [Rice, 2006]. The version of the rate and state friction
law, based on these experiments, is described in the Section 2.5, and was also
implemented, based on Rojas et al. [2009].

Updated version of the code, with a working name FD3D TSN, was tested
in community benchmark SCEC/USGS Spontaneous Rupture Code Verification
Project [Harris et al., 2018]. Outcomes of these tests, including comparison with
the original code, and with the more accurate (and more resource demanding)
finite element code FaultMod [Barall, 2009]. Performance was tested for both
friction laws. This represents the main part of the Thesis and is discussed in
Chapter 4.
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1. Wave propagation in the
elastic medium

1.1 Elastodynamic equation and Hooke’s law
The state of an elastic medium is described by two fields – displacement field ui
and stress field σij. Indices i, j denote a component of a given vector or tensor
and can have values of 1, 2 and 3 for x, y and z components, respectively. Time
development of both fields is governed by two equations – the elastodynamic
equation

ρ
∂2ui
∂t2

= σij,j, (1.1)

and Hooke’s law
σij = cijkluk,l. (1.2)

Einstein summation is assumed, unless stated otherwise. Spatially variable pa-
rameters ρ (density) and cijkl (tensor of elastic moduli) describe material prop-
erties. Only isotropic material will be presumed in this work, therefore

cijkl = λδijδkl + µ(δikδjl + δilδjk), (1.3)

where λ and µ are Lame’s parameters.
Using the combination of equations (1.1) and (1.2) for the description of the

wave propagation is called displacement-stress formulation. Extensively used
alternative is the velocity-stress formulation [Moczo et al., 2007], which leads
to a more symmetric set of equations and will be used throughout this work.
Velocity vi is substituted into the elastodynamic equation as the time derivative
of the displacement:

ρ
∂vi
∂t

= σij,j, (1.4)

and Hooke’s law is differentiated with respect to time:

∂σij
∂t

= cijklvk,l. (1.5)

In the frequency domain, this set of equations has the following form:

ριωv̂i = σ̂ij,j (1.6)

ιωσ̂ij = cijklv̂k,l, (1.7)
where v̂i and σ̂ij are velocity and stress as a function of angular frequency ω and
ι an imaginary unit.

One of the analytical solutions of the elastodynamic equation can be found in
the form of a plane wave

vj = Vj exp [−ι(k1x1 + k2x2 + k3x3 − ωt)], (1.8)

where Vj represents the amplitude of the j-th component of the plane wave solu-
tion, k = (k1, k2, k3) is a wave vector.
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1.2 Grid and finite differences
All calculations will be performed using a three dimensional Cartesian coordinate
system (x, y, z) with forth dimension being time t. The space is discretized into a
grid of discrete points numbered by four indexes (I, J,K,N). Position of a point
is given by four values – (xI , yJ , zK , tN). Only regular grids will be considered,
which means that for each I, J,K,N applies:

xI − xI−1 = ∆h (1.9)
yJ − yJ−1 = ∆h (1.10)
zK − zK−1 = ∆h (1.11)
tN − tN−1 = ∆t, (1.12)

where ∆h is a spatial and ∆t temporal grid spacing. The position of the node will
be given by four numbers I, J,K,N , that can have half integer values 0, 1/2, 1, ....
Fields vi and σij are approximated by their values at these discrete nodes. They
can be calculated all at same point (unstaggered grid) or at different points mu-
tually shifted (staggered grid). Partly staggered grids, where all velocity com-
ponents are at one point and all stress components at another were also used,
especially when attenuation came into consideration.

Mutual positions of the components in the staggered grid is shown in Fig
1.1. These positions are chosen with respect to the discretization of the spatial
derivatives in the elastodynamic equation and the Hooke’s law.

Figure 1.1: Staggered grid cell positioned around the node I, J,K considered in
this Thesis. Symbols (triangles, squares, circles) label the positions of spatialy
staggered velocity and stress components.

The position of the velocity and stress components is staggered in time also.
All velocity components are calculated at N∆t time levels, for N = 0, 1, ..., T/∆t,
where T is the maximum simulation time. The stress components are positioned
at the time levels shifted by a factor of ∆t/2 as can be seen in Fig 1.2.
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Figure 1.2: Time staggered position of the velocity and stress components.

Solving the set of partial differential equations (1.4) and (1.5) by the finite
difference (FD) method requires approximation of the time and spatial derivatives
by respective FD formulas. FD formulas of the second order read:

(D(2)
1 φ)I,J,K =

[
φ
I

1
2 ,J,K

− φ
I− 1

2 ,J,K

]
/∆h (1.13)

(D(2)
2 φ)I,J,K =

[
φ
I,J

1
2 ,K

− φ
I,J− 1

2 ,K

]
/∆h (1.14)

(D(2)
3 φ)I,J,K =

[
φ
I,J,K

1
2

− φ
I,J,K− 1

2

]
/∆h. (1.15)

And FD formulas of the forth order read:

(D(4)
1 φ)I,J,K =

[9
8(φ

I
1
2 ,J,K

− φ
I− 1

2 ,J,K
) − 1

24(φ
I

3
2 ,J,K

− φ
I− 3

2 ,J,K
)
]
/∆h (1.16)

(D(4)
2 φ)I,J,K =

[9
8(φ

I,J
1
2 ,K

− φ
I,J− 1

2 ,K
) − 1

24(φ
I,J

3
2 ,K

− φ
I,J− 3

2 ,K
)
]
/∆h (1.17)

(D(4)
3 φ)I,J,K =

[9
8(φ

I,J,K
1
2

− φ
I,J,K− 1

2
) − 1

24(φ
I,J,K

3
2

− φ
I,J,K− 3

2
)
]
/∆h, (1.18)

where φ denotes any components of velocity or stress. For convinience we use IJ
instead of I + J to express complicated indexes designating position in the FD
grid. The direction of the difference is set by a lower index (1 for x, etc.).

The position in time will be marked by an upper index, where index N marks
the time level N∆t. The time difference Dtφ at the time level (N + 1

2)∆t will be
defined as a difference between values of φ at time levels shifted by ∆t/2 in both
directions:

(Dtφ)N
1
2

I,J,K =
[
φNI,J,K − φN

−1

I,J,K

]
/∆t. (1.19)

This central finite difference formula is of the second order.
Using (1.16,1.17,1.18) and (1.19) to approximate the spatial and time deriva-

tives in (1.4) and (1.5) leads to an updating scheme that allows for calculation of
σN

1
2

ij and vN+1
i from σN

− 1
2

ij and vNi . As a starting point, the initial conditions σ
1
2
ij

and v0
i for velocity and stress, respectively, are required .

The scheme using the 2-nd order spatial formulas was introduced by [Virieux,
1986] and using the 4-th order formulas by [Levander, 1988], in both cases only
for calculation of P-SV seismograms, not the whole elastodynamic equation. The
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full staggered FD 4-th order scheme used in this work was introduced by [Graves,
1996]. It consists of nine FD formulas:

(v1)N
1

I,J
1
2 ,K

= (v1)N
I,J

1
2 ,K

+ ∆t
ρ

(
[D(4)

1 σ11]
I,J

1
2 ,K

+ [D(4)
2 σ12]

I,J
1
2 ,K

+ [D(4)
3 σ13]

I,J
1
2 ,K

) (1.20)

(v2)N
1

I
1
2 ,J,K

= (v2)N
I

1
2 ,J,K

+ ∆t
ρ

(
[D(4)

1 σ12]
I

1
2 ,J,K

+ [D(4)
2 σ22]

I
1
2 ,J,K

+ [D(4)
3 σ23]

I
1
2 ,J,K

) (1.21)

(v3)N
1

I
1
2 ,J

1
2 ,K

1
2

= (v3)N
I

1
2 ,J

1
2 ,K

1
2

+ ∆t
ρ

(
[D(4)

1 σ13]
I

1
2 ,J

1
2 ,K

1
2

+ [D(4)
2 σ23]

I
1
2 ,J

1
2 ,K

1
2

+ [D(4)
3 σ33]

I
1
2 ,J

1
2 ,K

1
2

)
(1.22)

(σ11)N
1
2

I
1
2 ,J

1
2 ,K

= (σ11)N
− 1

2

I
1
2 ,J

1
2 ,K

+ ∆t
(

(λ+ 2µ)[D(4)
1 v1]

I
1
2 ,J

1
2 ,K

+ λ[D(4)
2 v2]

I
1
2 ,J

1
2 ,K

+ λ[D(4)
3 v3]

I
1
2 ,J

1
2 ,K

)
(1.23)

(σ22)N
1
2

I
1
2 ,J

1
2 ,K

= (σ22)N
− 1

2

I
1
2 ,J

1
2 ,K

+ ∆t
(
λ[D(4)

1 v1]
I

1
2 ,J

1
2 ,K

+ (λ+ 2µ)[D(4)
2 v2]

I
1
2 ,J

1
2 ,K

+ λ[D(4)
3 v3]

I
1
2 ,J

1
2 ,K

)
(1.24)

(σ33)N
1
2

I
1
2 ,J

1
2 ,K

= (σ33)N
− 1

2

I
1
2 ,J

1
2 ,K

+ ∆t
(
λ[D(4)

1 v1]
I

1
2 ,J

1
2 ,K

+ λ[D(4)
2 v2]

I
1
2 ,J

1
2 ,K

+ (λ+ 2µ)[D(4)
3 v3]

I
1
2 ,J

1
2 ,K

)
(1.25)

(σ12)N
1
2

I,J,K = (σ12)N
− 1

2
I,J,K + µ∆t

(
[D(4)

2 v1]I,J,K + [D(4)
1 v2]I,J,K

)
(1.26)

(σ13)N
1
2

I,J
1
2 ,K

1
2

= (σ13)N
− 1

2

I,J
1
2 ,K

1
2

+ µ∆t
(

[D(4)
3 v1]

I,J
1
2 ,K

1
2

+ [D(4)
1 v3]

I,J
1
2 ,K

1
2

)
(1.27)

(σ23)N
1
2

I
1
2 ,J,K

1
2

= (σ23)N
− 1

2

I
1
2 ,J,K

1
2

+ µ∆t
(

[D(4)
3 v2]

I
1
2 ,J,K

1
2

+ [D(4)
2 v3]

I
1
2 ,J,K

1
2

)
. (1.28)

They are derived by the discretization of the elatodynamic equation (1.4) for
velocities (1.20 to 1.22), and Hooke’s law (1.5) for stress (1.23 to 1.28), for the
case of the isotropic material rheology. Formulas are for all velocity and stress
components at the nodes in one grid cell, positioned at I, J,K. The material
parameters are considered constant through the cell. Fig (1.1) shows mutual
positions of the components in the grid cell.
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For the FD scheme to be stable, its plane wave solution (1.8) cannot grow
when the propagation of the wave is calculated using the scheme [Moczo et al.,
2007]. The ansatz of the solution into the concrete FD scheme (this approach
is called the Neumann’s method) leads to a CFL condition (Courant-Friedrichs-
Levy) for discretization steps ∆t and ∆h. In particular, for the time step we
obtain [Moczo et al., 2000]

∆t < CCFL∆h, (1.29)

where CCFL is a parameter depending on the particular FD scheme and the wave
velocity in a media. The value

Cα
CFL = 6

valpha7
√

3
, Cβ

CFL = 6
vβ7

√
3

(1.30)

was derived by Moczo et al. [2000] for the 4th order staggered grid FD scheme.
Velocities of the P and S wave are denoted as vα and vβ, respectively. The stability
condition (1.29) is more restrictive for the P waves. The time discretization
parameter for simulations in heterogenous medium is set to guarantee the stability
of the P wave solution in the area with the highest P wave velocity.

The second concept coming from the Neumann’s analysis is the grid disper-
sion. It offers a way to set ∆h to obtain a desired accuracy. The grid dispersion
is the ratio between the grid wave velocity (vgα or vgβ) at which the wave propa-
gates when FD method is applied and the true wave velocity (vα or vβ). Grid
dispersion depends on spatial sampling ratio ∆h/λ, where λ = 2πvα(vβ)/ω is the
wave length of the P(S) wave. The grid dispersion decreases (the discrete wave
solution is slowing down) as the spatial sampling ratio increases (less points per
wave length). Moczo et al. [2000] recommends setting ∆h to have at least 6 grid
nodes per wavelength of the S wave at maximum desired frequency. This should
bound the error in its velocity by 5 percent.

There are three important concepts in numerical mathematics that need to
be taken into account when using dicrete PDE methods – consistency, stability
and convergence. The FD method is consistent, when its discrete formulas equal
the partial differential equations when limiting ∆h,∆t → 0. This is typically the
case and it is easy to check.

The FD method is convergent if the discrete solution converges towards the
actual solution of the PDE when limiting ∆h,∆t → 0. It is the desired property
of FD methods but it is difficult to check, especially when boundary conditions
are taken into account.

The FD method is stable, when the discrete solution is bounded, while the
actual solution is also bounded. It can be proven, that the FD method is con-
vergent when it is consistent and stable, therefore testing the stability instead of
the convergence is possible. Neumann’s method (mentioned above) is a typical
method to test boundedness of a solution, although just for the specific shape of
the plane wave.
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2. Dynamic fault model in finite
differences
The mathematical description of an approximate earthquake model and its intro-
duction into the FD wave simulation code as a boundary condition are described
in this chapter. While earthquake source is a complex set of mechanical (gouge,
damage, lubrication), termal (termal pressurization, melting) and chemical phe-
nomena, theoretical dynamic earthquake models are much simpler. The popular
approximation described here (Section 2.1) sets the earthquake as a shear rupture
on a frictional (planar) interface between elastic halfspaces. Higher order effects
can be added into this model through more complicated friction law, changes to
rheology of the off-fault material, or more complicated geometry of the interface.

We consider two types of friction laws in this Thesis – slip weakening law
(Section 2.4) and rate-and-state law. The fact that force required to start the
sliding is higher then the force required for its continuation is a major idea behind
the slip weakening law. Empirical rate and state (Section 2.5) law considers much
wider range of experiments, with sliding velocity chaging during the experiment
[Dieterich, 1979, Ruina, 1983]. Newer version of this law with fast velocity weak-
ening is considered, based on friction experiments performed at seismic speeds of
the order of 1 m/s [Goldsby and Tullis, 2011].

When using staggered/partially staggered grids, components of velocity and
stress are not calculated at the same node. Some components will be calculated
outside of the fault plane. Historically, there were essentially two groups of meth-
ods considered for the introduction of fault boundary into finite differences –
inelastic zone methods and split node methods [Moczo et al., 2007].

The first group comprises methods that establish fault as a zone of finite width
that surrounds the grid nodes, where velocity and traction is calculated. Their
values inside this zone are then considered the same through the zone. Popular
methods in this group are thick or thin zone methods (Section 2.2) developed by
R. Madariaga.

Splitting the space by the fault into two halves, which are interacting only
through chosen nodes at the fault surface is a staple of split node methods.
Traction at split node method is described in Section 2.3.

2.1 Fault as a boundary condition
Fault plane divides space into two halfspaces, denoted as ’+’ and ’-’ as in Fig 2.1.
We define slip si as a discontinuity in displacement vector ui across the fault

si(x, t) = u+
i (x, t) − u−

i (x, t), (2.1)

and slip rate as a discontinuity in velocity

ṡi(x, t) = v+
i (x, t) − v−

i (x, t), , (2.2)

with absoulte values denoted as s and ṡ, respectively.
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Figure 2.1: Scheme of the fault variables at point x – normal to the fault ni,
discontinous velicity v+

i and v−
i and continous traction Ti.

Let ni be a unit normal vector to the fault, that points into ’+’ halfspace and
Ti(x,n, t) = σijnj is a traction on the fault. Since shear faulting is expected,
continuity of normal componets of displacement uni and velocity vni is in place:

0 = un+
i (x, t) − un−

i (x, t), (2.3)

0 = vn+
i (x, t) − vn−

i (x, t). (2.4)

Traction Ti(x,n, t) is continuus through the fault. Let S(x, t) be a value of
frictional strength. Value of shear traction T s(x,n, t) at the fault is bounded by
frictional strength

T s(x, t) ≤ S(x, t). (2.5)

Second condition on traction requires it to act opposite to velocity discontinuity.

T si (x, t)ṡ(x, t) − S(x, t)ṡi(x, t) = 0 (2.6)

The magnitude of traction in this slipping case is set to be equal to frictional
strength by condition (2.5). In both following sections trial shear traction T Ti
is calculated, that equals the values of traction if slip doesn’t occur (frictional
strength S higher then T T ). For the case of vertical fault, it has only two non-
zero components T T1 and T T3 .

Introduction of the non-planar (or even just dipping planar) fault boundary
condition into the regular grid is very complicated. Only Cruz-Atienza et al.
[2007] managed to do a stable non-planar model for the case of the partially
staggered grid. Irregular grids seem to be the most popular way to intoduce the
non-planar faults, such as in Duru and Dunham [2016], but these are out of the
scope of this work.

Only vertical planar fault will be assumed in this work and all derivations will
be done for the fault plane being a 1 − 3 plane. The following symmetries and
antisymmetries in stress and velocity components along the fault in 1 − 3 plane
are in place (expecting the same material parameters on both sides of the fault
plane):

v+
1 = −v−

1 v+
2 = +v−

2 v+
3 = −v−

3 (2.7)
σ+

11 = −σ−
11 σ+

22 = σ−
22 σ+

33 = −σ−
33 (2.8)

σ+
12 = +σ−

12 σ+
13 = −σ−

13 σ+
23 = +σ−

23 (2.9)
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2.2 Thick and thin zone methods
Formulation of the thick zone method of representation of the fault boundary
condition was introduced by Madariaga et al. [1998]. Thin zone method is its
improved version, whose accuracy should be better [Madariaga, at http://www.
geologie.ens.fr/˜madariag/].

In both cases, the fault plane is chosen to coincide with one of the 1 − 3
planes in the staggered grid. The position of the plane along axis 2 is denoted
as JF , which means that for all nodes at the plane J = JF applies. The fault
boundary condition (2.5, 2.6) is then applied, using appropriate velocity and stress
components for traction and slip rate. These components are not all positioned
in FD nodes at the fault plane, the value of the component at the closest node is
taken instead. The position of fault plane in the FD grid for thick and thin zone
method is shown in Fig 2.2.

Figure 2.2: Thick and thin layer position in FD staggered grid. The fault plane
is denoted by a grey plane at position J = JF .

In the thick zone method, the fault plane is set to cut through the finite dif-
ference grid in shear velocity nodes (v1, v3). Enforcement of the fault boundary
condition using this method requires shear traction components that are cal-
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culated at the nodes at the grid plane shifted by ∆h/2 (stress plane) and shear
velocity components at the velocity plane shifted by ∆h. Size of the zone contain-
ing all components, required for fault boundary condition is 2∆h. Assumption,
that the traction is the same at the border of the thick zone and in the middle of
it, means that inelasticity at the zone around the fault is prescribed. This is only
a mathematical approximation, and has no connection to any physical effect in
real eartquakes.

First, trial shear traction components are calculated by the FD formula from
Hooke‘s law

(T T1 )N
1
2

I,J
1
2

F ,K
= (σ12)N

1
2

I,J
1
2

F ,K
= (µ) ∆t

∆h

(
(D(4)

2 v1)N
I,J

1
2

F ,K
+ (D(4)

1 v2)N
I,J

1
2

F ,K

)
(2.10)

(T T3 )N
1
2

I
1
2 ,J

1
2

F ,K
1
2

= (σ23)N
1
2

I
1
2 ,J

1
2

F ,K
1
2

= µ
∆t
∆h

(
(D(4)

3 v2)N
I

1
2 ,J

1
2

F ,K
1
2

+ (D(4)
2 v3)N

I
1
2 ,J

1
2

F ,K
1
2

)
,

(2.11)
with traction on the other plane being equal due to the symmetry:

(T T1 )N
1
2

I,J
− 1

2
F ,K

= (T T1 )N
1
2

I,J
1
2

F ,K
(2.12)

(T T3 )N
1
2

I
1
2 ,J

− 1
2

F ,K
1
2

= (T T3 )N
1
2

I
1
2 ,J

1
2

F ,K
1
2

(2.13)

To acquire absolute value of trial traction at both nodes, missing component
needs to be interpolated, for example T T1 at nodes (I 1

2 , J
1
2
F , K

1
2 ) and (I 1

2 , J
− 1

2
F , K

1
2 ).

Alternative approach is to add an extra simplification, by allowing slip only in
direction of axis 1 (strike slip) or 3 (dip slip) . The value of one component T T1
or T T3 can then be considered instead of the absolute value of the whole trial
shear traction (T T )N

1
2 . The fault conditions (2.5) and (2.6) are then applied to

this trial shear traction. The value of the traction is modified to be equal to the
friction at all nodes, where it would be larger then friction:

(Ti)N
1
2 =

⎧⎪⎪⎨⎪⎪⎩
(T Ti )N

1
2 , if (T T )N

1
2 ≤ SN

1
2

SN
1
2 (TT

i )N
1
2

(TT )N
1
2
, if (T T )N

1
2 > SN

1
2 , i = 1, 3.

(2.14)

Velocity coponents v1 and v3 in planes (JF−1) and (JF+1) are then calculated
already with the modified traction. Slip rate components are defined as

(ṡ1)N
1

I,JF ,K
= (v1)N

1

I,J1
F ,K

− (v1)N
1

I,J−1
F ,K

(2.15)

(ṡ3)N
1

I
1
2 ,JF ,K

1
2

= (v3)N
1

I
1
2 ,J1

F ,K
1
2

− (v3)N
1

I
1
2 ,J−1

F ,K
1
2
. (2.16)

On the contrary, thin layer method requires only shear traction components
directly at the fault plane and shear velocity components at the velocity plane
shifted by ∆h/2. Thin zone thickness is ∆h.

Improved thin zone method is acquired by several changes. Fault plane cuts
the grid in a stress plane and T1 = σ12 and T3 = σ23 on this plane are taken
as trial traction components. Two velocity planes (JF − 1/2) and (JF + 1/2)
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directly next to the fault plane contain the shear velocity components for the
calculation of the slip rate and together they create an inelastic zone of thickness
∆h. The whole procedure is then very similar as in the case of the thick zone –
the trial traction is calculated, the fault condition is applied, modifying the value
of traction, followed by the calculation of the velocity and the slip rate.

2.3 Traction at split node method
In this section, the traction at split node implementation of the fault bound-
ary condition is introduced independently of a chosen FD grid – the values are
expected to be all in a single node. The concrete application, using specific
staggered grid scheme, is then desribed in the second half of this section.

It was developed independently by Andrews [1973] and Day [1977] and used
in combination with partially staggered grid FD method in the first case and
finite element method in the second case. Description of its use with staggered
grid was given by Dalguer and Day [2007], which is followed closely in the second
half of this section.

The fault plane cuts through the domain, dividing it into two half spaces
’+’ and ’-’. Every node on the fault plane belongs to both halfspaces + and −.
To obtain the complete partition into the two halfspaces, these nodes are cut
into two split nodes, with their distinct masses, velocities, stresses and material
properties. The only quantity they share is traction Ti. The mass of the split
node is calculated as M± = ∆h3ρ±/2 in the case of fault cutting the split node
(and its FD ’cube’ with side equal to ∆h) in half (Fig 2.3).

Figure 2.3: Illustration of the split node. Both FD grid nodes at positions given by
indexes IJK and IJK1 are split into two halves denoted as + and −. Halfspace
acts upon a split node of mass M with a force f .

In both halfspaces, the elastodynamic force acts upon the split nodes and is
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equal to the right hand side of the elastodynamic equation (1.4):

f±
i = 1

ρ±σij,j. (2.17)

The formula (2.17) represents the body force of the halfspace, without the surface
(fault) force – for the calculation of this force, the fault is considered to be a free
surface.

Split nodes are coupled through the traction Ti that generates the surface
force f ci . This force is of the same magnitude for both split nodes, but of different
orientation. For − side it yields:

f ci = ∆h2(Ti − T 0
i ), (2.18)

where T 0
i is a traction at the initial state of equilibrium.

The acceleration in split nodes can be written from the 2nd Newton’s law:

∂v±
i

∂t
= (f±

i ∓ f ci )/M±. (2.19)

It is introduced into the FD formulas as the right hand side of the updating
scheme for the velocity components at the fault plane:

(v±
i )N1 = (v±

i )N + ∆t
[
(f±
i )N

1
2 ∓ ∆h2

(
(Ti)N

1
2 − T 0

i

)]
/M±, (2.20)

Slip rate is calculated from (2.2), as a difference between the velocity values
in both split nodes:

(ṡi)N
1 = (ṡi)N+∆t

⎡⎣(f+
i )N

1
2

M+ − (f−
i )N

1
2

M− + (Ti)N
1
2 − T 0

i

∆h−2M− − (Ti)N
1
2 − T 0

i

∆h−2M+

⎤⎦ , (2.21)

which can be rearanged to:

(ṡi)N
1 = (ṡi)N + ∆t (M− +M+)

∆h−2M−M+

⎡⎣M−(f+
i )N

1
2 −M+(f−

i )N
1
2

∆h2(M− +M+) + (Ti)N
1
2 − T 0

⎤⎦ .
(2.22)

Next we can distinguish between two cases: with zero and with non zero slip
rate (ṡi)N

1 . The traction in the former case is a trial traction and again denoted
as T Ti . We can simply express it from equation (2.22) considering (ṡi)N

1 = 0:

(T Ti )N
1
2 = T 0

i + ∆t−1M−M+(ṡi)N +M−(f+
i )N

1
2 −M+(f−

i )N
1
2

∆h2(M− +M+) . (2.23)

This result is working even for faults that are neither vertical nor planar.
From here, we will again continue with only vertical planar faults in the 13 plane.
It means, that calculated trial traction has a normal component (T T2 )N

1
2 and two

shear components (T T1 )N
1
2 and (T T3 )N

1
2 .

When the value of trial shear traction (T Ti )N
1
2 is higher then frictional force

SN
1
2 , faulting occurs and (ṡ)n1 ̸= 0. Conditions (2.3) and (2.4) need to be en-

forced. What is the difference between the trial traction and the traction in the
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case when the fault is slipping? It can be acquired by substracting (2.22) in the
first case (ṡN1 = 0, (Ti)N

1
2 = (T Ti )N

1
2 ) from the same equation in the second case

(ṡN1 ̸= 0), which leads to

(ṡi)N
1 = ∆t∆h

2(M− +M+)
M−M+

(
(Ti)N

1
2 − (T Ti )N

1
2
)
. (2.24)

The time dicretization of the used formulas led to the traction being calculated
at time (N+ 1

2)∆t, while the slip rate is acquired at the time (N+1)∆t. However,
these quantities are both needed in the colinearity condition (2.6). Evaluation
of both quantities at one time requires interpolation, which can cause unwanted
oscillations. Values at different times are therefore used:

(Ti)N
1
2 ṡN

1 − SN
1
2 (ṡi)N

1 = 0, (2.25)

and inserting (2.24) substituted for (ṡi)N
1 in 2.25 yields:(

SN
1
2 + (∆T )N

1
2
)

(Ti)N
1
2 = SN

1
2 (T Ti )N

1
2 . (2.26)

Here (∆T )N
1
2 is the absolute value of the difference between the shear traction

and the shear trial traction. This formula ties value of (Ti)N
1
2 with frictional force

SN
1
2 . Solution to equation (2.26),

(Ti)N
1
2 = SN

1
2 (T Ti )N

1
2

(T T )N
1
2
, (2.27)

also fulfills the condition (2.3).
The final formula for shear traction is:

(Ti)N
1
2 =

⎧⎪⎪⎨⎪⎪⎩
(T Ti )N

1
2 , if (T T )N

1
2 ≤ SN

1
2

SN
1
2 (TT

i )N
1
2

(TT )N
1
2
, if (T T )N

1
2 > SN

1
2 , i = 1, 3.

(2.28)

Normal value of traction is not changing. This formula is formaly the same as in
the case of the thick/thin layer methods (2.14). The major difference is that the
trial traction is calculated in the same node as the slip rate. Traction at split node
approach was typically utilized in combination with finite differences with partly
staggered grid, whose advantage is the calculation of all components of stress or
velocity at one point. Use of the staggered grid leads to certain complications,
caused by the staggered position of the individual stress and velocity components
[Dalguer and Day, 2007].
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Figure 2.4: Fault plane dividing the FD staggered grid, when traction at split
node method is applied. Discontinuus components calculated directly at the fault
plane have their + and − value in the same node.

The first of them is again the calculation of the value of the trial traction – the
interpolation or futher simplification of the faulting model to a plain strike slip
or dip slip is needed. All components directly at the fault need to be calculated
using the modified FD formulas, which take into account the division of the space
by the fault boundary. The exception is σ13, that doesn’t require knowledge of
any velocity components on the other side of the fault. Discontinuus σ±

13 can be
therefore acquired on both sides using the second or forth order FD formulas.

The shear velocity components (v±
1 )I,JF ,K and (v±

3 )
I

1
2 ,JF ,K

1
2

will be calculated
from (2.20). Index JF denotes components directly at the fault. The elasto-
dynamic forces at the fault (f±

1 )I,K and (f±
3 )

I
1
2 ,K

1
2

need to be calculated using
second order FD along 1 and 3 axes, but only one-sided FD along the 3 axis. For
the purpose of the body force calculation, the traction components σ12, σ23 are
considered zero at the boundary:

(f±
1 )I,K = ∆h2

[
(D(2)

1 σ±
11)I,JF ,K + (D(2)

3 σ±
13)I,JF ,K ± (σ12)

I,J
± 1

2
F ,K

]
(2.29)

(f±
3 )

I
1
2 ,K

1
2

= ∆h2
[
(D(2)

1 σ±
13)I 1

2 ,JF ,K
1
2

+(D(2)
3 σ±

33)I 1
2 ,JF ,K

1
2

± (σ23)
I

1
2 ,J

± 1
2

F ,K
1
2

]
(2.30)

Normal stress component σ22 is continuus at the fault, while σ11 and σ33
are not. They all require partial derivative of v2 along the axis 3. The central
difference formula is again switched to the one-sided one. The value (v2)

I
1
2 ,JF ,K

is acquired from the condition on continuus σ22 and v2. Equating formulas for its
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plus and minus sides leads to (for spatialy constant λ and µ)

4(λ+ 2µ)
∆h (v2)

I
1
2 ,JF ,K

= 2(λ+ 2µ)
∆h

[
(v2)

I
1
2 ,J

− 1
2

F ,K
+ (v2)

I
1
2 ,J

1
2

F ,K

]
+ λ

∆h
[
−(D(2)

1 v−
1 )

I
1
2 ,JF ,K

−(D(2)
3 v−

3 )
I

1
2 ,JF ,K

+(D(2)
1 v+

1 )
I

1
2 ,JF ,K

+(D(2)
3 v+

3 )
I

1
2 ,JF ,K

]
.

(2.31)

One sided difference of v2 is used to calculate the rest of the stress components
at the fault:

(σ±
11)N

1
2

I
1
2 ,JF ,K

− (σ±
11)N

− 1
2

I
1
2 ,JF ,K

∆t = (λ+ 2µ)(D(2)
1 v±

1 )N
I

1
2 ,JF ,K

+ λ(D(2)
3 v±

3 )N
I

1
2 ,JF ,K

± λ
(v2)N

I
1
2 ,JF ,K

− (v2)N
I

1
2 ,JF ,K

∆h/2 , (2.32)

(σ22)N
1
2

I
1
2 ,JF ,K

− (σ22)N
− 1

2

I
1
2 ,JF ,K

∆t = λ(D(2)
1 v±

1 )N
I

1
2 ,JF ,K

+ λ(D(2)
3 v±

3 )N
I

1
2 ,JF ,K

± (λ+ 2µ)
(v2)N

I
1
2 ,JF ,K

− (v2)N
I

1
2 ,JF ,K

∆h/2 , (2.33)

(σ±
33)N

1
2

I
1
2 ,JF ,K

− (σ±
33)N

− 1
2

I
1
2 ,JF ,K

∆t = λ(D(2)
1 v±

1 )N
I

1
2 ,JF ,K

+ (λ+ 2µ)(D(2)
3 v±

3 )N
I

1
2 ,JF ,K

± λ
(v2)N

I
1
2 ,JF ,K

− (v2)N
I

1
2 ,JF ,K

∆h/2 . (2.34)

The use of the second order FD formulas causes unwanted high frequency
oscillations. Dalguer and Day [2007] uses artificial viscous damping of force f±

i

to supress them. Damped force

f́±
i = f±

i + ηḟ±
i (2.35)

is used to calculate shear velocity components at the fault. Damping coefficient
η depends on the time dicretization parameter η = ηs∆t, with ideal value of ηs
being 0.3. This value was determined experimentally to have the lowest impact
on rupture velocity speed by Dalguer and Day [2007]. Dependence on ∆t ties
damping also to the space discretization (through CFL criterium) and damps
frequencies close to the grid Nyquist limit.

2.4 Slip weakening friction
Slip weakening friction law was first introduced by Ida [1973], and is extensively
used in dynamic rupture simulations. Value of the frictional coefficient depends
only on slip

S = σnµf (s). (2.36)
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For the rupture to propagate, the frictional force needs to decrease with continual
sliding (slip weakening). We consider linear slip weakening relationship in the
form introduced by Andrews [1976]:

µf (s) =

⎧⎨⎩µs − (µs − µd)s/Dc, if s < Dc

µd, if s ≥ Dc,
(2.37)

where µs, µd and Dc are model parameters: Static friction coefficient µs is a
value of friction at the beginning of the sliding, friction then linearly drops to the
dynamic friction µd < µs over the slip interval of Dc as can be seen in Fig (2.5).

Figure 2.5: Slip weakening friction law (black line) with labeled values of static
(µs) and dynamic (µd) friction coefficients. Critical slip Dc is marked by arrows.

The calculation of the frictional force during a dynamic rupture simulation
requires knowledge of slip at every time level. That is acquired by the integration
of the slip rate ṡ. Using the time staggered location of the slip and the slip rate,
the integration is straightforward:

sN
1
2 = sN

− 1
2 + ∆tṡN . (2.38)

Frictional strength can then be directly calculated at all desired time levels:

SN
1
2 =

⎧⎨⎩σn[µs − (µs − µd)sN
1
2 /Dc], if sN

1
2 < Dc

σnµd, if sN
1
2 ≥ Dc.

(2.39)
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2.5 Rate and state friction with fast velocity
weakening

2.5.1 The law of friction
Rate and state type laws were developed by Dieterich [1986] and Ruina [1983]
based on friction experiments with changing sliding velocity (velocity jump and
slide hold slide experiments). Friction depends on a sliding velocity and a state
variable ψ

S = σnµf (ṡ, ψ). (2.40)

The state variable describes the state of the contacts at the surface boundary. Its
behaviour follows the slip weakening law with contacts wearing down through slid-
ing, ψ decreases during the sliding period. In addition to this behavior, increase
of the state variable (and friction) during a period of slower sliding is possible,
which simulates healing of the fracture. Behavior of the state is described by an
evolution law, which is an ordinary differential equation:

dψ

dt
= F (s, ṡ, ψ). (2.41)

Originally, the friction experiments were done at low speeds of the order of
milimeters per second [Dieterich, 1979]. Experiments with higher rates became
available when rotating disks of studied material were used. Two main effects
were observed – frictional instability at medium rates between 1 mm/s and 10
cm/s [Reches and Lockner, 2010] and rapid decrease of the friction at rates above
10 cm/s [Di Toro et al., 2004, Goldsby and Tullis, 2011]. The first effect is
attributed to the lubrication of the fault by spontaneous development of the
gauge created at the frictional surface [Reches and Lockner, 2010]. The second
effect is important for the rupture dynamics, since it occurs at slip rates observed
typically during eartquakes. Flash heating of asperities (contacts) was suggested
as a probable mechanism. The lifetime of the asperity was compared with time
needed to weaken it through heating under a given velocity [Rice, 2006]. When
the slip velocity is higher then weakening velocity ṡw, the asperity is weakened,
when lower, it is not.

Unlike the slip weakening law, the rate and state type laws often do not allow
for the surface to stop sliding (ṡ = 0). The whole fault is considered to be sliding,
at initial non-zero slip rate ṡini. This value is added rather as a regularization,
it does not necessarily have a physical meaning. The traction is set to be always
equal to the frictional strength, meaning that only the second case in (2.5) applies.

Several versions of the fast velocity weakening law are employed in the liter-
ature [Dunham et al., 2011, Gabriel et al., 2012]. We use the version used by
Harris et al. [2018] because its use in their benchmark excercise will allow us to
easily estimate the accuracy of the developed code. It consists of five interlinked
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formulas:
S = σna arcsinh

[ ṡ
2ṡ0

exp
(ψ
a

)]
,

dψ

dt
= − ṡ

L
[ψ − ψSS],

ψSS = a log
[2ṡ0

ṡ
sinh

(fSS
a

)]
,

fSS = fw + fLV − fw[
1 + (ṡ/ṡw)8

]1/8 ,

fLV = f0 − (b− a) log
( ṡ
ṡ0

)
.

(2.42)

When constant sliding velocity ṡ is set and held for a sufficiently long time,
the system develops into a steady state. The state variable ψ has its steady state
value ψSS and frictional strength equals:

SSS = σnfSS(ṡ),

fSS(ṡ) = fw + fLV (ṡ) − fw[
1 + (ṡ/ṡw)8

]1/8 ,

fLV (ṡ) = f0 − (b− a) log
( ṡ
ṡ0

)
.

(2.43)

Behavior in this steady state is explored first. For low values of ṡ, the steady
state friction coefficient is basically equal to fLV (’Low Velocity’). The develope-
ment of friction for increasing (but still small) ṡ depends on the sign of (b − a).
For b > a the friction law is velocity weakening and decreases, for b < a it is
velocity strenghtening. When ṡ = ṡ0, fSS = f0. For very high values of ṡ the
friction coefficient drops to its minimal value fw as ∼ 1/ṡ.

The time dependent behavior of the friction for changing ṡ is controlled by a
differential equation for the state variable (2.42). The solution of the equation for
the case of the velocity jump from one constant value toan other is an exponential
increase or decrease of the state variable towards the steady state value:

ψ(t) = [ψ(t0) − ψSS(ṡ)] exp
(

− ṡt

L

)
+ ψSS(ṡ), (2.44)

where ψ(t0) is the state variable value before the velocity jump, ṡ is the new
sliding velocity and ψSS the new steady state value. Time scale for this change
is L/ṡ. In the case when the new velocity becomes smaller, the friction increases
at the same time scale – the fault starts to heal. The development of friction for
different velocities is shown in Fig 2.6.
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Figure 2.6: The development of friction coefficient after a velocity jump from
ṡini = 10−16 to a higher velocity. Every line shows the development for the
different velocity taken from the interval 10−15m/s to 10m/s. The distribution
of velocities is logarithmic (10−15, 10−14, ...). Lines are colour-coded – red (from
10−15m/s to 10−6m/s = ṡ0), green (from 10−5m/s to 10−2m/s = ṡw), blue (1m/s)
and black (10m/s) . Friction parameters are in this case f0 = 0.6 and fw = 0.2.

2.5.2 Numerical implementation
Rupture simulation with the rate and state friction is more complicated then
in the slip weakening case. It requires the solution of two coupled differential
equations at the fault boundary – one for the shear velocity components (slip
rate) and the other for the state variable ψ. The traction at split node method
contains discretized formula for the slip rate based on the Newton’s law (2.24).
The second equation is the evolution law for the state variable. In the case of the
fast velocity weakening friction from (2.42):

dψ

dt
= − ṡ

L
[ψ − ψSS(ṡ)] (2.45)

The following approach to numerical discretization and solution of the velocity-
state system of differential equations is adopted from Rojas et al. [2009]. Concrete
procedure of solving this set of equations depends on the distribution of velocity
and state variable between time levels. For the time staggered schemes, such as
the scheme used in this work, the time-staggered distribution of slip rate and
state variable (as in the Fig 2.7) is natural. The results are similarly accurate
as using unstaggered distribution with high-order Rosenbrock integration [Rojas
et al., 2009], while the coding is simpler.
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Figure 2.7: The time staggered position of slip rate and state variable

First step is the integration of the evolution law for ψ in the interval between
two succesive time levels (N−1/2)∆t and (N+1/2)∆t. Due to the time-staggered
distribution, slip rate is positioned in the middle of this interval N∆t, and it
will be approximated by this value over the whole interval ṡ(t) = (ṡ)N , ∀t ∈(
(N −1/2)∆t, (N +1/2)∆t

)
. With the slip rate constant over the whole interval,

the solution of the differential equation (2.44) applies:

ψN
1
2 = (ψN

− 1
2 − ψSS(ṡN)) exp(− ṡN∆t

L
) + ψSS(ṡN),

ψSS(ṡN) = a log
[2s0

ṡN
sinh

(fSS(ṡN)
a

)]
,

fSS(ṡN) = fw + fLV (ṡN) − fw[
1 + (ṡN/sw)8

]1/8 ,

fLV (ṡN) = f0 − (b− a) log
( ṡN
s0

)
.

(2.46)

Second step is the calculation of slip rate (ṡ)N1 from (2.22). Slipping will be
allowed only in the direction of one shear component. Equation for the slip rate
is therefore considered in scalar form:

(ṡ)N1 = (ṡ)N + ∆t(M− +M+)
∆h−2M−M+

⎛⎝M−(f+)N
1
2 −M+(f−)N

1
2

∆h2(M− +M+) + (T )N
1
2 − T 0

⎞⎠ .
(2.47)

Since the fault is considered to be always sliding, the second case from (2.28)
will be directly substituted into (2.47) for traction and the first equation from
(2.42) as the friction S:

(ṡ)N1 = (ṡ)N + ∆t(M− +M+)
∆h−2M−M+

⎛⎝M−(f+)N
1
2 −M+(f−)N

1
2

∆h2(M− +M+) + S(ṡ?, ψN
1
2 ) − T 0

⎞⎠ .
(2.48)

Slip rate ṡ? on the right hand side of (2.48) cannot be set as a value of
slip rate in the previous time level ṡ? = (ṡ)N (Forward Euler method), because
the resulting scheme is highly unstable, especially for small values of slip rate,
where the derivative of arcsinh(x) has its highest value. Backward Euler scheme
(ṡ? = ṡN

1) or trapezoidal scheme (ṡ? = (ṡN + ṡN
1)/2) needs to be used instead.

Although trapezoidal scheme offers higher order accuracy, in reality it does not
make much improvement. Backward Euler scheme will be used in this chapter,
yieding

(ṡ)N1 = (˜̇s)N + C arcsinh
[(ṡ)N1

2s0
exp

(ψN 1
2

a

)]
, (2.49)
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where

(˜̇s)N = (ṡ)N + ∆t(M− +M+)
∆h−2M−M+

⎛⎝M−(f+)N
1
2 −M+(f−)N

1
2

∆h2(M− +M+) − T 0

⎞⎠ (2.50)

denotes the part of the formula (2.47) already explicitly calculated before the
time level (n+ 1)∆t, and

C = ∆t(M− +M+)
∆h−2M−M+ σna. (2.51)

Formula (2.49) is nonlinear and needs to be solved accordingly, for example with
the Newton’s method, which will be described next.

We want to find a new slip rate value (ṡ)N1 , that satisfies equation (2.49).
This is equivalent to finding a root of a function

F
(
(ṡ)N1) = (˜̇s)N − (ṡ)N1 + C arcsinh

[(ṡ)N1

2s0
exp

(ψN 1
2

a

)]
. (2.52)

In Newton’s method the root w of the function F (x), is found approximately by
a succesive iteration:

wn+1 = wn − F (wn)
F ′(wn) , (2.53)

where F ′ is the derivative of function F, and wn is the approximate value of the
root at the n-th iteration. Equation (2.49) is modified to simplify finding the
solution. Solution is found for a substituted variable:

w = arcsinh
[(ṡ)N1

2s0
exp

(ψN 1
2

a

)]
(2.54)

instead of slip rate. This leads to a simple form of the function:

F (w) = (˜̇s)N + Cw − exp
(−ψN

1
2

a

)
2s0sinh(w), (2.55)

allowing to simply find its derivative:

F ′(w) = C − exp
(−ψN

1
2

a

)
2s0cosh(w). (2.56)

Natural choice of the starting value of w is its value at the previous time level:

w0 = arcsinh
[(ṡ)N

2s0
exp

(ψN 1
2

a

)]
. (2.57)

Formula (2.53) is then applied iteratively until the difference between succesive
values of w (the error of the approximation) is lower then a chosen value – in our
implementation 10−5 for a single precision calculation and 10−8 for a double pre-
cision one. The value of slip rate solving (2.49) is calculated from the substitution
(2.54):

(ṡ)N1 = 2s0 sinh(w)

exp
(
ψN

1
2

a

) . (2.58)
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The discrete solution of the fault boundary conditions with the fast velocity
weakening rate and state law using the traction at split node method consists
of application of formulas (2.46) to acquire new value of the state variable and
Newton’s method solution of (2.49) to acquire the new value of the slip rate. This
is done at every node at the fault surface independently.

2.6 Cohesive zone
The part of the fault behind the crack-tip, where the traction drops from its static
to its dynamic value, is called cohesive (or process) zone Λ. The resolution of the
cohesive zone (amount of discrete points per cohesive zone) is the main parameter
controlling the accuracy of the numerical simulation [Dalguer and Day, 2006].
Indeed, the cohesive zone is the part of the fault, where the nonlinear boundary
condition on stress (2.5) is enforced, and where changes in tractions and slip rates
are very sharp.

Figure 2.8: Cohesive zone behind a crack-tip – snapshot of spatial dependence
of the shear stress for the linear slip weakening law. Arrow defines the cohesive
zone. Red circles are values of the traction at discrete points.

Figure (2.8) shows an example of the spatial dependence of the traction in
the rupture propagation, iliustrating the importance of the proper resolution of
the cohesive zone. The discretization in this particular case was ∆h = 50m; with
lower resolution (higher ∆h), the accuracy would drop considerably. Slip rate and
traction behind the crack-tip vary quickly also in time. However, the situation is
much better here, because the CFL criterion ensures that the time resolution of
the ’cohesive time interval’ will be much better resolved (see Fig 2.9 for temporal
discretization of traction).
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Figure 2.9: The same as in Fig 2.8, but for the temporal discretization.

Having the knowledge of the cohesive zone size before the simulation is run
would be useful, because it would allow us to determine the disretization necessary
to reach the desired accuracy. However, the dependence of the cohesive zone size
on physical parameters of a heterogenous dynamic model is non-trivial. Several
approximated estimations are used [Bizzarri et al., 2012]. Analysis of energy
release rate and fracture energy offers an upper bound estimate (for the rupture
velocity close to zero) of the cohesive zone size

ΛII(x) = 9πDc(x)µ(x)
32σn(x)(µs(x) − µd(x)) (2.59)

for Mode II and
ΛIII(x) = 9πDc(x)µ(x)/(1 − ν(x))

32σn(x)(µs(x) − µd(x)) (2.60)

for Mode III cracks (ν is Poisson ratio). For non-zero values of the rupture
velocity, the cohesive zone will shrink below this estimate, by factors

AII =
(1 − ν)β2

(
4(1 − v2

r/v
2
β)1/2(1 − v2

r/v
2
β)1/2 − (2 − v2

r/v
2
β)2
)

v2
r(1 − v2

r/v
2
β)1/2 (2.61)

for a mode II crack and
AIII = (1 − v2

r/v
2
β)1/2. (2.62)

for a mode III crack [Day et al., 2005].
After the simulation, the cohesive zone can be established when knowing the

whole field of traction (space and time dependent) by measuring the distance
between the maximum and minimum tractions in the direction of the rupture
propagation. This approach poses complications when the direction of the rupture
propagation changes. In this work we will use the following local estimate of the
cohesive zone where the rupture direction and rupture velocity is assumed to not
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change locally during the propagation throughout the cohesive zone. For every
point at the fault the rupture velocity vr is calculated frrom the eikonal equation
as the inverse value of the magnitudeof the gradient of the rupture time tr

vr(x) = 1√(
∂tr(x)
∂x1

)2
+
(
∂tr(x)
∂x2

)2
+
(
∂tr(x)
∂x3

)2
, (2.63)

The cohesive zone is then estimated as

Λ(x) = vr(x) [ts(x) − tr(x)] (2.64)

from the rupture time tr (time of maximum traction in the position x) and time
ts for which the traction is minimal in the position x. For the slip weakening
friction law, ts is also the time in which the value of slip is equal to Dc.

When the fast velocity weakening friction is assumed, the traction doesn’t
drop at the same rate over the whole cohesive zone. Majority of the stress drop
occurs in a much smaller area behind the crack-tip [Rojas et al., 2009], see Fig.
2.10.

Figure 2.10: Cohesive zone behind a crack-tip – snapshot of spatial dependence
of the shear stress for fast velocity weakening friction law. The black line shows
the value of minimum traction.

The resolution of this effective cohesive zone is more important for the simu-
lation accuracy. Effective cohesive zone Λe(x) is calculated in this case as

Λe(x) = vr(x) [te(x) − tr(x)] , (2.65)

where te is set as a time, where the traction would reach the minimum value if
the drop proceded linearly with the rate equal to the maximum derivative of the
traction.
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3. Outer boundary conditions
At the border of the computational domain the outer boundary conditions are
in place. Two types of boundary conditions are described in this chapter – free
surface (Section 3.1) and absorbing boundary condition (Section 3.2).

3.1 Free surface
The interface between the Earth material and atmosphere will be considered to
coincide with the 1-2 plane, where zero traction condition is applied,

σij

⏐⏐⏐⏐
(z=zs)

nj = Ti = (σ13, σ23, σ33) = 0, (3.1)

where nj = (0, 0, 1) is the normal to the free surface and zs is the z position of
the free surface plane.

The spatial differences of the velocity or stress components below and at
the free surface are calculated using the 4th order central FD formula. This
requires the knowledge of the velocity and stress components at nodes above the
free surface. Their values will be set so that condition (3.1) is satisfied at the
free surface for all the three components of traction. This is known as a stress
imaging method [Graves, 1996]. Alternatives to this approch are to set material
parameters ρ, λ, µ above the free surface to approach zero (vacuum formulation
[Graves, 1996]), or to change the FD formulas near the free surface to one-sided
ones (AFDA method [Kristek et al., 2002]), which brings improvement in the
modeling of the surface waves over longer distances, but is probably unnecessary
for the rupture propagagation simulations.

There are two ways in which the free surface (FS) plane can cut through
the staggered FD grid – through nodes, where σ33 is explicitly calculated, or
nodes with σ13 and σ23. The first choice is called as the H formulation, while
the second as the W formulation [Kristek et al., 2002]. In terms of the accuracy
the difference between both formulations is minimal [Gottschämmer and Olsen,
2001]. The W formulation is used in this work – it is more natural choice because
of the orientation of the FD grid. The position of the FS plane in our staggered
grid is shown in Fig 3.1 together with the positions of the required imaged values
above the FS. The position of the nodes directly at the plane on the third axis is
zs = Ks∆h.
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Figure 3.1: Position of the free surface plane in the staggered FD grid in the W
formulation. Free surface plane is denoted by a grey plane. Nodes above the
plane contain imaged values of the velocity and stress components. Only those
imaged values necessary for the calculation are shown.

Both shear components of traction at the free surface are set to zero

(σ13)IJKs = 0
(σ23)

I
1
2 J

1
2Ks

= 0 (3.2)

and velocity component 3 at the free surface can be calculated using the standard
4th order FD formula. There are 4 stress and 3 velocity values above the free
surface required for the central FD formulas on nodes below and at the free
surface. All will be set to impose the zero stress condition on traction either
directly or for its interpolated value. Imaged values of the stress components 11,
22 and 12 are not needed in this respect.

The normal component of traction σ33 is not explicitly calculated at the free
surface plane, therefore the value interpolated from two closest points(σ33)

I
1
2 JK

1
2

s

and (σ33)
I

1
2 JK

− 1
2

s

is set to zero. This yields antisymmetry of the normal traction
component below free surface and the imaged value above:

(σ33)
I

1
2 JK

1
2

s

= −(σ33)
I

1
2 JK

− 1
2

s

. (3.3)

Similarly, the other imaged values of stress components above the free surface are
set antisymetrically to their values below:

(σ13)IJK1
s

= −(σ13)IJK−1
s

(σ23)
I

1
2 J

1
2K1

s

= −(σ23)
I

1
2 J

1
2K−1

s

(σ33)
I

1
2 JK

3
2

s

= −(σ33)
I

1
2 JK

− 3
2

s

,

(3.4)

29



which yields average zero value between the node below the surface and the
imaged one.

Imaged velocity components are set from second order spatial discretization
of time derivated Hooke’s law at the free surface. It is written for the component
of traction, with the right-hand side set to be zero due to (3.1). Hooke’s law for
13 component of traction at the free surface gives:

0 = (Dtσ13)NIJKs
= µ

∆h

[
(v1)N

IJK
1
2

s

− (v1)N
IJK

− 1
2

s

+ (v3)N
I

1
2 JKs

− (v3)N
I− 1

2 JKs

]
(v1)N

IJK
1
2

s

= (v1)N
IJK

− 1
2

s

−
[
(v3)N

I
1
2 JKs

− (v3)N
I− 1

2 JKs

] (3.5)

Similarly, for the 23 component of stress at the free surface:

0 = (Dtσ23)N
I

1
2 J

1
2Ks

= µ

∆h

[
(v2)N

I
1
2 J

1
2K

1
2

s

− (v2)N
I

1
2 J

1
2K

− 1
2

s

+ (v3)N
I1J

1
2Ks

− (v3)N
IJ

1
2Ks

]
(v2)N

I
1
2 J

1
2K

1
2

s

= (v2)N
I

1
2 J

1
2K

− 1
2

s

−
[
(v3)N

I
1
2 J1Ks

− (v3)N
I

1
2 JKs

]
(3.6)

The 33 component of stress is not calculated directly at the free surface, but
Hooke’s law can be written for the time differences of both sides in (3.3),

(Dtσ33)N
I

1
2 JK

1
2

s

= λ+ 2µ
∆h

[
(v3)N

I
1
2 JK1

s

− (v3)N
I

1
2 JKs

]
+ λ

∆h

[
(v1)N

I1JK
1
2

s

− (v1)N
IJK

1
2

s

+ (v2)N
I

1
2 J

1
2K

1
2

s

− (v2)N
I

1
2 J− 1

2K
1
2

s

]
(Dtσ33)N

I
1
2 JK

− 1
2

s

= λ+ 2µ
∆h

[
(v3)N

I
1
2 JKs

− (v3)N
I

1
2 JK−1

s

]
+ λ

∆h

[
(v1)N

I1JK
− 1

2
s

− (v1)N
IJK

− 1
2

s

+ (v2)N
I

1
2 J

1
2K

− 1
2

s

− (v2)N
I

1
2 J− 1

2K
− 1

2
s

]
(3.7)

After substituting these into the time derivative of (3.3), we can express imaged
velocity component 3

(v3)N
I

1
2 JK1

s

= (v3)N
I

1
2 JK−1

s

− λ

λ+ 2µ

[
(v1)N

I1JK
1
2

s

− (v1)N
IJK

1
2

s

+(v1)N
I1JK

− 1
2

s

− (v1)N
IJK

− 1
2

s

+ (v2)N
I

1
2 J

1
2K

1
2

s

− (v2)N
I

1
2 J− 1

2K
1
2

s

+(v2)N
I

1
2 J

1
2K

− 1
2

s

− (v2)N
I

1
2 J− 1

2K
− 1

2
s

] (3.8)

Formulae (3.2, 3.4, 3.5, 3.6, 3.8) together constitute the stress imaging free
surface method. When applied (with all other components at nodes at and below
the free surface calculated using the standard 4th order FD formulas), the zero
traction condition at the free surface is imposed.

3.2 Absorbing boundary conditions
Absorbing boundary conditions (ABCs) occupy domain borders, where further
continuation of the material needs to be simulated. Free propagation of waves
without any reflections is modeled at these boundaries. Two major approaches
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are used in elastodynamic simulations [Moczo et al., 2007] – constructing the
boundary condition from the extrapolation of waves or adding an absorbing layer,
where the wave amplitude is gradually decreased.

The extrapolation of waves offers an attractively fast code, when a simple
model of the wave is introduced and the extrapolation is performed with low order
FD fomulas [Clayton and Engquist, 1977]. Improvements in accuracy [Higdon,
1991] typically come at the cost of very complicated equations and more memory
demand [Moczo et al., 2007].

Absorbing layers are computationally more demanding, since the FD calcu-
lation is required in the added layer of non-zero thickness, i.e. the size of the
computational domain increases. The main advantage of this approach is, how-
ever, that further improvement in accuracy can be achieved by simply widening
the absorbing layer, while the extrapolation methods require direct changes in
the code and using formulas of increasing complexity.

In this section the popular version of the absorbing layer approach called Per-
fectly Mached Layers (PML) is described. It was introduced for electromagnetic
waves by [Berenger, 1994]. Here we follow papers by Kristek et al. [2009] and
Collino and Tsogka [2001]. The second subsection describes approach calculation
of the reflection coefficient of the PML layer, which we use to set the damping
profile values.

3.2.1 Perfectly matched layers
Without loss of generality, let us assume wave propagation in the x1 direction. At
the border of the computational domain an absorbing layer is introduced, where
the wave amplitude decrease by propagation in the x1 direction is desired. This
effect is attained by changing elastodynamic equation(1.4) in the layer as follows.
We introduce a complex coordinate x̃1 instead of x1:

ρ
∂vi
∂t

= ∂σ1i

∂x̃1
+ ∂σji
∂xj

, j ̸= 1

∂σij
∂t

= cijk1
∂vk
∂x̃1

+ cijkl
∂vk
∂xl

, l ̸= 1,
(3.9)

With relation between x̃1 and x1 defined in frequency domain as

x̃1 = x1 − ι

ω

∫ x1

0
dx(s)ds, (3.10)

where 0 is set at the divide between both areas and dx is a chosen damping profile
(real, non-negative function of x1). Plane wave solution of (3.9) now depends on
the complex coordinate:

vj = Vj exp [−ι(k1x̃1 + k2x2 + k3x3 − ωt)] (3.11)

which after resubstituting from [3.10], leads to the desired attenuated solution:

vj = Vj exp [−ι(k1x1 + k2x2 + k3x3 − ωt)] exp
[
−k1

ω

∫ x1

0
dx(s)ds

]
. (3.12)

This solution has same amplitude constants Vj, wave vector ki = (k1, k2, k3) and
angular frequency ω as (1.8) would have in the same area (with same material
parameters), but its amplitudedecreases with the distance from x1 = 0.
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The relation (3.10) is defined in the frequency domain and the simulation is
executed with equations in the time domain. Altered version of the elastodynamic
equation in the layer is first obtained in the frequency domain by sustitution
of (3.10) into (3.9). Return into the time domain provides the form for FD
discretization.

First, we concentrate on the relationship between the partial derivative with
respect to x1 and with respect to x̃1. It will be defined in the frequency domain
for arbitrary function f̂(x1, ω):

∂f̂

∂x1
= ∂f̂

∂x̃1

∂x̃1

∂x1
(3.13)

The derivative of (3.10) provides

∂x̃1

∂x1
= 1 − ι

ω
dx (3.14)

and by substituting, we get a formula to be substituted into the frequency domain
elastodynamic equation

∂f̂

∂x̃1
= ιω

ιω + dx

∂f̂

∂x1
(3.15)

Sums in equations (3.9) are splitted into two parts. The first part consists of all
terms without ∂

∂x̃1
, while the second with. Equations are decomposed accordingly

into two parts – tangent part σ̂⊥
ij , v̂

⊥
i and parallel σ̂∥

ij, v̂
∥
i :

ριωv̂
∥
i = ∂σ̂1i

∂x̃1

ριωv̂⊥
i = ∂σ̂ji

∂xj

v̂i = v̂
∥
i + v̂⊥

i

ιωσ̂
∥
ij = cijk1

∂v̂k
∂x̃1

ιωσ̂⊥
ij = cijkl

∂v̂k
∂xl

, l ̸= 1

σ̂ij = σ̂
∥
ij + σ̂⊥

ij

(3.16)

where the parallel part means the part, whose evolution depends on the spatial
derivative in the direction of attenuation. The tangent parts are not attenuated,
and don’t need any further changes. The substitution for ∂x̃1 from is done in
tangent parts:

ριωv̂
∥
i = ιω

ιω + dx

∂σ̂1i

∂x1

ιωσ̂
∥
ij = ιω

ιω + dx
cijk1

∂v̂k
∂x1

,

(3.17)

and after simple algebra we get

ρ(ιω + dx)v̂∥
i = ∂σ̂1i

∂x1

(ιω + dx)σ̂∥
ij = cijk1

∂v̂k
∂x1

,

(3.18)
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which leads to the final form in the time domain:

ρ

⎛⎝∂v∥
i

∂t
+ dxv

∥
i

⎞⎠ = ∂σ1i

∂x1

ρ
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= ∂σji
∂xj

, j ̸= 1
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∥
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i

∂σ
∥
ij

∂t
+ dxσ

∥
ij = cijk1

∂vk
∂x1

∂σ⊥
ij

∂t
= cijkl

∂vk
∂xl

, l ̸= 1

σij = σ
∥
ij + σ⊥

ij ,

(3.19)

The discretization of the partial derivatives on the right-hand side of (3.19)
can be performed by using the second order (1.13) or forth order [1.16] finite
difference formulas. Second order FD formulas and the intepolation in time looks
like: (

∂vi
∂t

)N 1
2

= (vi)N
1 − (vi)N
∆t

(
∂σij
∂t

)N
= (σij)N

1
2 − (σij)N

− 1
2

∆t

(vi)N
1
2 = (vi)N

1 + (vi)N
2 (σij)N = (σij)N

1
2 − (σij)N

− 1
2

2 .

(3.20)

These lead to the explicit formulas for both the stress and velocity components:

(v∥
i )N

1 =
(v∥
i )N(1 − 1

2∆tdx) + 1
ρ
D

(2)
1 (σi1)N

1
2

1 + 1
2∆tdx

(v⊥
i )N1 = (v⊥

i )N + 1
ρ

[
D

(2)
2 (σi2)N

1
2 +D

(2)
3 (σi3)N

1
2
]

(vi)N
1 = (v∥

i )N
1 + (v⊥

i )N1

(σ∥
ji)N

1
2 =

(σ∥
ji)N

− 1
2 (1 − 1

2∆tdx) + cijk1D
(2)
1 (vk)N

1 + 1
2∆tdx

(σ⊥
ji)N

1
2 = (σ⊥

ji)N
− 1

2 + cijklD
(2)
l (vk)N , l ̸= 1

(σij)N
1
2 = (σ∥

ij)N
1
2 + (σ⊥

ij)N
1
2

(3.21)

There is a summation over index k on the left-hand side of the formula for (σ∥
ji)N

1
2

and the summation over k and l indexes in the formula for (σ⊥
ji)N

1
2 . The staggered

position of the components is not explicitly written down in 3.21, formulas work
in every node of the PML layer, with the exception of the outer boundary of the
PML layer, where the components can be set to zero (Dirichlet condition).

3.2.2 Reflection and the damping profile
The absorbing layer has a finite thickness δ. Dirichlet boundary condition vi = 0
is set at the outer border x1 = δ. We will calculate the reflection cofficient for
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a planar wave for the combination of both the absorbing layer and the Dirichlet
boundary condition to obtain an estimate on the damping profile shape. The
extensive analysis of the wave reflection in the PML layer is done in Collino and
Tsogka [2001]. We will consider a simplified case in this section, with only normal
incident wave.

Let the Dirichlet boundary have a reflection coefficient R, dependent on the
type of incident and reflected wave and wave vector ki. In the case of normal
incident wave with k2 = 0, k3 = 0, the reflection koefficient is equal to 1. Phase
velocity of this wave is vf = ω/k1. Reflection of the whole layer is weakened by
attenuation - the wave travels the distance δ through the absorbing layer to the
Dirichlet boundary and than travels back through the absorbing layer again.

The decrease in amplitude of the incident wave is given by exp
[
−k1

ω

∫ δ
0 dx(s)ds

]
.

The reflected wave propagates in the opposite direction, therefore its wave vector
has opposite sign and the limits of the integration interchange, therefore the de-
crease in amplitude of the reflected wave is again exp

[
−k1

ω

∫ δ
0 dx(s)ds

]
. Reflection

coefficient of the whole layer is then:

RPML = 1 exp
[
−2k1

ω

∫ δ

0
dx(s)ds

]
. (3.22)

Typical form of the damping profile is a power function [Komatitsch and Martin,
2007]:

dx(x) = d0

(
x

δ

)N
, (3.23)

where N > 1, d0 > 0 are chosen constants. Substituting (3.23) into the integral
in (3.22), we get

RPML = exp
[

− d02δ
vf (N + 1)

]
. (3.24)

We can acquire arbitrarily small reflection coefficient by increasing the value
of d0. However, this applies only for the case of continuus PDE. The discretized
case (FD equations) will introduce reflections proportional to d0, caused by the
numerical numerical dispersion [Collino and Tsogka, 2001]. The concrete numeri-
cal application of PML then requires setting d0 as a compromise between both the
numerical dispersion that increases the reflection, and the size of the parameters
of the damping profile, that (formula 3.24) decrease it.
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4. Synthetic benchmarks
The assesment of accuracy of FD rupture propagation simulations is complicated
because of the shortage of model cases with analytical solutions. The analyt-
ical solutions exist only for simplified models with prescribed rupture velocity
[Madariaga, 1976, Aki and Richards, 2002].

Widely used discrete methods are typically consistent with partial differential
equations (discretized formulas become PDR when taking limit of ∆h and ∆t
to zero). For a sufficiently small discretization step, the solution is practically
invariant to further decrease of the step, but that doesn’t prove convergence,
because the real solution is unknown.

It is possible to test several different methods (finite difference, boundary
integral, finite element, discontinuus Galerkin) and asses the similarity of the
solutions. This was done first for a homogenous medium and a vertical fault
model for the finite difference and boundary integral methods [Day et al., 2005].

The tests in this Thesis follow a popular successor of these original tests –
the SCEC/USGS Spontaneous Rupture Code Verification Project [Harris et al.,
2009, 2018], which is a set of benchmark excercises used to compare a wide range
of numerical methods. The main webpage of this benchmark suite is http://
scecdata.usc.edu/cvws/. It contains descriptions of the excercises and results
generated by 10–20 different solvers. There are three types of results that are
compared: time evolution of physical quantities at chosen points at the fault
(slip, slip rate, traction, state variable), seismograms at off-fault positions and
rupture time contour plots – lines showing the position of the rupture tip at every
second.

We evaluate the accuracy of the improved FD3D TSN code using two bench-
marks – TPV5 (Section 4.1) and TPV104 (Section 4.2) using rupture model with
the slip weakening and fast velocity weakening friction, respectively. Our solu-
tion will be compared with results of the FaultMod code [Barall, 2009], whose
author is also one of the main authors of this benchmark. FaultMod uses finite
elements method with its own technique to accomodate the fault boundary con-
dition (called differential node) and using artificial damping in the whole domain.

Expectations on the accuracy differ among benchmarks. First benchmark
TPV5 (description and results in Section 4.1) is a well established problem and all
methods are routinely tested with it. The variability between solutions generated
by different solvers is very small as can be seen in Fig 4.1. Despite the diversity of
the methods, the lines are practically indistinguishable. Oscillations are a typical
part of discrete solutions and are not visible in the graph due to the use of artifical
damping (as will be in the case of FD3D) or due to the application of a filter on
the simulated time series.
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Figure 4.1: Slip rates at a chosen point on the fault (P8 in Fig 4.4) in the TPV5
benchmark calculated using different solvers (adopted from the webpage of Harris
et al. [2018]).

The TPV104 benchmark (Section 4.2) is more numerically challenging, due to
the more complex friction law, higher slip rates and narrower cohesive zone. Fig
4.2 shows solutions provided by several authors, with more noticable differences
in slip rates and rupture time.

36



Figure 4.2: Slip rates at a chosen point on the fault (P8 in Fig 4.21) in the TPV104
benchmark calculated using different solvers (adopted from the webpage of Harris
et al. [2018]).

4.1 TPV5 benchmark
The TPV5 benchmark tests the accuracy in the case of the slip-weakening friction
law. The material around the fault is considered to be homogeneous, parameters
ρ, vp and vs are specified in Table 4.1.

ρ vp vs
2670kg/m3 6000m/s 3434m/s

Table 4.1: Material parameters for the TPV5 benchmark.

The space is bounded by a planar free surface boundary at the top and the
fault is vertical. The rupture propagates over a 30x15 km large area. The static
friction coefficient µs is set to 10000 outside of this area, thus effectvely stopping
the rupture. The prestress is set to act in the horizontal direction, T0 = (T0, 0, 0),
which implies a strike-slip rupture. Dynamic parameters in the fault area are
specified in the Table 4.2.

σn µs µd T0 Dc

120MPa 0, 677 0, 525 70MPa 0.4m

Table 4.2: Dynamic parameters for the TPV5 benchmark.

There are three heterogeneities in the prestress on the fault. All of them
are square shaped, with the side equal to 3km. Coordinates of their centers
and values of their prestress are described in Table 4.3 and displayed in Fig 4.3.
Reference coordinate point is in the left down corner of the fault plane (Fig 4.3).
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The prestress value at the central heterogeneity is higher than the static friction
value of 0.677 × 120MPa = 81, 24MPa, thus representing the nucleation patch.

Left heterogeneity Vertical position Horizontal position T0
7, 5km 7, 5km 78MPa

Nucleation zone Vertical position Horizontal position T0
7, 5km 15km 81, 6MPa

Right heterogeneity Vertical position Horizontal position T0
7, 5km 22, 5km 62MPa

Table 4.3: Heterogeneity parameters for the TPV5 benchmark.

Figure 4.3: Horizontal prestress for the TPV5 benchmark.

The accuracy of the rupture properties is examined at predefined on-fault
positions. There are 16 chosen positions in the TPV5 benchmark, as displayed
in Fig 4.4.
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Figure 4.4: Positions of on-fault stations for the TPV5 benchmark.

4.1.1 Cohesive zone estimate
The upper bound estimate of the cohesive zone for the TPV5 benchmark is 465.6m
for a Mode III crack based on formula (2.60), and 560m for a Mode II crack
based on formula (2.59). If we had an estimate of typical rupture velocities in the
problem, we could further refine the estimate by application of shrinking factors
(2.62) for Mode III and (2.61) for Mode II crack.

We can gain a better picture of the cohesive zone size after the simulation is
run. The local estimate of the cohesive zone from rupture time tr, slip time ts
and rupture velocity can be calculated using formula (2.64). It is shown for the
TPV5 benchmark (calculated with ∆h = 100m) in Fig 4.5. It is not given at
areas where the rupture speed is not defined, i.e. at the nucleation patch and the
not-rupturing layers around the fault – estimate of the cohesive zone is assigned
to be zero at these areas.
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Figure 4.5: Cohesive zone estimate for the TPV5 benchmark.

How does this figure connect with pre simulation estimates (2.60) and (2.59)
and the rupture velocity dependence (2.62) and (2.61)? The rupture velocity is
highly variable through the fault plan., As can be seen in Fig 4.6, it spans the
interval from 100m/s to supershear values above vs = 3464m/s.

Figure 4.6: Rupture velocity in the TPV5 benchmark.

The situation is more complex then that described by approximated formulas
(2.61) and (2.62). The fracture mode of the strike slip earthquake is a mix of
mode III (propagation in the vertical direction) and mode II (propagation in the
horizontal direction) fractures. Large areas of the fault also rupture at supershear
speeds. This leads to a more variable relationship between the rupture velocity
and the cohesive zone size as can be seen in Fig 4.7.
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Figure 4.7: Rupture velocity vs cohesive zone size in the TPV5 benchmark.

The rupture propagates as a Mode III fracture in the vertical direction, allow-
ing for a direct comparison with formula (2.62), see Fig 4.8, where local estimate
is only larger then the theoretical (but also approximated) value by less then 10%.
It is a good agreement, given the approximate nature of both estimates. Mode II
crack model gives lower estimates of the cohesive zone size than Mode III crack,
it is therefore the bounding value when trying to asses the accuracy.

Figure 4.8: Dependence of the cohesive zone on rupture velocity in the TPV5
benchmark for the Mode III crack (blue line) and vertically propagating crack in
the TPV5 (red circles).
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FD codes typically require the cohesive zone resolution to be at least three
points per cohesive zone, optimal value is five [Day et al., 2005]. Discretization
with ∆h = 100m will be at the border of this interval with minimum value of
the resolution of 3.5 points per cohesive zone, while ∆h = 50m should give very
accurate results (resolution of 7 points per cohesive zone).

4.1.2 Convergence
The development of the accuracy of the solution with ∆h in the TPV5 benchmark
was studied by assesing errors in two important kinematic rupture properties –
rupture time and slip. The normalized root mean square difference from the most
accurate solution (FD3D TSN with ∆h = 50m) was calculated for the original
thin zone zone version and the improved traction at split node (TSN) version
solutions calculated for different discretizations. The results are in Fig 4.9 and
4.10 for rupture time and slip, respectively.

Figure 4.9: Normalized root mean square difference of the rupture times in the
TPV5 benchmark. Results of FD3D TSN version for ∆h = 50m are taken as a
reference solution with RMS equal to zero. Blue circles are results of FD3D TSN,
black crosses are results of the thin zone version.
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Figure 4.10: Same as in Fig 4.9, but for the slip distribution.

The thin zone version did not work with higher discretization steps above
200m, where the rupture did even not propagate outside of the nucleation zone.
Moreover, its results do not imply convergence of the solution for presented ∆h,
finer discretization would be required.

Results of FD3D TSN are in a good agreement with our expectations based
on the cohesive zone resolution. The difference between results calculated with
∆h = 100m and those with ∆h = 50m is only about one percent. Such a
difference from the true solution would be acceptable.

4.1.3 Results of the thin zone approach
The performance of the original thin fault version of FD3D in the TPV5 bench-
mark was tested first. Presented are two major benchmark outputs – rupture
time contour plot in Fig 4.15 and sliprates and tractions in on-fault stations in
Fig 4.12 and 4.13. The results were calculated using spatial discretization param-
eter set to ∆h = 50m. All graphs are overlayed over the reference results of the
FaultMod code.

The results in the previous section imply that the solution propably did not
converge even for the generous discretization withresolution of 7 points per cohe-
sive zone. Typical symptom of insufficient resolution is decreased rupture veloc-
ity/increased rupture time. This can be observed in all figures, when comparing
with the reference solution – the rupture si much slower, especially around the
prestress heterogeneities.

Shapes of the rupture time contours are very similar between both solvers,
when thegeneral decrease of the rupture velocity is neglected. The contours at
the right hand side of the fault, where the difference in rupture time is 1s, are
very close to each other.

Major observable difference between solvers in slip rate and traction plots
(Fig 4.12 and 4.13) is again in the rupture times, but significant differences in
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maximum slip rates are also observed, such as at points P4, P7, P16. The second
peak in the slip rate at points that are not directly at the free surface (P8-P16)
is a secondary rupture reflected form the free surface.

The graphs of the traction measured closer to the border of the fault plane
(P1, P2, P9, P14) show sudden increase above the dynamic traction value at later
times in the FD3D solution. This is caused by the performance of the original
absorbing boundary conditions, which reflect part of the radiated energy back
to the fault. This would be observed at all parts of the fault for longer time
intervals. The increase of the traction above the dynamic friction does not cause
further slip because reaching the static value again after the slip rate decreased
to zero was required as a regularization.

Figure 4.11: Rupture time contour plot comparison for thin zone FD3D, with
∆h = 50m (solid line) and FaultMod (dashed line) in the TPV5 benchmark. Lines
display rupture front position at time 1s, 2s,... . Blue squares mark positions of
the prestress heterogenities (Fig 4.3).
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Figure 4.12: Sliprates and tractions for points P1–P8 (positions are in Fig 4.4) in
the TPV5 benchmark. Results of the thin zone FD3D and the reference results
of the FaultMod code are denoted by red and blue lines, respectively.
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Figure 4.13: Same as Fig 4.12 but for points P9–P16.
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4.1.4 Results of the traction at split node approach
Tests of the new FD3D TSN with TSN fault boundary implementation and per-
fectly matched layer absorbing conditions, for two spatial discretizations ∆h =
100m (Fig 4.14, 4.16, 4.17) and ∆h = 50m (Fig 4.15, 4.18, 4.19) are shown in
this section.

Differences between results of coarser and finer discretizations are minimal,
as can be expected from the results in section about convergence (Section 4.1.2),
suggesting (but not proving) convergence of the solution. Good agreement with
the results of the FaultMod code is also observed.

Error in rupture velocity depends on the direction, which can be seen es-
pecially for coarser discretization in Fig 4.14. This is an effect caused by the
staggered position of the velocity and stress components in the FD grid and its
impact on the discretization of the nucleation zone. The horizontal traction com-
ponent σ12 is positioned on the left side of every grid cell. The area with increased
prestress is therefore larger to the left of the hypocentre (position at the centre of
the fault). Connection between the discretization of the nucleation zone and rup-
ture velocity was studied for example in Galis et al. [2014]. The effect practically
disappears for the finer discretization (Fig 4.15).

There are small differences in the shape of the slip rate time series (especially
in the shape of the rupture reflected from the free surface) between FD3D TSN
and FaultMod, that do not dissapear for finer discretization. This can be ex-
plained by the artificial damping used to supress high frequency oscillations, that
is used in both codes but in different forms. Agreement between both codes in
slip rate shapes is otherwise very good, including maximum slip rates.

The traction drops below the dynamic friction value during the simulation.
Concrete value of the minimum traction is influenced by many small factors that
are not set in the benchmark and therefore differ between presented methods.
The size of the non-rupturing layer around fault (distance between fault and
absrbing boundary condition in the horizontal and vertical directions) is one of
them. Variance in this value can be therefore expected and has minimal impact
on the overall accuracy.
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Figure 4.14: Rupture time contour plot for FD3D TSN, with ∆h = 100m (solid
line) and FaultMod (dashed line). Lines display rupture front position at time
1s, 2s,... . Blue squares mark positions of the prestress heterogenities.

Figure 4.15: Same as Fig 4.14 but using discretization step ∆h = 50m.
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Figure 4.16: Sliprates and tractions for points P1–P8 (positions are in Fig 4.4) in
the TPV5 benchmark. Results of the FD3D TSN code using ∆h = 100m and the
reference results of the FaultMod code are denoted by red lines and blue lines,
respectively.
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Figure 4.17: Same as Fig 4.16 but for the points P9–P16.
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Figure 4.18: Sliprates and tractions for points P1–P8 (positions are in Fig 4.4) in
the TPV5 benchmark. Results of the FD3D TSN code using ∆h = 50m and the
reference results of the FaultMod code are denoted by red lines and blue lines,
respectively.
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Figure 4.19: Same as Fig 4.18 but for the points P9–P16.
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4.2 TPV104 benchmark
The TPV104 benchmark is similar to the TPV5 benchmark, but the fast velocity
weakening friction law is used. Material in the domain has the same properties
as in TPV5 (Table 4.1). The fault consists of a velocity weakening (VW) area
of size 30 × 15km, surounded by a transition layer and a velocity strenghtening
layer (VS). The rupture is again a strike-slip. Parameters of the fast velocity
weakening friction law (2.42) in the VW area are shown in Table 4.4. Only
values of parameters a and ṡw are different in the VS layer then in the VW area,
the values are shown in Table 4.5.

f0 ṡ0 a(VW ) b L fw ṡ(VW )
w

0.6 10−6m/s 0.01 0.014 0.4m 0.2 0.1m/s

Table 4.4: Friction parameters for the TPV104 benchmark – the VW zone.

a(V S) ṡ(V S)
w

0.02 1m/s

Table 4.5: Friction parameters for the TPV104 benchmark – the VS zone.

The transition layer between the VW and VS zones is w = 3km wide. Both
parameters a(T ) and ṡ(T )

w smoothly increase from the VW zone to the VS zone as

a(T )(∆x,∆z) = a(VW ) + (a(V S) − a(VW )) × (1 −B(∆x,w)B(∆z, w))
ṡ(T )
w (∆x,∆z) = ṡ(VW )

w + (ṡ(V S)
w − ṡ(VW )

w ) × (1 −B(∆x,w)B(∆z, w))

B(∆, w) = 1
2

[
1 + tanh

(
w

∆ − w
+ w

∆

)]
,

(4.1)

where ∆x and ∆z are distances from the VW zone in the x and z direction,
respectively. The shape of the B(∆, w) function is shown in Fig 4.20.
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Figure 4.20: B(∆, w) function through the transition zone.

Initial values of the field dynamic parameters are shown in Table 4.6.

ṡ(INI) σn T
(INI)
0

10−16m/s 120MPa 40MPa

Table 4.6: Friction parameters for TPV104 benchmark – Initial values

Initial value of the state variable is set to accomodate these initial values from
(2.42):

ψ(INI) = alog
[ 2ṡ0

ṡ(INI) sinh
(
T0

aσn

)]
(4.2)

Nucleation is handled by imposing the following time and space dependent
increase of the prestress in a round patch at the centre of the fault – (xc1, xc3) =
(7, 5km, 15km). The maximum increase is ∆T 0 = 45MPa. The prestress is set
to increase as

T 0(x1, x3, t) = T
(INI)
0 + ∆T 0

[
C
(√

(x1 − xc1)2 + (x3 − xc3)2
)
D(t)

]

C(r) =

⎧⎨⎩ exp
(

r2

r2−r2
0

)
: r < r0

0 : r ≥ r0

D(t) =
{
exp

(
(t−t0)2

t(t−2t0)

)
: t < t0

1 : t ≥ t0,

(4.3)

where parameters t0 = 1s and r0 = 3km define the time of the maximum shear
stress increase and the patch radius, respectively.
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Figure 4.21: Positions of the on-fault stations for the TPV104 benchmark.

4.2.1 Cohesive zone estimation
Cohesive zone size for the TPV104 benchmark estimated using formula (2.65) is
shown in Fig 4.22. Oscillations in the rupture velocity probably cause oscillation
in the calculated values. Typical size of the cohesive zone through the fault is
between 250m 300m, with large variability around nuclation zone in the centre
of the fault. Cohesive zone resolution with (∆h = 100m) is again at the border
of acceptable values of 2.5 - 3 points per cohesive zone. Discretizations with
(∆h = 50m) should offer sufficient resolution of at least 5 points per cohesive
zone in most of the fault.

Exception to that is near free surface, where the size of the cohesive zone
drops to values around 100m. The rupture propagation through this area should
show signs of the insufficient cohesive zone resolution. This perhaps explains the
variability among different solvers in Fig 4.2, when looking at the secondary slip
pulse (reflected from the free surface).
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Figure 4.22: Cohesive zone size in the TPV104 benchmark estimated using for-
mula (2.65).

4.2.2 Results
Results of the FD3D TSN in the TPV104 benchmark are presented in this section.
The convergence of average RMS difference of rupture time and slip was again
tested and are shown in Fig 4.23 and 4.24, respectively. Difference between the
results of coarser discretization with ∆h = 100m and the finer one with ∆h = 50m
suggesting proximity to the converged solution.

Figure 4.23: Normalized root mean square difference of the rupture times in the
TPV104 benchmark. Results of FD3D TSN version for ∆h = 50m are taken as
a reference solution with RMS equal to zero. Blue circles are results of the TSN
version for different discretizations.
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Figure 4.24: The same as Fig 4.23, but for the slip.

Benchmark results (rupture time contours, slip rates, tractions and state vari-
ables) for two finest resolutions, those with spatial discretization ∆h = 100m (Fig
4.25, 4.27, 4.28) and ∆h = 50m (Fig 4.26, 4.29, 4.30) are discussed next.

Rupture time contour plots for both discretizations (Fig 4.25 and 4.26) show
noticable difference in the rupture velocity between FD3D TSN and FaultMod
results, with rupture in the FD3D TSN solution being faster. The difference is
comparable with differences between other codes (Fig 4.2). It can be caused for
example by the implementation of the nucleation procedure. The assymetry of
the rupture time contours is again observable, with the rupture on the left hand
side of the fault being quicker. This is again caused by the staggered position of
the components in the FD grid causing assymetries in the nucleation zone shape.
The effect is again minimized for the finer grid.

Shapes of slip rates are practically identical. The most visible discrepancy is in
the shape of the rupture reflected from the free surface (second peak), especially
in their maximum slip rates in points P5 and P8 (Fig 4.28).

The difference in behaviour between the slip weakening and fast velocity weak-
ening friction can be observed throughout the plots with traction time series in
this section. With the slip weakening friction in the TPV5 benchmark the trac-
tion dropped to a dynamic value and possibly then further decreased below it.
Here the traction starts to grow near the end of every slip pulse, due to healing
(increase of the state variable). The development of the traction at point P8 is a
good example of this.
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Figure 4.25: Rupture time contour plot for TPV104. Dashed line is for the
solution of FaultMod, full line is the solution of FD3D TSN, with ∆h = 100m.

Figure 4.26: Same as Fig 4.25, but for ∆h = 50m.
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Figure 4.27: Sliprates and tractions for points P1–P4 (positions are in Fig 4.4)
in the TPV104 benchmark. Results of the FD3D TSN code using ∆h = 100m
and the reference results of the FaultMod code are denoted by red lines and blue
lines, respectively.
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Figure 4.28: The same as Fig 4.27, but for the points P5–P9.
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Figure 4.29: Sliprates and tractions for points P1–P4 (positions are in Fig 4.4)
in the TPV104 benchmark. Results of the FD3D TSN code using ∆h = 50m
and the reference results of the FaultMod code are denoted by red lines and blue
lines, respectively.
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Figure 4.30: Same as Fig 4.29, but for the points P5–P9.
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Conclusions
Dynamic simulation of the spontaneous rupture propagation is a numerically dif-
ficult problem. The problem of the seismic wave propagation in the izotropic
continuum modelled by solving the elastodynamic equation is supplemented by
the introduction of the fault boundary condition with nonlinear relation between
velocity and stress. Main goal of this Thesis was the development of an effi-
cient code solving the rupture propagation problem by a finite difference method.
Motivation for the development was the potential further use of the code as a
forward solver in the dynamic inversion of specific earthquakes [Gallovic et al.,
2019]. This requires efficient and fast code, due to the necessity of running a
large number of forward simulations, caused by nonlinear relationship between
dynamic parameters (governing the rupture propagation) and seismograms.

The code is based on the original FD3D code by Madariaga et al. [1998]. Cal-
culation speed of the original code was acceptable, especially with the paralleliza-
tion for GPU using OpenACC directives, but the thin zone implementation of
the fault boundary condition did not performe well when compared with methods
used in other codes [Dalguer and Day, 2006]. Two major changes to the original
code were made – implementation of the different fault boundary condition and
the absorbing bundary condition.

Description of the finite difference numerical method for the elastodynamic
equation and the implementation of various boundary conditions constitute the
main part of this Thesis. Staggered grid finite difference scheme is described
in Chapter 1, the fault boundary condition in Chapter 2 (including the original
thin zone method and the updated traction at split node method) and the free
surface and absorbing boundary condition in Chapter 3. Additionaly, Chapter
2 contains Sections 2.4 and 2.5 describing laws of friction currently used in the
dynamic modelling of earthquakes, and Section 2.6 describing the estimation of
the cohesive zone.

The applicability of the code was further expanded by implementing the fast
velocity weakening friction law (Section 2.5). This posed numerical complications,
because additional differential equation needs to be solved at the fault boundary.

The accuracy of the new code FD3D TSN was tested using two excercises
(TPV5 and TPV104) from The SCEC/USGS Spontaneous Rupture Code Ver-
ification Project [Harris et al., 2009, 2018]. The comparison with the old thin
zone version shows large improvement in the accuracy of physical quantities (slip
and rupture velocity) and the shape of slip rate functions at chosen points on the
fault. New code compares well with those of other authors (the solution of Barall
[2009] was chosen as a reference in this thesis). Tests with various discretization
steps ∆h show that the difference between the solutions is around 1 percent in
rupture velocity and slip when we use a discretization step ∆h = 100m. This
holds for both tests.

There is a large number of ways of further development from this work. Imple-
mentation of an irregular finite difference grid with finer discretization around the
fault boundary could further improve accuracy/efficiency and might be necessary
for studying more complex dynamic models like those including fault zones.

Studies of specific physical effects are also possible. Rupture models with fault
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zones (layers of damaged material with lowered seismic velocities around the fault)
might be an interesting venue of further expanding the complexity of our model.
Also, tests with mostly homogenous parameters (like both benchmark excercises
analyzed in this Thesis) show a strong secondary rupture front reflected from
the free surface, which is a phenomenon not observed in real eartquakes [Kaneko
et al., 2008], as studied by kinematic inversions. Mechanism stopping the rupture
when using slip-weakening friction law while allowing slip at the free surface is
unclear.

Dynamic inversion of real eartquakes using a rupture model with fast velocity
friction is possible with the new code. It might still become limitated by the
approximations in the dynamic model that were not adressed in this work – only
planar and vertical fault is allowed in the simulation. Although the set of studiable
events will be somewhat bounded by these limitations and large eartquakes on
multiple faults like the 2016 Kaikoura earthquake (Mw = 7.8) are yet out of the
scope of dynamic inversions, large number of events, for example the 2014 South
Napa earthquake (Mw = 6.0) or the 2016 Central Italy earthquake (Mw = 6.2),
can be studied succesfully promising significant new insight into the mechanics
of the earthquake source.
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