
BACHELOR THESIS

Patrik Dokoupil

PaunPacker - Texture Atlas Generator

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2019

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

I would like to thank my supervisor Mgr. Pavel Ježek, Ph.D. for his time, patience
and the helpful advice he gave me. Furthermore, I would like to thank my family,
friends, and everyone who has supported me during my studies.

iii

iv

Title: PaunPacker - Texture Atlas Generator

Author: Patrik Dokoupil

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and Dependable
Systems

Abstract: The goal of this thesis was to create an extensible application for pack-
ing textures into texture atlases, that could then be used in 2D game development.
The extensibility lies in the possibility to create and import plugins, containing
algorithms for packing, image processing, and metadata exporting. The ability
to extend the application by means of plugins makes our application also suitable
for testing of newly invented algorithms or for testing of custom variations of the
existing ones.

The software solution includes application with user interface that allows the
user to create texture atlases and perform additional processing of the textures.
Apart from that, we have also included several default implementations of some
of the extensible components, namely: placement algorithms, image processing
tools and metadata exporters. The concrete algorithms that are implemented
in our solution are (among others): Bottom-left algorithm, Skyline algorithm,
Guillotine algorithm and also a genetic-based algorithm. All of that can be used
as a starting point when developing new plugins.

In addition to generating texture atlases, our application can also generate meta-
data, that can then be imported by supported game frameworks or libraries. The
process of metadata serialization is also customizable, and so users can supply
the application with serializers that produce metadata that matches their needs.
Two metadata serializers are included in the application itself.

We have also performed several benchmarks regarding performance measured
in both time and area of the resulting texture atlas. The results of benchmarks
are included in the text.

Keywords: Texture atlas Rectangle packing WPF Plugin

v

vi

Contents

1 Introduction 3
1.1 Texture atlas . 4

1.1.1 Metadata . 6
1.1.2 Using texture atlas . 9

1.2 Packing tools . 14
1.3 Goals . 23

2 Theoretical Background 25
2.1 Packing problems . 25

2.1.1 Dyckhoff’s typology . 25
2.1.2 Problem definition . 26
2.1.3 Two-dimensional rectangle bin packing 28
2.1.4 Two-dimensional strip packing problem 28
2.1.5 Rectangle packing problem 29

2.2 Solution approaches . 31
2.2.1 Heuristic algorithms . 31
2.2.2 Meta-heuristics . 37

3 Implementation Analysis 39
3.1 Goals revised . 39
3.2 Architecture overview . 41

3.2.1 High-level components overview 42
3.2.2 PaunPacker’s workflow . 43

3.3 Choice of platform and development technologies 44
3.4 PaunPacker.GUI . 45
3.5 Plugins . 47
3.6 PaunPacker.Core . 54
3.7 PaunPacker.GUI revisited . 58

4 Developer Documentation 61
4.1 NuGet package dependencies . 62
4.2 PaunPacker’s workflow revisited 64
4.3 PaunPacker.Core . 65

4.3.1 Representation of a rectangle 66
4.3.2 Metadata export . 66
4.3.3 Packing process representation 66
4.3.4 Representation of image processors 68

4.4 PaunPacker.GUI . 69
4.4.1 Application’s entry point 69
4.4.2 Views . 73
4.4.3 Data binding, INotifyPropertyChanged and

ObservableCollection . 74
4.4.4 Commands . 74
4.4.5 Behaviors . 75
4.4.6 Converters . 75

1

4.4.7 Events . 75
4.4.8 Services . 76
4.4.9 Dialogs . 77
4.4.10 Workarounds . 77
4.4.11 Resources . 78
4.4.12 ViewModels . 78
4.4.13 Exported types instantiation 78
4.4.14 Export of built-in extensible components 79

4.5 PaunPacker.GUI.WPF.Common 82
4.6 Tests . 85

4.6.1 Benchmarks . 86
4.7 Plugins . 87

5 User Documentation 89
5.1 Installation and running the PaunPacker 89
5.2 Plugin installation . 89
5.3 Limitations . 89
5.4 GUI overview . 90
5.5 PaunPacker menu . 91
5.6 Packing settings and texture atlas generation 93
5.7 Interacting with the texture atlas 96
5.8 Managing the loaded images . 97
5.9 Working with Image Processors 98
5.10 Benchmarks . 101

6 Creating Plugins Tutorial 103
6.1 Prerequisities and common guideline 103
6.2 Minimal plugin template . 106
6.3 Creating plugins without GUI . 108
6.4 Creating plugins with GUI . 108
6.5 Managing external dependencies 110
6.6 Creating extensible plugins . 112
6.7 Best practices . 115

Conclusion 117

Bibliography 121

A Attachment 125

2

1. Introduction
Texture atlas1 is a set of textures that are packed together as tightly as possible.
The packing of textures means taking the input textures and producing a resulting
texture (texture atlas) by joining these textures together. Illustration of packing
is shown in Figure 1.1.

Figure 1.1: Illustration of packing a set of textures into a texture atlas. The
textures used in the images are taken from: OpenGameArt [1] where they are
published under Public Domain (CC0) license.

On the left side of the Figure 1.1 there are individual textures (input textures)
that are being packed together, producing the texture atlas shown on the right.
The resulting texture atlas contains all of the input textures, each of them exactly
once.

The texture atlases have several use cases in various contexts, but the most
common context where they are used is 2D game development and that is also
the context regarded in this thesis. In this context, it is useful for a game devel-
oper if the tool for texture atlas generation also offers some additional features,
for example, it is often useful to remove redundant transparent pixels from the
border of the texture in order to make the resulting texture atlas smaller. Other
additional features are described later in the Section 1.2.

There exists a couple of tools for texture atlas generation, both paid and free.
The problem is, that while the paid tools offer a wide range of additional features,
the free tools usually offer only the packing of textures, with either limited set
of additional features or no additional features at all. The absence of a free tool
for texture atlas generation with sufficient additional functionality has led us to
a decision to create such an application on our own. It is worth mentioning, that
our intent is not to devise new algorithms for packing, but to come up with an
application that will allow users to pack textures, perform some processing on the
textures and export metadata about the texture atlas. The metadata contains
various kinds of information about the texture atlas and its sub-textures, for
example, the positions of the sub-textures. Other information stored in metadata
will be described in Section 1.1.1. The target use case is using the texture atlases
and metadata generated by our application in the previously mentioned context

1Texture atlases are also known under names sprite sheet, image sprite, texture map or
sprite map.

3

https://opengameart.org/content/platformer-art-complete-pack-often-updated

of 2D game development, together with some game framework that will provide
additional support to load the texture atlas and manipulate its sub-textures.
It’s important to mention, that the game framework’s additional support relies
on using the metadata when loading the texture atlas and allowing access or
manipulation with texture atlas’ sub-textures. Before explaining the details about
the implementation of the application, the general problem of packing including
its related concepts should be introduced. We have decided to accompany the
explanation of texture packing and its related concepts with code examples to
better illustrate the typical workflow of using texture atlases in the context of
2D game development and to relieve the reader of understanding the explained
concepts. To provide code examples, an appropriate game framework has to
be chosen and cross-platform Java game development framework called libGDX2

seems as a good candidate for this case, because it allows to write self-contained,
simple to understand examples and offers a decent support for texture atlases. It
is important to mention, that although a concrete game framework was chosen,
the concepts depicted in the examples are generic and therefore they will work
similarly in other game frameworks.

1.1 Texture atlas
This section is devoted to description and explanation of basic concepts about
texture atlases together with illustrations of its use cases. The explanation is ac-
companied by several examples which should make the explained concepts easier
to grasp. Although the examples are based on libGDX and its .atlas meta-
data format, the underlying concepts, and ideas are generic and apply to other
game frameworks as well. In particular, most of the information described by
.atlas is described by other metadata formats too and the support for texture
atlas manipulation that libGDX provides is typically also provided by other game
frameworks in a similar extent.

Each of the examples mentioned in this section will show the following two
methods: create(), render(). The method create is called when the game is
first created and it will always contain instantiation and initialization of game’s
members. The method render is called when the game should be rendered and it
will always contain code for rendering the game screen. It is important to mention
that in this section, all the lengths, distances and dimensions are measured in
pixels.

The rendering of textures in render method is done by using SpriteBatch
class. The word Sprite in the name of SpriteBatch relates to a Sprite class
that contains geometry (position), color and texture information (texture or more
generally texture region, rotation, size, etc.). The SpriteBatch class as its name
says, batches the sprites (instances of Sprite class) with the same texture to-
gether into a single draw call. The SpriteBatch starts the batch with a call
to its begin method which means, that when a subsequent call to Sprite’s
draw method comes, the SpriteBatch collects the Sprite’s geometry instead of
sending it immediately to the GPU. The collected geometry is sent once the end
method is called on SpriteBatch or when the following scenario happens: sup-

2More information about libGDX framework can be found on its website [2].

4

pose a sequence of n sprite draw requests3 S1, . . . , Sn ordered by the time when
they have occurred, from oldest to newest. When new sprite draw request Sn+1
comes and the texture corresponding to this draw request is different from the tex-
ture that corresponds to the draw request Sn, the batch ends. The SpriteBatch
is rather heavy (as stated in libGDX’s developer documentation [3]), so typically
only a single instance is created. An example of rendering textures is shown in
the Listing 1.

1 @Override
2 public void create () {
3 batch = new SpriteBatch();
4 sampleTexture = new Texture("someTexture.png");
5 sampleTextureRegion = new TextureRegion(sampleTexture, 0, 0, 50, 50);
6 sampleSprite = new Sprite(sampleTexture);
7 sampleSprite.setPosition(400,400);
8 }
9 @Override

10 public void render () {
11 ...
12 batch.begin();
13 batch.draw(sampleTexture, 0, 0);
14 batch.draw(sampleTextureRegion, 100, 100);
15 sampleSprite.draw(batch);
16 batch.end();
17 }

Listing 1: An example of using SpriteBatch to render Texture, TextureRegion
and a Sprite.

In the Listing 1 there is a create method, where SpriteBatch, Texture,
TextureRegion and Sprite are created. The Texture represents a texture and
it can be created from a texture file located on a disk, in this case, from the texture
file called ”someTexture.png”. The TextureRegion represents a rectangular area
of a texture and it is created by specifying the source texture, coordinates of
region’s bottom-left corner and the size of the region. In this example, the created
texture region represents a rectangular area of sampleTexture with the bottom-
left corner at coordinates 0,0 and the size of 50x50 pixels. At the end of the create
method, the sampleSprite is created from the sampleTexture and its position
is set to 400,400. The render method then renders sampleTexture at position
0,0, sampleTextureRegion at position 100,100 and finally sampleSprite at the
position it has set—400,400.

3Here the draw request means a call to Sprite’s draw method.

5

1.1.1 Metadata
Texture atlases are typically accompanied by some metadata in one of the various
kinds of formats—for example, libGDX uses the format called .atlas. The for-
mats of metadata are typically related to the target game framework that will be
used to load the texture atlas, but this relation is not one-to-one, because there
are metadata formats that are understood by multiple game frameworks, but on
the other hand, there exist metadata formats that are not understood by any
game framework, because developers could create their own (custom) metadata
formats and work with the formats on their own, without additional support of
any game framework. The metadata contains additional information about the
sub-textures within the texture atlas, for example, sub-texture’s size, its location
within texture atlas, etc.

The .atlas format

The files in .atlas format are simple text files containing information about tex-
ture atlases and their sub-textures. The file is divided into pages that are further
divided into regions (as stated in comments inside libGDX’s GitHub repository [4]
or at Spine’s4 website [6]). Each page represent one texture atlas and the regions
inside the page represents its sub-textures. Pages are separated by an empty
line and each page starts with a name (actually it’s a path) of the corresponding
texture atlas file followed by the following attributes:

1. size 2. format 3. filter 4. repeat

After these attributes, there comes a list of regions, where each region starts
with a region name followed by some (not all of them are mandatory) of the
following attributes:

1. rotate
2. xy

3. size
4. split

5. pad
6. orig

7. offset
8. index

The structure of .atlas file is illustrated in the Figure 1.2.

.atlas file
page 1

page 2

page 3

page n

region 1
region 2

region n

page name
attribute: value
attribute: value

attribute: value

region name
attribute: value
attribute: value

attribute: value
(more pages)

(more regions)

Page

Region

Figure 1.2: The .atlas file and its division into pages and regions.

4Spine is an animation tool developed by Esoteric Software LLC. More about Spine can be
found at its website [5].

6

The left side of Figure 1.2 shows a .atlas file that contains n pages, called
from page 1 to page n. These pages are listed one by one in the .atlas file,
separated by an empty line. Each page contains the page name and multiple
attributes followed by the regions as can be seen in the middle of the Figure 1.2.
Each of the page’s regions contains a region name followed by its own attributes.
Instead of showing the structure of .atlas file by listing its contents, the figure
uses arrows (the arrows means ”gets replaced by”) to represent the .atlas file’s
structure.

An example illustrating the syntax of .atlas format on a concrete .atlas
metadata file is shown in Figure 1.3.

textureAtlas.png
size: 92, 161
format: RGBA8888
filter: Linear,Linear
repeat: none
hud_coins

rotate: false
xy: 44, 114
size: 47, 47
orig: 47, 47
offset: 0, 0
index: -1

Figure 1.3: The example of .atlas file with a single page and a single region.

The Figure 1.3 shows a .atlas file containing a single page called texture-
Atlas.png with a size of 92x161 pixels. The format corresponds to pixel format
that will be used when storing the texture atlas in memory and it is RGBA8888
in this case. The filter configures the minification 5 and magnification of the
texture atlas, in this case, they are both set to Linear (linear interpolation). The
repeat attribute specifies the axes in which the texture should repeat6 and in
this case, it is set to none, so the sub-texture will not repeat in any of the axes.
The page contains a single region called hud coins with the following attributes:
rotate, xy, size, orig, offset and index. The attribute rotate indicates
whether the region is stored rotated by 90 degrees in the texture atlas. The xy
are coordinates of the top-left corner of the region with respect to the top-left
corner of the texture atlas and size is the size of the region. The orig attribute
is the original size of the region, in this case, it is equal to the size of the region
which means that the size did not change during the packing. The offset is
the number of whitespace pixels removed from left and bottom of the original
sub-texture. In this case, the offset is 0,0, meaning that no whitespace pixels
were removed. The index allows several regions (even on the same page) to have
the same name, as long as they have a different index. The index determines
the order of regions with the same name. The index is useful when dealing with
animations because then the index represents the animation’s frame in which the

5More about minification and magnification can be found at LearnOpenGL website [7]
6This attribute is related to texture wrapping. More about texture wrapping can be found

at LearnOpenGL website [7].

7

region (its corresponding sub-texture) should be shown. In this example, the
region has index equal to -1 which means that the index is not used. For the
index, the texture packing tools typically use the number between after last ’ ’ in
the file name (the name without file extension is considered) of the corresponding
sub-texture or -1 when such a number is not present.

The last example of this section, showing metadata in .atlas format is shown
in the Figure 1.4 on the left, together with its corresponding texture atlas on the
right.

textureAtlas.png
size: 92, 161
format: RGBA8888
filter: Linear,Linear
repeat: none
hud_gem_green
 rotate: false
 xy: 0, 38
 size: 46, 36
 orig: 46, 36
 offset: 0, 0
 index: -1
hud_keyRed
 rotate: false
 xy: 0, 114
 size: 44, 40
 orig: 44, 40
 offset: 0, 0
 index: -1
...

Figure 1.4: Example of metadata in .atlas and its corresponding texture atlas.
The textures used in the images are taken from: OpenGameArt [1] where it is
published under Public Domain (CC0) license.

The Figure 1.4 shows a texture atlas on the right together with a part of
the texture atlas’ corresponding metadata on the left. The listed metadata con-
tains a single page called textureAtlas.png that contains two regions called
hud gem green and hud keyRed. The region called hud gem green corresponds
to the green diamond sub-texture and hud keyRed corresponds to the red key
sub-texture. The regions corresponding to the remaining sub-textures (green
key, blue diamond, etc.) were omitted for simplicity.

8

https://opengameart.org/content/platformer-art-complete-pack-often-updated

1.1.2 Using texture atlas
As already mentioned at the beginning of Section 1, the target use case is using
texture atlases for 2D game development, together with some game framework.
To illustrate this use case, imagine the following situation: a game developer
that is working on a 2D game using the libGDX framework. Suppose that the
game consists of several game objects (player, characters, enemies, etc.) each
of them having its corresponding (not necessarily unique) texture and position
and that these game objects have to be rendered onto the screen. A simple way
to render the objects would be to store every texture in a separate texture file,
create Texture for each texture file, then create Sprite for each game object (by
calling Sprite’s constructor with corresponding Texture as a parameter) and
finally calling the draw method on every Sprite. This approach is illustrated in
the Listing 2.

1 @Override
2 public void create () {
3 ...
4 gameObjectSprites = new Sprite[10];
5 spriteTextures = new Texture[10];
6 for (int i = 0; i < 10; i++) {
7 //Create texture from a texture file for a given sprite
8 spriteTextures[i] = new Texture("sprite_" + i + ".png");
9 gameObjectSprites[i] = new Sprite(spriteTextures[i]);

10 ... //Set positions of the Sprites
11 }
12 }
13 @Override
14 public void render () {
15 ...
16 batch.begin();
17 for (int i = 0; i < 10; i++) {
18 gameObjectSprites[i].draw(batch);
19 }
20 batch.end();
21 }

Listing 2: An simple approach of drawing 10 Sprites with 10 corresponding
Textures.

In the create method shown in the Listing 2, there are 10 Sprites created
together with their 10 corresponding Textures. These sprites are then rendered
one by one in the render method. Because every Sprite uses a different texture,
each call to Sprite’s draw method causes the collected geometry of a single
Sprite to be sent to the GPU immediately which results in 10 draw calls.

The simple approach that is shown in Listing 2 works, but it is inefficient
because—as previously mentioned in Section 1.1—when comes a request to draw
a new Sprite Sn+1 with a texture different from the texture of a previous Sprite

9

Sn, the batch is finished, the collected geometry is sent to the GPU and the
batch then begins again, by collecting the geometry of the Sprite Sn+1. With an
increasing amount of textures used by the Sprites (game objects) this inefficiency
increases even further, until it will eventually slow down the whole game in such
a way, that the player’s play experience could be ruined. The remedy to this
problem is to to use texture atlases and instead of storing each texture in a
separate texture file, store all of the textures together in the texture atlas and
create the Sprites using the TextureRegions of this texture atlas. A different
version of code from Listing 2, improved by using texture atlas, is shown in
Listing 3.

1 @Override
2 public void create () {
3 ...
4 textureAtlas = new TextureAtlas("metadata.atlas");
5 gameObjectSprites = textureAtlas.createSprites();
6 ... //Set positions of Sprites
7 }
8 @Override
9 public void render () {

10 ...
11 batch.begin();
12 for (int i = 0; i < 10; i++) {
13 gameObjectSprites[i].draw(batch);
14 }
15 batch.end();
16 }

Listing 3: An simple approach of drawing 10 Sprites with 10 corresponding
Textures.

In the create method shown in the Listing 3 an instance of TextureAtlas
class is created from a texture atlas’ metadata file called ”metadata.atlas”. The
TextureAtlas contains 10 Sprites whose instances are obtained by calling the
createSprites method on the TextureAtlas. These sprites are then rendered
one by one in the render method. But unlike the code example from Listing 2,
this time the texture atlas is used. By using the texture atlas, all of the sprites
will refer to the same texture, and therefore more Sprites could be drawn in a
single draw call to the GPU, because the batch will not finish until the moment
when the end method is called. It should be mentioned, that it is not always
necessary to store all of the textures in a single texture atlas, because sometimes
the amount of textures is so large, that the texture atlas would become extremely
large and possibly exceed certain limits on a texture size that are given by the
GPU. If that is the case, the textures could be divided into (arbitrary) groups
that can be stored separately in their own texture atlases. An important note is
that both the performance issue caused by storing the textures in separate files

10

and the solution to this issue are not specific to libGDX7 but to the rendering on
modern GPUs in general.

Texture atlases could also help to reduce memory consumption in some cases.
For example, some mobile GPUs constraint the dimensions of textures to be
in powers of two. When this is the case, then storing multiple textures in one
texture atlas with dimensions that are powers of two can result in lower memory
consumption (per single sub-texture) compared to storing each of the sub-texture
in an individual texture, because individual sub-textures will typically have to be
padded with transparent pixels in order to have dimensions that are powers of
two. An illustration of the aforementioned case is shown in Figure 1.5.

padded width: 128

he
ig

ht
: 8

5

width: 85

pa
dd

ed
 h

ei
gh

t:
 1

28

width: 255, padded width: 256

he
ig

ht
: 2

55
, p

ad
de

d
he

ig
ht

: 2
56

1 pixel

1
 p

ix
el

Figure 1.5: An example of memory wasting caused by padding of textures with
dimensions that are not in the powers of two, together with an illustration of how
texture atlases mitigate this issue.

On the left of the Figure 1.5 there is a single texture of size 85x85 pixels that
is packed into a single texture atlas with a size of 128x128 pixels, resulting in a
waste of 9159 pixels. On the right of this figure, there are 9 textures with same
size—85x85 pixels—that are packed together into a single texture atlas with a
size of 256x256 pixels, resulting in a total waste of 511 pixels and 57 pixels wasted
per single sub-texture.

2D Animations

Texture atlases are frequently used to store frames of 2D animations, for example,
an animation of a movement of some game character. The 2D animations con-
sist of so-called animation frames—views of animated objects, or more generally,
views of an animated scene—which are rendered one by one in a given order at

7Actually, in libGDX this issue is slightly mitigated thanks to use of the TextureBatch that
allows at least a sequence of Sprites with the same texture to be rendered in a single draw
call.

11

set intervals, yielding the animation. Consider an animation of game character
with 2 animation frames shown in the Figure 1.6.

Figure 1.6: A part of texture atlas containing animation frames for charac-
ter movement animation. The textures used in the images are taken from:
OpenGameArt [8] where it is published under Public Domain (CC0) license.

The texture atlas in Figure 1.6 contains 2 sub-textures that are representing
individual key frames of the character movement animation. When both sub-
textures are alternately rendered, the game character will appear like it is moving
to the right.

Sometimes, the game frameworks provide special support for working with
animations, for example, they may provide a convenient way to load and play
animations. Figure 4 shows an example of loading an animation from a texture
atlas that is shown in 1.6.

1 @Override
2 public void create () {
3 ...
4 anim = new Animation<TextureRegion>(1.0f / atlas.getRegions().length,
5 atlas.findRegions("walk"),
6 Animation.PlayMode.LOOP);
7 }
8 @Override
9 public void render () {

10 ...
11 animTime += Gdx.graphics.getDeltaTime(); //sum elapsed animation time
12 //obtain animation frame corresponding to elapsed animation time
13 currentFrame = anim.getKeyFrame(animTime);
14 batch.begin();
15 batch.draw(currFrame, 0, 0); //draw the current frame at position 0,0
16 batch.end();
17 }

Listing 4: Code example for animation rendering, illustrating the libGDX’s spe-
cial support for animations.

In the create method shown in the Listing 4, an instance of Animation class is

12

https://opengameart.org/content/platformer-characters-1-5-characters

created specifying the frame duration, regions representing the animation frames
and the looping play mode. In this case, the frame duration is set to 0.5 seconds
(because there are 2 regions for a walk) and animation mode is LOOP, meaning
that the animation will be played over and over again. Notice that the regions
(animation frames) are obtained by calling atlas.findRegions("walk"), this
works because of the index attribute in .atlas format that was described in
Section 1.1.1. In the render method an animation time is calculated then the
TextureRegion corresponding to this time is obtained and rendered at position
0,0.

13

1.2 Packing tools
Currently, there are several texture packing tools available, each of them pos-
sessing a different set of additional features. But as already mentioned at the
beginning of this chapter, the problem with the current state is that packing
tools are usually either paid—with the only limited free version or with no free
version at all—or they offer only the ability to pack the textures together, with-
out any additional features. One of the best-known and smartest tools available
are TexturePacker8 and Zwoptex 9. Both TexturePacker and Zwoptex are great
tools with a lot of smart features, but that comes with a price—Zwoptex costs
about $10 per user license and TexturePacker is even more expensive and costs
about $39.99 for a year license or $99.99 for a lifetime license. This leads to
requirement R1: Our application should be free to use.

There are also several packing tools that are free to use, or better yet, open
source. For example, there is an open source tool called SpriteMapper 10, which
unfortunately supports only the packing of texture together with a very limited
set of additional features. This leads to requirement R2: Our application
should provide several additional features for image processing. Now,
some selected packing tools are going to be introduced, their pros & cons described
and finally they will be compared based on the following characteristics:

1. Platforms where the tool is available
2. Additional tools for image processing (image processors)
3. Additional features that the tool offers
4. Supported metadata formats and whether metadata in custom format could

be exported
5. Available packing algorithms
6. Extensibility of packing algorithms
7. Extensibility of image processors
8. GUI11

9. CLI12

10. Price

Before giving the introduction of the selected packing tools, some of the afore-
mentioned characteristics will be described, beginning with an explanation of the
concept of an image processor. The image processor is an abstraction that can
be thought of as a function that takes a texture as the input a returns a modified
copy of the texture as the output. The image processing tools that are frequently
present in the packing tools and that will be used to compare the packing tools
later in this section, are:

• Trim
• Crop
• Extrude
8More information about TexturePacker can be found at its website [9]
9More information about Zwoptex can be found at Zwoptex’s website [10]

10More information about SpriteMapper can be found at its website [11]
11Graphical User Interface
12Command Line Interface

14

https://www.codeandweb.com/texturepacker
https://zwopple.com/zwoptex/
http://opensource.cego.dk/spritemapper/

• Padding
• Color type change
• Heuristic mask
• Common divisor

The description of each image processing tool will be accompanied by a figure
illustrating the effect of the tool. Each figure will show the input texture on its
left and the output texture on its right. All of the textures in the remainder of
this section are taken from: OpenGameArt [1] where they are published under
Public Domain (CC0) license.

Trim removes transparent pixels from the border of a texture, which reduces
the size of the texture. With metadata that allows storing information about
trimming and with additional support from the target game framework, the size
of the original texture may be preserved and the framework will read the meta-
data and restore the transparent pixels appropriately when the texture will be
rendered.

Crop permanently removes transparent pixels from the border of texture,
meaning that unlike in the case of trimming, the removed pixels will not be
restored when the texture will be rendered. The Figure 1.7 shows the process of
trimming/cropping.

Figure 1.7: Crop / Trim texture.

Extrude replicates the pixels from the border of texture n times, in order to
reduce flickering in cases where textures are rendered close to each other. The
process of extruding is depicted in the Figure 1.8.

Figure 1.8: Illustration of extrude on a texture.

Padding exists in several variants, but in this thesis, only the following vari-
ants will be considered: Border Padding is a space between the bounding box of
the textures in the texture atlas and texture atlas’s border. Shape Padding is a
space between the textures in the texture atlas. Inner Padding is a space that

15

https://opengameart.org/content/platformer-art-complete-pack-often-updated

is added around each texture in the texture atlas. The example of adding inner
padding to a texture is given in Figure 1.9.

Similarly to trimming, with metadata that supports padding and width ad-
ditional support from the target game framework, the textures will be read from
the texture atlas without the padding.

It should be mentioned that from these three variants, only the Inner Padding
can be considered as an image processing tool because for the other two, some
additional support from the packing tool is needed.

Figure 1.9: Adding padding to a texture.

Color type change changes the format of pixels in order to reduce mem-
ory consumption. Different packing tools offer different sets of supported pixel
formats, for example: RGBA88888, RGBA4444, Gray8, etc. The example of
changing color type to 8-bit gray-scale is shown in Figure 1.10.

Figure 1.10: Change texture’s color type to Gray8.

Heuristic mask allows to remove background from the texture, i.e. to make
the background of the texture transparent. However, this tool is typically re-
stricted to single color backgrounds only. The use of a heuristic mask to remove
the background from the texture is shown in Figure 1.11.

Figure 1.11: Remove texture’s background using heuristic mask.

Common divisor extends the size of texture by adding transparent pixels,
such that the size of the texture becomes divisible by a given number. This might
be used to force the identical size of the textures.

16

The four tools that were selected to be described in detail and then com-
pared, include three previously mentioned packing tools: TexturePacker, Zwop-
tex, SpriteMapper and another tool called GameDevUtils.com 13. With an intent
to provide a more diverse comparison of the selected packing tools, the selection
was done in such a way that two tools are commercial and the other two are open
source.

Characteristics 6 (Extensibility of packing algorithms) & 7 (Extensibility of
image processors) means whether the tool provides a convenient way to be ex-
tended, for example, by using plugins. Without this definition, every open source
tool would satisfy these two characteristics, because everyone could obtain the
source code of the open source tool and modify it in any way.

TexturePacker

TexturePacker can be considered as the most advanced, feature-rich packing tool
that is currently available. Unfortunately, this tool is commercial and although
there exists a free version, it has only a limited set of features when compared
to the PRO version. For example, the PRO version has the following features:
MaxRects packing algorithm, Trimming, command line interface, packing of mul-
tiple sprites at once, ability to export metadata in a custom format, etc., but
none of them is available in the free version. TexturePacker offers both GUI and
CLI and whereas the GUI is available in both free and PRO version, the CLI is
available only in the PRO version. The GUI of TexturePacker is shown in Figure
1.12.

Figure 1.12: GUI of TexturePacker. The screenshot is taken from free version of
TexturePacker(v 4.6.3).

13GameDevUtils texture packing tool can be found at its website [12]

17

http://gamedevutils.com/

TexturePacker has the following aspects:

Positive aspects

• Tools for memory consumption reduction
• Great documentation and tutorials
• Maintained and often updated
• Features enhancing productivity
• A lot of frameworks supported
• Multi-OS support
• Animation preview
• Ability to export metadata in a custom format

Negative aspects

• Only two packing algorithms
• Paid, free version is rather limited
• Not extensible by new image processors or packing algorithms

The non-extensibility of the TexturePacker can be seen as quite a large dis-
advantage, because the game developer may wish to repeatedly process all of
the textures in some way that is not allowed by TexturePacker hereby forcing
the developer to use separate tools for that. This issue would be eliminated
when the developer was allowed to extend the TexturePacker by the given tool
he needs. This problem leads to requirement R3: Our application should
be extensible by allowing the users of the application to create their
own:

• Packing algorithms
• Metadata exportes
• Image processors

18

Zwoptex

Zwoptex is another commercial packing tool that has features similar to Tex-
turePacker, however, its features are usually not so customizable and there are
not so many of them. For example, Zwoptex allows to export metadata in a
custom format, but the number of formats that are included in the application
out-of-the-box is much lower than in TexturePacker. As with TexturePacker,
Zwoptex offers both GUI and CLI. The GUI of Zwoptex is shown in Figure 1.13.

Figure 1.13: GUI of Zwoptex. The screenshot is taken from Zwoptex’s website
[10].

Zwoptex has the following aspects:

Positive aspects

• Cheaper than TexturePacker
• Ability to export metadata in custom format

Negative aspects

• Supports only macOS
• Only two packing algorithms
• Not extensible by new image processors or packing algorithms
• Paid, free version adds a watermark
• Rarely updated

19

https://zwopple.com/zwoptex/

SpriteMapper

SpriteMapper is an open source tool written in Java, that can be controlled either
via command line interface or using Ant tasks. The CLI of SpriteMapper is shown
in Figure 1.14.

Figure 1.14: Using SpriteMapper via its CLI. The screenshot is taken from
SpriteMapper’s website [11].

SpriteMapper has the following aspects:

Positive aspects

• Several packing algorithms
• Exports metadata in Zwoptex2 format
• Provides Ant task
• Open source
• Multi-platform

Negative aspects

• No GUI
• Can export metadata in Zwoptex2 format only
• Not extensible by new image processors or packing algorithms.
• Besides trimming, there are no image processors
• Not updated since 2013

20

http://opensource.cego.dk/spritemapper/doc.html

GameDevUtils.com

The website GameDevUtils.com offers (besides other tools) texture packing tool,
that is written in vanilla HTML5 & JavaScript and runs in the browser. The
GameDevUtils.com packing tool is shown in Figure 1.15. The GameDevUtils.com

Figure 1.15: GUI of GameDevUtils.com

packer has the following aspects:

Positive aspects

• Runs in the browser, so it can be used from multiple platforms
• Open source
• Several image processors

Negative aspects

• Does not support any framework out-of-box, exported metadata is in their
custom XML/JSON/CSS format.

• No additional support for extensibility
• No documentation

To conclude this section, a detailed comparison of the four selected packing
tools is shown in Table 1.1.

21

http://www.gamedevutils.com
http://www.gamedevutils.com

TexturePacker Zwoptex SpriteMapper GameDevU-
tils.com

Available
platforms

Windows, macOS,
Linux macOS everywhere — written

in Java
everywhere — runs in

web browser

Image
processors

Trim, Crop, Extrude,
Padding, Color type

change, Heuristic
mask, Common

divisor

Trim, Extrude,
Padding Trim Trim, Padding,

Heuristic mask

Additional
features Alias creation, Scaling Alias creation - Alias creation

Supported
metadata
formats

Allows custom
format, out-of-box

support for metadata
of a lot of frameworks

Allows custom
format, out-of-box

support for metadata
of several frameworks

same as Zwoptex,
open source license

allows for
extensibility

XML, JSON, CSS,
open source license

allows for
extensibility

Packing
algorithms

MaxRects, Basic
(unknown)

Complex (unknown),
Basic (that does not
try to avoid waste)

MaxRects, Guillotine,
Shelf MaxRects, Shelf

Extensible
packing

algorithms
✗ ✗

no special support,
but is open source

no special support,
but is open source

Extensible
image

processors
✗ ✗

no special support,
but is open source

no special support,
but is open source

GUI ✓ ✓ ✗ ✓

CLI ✓ ✓ ✓ ✗

Price
$39.99 per year, or
$99.99 for a lifetime

license

$10 for a lifetime
license free (open source) free (open source)

Offers Free
Version ✓ ✓ ✓ ✓

Table 1.1: Feature comparison of selected packing tools

As can be seen in Table 1.1 none of the tools can be extended by new pack-
ing algorithms or image processors. Notice that of all the compared tools, the
SpriteMapper offers the most packing algorithms, namely: MaxRects, Guillotine,
Shelf and that most of the tools have MaxRects algorithm included. All of the
mentioned algorithms will be described in Chapter 2.

The compared tools also differ in the number of metadata formats that they
are supporting out-of-the-box. This criterion is dominated by TexturePacker
that supports more than 50 metadata formats for various game frameworks. On
the other way, GameDevUtils.com does not support metadata frameworks of any
game framework, but instead, it only supports its own metadata formats in XML,
JSON, and CSS that the game developer has to parse manually.

Notice, that the most common image processor is Trim as it is available in all
four packing tools. Alias creation feature is also quite common because except
for SpriteMapper, all the compared tools have it.

The conclusion is that both commercial tools: TexturePacker and Zwoptex,
offer more additional features, image processors and generally have more function-
ality than the two open source tools: SpriteMapper and GameDevUtil.com. The
only exception to this observation is the number of packing algorithms that the
tools offer, here wins the SpriteMapper with 3 algorithms, instead of 2 that the
other tools are offering. The essential observation is, that none of the compared
tools allows for extensibility of packing algorithms or image processors.

22

1.3 Goals
After exploring the available packing tools and researching the situation in the
area, we have come up with the following list of goals, that we should satisfy with
the implementation of our own packing tool:

1. Create a packing tool with included GUI

2. Implement Trim, Crop, Extrude, Color type change, Heuristic mask

3. Implement Alias creation

4. Provide two sample metadata exporters, first of them targeting libGDX and
the second targeting Unity.

5. Provide basic toolset (in a form of the dynamic library) that could be reused
for future plugin development

6. Satisfy all of the requirements (R1 to R3) previously mentioned in this
section

23

24

2. Theoretical Background
This chapter will provide a more theoretical look at the texture packing and
its relation to a set of optimization problems that are called packing problems.
Although this section is going to be a little bit more theoretical, it is not an intent
to present neither rigorous definitions nor mathematical proofs, because it would
only make the text more difficult to read. Readers that are already familiar with
concepts of 2D packing problems may skip this chapter (except for the problem
definition in Section 2.1.2 that is important and partially specific to this thesis)
and continue with Chapter 3.

2.1 Packing problems
The terminology in this area is very rich and sometimes may be confusing because
many identical packing problems are called by different names, and conversely,
many different packing problems are called by the same name. In order to avoid
misinterpretation caused by ambiguities in the terminology, a concrete terminol-
ogy that will be used in this thesis should be introduced. For this reason, the
Section 2.1.1 first introduces the typology introduced by Dyckhoff [13]—because
even though this typology is not enough in general (as mentioned by G. Wäscher,
H. Haußner and H. Schumann in [14]) it is enough for this thesis—and then
presents a terminology used in this thesis. In order to give the unambiguous
meaning of the terms, every term introduced in the Section 2.1.1 that will corre-
spond to any packing problem will be categorized into a corresponding category
from the Dyckhoff’s typology. It is very important to mention, that it can be
shown, that bin packing and its related problems are NP-hard. This can be
proved by reduction from a vertex cover problem to bin packing (as stated in
Combinatorial Optimization notes [15]).

2.1.1 Dyckhoff’s typology
H. Dyckhoff published his paper called A typology of cutting and packing problems
in 1990, with an effort to further develop a “consistent and systematic approach
for a comprehensive typology integrating the various kinds of problems” [13].
Purpose of the paper was to unify different notions used in the literature, however,
this attempt has not succeeded because his typology was not always accepted
as widely as was desirable (the fact that he had introduced abbreviations of
German words in his coding scheme probably also contributed to this). Dyckhoff
categorizes cutting and packing problems into categories, using the following four
criteria [13]:

1. Dimensionality

(1) One-dimensional
(2) Two-dimensional
(3) Three-dimensional
(N) N -dimensional, where N > 3

25

2. Kind of assignment

(B) All objects and selection of items
(V) A selection of objects and all items

3. Assortment of large objects1

(O) One object
(I) Identical figures
(D) Different figures

4. Assortment of small items2

(F) Few items of different figures
(M) Many items of many different figures
(R) Many items of relatively few different figures
(C) Congruent figures

The next Section 2.1.2 defines the packing problem considered in this thesis
and the following Sections 2.1.3, 2.1.4, 2.1.5 describe packing problems that are
relevant to this thesis and which will be referred to. It should be noted that these
packing problems come in several variants which differ in the following factors:

1. Whether the rectangles could be rotated

2. Whether the packing has to be orthogonal

3. Whether the packing has to be guillotinable3

4. Whether the rectangles are known in advance or not

There are more factors than these that just were mentioned, but they are not
important for this thesis and therefore they will be omitted. More information
about these characteristics could be found in Algorithms for Two-Dimensional
Bin Packing and Assignment Problems [17].

2.1.2 Problem definition
First, basic term called geometric condition should be defined. Geometric condi-
tion mandates the following two statements to hold:

1. All small items lie within large objects

2. Small items do not overlap with each other
1Large objects are containers/empty space.
2Small items are items that are assigned to containers—i.e., the items that occupy empty

space.
3Definition of guillotinable packing can be found in A Thousand Ways to Pack the Bin - A

Practical Approach to Two-Dimensional Rectangle Bin Packing [16].

26

This thesis has to deal with a packing of textures and as will be explained in
Section 2.1.5, the texture packing is closely related to rectangle packing and to
other packing problems that will be mentioned in Sections 2.1.3 and 2.1.4. This
close relation and the fact that algorithms for solving these packing problems
will eventually be used to pack the textures makes it is reasonable to only deal
with variants of the packing problems that are having certain properties. These
properties were selected in such a way, that the solution of the packing problem
satisfying given properties could be reconstructed (as described in Section 2.3)
into a texture atlas. For example, without mandating the property that none
of the rectangles could overlap, it would cause that textures in the texture atlas
could possibly overlap, which is naturally undesirable. Some of the properties
allow producing better packing (packings with the smaller area) without losing
the ability to reconstruct the texture atlas. For example, by allowing rotations
of the rectangles, the texture could be potentially stored as rotated, but it does
not make any problem when reconstructing a texture atlas or when working with
the reconstructed texture atlas. The following properties are assumed:

1. Dimensionality d = 2

2. All items are assigned into a selection of objects

3. All items are known in advance (offline algorithm)

4. Many items of many different figures (rectangles of different sizes)

5. Orthogonal packing (i.e., only rotations by 90 degrees are allowed)

6. Geometric condition must hold

Objective: There are several possible objectives, but in this thesis either the
wasted space will be minimized or the area of the packing will be minimized.

27

2.1.3 Two-dimensional rectangle bin packing
In this problem, a sequence of n rectangles is given, together with a sequence of
m identical bins with sizes W × H, and the goal is to pack the rectangles into a
minimum number of bins k so that the geometric condition and other statements
from 2.1.2 hold. A more detailed description of this problem can be found in Lodi
[17]. From now on, two-dimensional rectangle bin packing will be referred to as
a “bin packing”. The illustration of bin packing is shown in Figure 2.1.

fixed width W

fix
ed

 h
ei

gh
t

H

B1

...

fixed width W
fix

ed
 h

ei
gh

t
H

Bk

fixed width W

fix
ed

 h
ei

gh
t

H

Bm

...fully packed bins empty bins

Figure 2.1: Illustration of bin packing

Figure 2.1 shows a solution to bin packing with m bins: B1, ..., Bm where
first k − 1 bins B1, ..., Bk−1 are fully pack and k-th bin Bk is half-packed. The
remaining m − k bins: Bk+1, ..., Bm are empty. The variation of this problem
that will be considered for this thesis belongs to type 2/V/I/M of Dyckhoff’s
typology.

2.1.4 Two-dimensional strip packing problem
In this problem, a sequence of n rectangles is given and the goal is to pack
the rectangles into a strip of fixed width W and unlimited height, such that the
height H is minimized and the packing satisfies the geometric condition and other
statements from 2.1.2. A more detailed description of this problem can be found
in A Survey On Heuristics For The Two-Dimensional Rectangular Strip Packing
Problem [18]. From now on, two-dimensional strip packing will be referred to as
a “strip packing”. The illustration of strip packing with a minimal height of H
is shown in Figure 2.2.

fixed width W

un
lim

it
ed

 h
ei

gh
t

m
in

im
al

 h
ei

gh
t

H

Figure 2.2: Illustration of strip packing

28

http://www.scielo.br/pdf/pope/v36n2/1678-5142-pope-36-02-00197.pdf
http://www.scielo.br/pdf/pope/v36n2/1678-5142-pope-36-02-00197.pdf

The variation of this problem that will be considered in this thesis belongs to
type 2/V/O/M of Dyckhoff’s typology. For more details about this problem, see
Dyckhoff [13] and Lodi [17].

2.1.5 Rectangle packing problem
In this problem, a sequence of n rectangles is given and the goal is to pack the
rectangles into a single larger rectangle of unknown size, such that the area W ×H
of an enclosing rectangle (with size W × H) is minimized and that the geometric
condition together with other statements from 2.1.2 hold. Stated in other words:
the goal is to find an enclosing rectangle of a minimum area that will contain all
of the n rectangles and that will satisfy the statements from 2.1.2. The variation
of this problem that will be used in this thesis allows (but does not mandate) the
rectangles in the input sequence of n rectangle to contain rectangles of different
sizes. The aforementioned variation of this problem belongs to type 2/V/I/M
of Dyckhoff’s typology—notice that this is exactly the same type of Dyckhoff’s
typology as for bin packing problem and although the two problems are not the
same, in the Chapter 3 will be an explanation that rectangle packing can be
reduced to the bin packing (and also to strip packing). More information about
(optimal) rectangle packing can be found in Optimal rectangle packing: Initial
results [19]. The illustration of rectangle packing is shown in Figure 2.3, where 6
rectangles are packed into a single rectangle of size W × H.

unlimited width

un
lim

it
ed

 h
ei

gh
t

minimum bounding box width W

m
in

im
um

 b
ou

nd
in

g
bo

x
he

ig
ht
H

Figure 2.3: Illustration of rectangle packing

Relation to Texture Packing

Now, when the rectangle packing has been defined, it should be mentioned how
the texture packing relates to general bin packing problems. A problem of packing
the textures together could be solved by replacing each texture with its corre-
sponding rectangle—i.e, with the rectangle that has the same dimensions as the
texture—and solving the rectangle packing problem on these rectangles. A solu-
tion to the rectangle packing problem then has to be reconstructed to a texture
atlas. In order to be able to perform such a reconstruction, each rectangle should
remember to which texture it corresponds and the reconstruction will work in
such a way, that each rectangle inside the solution to rectangle packing problem

29

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.4320&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.4320&rep=rep1&type=pdf
https://pdfs.semanticscholar.org/90a5/de6349bed23e94f23985867f79c87a68e4a6.pdf
https://pdfs.semanticscholar.org/90a5/de6349bed23e94f23985867f79c87a68e4a6.pdf

will be replaced back by the texture it corresponds to (possibly rotating the tex-
ture, if the rectangle is rotated in the rectangle packing problem solution). The
illustration of this process is shown in Figure 2.4.

t1
t2

t3

t4

r1
r2

r3

r4

get rectangles

solve rectangle
packing problem

r1

r2

r3 r4

reconstruct
the texture atlas

t1

t2

t4 t3

Figure 2.4: Illustration of converting a texture packing problem to rectangle
packing problem

On the left of the Figure 2.4 there are 4 textures t1, t2, t3, t4 that are first
replaced by their corresponding rectangles r1, r2, r3, r4 respectively, as can be
seen on the bottom of the Figure 2.4. These corresponding rectangles are then
used as the input for rectangle packing problem whose result can be seen on the
bottom-right of this figure. Finally, the result of the rectangle packing problem
is reconstructed into the texture atlas that can be seen on the right of Figure 2.4.

30

2.2 Solution approaches
As already stated in the previous section, packing problems—at least those that
were mentioned above, in Sections 2.1.3, 2.1.4 and 2.3—are NP-hard [15], there-
fore with an increasing number of rectangles, finding an optimal solution becomes
impractical. Rather than trying to find an optimal solution, heuristics and meta-
heuristics are used to find a (possibly) non-optimal solutions. The solutions found
by heuristic and meta-heuristic algorithms do not have to be optimal (and usually
are not), but the results are usually good enough in practice and can be found in
a reasonable amount of time.

2.2.1 Heuristic algorithms
Heuristic algorithms are algorithms which—unlike exact methods that find opti-
mal solutions—are used to find approximate solutions for a given problem, there-
fore they are dependent on a given problem (as stated in Metaheuristics From
Design To Implementation [20]). Another property of heuristic algorithms is that
they are generally not able to detect whether the found solution is optimal, or
how far (measured by some metric function) from the optimal solution it is. The
heuristic algorithms that are commonly used for the packing problems are the
following:

• Bottom-left algorithm (BL)
• Bottom left-fill algorithm (BLF)
• Improved bottom-left algorithm (improved BL)
• Shelf algorithm
• Guillotine algorithm
• Maximal rectangles algorithm
• Skyline algorithm

There exist several other heuristic algorithms for finding solutions to packing
problems that will not be described in this section. Instead of explaining all
the algorithms, only the algorithms that are commonly used (for example, the
Maximal rectangles algorithm is very frequently used in texture packing tools, as
was shown in Section 1.2) will be described.

Bottom-left algorithm

The essential idea of this algorithm is to place each rectangle at a lowest and
leftmost position in the larger (bounding) rectangle. Consider an input sequence
of n rectangles r1, ..., rn. At i-th step the algorithm takes a rectangle ri, sets its
starting position to the top-right corner of the bounding rectangle and then tries
to place ri at the lowest and leftmost position inside the bounding rectangle. The
placing is done by alternately moving the ri down and to the left. During the
placement of ri, each movement is extended for as long as possible, i.e., when the
rectangle is moved to the left, it is moved to the left as long as possible (until
it touches either the edge of the bounding rectangle or any other rectangle that
was already placed). When the placement succeeds (i.e., when there is a space
to place ri into the bounding rectangle) next rectangle ri+1 is taken and this
process repeats by trying to place the rectangle ri+1. If the placement of ri has

31

failed, then this sequence of rectangles cannot be packed into a given bounding
rectangle (this can only happen when the bounding rectangle has fixed size). This
algorithm was proposed by Baker et al. [21] in 1980 and was proven to have a
time complexity O(n2) [21].

Bottom-left-fill algorithm

The bottom-left-fill algorithm is similar to BL algorithm in a sense that it also
tries to place the currently selected rectangle at the lowest and leftmost position
in the bounding rectangle. But unlike BL algorithm, that does not allow to place
into so-called ”holes” (spaces that are surrounded by the rectangles from all its
sides as illustrated in Figure 2.5), this algorithm allows to place rectangles into
these holes. The ability to place rectangles into holes allows to create packing
results with a smaller area, but it comes with a price of worse time complexity.
This algorithm was proposed by Chazelle in 1983 [22] and it is proven to have a
time complexity of O(n3).

hole

Figure 2.5: Illustration of a ”hole” in BL-fill algorithm.

Improved bottom-left algorithm

The improved BL algorithm is same as BL algorithm except that it prefers to
move the rectangles downwards during their placement and when the currently
placed rectangle cannot be moved further to the bottom, it is moved to the left,
but only as long as needed to start moving it downwards again. This algorithm
was proposed by Liu and Tang in 1999 [23] and it is proven to have a time
complexity of O(n2).

Shelf algorithms

The algorithms in this group of algorithms work in a way, that the rectangles are
placed onto so-called ”levels” inside the bounding rectangle. Levels are simply
sub-rectangles of the bounding rectangle that have the same width W as the
bounding rectangle, but a different (except for the case when there is only a
single level) height. Suppose a sequence of n rectangles r1, ..., rn that should be
packed and that for any rectangle ri its width and height is denoted by w(ri),
h(ri) respectively. Algorithm starts by creating a first level L1 with height equal
to min(w(ri), h(ri)) at the bottom of the bounding rectangle. At each step of the
algorithm the topmost level Lj is said to be ”open”, while all the levels below Lj

are said to be ”closed” and the distinction between these two is that the height of

32

the open level can be increased (because there is only an empty space above the
topmost level) but the height of closed levels cannot be changed. When packing
a rectangle ri at the i-th step of the algorithm, there are two cases: First, if ri

fits into a Lj then it is simply placed there (the orientation of the ri is selected
so that the height of Lj is utilized as much as possible), rectangle ri+1 is selected
and this process repeats by trying to place ri+1. Second, if ri does not fit into
Lj, new (open) level Lj+1 with a height equal to the min(w(ri), h(ri)) is created
above the level Lj. The level Lj is closed, ri is placed there (possibly rotated
by 90 degrees, if h(ri) > w(ri)) then ri+1 is selected and the process repeats by
trying to place ri+1. The i-th step of this algorithm is illustrated in Figure 2.6.

. . .

r1

r2
r3

r4 r5 r6 r7 r8

ri

Lj-1

L1

L2

Lj

Figure 2.6: Illustration of placing the rectangle ri.

The figure 2.6 illustrates the i-th step of a Shelf algorithm, that is, the step
when rectangle ri is being placed. Notice that all the levels below the current
(open) level Lj are closed. This figure illustrates the variation of a Shelf algo-
rithm that does not even allow to place rectangles on closed levels and where the
rectangles are being placed only at the open level Lj (from the left to right).

These algorithms are one of the simplest packing algorithms and they produce
worse packing results than all the previously mentioned algorithms. However,
they are not useless, because they could be used to address specific practical
problems that require the packing to be guillotinable. The algorithms in this
group differ by the rules that are used when selecting the best level where a cur-
rently placed rectangle should be moved. Another difference between algorithms
inside this group is the way they use the ability to increase the height of the open
level.

Guillotine algorithms

Guillotine algorithms work in a slightly different way than Shelf algorithms or all
the BL algorithm variants that were mentioned earlier. Instead of tracking the

33

space that is filled by rectangles, these algorithms track the free space. Suppose
a sequence of n rectangles r1, ..., rn. At i-th step, a rectangle ri is going to be
placed and it is done by selecting a free rectangle fj from a set of free rectangles
F = {f1, . . . , fk}. The fj has to be feasible (i.e., the ri has to fit into fj) otherwise
a different free rectangle has to be chosen. When there is no feasible free rectan-
gle, the input sequence of rectangles cannot be packed into the given bounding
rectangle. Initially, there is only a single free rectangle and that is the whole
bounding rectangle—this suggests that the size of the bounding rectangle must
be fixed and known in advance, but it actually works even for bounding rectangle
with unlimited size, because such a rectangle can be thought of as a rectangle
with dimensions ∞ × ∞. After successfully placing a rectangle ri into the free
rectangle fj, the fj has to be adjusted—because a portion of it is now occupied
by ri. The adjustment is done by splitting the fi \ri into two free parts—that will
be called fj1 , fj2—by cutting it with either x-axis or y-axis. After the adjustment
has been done, fi is removed from F and fj1 together with fj2 are added into
F . Then next rectangle ri+1 is selected and the process is repeated by trying to
place ri+1. Figure 2.7 shows a possible splits of free rectangle fj, after placing a
rectangle ri inside it. The algorithms in this group differ by the rules that are
used when selecting the split axis, free rectangle and the position where the ri

will be placed inside fi.

fj
ri

x-axis

y-
ax

is

split by x-axissplit by y-axis
fj1

fj2 fj2

fj1

Figure 2.7: Illustration of splitting the free rectangle fj with a x-axis and y-axis
separately.

The left side of Figure 2.7 shows a result of splitting the free rectangle fj by
cutting it with x-axis and the right side of Figure 2.7 shows the result of splitting
the same free rectangle, but now cutting it by y-axis instead of the x-axis.

Maximal rectangles algorithms

Maximal rectangles algorithms work in a similar way to Guillotine algorithms,
but instead of splitting only by a single axis, the split is done by both axes as

34

can be seen in Figure 2.8. Performing both splits at once gives two (assuming
that the ri is placed into a corner of a free rectangle, otherwise, it would be four
free rectangles) free rectangles fj1 , fj2 that apparently does not have an empty
intersection. Because the free rectangles inside F are not disjoint anymore, they
have to be adjusted every time some rectangle ri is placed into a free rectangle fj

by updating all the free rectangles fk ∈ F, fk ̸= fj. The update of the rectangle
fk is done by splitting the fk into at most four rectangles—one to the left of
ri, one to the right of ri, one above ri and finally, one below ri. Because this
process may be more difficult to understand, it is illustrated in Figure 2.9. After
splitting rk into four rectangles (call them a1, a2, a3, a4) the set of free rectangles
F is updated to F = (F \rk)∪{a1, a2, a3, a4}. The final step of this whole update
process is to remove all free rectangles fi for which there exist a free rectangle
fj, fi ̸= fj such that fj contains fi (stated in other words, we remove all the free
rectangles that are fully contained within another free rectangle).

fj
ri

x-axis
y-

ax
is

fj2fj1

split by both axes

Figure 2.8: Illustration of splitting the free rectangle fj with both x-axis and
y-axis at once.

The Figure 2.8 shows a splitting of free rectangle fj into two free rectangles
fj1 and fj2 be performing the split by both axes at the same time.

fk

fj fk { {

{
{ a1

a2

a3

a4ri
ri

Figure 2.9: Illustration of updating the free rectangle fk.

Figure 2.9 illustrates the splitting of the free rectangle fk—rectangle that

35

has a non-empty intersection with a free rectangle fj that was selected as a
free rectangle where ri will be placed. This update results in four rectangles:
a1, a2, a3, a4 that will then replace the fj inside a set of free rectangles F .

The algorithms in this group differ in a similar way the Guillotine algorithms
differ among themselves.

Skyline algorithms

Instead of maintaining a list of all free rectangles F like Maximal rectangles algo-
rithms do, Skyline algorithms maintain only a so-called ”skyline” (or sometimes
called ”envelope”, which is probably more intuitive, so it will be used here). The
envelope is a sequence of lines (these lines are paraxial line segments, i.e. they are
either vertical or horizontal), that separates already placed rectangles from the
(usable) free space, that is, there is only a single ”chunk” of free space. The free
space inside this chunk satisfies a condition that it is either above some already
placed rectangle rj or to the right of rj. The illustration of this idea is depicted in
Figure 2.10. When placing a rectangle ri, it can be placed only on the envelope
and after it is placed, the envelope has to be updated. The question is, where
the rectangle ri should be placed on the envelope. Different algorithms from this
group of algorithms answer this question differently, for example, some algorithms
use a notion of so-called ”feasible position” that are the positions where the slope
of the envelope changes from vertical to horizontal. This approach is used, for
example, by L. Wei et al. [24].

wasted space

wa
st
ed

 sp
ac

e

empty space

Figure 2.10: Illustration of the notion of envelope together with feasible positions4

Figure 2.10 shows an envelope (red dashed line) and 5 feasible positions (green
dots). The free area is the white area above the envelope. Notice that this al-
gorithm tends to create a wasted area, that is, the area below the envelope,
because when a rectangle ri is placed, only the points on skyline are considered
(in other words, every rectangle ri can be placed only at such a position that all

4Feasible positions in the sense they are used by L. Wei et al. [24].

36

the rectangles that were already placed are either to the left or below the placed
rectangle ri). Considering only points on the envelope dramatically simplify the
check whether a rectangle can be placed on a given position because it simply
suffices to check whether the placed rectangle oversteps the border of the bound-
ing rectangle or not. Skyline algorithms generally produce worse packing results
(because of the reason that the rectangles can only be placed on the envelope)
than Maximal rectangles algorithms, but they are faster.

Remark: Notice, that all of the previously mentioned algorithms depend on the
order of input rectangles. The dependence on the order of input rectangles is best
seen on BL algorithm, as illustrated in Figure 2.11.

Figure 2.11: Dependence of packing results from BL algorithm on the order of
input rectangles

On the left of Figure 2.11 there is a result of packing a sequence of n rectangles,
sorted in descending order by their height. The right side of Figure 2.11 shows a
result of packing the same sequence but this time, sorted in ascending order by
their width. Notice that the packing on the left is much better than the one on
the right.

2.2.2 Meta-heuristics
Meta-heuristics are general—i.e., unlike heuristics, they are not specific for a
particular problem—methods for searching the space of solutions (as stated in
[20]). Meta-heuristics that are commonly used for solving packing problems are
the following:

• Genetic algorithms

• Simulated annealing

• Tabu Search

The advantage of the aforementioned meta-heuristics is that when compared
to local search algorithms such as hill climbing, these meta-heuristics can escape
from local optima. The prevention of getting stuck in the local optima is usually
done by temporarily accepting a worse solution, for example, at each step, Tabu
Search allows to step into a worse state when no improving step is available. The

37

description of these meta-heuristics is out of the scope of this thesis, moreover,
the meta-heuristics are general methods that are not strictly linked to rectangle
packing problems, therefore it seems reasonable to omit their explanation here.
However, it should be mentioned, that when these meta-heuristics are used to
solve packing problems, the algorithms from Section 2.2.1 are frequently used
as a subprocedure when building the space of (temporary) solutions that the
meta-heuristic searches through. Description and additional information about
these meta-heuristics can be found for example in Metaheuristics From Design
To Implementation [20].

38

3. Implementation Analysis
This chapter analyses a possible decisions that have to be made when implement-
ing application for texture packing satisfying all the goals mentioned in Section 1.3
together with potential problems that could arise during the development of the
application. This chapter presents an overview of the application’s architecture
along with a description of how all the goals from Section 1.3 could be addressed,
as well as some possible problems that might arise during the development of
such an application, and provides a discussion about the possible ways how to
solve these problems. The application that we are implementing was named
PaunPacker1 so it will be referred to by using this name.

3.1 Goals revised
As was already mentioned in Chapter 2, the packing problems are proven to be
NP-hard so trying to find optimal solutions is not a good idea in the case of
texture packing application, because the PaunPacker should be reasonably fast,
otherwise the user would not be very happy if the packing of textures took 10
minutes or so to complete. The most time-consuming operation performed by
PaunPacker will be the packing of textures, therefore the packing of the textures
should be reasonably fast so it seems appropriate to use heuristic/meta-heuristic
algorithms for the packing. This decision is backed by the fact that it is not
absolutely necessary to produce optimal packing, instead, a certain loss in the
quality of the packing should be allowed in exchange for improved performance.
The decision to use heuristic and meta-heuristic algorithms, brings the following
question: Which algorithms from Chapter 2 should be implemented? To answer
this question, all of the algorithms from the list of heuristic algorithms that was
given in Section 2.2.1 should be inspected and matched against the goals that are
imposed on the PaunPacker. As a reminder, the list contains three variants of BL
algorithm, Shelf algorithm, Guillotine algorithm, Maximal rectangles algorithm,
and Skyline algorithm.

BL algorithms could be considered as the most fundamental packing algo-
rithms because a lot of advanced algorithms use some of the BL algorithm vari-
ants as a sub-routine, so this algorithm should definitely be included in the Paun-
Packer. The concrete variant of BL algorithm that should be implemented is not
so important, because each of them has certain benefits so there is not a to-
tally bad choice. Classic BL algorithm has a good time complexity and is quite
easy to implement. Improved BL offers the same time complexity and produces
packing results that have either better quality or the same quality. The BLF
produces better packing results but has worse time complexity. It was decided
to implement improved BL algorithm because it is used more frequently by other
algorithms (it should be noted that some authors even call this algorithm simply
BL algorithm) and it provides a great trade-off between performance and time
complexity.

1This name does not have any special meaning, it is only the author’s belief that giving the
application unique name is better than simply naming it ”Texture Packing Application”.

39

Shelf algorithms generally are not much useful for texture packing, mainly
because of the two following reasons:

1. They produce worse packing results than all the BL algorithms and even
though they have better time complexity, the time complexity of BL algo-
rithms is considered to be good enough.

2. They do not suit the case where the bounding rectangle has dimensions
∞ × ∞ very well.

The second reason should now be described in greater detail—the problem is,
that when the packing textures, the size of the bounding rectangle is unknown
(because the goal is to find a bounding rectangle with a minimal area) and the
Shelf algorithm assumes the bounding rectangle to have a fixed size (or at least
a fixed width). This assumption could be achieved by saying that the bounding
rectangle has dimensions ∞ × ∞, but the problem is, that the first level L1 will
have infinite width, therefore this shelf will (possibly) never get closed and all
the rectangles will be packed in this single level. Because of the aforementioned
reasons, none of the shelf algorithms will be implemented inside PaunPacker.

Maximal rectangles algorithm seems like a must-have, simply because almost
all well-known packing tools have an implementation of this algorithm, so omit-
ting this algorithm inside the PaunPacker would look like a huge disadvantage
when comparing the PaunPacker to other packing tools. Therefore this algorithm
will be included in the PaunPacker.

Although Guillotine algorithm is inferior to Maximal rectangles algorithm (in
terms of packing result quality), it is useful to implement it, because Maximal
rectangles algorithm could be considered as a slightly modified version of Guillo-
tine algorithm. Therefore by a nifty design that will allow Guillotine algorithm
to be parameterized in a certain way (the details about this parameterization
will be given later in this chapter). The Maximal rectangles algorithm then could
be obtained as a Guillotine algorithm with certain parameters. This seems like
a great approach to be taken because it also allows for code reuse so Guillotine
algorithm will also be included in PaunPacker.

To provide a more diverse set of algorithms and also to offer something that
other well-known packing tools do not offer, another two algorithms will be im-
plemented in PaunPacker. These algorithms are Skyline algorithm and genetic
algorithm. Because there is not only one Skyline algorithm but a whole group of
them, it should be mentioned that the variant of Skyline algorithm that will be
included in PaunPacker is based on the algorithm proposed by L. Wei et al [24].
The genetic algorithm should be implemented because it seems advantageous to
include any of meta-heuristic algorithms. The advantage comes from the fact
that if the meta-heuristic was implemented in a modular way, then the portion of
meta-heuristic that searches the spaces of (temporary) solutions will be reusable
in conjunction with other heuristic algorithms as a subroutine (for example, with
BL algorithm plugged in). The details about achieving this kind of modularity
will be addressed later in Section 4.3. Another advantage of including a meta-
heuristic algorithm is the fact that they are iterative, that is, when the process of
packing stops in the half, some solution is given on the output (this does not hold
for any of the heuristic algorithms that were mentioned in this thesis because

40

they would simply return no solution at all). A reason for choosing a genetic
algorithm and not any of the other two meta-heuristics are the following:

• It could be parameterized easily in several ways (cross over, mutation, pop-
ulation size, etc.)

• It could be easily parallelized (for example, multiple individuals could be
evaluated in parallel)

The genetic algorithm that was decided to be implemented is based on one of the
first algorithms utilizing the genetic approach (Jakobs 1996 [25]).

The thoughts presented in this section result in a new goal that should be
added to the goals listed in the Section 1.3. This new goal is to implement Im-
proved BL algorithm, Guillotine algorithm, Maximal rectangles algorithm, Sky-
line algorithm, and genetic algorithm. The implementations of these algorithms
should adhere to the requirements that are imposed on PaunPacker, specifically to
the requirement that algorithms should be extensible. Therefore the algorithms
should be implemented in a modular way that will allow parameterizing individ-
ual parts of each of the algorithms. This degree of modularity also supports the
goal to provide a toolset for creating new algorithms because the individual parts
of the algorithms could be reused for algorithm development.

3.2 Architecture overview

Before starting the whole development process, it is essential to create a detailed
design of the future application because it will save a lot of problems that would
otherwise pop-up during the development of the PaunPacker.

Satisfying the requirement R3 (requiring the PaunPacker to be extensible by
allowing the users to create new packing algorithms, metadata exporters and im-
age processors) that was introduced in Section 1.2 can basically be done in two
ways—either by allowing to create and load plugins that will represent the exten-
sible parts (that is packing algorithms, metadata exporters and image processors)
or by creating some template language that will allow to extend these parts. The
former approach seems better because it gives more flexibility to extend the ex-
tensible parts. The slight disadvantage of this approach is that the user wanting
to create own parts will have to deal with source code, so there is a little bit more
effort required, however, because the target users are primarily game developers,
this disadvantage becomes negligible. The advantage of higher flexibility is due
to the fact, that the plugin developer is not limited in any way what the plugin
could do. Of course, the plugin developer will have to develop the plugin in such
a way that it will respect some prescribed interface but as long as the compliance
of this interface is maintained, the developer can do literally anything with the
plugin. This does not hold for template language where the developer of the plu-
gin can only use the features that are included in the template language. Because
of these reasons, the PaunPacker should address the extensibility by allowing to
create and load plugins.

41

3.2.1 High-level components overview
In order to reduce the amount of duplicated code and to relieve the plugin devel-
opers from having to ”reinvent the wheel” a basic toolset should be made available
for plugin developers. This idea adheres to the goal of having a ”basic toolset (in a
form of the dynamic library) that could be reused for future plugin development”.
Therefore this basic toolset should be included in a separate dynamic library and
from now on, it will be referred to as PaunPacker.Core. Another component
should contain the GUI related stuff (having a GUI is also one of the goals).
Although the GUI and the basic toolset could potentially be glued together, it
seems like a bad practice to do so, because the plugin developer should not be
forced to load executable containing parts that are not needed for plugin devel-
opment (the GUI parts). Moreover, the plugin should not be able to modify GUI
in any way, so it should be separated from the GUI. This separation also suggests
that all the general functionality should be inside PaunPacker.Core and not in-
side the executable with containing the GUI, so that the plugin developers could
use this functionality. The idea to separate the GUI from all the packing related
functionality seems very natural and therefore this approach will be taken. The
assembly containing PaunPacker’s GUI will be referred to as PaunPacker.GUI.
The high-level overview of PaunPacker is depicted in Figure 3.1.

Plugins
.dll

.dll
.dll

reference

PaunPacker.GUI

.exe

PaunPacker.Core

.dll

Figure 3.1: High-level overview of PaunPacker’s architecture

Figure 3.1 shows an overview of PaunPacker’s architecture. At this high
level, the architecture consists of three kinds of components: PaunPacker.Core,
PaunPacker.GUI and the plugins. PaunPacker.Core provides a shared function-
ality that is related to packing (i.e., the parts that are not specific for GUI) and
it is in the form of dynamic library (.dll). The PaunPacker.GUI contains the
client application and all the GUI related stuff, this component should be in
the form of executable (.exe) and it references the PaunPacker.Core because
the client application needs to use the packing functionality. Finally, there are
all the plugins that will get loaded into PaunPacker, they are also referencing
PaunPacker.Core to reuse the provided functionality and also to obtain the re-

42

quired interface. There are several more questions and problems that should be
addressed, namely:

• What is the interface that the plugins should adhere to, to be considered
as valid plugins?

• Where in the GUI should the plugins be displayed?

• Which components (apart from image processors, packing algorithms and
metadata exporters) should be modular?

• How to differ between all the kinds of modular components?

• How to tell the GUI what parameters (taken from the user) are needed by
the plugin in order to display corresponding input elements in the GUI?

All of these questions are going to be addressed in later subsections in this section.

3.2.2 PaunPacker’s workflow
Generally speaking, the expected workflow of any packing tool is that the user
specifies textures to be packed, select metadata format and sets some additional
settings that will affect the process of texture atlas generation (e.g. output format,
output path, etc.) and then tell the tool to generate the texture atlas. This simple
workflow is depicted in Figure 3.2.

Packing tool

User

outputs

Texture atlas

Metadata

interacts

+

Figure 3.2: Illustration of a general workflow of a packing tool.

PaunPacker will incorporate a similar workflow to the one that was shown
in Figure 3.2 and because PaunPacker will include GUI, it is natural to state
that all the interaction between PaunPacker and the user should be done via the
GUI. The PaunPacker.GUI should then process this interaction by utilizing either
the PaunPacker.Core or the plugins. Obviously, the plugins have to be loaded
into client application (PaunPacker.GUI). The very important requirement that

43

should be imposed on the application is to allow the user to interact with plugins
via GUI, this requirement comes from the fact that plugins very often allows to
set some parameters and therefore the user should be able to use this option.
From the requirement that the user should be able to interact with plugins and
the fact that all the user’s interaction with PaunPacker should be done via the
GUI, it implies that plugins should be displayed in GUI somehow—the exact way
how they should be displayed are going to be discussed in Section 3.5. Figure 3.3
shows the workflow from Figure 3.2 adjusted to PaunPacker in accordance with
the discussion above.

PaunPacker.GUI

.exe

outputs

Texture atlas

Metadata

PaunPacker.Core

.dll

+

User

Plugins
.dll

.dll
.dll

controls

interacts

loads, renders and controls

Figure 3.3: Illustration of PaunPacker’s workflow.

In the top-center of the Figure 3.3 there is a user that manipulates with
PaunPacker.GUI which handles the user’s interactions and acts appropriately.
When PaunPacker.GUI is handling the user’s interaction, it is using the func-
tionality either from PaunPacker.Core or from the loaded plugins. Once the
interaction is handled, the result is presented via GUI back to the user. When
the user interaction is a request to pack the input textures, the result is a texture
atlas together with its corresponding metadata.

3.3 Choice of platform and development tech-
nologies

After acquiring an initial architecture of PaunPacker, it is time to choose the
right platform and development technologies. When choosing a right program-
ming language, C# over .NET platform seems like a good candidate because it
has a very extensive standard library and there exists a lot of other libraries that
can be installed via NuGet in a very convenient way. One could argue, that other
languages, for example, C++ and Java also provide quite extensive standard li-
brary and that is true but a problem with C++ is that it does not offer reflection
which will be very useful when dealing with plugins. Although Java could be
considered equivalent to C# (at least for a task to develop an application such as

44

PaunPacker), the C# was preferred over Java because the author of this thesis
has more experience with it. There exist three .NET implementations: .NET
Framework, .NET Core and .NET Standard. The differences between these three
implementations can be found in MSDN Magazine [26], but what should be men-
tioned here is that it is preferred to use .NET Standard or at least .NET Core
whenever possible, because these implementations offer several advantages com-
pared to .NET Framework—for example, they are open source, cross-platform
and allow to create high-performance scalable systems. This recommendation
applies especially in the case of PaunPacker.Core, where it is very appropriate
and desired to use .NET Standard because it will make the PaunPacker.Core
reusable on multiple platforms. However, it is not always possible to use one
of these two implementations, for example, when referencing a dependency (e.g.
NuGet package) that is available only for .NET Framework and in such a case,
nothing else is left then using the .NET Framework (or choosing a different NuGet
package).

In addition to the programming language, a GUI library has to be chosen and
because the chosen language is C#, the two major, commonly used candidates
are WinForms and WPF because they are both developed by Microsoft and work
very well with C#. It was decided to use WPF because of the following reasons:

• It offers better separation of code and layout design leading to a cleaner
design.

• It is more flexible than WinForms (for example, control composition).
• It is more modern than WinForms.
• It is resolution independent.

Last technology that was decided to be used in the very beginning of the whole
development process was a graphical library called SkiaSharp. This library was
chosen because it is cross-platform and it provides a convenient way to work with
textures (bitmaps) which is a feature that will be needed for an application such
as PaunPacker.

3.4 PaunPacker.GUI
In the Section 3.2.1 it was decided that the PaunPacker’s GUI functionality should
be separated into a separate assembly called PaunPacker.GUI. This section will
describe PaunPacker.GUI in greater detail.

The PaunPacker.GUI should contain a presentation logic of a whole Paun-
Packer. This assembly was initially intended to target the .NET Framework
and to be platform-specific because the use of WPF brings dependence on Win-
dows but during the development of PaunPacker, revolutionary changes hap-
pened. These changes are the release of a preview version of .NET Core 3 that
includes support for WPF. The use of WPF together with .NET Core 3 still does
not allow to create cross-platform WPF application, but at least it brings the
other .NET Core benefits. Therefore it was decided (after some time) to let the
PaunPacker.GUI target the .NET Core 3.

As it was illustrated in Figure 3.3, the logic inside PaunPacker.GUI assem-
bly should be responsible for the processing of interactions that the user issues
through the GUI. This processing will be done by delegating the work that has

45

to be done either to PaunPacker.Core or to any of the plugins. When the com-
ponent to which the work was delegated to finishes, the PaunPacker.GUI should
present the results of the delegated work to the user by displaying these results
in the GUI.

Whenever dealing with larger applications, it is very recommended to sepa-
rate the domain logic from the rest of the user interface and there are several
architectural patterns that solve this issue, three most known are: MVC, MVP,
MVVM. It was decided that PaunPacker should use MVVM and the reason for
this decision is the fact that this pattern is very natural for WPF because of
its very powerful and excellent concept called DataBinding. The architecture of
PaunPacker.GUI is depicted in Figure 3.4.

PaunPacker.GUI
.exe

ModelViewModelView
Commands

Data Binding
Notifications

query & update the model

User
interacts

Figure 3.4: Architecture of PaunPacker.GUI.

Figure 3.4 shows an architecture of PaunPacker.GUI. The ViewModel serves
as a way to ”connect” the View with the Model and it exposes the data that are
needed by the View. The ViewModel is also responsible for event handling (this
is typically done via Commands). The model holds the data that is queried and
updated by the ViewModel. The Model should not be aware of its ViewModel.
The View contains the controls that should be displayed to the user and in order
for View to populate these controls with proper data, it fetches all the needed
data from ViewModel (this is done automatically via DataBinding). Notice that
the View is completely isolated from a Model. Although this figure shows only
a single view, in reality, there will be several views each of them having its own
view model and model. This situation is depicted in figure 3.5.

ViewA

ViewB

ViewC ViewD

Views ViewModels
ViewModelA
ViewModelB
ViewModelC
ViewModelD

Models
ModelA
ModelB
ModelC
ModelD

Figure 3.5: MVVM in PaunPacker.GUI

Figure 3.5 illustrates a typical scenario with several views available, specif-
ically, there are four views called ViewA, ViewB, ViewC, ViewD with their cor-

46

responding models ViewA, ViewB, ViewC, ViewD respectively. Each view with a
model also has their corresponding view model, for example, ViewA with ModelA
have their corresponding view model called ViewModelA, ViewB with ModelB have
their corresponding view model called ViewModelB and so on. The figure also il-
lustrates that views could be composed of other views in the case of this figure,
ViewA contains all the other views (ViewB, ViewC, ViewD). The ability to com-
pose views together is inherent feature of WPF and it is something very powerful
which will be used extensively.

Using WPF with MVVM pattern also makes it possible to completely elimi-
nate code in code-behind, for example, code-behind typically contains event han-
dlers, but when the MVVM pattern is followed thoroughly, the events could be
replaced by commands whose implementation is fully contained within a view
model. The nice thing about eliminating the code in code-behind is that it
makes the view to contain no logic at all. Although there is nothing fundamen-
tally wrong about having a code in code-behind, leaving the code-behind empty
is considered as a good practice and it improves maintainability and testability.

3.5 Plugins
When creating modular application—i.e., an application that could be extended
by means of plugins that are loaded into the application—there are several ques-
tions and that could arise and that should be addressed. These questions are the
following:

1. How the plugins should be stored and loaded?

2. How to recognize that an assembly is a plugin?

3. What are the required capabilities that a plugin should have?

4. Which components should be represented by a plugin?

5. How to allow user’s interaction with plugins?

This section will discuss possible answers to these questions in the context of
PaunPacker.

Representation of a plugin

Plugins are actually dynamic libraries (.dll) stored in a separate .dll file that
eventually gets loaded by an application. The problem is, that in general, the
.dll file could contain almost ”anything”, therefore some mechanism to detect
what should be considered as a plugin is needed. A commonly taken approach is
to create some interface—call it IPlugin—that all the plugins should implement.
This approach assumes that a plugin could be represented by a single class.
Another (declarative) approach would be to use some custom attribute—call
it PluginAttribute—and use this attribute to mark every class that should
represent a valid plugin.

47

It is often very useful to report some metadata about a plugin to the host2

application, these metadata include, for example, plugin version, author, descrip-
tion, etc. The advantage of representing the plugins using the PluginAttribute
is the fact that metadata is generally known at compile-time and because at-
tributes are compile-time construct it seems cleaner to declare this information
at compile-time rather than delay the evaluation of metadata to runtime. On the
other hand, because attributes are compile-time constructs, the approach using
the PluginAttribute does not allow to obtain information from plugin at run-
time and this is a major shortcoming because it is typically required to either
allow the host application to query state of the plugin or to call some initializa-
tion method on the plugin passing in some parameters from the host application.
The initialization method that allows passing parameters for the plugin is very
useful because the host application could pass for example an IoC container that
the plugin could use to resolve or register dependencies.

In the case of PaunPacker, it is crucial to allow plugins to obtain parame-
ters from the host application because it allows a certain way of communication
between the host application and the plugin which brings greater flexibility for
plugin developers.

It follows from the foregoing considerations that in the case of PaunPacker,
the IPlugin should be used. However, in fact, nothing prevents the use of both
approaches and this ”hybrid” approach is actually the approach that is taken by
PaunPacker, where all plugins should implement IPlugin interface and (option-
ally) export its metadata using PluginMetadataAttribute this approach brings
both the best of the two previously mentioned approach at the cost of slightly
longer code.

Storing and loading the plugins

Now, when the way how the plugins should be represented has been defined, it
is time to design a mechanism for loading the plugins and to come up with an
answer to the question where the plugins should be stored.

The simplest way to load plugins into the host application is to store all the
plugin .dlls inside a specified directory and let the host application to load all
the plugins from the directory (using reflection).

Another approach could be to create some web service where the plugins
would be uploaded and then equip the PaunPacker with GUI that would allow
installing of arbitrary plugins from this web service. This approach would make
the distribution of plugins easy and convenient because anyone would be able to
create plugins and upload them to the web service and then anyone would be
able to download and use these plugins.

However, the second approach (although generally better) seems like overkill
for PaunPacker, simply because it is not expected that there will be thousands of
people creating thousands of plugins and also because the web service responsible
for managing the storage of plugins would bring some extra maintenance overhead
(for an extra cost). So even though the first approach is rather simple, it suits
the need of PaunPacker very well and it is surely the right way to go.

2The host application is the application that hosts plugins, that is the applications where
the plugins are loaded.

48

When all the plugin .dlls are stored inside a specified folder the host ap-
plication should load all the plugins either at startup or by using some kind of
lazy loading. The lazy loading could be used in such a way, that the plugin .dll
would get loaded the first time it is needed (or possibly unloaded when it is not
used for a certain amount of time). Although the lazy loading is a nice feature, it
is again an overkill because it is not expected that PaunPacker would load very
large amounts of very complex plugins. The expected scenario is to load tens of
plugins and this expectation should not restrict PaunPacker in any meaningful
way. Another nice feature is to allow to load plugins during the runtime of the
host application, but because this feature becomes useful only for applications
whose plugins are either very often updated, installed or whose start-up takes
several minutes, PaunPacker does not need this feature either.

The loading of the plugins itself simply enumerates all the .dll files inside
the specified folder loads these files and finds (inside these files) all the classes
that implement an IPlugin interface. These classes are then loaded and their
instances are created by the host application. The loading of .dlls, searching
of types and their inspection are all possible thanks to a powerful feature called
reflection. This approach is depicted in Figure 3.6.

PaunPacker process

AppDomain

loads

Plugin folder

Loaded Plugins
.dll

.dll
.dll

PaunPacker.GUI

.exe

PaunPacker.Core

.dll

Loaded Plugins
.dll

.dll
.dll

Not yet loaded Plugins
.dll

.dll
.dll

Figure 3.6: Depiction of loading plugins from .dlls inside a specified folder

Figure 3.6 shows a simple approach illustrating the PaunPacker.GUI that is
loading the plugins from a plugin folder. Notice that all the plugins are loaded
inside a single AppDomain that is the same as the AppDomain where the Paun-
Packer itself is loaded.

49

This approach has some security issues, specifically, the plugins may contain
malicious code that will eventually get executed. But this issue is something that
has to be accepted because although there exist several techniques to mitigate
this issue, none of them works on 100% in 100% of cases. For example this issue
is often addressed by creating a separate AppDomain and loading the plugins
inside this AppDomain and although this approach brings some benefits—for
example, when plugin crashes, the host application does not crash but continues
running—it still allows the plugin to execute a malicious code that could do
something wrong to the user’s computer. Therefore it was decided to do not
address this issue inside PaunPacker.

The previously mentioned issue (although it is serious) is not the biggest
problem to be tackled by PaunPacker. To present the issue of greater importance
consider a scenario, where the plugin that has to be loaded does not contain
parameter-less constructor but only a constructor that requires some parameters
(call them dependencies). How should the plugin loader deal with this situation?
There is probably only a single way to tackle this issue and that is to create
an uninitialized instance of a given plugin, that is, to use reflection to create
an instance of a class, without calling any of its constructors, but this is really
problematic and it could cause serious problems, because the developer of the
plugin may design the plugin in such a way that it will simply do not work
without a proper initialization as illustrated in Figure 3.7.

Metaheuristic
packing algorithm

Plugin

contains

Heuristic
packing algorithm

.dll

req
uir

es
& us

es

Figure 3.7: Plugin dependence on another class.

Figure 3.7 illustrates a scenario where a plugin contains a metaheuristic pack-
ing algorithm that requires (as a constructor parameter) and uses some heuristic
packing algorithm. Without the ability to provide an instance of any heuristic
packing algorithm to the metaheuristic algorithm, the metaheuristic algorithm
could not be initialized properly.

The issue with the absence of parameter-less constructor in plugins could
be solved by using an IoC container, but because manual usage of dependency
container for this kind of issue would require a lot of code to get everything
working, it is better to start directly using a framework called MEF (Managed
extensibility framework). MEF is an extension framework that also allows to
discover plugins, load plugins and also to satisfy dependencies. So using MEF

50

will solve the issue with the absence of parameter-less constructor and it will also
automatize the process of the loading plugins from a specified directory, therefore
the plugins will do not have to be loaded manually anymore. MEF has a capability
to automatically discover plugins inside the specified folder, automatically load
them and instantiate them. The plugins could specify dependencies that the MEF
should give them. However, MEF does not (magically) know what to give to the
plugin as these dependencies, so inside the host application, the dependencies
first have to be registered.

When it comes to plugin representation, instead of relying on IPlugin inter-
face MEF takes a declarative approach and uses Export attribute when looking
for plugins inside .dlls. So all the types that are representing a plugin should be
decorated with Export attribute. When MEF scans classes inside .dll it looks
for classes that have this Export attribute and try to load them. In addition to
Export attribute, there also exist Import attribute that could be used on class
members. It is out of the scope of this thesis to explain how MEF proceeds when
it finds any of these attributes, but roughly speaking, when Import decorates a
member (field, property or constructor parameter) of type A, and the MEF en-
counters this attribute, it tries to assign an instance of class B that is decorated
with Export(typeof(A)) attribute to the member decorated with the Import
attribute. More details about these attributes could be found in [27].

User’s interaction with plugins

The use of MEF that was proposed in Section 3.5 allows PaunPacker to export
dependencies from the host application to the plugins, but this level of plugin
parameterization is still insufficient because the plugins often need to obtain pa-
rameters that are originated from the user and not from the host application.
To illustrate a situation where this need arises, suppose an arbitrary genetic
algorithm for packing. It does not matter how the genetic algorithm is imple-
mented, but inherent property of all genetic algorithms, in general, is that they
are working with a so-called population3. The population is a perfect candidate
for parameterization, instead of hardcoding a fixed size of the population inside
the algorithm, it would be very convenient to allow the user to specify this pop-
ulation using GUI of the host application. To allow the user to do so, the plugin
has to be rendered in some way. There are basically two ways to do it, the first
way is to create a set of custom attributes and use these attributes to indicate
that certain parameters should be injected. The host application would then look
at a decorated member and based either on the type of the member or on the
attribute, would render appropriate controls inside GUI. When the user would
fill in these controls, the host app would notify the plugin about values the user
has entered and the plugin would be able to use them in an arbitrary way. The
problem with this approach is that it is limited to certain types of controls and
therefore to certain types of parameters. Concretely speaking, it would be quite
easy to render control accepting string/int, but harder to render something that
would allow the user to specify Image or something more difficult. Another dis-
advantage is the increase of host application’s logic because a logic for deciding

3Explanation of genetic algorithms is out of the scope of this text therefore it will be omitted
and the reader could find an appropriate algorithm in [20].

51

which control to render and logic for the rendering itself would have to be added.
These reasons have to lead to the refusal of this approach.

A more general approach is to let the plugin developer design GUI of the plugin
and load the plugin together with its GUI inside the application. This approach
also has some problems, notably that it adds the dependency on WPF into the
plugin but this should be only considered as a minor (esthetical) problem because
the plugins are designed to be used with PaunPacker and PaunPacker will not
likely be ported to another graphical library and if yes, only a PaunPacker.GUI
would have to be ported. Because PaunPacker.GUI is also responsible for plugin
loading, the ported version of PaunPacker.GUI would simply load the same plu-
gins but without their GUI. To clarify this idea, the plugin developer should be
allowed to create a view (in a sense of MVVM) for the plugin. The host appli-
cation will then load the plugin together with the view, instantiate the view and
add it to its GUI and the user will then work directly with the GUI of the plugin.
The idea of loading the plugin together with its view is illustrated in Figure 3.8.

Genetic algorithm Genetic algorithm's view

then rendersPaunPacker.GUI

.exe

Main window

Plugin
.dll

= +

load
sloads

Figure 3.8: Illustration of the idea of loading the plugin’s view.

But there is another problem: where inside the GUI of the host application
should the view of the plugin be placed? Because PaunPacker should be able
to load various kinds of plugins (metadata writers, packing algorithms, etc.) it
should display each kind of plugin in a separate part (region) of the GUI. In
order to do this, the GUI of the host application should contain a region where
the view of a plugin could be rendered and because there are different kinds of
plugins there should also be different regions—displaying different kinds of plugins
at different places in the application seems like a reasonable thing to do. Although
the creation of regions and loading of the plugin’s views into these regions could

52

be done manually, it would be quite cumbersome, therefore, it is better to use
some library that is capable of doing it automatically. One such a library is
Prism Library and even though there certainly exists other libraries, this library
seems like a perfect fit for PaunPacker because it offers great support for WPF,
it is very actively updated and developed, offers nice documentation and it is
open source version of Prism guidance that was originally proposed by Microsoft.
And actually, the Prism is a framework for creating modular (loosely coupled)
applications as PaunPacker certainly is. Moreover, Prism could be efficiently used
together with MVVM pattern that is also used within the PaunPacker. The idea
of loading plugin’s view and registering it inside a certain region is illustrated in
Figure 3.9.

Genetic algorithm Genetic algorithm's view

Plugin
.dll

= +

then rendersPaunPacker.GUI

.exe

M
ai

n
w

in
do

w

View 1

View 2

View 3

Region 1

Region 2
Region 3

load
sloads

Figure 3.9: Illustration of the idea of loading the plugin’s view and registering
into a region.

Figure 3.9 illustrates a scenario where the PaunPacker.GUI loads a plugin
together with the view of the plugin and then renders this view into one of the
regions within the main window. Notice that the main window consists of several
views and each view contains a different number of regions (or no region at all).
In this case, the view is rendered into the third region.

It is important to mention that Prism also offers IModule interface which more
or less corresponds to the ”fictive” IPlugin interface introduce in this chapter,
therefore, their names will be used interchangeably, but in the actual code of the
application the Prism’s IModule will be used.

To summarize this Section: the plugin developer is able to provide the plu-
gin together with a view and could let the PaunPacker.GUI to render the view
in order to obtain certain parameters from the user (via the user’s interaction

53

with PaunPacker.GUI). The plugin developer could use these parameters inside
the plugin’s view model (because it could correctly handle the user’s interac-
tion with a view). But there is still yet another problem: the view is typically
present in order to parameterize the plugin (and not for some internal use) and
if this is the case, then when PaunPacker.GUI loads the plugin it should ob-
tain the instance that is correctly parameterized and not a non-parameterized
instance. This is quite a problem because MEF’s Export attribute creates a new
instance so the parameterization would get lost. There is a way to deal with it
(although it might be seen as a MEF misuse) and that is to use a method called
ComposeExportedValue on a MEF’s container. This method allows to export an
existing instance (e.g. with parameters) but the problem is that MEF will im-
port such an instance only once, so if the parameterization changes in the future
(during the runtime) these changes will not be reflected on this instance. After
all these problems it was concluded that MEF is not probably strong enough for
this kind of task and it was decided to use some pure and more powerful IoC
container. Because PaunPacker is using Prism, it was decided that the used IoC
container will be Unity (because Prism works very well with Unity, even better
than with MEF as comes from the fact that Prism does not support MEF in its
latest release version). Unity allows to register a factory that will create an in-
stance of a type that should be exported from the plugin (with proper, up-to-date
parameters) and this factory will be called every time the resolution is requested
(the resolution could be invoked by some user interaction). The technical details
of how this could be implemented will be given in Chapter 4.

3.6 PaunPacker.Core
This is the main assembly that should contain the toolset for creating plugins.
This toolset includes: packing algorithms and their interfaces, interfaces for image
processors and metadata writers and other useful types that will be described in
developer’s documentation (Chapter 4).

The main purpose of this assembly should be to equip plugin developers with
a toolset that they could use when creating new plugins. Even though all the
functionality from this assembly could be stored inside PaunPacker.GUI, the first
approach seems better because the second approach (storing the plugin develop-
ment toolset inside PaunPacker.GUI) has the following disadvantages:

• It forces the developer to reference an assembly that contains a lot of func-
tionality that is not needed for plugin development (for example, the GUI
related stuff). This was already mentioned in Section 3.2.1.

• Because WPF is still somewhat Windows-specific and it is linked to .NET
Framework (actually as the time of writing this thesis there is a brand
new .NET Core 3 preview that allows WPF development targeting .NET
Core) therefore it would not be possible to target .NET Standard and whole
PaunPacker would require the .NET Framework or the .NET Core 3.

The compliance with the .NET Standard makes it easy to port PaunPacker
to other platforms or to create a new user interface, for example, it may be
useful to create cross-platform CLI for PaunPacker in the future, and with the

54

separation of PaunPacker.Core and PaunPacker.GUI, doing so would be quite
easy because the new (CLI) application would be able to reference and use the
functionality inside PaunPacker.Core. It would even be possible to create a web
interface (using ASP.NET) that would be able to use the functionality exposed
by PaunPacker.Core assembly.

Adapting general packing algorithms to texture packing

The initial attempt was to create an interface that would represent a packing
algorithm (call it IPackingAlgorithm). This interface was supposed to have a
single method (call it Pack) that would take the textures on the input and return
the texture atlas on the output. However, it turned out that this approach was
a pretty bad idea for several reasons.

The first reason is that it is not a good idea to restrict the packing algorithm
only for textures because the texture packing is actually based on rectangle pack-
ing, it seems more appropriate to adjust IPackingAlgorithm’s Pack method to
accept rectangles instead of textures. This adjustment brings an advantage for
unit testing or benchmarking because it is usually faster and more convenient to
generate a huge amount of random rectangles than generate/load a huge number
of textures. Another benefit is that this interface allows the packing algorithm
to be used for different kinds of data (image arbitrary data that uses a rectangle
as a key) thereby allowing PaunPacker.Core to be used as a standalone library
for different purposes than is texture packing.

The second reason is related to code reusability and code duplicity. For exam-
ple, almost all packing algorithms sort the input rectangles in some way, therefore
when some there is some algorithm (call it A) that utilizes another algorithm as
its subroutine (call it B) there is always a chance that both A and B sort the
input (because A does not always know whether B sorts or not if B seems to A
as a black-box. This situation has two bad consequences, the first is, that sorting
the sequence twice wastes performance and the second is, that sometimes either
A or B rely heavily on a certain order of input rectangle and if that is the case, if
the other algorithm breaks this order by sorting it according to a different rules,
the algorithm could break.

The third reason is the fact that some algorithms work without specifying
the dimension of the bounding rectangle (i.e., they are used to find or better say
approximate the minimum bounding rectangle) but some do not. Moreover, the
algorithms that require to know dimensions of the bounding rectangle in advance
sometimes simply do not work well when ∞ × ∞ hack is used.

These three reasons had led to the decision to find a different representation of
packing algorithms. The nice approach was proposed by Korf [19] and it will be
described now. Korf’s approach is based on the idea to split the whole packing
problem into two sub-problems: containment problem and minimum bounding
box4 problem, where the former sub-problem tries to place the input rectangles
into a given bounding rectangle while the later sub-problem finds a minimum
bounding rectangle. The algorithm for solving the minimum bounding box prob-
lem traverses (in order of increasing area) through a set of possible bounding

4Korf’s minimum bounding box has the same meaning as the term minimum bounding rect-
angle that is used in this thesis, so they will be used interchangeably.

55

boxes and for a given bounding box solves the containment problem on the input
rectangles. Once a bounding box that could contain all the input rectangles is
found, the minimum bounding box algorithm stops and yields the current bound-
ing box as a result. The containment problem tries to place all the input rectangle
into a given bounding box. In the same paper, Korf also proposed a method to
decrease the number of bounding boxes that have to be traversed when minim
bounding box is searched. There is a quadratic amount of possible bounding
boxes, but Korf’s proposed method examines the only linear amount of bounding
boxes. This method starts with a bounding box having certain dimensions and
uses a containment algorithm if the containment succeeds the bounding box is
remembered as the best so far and then its dimensions are reduced, otherwise, if
it fails, the bounding box is expended. The actual details of this algorithm can
be found in Korf’s paper [19].

It was decided to use a similar approach to the one proposed by Korf, but with
some small adjustments. These adjustments are an introduction of a third step—
sorting step—and also the modification of the containment problem. The reason
for adding a sorting step is the fact the order of rectangles as was illustrated in
Figure 2.11 at the end of Section 2.2.1 and also the ”third reason” above, because
when the sorting step is separated, it can be reused. The original containment
problem simply checks whether the bounding rectangle with given dimensions
could contain the given input rectangles and returns either true or false. But
notice that the containment problem actually try to pack the input rectangles
inside the bounding rectangle with given dimensions so for a problem which is
considered in this thesis, it is better to return either the packing result or an empty
(null) result instead of true/false. This change in behavior of the containment
problem removes the necessity to call the packing algorithm (doing the same thing
as the containment algorithm but yielding a packing result instead of boolean)
right after the containment problem itself. This change also suggests changing
the minimum bounding box algorithm to return the whole packing result instead
of simply returning the dimensions of the minimum bounding box.

So finally, it was decided to decompose the packing problem into three parts:

1. Search for a minimum bounding rectangles containing the input rectangles.

2. Placement of the rectangles (the aforementioned modification of contain-
ment problem).

3. Sorting of the input rectangles.

The first part is parameterized by the second part which is then parameterized
by the third part. The relation between these three steps is depicted in Figure
3.10.

56

Find minimum bounding box
Sort rectangles

...

us
es

Place rectangles

1. Sort
2. Placement into bi

uses

Input rectangles

✘

step 1

b1

✘

step 2

b2

✘

step i-1

bi-1

step i

bi

...r1 r2 rn

input

Figure 3.10: Decomposition of rectangle packing into three parts.

Figure 3.10 shows a decomposition of the packing process into three parts. The
first part is to search for a minimum bounding box for the rectangles that are given
on the input. This search works traversing through bounding boxes b1, . . . , bi. At
i-th step, the input rectangles are tried to be placed inside the bounding box
bi by using placement algorithm as a sub-procedure. If the placement fails the
bounding box bi is discarded and the search continues with bounding box bi+1,
otherwise, if it succeeds, bi is considered as a minimum bounding box and the
result (bi containing all the input rectangles) is returned. In this Figure, none
of the bounding boxes b1, ..., bi−1 could contain the input rectangles. Notice that
the placement part works in two steps, first, it sorts the input rectangles using
and then does the placement itself.

Modular components

The modular5 components are the components that could be loaded from plugins,
i.e., the components that should be extensible. In order to satisfy the requirement
R3 (that the PaunPacker could be extended by new packing algorithms, image
processors and metadata writers) it seems natural to say that all these compo-
nents will be modular. However, in the case of packing algorithms, some changes
are needed. Because it was decided to decompose the whole packing process into
three parts, it is proficient to make all these parts modular. That is, to allow users
to also create their own sorters, placement algorithms, and minimum bounding
box finders. To summarize it, the modular components are the following:

• Image processors
5It should be mentioned that the modular components are sometimes also called the exten-

sible components.

57

• Metadata writers

• Minimum bounding box finders

• Placement algorithms

• Sorters

Consider a plugin developer that develops a minimum bounding box finder
(MBBF). Because MBBF is parameterized by a placement algorithm (as was al-
ready discussed above, in Section 3.6) it makes sense to allow the user to select a
placement algorithm for this MBBF. However this is different from the situation
where the user has to provide some parameter (integer, for example) that was also
discussed above in Section 3.5 because the placement algorithm is not something
that the user could input (via keyboard/mouse) to the PaunPacker, it is some-
thing that is either contained in PaunPacker.Core (for the case of algorithms
that are included in the basic toolset for plugin development) or something that
is loaded from another plugin and the user only specifies which should be used (for
example, via selecting the packing algorithm in some combo-box control). This
brings a new challenge—to allow a user to parameterize MBBF from PluginA by
a placement algorithm from different PluginB (similarly for the parameterization
of placement algorithm by the sorter).

This challenge could be solved by using an IoC container. The idea is the
following: users select a placement algorithm that should be used, then this
algorithm is registered into IoC container as a placement algorithm and when
a MBBF is created, the selected placement algorithm could be resolved from
the IoC container. All this could happen inside PaunPacker.GUI without any
intervention from a plugin so it seems like a right approach. The PaunPacker.GUI
could simply store the IoC container, register the types in accordance with the
algorithms that the user has selected and then do the resolution using the IoC
container.

3.7 PaunPacker.GUI revisited
Now after the meaning and representation of plugins was described, it is time to
design GUI architecture in greater detail. To summarize the previous subsections,
the current state is the following: there are plugins that could be rendered into
regions inside PaunPacker.GUI. The question to be answered is the following:
Who should decide, into which region inside the GUI of the host applications
should the plugins be rendered?

As it was already mentioned in Section 3.5 the plugins should be rendered
into the region, but because PaunPacker contains several types of plugins, it is
advisory to have more such regions. These regions are simply ContentControls
inside the view, therefore, it is possible to create a single region in every view, or
even multiple regions inside a single view.

The idea is to create a single region for each of the modular parts, that is
for the following parts: image processors, image sorters, minimum bounding box
finders, placement algorithms where plugins of an appropriate type should be

58

registered. Prism has a concept of so-called RegionManager that allows register-
ing views inside a specific region (keyed by region name i.e. by simple string).
Therefore there are basically three options who could decide where the view of a
given plugin should be rendered, these options are the following:

1. The host application should decide where to place a view of a given plugin,
i.e., the plugin developer should not be able to say to which region the view
of the plugin should be rendered. But instead, the views should be assigned
to the regions based on the types of the plugin.

2. The plugin developer should decide by decorating the plugin class with a
custom attribute—call it RegionAttribute—that would take a string with
a name of the region where the plugin’s view should be placed.

3. The plugin developer should decide by using the instance of the region
manager that is passed by to the plugin by the host application. The
region manager allows the plugin developer to register the view inside the
arbitrary region.

The approach that chosen in the initial phase of development of PaunPacker
was the option 3)—to give the plugin developer an instance of plugin manager and
allow the plugin’s view to be registered anywhere within the host application’s
GUI. At that time, there was a certain thought process that led to the choice of
this option. This flow of thoughts is described in the next paragraph.

Initial reasoning behind choosing the option 3 The first option certainly
gives the plugin developer least flexibility of all three options and it also adds
more logic to PaunPacker itself, because the type of each loaded plugin has to be
checked and assigned to region appropriately. Therefore it does not suit the needs
of PaunPacker very well. The second option is slightly better because it allows
the plugin developer to specify an arbitrary region name, but it still adds more
logic to PaunPacker. The last option offers the same flexibility (or even more,
because the developer could export whatever and wherever e.g. multiple instances
of views inside different regions), moreover, it does not add any additional logic
to PaunPacker. the only possible concern is security, is it safe to let the plugin
developer do possibly anything with the region manager? And the answer is yes
because of the two following reasons:

• The person who installs a plugin does it on own risk because there is always
some possibility (unavoidable) that a plugin contains malicious code (this
was already discussed above in this section).

• The actual ownership of reference to RegionManager could only mean that
the plugin developer could (possibly) accidentally mess up the whole GUI
but that is something that the user would have inevitably recognized and
could solve by simply removing the broken plugin.

However, with the passage of time, these ideas turned out to be wrong and
the selected option actually turned out to be completely wrong, the updated
reasoning follows. Although the third option provides most of the flexibility and
it does not add any logic to PaunPacker, this optioned turned out to be inferior to

59

some of the other options. One of the reasons why it is worse is the fact, that the
plugins should be unaware of the GUI. The plugin’s unawareness is a very strong
benefit because it allows updating (e.g. change regions, or delete some regions,
etc.) the GUI of the host application or even to port the host application to a
different platform (with different GUI framework) without breaking the existing
plugins. It was already mentioned in Section 3.5 that in the case of porting
PaunPacker.GUI to another platform, the Plugin’s view would simply not get
loaded by PaunPacker.GUI but that actually does not work, when the third
option is chosen. Because the third option mandates the PaunPacker.GUI to
give an instance of region manager to the plugin, the plugin has control over
the GUI and if it does not get an instance of region manager (which is the case
when PaunPacker.GUI would be ported) the plugin does not get loaded to host
application at all. The second option has the same disadvantage. Therefore it
seems best to use the first option and this decision is also supported by the fact
that it is better to add just a little bit of functionality once to the PaunPacker
than to force all the plugin developers to add extra code for region registration
and thus making the plugin development more difficult and cumbersome. It was
therefore decided to abandon the first decision to choose the third option and
instead choose the option 1.

60

4. Developer Documentation
The whole implementation part of this thesis is contained within a single Visual
Studio 2019 solution called PaunPacker. This solution consists of a total of 20
projects, all of them containing C# code and targeting either the .NET Core 3
or .NET Standard 2. The structure of PaunPacker solution is shown in Figure
4.1.

.NET Standard 2.0

Common

.NET Standard 2.0

PaunPacker.Core

.NET Standard 2.0

PaunPacker.GUI.WPF.Common

.NET Core 3.0

PaunPacker.GUI

reference
some of them reference
tests testing the features
from a plugin reference that plugin

Plugins

.NET Core 3.0

.NET Standard 2.0

.NET Core 3.0

.NET Standard 2.0

Test projects

.NET Core 3.0

.NET Core 3.0

.NET Core 3.0

.NET Core 3.0

Figure 4.1: Structure of PaunPacker solution.

Figure 4.1 shows a structure of PaunPacker solution together with references
(arrows) between these projects. The entire solution could be ”virtually” divided
into four parts—PaunPacker.Core, PaunPacker.GUI, Tests and Plugins. Actu-
ally, there are two more parts (or better to say projects) which are not related to
the PaunPacker itself, therefore, they will only be briefly described now and then
omitted in other sections of this chapter. These projects are:

• Setup – is responsible for generating a Windows installer for the PaunPacker
and it requires WiX Toolset [28].

• Documentation – is responsible for generating a documentation, this project
requires Sandcastle Help File Builder [29].

PaunPacker.Core contains tool-set for plugin development, notably: interfaces
and several implementations of packing related algorithms. PaunPacker.GUI con-
tains the WPF packing application. Tests part consists of several other projects
that are testing certain algorithms or other parts from PaunPacker.Core and they
are placed inside Tests folder and within PaunPacker.Tests namespace. Plugins
part consists of plugins that export functionality from PaunPacker.Core. All
this functionality could be exported directly from PaunPacker.Core but it was

61

https://wixtoolset.org/
https://github.com/EWSoftware/SHFB

decided not doing so, and rather, separate the export into plugins. This separa-
tion brings two benefits: first, plugins could have a WPF view associated with
them without breaking PaunPacker.Core’s compatibility with .NET Standard,
and second, plugin loading logic could be reused and thus either decreasing the
amount of additional logic needed inside either PaunPacker.GUI or eliminating
the use of MEF attributes inside PaunPacker.Core. The detailed description of
these parts will be given later in this chapter (sections: 4.3, 4.4, 4.6, 4.7).

All the projects are targeting .NET Standard 2 whenever possible, but some-
times it is not possible—for example, when the assembly depends on WPF—and
in that case the target framework is .NET Core 3. The prerequisites for this
solution are Visual Studio 2019 and .NET Core 3 preview 5 SDK.

4.1 NuGet package dependencies
The projects in PaunPacker solution depend on several NuGet packages. These
packages are described in Table 4.1.

Actually, there are more NuGet package dependencies but the remaining ones
are related to tests (for example, Microsoft.NET.Test.Sdk.dll) and therefore
they will not be listed or described here.

62

Package Description

SkiaSharp
SkiaSharp.dll NuGet package contains the SkiaSharp library that was

already mentioned in Section 3.3.
Unity

Unity is the IoC container that is used in the PaunPacker (aparat from the
unity container, this package also installs Unity.Abstractions.dll that
contains some handy extension methods, particularly: RegisterFactory

that is used extensively in the PaunPacker).
Microsoft.CodeAnalysis.FxCopAnalyzers

This NuGet package contains Roslyn analyzers that perform static analysis
of the code and report potential issues regarding performance, security, etc.

Prism.Core & Prism.Wpf
Prism.Core.dll and Prism.Wpf.dll NuGet packages provide access to

Prism’s features (Prism.Wpf.dll is now finally .NET Core 3 compliant and
it provides, for example, the RegionManager). There also exists a NuGet

package Prism.Unity.dll which offers functionality for using Prism together
with Unity container but this package is not used (although initially it was
used) because it internally uses an old version of Unity that does not have

RegisterFactory method. However, the decision to stop using the
Prism.Unity.dll has led to certain workarounds that were needed to be

done. These workarounds are described later, in Section 4.4.10. At the time
of writing this thesis, the pre-release version of Prism.Wpf.dll NuGet
package had to be used because the release version was not .NET Core

compliant.
System.Composition

System.Composition.dll contains a .NET Standard compliant version of
the original MEF implementation (that was contained within
System.ComponentModel.Composition.dll NuGet package).

MoreLinq
MoreLinq.dll package provides some additional extension methods for
LINQ. This package is used in packing algorithms mostly because of its

MinBy method that allows to select an object from IEnumerable that has a
minimum key where the key is selected by a delegate.

Table 4.1: NuGet packages

63

4.2 PaunPacker’s workflow revisited
A high-level overview of PaunPacker’s workflow was already given in sub-section
3.2.2 (together with an illustration in Figure 3.3) and now it is time to describe the
workflow in greater detail. The more detailed overview of PaunPacker’s workflow
is depicted in Figure 4.2.

View Models

App

User

interacts

imports modular components

PaunPacker.Core

[Export]
class Y:IPlacementAlgorithm

[Export]
class X:IImageSorter

[Export]
class MBBF1:IMinimumBoundingBoxFinder

Plugins

...

...

[Export]
class MBBF2:IMinimumBoundingBoxFinder

[Export]
class B:IMetadataWriter

SelectedMBBF
MBBF1
MBBF2

generate

Texture atlas

Metadata

+

Y

...
(more settings)

Pa
ck

ing
Result

MetadataCollection

SelectedMetadataWriter

Main window

TextureAtlas

Models

BitmapManager

LoadedTextures

load textures

Figure 4.2: An overview of PaunPacker’s workflow

As can be seen from Figure 4.2, there is a class called App that is responsible for
importing all the modular components that are exported by the plugins and also
the basic packing algorithm implementations from PaunPacker.Core assembly.
These imported types are then rendered in the main window so that the user is
able to select which algorithms to use.

When the user interacts with the PaunPacker’s GUI (namely with the main
window) these interactions are passed from the main window to the main win-
dow’s view model (MainWindowVM) which then handles these interactions appro-
priately. The user’s interaction typically starts by loading the input textures and
the MainWindowVM handles this request by using BitmapManager.

When the user wants to generate texture atlas and clicks on the generate
button, the MainWindowVM uses the selected minimum bounding box finder to
pack the loaded textures which results in the instance of PackingResult class.
The PackingResult class represents the result of the packing. It is a lightweight
immutable class that only remembers rectangles inside the packing (including
their positions) and the dimensions of the bounding box. The PackingResult is
also used to create an instance of TextureAtlas class which represents a texture
atlas. TextureAtlas has certain properties for retrieving information about tex-

64

ture atlas (width, height, rectangles contained within the texture atlas and the
bitmap representing the texture atlas) and again, this class is immutable.

A relationship between PackingResult, TextureAtlas, ImageMetadata and
MetadataCollection is depicted in Figure 4.3.

ImageMetadata

ImageMetadata

ImageMetadata

...

MinimumBoundingBoxFinder

produces

cr
ea

te
d

fr
om

MetadataCollection

crea
ted fro

m

contains

Figure 4.3: The relationship between PackingResult, TextureAtlas
MetadataCollection and ImageMetadata.

Once the PackingResult is created, a MetadataCollection is created from
it and then the MetadataCollection is serialized to a selected file using the
selected metadata writer. The MetadataCollection class represents the meta-
data of the texture atlas and it further consists of individual ImageMetadata
(attribute, value pairs). The MetadataCollection can only be constructed by
calling its constructor that takes TextureAtlas as its only parameter. The passed
TextureAtlas is traversed and for each rectangle within the TextureAtlas in-
stance of ImageMetadata is created and appended to the MetadataCollection.

The individual parts of this workflow are going to be described thoroughly in
the rest of this chapter. However, it does not seem appropriate to describe every
implementation detail, so instead, it was decided to describe the main concepts
and core ideas that are used in the PaunPacker.

4.3 PaunPacker.Core
The PaunPacker.Core project contains interfaces that are representing individ-
ual, packing-related parts:

• Image sorters (IImageSorter)

65

• Placement algorithms (IPlacementAlgorithm)
• Minimum bounding box finders (IMinimumBoundingBoxFinder)
• Image processors (IImageProcessor)
• Metadata writers (IMetadataWriter)

together with additional packing-related types (most importantly TextureAtlas
and MetadataCollection). Building this project yields a .NET Standard 2.0
dynamic library (.dll)

The PaunPacker.Core also contains IProgressReporter interface which is
inherited by all the previously mentioned interfaces except for IImageSorter and
IImageProcessor.

4.3.1 Representation of a rectangle
In Chapter 3 it was stated that it is better to perform the packing with rectangles
instead of images and that the rectangle should somehow remember the image
it corresponds to. For this reason, PaunPacker.Core also contains the PPRect1

class that represents a rectangle and also holds a reference to the corresponding
image. This reference could be null and in that case, it is simply a rectangle
(this is useful when generating test cases). PPRect works as a wrapper around
SKRect and the image reference is of type PPImage—that is another wrapper,
around SKBitmap. PaunPacker internally uses types from SkiaSharp heavily, but
there was an effort to eliminate the presence of these types in public API.

4.3.2 Metadata export
Metadata could be exported using any of the classes implementing IMetadata-
Writer interface. IMetadataWriter has single method called WriteAsync that
takes path where the metadata will be written to, path of the corresponding
texture atlas, MetadataCollection containing the metadata, and the last, op-
tional parameter is a CancellationToken. The particular implementation of this
class then outputs metadata in an appropriate format. The WriteAsync method
returns Task.

4.3.3 Packing process representation
As it was already mentioned, the whole packing is decomposed into three parts
operating on the input rectangles: sort, placement, minimum bounding box find-
ing and these are respectively represented by the following:

• IImageSorter
• IPlacementAlgorithm
• IMinimumBoundingBoxFinder

The IImageSorter interface has a single method SortImages that takes in-
put rectangles as IEnumerable<PPRect> and returns these rectangles in a par-
ticular order. The implementations of IImageSorter that are included within
PaunPacker.Core are:

1The prefix PP is an abbreviation for PaunPacker.

66

• ByHeightAndWidthImageSorter
• ByHeightAndWidthImageSorterDesc
• PreserveOrderImageSorter

The way how these implementations work should be pretty straightforward from
their name, except for the PreserveOrderImageSorter that simply does not sort
the input rectangles at all, i.e., it simply returns the input rectangles.

The PreserveOrderImageSorter is useful, for example, when developing a
minimum bounding box finder and using some packing algorithm that requires
IImageSorter, when the developer of the minimum bounding box finder wants to
provide a certain order of input rectangles and give it to the placement algorithm,
the developer could parameterize the placement algorithm by PreserveOrder-
ImageSorter and sort the sequence using some different algorithm (potentially
without dealing with IImageSorter at all) and then pass the sorted sequence to
the placement algorithm.

The IPlacementAlgorithm interface has a single method accepting four ar-
guments, where the first two arguments are width and height of the bound-
ing box to which the placement will be done the third parameter are the input
rectangles given as IEnumerable<PPRect> and the last, optional parameter is
the CancellationToken. PaunPacker.Core contains several implementations of
placement algorithms, namely:

• BLAlgorithm
• SkylineAlgorithm
• GuillotineAlgorithm
• MaximalRectanglesAlgorithm

In addition to IImageSorter, the GuillotineAlgorithm is parameterizable
by the following interfaces:

• IFreeRectangleExtractor
• IFreeRectangleSplitter
• IFreeRectangleMerger
• IRectOrientationSelector
• IFreeRectanglePostProcessor

that are allowing to parameterize the individual steps of the algorithm (some of
the parameterizable steps were already mentioned in Section 2.2.1). Due to the
possibility of this parameterization, the MaximalRectangles algorithm is just
GuillotineAlgorithm with a particular parameterization of the steps, specifi-
cally:

• MaxRectsFreeRectangleSplitter
• MaxRectsFreeRectangleSortedMerger
• MaxRectsFreeRectanglePostProcessor

The IMinimumBoundingBoxFinder interface has also a single method that
accepts IEnumerable<PPRect> of input rectangles and a CancellationToken.
The reason for accept CancellationToken is that it is expected for a minimum
bounding box finder algorithms to run longer and therefore it could be useful to
be able to interrupt them. The PaunPacker.Core contains three implementations
of this interface, namely:

67

• FixedSizePacker – packs the rectangles into a bounding box with fixed
dimensions.

• PowerOfTwoSizePacker – packs the rectangles into a bounding box with
dimensions which are minimal and in powers of two.

• UnknownSizePacker – packs the rectangles into a bounding box with di-
mensions which are minimal.

All these implementations are parameterizable by the IPlacementAlgorithm.
Finally, there is a GeneticMinimumBoundingBoxFinder that implements the

genetic packing algorithm and is also parameterizable by IPlacementAlgorithm.
It is advised that whenever implementing IPlacementAlgorithm, the imple-

menting class should accept IImageSorter as one of its constructor parameters
and that whenever implementing IMinimumBoundingBoxFinder the implement-
ing class should accept IPlacementAlgorithm as one of its constructor parame-
ters. This kind of parameterization is highly recommended (in order to provide
maximum flexibility and code reusability) and therefore all the algorithms that
are contained within PaunPacker.Core adhere to this recommendation. On the
other side, this parameterization is not forced so it is allowed to create non-
parameterizable minimum bounding box finders and placement algorithms (and
sometimes it could make a good sense).

4.3.4 Representation of image processors
Image processors are represented by the IImageProcessor interface that has a
single method accepting SKBitmap with an optional CancellationToken and re-
turning new (modified) SKBitmap. PaunPacker.Core also includes three abstract
base classes:

• BackgroundRemoverBase
• ColorTypeChangerBase
• TrimmerBase

that could be used when developing new implementations of these common image
processors. The PaunPacker.Core itself includes an implementation of each of
these base classes plus the following implementations:

• Extruder
• CroppingTrimmer
• PaddingAdder

These implementations does not have any corresponding base classes because they
are either reusing existing implementations of previously mentioned base classes
or it did not seem to make sense having base classes for them. For example, there
are not many ways how the Extruder could replicate the border pixels. This
is very different from the BackgroundRemover where there are several ways of
removing background, ranging from very simple to very complex algorithms.

68

4.4 PaunPacker.GUI
Building this project yields a .NET Core 3 executable (.exe). This project
contains the views, view models and models (models are the types from Paun-
Packer.Core e.g. TextureAtlas) and logic for loading the plugins.

4.4.1 Application’s entry point
The entry point main method is contained within a class called App inside App.cs.
The main method starts by showing a splash screen and then creating an instance
of App and calling the App’s Run method. The App represents a whole application
and it is a subclass of Prism’s PrismApplication. The working steps of App are
the following:

1. CreateModuleCatalog
2. RegisterTypes
3. CreateShell
4. InitializeModules

The CreateModuleCatalog traverses all the .dll files inside the specified
folder (call it plugins folder) and attempts to load each one of them, then it enu-
merates all the types within the loaded assembly that are implementing IModule
interface and that are not abstract. These types are then added to the so-called
ModuleCatalog.

Next, because it was decided to also the allow use of MEF (because it provides
a very simple and concise way to export plugins) this method also creates a new
instance of ContainerConfiguration adds the found assemblies to it and then
creates the MEF container (CompositionHost) from this configuration. This
allows importing all the plugins that are decorated by MEF’s Export attribute.

The RegisterTypes serves for additional registration of types that will be
later used by the application. The App class used this method to register an
instance of RegionManager—which is responsible for region manipulation—and
several dialogs.

The CreateShell should create the so called ”shell”. In the case of Paun-
Packer, the ”shell” is simply an object of a type inheriting from the Window,
specifically, an instance of MainWindow. The CreateShell method therefore cre-
ates MainWindow and most importantly, sets the DataContext property of this
window to a new instance of MainWindowViewModel to wire the view (Main-
Window) to its view model (MainWindowViewModel).

The InitializeModules is responsible for module initialization. This method
starts with a call to base class’ implementation of InitializeModules that in-
stantiates the plugins—non-abstract classes implementing IModule interface—
and then calls the two methods—RegisterTypes, OnInitialized—given by this
interface on these plugins. The meaning of RegisterTypes, OnInitialized will
be described later, in Section 6.1. After calling them—when the plugins have
been initialized—the types exported from plugins are extracted and passed to
the MainWindowViewModel so that the MainWindow could show them. An extrac-
tion of plugins is shown below, in Listing 5. These exported types comes from
two sources, first, each plugin gets an instance of IUnityContainer that can

69

be used for registrations, and second, the MEF automatically imports the types
decorated by the Export attribute.

A third potential source of types is the application itself, meaning that some
types that are part of PaunPacker.Core and initially they were exported di-
rectly from the PaunPacker.Core using the MEF’s Export attribute, but this
turned out to be a wrong approach is it polluted the PaunPacker.Core with the
Export attributes and added a dependency on the MEF. The second approach
that was taken was to instantiate some types from PaunPacker.Core inside the
PaunPacker.Core and add them to the rest of the loaded types. However, this
approach also turned out to not to be the best. The last approach that was taken
as a final solution was to create a plugin which would export the types, in other
words, this approach is same as the previous one, but instead from exporting from
PaunPacker.GUI, the export happens inside the standalone plugin. The last ap-
proach seems superior to the other two approaches because it does not pollute
the PaunPacker.Core and it also allows to reuse the plugin loading mechanism.
More details about exporting the extensible components will be given in Section
4.4.14.

1 //...
2 //All the placement algorithm instances
3 var placementAlgorithms = mefContainer.GetExports<IPlacementAlgorithm>()
4 .Concat(corePlacementAlgorithms);
5 //Get All exported types (from both mefContainer & unityContainer)
6 var placementAlgorithmTypes = placementAlgorithms
7 .Select(x => x.GetType())
8 .Concat(UnityContainer.Registrations.Select(x => x.RegisteredType)
9 .Where(x => typeof(IPlacementAlgorithm).IsAssignableFrom(x) &&

10 !x.IsAbstract &&
11 !x.IsInterface));
12 //Set the types to the view model of main window
13 mainWindowVM.PlacementAlgorithmTypes = placementAlgorithmTypes;

Listing 5: An example of extracting plugin’s exported types.

The Listing 5 shows a type extraction of all the classes implementing the
IImageSorter from the loaded plugins. First the instances of IImageSorter
implementations from PaunPacker.Core are created, then more instances of
IImageSorter are exported from MEF container. From these instances, their
types are extracted and concatenated with types registered in Unity container. It
is intentional that types and not instances are exported from the Unity container,
because it was decided to allow register type factories in order to provide higher
flexibility (so instance may vary at runtime). The similar registration routine is
done for all the modular parts, that is, IImageSorter, IPlacementAlgorithm,
IMinimumBoundingBoxFinder, IMetadataWriter, IImageProcessor.

70

After all the types from loaded plugins have been exported, the views for all
exported IPlacementAlgorithm and IMinimumBoundingBox types are extracted,
registered to the appropriate region (via RegionManager) and set to hidden (they
will be turned to visible based on the user selection in GUI). The export of views
and region registration is shown in Listing 6.

1 //...
2 //Get views for PlacementAlgorithms, register them and hide all of them
3 collection = regionManager.Regions[RegionNames.PlacementAlgorithmsRegion];
4 foreach (var placementAlgorithm in mainWindowVM.PlacementAlgorithmTypes)
5 {
6 var view = UnityContainer.Resolve<UserControl>(PluginViewWiring
7 .GetViewName(placementAlgorithm)
8);
9 if (view != null)

10 {
11 collection.Add(view,
12 PluginViewWiring.GetViewName(placementAlgorithm));
13

14 collection.Deactivate(view);
15 }
16 }

Listing 6: An example of extracting plugin’s exported types.

The code in Listing 6 attempts to extract a view for each of the exported
placement algorithm types, register this view into PlacementAlgorithmsRegion
and set it to invisible.

At the end of the InitializeModules method, an event signaling the finished
plugins loading and initialization is published using a Prism’s IEventAggregator.
Finally, the Initialize method on the main window’s view model is called. The
publishing of ModulesLoadedEvent is shown in Listing 7.

Listing 7 shows an example of using IEventAggregator to publish an event,
in this case, the event is ModulesLoadedEvent and its payload is ModulesLoaded-
Payload that contains all the types that were exported from loaded plugins. All
the subscribers of this event will get notified that the plugins were loaded suc-
cessfully, allowing, for example, to subscribe to this event inside some plugin and
react appropriately (the reasons why this might be useful will be demonstrated
later in Chapter 6.

71

1 //...
2 var eventAggregator = UnityContainer.Resolve<IEventAggregator>();
3 eventAggregator.GetEvent<ModulesLoadedEvent>()
4 .Publish(new ModulesLoadedPayload(
5 imageSorterTypes
6 .Concat(placementAlgorithmTypes)
7 .Concat(minimumBoundingBoxFinderTypes)
8 .Concat(metadataWriterTypes)
9 .Concat(imageProcessorTypes)

10));
11 mainWindowVM.Initialize();

Listing 7: An example of publishing an event.

72

4.4.2 Views
The views are located in PaunPacker.GUI.Views namespace and they are either
UserControls, Windows or Regions (regions then contain UserControl). The
most important view is MainWindowView that represents the whole main win-
dow of the application and it consists of several other views that are recursively
composed of other views. The view whole structure of view composition inside
PaunPacker.GUI is depicted in Figure 4.4.

MetadataWritersRegion

MinimumBoundingBoxFinderRegion

ImageSortersRegion

PlacementAlgorithmsRegion

PlacementImageSortersRegion

LoadedImagesTreeView

loaded img1
loaded img2

...

ImageView

TextureAtlasView
ImageProcessorsRegion

Transparent layer above

Loaded plugins dialog
LoadedPluginsView

MainWindowView

Figure 4.4: Illustration of view composition in PaunPacker.GUI

Figure 4.4 shows how MainWindowView is composed from several other views.
The orange rectangle contains a TextureAtlasView plus a thin, transparent

layer above the TextureAtlasView. This layer is used to highlight certain parts
(more specifically the rectangles that the user have clicked on) of the texture
atlas.

The yellow rectangle contains a ImageProcessorsRegion, that is the place
where all the loaded image processors that have a view associated with them are
rendered.

73

The left part of this Figure contains five more regions, for the remaining
extensible components. These regions are the following:

• MetadataWritersRegion
• MinimumBoundingBoxFinderRegion
• ImageSortersRegion
• PlacementAlgorithmsRegion
• PlacementImageSortersRegion

The regions from the list above are used for rendering the corresponding extensible
components (again, only those that have a view associated with them).

On top of the main window there is a menu and this menu allows to show a
dialog with loaded plugins. This dialog shows the plugins that were loaded by
the PaunPacker together with some information about these plugins.

Lastly, on the top-right of the main window, there is a LoadedImagesTreeView
that displays all the images that are loaded inside the PaunPacker (their thumb-
nail and file name are shown). This view is further composed of ImageViews that
shows the thumbnail of the loaded image.

4.4.3 Data binding, INotifyPropertyChanged and
ObservableCollection

In PaunPacker.GUI, the data binding is used to bind the properties of the view
model to the attributes (in XAML) of the corresponding view. To get the data
binding work properly, the view model should send a notification whenever the
bound property has changed. This is achieved by implementing the INotify-
PropertyChanged interface and raising the NotifyPropertyChanged event. This
applies generally to all the view models so because it is so frequent, it was de-
cided to create an abstract base class called ViewModelBase that inherits from
the INotifyPropertyChanged. The ViewModelBase class is located in Paun-
Packer.GUI.WPF.Common project and it will be described in greater detail later,
in Section 4.5. All the view models should implement this base class.

Sometimes the view binds an attribute to some collection instead of a single
view model’s property, for example, some views bind and ItemSource attribute.
The problem is that when the bound collection changes in the sense that some
item was added/removed from the collection, the view does not get notified about
this change. To solve this issue and avoid calling NotifyPropertyChanged event
at every place where some item is added or removed from the collection, the
ObservableCollection is used. The ObservableCollection sends a notifica-
tion whenever the collection itself was modified (item was added or removed). The
ObservableCollection is used in, for example, LoadedImagesTreeViewModel.

4.4.4 Commands
In order to avoid the code in code-behind, PaunPacker.GUI uses commands in-
stead of click events whenever possible. For example, instead of defining OnClick
event on a Button control, a command could be created and then bound (thanks
to the WPF’s data binding capability) to the button. The command is repre-
sented by the ICommand interface and whenever the button is clicked, the com-

74

mand gets executed. Commands are created inside the view model thus elim-
inating the need to pollute view’s code-behind. PaunPacker.GUI contains an
implementation of ICommand interface called RelayCommand (more information
about commands and RelayCommand can be found at MSDN website [30]).

4.4.5 Behaviors
In some situations, the event could not be handled by using commands, for exam-
ple, the mouse wheel event cannot be handled with them. However, this situation
could be solved by using a concept called Behavior. The PaunPacker.GUI con-
tains two behaviors:

• MouseClickBehavior
• MouseWheelBehavior

The MouseClickBehavior is defined for a UserControl and it is used on
the TextureAtlasView. It simply handles the mouse click event that occurs
on the TextureAtlasView and processes the event by highlighting the rectangle
(within the texture atlas) that was clicked on (if any). The MouseWheelBehavior
is defined on the MainWindowView and it handles the mouse wheel event and
processes it by zooming in/out the texture atlas.

Using the behaviors in addition to the commands has led to the consequence
that the views have roughly zero code in their code-behinds (only the mandatory
InitializeComponent() and the partial class declaration are present).

4.4.6 Converters
Converters are used to convert from one type (referenced from XAML) to another
type that possibly has better visual interpretation.

For example, PaunPacker.GUI often uses the NullToVisibilityConverter
that obtains a reference to an object and whenever this reference is null it returns
the Visibility.Collapsed value. Otherwise, it returns Visibility.Visible.
This converter is useful when some control references (by data binding) a member
within its view model so that whenever this member is null, nothing is shown and
when it is not null, the member should be shown (with a possible replacement
by its view if an appropriate date template was defined). Converting the null to
Visibility.Collapsed also has an effect that the hidden control will not take
a space in the layout.

There are several other converters (BooleanToVisibilityConverter, Type-
ToPluginInfoConverter, etc.), but the underlying principle is the same so they
are not going to be described.

4.4.7 Events
When developing with MVVM pattern, there often comes a need to perform
communication between the individual view models and this was also the case
for PaunPacker.GUI. It was decided to use events for the inter-ViewModel com-
munication because the Prism offers an EventAggregator that allows doing this
easily. There are two events defined in PaunPacker.GUI:

75

1. RectanglesSelectedEvent
2. UnloadImageEvent

The first event is published by the TextureAtlasViewModel when the user se-
lects any of the rectangles inside the texture atlas. And this event is later pro-
cessed by the MainWindowViewModel that processes the selected rectangles (im-
ages) and replaced the view model representing all the loaded images it holds
with a new view model that contains the processed rectangles (images). The
UnloadImageEvent is published by the LoadedImagesTreeViewModel (the user
sees the images that are loaded and can unload them) and later processed by the
AllRectanglesViewModel.

4.4.8 Services
The view models sometimes need to allow the user to select some files, folders
that should be opened or select a path where the file should be saved. In or-
der to do this and at the same time, to avoid polluting the view models with
a platform-specific code (dialogs, windows) the services are used. The idea is
to move this platform-specific code to the services. As an example, consider a
situation where the user clicks on the ”Load file(s)” button. This click would
execute the associated command in the view model and the view model should
handle it. What is important, is the fact that at the end of the user interac-
tion, the view model should obtain the file path(s) of the files that the user has
selected. And what happens in-between does not matter for the view model.
So instead of showing the dialog from the view model, the view model simply
uses the OpenFileService and obtains these file paths regardless of how the
OpenFileService is implemented. This situation is illustrated in the Listing 8.

1 loadFileCommand = new RelayCommand((_) =>
2 {
3 var service = new Services.OpenFileService(
4 Common.FileFilters.IMAGE_EXTENSION_FILTER);
5 var files = service.GetFiles();
6 if (files != null)
7 {
8 // Do something with the files
9 }

10 }, (_) => true);

Listing 8: Illustration of OpenFileService.

The Listing 8 shows the handling of the event which is caused by the user click-
ing on the ”Load file(s)” button. The event is handled from the loadFileCommand
by using the OpenFileService that only allows to return file paths with a
IMAGE EXTENSION FILTER extension.

Note that the current implementation of the OpenFileService simply shows
the OpenFileDialog with an appropriate file extension filter and then return the
paths of the files the user has selected.

76

4.4.9 Dialogs
Sometimes it is useful to show a simple dialog displaying some message—possibly
a notification or an error—to the user. As it was already mentioned in the
previous Section 4.4.8 it is undesired to pollute the view models with platform-
specific dialogs or to use a view related parts (instantiating windows) directly
from the view models.

Fortunately, the Prism recently come up with a IDialogService [31] that al-
lows creating dialogs that could be designed in an arbitrary way. PaunPacker.GUI
contains several dialogs, for example, the MessageDialog that allows showing a
dialog with a given message. An example of using dialogs inside the PaunPacker
is shown in Listing 9.

1 var parameters = new DialogParameters()
2 {
3 { MessageDialogParameterNames.Title, title},
4 { MessageDialogParameterNames.Message, message }
5 };
6 dialogService.ShowDialog(DialogNames.MessageDialog, parameters, (x) => { });

Listing 9: Illustration of OpenFileService.

The code in Listing 9 shows a notification dialog with a given message and
title.

4.4.10 Workarounds
The PaunPacker.GUI contains two workarounds that were needed to be done in
order to maintain the .NET Core compliance of the project. These workarounds
are the SkiaSharpExtensions and PrismApplication that are both located in
the PaunPacker.GUI.Workarounds namespace.

The SkiaSharpExtensions is a static class that contains several methods for
converting the SKBitmap and SKImage to WriteableBitmap that could further be
processed and displayed in the WPF controls. These extensions are WPF specific
and they are included inside SkiaSharp.Views NuGet package together with other
platform-specific classes. The problem with this NuGet package is that it is not
.NET Core compliant. Because only these conversion methods were needed, it
was decided to pick them from the SkiaSharp’s GitHub repository [32] instead of
using the NuGet package and violating the .NET Core 3 compliance.

The PrismApplication was partially taken from Prism’s GitHub reposi-
tory [33] and normally it is acquired by installing the Prism.Unity NuGet pack-
age but this approach did not suit the PaunPacker.GUI’s needs. The reason for
this workaround is the fact that the version of unity container used by Prism
(Prism.Unity) is older than the one in Unity NuGet package and it does not
contain Unity.Abstraction which contains useful extension methods, namely,
RegisterFactory. Because of the lack of an ability to register a factory, it was
decided to create a custom PrismApplication that will internally use the unity
container taken from Unity NuGet package.

77

4.4.11 Resources
The PaunPacker.GUI project contains a directory called Resources that contains
all the WPF’s .xaml resources (resource dictionaries). The resources typically set
x:key attribute for the converters and also creates a data template that ensures
that whenever a ViewModel should be rendered, its view will get rendered instead.
These two scenarios are shown in Listing 10.

<vc:NullToVisibilityConverter x:Key="NullToVisibilityConverter"/>

<DataTemplate DataType="{x:Type vm:TextureAtlasViewModel}">
<vw:TextureAtlasView/>

</DataTemplate>

Listing 10: Converters and data templates inside resource dictionary

The Listing 10 shows a part of a resource dictionary. At the beginning of
this resource dictionary, an x:key attribute is assigned to the NullToVisibility-
Converter making it accessible by only specifying NullToVisibilityConverter
within XAML (without the namespace). Then the DataTemplate is created that
specifies that whenever a TextureAtlasViewModel should be rendered—for ex-
ample, when it is set as a content of some control—the TextureAtlasView should
be rendered instead.

There are few more resource directories, but they usually contain a similar
kind of code. The only exception is the MainWindowResources.xaml that con-
tains something more, namely some Styles and ObjectDataProviders. The
Styles handle different states of the Progress bar that is displayed in the Main-
Window when the texture atlas is being generated. When the texture atlas is
being generated, the color of the progress bar is green and when the user cancels
the generation, its color turns red, this and similar effects are handled by the
Styles. The ObjectDataProviders are used to obtain all the possible values
from certain enums (one of them is SKColorType for example). The extracted
values are then displayed inside the MainWindow. It does not seem appropriate
to describe these concepts in greater detail and this kind of brief overview should
be sufficient for the developers.

4.4.12 ViewModels
Each view has its corresponding view model that is responsible for event handling,
giving the data that should be displayed to the view and another logic behind
the view. The data are transferred to the view using the data binding and the
events are handled by using the commands and behaviors as described above.

4.4.13 Exported types instantiation
The user of PaunPacker is able to select the algorithms for packing, image pro-
cessors, metadata writers and other extensible components that should be used
for the texture atlas creation. Once the extensible components are loaded from

78

the plugins, they are passed to the MainWindowViewModel to properties that are
bound to the MainWindowView. Therefore the user is able to select any of these
extensible components (via the interaction with the GUI).

However, the controls in the MainWindowView does not contain the whole
instances of these extensible components, but only their types2—imagine a combo
box whose ItemSource is bound to the collection of Types. It is a responsibility
of MainWindowViewModel to create an instance of the types selected by the user
and then use them. Because these types may have dependencies (as it was already
described in Section 4.3.3) it is not (at least not easily) possible to create these
instances directly using the reflection. So instead, the Unity container is used to
resolve the type that the user has selected as illustrated in Listing 11.

1 //In MainWindowViewModel's constructor
2 IoC.RegisterFactory<IMinimumBoundingBoxFinder>((_) =>
3 {
4 return childContainer.Resolve(MinimumBoundingBoxFinderVM.ExportedType)
5 as IMinimumBoundingBoxFinder;
6 });
7 //In MainWindowViewModel before generating the atlas
8 MinimumBoundingBoxFinder = IoC.Resolve<IMinimumBoundingBoxFinder>();
9 //Somewhere in a plugin

10 IoC.RegisterFactory<MinimumBoundingBoxFinderImpl>((_) =>
11 {
12 return new MinimumBoundingBoxFinderImpl(param1, ...);
13 });

Listing 11: Resolving the user selected types

The Listing 11 shows a resolution of a MinimumBoundingBoxFinder that will
eventually be used to create the texture atlas.

4.4.14 Export of built-in extensible components
All the implementations of extensible components that are provided by Paun-
Packer are implemented in the PaunPacker.Core and they were initially exported
directly from there by using the MEF’s Export attribute. The downside of that
approach was adding a dependency on MEF to the PaunPacker.Core which was
undesired because it seems like the wrong design.

The design of exporting built-in extensible components was later changed and
currently, these implementations are exported from the following plugins:

• DefaultImplemtationsProviderPlugin exports almost all the types that
are implemented in the PaunPacker.Core except for skyline algorithm, guil-
lotine algorithm and fixed size minimum bounding box finder. This plugin

2These types are then converted by using TypeToPluginInfoConverter to a more readable
and meaningful format

79

also contains views for image processors that need it, for example, the ex-
truder has a view which allows the user to specify the number of pixels that
should be added around the borders of the texture.

• SkylineAlgorithmProviderPlugin exports the skyline algorithm together
with some other types used by the algorithm. This plugin also contains a
view which allows the user to parameterize the skyline algorithm by select-
ing one of the available implementations of ISkylineRectAndPointPicker
interface. Note that the implementations of ISkylineRectAndPointPicker
itself could be exported from other plugins.

• GuillotineAlgorithmProviderPlugin works similarly to the above men-
tioned SkylineAlgorithmProviderPlugin. It exports the skyline algo-
rithm and several types used to parameterize the guillotine algorithm. The
plugin also exports the view which allows the user to select the concrete
implementations that should be used to parameterize the guillotine algo-
rithm.

The implementations itself are still located in the PaunPacker.Core, but these
plugins were created in order to load them and then export them. This has a
nice consequence that (almost) all the algorithms are exported from plugins and
therefore there is no need for some exceptions and special handling of certain
types. The following Listing 12 illustrates by the example of skyline algorithm,
how the types implemented inside the PaunPacker.Core are exported from a
plugin.

1 public void OnInitialized(IContainerProvider containerProvider)
2 {
3 unityContainer = containerProvider.Resolve<IUnityContainer>();
4

5 //Register known RectAndPointPickers
6 unityContainer.RegisterType<LightweightRectAndPointPicker>();
7 unityContainer.RegisterType<MinimalAreaWasteRectAndPointPicker>();
8

9 //Register the Skyline algorithm
10 unityContainer.RegisterType<SkylineAlgorithm>();
11

12 //Register the OnModulesLoaded event
13 var eventAggregator = unityContainer
14 .Resolve<IEventAggregator>();
15 eventAggregator.GetEvent<ModulesLoadedEvent>()
16 .Subscribe(OnModulesLoaded);
17 //...
18 }

Listing 12: Exporting the types from SkylineAlgorithmProviderPlugin

80

The Listing 12 shows a part of plugin entry-point’s OnInitialized method
that exports the skyline algorithm and its dependencies. The registered event
handler OnModulesLoaded first exports the view and then loads all the ISkyline-
RectAndPointPickers that were loaded from other plugins. This can be seen in
Listing 13.

1 private void OnModulesLoaded (ModulesLoadedPayload payload)
2 {
3 var view = new SkylineAlgorithmView()
4 {
5 DataContext = new SkylineAlgorithmViewModel(payload
6 .GetLoadedTypes<ISkylineRectAndPointPicker>()
7 .Concat(unityContainer.Registrations
8 .Select(x => x.RegisteredType)
9 .Where(x =>

10 typeof(ISkylineRectAndPointPicker).IsAssignableFrom(x) &&
11 !x.IsAbstract &&
12 !x.IsInterface))
13 .Distinct(), unityContainer)};
14

15 unityContainer.RegisterInstance<UserControl>(
16 PluginViewWiring.GetViewName(typeof(SkylineAlgorithm)), view);
17 }

Listing 13: Exporting the view for Skyline algorithm

The code in Listing 13 creates a view and its view model which gets all the
available types that are implementing the ISkylineRectAndPointPicker.

Lastly, the view model registers the implementation of the ISkylineRect-
AndPointPicker that is currently selected by the user (via the view) into the
container as the ISkylineRectAndPointPicker and that implementation will be
used when resolving the skyline algorithm from the container. For completeness,
the part of code responsible for the aforementioned export is shown in the Listing
14.

The meaning of OnInitialize method and other constructs used in the List-
ings 12 and 13 will be clarified later, in Chapter 6. Similar code is also present
at other places, for example, in the GuillotineAlgorithmProviderPlugin, but
they will not be presented in this thesis. The reason for presenting this piece of
code was to provide an example—that could be useful for plugin developers—of
how it is done in the PaunPacker.

It should be mentioned, that all the previously mentioned types could be ex-
ported from the DefaultImplementationsProviderPlugin and the reason why
it was split, was an effort to show how flexible the plugin loading is and to provide
useful examples of dealing with plugins for future plugin developers.

The reason why the fixed minimum bounding box finder is exported from
PaunPacker.GUI is its dependence on text boxes from the main window, that
are describing the dimensions (the fixed size) of the bounding box. But again, it

81

1 public SkylineAlgorithmViewModel(
2 IEnumerable<Type> loadedISkylineRectAndPointPickerTypes,
3 IUnityContainer unityContainer
4)
5 {
6 SkylineRectAndPointPickerVMs = loadedISkylineRectAndPointPickerTypes
7 .Select(x => new RectAndPointPickerViewModel(x));
8

9 unityContainer.RegisterFactory<ISkylineRectAndPointPicker>((_) =>
10 {
11 try
12 {
13 var picker = unityContainer
14 .Resolve(SelectedRectAndPointPickerVM.RectAndPointPickerType)
15 as ISkylineRectAndPointPicker;
16 picker ??= new MinimalAreaWasteRectAndPointPicker();
17 return picker;
18 }
19 catch (ResolutionFailedException)
20 {
21 //Return default implementation
22 return new MinimalAreaWasteRectAndPointPicker();
23 }
24 });
25 }

Listing 14: Registers the selected implementation of the
ISkylineRectAndPointPicker

could have been implemented in a separate plugin with an additional view.

4.5 PaunPacker.GUI.WPF.Common
This project contains functionality that can be useful when creating WPF views.
Because the plugin developers may also want to create WPF views, it was decided
to take this functionality outside of the PaunPacker.GUI. It could be tempting
to say that the functionality could be moved to the PaunPacker.Core but that
would only pollute the PaunPacker.GUI with platform-specific code and more
importantly, it would break its .NET Standard compliance.

This functionality includes the following types:

• ModulesLoadedEvent
• ViewModelBase
• PluginViewWiring

The ModulesLoadedEvent is published when all the modules have been loaded
by the App and their initialization methods were called. This event could be

82

subscribed by the plugins for the following reason: consider a plugin developer
who develops a plugin with some placement algorithm PlacementAlgorithm then
sometimes it might be useful to parameterize this PlacementAlgorithm by some
parameter type and allow other plugin developers to create the implementations
of this parameter.

To be even more specific, consider the SkylineAlgorithm. It was already
mentioned that this class is parametrized by the ISkylineRectAndPointPicker.
What could be done to achieve this is to create a plugin that will contain the GUI
with a combo box containing the names of all the ISkylineRectAndPointPicker.
The plugin will register the ModulesLoaded event and when all the modules are
loaded, the handler will get called. The handler then could traverse the Unity
container and find all the types implementing ISkylineRectAndPointPicker
that other plugins have registered (using the same unity container) and as-
sign them to the collection that is bound to the combo box. Without the
ModulesLoadedEvent this could not be done because when the initialization
of the module is called, some of the plugins exporting the types implementing
ISkylineRectAndPointPicker could have not been loaded.

The ViewModelBase serves as a base class for all the view modes, it simply
inherits the INotifyPropertyChanged that the view modules should implement.

The PluginViewWiring is used to uniquely identify the view corresponding to
a given type that represents one of the extensible components. Each such a class
could have one view associated with it and it is given that the view should be
registered under a fixed name to the unity container so that given an extensible
type, the view could be resolved from the unity container. This allows to register
several views as a UserControl but each under the different key. Later, when
the plugins are loaded and the extensible types are imported from these plugins,
for each of the imported types its view is tried to be resolved.

Attributes

The PaunPacker.GUI.WPF.Common project also contains attributes that could be
used to leverage (in some way) how the main window treats the exported types.
These attributes are the following:

• TargetFramework
• ExportTypeMetadata
• PluginMetadata
• SelfContainedAttribute
• PartiallyContained

An explanation of the meanings of the attributes from the listing above is going
to be given in the following paragraphs.

Metadata exporters should be decorated by the TargetFramework attribute
which indicated which game framework the decorated metadata exporter targets.

AvailableTo attribute is used to say that an exported type marked with this
attribute is intended for the specified target framework. The target framework is
given by the FrameworkID enum. The main window inside PaunPacker.GUI then
allows the user to select only the types that target the game framework selected
by the user and hides the rest.

83

PluginMetadata attribute allows the plugin developer to export metadata
about the plugin. This metadata includes: plugin name, version, author, descrip-
tion and exported types—that is, all the types that are exported from the plugin.
ExportedTypesMetadata is similar to PluginMetadata attribute, but it is in-
tended to be used to export metadata (name, author, version, description) about
individual types that are exported from a single plugin. As it will be justified
later, in sub-section subsect:exportingMetadata, these two attributes are strictly
separated.

PaunPacker emphasizes the parameterization of the packing process, but
sometimes this parameterization is undesirable, for example, when plugin de-
veloper develops a plugin containing an implementation of one of the extensi-
ble components such that, on the one hand, allows parameterization, but on
the other hand, the parameters for this implementation are expected to be pro-
vided from within the plugin (for example using the Plugin’s view). If that
is the case, the user should not be able to provide other parameters using the
Main window. For a concrete example, consider the implementation of minimum
bounding box finder called MbbfA that has a single public constructor accepting
IPlacementAlgorithn. With the previous approach to parameterization, the
user would be allowed to select any of the available placement algorithms and
the MbbfA would get constructed with this selected placement algorithm. But
sometimes the plugin developer does not want to allow the user to select any
placement algorithm and if that is the case, the plugin developer should mark
the MbbfA with SelfContained attribute thus disallowing the user to specify a
placement algorithm (the combo box for selecting the placement algorithm will
be hidden).

Even more complicated scenario is the situation, when the exported type has
a constructor with several parameters where some of the parameters (but not
all) are, again, expected to be provided from within the plugin, but some other
parameters are expected to be provided by the user from outside the plugin.
As a specific example, consider a plugin developer developing a plugin called
GeneticMbbf that takes 3 parameters: IPlacementAlgorithm population size
and a number of generations and that also contains a view which allows the user to
specify the last two parameters. If the user wishes to allow the user to specify the
remaining (the IPlacementAlgorithm) parameter, then the GeneticMbbf should
be decorated by the PartiallyContained attribute thus saying that some of the
type’s constructor parameters should be provided from outside of the plugin (for
example, from the main window). More detailed explanation of SelfContained
attribute and PartiallyContained attribute, including few examples, will be
given in Chapter 6.

These attributes were initially present in PaunPacker.Core because they do
not contain any platform-specific code, but later, it was decided to move them
inside the PaunPacker.GUI.WPF.Common because their meaning is related to the
GUI (although not specific for WPF) and therefore it should not be available
inside PaunPacker.Core that should contain exclusive functionality related to
the packing.

84

4.6 Tests

The whole PaunPacker solution is accompanied by several test projects. These
test project tries to test basic correctness—for example, test situations in which
there is not feasible packing result, verify certain properties of the produced pack-
ing result, etc.—of the placement algorithms and minimum bounding box finders.
Some tests are testing individual parts of the algorithms, for example, there are
tests for individual, parameterizable components of the guillotine algorithm. The
test projects that are included in PaunPacker solution are depicted in Figure 4.5.

.NET Standard 2.0

Common

BLAlgorithm

MaxRectsAlgorithm

GuillotineAlgorithm

DefaultMBBF

GeneticMinimumBoundingBoxFinder

SkylineAlgorithm

Test projects

reference

namespace PaunPacker.Tests.MBBF

namespace PaunPacker.Tests.MBBF

namespace PaunPacker.Tests.Placement

namespace PaunPacker.Tests.Placement

namespace PaunPacker.Tests.Placement

namespace PaunPacker.Tests.Placement

Figure 4.5: Tests projects in PaunPacker

The Common project contains functionality that is common to all the tests
testing the packing related algorithms. This functionality is exposed by the only
class inside this project, that is, the static class TestUtil. TestUtil contains a
method for generating squares with dimensions of 1 × 1, . . . , n × n where the n is
given as a parameter. Another method inside this class is the shuffle method
that—as its name suggests—returns the shuffled (randomly permuted) version of
the passed IEnumerable. Lastly, there is a Succeed method that takes four pa-
rameters: actualWidth, actualHeight, expectedWidth, expectedHeight and
returns whether the dimensions are the same (including the case where the di-
mensions might just be swapped, this the whole rectangle might only be rotated
but it also should be considered as an equivalent because the rotated rectangle
has the same area (e.g. it does not matter if the result is 7 × 11 pixels or 11 × 7
pixels).

85

4.6.1 Benchmarks
It might be useful to compare the performance of the individual implementations
of the placement algorithm and minimum bounding box finders. For this reason,
there are projects called BenchmarkRunner and Support which are located in the
Tests/Benchmarks/ directory.

The BenchmarkRunner contains a simple CLI application that allows the user
to benchmark placement algorithms and minimum bounding box finders imported
from the plugins. Note that not all the types exported from the plugins are avail-
able for benchmarks, this is simply because some types could not be instantiated
easily without user interaction—mostly the types that are accompanied by a
view which allows their parameterization—therefore only a simple types having
a constructor that takes either no parameters at all or any combination of the
IImageSorter and/or IPlacementAlgorithm.

The BenchmarkRunner uses a BenchmarkDotNet.dll NuGet package for the
benchmarks but doing so required to tackle several problems. The first prob-
lem was that the benchmarked types are loaded dynamically from plugins. The
BenchmarkDotNet allows to run benchmarks from a C# script given as a string
but this feature is only available on the .NET Framework and not on the .NET
Core, therefore, this feature cannot be used. Fortunately, another possibility is
to run the benchmarks by specifying a Type of a class containing the benchmark
and this feature is available on .NET Core.

The way in which the benchmark class could be obtained is to generate the C#
script containing the class with the benchmarks at runtime, then compile it (using
the Roslyn compiler), emit the generated CIL code into a memory stream and
obtain the Type from it. The obtained Type is then passed to BenchmarkDotNet
for an execution.

Another problem was that even though BenchmarkDotNet allows to add cus-
tom columns to the benchmark results it does not allow to track the values
returned from the benchmark methods. This problem was solved quite subop-
timally by saving the results of the methods into ConcurrentDictionary and
later, when all the benchmarks are done, saving these results into the file. Once
the execution of benchmarks is finished and the execution is yielded back, the
file contents are read and added to a custom column. The saving to file is done
once the benchmarks are done so it does not affect the measured time. On the
other side, the addition of a single item into the ConcurrentDictionary is done
within the benchmark method, but because all the benchmark method contains
this addition, they should always be impacted in the more or less the same way.
Therefore the time of all the benchmark method should only be shifted by a
certain constant (which arises from adding to the dictionary).

To sum-it-up, the benchmark runner first shows the user some CLI which
allows the user to configure the tests and then generates the tests, compiles them
and let the BenchmarkDotNet run them. Once the BenchmarkDotNet has finished,
the BenchmarkRunner reads the results of tests from the file and adds it to the
custom column which is later displayed in the results report produced by the
BenchmarkDotNet.

The Support contains class PluginTypeLoader which is responsible for load-
ing types of placement algorithms and minimum bounding box finders exported
from the plugins. The code in the PluginTypeLoader is very similar to the code

86

in App implementation the PrismApplication but slightly different.
A description of where the benchmarks are located and how they could be

executed—together with an output example—are shown later, in Section 5.10 of
the Chapter 5.

4.7 Plugins
Plugins are classes implementing the IModule interface which ensures that the
Prism loads the plugins and call the initialization methods on them. The two
initialization methods that are exposed by the IModule interface and that all the
classes implementing this interface have to implement, are (in the order they will
get called): OnInitialized and RegisterTypes.

The plugins are expected to implement the IModule interface and then export
the types from the plugin by using either MEF or Unity container. The details
about implementing the plugins and plugin’s dependencies on NuGet packages
and possible are described in greater detail in Chapter 6.

PaunPacker solution itself contains the following projects with plugins:

• DefaultImplementationsPluginProvider is used to export some of the
default implementations from the PaunPacker.Core and the details about
how this export is done was already described above, in Section 4.4.14.

• UnityMetadataWriter project contains a class with the same name which
implements the IMetadataWriter interface. The UnityMetadataWriter
class produces an output in an XML format compatible with the Unity
game engine.

• LibGDXMetadataWriter project contains a class called LibGDXMetadata
that is yet another implementation of IMetadataWriter. This class ex-
ports metadata in the .atlas format that were already described in the
Section 1.1.1.

• GeneticMinimumBoundingBoxFinder project contains a genetic minimum
bounding box finder called GeneticMinimumBoundingBoxFinder and its
view that allows the user to specify the size of the population and the
number of generations.

• SkylineAlgorithmPluginProvider is used to export the Skyline algorithm
with types related to this algorithm and it was already described above in
the Section 4.4.14. The Skyline algorithm itself is implemented as a class
called SkylineAlgorithm inside the PaunPacker.Core project.

• GuillotineAlgorithmPluginProvider is used to export the Guillotine al-
gorithm with its related types as was already described above, in Section
4.4.14. The algorithm itself is implemented in the PaunPacker.Core in-
side a class called GuillotinePlacementAlgorithm. This class is fully pa-
rameterizable so that it could be used to obtain different variations of the
Guillotine algorithm. One such a variation is implemented inside a class
called GuillotineBestAreaFitAlgorithm and another variation is inside
the MaximalRectanglesAlgorithm class.

87

It should be mentioned here, at least briefly, how the plugins with views work.
Suppose a class implementing the IModule interface. When the OnInitialized
method is called, the plugin should create a view together with its view model, set
the views data context to the view model and export the view via the UnityCon-
tainer as a UserControl under the key obtained by using the PluginViewWiring
class. When all the plugins get loaded, the App traverses all the types that are ex-
ported from the plugins, and for the types that implement extensible components
that are allowed to have GUI, the App tries to resolve the UserControl with the
same key (the one obtained via PluginViewWiring), if it succeeds, the view is
added to the appropriate region and is set to hidden (that is the default state).
Later, when the user selects an extensible component that should be used, it is
checked whether the region manager contains a view for the selected type and if
it does, the view is shown (after hiding the currently shown view, if any). A more
detailed explanation of creating plugins with views will be given in Chapter 4.

88

5. User Documentation
This chapter contains the user documentation for PaunPacker and it will be
presented in a form of short tutorials illustrating and guiding the expected usage
of the PaunPacker. The textures used in the illustrations throughout this section
are taken from: OpenGameArt [1] where they are published under Public Domain
(CC0) license.

5.1 Installation and running the PaunPacker
Before describing the installation of PaunPacker, it should be mentioned that the
PaunPacker works well with Windows 10 version 1803 and above. Older versions
of Windows were not tested but it is not impossible that PaunPacker would work
on them too.

The PaunPacker solution contains a folder called Setup which contains a .msi
installer for the PaunPacker called Setup.msi. In order to install the PaunPacker,
the user should execute the Setup.msi installer and follow the installation steps.

Successful installation of the PaunPacker adds the PaunPacker into Program
menu folder (under the Start Panel) and also places a shortcut onto the desktop.
The PaunPacker could then be started using that shortcut. PaunPacker could be
uninstalled from the control panel in a standard way.

Apart from the Setup directory, the PaunPacker also contains a directory
called Portable which contains an executable allowing the run the PaunPacker
without installing it.

Both Portable and Setup versions do not require any additional dependencies
because they were created as self-contained executable. The user who has in-
stalled .NET Core preview 5 and above, wishing to save some space on the disk
may want to install the PaunPacker from a SetupMinimal.msi located within the
SetupMinimal directory. The minimal installation does not include .dll files
that are part of a .NET Core and therefore requires much less of the disk space.

5.2 Plugin installation
Plugins could be installed by simply copying the .dll file containing the plugin
inside the plugins folder. The location of the plugins folder is the same as the
location of PaunPacker’s executable (PaunPacker.exe).

5.3 Limitations
There are certain limitations related to the number of textures that could be used
when using PaunPacker. Because the implemented algorithms work with 32-bit
integers, the total area of the texture atlas should not exceed 231 or rather 230

pixels2. Because the application is expected to be used in the context of 2D game
development—as it was already mentioned in Chapter 1, this limitation should
not be too constraining for the user because texture atlases are not usually larger

89

https://opengameart.org/content/platformer-art-complete-pack-often-updated

than 4096x4096 pixels due to the possible limitations of certain GPUs (this was
also described in Chapter 1).

Even if the algorithm did not experience an arithmetic overflow, the algo-
rithms are not optimized for very large outputs. Nevertheless, if the user must
pack something large, it is best to use genetic minimum bounding box finder
with a very low population and iteration count. Using the genetic algorithm with
population = 2 and iterations = 1 it was tested to pack a 1000 square textures
with dimensions 100x100 pixels. This sample data is available in the attachment
inside the samples folder.

5.4 GUI overview
The PaunPacker consists of a single window—the Main Window—which the user
is interacting with. The Main Window is shown in the Figure 5.1.

1

5

2

3

4

Figure 5.1: The PaunPacker’s main window.

The main window shown in the Figure 5.1 could be logically divided into five
regions:

1. Shows the panel with settings related to the packing. These settings include
a selection of target framework, metadata writer, placement algorithm, etc.
The meaning of individual parts of this setting will be described later, in
Section 5.6.

2. Is responsible for displaying the generated texture atlas and allows the user
to select individual images of the texture atlas.

3. Lists all the images that are loaded by the PaunPacker.

4. Contains a list with the available image processors and displays a view of
the selected one.

90

5. A strip menu which allows the user to load images, open projects, display
loaded plugins, etc.

All of the previously mentioned parts of the Main Window will be described
in the following sections.

5.5 PaunPacker menu
The PaunPacker’s menu allows to perform the following tasks:

1. Load (image) file or folder

2. Open project

3. Create a new project

4. Close project

5. Save project

6. Save project As

7. Exit the application

8. Show installed plugins

1. In order to load an image, the user should select File → Load file(s) and
then select the files that should be loaded. The same effect could be achieved
using a shortcut key Ctrl+F.

2. Loading a folder means loading all the images that are contained (recur-
sively) within the folder. In order to do that, the user should select File → Load
folder (or using Shift+F shortcut) and then select the folder that should be
loaded.

3. To create a new project, the user should either select File → Create a new
project or use the Ctrl+N shortcut and then fill in the path and project name
into the dialog that is just shown and click on Create Project. Once a project
is created or opened two new options (5., 6.), namely: Save project and Save
project as are shown in the File menu and the images tracked by the project file
are loaded.

4. The currently opened project could be closed by selecting File → Close
project. Closing the project does not unload the images but it only stops writing
the changes (newly loaded images) into the project file.

5. Saving the project could be initiated using the Ctrl+S shortcut or via
File → Save project. The project file of the currently opened project is overwritten
by the new (up-to-date) version.

6. The Save project as command allows saving a currently opened project to a
different project file. The Save project as could be done by using Ctrl+Shift+S
shortcut or via File → project as.

7. The application could be closed either using the File → Exit, by using a
shortcut Alt+F4 or using any other standard Windows mechanism for closing an
application.

91

8. When the user goes to Plugins → Show installed plugins a dialog showing
all the installed plugins is shown. This dialog is depicted in Figure 5.2. The
user could obtain more information about a particular plugin by selecting it and
clicking on the Show Details button which shows another dialog—depicted in
Figure 5.3—that contains details about the selected plugin. These details include:

• A name of the plugin

• A description of the plugin

• An author of the plugin

• A version of the plugin

• Name, description, author, and version about all the types exported from
the plugin

Figure 5.2: The dialog showing all the loaded plugins.

Figure 5.3: The dialog showing a details of the
SkylineAlgorithmProviderPlugin.

The Figure 5.3 shows the details about the plugin which exports the Sky-
line algorithm. Notice that the plugin also exports two implementations of the
ISkylineRectAndPointPicker. It should be mentioned that the exported view
is not mentioned in the dialog because it does not seem to give the user any useful
information.

92

5.6 Packing settings and texture atlas genera-
tion

All the possible settings are shown on the left of the Figure 5.1 and this section
will contain their description, going from top to bottom.

At the very beginning, the user should select the target framework for which
the generated texture atlas (and especially the metadata) will be used. Choos-
ing the target framework has also impact on the features that will be available
because different frameworks support different features that could be encoded in
the metadata format they support.

Once the user has selected the target framework, the metadata writer should
be selected. The choice of target framework typically leaves only a single option
for this choice so it should be a fairly simple decision.

The next setting is called Mode of the packing and it could be either Basic or
Advanced. The Basic setting contains only three minimum bounding box finders
(the so-called default implementations):

1. UnknownSizePacker
2. FixedSizePacker
3. PoTSizePacker

that allow to pack into a bounding box with:
1. Minimal but initially unknown size (option Auto)
2. Fixed size (option FixedSize)
3. Minimal but initially unknown size that is in powers of two (option Powers

of two)
Regardless of the choice that the user has made, the placement algorithm could
be selected, because all these default implementations could be parameterized by
it. Based on the selected placement algorithm, the user could be able to also
select the image sorter that will be used by the selected placement algorithm.
An example selection of these three parts is shown in Figure 5.4. The selection
of minimum bounding box finder, placement algorithm and (possible) the image
sorter will be used later for texture atlas generation.

Figure 5.4: Example of packing algorithms settings.

The Figure 5.4 shows the Basic mode with a selection of UnknownSizePacker
(Auto) minimum bounding box finder, BLAlgorithm placement algorithm and an

93

image sorter which sorts the images in the descending order first by their height
and then by their width.

The Advanced mode differs from the Basic mode in that the user is able to
select any of the loaded minimum bounding box finders and not only any of
the three default minimum bounding box finders mentioned above. However,
the plugin developers might want to disable parameterization of their minimum
bounding box finder, so in the advanced mode, it does no longer hold that the
user is always select placement algorithm used by the minimum bounding box
finder as it was in the basic setting which shows only default implementations
that are fully parameterizable.

The rest of the settings for texture atlas generation which is shown in Figure
5.5 is shared by both Basic and Advanced modes.

1
2

3

4
5

6

7

8

Figure 5.5: Settings of the texture atlas generation.

The Figure shows the following, packing related settings:

1. Selection of target framework which further restricts which features (set-
tings) will be made available. In this example, the selected target framework
is Unity.

2. Selection of metadata writer for a selected target framework. In this ex-
ample, the selected metadata writer creates metadata for the Unity game
engine.

3. Selection of packing mode which was already described above in this Sec-
tion.

94

4. Placement algorithm used by the selected minimum bounding box finder.
In this example, the selected minimum bounding box finder is determined
by the selected packing mode Auto and it will be using the BL algorithm
as its subroutine.

5. Selection of image sorter that will be used by the selected placement algo-
rithm.

6. A path where the texture atlas bitmap (.png) will be saved.

7. A path where the texture atlas metadata (in this case .xml) will be saved.

8. Memory reduction settings which allow enabling alias creation which was
already described in Section 1.2 and color type of the generated texture
atlas bitmap.

When the user clicks on the Generate button, the texture atlas and its meta-
data are generated and stored at the specified paths. When no path is specified,
the texture atlas would only be generated but not stored.

Using the settings from Figure 5.5 with the images shown in Figure 5.6 pro-
duces an output that was shown in Figure 5.1.

Figure 5.6: Images used to generate the texture atlas.

During the texture atlas generation, a progress bar is shown. The progress
bar either displays a percentage representing the amount of generation that is
done or it only indicates (without the percentage) that the algorithm is working.
The form of progress bar depends on the minimum bounding box that is used.
The user is able to cancel the generation by clicking on the Cancel button. It is
important to mention that it is not ensured that the selected minimum bounding
box accepts the cancellation request, although plugin developers are advised to
accept that cancellation request. When the texture atlas is being generated, other
packing related settings is disabled until the generation finishes. A progress bar
showing the progress of GeneticMInimumBoundingBoxFinder is shown in Figure
5.7.

95

Figure 5.7: Progress bar during texture atlas generation using
GeneticMinimumBoundingBoxFinder.

5.7 Interacting with the texture atlas
Once the texture atlas is generated, the user is able to select individual images
within the texture atlas by clicking on them. If an image within the texture atlas
is clicked, two situations can occur: the image is not selected yet, therefore it
will be selected now, or the image is already selected and therefore it will be
unselected. This behavior allows the user to select multiple images. The selected
images are highlighted as can be seen in Figure 5.8

Figure 5.8: Selection of images inside the texture atlas.

The Figure 5.8 shows a texture atlas consisting of 7 images where on the left
of this figure there are no image selected, while on the right, three images have
been selected.

Apart from selecting the individual images, the user is also allowed to select
all the images at once using the Select all button. An inverse operation, that is,
to unselect all the rectangles could be done by using the Unselect all. The user
can also show borders around the individual images by using the Show borders
button.

The user could also zoom the texture atlas using the mouse wheel when the
mouse cursor is placed above the texture atlas. When the texture atlas is zoomed
so much that it does not fit into the window, scroll bars are shown.

96

5.8 Managing the loaded images
The third part of the Figure 5.1 contains a tree view that shows all the currently
loaded images. Right-clicking on any of the loaded images (or any of the folders)
shows a context menu that allows the user to unload the selected image (or whole
folder which unloads all the images recursively) by clicking on Unload option in
the context menu. The context menu also contains an option called Open in File
Explorer which opens the system’s file explorer at a location where the selected
file or folder is located. The tree view with loaded images and its context menu
is illustrated in Figure 5.9.

Figure 5.9: Tree view displaying files loaded in PaunPacker.

97

5.9 Working with Image Processors
The region containing the image processors is shown in the bottom-right of the
main window as can be seen from Figure 5.1. This region contains a combo box
which lists all the loaded image processor and if the selected image processor has
its own GUI, that GUI is shown directly below that combo box as illustrated in
Figure 5.10.

Figure 5.10: A GUI of Trimmer image processor.

The Figure 5.10 shows the Trimmer image processor which has GUI that allows
to specify alpha tolerance that serves as an upper bound when determining which
pixels should be considered as transparent and which should not.

To invoke the image processor and process the images, the user should select
the images for processing and then click on the Process images button. This will
process the selected images and cause the texture atlas (if already generated) to
be invalidated. Application of image processors on the individual images is not
recorded in the project file so whenever a project is opened, the images are in its
original state. The original images are neither modified nor overwritten by image
processors.

The way how the implemented image processors works go in hand with what
was already described in Section 1.2. However, it should be mentioned that the
PaddingAdder performs the inner padding as it was named and described in
the Section 1.2. Another note is that the alias creation feature only affects the
output texture atlas file and metadata file but not the texture atlas shown in the
PaunPacker’s window.

98

Image processing example

The following figures illustrate the usage of Trimmer image processor to perform
trimming of selected textures. In these examples, there are three textures being
loaded by the PaunPacker which are shown in the Figure 5.11. The first (taken
from the left) has a background filled with full opacity black color, the second has
a blue background with 50% opacity and the last texture has a fully transparent
background.

1. Start by running the PaunPacking, loading the textures, generating the
texture atlas and then showing the borders of the loaded textures. This
step should produce the result which is depicted in Figure 5.11.

Figure 5.11: Loaded images with shown borders

2. Continue by selecting the Trimmer image processor as shown in Figure 5.12

Figure 5.12: Selecting the Trimmer image processor

3. When the Trimmer is selected, select all the textures using the Select all
button as shown in the Figure 5.13

Figure 5.13: Selecting all the loaded textures.

99

4. After selecting the textures, set the Trimmer’s alpha tolerance parameter
via the Trimmer’s GUI and process the selected images using the Apply on
selected button as illustrated in Figure 5.14.

Figure 5.14: Applying the Trimmer on selected textures.

5. When the textures are processed, the texture atlas should automatically
get re-generated into from trimmed textures and should be the same as the
texture atlas depicted in Figure 5.15.

Figure 5.15: Resulting texture atlas after the textures were trimmed.

100

5.10 Benchmarks
The PaunPacker also contains benchmarks which the user could run by exe-
cuting the BenchmarkRunner.exe located in the Setup/Benchmarks folder. The
BenchmarkRunner.exe allows the user to perform benchmarks with placement
algorithms and bounding box finders that were loaded from plugins. Benchmarks
are presented in the console window and the whole benchmark runner contains
a very simple (but self-describing) CLI where the user is able to select which
types should be tested (either placement algorithms or minimum bounding box
finders) and then which type of test should be executed. The CLI of Bench-
markRunner.exe is shown in Figure 5.16.

Figure 5.16: Command line interface of benchmarks.

Currently there are types of tests:

• Pack/place squares of sizes 1×1, . . . , k ×k where the k ∈ {1×1, . . . , n×n}
is a parameter specified by the user.

• Pack/place n rectangles with random dimensions where the n is a parameter
specified by the user. For this kind of test, the user is also able to select
random seed in order to (try to) make the benchmark results reproducible.

It should be mentioned, that only types having simple constructor dependen-
cies (only IImageProcessor/IPlacementAlgorithm) are included in the tests.

The output of the tests lists (to the console), for each n and each tested type,
the average area of the packing result produced by the tested type. An example
of benchmark output is shown in the Figure 5.17.

The Figure 5.17 shows the results of a benchmark of three minimum bounding
box finders:

• PowerOfTwoSizePacker
• UknownSizePacker
• GeneticMinimumBoundingBoxFinder

In the benchmark, these three minimum bounding box finders were tested on the
sequences of input squares 1 × 1, . . . , k × k where the k ∈ {1 × 1, . . . , n × n}
and the n was given as a parameter. The benchmark tracks execution times and
also arithmetic mean of packing result areas. Notice that the best algorithm (in

101

Figure 5.17: Output of the benchmarks.

terms of minimum packing area) was the GeneticMinimumBoundingBoxFinder
while the worst was the PowersOfTwoSizePacker. This observation goes in hand
with the intuition that the PowersOfTwoSizePacker creates a wasted transparent
space in order to satisfy the power of two requirement.

The benchmark also shows that the UnknownSizePacker was out-performed
(for N = 8 and N = 9) by the GeneticMinimumBoundingBoxFinder. This is
because the genetic algorithm performs a lot more iterations and also contains
random mutation which could result in better results.

However, when it comes to speed, the GeneticMinimumBoundingBoxFinder
was by far the slowest of the tested minimum bounding box finders. Observe that
the PowerOfTwoSizePacker was faster than the UnknownSize packer, the reason
for this result is the number of bounding boxes enumerated and attempted to
get packed. The PowersOfTwoSizePacker tests much less bounding boxes (only
powers of two) then the UnknownSizePacker.

Please beware that the benchmark runner performs a lot of warm-up iterations
before doing the actual workload and that the benchmarks are generated and
compiled dynamically, therefore the execution of benchmarks might take slightly
longer time to complete. For example, the benchmark whose results were shown
in Figure 5.17 on the laptop setup shown at the top of the Figure 5.17 took about
23 minutes to complete.

102

6. Creating Plugins Tutorial
This chapter provides a tutorial for developers wishing to create new plugins. The
tutorial is divided into three parts that cover the following scenarios (ordered by
their complexity):

1. Creating plugins without GUI

2. Creating plugins with GUI

3. Creating plugins requiring other (external) dependencies

Before delving into details of tackling the particular scenario, the prerequisites
common to all these three scenarios should be mentioned. These prerequisites
are the topic of the next Section 6.1.

6.1 Prerequisities and common guideline
To create a plugin .dll one should first create a Visual Studio Class Library
project targeting either the .NET Standard or the .NET Core (in the case that
the plugin needs GUI or depends on something that is not .NET Standard com-
pliant, e.g. on some NuGet package), add the implementations of any extensible
components to this project and then ensure that these implementations will get
properly exported in order to be subsequently imported by the PaunPacker. The
sections in the rest of this chapter will assume that the developer already has an
empty project created.

Compiling the project with the plugin yields a .dll file. This file should
be copied to the plugins folder. The implementations of the extensible compo-
nents that will be exported properly will get loaded by the PaunPacker upon
PaunPacker’s startup.

As it was already mentioned in Chapter 3, PaunPacker combines two ap-
proaches when searching for types within the plugin that should be imported.
First, the types that are marked with Export attribute and second, the types
that implement IModule interface. The IModule interface has two methods that
have to be implemented: OnInitialized and RegisterTypes that are called
automatically (by the Prism) when the plugin is being loaded.

The expected use case of first (Export) approach is for exporting simple classes
that have parameterless constructor, by simply decorating the class with the
Export attribute. Note that the Export attribute is defined in MEF assembly, so
the developer should add appropriate .dll references, and the most convenient
way to do it is to download a NuGet package called System.Composition.

The second approach is expected to be used in more complicated situations,
for example, when the exported types do not have parameterless constructor or
they need GUI. The difference between the second and the first approach is that
in the second approach, instead of letting all the types that should be exported
to implement the IModule interface, it is better to create only a single class
that will implement the IModule (call this class PluginEntry). PluginEntry
could be thought of like a plugin’s entry point and all the types that should be

103

exported could be exported from PluginEntry by using either the Unity IoC
container that can be obtained from the IContainerProvider that is passed
to the OnInitialized method or the IContainerRegistry that is passed to
RegisterTypes method. The details about how these types could be exported
via the IoC container are described in the following Sections 6.4 and 6.6. Using
the IModule interface requires the project to reference Prism.Wpf.dll NuGet
package.

Exporting metadata about plugin

The developer may want to export metadata either about the whole plugin—that
is about the class that implements the IModule interface—or about the individual
types that are exported from the plugin. These two scenarios are different and
their distinction comes from a fact that a single plugin class could serve as a
plugin entry point that will export several types.

In order to export metadata about the whole plugin, the plugin should be
decorated by the PluginMetadataAttribute that accepts the type of the plugin,
name of the plugin, description of the plugin, author, version of the plugin and
the types that are exported from this plugin.

To export metadata about the individual types that are exported from the
plugin there exists the ExportedTypeMetadataAttribute which could either dec-
orate the exported type (if possible) or the whole plugin. This attribute also
accepts the type, name, description, author and the version of the exported type.
The name property of the ExportedTypeMetadataAttribute will be displayed
in the PaunPacker’s main window. The reason why this attribute could also
decorate the plugin itself is that some plugins only serve as a providers of types
implemented somewhere else (for example in the PaunPacker.Core) and in such
a case, it is desired to give the plugin developer an ability to export metadata
about the types being exported so that the user could see the exported types in
the PaunPacker.

Reporting progress

Because the process of creating a texture atlas may take some time, it seems
reasonable to inform the user about the progress of the packing. For this reason,
PaunPacker contains a progress bar that is shown to the user when then texture
atlas is being created. The idea of the progress was extended so that currently
the progress bar is able to display the progress of not only the packing but also
of the metadata writing, file loading, etc. The important thing for the plugin
developers is, that there exists an interface called IProgressReporter which is
automatically inherited by the following interfaces:

• IPlacementAlgorithm
• IMinimumBoundingBoxFinder
• IMetadataWriter

This means that all extensible components—except for the image processors and
image sorters—could report information about their progress by implementing
this interface. Note that the final output of the packing process is determined by

104

the minimum bounding box finder, not by the placement algorithm, but the mini-
mum bounding box finder could use the progress of the used placement algorithm
in order to obtain a better estimate of the progress.

The IReportsProgress interface has an integer property called Progress
which should return the current progress of the algorithm (an integer between
0 and 100 that represents the percentage of the algorithm’s progress) and an
event called ProgressChanged which should be raised whenever the progress of
the algorithm has changed (increased). This interface also contains a property
called ReportsProgress which could be useful in situations where some type is
only a wrapper around another type and therefore its ability to report progress
is based on the ability (to report progress) of the wrapped type being used. This
approach is used, for example, in the FixedSizePacker.

Targeting specific game frameworks

It was previously mentioned, that the PaunPacker.GUI.WPF.Common project con-
tains an attribute called AvailableTo which could decorate any of the exported
types. The reason for the presence of this attribute is the fact that certain features
cannot be described by a metadata format used by some game framework ”A”
but could be described by a metadata format used by another game framework
”B”. One approach to this issue would be to silently exclude this information from
the resulting metadata, but that could confuse the user if the user has adjusted
the packing settings in some way that eventually is not reflected by the packing
result. Because of this reason, it is better to explicitly decorate the exported
types with the target framework and hide the features that are not available to
the framework that the user has selected (this was already briefly described in
Section 4.5). It is a responsibility of the plugin developer to mark the exported
types with an AvailableTo attribute.

The AvailableTo attribute has two public constructors, the first accepts
FrameworkIDs of the frameworks to which the type decorated by the AvailableTo
should be made available to. And the second constructor that does not accept
any parameters. If the AvailableTo is constructed using the parameterless con-
structor then it means that it is available to all the frameworks.

Metadata exporters then should be marked with an TargetFramework at-
tribute which declares the game framework to which the given MetadataExporter
exports the metadata. TargetFramework attribute has two constructors, one
that accepts a FrameworkID of the target framework and second that has no
parameters. When the TargetFramework attribute is constructed using the pa-
rameterless constructor, it means that the metadata exporter marked with such
attribute targets all (arbitrary) game frameworks. This is useful, for example
when the target framework is no present in the FrameworkID enum.

105

6.2 Minimal plugin template
This section presents two examples which are representing a template for a min-
imal, fully working plugin. These templates could be used by the plugin de-
velopers as a starting point when developing a plugin. The templates differ in
the approach that they take when exporting the plugin. The first template uses
the MEF’s Export attribute while the second template implements. The first
template is given in Listing 15.

1 [PluginMetadata(typeof(SomeExportedType),
2 nameof(SomeExportedType),
3 "<Description>",
4 "<Author>",
5 "<Version>",
6 typeof(SomeExportedType))]
7 [ExportedTypeMetadata(typeof(SomeExportedType), nameof(SomeExportedType),
8 "<Description>", "<Author>", "<Version>")]
9 [Export(typeof(SomeExportedType))]

10 public sealed class SomeExportedType :
11 <IImageProcessor |
12 IMetadataWriter |
13 IPlacementAlgorithm |
14 IImageSorter |
15 IMinimumBoundingBoxFinder>
16 {
17 //... Implementation
18 }

Listing 15: The first (MEF based) template for (almost) minimal fully working
plugin

The Listing 15 shows a plugin template that exports a type that is called
SomeExportedType by using the MEF’s Export attribute. Every text enclosed
in the ”<>” should be appropriately replaced by a meaningful information. The
SomeExportedType class should implement one of the following interfaces:

• IImageProcessor
• IMetadataWriter
• IPlacementAlgorithm
• IImageSorter
• IMinimumBoundingBoxFinder

The second template is shown in the Listing 16.

106

1 [PluginMetadata(typeof(PluginEntryPoint),
2 nameof(PluginEntryPoint),
3 "<Description>",
4 "<Author>",
5 "<Version>",
6 "<typeof(ExportedType1),...,typeof(ExportedTypeN)>"
7 [ExportedTypeMetadata(typeof(ExportedType1), nameof(ExportedType1),
8 "<Description>", "<Author>", "<Version>")]
9 //...

10 [ExportedTypeMetadata(typeof(ExportedTypeN), nameof(ExportedTypeN),
11 "<Description>", "<Author>", "<Version>")]
12 public class PluginEntryPoint : IModule
13 {
14 //...
15 public void OnInitialized(IContainerProvider containerProvider)
16 {
17 unityContainer = containerProvider.Resolve<IUnityContainer>();
18 //Use the unityContainer to export types
19 }
20

21 public void RegisterTypes(IContainerRegistry containerRegistry)
22 {
23

24 }
25 }

Listing 16: The second (IModule based) template for (almost) minimal plugin

The Listing shows a template which uses the unity container for exporting the
types. Similarly to the Listing 15, the values enclosed in <> should be filled-in
by the plugin developer appropriately.

107

6.3 Creating plugins without GUI
The simplest scenario is to create plugins that have neither the GUI nor any
external dependencies. This is the scenario that will be considered throughout
this section.

First of all, the developer should create implementations of the extensible
components (possibly of more than one extensible component). For example, the
developer may decide to create an implementation of a metadata writer, so a
new class (call it NewMetadataWriter) should be created and that class should
implement the IMetadataWriter interface. Once this interface is implemented,
the developer needs to ensure that the NewMetadataWriter will get imported
by the PaunPacker properly. This could be done in two ways as it was already
mentioned in the Section 6.1 and the developer could use one of the templates
from Section 6.2 as a starting point.

The first way is to decorate NewMetadataWriter class with the Export at-
tribute. Once the class is decorated with the Export attribute, the project is built
and the resulting .dll gets copied into the plugin folder, the NewMetadataWriter
should appear in PaunPacker’s option (if the PaunPacker was running prior to
the .dll getting copied into the plugin folder, it has to be restarted)

The second way is to let the class to also implement (apart from implementing
the IMetadataWriter) the IModule interface. This approach requires a slightly
more code but it offers additional flexibility because Prism will call the meth-
ods prescribed by this interface and so the plugin developer could use them for
initialization or other tasks. However, for very simple plugins containing only
a single implementation of the extensible component, the Export attribute ap-
proach seems like a preferable and more appropriate way to go.

6.4 Creating plugins with GUI
When creating plugins with GUI, the developer has to create a class that im-
plements the IModule interface. This class does not have to be—and preferably
it is not—the same class as the class providing an implementation of a certain
modular component, but instead, it should be a separate class that will serve as a
plugin’s entry point. Whenever a plugin developer develops a plugin with GUI, it
is expected that the whole plugin project adheres to the MVVM pattern, there-
fore the developer should also create a view model in addition to the view. The
plugin developer should simply create an instance of the view and view model
and then set view’s DataContext to its view model.

The view instance could be exported from the OnInitialized method by
using the IoC container and registering the instance of the view as a UserControl
under a key that should be obtained by using the PluginViewWiring class which
was already described in Section 4.5. The Listing 17 demonstrates this process
on a part of code taken from the plugin with default implementations.

Because the MVVM pattern is preserved, the view is managed by its view
model and the view model then could export the particular extensible component
with parameters that were obtained via the view. An example of such a parameter
is the size of the population inside the genetic minimum bounding box finder.
When some parameters are changed, it is sufficient to create a new instance of the

108

1 public void OnInitialized(IContainerProvider containerProvider)
2 {
3 IUnityContainer container = containerProvider.Resolve<IUnityContainer>();
4

5 var extruderView = new ExtruderView()
6 {
7 DataContext = new ExtruderViewModel(container)
8 };
9

10 container..RegisterInstance<UserControl>(PluginViewWiring
11 .GetViewName(typeof(Extruder)), extruderView);
12 }

Listing 17: Exporting view from a plugin

extensible component having these new parameters. But instead of creating new
instance registration via the Unity IoC container, the type should be registered
using the Unity’s RegisterFactory method which allows to register a factory
method for the type so that whenever that type is being resolved, the registered
factory method is called and its return value is returned as the resolved instance.
The factory method allows the plugin developer to register the instance with
correct parameters. An example of using the RegisterFactory method to export
an instance of Extruder with up-to-date parameter is shown in Listing 18.

1 public ExtruderViewModel(IUnityContainer unityContainer)
2 {
3 unityContainer.RegisterFactory<Extruder>((_) =>
4 {
5 return new Extruder(Amount);
6 });
7 }

Listing 18: Exporting instance of GeneticMinimumBoundingBoxFinder

When the App loads this plugin and imports all the types that the plugin
exports, it also traverses through the imported types and for each one of them,
it checks whether that type has a view associated with it and if it does, then
the view is registered into appropriate region (the selection of the region is made
by the PaunPacker.GUI as already explained and justified in Section 3.5). The
registered view is shown once the user selects the extensible component which is
associated with the view. For example, when the plugin exports the minimum
bounding box finder called MbbfA which has a view called ViewA associated with
it, the view gets registered into the region for minimum bounding box finders and
when the user selects MbbfA as an algorithm for creating the texture atlas, the
region manager shows the ViewA allowing the user to interact with it.

109

6.5 Managing external dependencies
As it was already discussed in Sections 4.5 and 3.6 the PaunPacker takes empha-
size on the parameterization of the whole packing pipeline so that for a selected
minimum bounding box finder (MBBF) the user is allowed to select a placement
algorithm that will be used. Moreover, the placement algorithm could be further
parameterized by the image sorter. The main window supports this parameteri-
zation by showing combo boxes to the user allowing to select individual parts of
the packing pipeline. But sometimes, the plugin developer may want to prohibit
the user from this parameterization. This section will discuss all the possible
scenarios that might arise and suggests solutions to these scenarios. The combo
boxes inside the main window that allow the user to parameterize the packing
pipeline are illustrated in Figure 6.1.

User

interacts

SelectedMBBF

MBBF1
MBBF2

generate

...
(more settings)

load textures

Minimum bounding box finder

...

ImgSorter1
ImgSorter2...

PlacementAlg1
PlacementAlg1...

ImgSorter1
ImgSorter2...

Placement algo's Image Sorter

MBBF's Image Sorter

Placement algorithm

SelectedImgSorter

SelectedPlacementAlgo

SelectedPlacementImgSorter

Main window

Figure 6.1: Parameterization of the packing pipeline

The Figure 6.1 shows a part of PaunPacker’s main window that contains
combo boxes that allow the user to select MBBF, placement algorithm used by
the selected MBBF, image sorter used by the selected placement algorithm and

110

also image sorter used by the MBBF. Notice, that image sorter of the MBBF is
separated from the image sorter of the placement algorithm and even though it
is possible to select different image sorter for placement algorithm and for the
MBBF, it is discouraged—unless there is a justified reason for it, for example,
when the MBBF wants to do some preprocessing on sorted input before running
the placement algorithm—doing so because of the reasons given in Section 3.6.

An MBBF could have external dependencies that have to be provided from
outside of the plugin exporting the MBBF in order to properly instantiate the
MBBF. In this case, the considered dependencies are the parameters inside the
constructor of the MBBF. There are three scenarios that could happen (regarding
the constructor dependencies):

1. No external dependencies (self-contained)

2. Some of the parameters are external dependencies (partially contained)

3. All the parameters are external dependencies

SelfContained

When the MBBF does not have any external dependencies it should be decorated
by the SelfContained attribute. This will have the effect that the user is not
allowed to select the placement algorithm used by the MBBF because the combo
box for selecting placement algorithm will be hidden when the user selects MBBF
that is decorated by SelfContained attribute. SelfContained could also dec-
orate classes implementing IPlacementAlgorithm disallowing the user to select
image sorter used by the placement algorithm.

PartiallyContained

If the MBBF has several dependencies and some of them are external while the
other (IPlacementAlgorithm and/or IImageSorter) are not then this extensible
component should be decorated by the PartiallyContained attribute. When
the MBBF decorated by this attribute is loaded by the PaunPacker, its public
constructors are scanned and if none of them accepts the IPlacementAlgorithm,
then the combo box for selecting the placement algorithm is hidden. Similarly,
if none of the constructors accepts IImageSorter, the combo box for choosing
MBBF’s image sorter is hidden.

Similarly, when a class implementing IPlacementAlgorithm is decorated by
the PartiallyContained attribute, the constructors are scanned in the similar
way as it was the case with MBBF, looking for the existence of a constructor ac-
cepting IImageSorter. If none of the public constructors accepts IImageSorter
then the combo box for selecting the placement algorithm’s image sorter will be
hidden.

Default behavior

When the exported type is decorated neither by the SelfContained attribute
nor by the PartiallyContained attribute then the default behavior—meaning
that the type is fully parameterizable—is observed.

111

6.6 Creating extensible plugins
This section presents a more general approach to the resolution of dependencies
by allowing the plugin developer to create a plugin which would be able to obtain
dependencies registered by other plugins.

The approach from a previous section applies to minimum bounding box find-
ers and placement algorithms whose dependencies are selected by the user using
the PaunPacker’s GUI. Other extensible components could also be parameter-
ized, but their parameterization is not built inside PaunPacker’s GUI, so these
aforementioned scenarios do not apply to them and instead, they should resolve
the dependencies on their own using a more general approach which is to create
a plugin with a view, that will load all (including those exported from other plu-
gins) the dependencies of a certain type and displays those types in its view. The
user is then able to select any of the listed dependencies and the view model will
export an instance parameterized by this selection.

As an example consider the Skyline algorithm which could be parameterized
by the IRectAndPointPicker. The desired behavior is to allow other plugin
developers to develop implementations of IRectAndPointPicker that the user
could later select to create a parameterized instance of the Skyline algorithm.
The way how this behavior could be reached is depicted in Listing 19.

112

1 public void OnInitialized(IContainerProvider containerProvider)
2 {
3 //...
4 //Register known RectAndPointPickers
5 unityContainer.RegisterType<LightweightRectAndPointPicker>();
6 unityContainer.RegisterType<MinimalAreaWasteRectAndPointPicker>();
7 //Register the Skyline algorithm
8 unityContainer.RegisterType<SkylineAlgorithm>();
9 var eventAggregator = unityContainer.Resolve<IEventAggregator>();

10 eventAggregator.GetEvent<ModulesLoadedEvent>().Subscribe(OnModulesLoaded);
11 }
12 private void OnModulesLoaded (ModulesLoadedPayload payload)
13 {
14 var view = new SkylineAlgorithmView()
15 {
16 DataContext = new SkylineAlgorithmViewModel(payload
17 .GetLoadedTypes<ISkylineRectAndPointPicker>()
18 .Concat(unityContainer.Registrations
19 .Select(x => x.RegisteredType)
20 .Where(x => typeof(ISkylineRectAndPointPicker)
21 .IsAssignableFrom(x) && !x.IsAbstract && !x.IsInterface))
22 .Distinct(), unityContainer)
23 };
24 unityContainer.RegisterInstance<UserControl>(PluginViewWiring
25 .GetViewName(typeof(SkylineAlgorithm)), view);
26 }
27 public SkylineAlgorithmViewModel(//Constructor of SkylineAlgorithmViewModel
28 IEnumerable<Type> loadedISkylineRectAndPointPickerTypes,
29 IUnityContainer unityContainer)
30 {
31 SkylineRectAndPointPickerVMs = loadedISkylineRectAndPointPickerTypes
32 .Select(x => new RectAndPointPickerViewModel(x));
33 unityContainer.RegisterFactory<ISkylineRectAndPointPicker>((_) =>
34 {
35 try
36 {
37 var picker = (ISkylineRectAndPointPicker)unityContainer
38 .Resolve(SelectedRectAndPointPickerVM.RectAndPointPickerType);
39 return picker ?? new MinimalAreaWasteRectAndPointPicker();
40 }
41 catch (ResolutionFailedException) //Return default implementation
42 {
43 return new MinimalAreaWasteRectAndPointPicker();
44 }
45 });
46 }

Listing 19: Creating and exporting an extensible plugin.

113

The Listing 19 shows a general approach to export types that require reso-
lution of external dependencies illustrated on the Skyline algorithm. As can be
seen from this Figure, the implementation of the OnInitialized method should
obtain a Unity IoC container and resolve EventAggregator from it. The Unity
IoC container should be used to register a type that should be exported (the
SkylineAlgorithm in this case). Then a handler for a ModulesLoadedEvent
should be subscribed using the EventAggregator and it should get all the de-
pendencies (the implementations of ISkylineRectAndPointPicker in this case)
and pass them to the view model. The view model then registers these depen-
dencies so that whenever the PaunPacker tries to resolve the exported type, the
container resolves the registered dependencies and instantiates the exported type
using them. So in the case of Skyline algorithm, when the PaunPacker tries to in-
stantiate the SkylineAlgorithm, the implementation of IRectAndPointPicker
registered in the view model (shown in the Figure above) will be used.

An alternative approach would be to remove the type registration from the
OnInitialized method and register factory in the view model. This alternative
is partially illustrated in Listing 20.

1 public SkylineAlgorithmViewModel(
2 IEnumerable<Type> loadedISkylineRectAndPointPickerTypes,
3 IUnityContainer unityContainer)
4 {
5 SkylineRectAndPointPickerVMs = loadedISkylineRectAndPointPickerTypes
6 .Select(x => new RectAndPointPickerViewModel(x));
7 unityContainer.RegisterFactory<SkylineAlgorithm>((_) =>
8 {
9 //Sorter should be safe to resolve

10 var sorter = unityContainer.Resolve<IImageSorter>();
11 try
12 {
13 var picker = (ISkylineRectAndPointPicker)unityContainer
14 .Resolve();
15 picker ??= new MinimalAreaWasteRectAndPointPicker();
16 return new SkylineAlgorithm(sorter, picker);
17 }
18 catch (ResolutionFailedException)
19 {
20 //Return default implementation
21 var picker = new MinimalAreaWasteRectAndPointPicker();
22 return new SkylineAlgorithm(picker);
23 }
24 });
25 }

Listing 20: An alternative approach for exporting extensible plugins by using
RegisterFactory method.

114

It is important to ensure that the exported type could always be exported,
therefore it is important to provide some fallback mechanism (default implemen-
tations) for the case that none of the dependencies was registered.

To summarize this section:

• Any extensible component could have arbitrary external dependencies

• Minimum bounding box finders and placement algorithms should also use
SelfContained and PartiallyContained attribute whenever appropriate.

6.7 Best practices
There are a lot of ways to achieve a similar effect when it comes to developing
plugins for PaunPacker. Because the plugin developer might be overwhelmed by
the number of different ways of doing the same thing, it was decided to introduce
this section which presents some of the best practices when developing the plugins.
These best practices are the following:

• Always use PluginMetadata and ExportedTypeMetadata attributes to ex-
port metadata about plugins.

• Prefer export by using MEF’s Export attribute over implementing IModule
for simple types.

• Always try to equip the exported type with a parameterless constructor.

• When developing plugins that introduce plugin-specific dependency (for
example, the Skyline algorithm and its ISkylineRectAndPointPicker, al-
ways provide a default implementation of the dependency and export it.

• Use TargetFramework and AvailableTo attributes whenever needed.

• Mark the exported types with SelfContained or PartiallyContained at-
tribute whenever appropriate.

• Always try to report the progress from the extensible components that
support it.

• When developing extensible components, always check the cancellation to-
ken for cancellation and cancel gracefully whenever the cancellation is re-
quested (within a reasonable amount of time).

115

116

Conclusion
To conclude this thesis, the goals mentioned in Sections 1.3, 3.1 now should be
reviewed and their fulfillment evaluated:

1. Create a packing tool with included GUI—It is safe to say that this goal was
met because the PaunPacker solutions contain the PaunPacker.GUI written
using WPF. Moreover, the final product looks more or less the same as the
initial draft that the author of this thesis had in mind.

2. Implement Trim, Crop, Extrude, Color type change, Heuristic mask—All of
these features are implemented, although some of them are not implemented
using the most efficient or most generic algorithms solving the particular
problem. For example, the heuristic mask (i.e. the background remover)
is implemented in quite a simple way that definitely does not remove the
background correctly in every case. Nevertheless, the background remover
still works slightly better than was initially expected, because the initial idea
was to implement it in a way so that it only allows to remove backgrounds
from textures with a single color background.

3. Implement Alias creation—Successfully implemented.

4. Provide two sample metadata exporters, first of them targeting libGDX and
the second targeting Unity—Both metadata writers (exporters) were imple-
mented.

5. Provide basic toolset (in a form of the dynamic library) that could be reused
for future plugin development—The reusable dynamic library is output from
building the PaunPacker.Core project. What did better than expected is
that the dynamic library is fully compliant with .NET Standard.

6. Satisfy all of the requirements (R1 to R3) mentioned in Chapter 1—The
requirement R1 (that the application should be free to use) is satisfied
because the PaunPacker is free to use. The requirement R2 (that the
application should provide several additional features for image processing)
is also satisfied because the image processors mentioned in 1. item in this
list are implemented. Lastly, the requirement R3 (that the application
should be extensible) is also satisfied and fulfilled even more than it was
expected because the extensible components could have their own views
(GUI) and could depend on functionality exported from other plugins which
is something that was not expected in the initial phase of development.

7. Implement bottom-left algorithm (improved BL)—The BL algorithm was
implemented, although in a slightly different version than from the improved
BL. The implemented BL algorithm variant tries to perform some additional
steps in order to optimize the resulting packing but at the price of worse
time complexity. It would be nice to either provide the original improved
BL implementation or Chazelle’s efficient implementation [22] of the original
BL algorithm in the future. However, the lack of a standard implementation
of BL algorithm is compensated by the fact that the BL algorithm could

117

be implemented using proper parameterization of the Guillotine algorithm
which is perfectly possible in the current implementation of the PaunPacker.

8. Implement Guillotine algorithm—The guillotine algorithm is implemented
in a way that it is parameterizable more than it was expected. The guillo-
tine algorithm is also accompanied by the GUI so that the user is able to
parameterize it also directly from the GUI of the application.

9. Implement Maximal Rectangles (MaxRects) algorithm—Successfully imple-
mented

10. Implement Skyline algorithm—Successfully implemented, in a parameteriz-
able way.

11. Implement one metaheuristic algorithm—As it was already mentioned in
Section 3.1, the genetic packing algorithm was selected as the metaheuristic
algorithm that should be implemented. The genetic packing algorithm was
successfully implemented and is also accompanied by the GUI that allows
the user to parameterize the algorithm by the size of the population and
number of iterations.

Future work

Although it could be said that the goals that were set have been accomplished,
there is still a lot of space for improvement and additional work that could be
done in order to improve the user experience and the whole application itself.
Some of the nice-to-have features and possible improvements for the PaunPacker
are mentioned in the following list:

• Drag & Drop—The drag & drop of input textures into the PaunPacker could
dramatically improve the user experience of working with the application.

• Undo & Redo—This is yet another feature that users are used to using in a
modern application and it would definitely improve the user’s experience.
The implementation of Undo & Redo would introduce a concept of a history
which would track actions taken by the user. There are several possibilities
what could this history track, for example, application of image processors.

• Extend project files—It seems useful to extend the amount of information
that is stored within the project files by some additional project settings. In
addition to project settings, it would be nice to increase the amount of state
that is captured by the project, for example, the applied image processors
so that they are reapplied when the project is opened. This supports the
idea of implementing the Undo & Redo mentioned above.

• Add per-folder settings—Some applications allow to create settings files
within individual folders, that are also applied recursively in inner folders
(unless overridden). Folders with the settings files could then be tracked by
the PaunPacker and images in them could automatically be loaded. The
settings file then could specify, for example, sub-folders that should be ex-
cluded from the loading. A similar approach is taken in the paid version of
TexturePacker.

118

• Improved plugin management—Currently, the user is only allowed to install
plugins by copying them into the plugins folder and then show information
about the plugins that were loaded and types exported from the individual
plugins. It could be useful to allow the user to manage the plugins from the
application, for example, allow the user to select which plugins should be
installed (and then copy the appropriate files) or to uninstall the files from
the application, etc.

• Texture atlas post-processors—The current implementation of PaunPacker
only supports image processors that are processing individual images. But
with the passage of time, it turned out that it would be useful to have
an ability to post-process a whole generated texture atlas. Such post-
processing could be made abstract by introducing the so-called Texture
atlas post-processors that would take the generated texture atlas at the in-
put, process it and then returned the processed version at the output. These
post-processors would, therefore, be allowed to adjust the metadata corre-
sponding to the texture atlas. The main reason is that certain operations
need to look at the texture atlas as a whole and not only at the individual
textures.

• Optimize the current implementations—Although the current implementa-
tions are working and are mostly implemented with a reference to a paper
describing the given algorithm, there is always a place for an optimization
of the algorithms, for example, by introducing parallelism.

• Add more metadata writers—Even though the PaunPacker contains quite
a lot of algorithms and other functionality out-of-the-box, the number of
metadata writers and therefore the frameworks that are supported—to be
used as the target frameworks—is rather limited (only two implementations
at the moment). It would be nice to add more metadata writers and because
the PaunPacker is extensible, it should not take much effort.

• Transfer some functionality from the main window’s view model to other
view models—There are already several other view models being responsible
for quite a lot of an application’s logic, but the main window’s view model
is still enormous (in terms of the amount of code) when compared to the
other view models.

• Add support for multiple texture atlases generation—It would be useful to
provide the user an ability to automatically created multiple smaller texture
atlases when the input textures could not fit into a fixed size texture atlas
with dimensions specified by the user.

119

120

Bibliography
[1] Kenney. Platformer Art Complete Pack. https://opengameart.org/

content/platformer-art-complete-pack-often-updated, 2014. [Online;
accessed 13-April-2019].

[2] libgdx. https://libgdx.badlogicgames.com/. [Online; accessed 28-April-
2019].

[3] Batch (libgdx API). https://libgdx.badlogicgames.com/ci/nightlies/
docs/api/com/badlogic/gdx/graphics/g2d/Batch.html. [Online; ac-
cessed 12-May-2019].

[4] libgdx/TexturePacker.java at master . libgdx/libgdx . GitHub. https://
github.com/libgdx/libgdx/blob/master/extensions/gdx-tools/src/
com/badlogic/gdx/tools/texturepacker/TexturePacker.java#L349.
[Online; accessed 30-April-2019].

[5] Esoteric Software LLC. Spine: In Depth. http://esotericsoftware.com/
spine-in-depth. [Online; accessed 20-May-2019].

[6] Atlas export format. http://esotericsoftware.com/
spine-atlas-format. [Online; accessed 30-April-2019].

[7] LearnOpenGL - Textures. https://learnopengl.com/Getting-started/
Textures. [Online; accessed 20-May-2019].

[8] Kenney. Platformer Characters 1 (5 characters). https://opengameart.
org/content/platformer-characters-1-5-characters, 2017. [Online;
accessed 11-May-2019].

[9] CodeAndWeb GmbH. TexturePacker - Create Sprite Sheets for your game!
https://www.codeandweb.com/texturepacker, 2019. [Online; accessed 14-
May-2019].

[10] Zwopple Limited. Zwoptex — Zwopple — Creative Software. https://
zwopple.com/zwoptex/, 2017. [Online; accessed 14-May-2019].

[11] CEGO ApS. Open Source Software by CEGO ApS - spritemapper. http:
//opensource.cego.dk/spritemapper/, 2013. [Online; accessed 14-May-
2019].

[12] Joe Hall. GDU - Sheets. http://gamedevutils.com/webapps/sheets/,
2016. [Online; accessed 14-May-2019].

[13] Herald Dyckhoff. A typology of cutting and packing problems. European
Journal of Operational Research, 44:145–159, 1990.

[14] Gerhard Wäscher nad Heike Haußner and Holger Schumann. An improved
typology of cutting and packing problems. European Journal of Operational
Research, 83:109–1130, 2007.

121

https://opengameart.org/content/platformer-art-complete-pack-often-updated
https://opengameart.org/content/platformer-art-complete-pack-often-updated
https://libgdx.badlogicgames.com/
https://libgdx.badlogicgames.com/ci/nightlies/docs/api/com/badlogic/gdx/graphics/g2d/Batch.html
https://libgdx.badlogicgames.com/ci/nightlies/docs/api/com/badlogic/gdx/graphics/g2d/Batch.html
https://github.com/libgdx/libgdx/blob/master/extensions/gdx-tools/src/com/badlogic/gdx/tools/texturepacker/TexturePacker.java#L349
https://github.com/libgdx/libgdx/blob/master/extensions/gdx-tools/src/com/badlogic/gdx/tools/texturepacker/TexturePacker.java#L349
https://github.com/libgdx/libgdx/blob/master/extensions/gdx-tools/src/com/badlogic/gdx/tools/texturepacker/TexturePacker.java#L349
http://esotericsoftware.com/spine-in-depth
http://esotericsoftware.com/spine-in-depth
http://esotericsoftware.com/spine-atlas-format
http://esotericsoftware.com/spine-atlas-format
https://learnopengl.com/Getting-started/Textures
https://learnopengl.com/Getting-started/Textures
https://opengameart.org/content/platformer-characters-1-5-characters
https://opengameart.org/content/platformer-characters-1-5-characters
https://www.codeandweb.com/texturepacker
https://zwopple.com/zwoptex/
https://zwopple.com/zwoptex/
http://opensource.cego.dk/spritemapper/
http://opensource.cego.dk/spritemapper/
http://gamedevutils.com/webapps/sheets/

[15] Frank de Zeeuw. Combinatorial Optimization. https://dcg.epfl.ch/
wp-content/uploads/2018/10/CombinatorialOptimization_20160218.
pdf, 2016. [Online lecture notes; accessed 13-April-2019].

[16] Jukka Jylänki. A thousand ways to pack the bin – a practical approach to
two-dimensional rectangle bin packing, 2010.

[17] Andrea Lodi. Algorithms forTwo-Dimensional Bin Packingand Assign-
ment Problems. http://www.dei.unipd.it/̃fisch/ricop/tesi/tesi_
dottorato_Lodi_1999.pdf, 1999. [Online; accessed 22-May-2019].

[18] José Fernando Oliveira, Alvaro Neuenfeldt Júnior, Elsa Silva, and
Maria Antónia Carravilla. A Survey On Heuristics For The Two-Dimensional
Rectangular Strip Packing Problem. Pesquisa Operacional, 36:197–226,
2016. [Online; accessed 22-May-2019].

[19] Richard E. Korf. Optimal rectangle packing: Initial results. In In Proceedings
of the 13th International Conference on Automated Planning and Scheduling
(ICAPS-2003, pages 287–295, 2003.

[20] El-Ghazali Talbi. Metaheuristics From Design To Implementation. Wiley,
2009.

[21] Brenda S. Baker, Ed Coffman, and Ronald L. Rivest. Orthogonal packings
in two dimensions. SIAM J. Comput., 9:846–855, 11 1980.

[22] Bernard Chazelle. The bottom-left bin-packing heuristic: An efficient im-
plementation. IEEE Transactions on Computers, 32(8):697–707, 8 1983.

[23] Dequan Liu and Hongfei Teng. An improved bl-algorithm for genetic algo-
rithm of the orthogonal packing of rectangles. European Journal of Opera-
tional Research, 112:413–420, 01 1999.

[24] Wei Lijun, Defu Zhang, and Qingshan Chen. A least wasted first heuristic
algorithm for the rectangular packing problem. Computers & Operations
Research, 36:1608–1614, 05 2009.

[25] Stefan Jakobs. On genetic algorithms for the packing of polygons. European
Journal of Operational Research, 88(1):165 – 181, 1996.

[26] Immo Landwerth. Demystifying .NET Core and .NET Standard. MSDN
Magazine, 32(9), 09 2017.

[27] Attributed programming model overview (mef).
https://docs.microsoft.com/en-us/dotnet/framework/mef/attributed-
programming-model-overview-mef, 2017.

[28] Wix toolset. https://wixtoolset.org/.

[29] Github - ewsoftware/shfb: Sandcastle help file builder (shfb).a standalone
gui, visual studio integration package, and msbuild tasks providing full con-
figuration and extensibility for building help files with the sandcastle tools.
https://github.com/EWSoftware/SHFB.

122

https://dcg.epfl.ch/wp-content/uploads/2018/10/CombinatorialOptimization_20160218.pdf
https://dcg.epfl.ch/wp-content/uploads/2018/10/CombinatorialOptimization_20160218.pdf
https://dcg.epfl.ch/wp-content/uploads/2018/10/CombinatorialOptimization_20160218.pdf
http://www.dei.unipd.it/~fisch/ricop/tesi/tesi_dottorato_Lodi_1999.pdf
http://www.dei.unipd.it/~fisch/ricop/tesi/tesi_dottorato_Lodi_1999.pdf

[30] RelayCommands MVVM Commands and EventToCommand. Demystifying
.NET Core and .NET Standard. MSDN Magazine, 28(5), 05 2013.

[31] A new idialogservice for wpf · issue #1666 · prismlibrary/prism · github.
https://github.com/PrismLibrary/Prism/issues/1666.

[32] Skiasharp/wpfextensions.cs at master · mono/skiasharp · github.
https://github.com/mono/SkiaSharp/blob/master/source/SkiaSharp.
Views/SkiaSharp.Views.WPF/WPFExtensions.cs.

[33] Prism/prismapplication.cs at master · prismlibrary/prism · github.
https://github.com/PrismLibrary/Prism/blob/master/Source/Wpf/Prism.
Unity.Wpf/PrismApplication.cs.

123

124

A. Attachment
The contents of the attachment:

• /src – folder containing the whole PaunPacker solution.

• /samples – folder containing some of the sample input textures.

• /documentation – contains the documentation for the projects from the
PaunPacker solution.

• /setup – contains an installer and a portable version of the PaunPacker.

• /thesis.pdf – file containing this thesis.

• /README.txt – file describing the contents of the attachment.

125

126

	Introduction
	Texture atlas
	Metadata
	Using texture atlas

	Packing tools
	Goals

	Theoretical Background
	Packing problems
	Dyckhoff's typology
	Problem definition
	Two-dimensional rectangle bin packing
	Two-dimensional strip packing problem
	Rectangle packing problem

	Solution approaches
	Heuristic algorithms
	Meta-heuristics

	Implementation Analysis
	Goals revised
	Architecture overview
	High-level components overview
	PaunPacker's workflow

	Choice of platform and development technologies
	PaunPacker.GUI
	Plugins
	PaunPacker.Core
	PaunPacker.GUI revisited

	Developer Documentation
	NuGet package dependencies
	PaunPacker's workflow revisited
	PaunPacker.Core
	Representation of a rectangle
	Metadata export
	Packing process representation
	Representation of image processors

	PaunPacker.GUI
	Application's entry point
	Views
	Data binding, INotifyPropertyChanged and ObservableCollection
	Commands
	Behaviors
	Converters
	Events
	Services
	Dialogs
	Workarounds
	Resources
	ViewModels
	Exported types instantiation
	Export of built-in extensible components

	PaunPacker.GUI.WPF.Common
	Tests
	Benchmarks

	Plugins

	User Documentation
	Installation and running the PaunPacker
	Plugin installation
	Limitations
	GUI overview
	PaunPacker menu
	Packing settings and texture atlas generation
	Interacting with the texture atlas
	Managing the loaded images
	Working with Image Processors
	Benchmarks

	Creating Plugins Tutorial
	Prerequisities and common guideline
	Minimal plugin template
	Creating plugins without GUI
	Creating plugins with GUI
	Managing external dependencies
	Creating extensible plugins
	Best practices

	Conclusion
	Bibliography
	Attachment

