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Abstract: Environment maps are widely used in several computer graphics fields,
such as realistic architectural rendering or computer games as sources of the light
in the scene. Obtaining these maps is not easy, since they have to have both a
high-dynamic range as well as a high resolution. As a result, they are expensive
to make and the supply is limited.

Deep neural networks are a widely unexplored research area and have been suc-
cessfully used for generating complex and realistic images like human portraits.
Neural networks perform well at predicting data from complex models, which are
easily observable, such as photos of the real world.

This thesis explores the idea of generating physically plausible environment maps
by utilizing deep neural networks known as generative adversarial networks. Since
a skydome dataset is not publicly available, we develop a scalable capture process
with both low-end and high-end hardware. We implement a pipeline to process
the captured data before feeding it to a network and extend an already existing
network architecture to generate HDR environment maps. We then run a series
of experiments to determine the quality of the results and uncover the directions
of possible further research.
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Introduction
In this chapter we explain the motivation behind our work, as well as the main
goals we hope to achieve and the reasoning behind them. We also provide a
general outline of the thesis to help the reader navigate the text.

Motivation
The term computer graphics encompasses a wide field of different disciplines. One
of the more prominent ones is realistic rendering of scenes created by a 3D artist,
known to the general public as Computer-generated imagery or CGI. In order to
make these scenes look realistic, the artist has to utilize assets captured in the
real world – mainly textures and material properties. In order to achieve realistic
lighting of the scene, the artists can use environment maps to get the radiance
values of the sky. An environment map is a high dynamic range, 360° photograph
of the entire surroundings of the camera, as shown in Figure 1.

Figure 1: An example of a low dynamic range environment map. Since the map
covers all 180 polar degrees, we can see the camera tripod in the bottom of the
image.

As we already mentioned, these maps have to have a high dynamic range
of luminance values, since some elements of the sky (the Sun or sunlit clouds)
are brighter than the rest of the scene by orders of magnitude, referred to as
HDR images. Artists also require large resolution for these images – the current
standard is 15000 by 7500 pixels, which is roughly 110 megapixels in every image.
These demands make capturing the maps require a significant amount of manual
work, as well as special and expensive equipment.

Having a fixed set of images does not give the artist a lot of creative freedom
either, since these environment maps cannot be adjusted in any way, except for
horizontal (azimuthal) rotation. If the artist likes a certain environment, but the
scene requires more clouds than the image contains, there is no way to increase
the cloud coverage in the image and the artist has to discard it.
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Another common task in architectural visualization is rendering a given build-
ing several times, simulating the look of the building over the course of the whole
day. This requires a sequence of skydome images, shot in the same place over
the course of several hours. Similar problem arises in movie renderings, where
the rendered assets (like buildings or characters) have to be lit correctly, corre-
sponding to the time of the day in the movie. This, again, requires a sequence of
environment maps, since both the clouds and the Sun in the sky have to move in
the movie.

Goals
The above requirements could be solved by generating synthetic environment
maps, which the artists could use in their projects. This could both give the
artists greater control over the generated results, as well as allow them to generate
sequences of images with realistic cloud movement.

The goals of this thesis are based on the requirements we mentioned so far.
In order to be usable in CGI, the generated environment maps have to fulfill the
following criteria:

• Realistic looking results – the generated results need to look physically
plausible. This includes both the cloud formations, as well as the lighting
of the sky.

• High dynamic range (HDR) – as we already mentioned, the goal is to
use these environment maps as sources of light in the scene. High dynamic
range is very important, since the difference of radiance emitted from dif-
ferent surfaces is greater than the range of RGB images (e.g. the Sun is a
thousand times brighter than a streetlamp).

• High image resolution – while not as important as the others, image res-
olution is still a constraint we have to keep in mind. If the environment map
has a low resolution, the sky and any reflections (such as water surfaces)
will look blurry and reduce the realism of the scene.

While this list is not exhaustive, it gives a good high-level idea of what is
required of the results to be used by the general public. Once these requirements
are met, other goals (like giving the artist the tools to influence the generation)
can be taken into consideration.

There have recently been significant improvements in utilizing neural networks
to generate images from complex data models (like generating human portraits).
Neural networks have performed well in this discipline but their capabilities of
generating high dynamic range data are largely unexplored.

In this thesis we focus on generating skydome images by utilizing neural net-
works. Training neural networks requires a large dataset and because there is no
publicly available HDR dataset of skydome data, we develop a complete method
to acquire this dataset and use it to expand a dataset gathered from various
sources online. We utilize an already existing neural network, run a few experi-
ments to see if we can match the image quality produced by the authors in our
smaller dataset. We implement additional layers with the goal of improving the
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image quality of our results. We also convert the state of the art network for
low dynamic range images to generate high dynamic range images and perform
experiments on this network. These experiments aim both to improve the visual
quality of the generated images as well as to evaluate the generated dynamic
range. The goal of this thesis is to determine if the three goals of generating
HDR environment maps can be fulfilled by a neural network.

In conclusion, our contributions are as follows:

• We develop a complete pipeline to capture and process skydome data as a
dataset for our neural network.

• We utilize this pipeline to expand a dataset we collected from various sources
online.

• We convert a state of the art neural network to generate high dynamic range
(HDR) images.

• We implement two neural network layers in an attempt to improve the
generated image quality. We run experiments to evaluate our new layers,
as well as the precision of the neural network.

• We provide several ideas for future improvement of our results, which we
believe solve some of the issues we encountered during this work.

Thesis outline
In the following chapters, we first provide a theoretical background necessary
to understand both the related work and our own (Chapter 1). In Chapter 2
we give an overview of the existing research in the image generation research
area. Chapter 3 explains all of the research we did to design the best dataset
acquisition method and provides reasoning for both the hardware and software
choices we made. Chapter 4 describes in more detail the neural network we used
for our research, as well as introduces and explains new layers we implemented
and the reasons behind them. In Chapter 5 we present all our results, both in
dataset acquisition and neural network training. Afterwards we highlight several
approaches for future improvement of this research in Chapter 6. Finally, in the
chapter Conclusion we summarize our work and the goals we achieved.
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1. Theoretical background
This chapter is intended to define the terms we will use in the thesis, as well as
to review the fundamental concepts of neural networks and their applications in
image fabrication.

1.1 Deep neural networks terminology
Deep neural networks are machine learning models, which have been gaining pop-
ularity over the last few years. By adjusting its parameters θ a neural network is
trying to best approximate a function f . The function can perform any arbitrary
task, for example, a classifier function f(x) = y will, given an example x, classify
the example into a category y. An image generating function can take a vector
of features x and generate a completely new image y.

When talking about neural networks in this work, we usually mean feedforward
networks. This means that the data flows from the network from the input,
through its layers, directly to the output – without any feedback loops, which
would utilize the output of the network.

In order to have better control over the network’s architecture and therefore a
better control over the final function f , we think about the networks as composed
of different layers. These layers are smaller component functions which the input
sequentially flows through. If we denote the first layer f1 and the second layer as
f2, the output of this network will have the form of f2(f1(x)).

If we stack multiple layers together, we call the resulting network deep. The
first layer of the network is usually called the input layer, the functional layers in
the middle are called hidden layers, since we do not directly observe the outputs
of these layers, and the last layer is called the output layer. There is no standard
way of distinguishing a ”shallow” network from a ”deep” network, so the exact
wording is not crucial. Deep neural networks can have four layers or one hundred
layers. Network architecture is the particular way a single network is composed
into different layers – a network composed of two layers f2(f1(x)) and a network
composed of a different number of different layers g3(g2(g1(x))) have different
architectures, though their purpose might be the same.

By neural network training we mean adjusting the parameters θ in such a
way, that the network’s approximation of the function f improves. This is done
by minimizing the loss function which is a function approximating the inaccuracy
of the prediction of f .

We do not go into any more detail in this section, instead we direct the reader
to a great resource of Goodfellow et al. [2016], which covers this topic extensively.

1.2 Convolutional networks
Convolutional neural networks, or CNNs for short, are a widely adopted type of
neural networks, first proposed by LeCun et al. [1989]. They are mainly used in
the image processing field for all different kinds of image based tasks, be it object
classification, object detection or content generation. A convolutional network is
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simply a network which utilizes mathematical convolution in at least one of its
layers [Goodfellow et al., 2016]. Computing the convolution over the whole image
means computing S(i, j) for every [i, j] – a pixel of the image:

S(i, j) =
K1∑︂

m=0

K2∑︂
n=0

I(i − m, j − n)K(m, n) (1.1)

where K1 and K2 are the dimensions of the convolutional filter (kernel). This
convolutional filter gets applied over the input image. While it is possible to apply
the convolutional filter to every pixel of the image, as the Equation 1.1 suggests,
it is often changed to move ”faster” across the image skipping some pixels in the
process. This speed of the convolutional filter is called the stride.

While we describe a convolution as a 2D operation, there are several 3D
convolutions happening in a single convolutional layer. If we have an input feature
volume with dimensions (H, W, C) and specify the kernel size as (3, 3) and the
number of output channels C1 = 16, a single convolutional filter used in the layer
will have the dimensions (3, 3, C) and there will be C1 = 16 of them. Each of these
sixteen filters will produce one feature channel in the output volume. Each of the
feature channels receives the same information from the input feature volume,
but uses different weights of the kernel to compute the convolution. This single
convolutional layer is also illustrated in Figure 1.1 with C = 3.

3

W

H

C

W1

H1

1

1

1

C1

Figure 1.1: An illustration of a single convolutional layer filtering. The original
image with dimensions (H, W, 3) gets transformed into convolutional features
with dimensions (H1, W1, C1). The red area illustrates one single (H, W, 3) kernel
computing one channel of the output feature volume.

A convolutional layer usually consists of the convolution itself, as well as a
pooling layer. The pooling layer somehow locally combines the outputs of the
convolution. There are several statistics, which can perform this function such
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as averaging a neighborhood, computing different norms of the neighborhood, or
simply just taking the maximum of the neighborhood. The last example is called
max pooling and is one of the better known variants. Pooling helps to make the
calculated representation invariant to small translations, which is a very useful
property [Goodfellow et al., 2016].

Goodfellow et al. [2016] (chapter 9, figures 9.18 and 9.19) also provides us with
a deeper understanding of convolutional layers. Strong evidence suggests that
lower level convolutional layers (the first layers to see the image) tend to learn
response functions similar to response functions in the primary visual cortex in
the human brain. The original authors LeCun et al. [1989] also mention this in
their text. After a convolution is applied to an image, we call the output of the
layer the image’s features, largely because we expect that the convolutional layer
extracted some important information about the image by using its filters.

Transposed convolution Because this thesis focuses on generative models,
we need to also mention the transposed convolutional layer, which is often used
to fabricate delicate image details, instead of condensing image details into more
general features, like the standard convolutional layer. Transposed convolution
provides the main functionality in image synthesis networks, taking a lower reso-
lution image (or image representation, in features), and ”dreaming” new details
in the higher resolution. This is often utilized for both super-resolution tasks (en-
larging an already existing image into a higher resolution and keeping the same
level of detail) as well as synthesizing a completely new image. We will discuss
image synthesis at length in the next section.

The article of Dumoulin and Visin [2016] provides a detailed explanation for
both types of convolution. We will briefly explain how transposed convolution
works and refer the reader to said article for a more in-depth analysis.

A simple way of calculating a convolution is transforming the kernel into a
sparse matrix which, when multiplied with a vector containing the flattened input
image, produces the result of the convolution. The shape of the matrix is easily
expressed as A × B, where A is the number of pixels after the convolution, and
B is the number of pixels before the convolution. A 4 × 16 matrix would take a
4 × 4 image and reduce it to a 2 × 2 using a convolution (with a filter size 3 × 3).
Since the pattern for constructing the sparse matrix is somewhat complicated,
we again refer the reader to Dumoulin and Visin [2016] for details.

Once we realise that convolutions can be expressed as the already mentioned
A × B matrix, the natural question which arises is: ”What happens if we trans-
pose the matrix to be B×A”. The answer to this question is precisely a transposed
convolution, also sometimes referred to as a deconvolution. Since the term decon-
volution can also refer to the inverse of convolution (which is not equal to the
transposed convolution), we will avoid it and use the term transposed convolution.

A transposed convolution with a 16 × 4 matrix can be multiplied by a vector
of length 4, producing a vector of length 16. This means it is possible to use
this matrix to upscale images from the resolution 2 × 2 to the resolution of 4 × 4.
This approach is very often exploited in super-resolution networks and generative
models alike.
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1.3 Generative models
Generative models are neural networks built and trained for the task of generating
new images from a given distribution. The network is given a training dataset of
images, and its goal is to learn to generate images similar to the training images.
It is an unsupervised machine learning method, as the data is not labeled in any
way.

There are several measures of the quality of the generative network’s output.
We want the images to be as similar to the images in the dataset as possible –
meaning the distribution of the model should be similar to the data distribution of
the dataset. However, a network focused purely on the quality of reproduction has
no room for modification – it will learn to replicate the images of the dataset. This
is counteracted by the second measure we seek to maximize – the generalisation
of the network. A network generalises well if it is able to produce new images,
which are not contained in the dataset. A high quality generative network will,
therefore, be able to produce images that look to have come from the dataset,
but are completely new. These two metrics of quality are obviously opposite to
each other, and the goal of the network is to strike a good balance.

There are several outcomes of training a generative model, besides the correct
one. We say the network diverged if the network’s parameters do not converge
during training. This can have multiple outcomes in terms of the quality of
the resulting images, but most often the images look like random noise. There
is another condition of generative models called mode collapse. This refers to
the network completely ignoring a few examples from the dataset – for example,
on a mnist dataset [LeCun et al.] which consists of handwritten digits 0 to 9,
the network might only generate ones and threes, completely omitting the other
digits.

Generative models use a set X of realisations of a random variable X. This
set X is called a dataset. This random variable can be, for example, the skydome
images or human portraits. When we shoot a picture, we generate one additional
sample x ∈ X. The goal of generative models is to be able to sample P(X) and
thus generate new images.

Both generative models we mention in the following paragraphs utilize an un-
observed latent space Z. This assumption gives the formula for image generation
P (x) = P (z) ∗ P (x|z) for x ∈ X, z ∈ Z. Because the function P (x|z) is complex,
we utilize neural networks to learn this function.

With these terms defined and explained, we now take a brief look at the two
most prominent generative model architectures – variational autoencoders and
generative adversarial networks.

1.3.1 Variational Autoencoders
Traditional autoencoders are neural networks with a encoder-decoder architecture.
The autoencoder architecture takes a single input datapoint x ∈ X , encodes it
using the encoder part of the network into a latent space variable z ∈ Z. The
decoder’s goal is to then reproduce the x given the latent vector z, which is exactly
P (x|z).

However, these traditional autoencoders cannot be used to generate new im-
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ages because there is no incentive for the network to fill the latent space with real
data, since each training datapoint corresponds only to a single latent vector.
This causes the network to not generalise very well and generate non-realistic
images.

Variational autoencoders or VAEs, introduced by Kingma and Welling [2013],
on the other hand, strive to fill the latent space Z with real examples. This is
achieved by modifying the encoder to generate not only a single latent vector,
but a distribution of possible latent vectors in the latent space Z. The network is
incentivized to fill the latent space with these distributions around each training
example, which allows the user to draw a random z ∈ Z and have the network
produce a viable result.

Taking a deeper look at the VAE architecture, the encoder is usually denoted
as Qφ(z|x). Its goal is to take a datapoint x ∈ X and produce a distribution of
latent vectors z ∈ Z. This distribution is a subspace of Z and represents the data
contained in x. In practice, the encoder generates the parameters for a gaussian
distribution (the mean and the variance) and we assume the distribution of vectors
z corresponding to x is gaussian. Since this function is usually intractable, we
again approximate it using a neural network – the encoder with parameters φ.

The second part of the network is the decoder, usually denoted as Pθ(x|z)
and is the logical opposite to the encoder. It takes a latent vector z ∈ Z and
generates a new datapoint x ∈ X corresponding to the z. As we have already
mentioned, this P (x|z) is approximated by the decoder network with parameters
θ.

Training of variational autoencoders is straightforward and can be done end-
to-end (the whole network – all of its parameters – at the same time). The network
first reduces a datapoint x down to the parameters of the gaussian distribution,
producing a distribution N(µ, σ2). A single latent vector z is then sampled from
this distribution. The vector z is then used to generate a datapoint x′ similar to
x (we say that x was first encoded into z and then decoded back to x′) – this
architecture is sometimes called the hourglass architecture, because of its visual
resemblance, as you can see in Figure 1.2.

As we have already mentioned, the variational autoencoder is incentivized to
fill the latent space Z with the distributions of the real data. This is accom-
plished through one part of the loss function, called a latent loss. This part of
the loss function computes the Kullback–Leibler divergence between the Qφ(z|x)
distributions and a given prior, usually a N(0, 1) distribution. This penalizes the
network for not filling the latent space with its training data. The second part
of the loss is called the reconstruction loss, and on the other hand penalizes the
network for not reproducing the images with enough clarity. These two parts of
the loss function work against each other, since to minimize the latent loss, the
network would just make all of the Q distributions encompass the whole latent
space (and generate the average image), while minimizing the reconstruction loss
would result in a zero variance distribution, which would turn the network into
a simple autoencoder (since each training example x would have just one latent
vector z assigned). We do not explain the theory behind VAEs further and in-
stead refer the reader to the original text of Kingma and Welling [2013], as well
as a more complete resource for variational inference Kingma [2017].

Variational autoencoders are widely used, mainly in applications which ben-
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Figure 1.2: An illustration of the Variational autoencoder architecture. An en-
coder compresses the input image into a latent space vector z. A decoder can
then create the same image from the compressed data.

efit from encoding a datapoint into a condensed latent space. Some examples
include extracting features from images to achieve a semi-supervised learning as
proposed by Kingma et al. [2014], or the synthesis of new molecules by traversing
and Stochastic Gradient Descent optimization in the latent space Z, which is
not possible in other molecular representations Gómez-Bombarelli et al. [2018].
Variational autoencoders have limited use for image generation, since the out-
puts of VAEs tend to be blurry which detracts from the realism of the generated
images. The exact cause of the blurriness is not well known and is still a subject
of ongoing research as is described in Kingma [2017].

1.3.2 Generative Adversarial Networks
Generative adversarial networks or GANs are generative neural networks taking
a different approach than VAEs. They are based on game theory and contain
two neural networks, which play a minimax game, competing against each other.
Introduced by Goodfellow et al. [2014], GANs have been a hot topic of research
since the first publication of the original paper. Since this chapter puts focus
on the theoretical background, this section will explain the basic workings of
a Generative adversarial network, while the following chapter will present the
reader with the follow up research published around this topic.

As we already mentioned, a GAN is composed of two different networks – the
networks are called the generator and the discriminator. Given the observed data
X , we define a prior probability distribution of the latent space as P (z). This
prior can be any fixed distribution and is determined by the author during the
network design. The generator, denoted as G(z, θg), represents the mapping of
the noise P (z) into the actual data domain X. The second neural network, the
discriminator, is a standard image processing deep convolutional network, which,
given a single datapoint x ∈ X , generates the probability of x being from the
real dataset X instead of being generated by the generator as an approximated
sample from X.
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The original formulation of the GAN architecture as a two-player minimax
game with the value function V [Goodfellow et al., 2014] is presented in Equa-
tion 1.2:

min
G

max
D

V (G, D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1.2)

This equation illustrates the underlying idea very well. In this original GAN
formulation the function D returns 1 if the example x is real and 0 if it is fake.
Since the discriminator is trying to maximize the value of V the optimal response
is 1 for every real image and 0 for every fake image. The generator’s goal is to fool
the discriminator and minimize V , therefore the ideal situation for the generator is
when the discriminator can only guess (and thus has a 50% chance to guess right).
Unfortunately, this formulation of V with the discriminator responses being only
0 and 1 has a few problems which make the training unstable in practice and
significant research was put into eliminating these problems. However, before
we further examine this research, we explain the architecture and the training
process of a generative adversarial network in detail.

Architecture While the original proposal of GANs defined both the generator
and discriminator networks as a multilayer perceptron, there has been a follow up
research done by Radford et al. [2015] who use deep convolutional networks for
both parts of the network, this architecture was named DC-GAN (deep convolu-
tional GAN) by its authors. The DC-GAN architecture has become a de facto
standard since its publication, which is why we present this particular form of
the network.

We have already hinted at the architecture of the discriminator network –
it is a deep convolutional network consisting of a sequence of convolutional layers
of decreasing image resolution and increasing number of convolutional channels.
Batch normalization (proposed by Ioffe and Szegedy [2015]) is applied to each
layer during the training, and each batch normalized layer is activated by a leaky
ReLu (rectified linear unit) activation function. While the authors of the DC-
GAN architectures argued that fully connected layers should be omitted from the
architecture altogether, we still see several state of the art networks (like [Karras
et al., 2017] and [Karras et al., 2018]) utilize these layers. The dense layer can
be added as the last step of the discriminator, evaluating the features extracted
by the convolutional layer and predicting the final probability of the image being
fake or real. This prediction can also be handled by a single convolution, as is
the case in the DC-GAN architecture. Similar to the usage of dense layers, the
authors of DC-GAN argue for elimination of the pooling layers. These layers are
also still used in some state of the art networks, however, the DC-GAN network
does not utilize them in any way.

The generator network is, in a sense, opposite to the discriminator network.
Instead of reducing an image into a single value, it takes a latent vector z and
fabricates a new image, using a sequence of transposed convolutional layers we
have mentioned in Section 1.2. The sequence starts by projecting the high dimen-
sional (usually approximately 100 dimensional) latent vector z into a 4×4×1024
convolutional representation. This representation is then gradually enlarged in
the width and height domain, while being flattened by reducing the number of
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channels, until a W × H × C image is produced. Each additional layer in the
hierarchy reduces the resolution one step further until the final numbers W, H, C
are reached. In the DC-GAN paper, W = 64, H = 64andC = 3, which gives us a
standard RGB image with a 64 × 64 pixel resolution.

An illustration of the whole GAN architecture is presented in Figure 1.3.

z %

Input
Latent

DiscriminatorGenerator

Score

Figure 1.3: An illustration of the Generative adversarial network architecture.
The generator takes a latent space vector z and generates a fake image. The
discriminator then takes the image and predicts the probability distribution of
the image being fake or real.

Training Now that we have a general idea on what the network looks like,
we explain the rather simple training process. The network is trained end-to-
end, on a set of unsupervised data – usually a set of images that we want to be
able to imitate. The number of these images has to be rather high, some of the
smaller state of the art datasets having no less than 10000 images. Increasing the
number of training data seems to greatly improve the network’s generalisation
capabilities, which is why we usually want to make the dataset as big as possible.

Because increasing the dataset size has this desirable property, dataset aug-
mentation is popular. Augmenting a dataset means taking the unique images
and slightly altering them in order to make the network less focused on the exact
details and thus improve generalisation. A good example of image augmentation
is vertically flipping the image. We explain the benefit of augmenting the dataset
on a practical example – a network supposed to detect oranges (the fruit) in an
image. If our training data has a lot of images with an orange in the right third
of the picture, the network might start to only classify oranges that appear in the
right third of the picture, because it has noticed the accidental correlation. This
is, of course, an undesired effect. Augmenting the dataset in this manner helps the
network learn that the position of the orange does not matter and that it should
still detect oranges in all corners of the image. Other data augmentation methods
include adding artificial noise into the image, cropping out different parts of the
image (to help the network learn to detect partially obstructed oranges that are
not perfectly round), stretching and resizing the image, and more.

The training of the network itself as presented by Goodfellow et al. [2014] is
a rather simple algorithm, which you can see in Algorithm 1. While the details
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of the algorithm (like the specific loss function) have been altered in the follow
up research, it still gives a largely complete picture of the process.

Data: original data x
parameter: discriminator training steps k
parameter: minibatch size m
for number of training epochs do

for k steps do
sample z = {z1, ..., zm} from the prior pg(z);
sample x = {x1, ..., xm} from the real data x;
update θd with ∇θd

1
m

∑︁m
i=1 [log D(xi) + log (1 − D (G (zi)))]

end
sample z = {z1, ..., zm} from the prior pg(z);
update θg with ∇θg

1
m

∑︁m
i=1 [log (1 − D (G (zi)))]

end
Algorithm 1: High level idea of GAN training. First the discriminator gets
trained for a k amount of steps, then the generator gets trained using the
discriminator.

Updating the parameters of the networks can be done using stochastic gradient
descent (or SGD for short) introduced in Robbins and Monro [1951], or more
advanced methods like Adam [Kingma and Ba, 2014]. As you can see, the network
alternates between training the discriminator and generator. This observation is
important because it produces some of the undesired problems we mentioned at
the start of the chapter.

The main problem of generative adversarial networks has always been the
instability of the training. Since the original article was published, there has
been significant research made to stabilize the training of the network and make
it easier to train, since the earlier versions required manual tuning of the network’s
hyperparameters for the network to converge.
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2. Related work
While the previous chapter contained some basic knowledge and understanding of
neural networks, this chapter focuses on providing an overview of their recent de-
velopments, mainly in the field of generative adversarial networks. We divide this
chapter into individual sections aiming to introduce the related work on several
specific topics, namely the stability of GANs, state of the art GAN architectures
and networks dealing with high dynamic range images. In the last section we
also cover other approaches of generating skydomes with clouds without utilizing
neural networks.

2.1 Stability of GANs
One of the main problems of generative adversarial networks is the stability of
their training. The original versions of the GAN architecture required extensive
hyperparameter tuning and experimentation before the network started produc-
ing some reasonable images and would not experience mode collapse. Because of
this some researchers have even developed heuristical methods of finding stable
GAN architectures. Lately, there has been excellent research both formulating
why the networks are so difficult to train and providing a way to improve the
stability of GANs, without requiring the user to manually search through a hy-
perparameter space to find a stable configuration. In this section, we present
some of the more prominent results that relate to the network we used in this
thesis.

In Arjovsky and Bottou [2017] the authors explore the sources of instability
of training GANs. The paper shows that if we train the discriminator close to op-
timality before training the generator, the network minimizes a Jensen-Shannon
divergence between the real data distribution and the generator’s distribution.
The authors prove that this is prone to either vanishing gradients or very noisy
gradients, which in both cases significantly decreases the generator’s ability to
learn, since it will not receive any meaningful gradients from the discriminator
and will not be able to improve the image quality anymore. This paper also
proposes to use the Earth Mover’s (EM) distance with added noise instead of the
current loss function (which is the J-S divergence if the discriminator is trained
until optimal) as the solution.

In a follow-up paper Arjovsky et al. [2017], the idea of the EM distance is
utilized to define Wasserstein GANs, utilizing Kantorovich-Rubinstein duality
[Villani, 2009] to formulate a new loss function for GANs. This new formulation,
however, requires the network to learn the weights of the discriminator in such
a way that it both achieves a supremum of the EM distance, as well as keeps
the function k-Lipschitz continuous. The authors satisfy the Lipschitz constraint
by clamping the range of the weights W of the discriminator to a compact space
(for example [−0.01, 0.01]) and leave this topic for future work. In its theoretical
section, this paper also nicely illustrates the fact that Jensen-Shannon divergence
can provide a zero gradient in a relatively simple case.

Gulrajani et al. [2017] provides a better way of enforcing the Lipschitz con-
straint by introducing a so called Gradient Penalty to the discriminator loss func-
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tion, at the cost of omitting batch normalization from the network. The authors
call their loss function WGAN-GP and showcase the major improvements over
the DC-GAN [Radford et al., 2015] network we mentioned in Chapter 1, as well
as the previously mentioned Wasserstein GAN (WGAN) loss. WGAN-GP loss is
widespread in its use and it is regarded as a major stepping stone in improving
the training of GANs.

There have been several improvements since the WGAN-GP, from which we
mention Miyato et al. [2018]. This paper proposes a novel way to enforce the
Lipschitz constraint by keeping the spectral norm of each layer’s weight matrix to
a constant (usually 1) and proves that this is enough to satisfy the constraint over
the whole network. Since the computation of the spectral norm using the Singular
Value Decomposition method is computationally heavy, the paper uses a power
iteration to approximate the spectral norm. The results of this paper showcase
an improvement of stability over WGAN-GP on the CIFAR-10 [Torralba et al.,
2008] and STL-10 [Coates et al., 2011] datasets and the algorithm’s relatively
simple implementation gives this work the potential to replace WGAN-GP as the
state of the art GAN stabilization method. The neural network we use in this
thesis utilizes a combination of several different loss functions, but the main loss
used is the WGAN-GP function.

2.2 GAN architectures
In this section we present a handful of state of the art GAN architectures which
had significant impact on the neural network research field. Since our goal is to
produce images in high resolution, we only include a select few papers which are
capable of generating high resolution.

The work of Karras et al. [2017] on generating fake celebrity portraits had a
major impact on both the scientific community and the general public – several
newspapers and magazines published an article about this research, like, for ex-
ample, The New York Times in Metz and Collins [2018]. This paper is one of the
first to present a network which is able to generate high resolution images (the
original paper’s target resolution was 1024 × 1024 pixels) with enough fidelity in
details to make the images believable. The authors used a progressively growing
network, which started on training on a very low resolution (down to 4×4 pixels)
and gradually faded in new layers and produced bigger and bigger images. Since
this is the architecture this thesis uses as a basis for our own experiments, we will
describe this neural network in detail in Chapter 4.

Following up on the previous neural network, the authors released a second
paper Karras et al. [2018]. The architecture of this network is very novel and
is influenced by the style transfer task. Instead of starting the generation from
a latent vector z, the network starts generating the new image from a learned
constant vector. The output of the network is shaped by introducing a latent
space W , drawing a sample w ∈ W , and performing an affine transformation to
convert the latent features w into a style vector yi which influences the output
of each convolutional layer on every one of i influence layers. The results of this
paper are also on interactive display on the website thispersondoesnotexist.com
[Wang], which allows the user to generate images from the network. Toying
around with this website is very educational, since one can very quickly get a
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general idea of the quality of images produced by state of the art GANs.
Another GAN architecture capable of generating high resolution images is the

BigGAN network introduced in Brock et al. [2018]. This network serves a slightly
different purpose than the previous ones – it is trained on labeled data and can
be conditioned to generate images of only one class (like ”dogs”). While the code
of Karras et al. [2017] also supports this functionality, it does not seem to be
the core idea of the paper. The authors of BigGAN state that the goal of their
research is to explore the methods for increasing the output resolution of GANs,
combining state of the art approaches from several different papers. They avoid
using explicit multiscale methods like Karras et al. [2017] and can successfully
produce images of 512 × 512 pixels of image resolution. They, however, admit
their model still experiences mode collapse which in practice requires to stop the
training before this happens.

A very recent work of Park et al. [2019] combines the semantic control of Big-
GAN (achieved by conditioning the model on the label) and the stylistic control
of StyleGAN (achieved by influencing the convolutional layers with a style vec-
tor). This network allows the user to input a semantically segmented image and
a second image used as the source of style. The network is then able to gener-
ate an image which contains the objects specified in the semantically segmented
source image while having similar style to the source style image. We leave out
a detailed description of this network, since the goals of our work and this paper
differ and instead refer the reader to the paper itself.

2.3 High dynamic range networks
Finally, we provide a brief overview of work that has been done on high dynamic
range processing using neural networks. The work in this field has been rather
sparse, compared to the rest of the neural network field. To our best knowledge
there has not been any major publication attempting to directly generate com-
pletely new HDR images utilizing neural networks. The majority of work was
centered around the process of converting between low and high dynamic range
images (either by dreaming up a high dynamic range from an LDR image or tone
mapping an HDR image).

The work of Patel et al. [2018] utilizes an image-to-image GAN, first intro-
duced by Isola et al. [2016] to generate a tone mapping for an input HDR image.
The generator network has the ”hourglass” architecture (more akin to a VAE
architecture) because it also has to read the original input image, in addition to
the latent vector. We did not discuss this type of GANs in detail, since it is not
related to our work. It does, however, provide a way to expand this work – if
we had a dataset of sky images with cloudy skies, GPS position and time, we
could train an image-to-image network that would take an analytically generated
skydome model (such as Hosek and Wilkie [2012]) and let the network hallucinate
the clouds on top. We will discuss this further in Chapter 6.

Several papers have also been presented on the inverse problem – generating
a high dynamic range equivalent of an input low dynamic range image. The work
of Eilertsen et al. [2017] utilizes a traditional encoder-decoder architecture, as
does the work of Zhang and Lalonde [2017]. The latter focuses on reconstructing
high dynamic range outdoor panoramas, which is a problem very close to our
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own goal. On the other hand, Marnerides et al. [2018] solves the same problem
of expanding an LDR image into an HDR image without the use of GANs or
AEs, simply by utilizing three deep convolutional neural networks, each of them
focusing on a different level of detail in the resulting image.

2.4 Simulation based approaches
The research topic of generating plausible looking skydomes is not a new research
area. There are several different use cases for skydomes with clouds – applications
which require the full 3D structure of the cloud volumes, such as flight simulators,
and applications which view the skydome from a point close to ground level, which
can only utilize two dimensional skydome images (such as environment maps).
Architectural visualization is a good example of a product which does not require
3D cloud data.

Some approaches to generate 3D cloud data include describing the cloud for-
mations within a formal grammar, particularly the L-systems as described by
Kang et al. [2015]. The other popular approach is using different noise functions
(like Perlin noise [Perlin, 1985]) like in the work of Schneider and Vos [2015].

The 2D approaches also utilize different noise functions but this time the noise
is only two dimensional, usually mapped on a hemisphere which simulates the
skydome around the camera [Roden and Parberry, 2005].

The results of most of these methods do not look realistic enough to be used in
architectural visualization. The second significant drawback is the fact that even
realistic looking cloud textures do not provide realistic luminance values from the
sky – this has to be simulated by some light-transport algorithm where the cloud
is represented as a participating medium. These simulations usually take a lot of
time to converge, which does not make them practical to the average user.
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3. Dataset
In this chapter, we present our research on dataset acquisition. Since there is no
large dataset that would capture high dynamic range skies, we had to explore both
the methods to acquire the raw data, as well as post-processing and conversion
of the data into the best format for the neural network. This chapter is divided
into two sections, the first section discusses the process of shooting the raw data,
while the second one discusses the post-processing and conversions.

3.1 Dataset acquisition
While there does not exist a large enough dataset, there is a lot of related work and
know-how in the field of high dynamic range imagery, even specifically targeted at
CGI. This work provides us with a rough idea for the methods we should explore.

3.1.1 Related work
Since environment maps are used a lot in CGI, there are internet shops which sell
high quality environment maps as their main product. There are, however, also
websites with a more open approach and license. The two most prominent ones
are Zaal and NoEmotion. Not only do the authors of these websites provide the
environment maps free of charge, but also include a detailed description of how the
maps were shot in Zaal [2019] and NoEmotion. We draw a lot of inspiration and
know-how from these two sources, even though the goal of the websites (manually
shooting a high quality complete environment map) and ours (shooting a large
dataset as automatically as possible) differ somewhat. We note that our original
goal was to acquire a full 360 degree dataset but we were forced to compromise
and only take the upper hemisphere due to the reasons we explain in this chapter.

3.1.2 Hardware survey
We have several key pieces of hardware available, which enables us to explore
a few different setups for shooting HDR skies, in order to determine which will
suit our purpose the best. The two key pieces of gear are a Canon 5D Mark II
camera and a Canon 8-15 mm fisheye lens. We also bought a 360° camera called
Mi Sphere, which was highly reviewed for shooting still images (as opposed to
shooting 360° video). We then tried several shooting scenarios to see which of
them would be the easiest to perform on a larger scale – we want our dataset
pipeline to be able to handle shooting thousands of images in the long run. This
means that manual work should be minimized as much as possible since it is the
major limiting factor. Here we present our findings on several different setups for
shooting the panoramic images.

Canon full-frame DSLR Having a full-frame Digital single-lens reflex camera
or a DSLR has several benefits – the captured images will be of high quality (with
low amounts of noise), as well as high pixel resolution. Since the camera is full-
frame, there is no crop factor on the focal length, which allows us to shoot at
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the 8 mm focal length of the lens, which produces a full 180° field of view (FOV)
fisheye image, as seen in Figure 3.1

Figure 3.1: An image captured with a 8mm focal length. The field of view is
roughly 180°. There is severe distance compression on the edges of the image.

You can see that objects on the edges of the image appear to be very far
away – this effect is called distortion or compression of marginal objects. We will
discuss this in detail in the following section. This is, however, a considerable
disadvantage, since we do not capture the marginal clouds in as much detail as
we might want, while the zenith gets captured in a higher resolution.

One of the main advantages of the 8 mm focal length is the fact that we
capture the whole sky at once, which eliminates the need to rotate the camera,
which in turn limits the manual work. The lack of camera movement also has
one more advantage, that is not immediately clear to those unfamiliar with high
dynamic range shooting. Taking a high dynamic range image is usually done by
capturing the same scene at several different exposure levels, usually by adjusting
the shutter speed, while keeping the aperture and ISO setting the same. This
means that each picture the camera shoots is actually composed of several (usually
around 7) images taken immediately after each other with varying shutter speed
– these images are called exposure brackets. If the clouds above move fast (for
example on a windy day), the cloud formation will be different in each image and
the resulting HDR image will be blurred. We showcase this undesired effect in
Figure 3.2.

We can clearly see that even one sequence of images, without moving the
camera, can be problematic in high winds and result in loss of quality. If we
want to shoot a full 360° panorama, this problem gets even more severe. Taking
a full panorama is done by rotating the camera around and shooting a sequence
for every rotation. To produce a 15000 × 7500 pixel panorama with a 15 mm
focal length of the lens, you need at minimum six rotation steps and you also
need to add a photo upwards and downwards (to include details of the clouds
and the ground). Added up, this is 8 images, with 7 brackets per image – in total
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Figure 3.2: An outcrop of a high dynamic range image, which was captured in
too high winds – the clouds were moving too fast and thus appear to be blurred.
There is also another type of undesired artifact near the bright clouds.

roughly 56 images. These need to be shot in a time interval under approximately
30 seconds, for the result to not be blurred.

This obviously requires intensive manual labor, as well as a significant amount
of practice to be able to perform correctly. The other disadvantage of the complete
panoramic shoot is the need to stitch the result together into one large image,
as well as merge the different exposure brackets together, finally producing a full
360° HDR panorama.

We also note that the 8 images we calculated with are the bare minimum.
Professional environment maps used in CGI scenes are usually stitched together
from a lot more images – we can see that the author of Zaal [2019] shoots 28
different images per panorama.

In conclusion there are two main approaches to shooting the sky with a DSLR
camera:

• upper hemisphere only – shooting one sequence of roughly 7 exposures
directly up, with a 8 mm focal length lens.

• full panorama – shooting a full 360° scene which is stitched from several
different images, each image again taken at several exposure levels.

Both of these have their advantages and disadvantages, which we will sum-
marize after we explore the 360° Mi Sphere camera we mentioned earlier.

Mi Sphere 360° camera One of the disadvantages of shooting a full 360°
panorama is the extensive amount of manual work required. A 360° camera is a
logical solution to this problem, because it can capture the whole surroundings
at the same time, again reducing us only to the different exposure levels. Our Mi
Sphere camera can be seen in Figure 3.3.

A 360° camera is usually composed of two fisheye lenses, one on each side of
the camera. Because of this, the resulting image is what is usually called a dual
fisheye image. An example of a dual fisheye image can be seen in Figure 3.4.
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Figure 3.3: Our Mi Sphere camera. The same lens is duplicated on the other side
of the camera. The camera is only about 10 × 10 × 2 centimeters in size, making
it very portable.

Because of this, stitching the picture into a full panorama is again required,
although the amount of manual work is significantly lower than the amount re-
quired to stitch a panorama shot by a DSLR camera. This stitching can also be
automated, since the relative position of the two images will always be the same.

The camera is very compact, which has its advantages and disadvantages.
The advantage is the low weight and the portability which it implies. The weight
is also important for a different reason – because the camera isn’t heavy it can
be mounted on lighter tripods or even flash stands. This reduces the amount
of ground which is occluded by the tripod significantly, while also limiting the
weight of the photographer’s backpack.

However, the disadvantages are also very important. The biggest downside
is the smaller sensor1, which only has a 7.7 mm diagonal (compared to the full-
frame DSLR which has around 43 mm). This means the image is noisier, less
sharp and overall worse in quality. The second major disadvantage is the battery
life – the battery cannot be exchanged and has to be charged through a USB

1According to the manufacturer, the sensor is Sony IMX206 CMOS.
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Figure 3.4: A dual fisheye image taken by the Mi Sphere camera.

port.
The camera comes with an application for Android devices which allows the

user to set the ISO and shutter speed, which is critical for our task. The appli-
cation, however, does not allow the user to set a bracketing of more than three
consecutive pictures, which is not enough for our purposes. This means that
the user has to set the exposure brackets manually, which increases the level of
manual work.

Conclusion Now that we have reviewed all of our options, we list all significant
requirements for the data acquisition method and compare the three mentioned
methods based on these requirements.

1. Reasonable quality – while the quality of the images does not have to
be excellent just for the purpose of training a network, if we shot a quality
set of 360° environment maps usable by CGI artists as well as the network,
the contribution would be significant.

2. High degree of automation – we aim to shoot tens of thousands of
images. For this to be a realistic goal, the pipeline has to be as automated
as possible, with the least amount of human interaction. This is important
for both saving time as well as making the method less error-prone.

3. Robust – since the main goal of this thesis is to shoot clouds, the method
has to be robust enough to not be affected by fast moving clouds noticeably.
If the method produces significant artifacts with fast moving clouds, the
dataset will not be able to generate such clouds.

The choice of the method came largely down to the second point. Shooting
a production-ready full 360° environment map with a DSLR is simply too time
consuming to be viable on a larger scale. Since the 360° camera application does
not allow the user to neither set a custom bracket sequence nor repeat the shoot
every N minutes, it also cannot be used in its current form to shoot large datasets.

On the other hand, the upper hemisphere fisheye method fulfills all three of
our criteria. While the quality of the marginal objects is not the greatest, it still

25



is enough for neural network training. The camera can be highly automated and
the shooting times are fast enough to allow capturing fast moving clouds. This
is why we chose this method as our primary method to acquire the data for our
dataset.

We also note that developing a custom application for the Mi Sphere 360°
camera would be largely beneficial. If we had an application which allows us
to specify a custom bracketing sequence, as well as repeat the shoot every N
minutes, the 360° camera could also be used to capture a part of the dataset.
It could, for example, be used on more remote places, where the weight of the
DSLR would be a limiting factor to the photographer.

3.1.3 Dataset shooting
Now that we have presented our method and explained the reasons why we chose
this particular way to shoot the data, we go over some practical considerations
we have to keep in mind while shooting the dataset. We provide a complete list of
all equipment used as well as a detailed step by step manual in Attachment A.3.

Clipping the dynamic range Shooting on a day when the Sun is clearly
visible and unobstructed in the skies represents a problem even for high-end
camera equipment. The Sun is brighter than the rest of the sky by orders of
magnitude and capturing this high intensity is hard. It is usually done by placing
a Neutral Density filter (ND filter)2 in front of the camera and shooting with the
lowest shutter speed and smallest aperture. The addition of the neutral density
filter allows the user to capture additional exposure brackets, which increases the
intensity values of the Sun in the final image.

However, this process is more manually demanding and as a result, a lot of
HDR environment maps have a so called clipped Sun. This means the values of
the Sun are arbitrarily clipped and are not realistic. For example, if the Sun
is clipped in the image, its pixels will have the intensity around 60 – 100. The
intensity of an unclipped Sun on the other hand will be around 300000. This
discrepancy is significant and affects the lighting conditions in the scene.

The usual lighting set up in a scene consists of a Sun element to provide the
immense radiance value to light an outdoor scene, as well as an environment
map to provide the much less intense details of the lighting. If the environment
map is unclipped, however, the artist cannot use the Sun element, since the
environment map already provides both components of the light. This limits
the artist’s creative freedom to adjust the Sun’s position slightly to potentially
remove some undesirable shadows. During rendering, sampling the unclipped
environment map is also significantly harder than just sampling the Sun element,
because the renderer knows where the Sun element is, as opposed to the Sun
in the environment map, which the renderer has to discover through adaptive
sampling.

2By a neutral density filter we mean a photographic accessory which reduces the intensity
of the incoming light by several exposure steps. It is called neutral density because it reduces
the intensity across all wavelengths. This filter is often used to reduce overexposure or increase
the exposure time. In our case, the ND filter would allow us to capture more exposures of the
Sun – giving us greater dynamic range.
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Because of the rendering pipeline we mentioned, as well as the fact that in-
stalling an ND filter on a fisheye lens is almost impossible, we chose to only shoot
with a clipped dynamic range, mainly to stay true to our goals from the previous
chapter and keep the manual work to a minimum. We do, however, utilize the
camera’s dynamic range to the fullest and include a lowest shutter speed and
smallest aperture image in our exposure settings – this way we clip the image the
least amount we can given our camera hardware.

Custom bracketing and intervalometer Custom bracketing and an inter-
valometer are two of the most important features we need to be able to make the
dataset acquisition as automated as possible. By custom bracketing we mean the
ability to set the camera to take a sequence of images instead of one single image.
This sequence will have varying shutter speed and thus varying exposures, which
enables us to create an HDR photo.

The intervalometer is a simple piece of software which will automatically
trigger the camera to shoot the sequence of bracketed exposure photos every N
minutes or seconds. This would allow us to just place the camera and let it shoot
in precise intervals without any human interaction.

Despite the relative simplicity of these two features, many cameras on the
current market seem to lack one or both of these features. While the majority
of cameras have a compatible intervalometer in the form of a separate device
connected via a cable, the ability to set a custom bracketing sequence cannot be
usually added to the camera afterwards.

As we have already stated, a high dynamic range photo is usually produced by
stacking several images taken at different exposure levels. The current standard
for lower and mid-range cameras is shooting 3 exposure brackets with adjustable
exposure (usually with an exposure step limited to up to 2 EV or 3 EV). This
allows the user to, for example, shoot one photo at −3 EV, one photo at 0 EV and
one photo at +3 EV. While this is enough for artists to capture beautiful HDR
photos, it is not enough for our academic purposes. For the purposes of gathering
an academic dataset with higher precision, we need approximately seven images
per sequence. These seven images usually have a 2 EV step between each of them.
If the darkest image is taken at 1/8000s, 22F and ISO 100, the second darkest
image will be taken at 1/2000s, 22F and ISO 100, and so on.

Our solution to this issue is a free software add-on called Hudson [2009]. This
firmware extension for a select few Canon cameras allows the user to customize
the shooting sequence freely. This software is installed on the memory card and
then allows us to set the number of images taken to 7, with a 2 EV exposure step
in between. Such bracketing sequence covers a dynamic range of 12 EV, which is
enough to capture the majority of outdoor scenes (including unobstructed Sun,
as we have discussed in the few paragraphs about clipping). We note, however,
that this custom firmware is not able to help us with clipping the Sun. The level
of clipping is determined by the lowest exposure our camera can shoot (which is
1/8000s, 22F and ISO 100) and not by the following exposure brackets.

Magic Lantern also provides a quality intervalometer, which eliminates the
need of a remote shutter control. The complete Magic Lantern settings we use
are displayed in Figure 3.5. This combination makes the shoot fully automatic,
requiring human interaction only to initiate and terminate the shoot.
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Figure 3.5: Exposure bracketing and intervalometer settings of Magic Lantern
software. The HDR bracketing setting signifies shooting 7 images with a 2 EV step
in between each pair, starting from the darkest one and increasing the exposure.
The intervalometer is set to shoot a sequence of pictures every two minutes.

3.2 Dataset processing
In this section we mention all data processing we have had to do while creating
this dataset. This includes both processing the images we shot into a final dataset-
ready image, as well as converting the dataset into the training data for a neural
network by utilizing data augmentation.

3.2.1 Photo processing
Firstly, we go over post processing our captured data. There are several steps
necessary to transform the sequence of RAW images into a high quality HDR
image. We explain why each step is required and our chosen approach in the
following text.

Post-processing Before we can merge the image sequence into one HDR image,
we first need to process the RAW data to get rid of camera artifacts such as
vignetting, try to remove the chromatic aberration, reduce the color noise slightly,
as well as choose if we want to perform a white balance correction.

We adopted the profile for our specific camera and adjusted the chromatic
aberration setting. We found the results of the preset satisfactory for our needs.
We refer the reader to the source for any specific details about the preset’s be-
havior. We also include our modified preset in the digital attachments, as seen
in Attachment A.1.

White balance correction is an issue similar to the clipped dynamic range,
which we discussed in the previous section. While shooting a sunset, the light
from the Sun gets an orange tint (also called a warm tone, or low temperature
derived from blackbody radiation). It is up to the user to choose if he wants to
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correct the tone of the image or not. This is the only major decision the user
needs to make when adopting the RawTherapee preset we mentioned above.

This effect is easily corrected by a post-processing program or even in camera.
However, correcting this effect makes the resulting light to be a neutral white
instead of the warm orange sunset. If the artist picks a sunset environment map,
which was color corrected to emit a neutral white light, he will have a scene with
a setting Sun but the objects in the scene will not be lit by the warmer orange
light coming from a sunset.

For the purposes of getting the pipeline as simple as possible, we chose not to
correct the white balance. This effect, contrary to the dynamic range clipping, is
not hard to correct on the whole dataset at a later date, should the need arise.

By utilizing RawTherapee’s batch processing, we can easily apply this modi-
fied preset to all images we took on a shooting session, and process them into a
16-bit compressed .TIF format. These photos are now ready to be transformed
into the correct projection and merged into the resulting HDR image.

Projection correction and HDR merging After the images have been pro-
cessed to remove the minor camera artifacts, we are left with several sequences
of .TIF files. We now want to convert the projection, which is, at the moment,
defined by our lens’ optical system, into a standard projection. We need to per-
form this conversion because we want to have precise control over what the data
looks like. We also need to be able to convert images from other existing envi-
ronment map databases (like the ones from Zaal and NoEmotion) using the same
projection. This way we can seamlessly merge images we shot with images from
other sources, without creating new artifacts in the dataset, such as changing
perspective (which would only confuse the networks). We will discuss the choice
of one particular projection in the following Section 3.2.2.

For this projection correction, we chose a program called PtGui [B.V.]. It is
a commercial graphics user interface over a panorama library called PanoTools
[Dersch]. It specializes in stitching panoramas and is also capable of creating an
HDR panorama. More importantly, it can be automated to a high degree, which
makes it perfect for shooting a high-volume dataset.

We created a PtGui template for our purpose, which merges one sequence of
images into an HDR image and creates a stereographic fisheye projection with
precisely a 180° field of view. PtGui is able to detect the distinct sequences in a
folder full of images, create a project for each of these sequences and apply our
template to all generated projects. The projects then get queued and rendered
one by one.

This pipeline requires minimal work from the user, which is critical for our
purpose. It also handles both correcting the projection and merging the sequence
into an HDR photo, which eliminates the need to use another software to perform
the merge. We provide the complete step by step manual to our photo processing
pipeline in the second part of Attachment A.3, which explains each step in detail.
We also attach our PtGui template in the digital attachments of this thesis in
Attachment A.1.
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3.2.2 Neural network data format
In this second part of dataset processing we no longer talk about exclusively our
newly shot images. By dataset we now mean every image of the upper hemisphere
we could find and use for this thesis. This includes the data we shot with our
camera, as well as other sources for similar data, which we already mentioned in
Section 3.1.1. We list every source of our data in Attachment A.2.

Choosing a projection for our data The most important choice when pro-
cessing the data lies in choosing the projection to use for the data. A perfect
projection of a hemisphere onto a two dimensional plane (an image) does not ex-
ist and there are many different projections to choose from. This problem is well
researched, since cartography has been trying to project the surface of the Earth
onto paper as efficiently as possible for centuries. We list the most prominent
projections and explain our choice.

• Equirectangular projection, also called a latitude-longitude (lat-long) pro-
jection is commonly used to distribute environment maps. An example of
an image mapped in equirectangular projection can be seen in Figure 3.6.
This projection projects the whole sphere (not just the upper hemisphere)
onto a rectangular image with the image width being twice the image’s
height. The left-to-right axis corresponds to longitude, whereas the top-to-
bottom axis corresponds to latitude. Both the forward and the backward
mapping functions are simple to evaluate, and only require to evaluate one
cosine.
The major disadvantage is the considerable deformation which increases
with growing distance from the equator. Since we are mainly interested in
the upper hemisphere, this deformation is at its lowest on the horizon line,
while it is significant in the upper sections of the hemisphere, where we
want to achieve high fidelity of the generated clouds for both high quality
scene lighting and reflections (e.g. reflections on bodies of water). On the
other hand, the deformation is low for the horizon line which also suits
our purposes, since the camera in a CGI scene will usually see part of the
horizon.
The equirectangular mapping also contains some embedded continuity con-
straints, some of which are non-obvious. The first constraint requires that
for a specific projection, the edges of the projection correspond to each other
and are seamless (that is, if you rotate the environment map horizontally
by 180 degrees, you will not see a seam). The second, less obvious and more
complicated constraint holds for the upper edge of the mapping – the upper
edge defines the zenith of the mapping. This means the mapping has to cor-
rectly collapse from an edge into a point without any discontinuities. While
these constraints obviously hold true for a correctly remapped hemisphere,
a standard deep convolutional neural network has limited capabilities to
recognize these constraints and might break them while generating a new
image.
We showcase the results of a network trained on equirectangular represen-
tation of the data in Chapter 5, where we observe this behavior.
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Figure 3.6: An example of equirectangular projection. Notice the extreme dis-
tortion of the clouds in the top region of the image.

• Fisheye projection, which we already mentioned in relation to our camera
equipment, only projects one hemisphere onto the plane. Fisheye projection
is most commonly encountered by looking into a peephole in the front door –
the lens commonly used for this purpose is a fisheye lens, in order to provide
a wide field of view to the user. The image’s center represents the camera’s
target (the zenith of the hemisphere), and by moving to one of the edges of
the image we widen our field of view (looking closer to the equator). There
exist several fisheye mapping functions, each mapping function having a
set of slightly different properties as described by Bettonvil [2005], which
we will now briefly reiterate, with a focus on the properties that are of
importance for our work. We showcase the three most important to our
work in Figure 3.7.

– Equidistant fisheye projection maintains angular distances and is usu-
ally used for measuring angles (zenith and azimuth angles) because
of this property. The compression of marginal objects is significant,
which makes it impractical for our purposes.

– Equisolid angle projection maintains a linear relationship between the
projected surface on the image plane and the area of the hemisphere
which got projected. This property is relevant to our cause, since it
would preserve the relation between the cloud sizes. This projection
unfortunately compresses the marginal areas the most.

– Stereographic fisheye projection maintains the angles between curves
in the image. This makes smaller objects (like clouds in the sky)
look natural, because the angles do not get distorted (a circular cloud
stays circular), though the area does. This projection compresses the
marginal objects the least, and is therefore very suitable for our cause
because of both of these properties.

– Orthographic projection is a special projection which highly distorts
the image as the viewing angle approaches 180 degrees. This projection
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is not at all usable for our purpose.

(a) equidistant (b) equisolid (c) stereographic

Figure 3.7: A comparison of all three fisheye projections which are usable for our
purpose. We can see that equisolid projection compresses the marginal objects
the most, while stereographic projection compresses them the least. Notice the
size of the trees when comparing the compression – the trees are clearly visible
in image (c) but almost invisible in image (b).

As we can see, the equirectangular projection is not really the best suited for
our cause – it highly distorts the parts of the hemisphere we focus on the most
(the clouds high in the sky) and has some discontinuity problems, which are hard
to solve in a neural network environment. We also note that the problems we
mentioned for equirectangular projections hold true for all cylindrical projections,
so choosing another cartographic projection will not help to solve these core issues.

On the other hand, a stereographic fisheye projection seems to eliminate the
discontinuity problems, while providing very low distortion at the zenith part
of the hemisphere and only compressing the marginal objects on the horizon
line, which are of secondary importance to us. The considerable downside to all
fisheye projections is the fact that the image is only valid inside the inscribed
circle, leaving the corners of the image black. This property loses us some pixels
of resolution, since if the network outputs a 1024 × 1024 image, we will only use
π ∗ (512)2 pixels out of the 1024 ∗ 1024 available, which amounts to 78.5% of the
pixels. As we will see in Chapter 4, we can add a layer to a deep convolutional
network, which helps the network to disregard the outside of the unit circle,
focusing the network on the actual image.

We also note here that we could avoid projecting the hemisphere altogether, if
we used a spatial neural network, which we would train on the exact hemispherical
data. We will discuss the idea in more detail in Chapter 6. We did not pursue this
idea, since convolutional networks working over a custom spatial domain (like a
hemisphere) are still not a well-researched topic.

Preparing the data for the network Having decided to use the stereographic
projection, the next step is converting all images of our dataset into stereographic
projection, with the same field of view and image size, as well as augmenting the
data and exporting the correct format for our neural network to process. We will
now describe each step of this pipeline.
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Since we have decided to use a fisheye projection, we need a program to
convert all the equirectangular data into the stereographic projection. We imple-
mented a C++ program which converts an equirectangular image into a fisheye
view of the upper hemisphere. The program utilizes the OpenCV library [Brad-
ski, 2000] to handle the image manipulation, as well as the OpenMP library
[Dagum and Menon, 1998] to perform the conversion in parallel, which improves
the performance when the target resolution is high. The program samples the
equirectangular map using several samples per pixel, which are pseudo-randomly
distributed throughout each pixel. It utilizes bilinear interpolation to extract the
information provided by each sample.

We compared the results of our program with the results of the PtGui soft-
ware we mentioned previously. We took an equirectangular panorama P and
transformed it into a 180 degree field of view, stereographic projection fisheye
image Po. We also used the PtGui software to transform P into a fisheye image
Pp with the same parameters (stereographic projection, 180 degree FoV). The
two images Pp and Po can be seen in figure Figure 3.8 on the left. We computed
a difference image between Po and Pp, which can be seen in Figure 3.8 on the
right. We note that our program converts data only inside the physically viable
unit circle of the fisheye lens and not outside, unlike the PtGui software. This
is what causes the image to be missing the ground element in the corners, which
is highlighted in red in the corners of Figure 3.8. The ground is beyond the 180
degree field of view and would not be visible through a real optical system with
180 degree field of view. We also see some minor discrepancies within the unit
circle itself (usually present on clear edges like the horizon line or cloud edges),
which we attribute to different sampling methods used by both programs. This
conversion is precise enough for our purposes and will not limit the performance
of the network in any way

The next step is performing some form of data augmentation, which should
hopefully both enlarge the dataset and provide some variance to avoid overfitting
by the network. While there are multiple ways of data augmentation for images,
we unfortunately cannot use a majority of the most frequently used ones. For
example, we cannot utilize zooming or cropping for our augmentation, since we
want to only train the network on complete fisheye images. However, the fact that
our images represent a full 360 azimuthal degree hemisphere allows us to rotate
the view around the upward-facing axis, which provides us with an excellent
method of data augmentation.

While rotating the images we avoid as much resampling as possible. The
conversion program to generate fisheye images out of equirectangular maps has
a setting to also rotate the camera by N degrees. This way the rotated image is
generated directly, avoiding the resampling which would occur if we first generated
a non-rotated image and then rotated the image using an affine transform. For
images which were already captured as a fisheye image and not generated from
an equirectangular panorama, we use the affine transform method. We also do
not want to rotate strictly by a given angle, since the network would learn the
fact that the Sun is always in these discrete rotation steps. To counteract this,
we introduce a small amount of random jittering of the rotation angle.

We also utilize the traditional horizontal flip of the image as an additional
source of image augmentation, which is done directly inside the network during
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(a) images compared (b) computed difference image

Figure 3.8: Image (a) showcases both generated images, the top one being the
result of our conversion program Po and the bottom one the result from PtGui
software Pp. Image (b) is a difference image between the output of the PtGui
software and our conversion program. Displayed is the i − r metric for i the
compared image (image generated by us) and r the reference image (the PtGui
software output). Red color means the error metric was negative, green color
indicates a positive difference. We note that the red error in the corners is due to
the fact that our program does not convert an image outside of the viable fisheye
unit circle.

the runtime.
After the data augmentation is complete, we also have to downsize the images

into several resolutions. This is due to the network’s architecture, which we will
discuss at length in Chapter 4. While training, the network gradually increases
its generated resolution, so we have to provide training data for each of these
steps. These resolutions are powers of two, starting at 4 by 4 pixels, increasing
to the target resolution (e.g. for a target resolution of 256 by 256, we would have
4, 8, 16, 32, 64, 128 and 256 pixels for both width and height of the image).

Similarly to the previous paragraph, we do not want to resample the image
multiple times to avoid loss of quality. The C++ conversion program is able to
produce an image of said target resolution, which again avoids one resampling
step.

Once the images are in the correct projection, augmented by rotating and
downsized to all target resolutions, the final step is to convert them all into a
Tensorflow [Abadi et al., 2016] compatible format, since this is the framework
our neural network uses.

Tensorflow has a special format called TFRecord, which the framework sup-
ports. Detailed guide and description can be found in the Tensorflow docu-
mentation3. It is a simple binary format without any compression, which the
framework can iterate through and generate training examples from. We wrote

3https://www.tensorflow.org/guide/datasets
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a simple script which takes an input folder of images and generates a .tfrecord
file out of them. This way we are able to quickly generate the TFRecord files for
all resolutions automatically by iterating through the directory structure

To verify the whole pipeline, we also created a script which reads a TFRecord
file, decodes one sample image at random and also calculates some basic infor-
mation about the images inside the file – the minimum value found in all pixels
of the file, the maximum value and the file count. The minimum and maximum
values of all pixels are a useful debugging tool for the rest of the pipeline, since
the pixels should always be non-negative. Producing a negative value will raise
an error later on in the training phase, so it is important to detect this early.

We have already mentioned the technical details of the equirectangular to
fisheye conversion program, which is written in C++, to maximize performance.
The rest of this pipeline is written in Python, since high performance is not as
critical as the much quicker development cycle of Python. The Python program-
ming language also makes the pipeline easy to use on both personal computers as
well as servers. It also makes the pipeline easily understandable and extendable.
We compiled the image processing functions into one single module called Image
Utils, which is then imported into the scripts which handle both input projections
(fisheye captured by us, as well as equirectangular from other sources).

To make this pipeline easy to use, we also provide a Docker [Merkel, 2014]
image, which installs all system prerequisites to operate our pipeline, such as
Python, OpenCV, Tensorflow, etc.

We also note that our pipeline is able to handle both low-dynamic range
images (such as the .jpg and .png formats) as well as high-dynamic range images
in both OpenEXR (.exr format) and RGBE (also known as Radiance HDR,
.hdr extension) formats. This is handy because the majority of state of the
art neural networks are not able to receive high-dynamic range images without
modification of the network, and training on LDR images also provides viable
feedback regarding the network structure.

We have now described and explained the whole dataset acquisition and pro-
cessing pipeline, which starts by photographing the images and ends with a com-
plete dataset transformed into a network-compatible format. For further techni-
cal details, we refer the reader to the source code of the thesis. The structure of
the source code is described in Attachment A.1. A detailed read-me file is also
included, which should help the reader to navigate the directory structure.
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4. Neural network
In the previous chapter, we covered the whole process of creating a dataset for
the purpose of training a neural network. In this chapter, we describe the neural
network we chose as the basis of our solution, then describe the modifications
we introduced and explain the reasoning behind them. We also offer a short
technical review of the hardware setup we used to train this neural network, for
the purposes of enabling the reader to re-create and use our work.

4.1 Network architecture
As a starting point of this thesis, we chose the neural network of Karras et al.
[2017], with the goal of modifying the network to produce HDR environment
maps. In this section we give the reasons for choosing this particular network
architecture, as well as describe the network in detail, to hopefully make it easier
to introduce our modifications later on.

4.1.1 Reasons for choosing the neural network
The first choice we had to make was if we should develop our own architecture,
or use one which already exists. While developing a new architecture gives us
more creative freedom to combine effective approaches from related work, it does
come with a high development time, which has the potential to overshadow the
actual reason we chose neural networks – as a means to generate HDR images
with enough accuracy for the CGI purposes.

Using an already existing network, on the other hand, eliminates this devel-
opment time, but comes with its own problems. Understanding a completely new
(and usually complicated) neural network architecture is not fast either and since
we did not develop the architecture, we do not have a solid idea about its be-
havior at the outset. It does, however, eliminate the need to search for the best
hyperparameters (like the batch size, learning rate or number of convolutional
channels for each layer, etc.) and convergence speed optimization (in optimizing
the architecture to achieve the best performance by merging some layers or re-
arranging them) When using an already existing layer, we avoid this work since
it has already been performed by the authors who usually highlight the settings
they found to best perform in their report.

We chose to take the neural network of Karras et al. [2017] and modify it,
rather than create our own neural network. We chose not to create our own
network, because this architecture has performed very well in low dynamic range
image generation and it therefore would be interesting to see if we could generate
an HDR image using a successful LDR GAN network. This particular network
had a few advantages over the other state of the art GAN architectures. The
implementation was open-sourced by the authors under the Creative Commons
CC BY-NC 4.0 license1, which allowed us to use the original source code and
train the network with our own datasets and directly compare both the quality

1https://creativecommons.org/licenses/by-nc/4.0/legalcode, accessed on 24. 06. 2019
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and the training speed with the results of the authors. The second advantage
of the network was the relatively small size of the training dataset mentioned in
the paper of Karras et al. [2017] – the training dataset had ”only” 30000 images,
unlike the more complicated follow-up work, where the dataset size increased to
70000 [Karras et al., 2018]. Since the dataset size was a major limiting factor in
our research, we wanted to select a network, which had a higher chance of being
able to train on smaller datasets.

4.1.2 Network architecture
As we will see, the underlying architecture of the network as proposed by Karras
et al. [2017] is simple and straightforward. We note that unlike the architecture,
the behavior of the network is not simple and straightforward and we had to
perform a few experiments to understand how the training usually progresses
and what is indicative of a successful training and what behavior indicates a
failed training run. The network uses the following layers for both the generator
and the discriminator:

• a convolutional layer is used in both the generator and discriminator to
both compute features of the image (in the discriminator) and alter them
(in the generator).

• a transposed convolutional layer is used in the generator to upscale the
image and compute a convolution at the same time. This is the main
source of enlarging the photo in the generator.

• a nearest-neighbour upscaling layer is used to increase the resolution by
using a simple nearest-neighbour filtering. This operation is used while
growing the network from one resolution to another. We will discuss this
growing in greater detail in the following paragraph.

• a average-pooling downscaling layer is a simple layer to decrease the resolu-
tion using a moving average pooling filter. In a similar spirit to the upscaling
layer, this layer is mainly utilized to grow the network’s resolution.

• a dense layer is utilized at the end of the discriminator to compute the
score of the input image.

The generator of the network is composed of blocks of layers which are
repeated for each resolution step. One block is shown Table 4.1:

The first layer, conv up, is a transposed convolutional layer which increases
the resolution of the input twice (e.g. from 8 × 8 to 16 × 16 as illustrated in
Table 4.1). The second layer, conv, is a convolutional layer, designed to introduce
more detailed features in addition to the features already introduced during the
upscaling by the previous layer. Both of these layers had a convolutional kernel of
shape (3, 3). A second convolutional layer, called ToRGB, is introduced to convert
the 512 channels into 3 channels of RGB. This layer has a kernel of shape only
(1, 1), since format conversion is a local operation. Notice that this layer reduces
the number of channels to three, down from 512 in this case. These three channels
are precisely red, green and blue channels of the generated image. The following
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Layer name Output shape Activation function
(batch, channels, width, height) (after the layer)

block input (?, 3, 8, 8) —
16x16Conv up (?, 512, 16, 16) LReLU

16x16Conv (?, 512, 16, 16) LReLU
ToRGB (?, 3, 16, 16) —

Upscale2D (?, 3, 16, 16) —
Grow (?, 3, 16, 16) —

block output (?, 512, 16, 16) —

Table 4.1: Architecture of a single building block of the generator network.

two layers, which complete a single block, are there for the purposes of growing the
network, and get ignored once the training is finished. Since one block increases
the resolution twice, the number of blocks is thus directly proportional to the
target resolution of the network.

We have already pointed out that the ToRGB layer reduces the number of
channels down to 3. We want to clarify that once the network is trained, only
the green rows of Table 4.1 are utilized. This means that the network does not
compress the information in the convolutional channels down to three channels
every block. The ToRGB layer is only applied directly before we want the network
to produce an image. It is a part of the block because we want each block to be
able to produce an image, as we will explain in the following paragraph about
how the network grows from a smaller resolution to a bigger one.

Growing the network is a procedure integral to this network’s architecture. In
Table 4.1 we see the last two layers called Upscale2D and Grow. The Upscale2D is
the simple nearest-neighbour upscaling layer we mentioned previously. This layer
takes the image generated by the previous block Ip and enlarges it twice (this is
why we utilize the ToRGB layer in each block). The Grow layer then interpolates
this upscaled lower resolution image Ip and the new image In produced by the
ToRGB layer. This interpolation produces a new image I = In + (Ip − In) ∗ t.
When t = 0, only the new image gets output from this block into the next
block. When t = 1, only the enlarged image from the previous block gets output
from this block. Changing t from t = 1 to t = 0 is called growing the network,
because it enables the network to use one additional block, which produces higher
resolution images. Note that Figure 4.1 illustrates this process of growing for a
going from 0 to 1, which is different from the actual network implementation
which we explained above. This approach is very similar to a neural network
technique called skip connections, except for the fact that in the architecture we
use the output image is always full target resolution – the untrained layers do
not get skipped but only enlarge the image without increasing the detail. This
is because even though the output of the later blocks does not get used, the
blocks still upscale the low resolution using the nearest-neighbor layer and thus
the blocks are not skipped entirely. Figure 4.1, reproduced from the work of
Karras et al. [2017], illustrates the growing process of adding a single block of
resolution 32 × 32. The authors call this growing fading-in, since it happens in a
linear fashion.

This fading-in of a new block is done only after the previous block has been
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Figure 4.1: A diagram of the growing process, reproduced from [Karras et al.,
2017]. Image (a) illustrates the network operating at a 16 × 16 resolution. Image
(b) introduces the new 32 × 32 block and gradually fades it in by increasing a
from 0 to 1. Image (c) showcases the final 32 × 32 network. The layers fromRGB
and toRGB refer to a 1×1 convolutional layer which extracts image features from
RGB and projects features into RGB respectively. The 2× and 0.5× layers use
nearest-neighbour upsampling and average pooling downsampling respectively to
alter the image resolution.

trained for a while, which hopefully stabilizes the network, allowing it to converge
before introducing a more complex architecture. The metric for correct alterna-
tion between the two phases (training the current blocks and introducing a new
block) the authors use is the number of real images the discriminator has seen.
This number which indicates the switch is 800k in the full version of the network,
and 600k in a smaller, lower-capacity version of the same network (obtained by
reducing the number of convolution channels per layer and the resolution).

The discriminator is very similar to the generator, and we will just briefly
showcase the building blocks in Table 4.2 and point out some differences to keep
this text concise.

In a similar fashion to the generator block, the discriminator block is composed
of two convolutional layers, the second of which reduces the resolution of the
processed image. The three layers highlighted in red in Table 4.2 are again used
for growing the network. The Downscale2D layer reduces the resolution of the
raw input image (hence only three channels on the output), passes it to the
FromRGB layer, which decodes new features (which have the same shape as the
features which came as the input to the block) and the Grow layer which linearly
interpolates between these two feature sets of the downsampled image and the
featureset calculated by the consecutive blocks.
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Layer name Output shape Activation function
(batch, channels, width, height) (after the layer)

block input (?, 256, 64, 64) —
64x64/Conv0 (?, 256, 64, 64) LReLU

64x64/Conv1 down (?, 512, 32, 32) LReLU
Downscale2D (?, 3, 32, 32) —

FromRGB (?, 512, 32, 32) —
Grow (?, 512, 32, 32) —

block output (?, 512, 32, 32) —

Table 4.2: Architecture of a single building block of the discriminator network.

One important note to understand in the discriminator is the inversion of
directions – the first block of the discriminator which gets trained (the 4×4 block)
is actually the last in the discriminator hierarchy, whereas the 4 × 4 block of the
generator is the first block in the generator hierarchy. This immediately explains
why the blocks pass a new conversion from RGB into convolutional channels if
they are not getting trained (if the outputs of the green layers in Table 4.2 are
not used) – the next layer expects to receive a tensor of convolutional filters, not
an RGB image.

Apart from this dissimilarity, the discriminator is practically the same as the
generator and as such we will not describe its architecture in as much detail. We
instead refer the reader into the original text of Karras et al. [2017] for more
information, or to the GitHub code repository of the network2 for the detailed
source code of the whole network.

4.2 Network modifications
While our ultimate goal is to explore the capabilities of generating high-dynamic
range images by generative adversarial networks, there were a few modifications
to the general network architecture which were simple to implement and had the
potential to improve the output of the network. The first of these two modifica-
tions was adding a boolean fisheye masking layer to force the network to generate
valid fisheye images (which have a circular shape inscribed in a square image). We
also implemented an alternative way to enlarge images, instead of the traditional
transposed convolution, since there has been some research pointing towards the
transposed convolution producing unwanted image artifacts which decrease the
overall image quality Odena et al. [2016].

In this section we describe these additional layers we implemented, as well as
the network’s conversion to high-dynamic range images.

4.2.1 Fisheye masking
As we have already discussed in Chapter 3, we chose the stereographic fisheye
projection with 180° of field of view for our image mapping. As you can see

2https://github.com/tkarras/progressive growing of gans, accessed on 24. 06. 2019

41



in Figure 4.2(a), the skydome is compressed within the circle inscribed into the
image frame and the corners of the image are filled with black color.

(a) (b)

Figure 4.2: Images captured by our dataset acquisition pipeline. Image (a) is the
upper hemisphere projected using the stereographic fisheye projection with 180
degree field of view. The image is contained entirely within an inscribed circle
of the image frame. Image (b) was captured by the Mi Sphere 360 camera and
exported with PtGui. The corners outside of the fisheye circle are filled with the
panorama’s lower hemisphere.

If we started training the original network on these images, the network would
have to learn to follow this precisely calculated circle. While this is not a com-
plicated property of the dataset for a neural network to learn, as we will see
in Chapter 5, we can force the network to generate this unit circle explicitly,
which has several positive effects. We first discuss the simple solution to force
the network to generate circular images and then explain the positive effects.

As we explained in the previous section discussing the network architecture,
the generator network always outputs an image at the full target resolution, even
if several upscaling layers have not been trained, because the resulting image
passes through the upscaling layers of the following blocks. This helps us greatly,
since as we know our target resolution (how big the resulting image will be), we
can generate a boolean mask image, which has the shape of the unit circle for the
given resolution. We illustrate a few generated masks in Figure 4.3.

We can perform pixel-wise multiplication of the output image from the gener-
ator with this mask and therefore set anything outside this unit circle to a fixed
color. We also have to process the incoming images in the discriminator the same
way. If we did not, the discriminator would very quickly notice if the fake images
had a different value set in the corners than the real ones (for example, the real
ones could have some leftover noise from the camera) and the training would
diverge, since the generator would not be able to fix this issue. We experienced
this divergence after not including the masking layer in the discriminator and the
discriminator was able to learn this difference within the first 5 epochs of training
and correctly classify every single fake image as a result. If we, however, multiply
both the output of the generator, as well as the input of the discriminator by
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Figure 4.3: An illustration of a 4 × 4 and 8 × 8 circular mask. Pixels with a red
zero will get masked, while pixels with the green one will go through the layer
unchanged.

the same boolean mask, we effectively set the gradients of the pixels outside the
unit circle to zero. This is because the pixels are exactly the same in all fake and
real images and thus the discriminator cannot utilize these pixels to make the
distinction between real and fake images. As a result, the discriminator will not
ever create a gradient which would signal the generator to adjust these pixels.
This effectively forces both networks to focus on the details inside the circle and
disregard anything outside.

The first positive effect of this masking layer is the reduction of complexity.
Our hypothesis was that since the generator network does not have to learn to
generate a precise circle, it can utilize the computation time to actually generate
the correct skydome. The discriminator also cannot learn to punish the generator
for an imprecise circle, since for the image generated is inside exactly the same
circle as the real data. We tested this hypothesis and report the results in the
benchmark experiment.

The second positive effect is entirely dataset based and has nothing to do
with the neural network. This masking allows us to ignore any artifacts of the
camera’s optical or sensor system in the image outside of the unit circle (like lens
flares and sensor noise) and different outputs from the stitching software. If we
shoot a skydome with the Sun visible in the sky, the optical system might create
lens flares inside the whole image – even outside the inscribed fisheye circle. This
would force the network to predict whether a lens flare will be present outside
of the fisheye image circle and where, which is information we do not need and
would increase the difficulty of our dataset in vain. The second reason was the
fact that the stitching software does not respect the fisheye lens restriction of
the unit circle and generates an image with corners filled with content from the
second hemisphere (if we took a 360° panorama), as illustrated in Figure 4.2(b).
Since we now focus on predicting the appearance of the upper hemisphere, this
is an undesired effect, which we eliminate using the fisheye masking layer.
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4.2.2 Replacing the transposed convolution
While training the network on low-dynamic range images, we noticed one of the
most prevalent artifacts reducing the image quality was a checkerboard pattern
artifact introducing very regular square-shaped cloud shapes, as can be seen in
Figure 4.4.

Figure 4.4: A low dynamic range image generated by one of our networks. The
clouds have a distinct square-like shape, which we consider an artifact which
reduces the image quality.

While searching for articles related to this problem, we found the work of
Odena et al. [2016] who explore the cause of a very similar problem and conclude
that the transposed convolution increasing the image size can degrade the image’s
quality. They also propose to exchange the transposed convolutional layer for a
simple nearest-neighbour upscaling and a convolutional network on top, which is
correctly padded to avoid overlapping.

We have already discussed the transposed convolutional layer in Section 1.2
but we briefly restate the mechanism here and illustrate it in Figure 4.5. During
the computation of the transposed convolution, the input layer first gets padded
around the edges, then a (k, k) filter iterates over the input data and computes a
new value for every pixel of the larger output layer.

During a resize-convolution, the input layer first gets upscaled to twice the
resolution using a nearest-neighbour upscaling layer (which the network already
utilizes as we have discussed in Section 4.1.2). After the data is upscaled a stan-
dard convolution is computed over the data to remove the upscaling artifacts and
add new detail. An illustration of a resize-convolution can be seen in Figure 4.6.

This alternative approach should help to eliminate a so called checkerboard
artifact which is created by the filter of the transposed convolution overlapping
multiple times – which get stacked in the output layer and the checkered artifacts
appear. For a more in-depth explanation we refer the reader to the original article
which proposed this new layer by Odena et al. [2016].

We implemented this so called resize-convolution and will discuss the results
of this modification in Chapter 5, but we do not think this modification made a
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Input layer
(N, N)

Output layer
(2N, 2N)

Figure 4.5: An illustration of a deconvolutional layer upscaling the input twice.
The dark blue area is the input data, the light blue area is the padded input. The
green filter then moves over the padded input producing the red output layer.
The current output cell being computed right now is highlighted in bright red.

significant impact on the image quality. This, however, is hard to confirm, since
image quality is a rather subjective measure.

4.2.3 Conversion to high dynamic range
As we have already mentioned, we spent a significant amount of time using the
network for low dynamic range images at first. Reproducing the image quality
the authors achieved on low dynamic range images was crucial, because without
doing this first, we could not effectively produce a comparison of the performance
on low and high dynamic ranges. Once we were satisfied with the performance
of the low dynamic range networks, we converted the network to process and
generate high dynamic range data. Since the authors provided the tensorboard3

summary data for their training runs, we could directly compare the values of
the summaries captured during training and see whether the behaviour we are
observing is similar to the behaviour observed by the authors. Even though the
training was executed on different hardware setups (we cover our hardware setup
in Section 4.3), we found our training runs behaved in a very similar fashion to
those of the authors of the network.

The conversion consisted of several modifications as we needed for the network
to be able to both load a dataset in the high dynamic range format, as well as
generate and output the high dynamic range generated images.

Since the network was designed for LDR images, the dataset loading operated
in integer values. We did not want to hardcode the floating point arithmetic

3https://www.tensorflow.org/tensorboard, accessed on 24. 06. 2019
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Figure 4.6: An illustration of a resize-convolution layer upscaling the image twice.
The input first gets upscaled twice using a nearest neighbour filtering, the result
is them symmetrically padded and put into a convolutional layer, which generates
the additional detail and removes the upscaling artifacts.

instead, so we extended the network to accept both kinds of datasets (from which
the user can choose by using the appropriate constructor parameter).

The second and bigger problem is the fact that HDR images tend to, per
definition, have a high range of utilized values inside the image. This range,
defined as the difference between the brightest and darkest spot in the image,
is usually around 104 for brighter images with the Sun directly visible (the Sun
having values in the hundreds, while the shadows having values around 0.01),
and around 103 for the less bright images (for example overcast skies). As we
can see, this range is much bigger than the [0, 255] used for LDR RGB images.
This high range is also not evenly represented in the image – the majority of the
image is contained within a few exposure steps, but the Sun is extremely bright.
This relationship can be complicated for the network to learn as is, so a mapping
function converting the dataset into a different domain, to alter the big dynamic
range, might be beneficial.

To have more control of the dynamic range, the network can operate in the
logarithm domain [Eilertsen et al., 2017]. This is done by applying a natural
logarithm to the value of each training image, after shifting the data by a constant
c. This shift is necessary, because images often contain the value 0, which could
not get mapped using the natural logarithm. Depending on the constant c, the
shift either increases the dynamic range (for c < 1) or decreases the dynamic range
(for c > 1). We did not hardcode this constant c and instead made it adjustable
through the network’s configuration file. We will showcase the difference the
different choices of c make in Chapter 5.

Since the network learns to generate data mapped this way, once we generate
a new image, we need to shift it back before we save it. The inverse function of
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this mapping is very simple, and the whole process is described in Algorithm 2.

Data: hdr image I, image G generated by the network
parameter: shifting parameter c
I ′ = I + c;
I ′ = loge(I ′);
... train the network, generate G ...

G′ = exp(G);
G′ = G′ − c;
... save the image G′

Algorithm 2: The whole process of mapping an HDR image using a loga-
rithm, with adjustable constant c.

In the original neural network, the RGB images got remapped from [0, 255]
to [−1, 1] before training and remapped the images back before saving, much like
in our case of Algorithm 2, except the mapping used was a simple linear trans-
formation. Since the original network also operates on floating point numbers,
we did not have to change the underlying architecture.

For the purpose of saving the generated image, we utilize the Python version of
the OpenCV library [Bradski, 2000]. This allows us to choose an arbitrary format
to save the generated data. For example, since the majority of the dataset we
collected on the internet is saved as RGBE (.HDR) format, we chose this format
for training on this dataset. Once we started utilizing our dataset, which is
exported in OpenEXR format (.EXR), we changed the output format to .EXR. This
is because when invoked, the generator returns the unmodified, unshifted data
which it generated, which we then have to shift back according to Algorithm 2,
and then can save as a format of our choosing. This allows the user to swap
between formats as he sees fit.

4.3 Implementation details
In this section we give a detailed description of both our hardware and our soft-
ware setup to allow the reader to better reproduce our work. We also mention
the average training time on this hardware, to give the reader a general idea of
how fast the network converges to the images we showcase in Chapter 5.

While the authors provide us with a list of requirements for the python en-
vironment, as well as system requirements, they do not use the Docker [Merkel,
2014] container software to make the network easier to use. In this section, we
provide an overview of both our hardware and software setup to run the net-
work. We utilize the Docker software and have created Docker images which are
pre-configured to contain all prerequisites to run the network.

Hardware we used to train the network At first, we utilized one powerful
computer to hold four GPU cards from Nvidia4, namely the nVidia GTX 1080Ti.
The computer configuration looked like this:

• CPU – 16-core AMD Ryzen Threadripper 1950X
4https://www.nvidia.com/en-us/, accessed on 24. 06. 2019
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• RAM – 128 GB

• GPU – 4× nVidia GTX 1080Ti

• Storage – 2× 1 TB NVMe SSD

• Operating system – SMP Debian 4.9.144-3.1 (2019-02-19)

While this had the advantage of having four GPUs at our disposal at the
same time, there were several issues with overheating and temperature based
shutdowns, if the GPUs were used continuously for a longer time. The temper-
ature on the GPUs would rise to about 91°C, which is the operational limit of
these cards, as provided by Nvidia [Nvidia].

We also experienced a problem with loading the data onto the GPUs because
of PCIe lanes. When two GPUs on the same lane were being utilized for the
same task in parallel, the task would freeze and the computation would not start.
If two GPUs which were not on the same PCIe lane were used, the task would
perform fine.

These two flaws made us re-configure the setup and move two of the GPU
cards to a different computer, leading to the following hardware setup in Table 4.3
and Table 4.4.

Computer 1

CPU 16-core AMD Ryzen Threadripper 1950X

RAM 128 GB

GPU 2x nVidia GTX 1080Ti

Storage 6TB HDD (local), 2x 1 TB NVMe SSD (docker root)

Operating system SMP Debian 4.9.144-3.1 (2019-02-19)

Table 4.3: Hardware configuration of Computer 1. The storage is divided into
local storage for users and docker storage for faster container performance.

Computer 2

CPU 24-core Xeon E5-2680 v3

RAM 256 GB

GPU 2x nVidia GTX 1080Ti

Storage WD 3TB HDD (local)

Operating system SMP Debian 4.9.144-3.1 (2019-02-19)

Table 4.4: Hardware configuration of Computer 2.

These two computers have a shared network storage, which allows the users
to keep just one copy of the source code of the network.

48



Utilizing one of these computers, the average training time for a reasonably
converged network was around 4 − 6 days for resolutions from 128 × 128 to
512 × 512. We also note in this section that training a 1024 × 1024 with only
11 GB of GPU memory, while not impossible, would require significant tuning of
the network’s batch parameters. This is because the size of a tensor with shape
(batch, channels, 1024, 1024) is significant. For high resolutions, the authors used
batch = 3 and channels = 32 for the final stage of the convolutional pyramid,
which already is almost 400 MB just for the current training batch. We have ever
only trained the network up to 512 × 512 for the purposes of faster evaluation
and bigger batch sizes (which result in a faster training speed).

Software setup Now that we have a good idea of the hardware we used and
its performance, we want to briefly mention the software setup of these machines.
This is both to highlight the Docker approach we have chosen, as well as to enable
the reader to fully reproduce our environment.

As we can see in the previous Tables 4.3 and 4.4, the operating system we
used was a Unix-like system Debian. Additionally, we had to install the following
software to be able to train the network on these computers.

• Docker – which we already mentioned, is a virtualization tool which al-
lows the user to define a custom container for a project. This container
is based on a certain operating system and allows the user to install all
software requirements of his project, without interfering with other users’
configuration.

• Nvidia drivers – since we utilize Nvidia GPU cards, we need to install
the proprietary Nvidia drivers for these cards.

• CUDA – a parallel computing platform developed by Nvidia, which allows
high performance computations GPUs. Neural network training is one such
computation which can be sped up by running on a GPU. We used version
9.0 on all of our machines.

• nvidia-docker – an extension of the Docker platform developed by Nvidia,
which allows the users to access Nvidia GPUs.. This piece of software is
crucial for our computers, since without it, we would not be able to utilize
the CUDA computations.

Once this computer environment is setup, we can now build and run our
Docker images to train our network. Since the Docker image defines and auto-
matically installs all the network’s prerequisites, the user does not need to worry
about installing Python, Tensorflow, NumPy, OpenCV or any other software on
the computer itself.
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5. Results
In this chapter we first present the results of our dataset acquisition, which we
presented in Chapter 3. We then showcase some data generated by the network
as we implemented different features discussed in Chapter 4. We also present
several benchmarks of the network which we ran to get a better understanding
of the network’s capabilities.

5.1 Dataset acquisition
As we have already mentioned, developing a method to create a dataset is im-
portant since no skydome dataset exists. In Chapter 3 we described the process
and explained our decisions regarding the method we devised. Here we briefly
showcase the results of our dataset acquisition.

It is important to note that we have had several people from Charles Univer-
sity willing to set-up the camera and take the pictures. Here we accumulate all
pictures taken by our research group.

As we have already described in Chapter 3, deciding on the exact method re-
quired experimentation with both hardware and general approach. This included
shooting full 360° panoramas with the DSLR camera using the panoramic head,
shooting full panoramas with the Mi Sphere 360° camera and finally shooting the
upper-hemisphere skydome images with the 8 mm fisheye lens. In this section
we present all the results, even though we have abandoned shooting the full 360°
panoramic images due to the disproportionate amount of manual work, as we
have discussed.

We also note that the majority of these images was shot in Prague, Czech
Republic. We are aware that this fact is going to bias the dataset heavily, but at
the moment we do not have a long-term solution to this problem available.

Having said this we now list the numbers of images captured, illustrate some
examples and provide the positions which we shot the images at.

5.1.1 Full 360° panoramas
We first present the full 360° environment maps we shot as experiments to see if
this way of gathering the dataset would be sustainable in large quantities. In in
Chapter 3 we have determined that shooting these environment maps requires too
much manual work. We concluded this after manually processing the following
images.

Figure 5.1 illustrates a few examples of full 15000 × 7500 environment maps
we shot in Tanzania, Africa. These maps were composed of anywhere from 60 to
70 images each. These photos take up roughly 1.8 GB of memory on the disk
and have to get loaded into PtGui to stitch these panoramas. This requires a
reasonably powerful personal computer in order to avoid the risk of running out
of memory.

We have data for roughly 20 environment maps of varying qualities. The
varying quality results from the fast movement of clouds in some conditions.
This movement unfortunately makes the panoramas very difficult to properly
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(a) Shot on 18.02.2019 at 13:30.

(b) Shot on 16.02.2019 at 11:40.

(c) Shot on 17.02.2019 at 09:45.

(d) Shot on 16.02.2019 at 10:00.

Figure 5.1: A few 360° panoramas shot with our Canon 5D DSLR. These images
were taken in Tanzania, Africa. The images are stitched from around 60 to 70
shots using the PtGui software [B.V.]. For illustration, we masked the tripod in
the first three images and left the tripod in the shot in the last image.
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stitch, because fast moving clouds result in blurry images and visible seams. We
did not include any such ”incorrect” panoramas in Figure 5.1.

We also shot around 20 full 360° panoramas with 15000×7500 pixel resolution
in Prague, within the city. The sky is more obstructed than we would want for
our purpose and since this is a full resolution environment map, all the manual
work was still present. We include one image to illustrate the shooting place in
Figure 5.2.

Figure 5.2: One full 360° panorama shot in Prague. The image was taken on
31.03.2019 at 16:45.

As we have mentioned in our hardware survey in Chapter 3, we also experi-
mented with a 360° camera, namely the Mi Sphere. The shooting process with
this camera is a little easier since no manual work with the hardware is involved.
However, the camera lacks both the exposure bracketing and the invervalometer
feature we discussed earlier and thus manual work is required to control the cam-
era’s software. We have managed to get 63 shots total in sunny days, overcast
days and sunsets. We showcase a few images in Figure 5.3.

These images were captured as experiments to see whether this acquisition
method is viable and how much work it entails. Because of this, we have neither
vast quantities nor exact procedures to unify the processing of the photos.
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(a) Shot on 22.04.2019 at 19:51.

(b) Shot on 25.04.2019 at 19:45.

(c) Shot on 25.04.2019 at 20:06.

(d) Shot on 26.04.2019 at 19:25.

Figure 5.3: A few 360° panoramas shot using the Mi Sphere 360° camera. All
were shot in the vicinity of České Budějovice city during one week. The images
are stitched from two 180° fisheye shots using the PtGui software [B.V.].
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5.1.2 Upper-hemisphere skydome images
After determining that 360° shots require too much manual work for our small
research group to deal with, we decided to simply shoot the upper hemisphere of
the environment. We have described our reasoning for this decision in Chapter 3.
In the following pages we present the numbers of images we shot, as well as
showcase examples from different shoots.

We present all the data acquired in Table 5.1. Note that this list is true
at the time of writing this thesis and will grow significantly in the future. We
only include the most important data in Table 5.1, we also attach the whole
spreadsheet in Attachment A.1.

Date Interval Shots taken Location
17.5.2019 0:02:00 12 Staré Hodějovice
18.5.2019 0:02:00 40 Staré Hodějovice
24.5.2019 0:02:00 62 Prague, Šárka
4.6.2019 0:02:00 7 Prague, Žižkov
4.6.2019 0:02:00 16 Prague, Žižkov
4.6.2019 0:02:00 52 Prague, Šárka
5.6.2019 0:02:00 61 Prague, Žižkov
5.6.2019 0:02:00 61 Prague, Šárka
6.6.2019 0:02:00 14 Prague, Žižkov park
6.6.2019 0:02:00 48 Prague, Parukářka park
7.6.2019 0:02:00 248 Germany, Hammerschmiede
8.6.2019 0:02:00 8 Germany, AdventureSteinbruch
10.6.2019 0:02:00 61 Germany, Hammerschmiede
12.6.2019 0:02:00 28 Prague, Stromovka, CGBBQ
16.6.2019 0:01:00 128 Prague, Vinohrady rooftop
20.6.2019 0:00:30 428 Prague, Vinohrady, rooftop
20.6.2019 0:01:00 177 Prague, Vinohrady, rooftop
20.6.2019 0:01:00 512 Prague, Vinohrady, rooftop
21.6.2019 0:00:30 314 Prague, Vinohrady, rooftop
22.6.2019 0:00:30 44 Statek Výštice
23.6.2019 0:00:30 50 Statek Výštice
23.6.2019 0:00:30 262 Prague, Vinohrady, rooftop
24.6.2019 0:00:30 400 Prague, Vinohrady, rooftop
25.6.2019 0:00:30 242 Prague, Vinohrady, rooftop
26.6.2019 0:00:30 308 Prague, Vinohrady, rooftop
26.6.2019 0:00:30 498 Prague, Vinohrady, rooftop
26.6.2019 0:00:30 378 Prague, Vinohrady, rooftop

Table 5.1: The upper-hemisphere skydome images we have taken to create our
dataset.

As we can see, we have been gradually decreasing the interval at which we take
the photos. The is largely because we noticed that even with medium winds, the
image changes drastically during 30 seconds, as the clouds change form fast. The
total number of images we shot as of writing this thesis is 3935 and as we can see
from the Table 5.1, the majority was captured during the month of June (except
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for 104 photos from May). This nicely showcases the capability of our pipeline
and the fact that it is viable to shoot around 5000 photos per month if we get
enough human resources to keep the camera operating. This means that during
the course of about half a year we should be able to collect a dataset approaching
the sizes of other smaller neural network datasets, such as the portrait dataset of
Karras et al. [2017] and Karras et al. [2018].

We follow the table with example images from the different shoot locations in
Figure 5.5. We also include Figure 5.4 which illustrates one single approximately
4 hour shoot at different time points. The images in both figures are processed
in RawTherapee, tone mapped from HDR and converted into the stereographic
projection.

While we have shot a lot of photos, we can neither show them here nor at-
tach them as a digital attachment, since they take up a lot of space. We do,
however, include some small resolution (1024 × 1024) LDR time-lapses in the
Attachment A.1 to hopefully give the reader a general idea of the quality and
variance in our images. We want to make the dataset available to the general
public but we have to figure out a solid means of distribution first.
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05:10 05:37 05:53

06:17 06:31 06:44

06:49 06:58 07:09

Figure 5.4: A small subset of an approximately 4 hour time-lapse taken in Prague,
starting from 4:50 and ending at 8:30. Each image is marked with the time it
was taken, to further illustrate how drastically the sky changes in a few minutes.
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Figure 5.5: Samples from different dataset shoots. Each row represents one shoot,
sampled at three different times.
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5.2 Network experiments
In this section we describe all of our experiments we performed on the network
during our research. We also conducted some ”benchmarks” of the network,
testing its ability to overfit on HDR data, as well as experimented with omitting
the new layers we described in Chapter 4.

5.2.1 Low dynamic range
As we have already mentioned in the previous chapters, we started with a low
dynamic range network format. This is because we wanted to make sure we can
reproduce the performance of the network in our hardware setup, as well as on
our rather limited dataset. For this reason, the first few experiments we describe
in the following paragraphs are performed on low dynamic range networks only.
We will notify the reader when we switch to HDR imagery.

We also want to point out the fact that results showcased here highlight
our research process. This is why the first networks do not utilize the fisheye
projection, as well as the additional layers we described in Chapter 4.

We will now cover the contents of our dataset as well as our exact data aug-
mentation parameters which should, along with Section 3.2 of Chapter 3 give the
reader all information about our dataset augmentation.

Our dataset consisted of roughly 650 images gathered from the internet. We
describe all the sources in Attachment A.2. All of these images were at least 2000
by 1000 pixels in resolution, providing us with enough detail for the purpose of
the neural network generation.

While we have already explained our dataset augmentation and its reasoning
in Section 3.2, we reiterate here and provide specific constants we chose. Since
the data we gathered from the internet is HDR, we tone map the images using
the Reinhard operator [Reinhard and Devlin, 2005] in OpenCV [Bradski, 2000]
with intensity set to 1 and light adaptation set to 0 to make the operator global.
Once we obtain LDR images by tone mapping the HDR data, the best data
augmentation method we have available is the rotation around the vertical axis
(rotating the image azimuthally). We chose to rotate with φ = 36° as the base
rotation, which gets randomly offset at the start by an angle φo ∈ [0, 36°] before
the rotation to keep the network from learning the discrete Sun positions. We
then resize the tone mapped and rotated images into all resolutions the network
goes through while training. For example, for a 64×64 target resolution, we need
4 × 4, 8 × 8, 16 × 16, 32 × 32 and 64 × 64. As the last augmentation step the
network itself uses vertical mirroring of the images during the runtime.

Finally, the authors of the network provided some hyperparameter presets for
training the network on different numbers of GPU cards. Because these presets
are targeted at the full 1024 × 1024 resolution, we eventually created our own for
lower resolutions, but at the start, we used these presets to train our networks.
We will mention the preset used in each experiment.

Low resolution experiment In the beginning we sought to find out if we
would be able to use the network provided by Karras et al. [2017] in our research.
We created an experiment to see if the network would produce reasonable results
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at low resolutions in our hardware and software setup, which would help us de-
termine whether we can use the network for further research. We showcase a part
of the training set in Figure 5.6. As you can see, remapping a high-resolution
environment map into a 32 × 32 image reduces the quality significantly, as well
as distorts the image even more. This is of little concern, as our primary goal
was to figure out if we can get the network to generate similar data, using the
progressive architecture of Karras et al. [2017].

Figure 5.6: A sample from the real dataset from the NoEmotion team. Resized
to 32 × 32 resolution and tone mapped.

We downloaded all day and evening HDR environment maps from the NoE-
motion team. Utilizing our pipeline we converted the images into low dynamic
range and generated all resolutions the network would need to train a target res-
olution of 32 × 32 pixels. We ran the network on the v2-1gpu preset for 6 hours,
until the network started training the full resolution. We made a mistake at this
point and shut down the training, even though the network only trained for 2
epochs on the target resolution (once all blocks have been faded in) which we
later found out was too early. For comparison, the authors of the network let the
network train on the target resolution for several days.

Regardless, after 6 hours of training we obtained results shown in Figure 5.7.
These results suggest that the network is capable of reproducing the quality

seen in our dataset, albeit the fake images are a bit more blurry than the dataset.
It is possible that this blurriness was caused by us shutting the network down
too early.

Nevertheless, based on this experiment we can say that the network is capable
of training and producing images of reasonable quality on our setup. This result
was a signal for us to continue using this network for our further research.
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Figure 5.7: A matrix of images generated by our trained network. The network
was trained for 6 hours on 1 GPU card.
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Scaling into a bigger resolution As the generated images in the last ex-
periment are of satisfying quality, we wanted to find out how this quality would
change when scaled into a bigger resolution.

Since the previous dataset, containing only images from the NoEmotion team,
was small in size containing only about 100 unique images, we increased the
dataset to the full 650 images we found on the internet (all the sources can be
seen in Attachment A.2). We also removed the lower hemisphere (containing the
ground) from the images, leaving us with a 360° (longitude) by 90° (latitude)
equirectangular mapping. This also further distorts the images when we remap
them into a square image, which the original network requires. We then again
converted the images into LDR, rotated them to augment the data, and generated
all resolutions required to train the network to 256 × 256 pixel resolution. We
chose this resolution because it is a significant improvement over the resolutions
which GAN architectures were able to generate just a few years ago. A sample of
the dataset can be seen in Figure 5.8. We utilized 2 GPU cards and the v2-2gpu
preset from the network’s authors. The network was trained for 3 days and 17
hours, this time avoiding the mistake of shutting down the training too soon (the
network this time saw 9.4M real images and trained on the target resolution for
55 epochs).

A few generated images can be seen in Figure 5.9. We will now discuss the
properties of the generated images to evaluate the results of this experiment.

As we can see from the generated images, the scenes do look plausible, albeit
low resolution and blurry. One thing we immediately noticed was the checkerboard
artifacts the network seems to create in larger areas of clouds, showcased closely
in Figure 5.10. This later prompted us to look into the work of Odena et al.
[2016], described in Section 4.2.2 to improve the quality.

The big problem with equirectangular projection, however, is the continuity
constraints on the image. In Figure 5.11 we showcase two generated equirect-
angular images from the network, which we manually converted into a fisheye
projection, to see if the network learned the continuity constraints. As we can
see, neither of the two main constraints – the zenith collapse (the image’s top bor-
der has to collapse into one singular point – the zenith) nor the border continuity
(the leftmost and rightmost edge of the image have to be seamless) got recog-
nized by the neural network. While we could implement a custom convolutional
layer which could ”wrap” around the leftmost and rightmost edges in a cylinder
topology to potentially solve the second issue of the seam seen in Figure 5.11
in image (c), the zenith collapse is a harder problem to solve. This particular
problem prompted us to investigate other projections, as we have discussed in
Section 3.2 of Chapter 3 and to choose the stereographic fisheye projection for
our further experiments.

To conclude this experiment we note that we were glad to see the image
quality not deteriorating too much with a significantly higher resolution. We also
identified several potential weak points of the current architecture – the continuity
constraints and the checkerboard artifacts.
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Figure 5.8: A sample from the real data from the bigger dataset containing 650
unique images. Resized to 256 × 256 resolution and tone mapped.
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Figure 5.9: A matrix of images generated by our trained network. The network
was trained for 3 days and 17 hours on 2 GPU cards.
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Figure 5.10: Examples of the so called checkerboard artifacts. The network creates
the clouds with these distinct patterns inside, where brighter and darker spots
alternate in rows and columns.
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(a) (b) (c)

Figure 5.11: An analysis of continuity constraints of the equirectangular projec-
tion. The leftmost images (a) showcase the image as it was generated by the
neural network. The images (b) have been manually converted to a fisheye pro-
jection. Images (c) are outcrops from images (b) highlighting the fact that the
network did not learn either of the two constraints (zenith collapse and edge-
continuity).
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Fisheye projection As we have discussed in Section 3.2, we decided to use
the stereographic fisheye projection. Our next experiment was designed to see if
the network can generate this projection without any additional image quality
decreases. At this point we also introduced the fisheye masking we explained in
Section 4.2.1. The last goal of this experiment was to see if we gain any image
clarity by letting the network train on even bigger images and thus we used a
target resolution of 512 × 512. We note that although the network now generates
stereographic fisheye projection, we are still interested in the equirectangular
mapping as well. This is because the areas around the horizon, which are best
visible on an image projected with equirectangular projection, are important since
the camera in the CGI scene will most likely see at least part of the horizon. For
this reason, we include both the fisheye as well as the equirectangular projections
when we present generated results.

We used the same dataset containing around 650 images as in the last exper-
iment, only this time we remapped the equirectangular panoramas into a stere-
ographical fisheye projection. The tone mapped and augmented fisheye images
were then resized to the target resolution of 512 × 512. We show a sample of
the training dataset in Figure 5.12. We used the v2-2gpu preset and trained the
network for 6 days and 1 hour, to let it converge as much as possible. Note that
this experiment does not yet utilize the work of Odena et al. [2016].

Figure 5.12: A sample from the real data from the fisheye projected dataset.
Stereographic fisheye projection was used in these images. Images were resized
to 512 × 512 resolution and tone mapped.

Figure 5.13 illustrates several images as generated by the trained network in
the stereographic projection. We also include Figure 5.14 in which we converted
the fisheye projection back into equirectangular projection for better understand-
ing. We will now further discuss the quality, as well as the lighting conditions
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and the realism.

Figure 5.13: A sample from the data generated by the LDR fisheye network.

As we can see on the rightmost image in Figure 5.15, the checkerboarding
artifacts which started to appear during the last training run still prevail. This
fact was what made us decide to implement the new upscaling method of Odena
et al. [2016] to try to reduce this behaviour. We can also see some unnatural
behavior on the edges of the clouds, where the network creates some artifacts
which look similar to biological cells or oil stains. Figure 5.16 showcases this type
of artifacts. These artifacts appear consistently throughout the rest of this thesis
and while we did research to figure out how to remove this behaviour, we did
not manage to find out the exact reason of this happening. We would probably
require a significantly bigger dataset to provide further insight into this type of
artifact.

Other than these two artifacts, the images overall look plausible. We gener-
ated 250 random images and manually labeled them into them into four categories
– plausible looking, unrealistic because of wrong lighting, unrealistic because of
wrong sky composition, and plain wrong results. Figure 5.17 highlights the three
failure cases. Out of the 250 generated images, we subjectively classified 23 as
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having incorrect cloud formations (left column of Figure 5.17), 10 as having in-
correct lighting (middle column of Figure 5.17) and 18 as being a complete failure
case (right column of Figure 5.17). This amounts to 51 images out of 250. We
think that increasing the dataset would help significantly improve this ratio and
the overall quality of the images.
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Figure 5.14: A sample from the data generated by the fisheye network remapped
into equirectangular projection. This figure contains the same images as Fig-
ure 5.13.
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Figure 5.15: An illustration of the checkerboard artifact in the fisheye network.
These artifacts were visible in many generated images and were not rare.

Figure 5.16: An illustration of the oil stain-like artifact in the fisheye network.
These artifacts appear in almost every image, usually in the marginal region.
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Figure 5.17: An sample of failure cases of the fisheye network. We subjectively
counted 51 failures in 250 generated images. The left column are images we
classified as having the wrong cloud formations, the middle column are images
with incorrect lighting and the right column are images being a complete failure
case. 72



Interpolation experiment We also designed a follow-up experiment utilizing
the network we trained for the fisheye projection experiment. We wanted to test
if the network is capable of producing a physically plausible transition between
two skydome images. Exploring this area is important, since if we were able to
generate a realistic looking transition, we could animate the environment maps
for the purpose of CGI movies, or provide a sequence of environment maps for the
purpose of rendering an architectural scene during different times of the day. We
think, however, that generating realistically plausible skydome transitions would
require modifying the network to include some information about time. This
information is readily available from the EXIF data contained in the images.

By transition between two images we mean taking the latent representation
(the latent vector l ∈ Z which led to generating the image) of two images ls, le ∈ Z
and generating N latent vectors which are a linear interpolation of ls and le as
li = t · ls + (1 − t) · Ie where t ∈ [0, 1]. We then generate a new image for each
such t. This gives us N images which are part of an ”animation” transforming
the image represented by ls to the image represented by le. For this experiment,
we used the network we trained for the last experiment, loaded the snapshot and
instructed it to generate 24 images (plus the two original ones).

The result of this experiment can be seen in Figure 5.18, note that the number
of images was reduced from 24 to 10 to better illustrate the transition. As we
have already mentioned, we also include the equirectangular remapping of these
images in Figure 5.19.

Figure 5.18: Performing linear interpolation between the latent vector of the first
image (leftmost, first row) and the latent vector of the last image (rightmost,
second row).

While not all of the images in the transition look physically realistic, most of
them look plausible. This result may suggest that the network could be able to
generate a plausible looking transition given a bigger dataset and longer training
time. If we were able to gather enough timelapse shots with full upper hemisphere
skydome, we might be able to train a network generating custom timelapses of
the sky. We have already explained that this would be immensely helpful in the
architecture visualization branch of CGI.
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Figure 5.19: A sequence interpolating between the top and the bottom image
generated by the fisheye network. The generated outcome was remapped into
equirectangular projection. This figure contains the same images as Figure 5.18.
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New layers benchmark In Chapter 4 we have described two new layers we
have implemented to see if they will improve the quality of the images, increase the
speed of the network or have any other beneficial effects. These two layers were
the fisheye masking layer and the resize-convolution layer. In this experiment
we have completed three identical training runs in which we trained a network
without these improvements, a network with only the fisheye masking layer and
a network with both the fisheye masking layer and the resize-convolution layer.
The question we seek to answer is whether any of these new layers had any impact
on the network training process or the results.

We set up the training scheme in the following manner for all three training
runs. We used the 650 image dataset, with a target resolution of 256 × 256, tone
mapped into low dynamic range. We utilized a new preset modified by us to only
scale up to 256 resolution and not further, which we called v3-2gpu. We also
created a variant of the preset for just 1 GPU card, which we will utilize for later
training, called v3-1gpu. The reader can find the preset in the digital attachments
in Attachment A.1. We stopped each network after it has seen 9040k real images,
which was after a roughly 4 days of training time (the networks differed by a few
hours). This training time consisted of approximately 2 days of the network
growing and 2 days spent on training the full size resolution.

The results, as produced by the network, are shown in Figure 5.21. We
also remapped the results back into equirectangular projection as can be seen in
Figure 5.20. We will now discuss the differences.

Figure 5.20: Comparison of three the versions of the network we ran this test for,
remapped to equirectangular projection. This figure contains the same images as
Figure 5.21.

We think that between the three networks there are not any significant changes
in image quality. We see the same artifacts we have already discussed (both the
checkerboarding and oil stain-like artifacts) in every version of the network. This
leads us to believe that either this is a hard problem for the network to solve or
our dataset is not big enough for the network to learn all the small nuances of
clouds and their structure.

Comparing the three networks, we conclude that our modifications have not
improved the output quality, though the fisheye masking layer does have the ad-
ditional benefit of giving the user control over the shape of the generated fisheye,
as we have discussed in Section 4.2.1. Improving the quality of the generated
images is important to the goal of our thesis, as such we will discuss our other
ideas of improving the image quality in Chapter 6.
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Figure 5.21: Comparison of the three versions of the network we ran this test for.
Leftmost column is the control run – no fisheye masking, no resize-convolution.
Middle column is a network including the fisheye masking layer. Rightmost col-
umn is the network including both fisheye masking as well as a resize-convolution
layer.
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5.2.2 High dynamic range
Once we conducted these experiments we felt we had a solid understanding of the
network as well as managed to produce images of reasonable quality. This made
us shift our efforts back to our original goal of generating high dynamic range
images, and as a result converting the neural network of Karras et al. [2017]
to generate HDR images. We have already covered the technical details of the
conversion in Section 4.2.3 and here we present a few experiments we performed
to evaluate the image quality of the HDR network.

Before we start describing our experiments we want to describe our dataset
in greater detail. In Attachment A.2 we list all the data we downloaded from
the internet. We mention that we had some proprietary data, which we cannot
disclose. This data counted roughly 40 images which were only low dynamic
range. This means that while our LDR dataset counted roughly 650 images,
only 610 of those were HDR. We also want to mention that the dataset of Zaal
is captured with the unclipped dynamic range of the Sun, whilst the rest of the
dataset has clipped dynamic range. We have discussed the clipping phenomenon
in the few paragraphs about clipping.

We now present several experiments we performed on the high dynamic version
of the network, including a failed training run which resulted in a mode collapse.

Training without the logarithmic remapping In Section 4.2.3 we have
discussed our logarithmic remapping of the dataset for the purpose of the network
training. The question we wanted to answer with this experiment was whether
this remapping is needed at all and how much it improves the quality when
introduced.

To test this we utilized the full dataset as we have described above, consisting
of around 610 images. We ran the network on 2 GPU cards, with the custom
v3-2gpu preset we have mentioned in the last section. We targeted the resolution
of 128×128 and trained on this setup for 2 days. We chose this smaller resolution
because we consider HDR image generation a harder task than LDR and wanted
to reduce the difficulty somewhat.

In Figure 5.22 we present the results of the network after 2 days of training.
Since the network produces a high dynamic range image we cannot directly rep-
resent the high dynamic range in this document. Because of this, we only include
the images sampled at one exposure level, namely the unadjusted exposure 0 EV.

This result may suggest that the network is not capable of learning a larger
dataset without adjusting the dynamic range. The collapse did not happen ”sud-
denly” (meaning over the course of the last few training epochs) but the network
was experiencing atypical artifacts and oscillations throughout the whole training
process. By oscillations we mean the phenomenon where the network eliminates
some unwanted artifact in one epoch and re-introduces it back in the few follow-
ing epochs. We include the whole training run in the digital Attachments A.1 for
the curious reader.

With this training run failing to produce any tangible results we decided to
implement the logarithmic shift described in Section 4.2.3, which some architec-
tures utilize [Eilertsen et al., 2017].
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Figure 5.22: The results of a failed training run of a high dynamic range network.
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Training with logarithmic remapping As a result of our last experiment
we implemented the logarithmic shift described in Section 4.2.3 and wanted to
find out if this improvement will help the network stabilize and learn to gener-
ate images in a similar quality we have achieved on the low dynamic range in
Section 5.2.1.

We again use our full dataset of 610 images, train the altered network on
2 GPU cards with the v3-2gpu preset. We again chose the target resolution
of 128 × 128 to keep the experiments consistent. The logarithmic adjustment
constant is set to c = 0.0001, which replicates the 1/255 setting of Eilertsen et al.
[2017]. Unlike the previous experiment which we only let train for 2 days because
it very clearly diverged, we trained this neural network for 5 days and 3 hours,
in which the (discriminator) network saw 11827k real images. We illustrate the
training data in Figure 5.23, along with RGB histograms.

We present a bigger sample of the generated data, without the RGB his-
tograms in Figure 5.24, along with a few generated images with RGB histograms
in Figure 5.25. The histograms also contain information about the maximum
value in the image (across all channels) and the minimum non-zero value across
all channels. The true minimum value is clearly 0, since the pixels outside of the
fisheye unit circle are set to zero.

Unlike the previous experiment, after converting the images into the logarithm
domain the network was able to train in a stable manner and produce images
which, to our eye, look of similar image quality as the our LDR results from the
previous section. From the histograms we also see that the network is able to
learn the high dynamic range (note the minimum and maximum values as we
mentioned in the previous paragraph).

These results suggest that the high dynamic range network is able to produce
similarly looking images as the low dynamic range version of the network. There
are several questions this experiment opens up, namely what should we set the
constant c to for best performance and whether the network is able to accurately
reproduce the luminance data. We will attempt to answer these questions in the
next experiments.
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Figure 5.23: A sample of the real data input into the HDR network. Each image
also has a RGB histogram included, which illustrates the red, green and blue
channels as well as the smallest non-zero and the maximum channel value.
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Figure 5.24: A bigger sample of data generated by the network. Since the data
is HDR and we cannot display it in this work, we only include one snapshot at
0 EV and refer the reader to the digital attachments to preview the HDR image
personally.
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Figure 5.25: A sample of the data generated by the network with the accompa-
nying RGB histograms. More generated images can be see in Figure 5.24.
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Overfitting benchmark Having modified the existing network, we wanted to
ensure that the architecture of the network is capable of reproducing the dynamic
range and high image quality in the dataset images and is not failing systemati-
cally because of a flaw in its design. We performed two simple experiments which
should provide some evidence for this.

We decided to train the network on a single image as a dataset, and compare
the image reproduced and the training image to see if there are some errors which
would point to more than a noisy reproduction. We used the v3-1gpu preset and
trained the network on 1 GPU card for 4 days. The training image can be seen
in Figure 5.26, along with a histogram for the image. We chose the resolution
of 256 × 256, since the last network performed well on a large dataset with a
smaller resolution. We also used the logarithmic adjustment with c = 0.0001,
since the image quality of the last network was comparable to our low dynamic
range results. We also left the mirroring augmentation of the dataset, which the
network performs during its runtime, enabled, to provide a slight bit of variance.

10 2 10 1 100 101

Intensity

0

500

1000

1500

2000

2500

3000

3500

To
ta

l c
ou

nt

blue channel
green channel
red channel
Min: 0.00314
Max: 31.62500

Figure 5.26: The HDR over-fitting experiment dataset image, with the RGB
histogram.

Figure 5.27 showcases one of the generated images, as well as its histogram.
We do not include more generated images in the text, since all of them are very
similar, save for some very insignificant random noise. We include other generated
images in Attachment A.1.

As we can see, the figures 5.26 and 5.27 are very similar and pretty much
identical to the human eye. Thanks to the maximum channel value reading in
the histograms we see that the difference in the highest value in the difference
image is 1.125.

We think that this experiment proves that, save for some insignificant noise,
the network is able to reproduce an image with high accuracy, which answers the
question this experiment has been designed for.
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Figure 5.27: A sample produced by the HDR over-fitting experiment, with the
RGB histogram. Every other image produced was the same, except for random
noise.

Logarithmic shift benchmark We have already mentioned that we were not
sure about the exact setting of the logarithmic parameter c, which we defined
in Section 4.2.3. We already know that c = 0.0001 generates reasonable output
from our previous experiments, which is curious, because this setting compresses
the dynamic range high in the spectrum (the brightness of the Sun and the
sunlit clouds), while increasing the dynamic range of the darker parts of the
image (the shadows, darker clouds). The fact that this is what helps the network
learn is, in our opinion, counter-intuitive since neural networks usually benefit
from having their data as normalized as possible [Shanker et al., 1996], [Sola and
Sevilla, 1997], [Jayalakshmi and A, 2011]. The standard method of normalization
is recalculating the data in such a way that the average of the feature over the
whole dataset is roughly zero [LeCun et al., 1998]. This includes, for example,
the original network of Karras et al. [2017], which remaps the RGB images from
[0, 255] to [−1, 1].

On the other hand, the setting c = 1 would shift the whole data into positive
range and compress the higher dynamic ranges significantly, resulting in a more
normalized data with a smaller variance, which should help the network train.
However, the fact that the setting shifts the whole data into the positive range
breaks the ”rule of thumb” about having a zero average. Since both of these set-
tings seem to have a positive as well as a negative side, we designed an experiment
to directly compare the image quality between these two shifting constants.

To briefly recap our hypothesized pros and cons of each setting — c = 0.0001
compresses the higher end (a pro), increases the range of the lower end (a con)
and shifts the data into the negative range (a pro) by computing the natural
logarithm of numbers lower than 1. On the other hand, the setting c = 1 shifts
the data entirely into the positive range (a con) but also lowers the range of the
high end of the data significantly (a pro).

For the training of this experiment, we finally acquired results from the dataset
acquisition pipeline we described in Chapter 3 and utilized some of the images
shot, which we showcased in Section 5.1. This allowed us to add around 561
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photos, effectively doubling our current dataset, which resulted in a dataset of
12311 images once augmented. We trained on the target resolution of 256 × 256,
on 1 GPU card with the preset v3-1gpu. We present some hand-picked (to show
the variance of the dataset) samples from the real dataset in Figure 5.28.

Figure 5.28: A sample from our new bigger dataset. This sample only includes
new photos, which we shot ourselves.

We attempt to illustrate the differences on several pairs of photos which were
manually picked based on their visual similarity in Figure 5.29. We also showcase
that both types of artifacts we mentioned in the low dynamic range experiments
still prevail in both of these settings, as can be seen in Figure 5.30 and Figure 5.31.
Lastly, in Figure 5.32 we provide graphs of the scores given by the discriminator
to the real and fake images during training. The real score is affected by the loss
function and kept to be close to 0. Both scores indicate how sure the discriminator
is about classifying the image. The higher the real score is, the more sure the
discriminator is about classifying the real images. The lower the fake score is, the
more sure the discriminator is about classifying fake images. While these graphs
can often be misleading, we think that in this case they are quite interesting.
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We have generated 300 images from each of the networks, we include 50 of
these images for each network in Attachment A.1 to allow the reader to get a
more complete picture of why we came to the following conclusions. We will now
discuss these results one by one. Figures 5.30 and 5.31 illustrate that the network
still suffers from both of the artifacts we have already discussed at length. We
also notice the fact that the network trained with c = 1 generates a lot more
unrealistic images, as can be seen in Figure 5.29 – distorting the ground very
severely. The network trained with c = 0.0001 does not generate these images at
all. The image quality of images which look realistic is comparable but we think
that the network trained with c = 0.0001 does produce better quality overall.
The fake scores seen in Figure 5.32 also suggest that the setting of c = 1 makes it
very hard for the discriminator to classify the fake images, while the discriminator
is perfectly able to classify the fake images with c = 0.0001. We think that this
is the primary reason for the discrepancy in the image quality between the two
networks.

In conclusion, this experiment indicates that setting c = 0.0001 seems to pro-
duce significantly more plausible looking images without severe ground artifacts.
The image quality is marginally better as well. In this thesis, we use the setting
c = 0.0001 for all future experiments as a result.
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(a) c = 0.0001 (b) c = 1 (c) c = 0.0001 (d) c = 1

Figure 5.29: A sample of images produced by the HDR logarithm shifting ex-
periment. The columns are alternating between c = 0.0001 and c = 1, see the
caption.
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Figure 5.30: An example of the prevailing checkerboard artifact. The first row
are images from the c = 0.0001 network. The second row contains images from
the c = 1 network.

Figure 5.31: An example of the prevailing oil-like artifact. The first row are
images from the c = 0.0001 network. The second row contains images from the
c = 1 network.
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Figure 5.32: Real and fake scores for the networks in the logarithm benchmark
experiment. The real score is affected by the loss function and kept to be close to
0. Both scores indicate how sure the discriminator is about classifying the image.
The higher the real score is, the more sure the discriminator is about classifying
the real images. The lower the fake score is, the more sure the discriminator is
about classifying fake images.
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Training on a single timelapse In the previous experiments we saw how the
size of the dataset affects the quality of the images and the generalization abilities
of the network. If the network is only given a small dataset to learn, it overfits
really well and the quality of the images is high, without any visible artifacts.
If, on the other hand, the network is tasked with learning a big and diverse
dataset, it is able to generalize but it is not able to produce high quality results
and produces artifacts in the images (mainly the checkerboarding and oil-stain
artifacts). In this experiment we wanted to get a better idea of where this line
dividing these two behaviors lies by training the network on a single timelapse
shot during 2 hours and 35 minutes from a single location, taking one picture
every 30 seconds. We wanted to see if the network could learn to fill in the blanks
in between the 30 second pauses and learn to interpolate the sky correctly, while
maintaining the high quality we saw from the overfitting tests.

Figure 5.33: A sample of real data our network trained on during the single
timelapse experiment.

We trained the network on 311 images, with a target resolution of 256 × 256.
A few images from the training dataset can be seen in Figure 5.33. We used
the logarithm shift, with c = 0.0001 and used a v4-1gpu preset, which was very
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similar to the already mentioned v3-1gpu setting, different only in increased batch
sizes (which increases the training speed marginally). As the name suggests, we
trained this network on a single GPU card, this time training for an extensive 9
days during which the network saw 12M real images. We also note that we did
not augment this data in any way. After the network finished training, we also
created a series of images interpolating between two latent vectors, to see if the
network is able to provide a plausible interpolation of the timelapse.

We present a sample of the images generated by the trained network in Fig-
ure 5.34. Figures 5.35 and 5.36 showcase the interpolation and its shortcomings,
which we will discuss in the following paragraphs.

Figure 5.34: A sample of data our network generated at the end of training during
the single timelapse experiment.

Looking at the generated data we see that the quality is very close to the real
data and there are no visible artifacts of any kind in the images. This leads us
to believe that the network is still overfitting on the dataset. This hypothesis
is further supported by the interpolation result as seen in Figure 5.36 where the
network fails to correctly move the clouds and Sun along the sky and at some point
(from image 3 to image 4 in the figure) just blends the two images together. On
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Figure 5.35: This figure illustrates a correct interpolation behavior. The images
are not blended together and instead the network generates the correct cloud
movement.

Figure 5.36: This figure illustrates an incorrect interpolation behavior. The third
image on the first row is generated by blending the second and fourth image
together and not producing the correct cloud movement. Notice the doubled Sun
in the third image.

the other hand, in Figure 5.35 the progression of the clouds in the sky is correctly
interpolated. These different interpolations may suggest that the network has a
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hard time moving the Sun in the sky, whereas moving the clouds is easier. These
two different interpolation outcomes also suggest that the network was not able to
correctly notice the fact that the training dataset consists of consecutive images,
since it interpolates with different precision between the photos. This fact could
probably be remedied by inputting additional data into the network, such as the
time of the day. We will discuss this extension further in Chapter 6.

To conclude this experiment, we found out that the network still overfits on
a single timelapse of 311 images and will probably require a significantly bigger
dataset to get the desired generalization behaviour. On the other hand, even
with 311 different images the network is able to produce images of great quality,
which is a good sign for further research in this area and prompted us to perform
one final experiment, which follows.

Training with only our acquired data Since we started gathering the data-
set, we always trained the network with both the data downloaded from the
internet as well as the data we shot ourselves mixed together to form the largest
dataset we could. However, the data downloaded from the internet is of a vastly
different kind than the data we shot – while we shoot long timelapses, usually
over 2 hours in duration, the data from the internet consists mainly of one single
image shot at each location. This means that our shooting locations are present
hundreds of times when compared to a single photo for each internet location. In
this experiment, we tried training the network only on the data we shot, because
we thought that this large discrepancy within the dataset might confuse the
network and reduce the quality of the cloud coverage we get from the network.

Similar to the last experiment, we trained the network on a v4-1gpu preset for
9 days and 5 hours, to complete the training by showing the discriminator 12M
real images. We also used the logarithmic shifting set to c = 0.0001 and trained
on a target resolution of 256 × 256. We gathered all our photos, subsampled
some longer shoots in order to make the dataset balanced in terms of shooting
locations and augmented the data using the standard 36° rotation around the
upward facing axis. This provided us with 19431 images after the augmentation,
which we used to train the network. A sample from the images can be seen in
Figure 5.37.

We present a sample from the generated images in Figure 5.38. We also
showcase some comparison images, which were hand-picked to be similar to the
images in the dataset and illustrate both the images and their RGB histograms
in Figures 5.39 and 5.40.

As we can see the quality of the generated clouds seems to be of a higher qual-
ity than the previous big-dataset experiments, even though the quality-reducing
artifacts are still present in a smaller capacity. We include the images showcasing
the prevalent artifacts in Attachment A.1. The network also seems to be gener-
ating the correct shape of the histogram, but increasing the dynamic range more
than the real images from the dataset – the generated images being anywhere
from 50% to 100% higher in dynamic range.

We also performed a similar evaluation to the one we mentioned in the Fisheye
projection experiment and generated 300 images from the network, which we then
subjectively classified as either plausible or implausible because of either wrong
lighting, wrong cloud formations or a complete failure case. This time we only
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Figure 5.37: A sample of real data for the experiment utilizing only the data we
shot during this thesis.
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Figure 5.38: A sample of data generated by the network trained on only the data
we shot during this thesis.
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Figure 5.39: This figure shows a comparison of a real image (on the left) and a
similar handpicked generated image (on the right) and their RGB histograms.
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Figure 5.40: This figure shows a comparison of a real image (on the left) and a
similar handpicked generated image (on the right) and their RGB histograms.
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classified around 15 images as wrong cloud formations and we did not see any
cases of wrong lighting or any complete failure cases. This might suggest that the
network was getting confused by the single images in the dataset and now focuses
a lot more on generating correct cloud formations.

In conclusion, this last experiment suggests that as we gather more data, the
plausibility of generated data could increase without significantly decreasing the
image quality. Once we shoot more of our data, we should see if removing the
data from the internet improved the quality because the total image count got
lowered or because the single images were confusing the network.
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6. Future work
In this chapter we provide several ways to continue our work, explain the reason-
ing behind them, and why they would be useful. We put a lot of focus on this
chapter since the goal of our work was to understand if and how well generative
adversarial networks can be utilized to generate high dynamic range images. The
future work that we propose should provide the reader with a good understand-
ing of what we perceive has to be done before our research can be of use to the
general public (for example to CGI artists).

6.1 Spherical convolutions
One of the problems which we noticed during our dataset projection research in
Section 3.2 was the fact that we are unnecessarily stacking several projections
on top of each other, which further increases the data distortion. When the
photographs of the upper hemisphere of the skydome get taken, we are already
projecting a locally flat object (the sky can be thought of as flat in the vicinity
of the photographer) onto a hemisphere. We then additionally project the hemi-
sphere onto a plane using, for example, a fisheye or equirectangular projection.
Since each projection introduces additional error into the image, removing one of
these projections might be beneficial.

The other problem with stacking the projections in this way is the fact that
once the hemisphere gets projected onto a plane, the network does not receive the
information about some parts of the image being distorted in a different way. This
is true for both the equirectangular projection, where the distortion is minimal
at the equator and increases with increasing latitude, as well as for the fisheye
projections, where the distortion increases with increasing angle with the optical
axis.

Using a traditional convolutional layer in this setting is not correct, since the
weights in the convolutional filter are shared over the whole image and do not
take into account the changing distortion inside the image.

A more valid convolutional layer for the fisheye projected image could include
several different filters, arranged in concentric circles inside the image. This way,
the areas of the image which are processed by a single filter would be subject to
similar distortion. We attempt to illustrate this setup for the fisheye projection
in Figure 6.1. Likewise for an equirectangular projection, the filters would be
arranged in different latitude bands. For example, every 10 degrees of latitude
would be computed by a different filter. This way the filters could implement the
increasing distortion.

Another viable approach which is starting to get explored by the neural net-
work research community is spherical convolutions, which compute the convolu-
tion directly over hemispherical data instead of mapping the hemisphere onto a
plane. The applications of this approach are far reaching and include robotics
[Khasanova and Frossard, 2017] or astronomical cosmology [Perraudin et al.,
2018]. There are several approaches emerging in the last years, such as simply
letting the network learn the convolutional filters as proposed by Su and Grau-
man [2017], utilizing Fast-Fourier Transform as proposed by Cohen et al. [2018]
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Figure 6.1: An illustration of concentric convolutional filters over an image using
a fisheye projection. The colored bands (green and red) illustrate two different
filters used at two different distortion levels. This way, the weights of the filters
are shared only between regions with similar distortion.

or transforming the spherical data into a graph as can be seen in Khasanova and
Frossard [2017] and Perraudin et al. [2018].

We note, however, that even a spherical convolution will not solve the inherent
perspective change occurring in the skies. That is, when we look up, we are
looking at the clouds above our heads from below. On the other hand, near
the horizon, we see clouds from their side. This inherent perspective change
will not be solved by using spherical convolutions but rather in using different
convolutional filters for different parts of the sky, to capture this perspective shift.

However implemented, we think that taking the changing distortion of the
perspective projection into account could significantly improve the quality of both
the generalization as well as the generated images.

6.2 Skyline separation
Our dataset acquisition pipeline, which we described in Chapter 3, captures the
whole upper hemisphere. While we try to select locations which have enough
open ground not to capture a lot of nearby trees or mountains, this is hard to
avoid completely.

Because of this the network also learns to replicate some form of skyline in
the generated image, as can be seen in the left image (a) of Figure 6.2. These
forests, trees, mountains or buildings the network is trying to reproduce are of
very low quality since the network did not have enough data to learn to generate
these marginal objects in high detail.

We propose, as an extension to our work, to include a skyline separation
algorithm which would automatically mask any parts of the image which are
below the horizon line for the current image generate a pixel-wise mask for each
dataset image. The mask can be seen in Figure 6.2 on the right image (b). We
could then pass this mask into the network and use a very similar trick as we

100



used in Section 4.2.1. We would multiply the input image in the discriminator
with this skyline separation mask before passing it to the discriminator network.
This would effectively mean that the discriminator would never see the non-sky
parts and thus not force the generator to produce them. Our hypothesis is that
a network modified in this way would always generate a full 180° skydome with
zero obstructions.

(a) our work (b) proposed masking

Figure 6.2: An illustration of our proposed skyline separation. On the left in
image (a) is our current work. Because the network did not have a lot of data to
learn how trees and mountains look like, the quality is very poor. On the right in
image (b) we masked the horizon by hand to showcase the core goal of our idea.

6.3 Latent space mapping
As we have already introduced in Chapter 1, generative adversarial networks map
the training data into a so called latent space. While generating a new image, a
random vector in the space is sampled and the network generates the new image
according to this vector. Unlike variational autoencoders, GANs do not allow
us to compute the inverse function of the vector-to-image mapping. That is,
for a given image, we cannot find a corresponding latent vector using the GAN
network.

However, navigating the latent space is a very useful tool to have as it enables
us to create tools for the artists to generate a skydome to their own liking. This
could be done by, for example, providing a computer program where the artist can
choose several parameters (percentage of cloud cover, time of the day, turbidity
of the skydome, type of clouds, etc.) and generate only skydomes which observe
these parameters. This would be implemented by taking the artist’s parameters,
translating them into the latent space as constraints and then generating latent
vectors within these constraints. It would also enable us to order the network to
generate a time sequence of the changing sky (by fixing every parameter except
for time).

Mapping the latent space is a hard problem to solve and one possible way to
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solve it might be to use a variational autoencoder, trained on the real skydome
dataset. Once trained, this VAE would interpret the images generated by the
network and we would receive a mapping function between the latent vectors
g ∈ G from the GAN (used to generate the images) and latent vectors v ∈ V
generated by the VAE, by feeding the images generated for the latent vector g
into the VAE and receiving the corresponding latent vectors v from the VAE.

This way we might be able to perform some analysis on the VAE’s latent
space V and then directly translate this knowledge to the GAN’s latent space G.

6.4 Providing more input to the network
While we think of GAN networks as a network which process only images, because
we usually do not have any additional information which could help the network,
this is not true in our case. There is a lot of useful data we can either simply
read from the EXIF data of the image or compute with little additional overhead.
This includes the time and date when the image was taken, the Sun elevation,
the photo orientation (azimuthal, i.e. whether the up-axis is north or east), GPS
coordinates, etc.

These additional inputs might help to shape the latent space into a more
navigable space, because the network might try to correlate this additional in-
formation with the information contained within the image. This is desirable
because, for example, the Sun position in the image and time is highly correlated
(because of the Sun elevation being a function of world position and current time).

As a result of this modification, we might be able to condition the generated
images based on some of this data, for example getting the network to only
generate images taken at a given time or with a given Sun elevation.

This point of future work is strongly related to the latent space navigation
we discussed in the previous section, attempting to perform a similar task. But
while the previous method tries to accomplish the goal by training a new neural
network, this approach extends the current network instead.

6.5 Addition instead of generation
A big room for improvement of this work might lie in abandoning the idea to
generate the whole skydome from scratch and instead utilize an image-to-image
generative network such as the work of Isola et al. [2016]. This idea is based on
the fact that there exists an analytical model of the skydome radiance by Hosek
and Wilkie [2012].

Utilizing this model, we could train a network which receives the generated
skydome from the analytical model and adds correct clouds on top of it. To do
this, we would need to label our dataset with parameters for the Hosek-Wilkie
model, which would generate the analytical skydome very similar to the sky in
our captured picture. The model, apart from the Sun elevation parameter, has
two other parameters which are the turbidity of the sky and the horizon blur (as
implemented in Corona Renderer [ChaosCzech, 2019]). We would need to guess
these parameters for each of our dataset pictures. This could probably be done
by utilizing a simple regression model. Computing the Sun elevation requires the
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exact time and position where the photo was taken. Creating this dataset should
not be that hard, since we already capture both of these readings in our pipeline.

Once we obtain this dataset, we would then generate the clear skydome for
each of the dataset pictures, and train an image-to-image network to take the
clear skydome picture and dream new clouds on top of it, and train it against the
real photo we shot.

This approach would have a tremendous advantage to the users of the common
commercial renderers, since they are already used to using this skydome model
and controlling the look of the sky by altering a Sun object within their scene.
This advancement would allow them to alter the look of the sky by altering the
Sun object (changing the Sun elevation to set the correct ”time” of the scene)
and afterwards press a button and generate additional cloud layer on top of
this skydome. Generating the environment map this way would also mean that
the Sun elevation stays unchanged between the different randomly generated
examples of the sky, which might be a desirable property.

6.6 Increasing the resolution
As we have already seen from the previous chapters, our neural network is not
able to produce images with resolutions close to 15000 × 7500 pixels. Since GAN
architectures are not advanced enough to generate high resolutions immediately,
we want to utilize super-resolution neural networks to provide us with the extra
level of detail we need for our applications.

This could effectively mean that we will utilize our HDR GAN network for
the purpose of generating the rough semantic idea of the sky, and then apply a
super-resolution neural network such as SRCNN [Dong et al., 2014] to provide
the additional detail.

Since many state of the art super-resolution networks also utilize GAN ar-
chitectures, there also exists a possibility to connect our HDR network with the
super-resolution network and practically create a new joint architecture, which
could be trained end-to-end.
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Conclusion
In this thesis we explored the concept of generating realistic high dynamic range
environment maps using neural networks. Since very little research was published
about this topic, we wanted to provide some basic research which would lay the
ground work for further research. To accomplish this we had to perform several
different tasks, which we will now summarize.

To be able to produce realistic looking images we first needed to gather a
dataset. Because no such dataset is available, we developed a complete dataset
capturing pipeline and utilized it to capture thousands of HDR images. The
complete results can be seen in Section 5.1. We also discussed at length the
advantages of different projections and found the fisheye projection to be the
best compromise for our purpose.

In parallel to gathering our dataset we performed experiments on a state of the
art neural network, to evaluate the image quality of the architecture before and
after converting it to produce high dynamic range images. We provided in-depth
discussion about our experiments and their results in Section 5.2.

As a result of these experiments we were able to identify several areas of
improvement, as well as provide a proposed solution to each of these problems.
We explain these ideas in the chapter Future work. We will continue expanding
our dataset as well as improving the network in order to achieve industry quality
results in the future.
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A. Attachments
A.1 Digital attachments
In this section, we describe all the digital attachments we include.

• Dataset – we include several files important to the capturing of the dataset,
as we have discussed in Chapter 3.

– Pre-shoot checklist – since the shooting manual (Attachment A.3) is
long and impractical to read on-site, we have developed a simple one
sheet checklist, which should help both the person capturing the time-
lapse to correctly setup the camera, as well as the person converting
the data into a dataset-compatible format.

– Profiles – we include both the PtGui and RawTherapee profiles we
utilize to process our photos after they are captured. Please note that
these profiles are subject to change.do

– Photos shot – a document with dates, GPS coordinates, times and
numbers of images taken for each of our shoots.

– A LDR timelapse example shoot – we include complete timelapse which
was shot using the methods described in this thesis. To save space, we
only include the LDR version of the shoot.

• Neural networks – we include all our training runs, examples of the dataset,
the code used to run them and the results (both the generated images and
the Tensorboard log files). Here we describe the structure of the included
experiments.

– Dataset examples – we include 3 different photos to illustrate how
the dataset of this experiment looks for most of the training runs.
These photos are consistent across the experiments (if the photos were
utilized), to make the comparison better.

– Run setup – contains all the code and docker file required to run the
network. This code is left in the state it was run in, so for reproducing
the experiment, one only needs to run the appropriate bash script.

– Run result – the results of the network. This includes the log file, the
config file, the Tensorboard summaries and the fake images generated
after each epoch.

– Extra data – some experiments generated extra data (such as extra
images, interpolations, etc.). We include these extra images as well.

• Dataset processing pipeline – we include all of our scripts to resize, augment
and convert all images before feeding them into the network, which we have
discussed in Chapter 3. These scripts are:

– Augmentation scripts for both equirectangular and fisheye projections,
which augment the images by rotating the image around the upward
facing axis.

119



– Conversion from/to .TFRecords format – we include scripts for both
converting a folder of images into a .TFRecords file and a script to
convert the .TFRecrods file back to images, as well as calculate the
average dynamic range.

– Equirectangular to fisheye C++ program, which we have already men-
tioned in Chapter 3. The program can convert an equirectangular map
into a fisheye projection, with stereographic, equisolid and equidistant
projections to choose from.

– Docker environment prepared to run all of the mentioned scripts on
any machine.

We also include readme files which describe the contents in more detail.
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A.2 Data from the internet
In this attachment, we describe the data we collected on the internet, from freely
available sources. We do not include this data as part of our digital attachment,
since it is downloadable from the internet.

1. NoEmotion HDRs – http://noemotionhdrs.net/ – between the day and
night HDR images, this website provides 106 high resolution environment
maps. 34 of those are shot during the day, 72 are shot during the evenings.
The Sun is clipped in these photos, but they still provide a good dynamic
range of around 103.

2. HDRi Haven – https://hdrihaven.com/ – while this research was going on,
this website provided 74 usable environment maps with a visible skydome.
Since this website is really active, there are probably additional photos
which were added after research. This website provides photos with un-
clipped Sun, which makes it rather unique.

3. HDRI Skies – https://hdri-skies.com/ – this website provides around 429
environment maps. Although the full resolution photos are paid, one can
download the lower resolution (2048 × 1024 pixels) images for free.

4. The Laval HDR Sky Database [Lalonde et al., 2016] – this database provides
a big amount of data with very low variance. In order to avoid overfitting,
we need to subsample these first, to only include a portion of the images.
More importantly, this database also includes metadata like the Sun coor-
dinates, date and time. The data is also classified as clear or cloudy, making
it easier to pick images we would like (with clouds present). We only found
this database later in the research and as such it is not included in many
of the training runs.
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A.3 Dataset shooting manual
This attachment is a field manual to read before shooting the dataset. It is
used to get the user familiar with the camera, with the goals and the means to
achieve those goals. Our goal is shooting images similar to what can be seen in
Figure A.1.

Figure A.1: Three photos taken in the same dataset shoot. Shooting these pic-
tures is the goal of this manual.

Required gear
In this part of our manual, we briefly go over the gear we utilize to shoot the
dataset. Several of the pieces are not strictly necessary, but make the process a
little easier.

• Canon 5D Mark II – a DSLR full-frame camera, any full-frame camera
which is able to set a custom bracketing sequence and shoot the sequence
every N minutes is enough.

• Canon EF 8-15 mm f/4.0 L USM fisheye lens – a 8 mm focal length lens
is required to capture the whole upper hemisphere of the sky. This is also
the reason why APS-C or any other smaller sensors are discouraged for our
shoot, since achieving an equivalent of 8 mm is almost impossible.

• Memory card – Canon 5D Mark II uses the CF memory card format

• Manfrotto 055 tripod1 with a ball head2 – a solid and heavy tripod is very
important, since it lowers the amount of camera shake due to wind and
therefore produces better photos.

• Panoramic head NOVOFLEX VR-SYSTEM PRO3 – an optional piece of
gear, used mainly in full panoramic shoots. However, this tripod head
combined with a ball head on the tripod allows us to level only the head
without changing the height of the tripod legs, which makes the setup easier.

1https://www.manfrotto.co.uk/collections/supports/055-series
2https://www.manfrotto.us/xpro-ball-head-in-magnesium-with-200pl-plate
3https://www.novoflex.de/en/715/the-professional-allrounder-vr-system-pro-ii.html
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• Lens-cleaning brush4 – dust on the lens is a problem which can be very
easily fixed before the shoot. Having a brush also helps with accidental
smudges on the lens while handling the camera.

• Compass, GPS – used to provide the EXIF data of position and heading.
This might be required in the future, should we attempt to augment the
training with some geographical data.

We also include a brief camera controls description in Figure A.2 and Fig-
ure A.3.

Figure A.2: Description of the camera controls on the back of the camera.

Dataset shooting
First, we present a to-do list before heading out for the shooting location.

1. Clear the CF card from old data. The photos get stored in the DCIM folder,
so you can delete the contents of this folder. You need to preserve the ML/
folder, as well as 5D2-212.fir and autoexec.bin files in the root. Safest
rule is to just delete .CR2 data from within /DCIM/100EOS5D/.

2. Make sure MagicLantern (ML) boots up correctly.

(a) Insert the card.
(b) Turn on the camera.
(c) If the main window shows the battery life in percent (see Figure A.4),

ML is booted correctly.
4https://www.fotoskoda.cz/lenspen-stetec/
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Figure A.3: Description of the camera controls on the top of the camera and the
controls of the lens.

3. Charge the camera’s battery

4. Fix the Novoflex blue rail to the camera, if it has been undone

If all things are performed correctly, we will see the screen showcased in Fig-
ure A.4 on the camera’s back screen. Notice the small text like battery percent-
age, time, remaining gigabytes and ”HDR 7x2EV”. If MagicLantern did not boot
correctly, this text will be missing.

If you have never used the camera, make sure to take time to familiarize
yourself with the controls. The following two images should help you with using
the camera.

Press the ”Enter MagicLantern” button (as described on the first picture of
the camera with labels), use the button in the middle of the circular rotary switch
”setting values” to enable/disable a setting, press the ”Detailed settings inside
MagicLantern” to enter e.g. HDR Bracketing or Intervalometer settings menu
and use left/right ”Navigate camera menu” joystick to change the value. Then
press the ”Detailed settings inside MagicLantern” to close the detailed settings
and ”Enter MagicLantern” button to go to the main screen.

Find a place which does not have any obstructions (like trees or buildings)
in the immediate surroundings of approximately 20-50 meters. Anything further
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Figure A.4: An illustration of the MagicLantern software booted up correctly.

away shouldn’t be too visible on the fisheye. The bigger the gap, the better the
spot.

Place the tripod and extend it so the camera position will roughly match the
height of your eyes. You will need to make this a little lower, since you will have
to level the panoramic head (alternatively, you will need something to stand on).
Leveling is more important than eye-height.

Before you mount the camera to the tripod, clean the lens with the provided
lenspen brush.

Level the panoramic head by adjusting the Manfrotto ball head. Note that
you do not need to level the tripod itself (manipulate with its legs), only the
upper panoramic head. Rotate the head so that the flash mount is pointing
north if the camera is facing upwards. Also take note of the GPS coordinates
for the location of your shoot.

Adjust camera settings to:

1. Set the lens to Manual Focus – MF.

2. Set the lens to 8 mm. Make sure it is really all the way to the left.

3. Set the lens focus. Since you do not have any objects in the immediate
vicinity, infinity should be good.

4. Set the ISO to 100, unless shooting night or very low light.

5. Find out the starting exposure setting:

(a) For shots where the Sun is visible, this will be 1/8000 exposure time
(lowest), Aperture 22.

(b) If the Sun is not visible, you will not need such a dark exposure.
Start the exposures at 1/2000, shoot one sequence and inspect it. If
no highlight is clipped, use this. If there are clipped highlights (such
as a sun behind the clouds), revert to 1/8000.
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(c) The preview in the camera should help you determine if there are
clipped highlights. Look at the histogram, there should not be any
values tightly packed on the max range of the histogram.

6. Setup MagicLantern similar to Figure A.5. Navigating the MagicLantern
menu is described in the following paragraph.

Figure A.5: Exposure bracketing and intervalometer settings of Magic Lantern
software. The HDR bracketing setting signifies shooting 7 images with a 2 EV step
in between each pair, starting from the darkest one and increasing the exposure.
The intervalometer is set to shoot a sequence of pictures every two minutes.

Press the ”Enter MagicLantern” button (as described on the first picture of
the camera with labels), use the button in the middle of the circular rotary
switch ”setting values” to enable/disable a setting, press the ”Detailed set-
tings inside MagicLantern” to enter e.g. HDR Bracketing or Intervalometer
settings menu and use left/right ”Navigate camera menu” joystick to change
the value. Then press the ”Detailed settings inside MagicLantern” to close
the detailed settings and ”Enter MagicLantern” button to go to the main
screen.
HDR Bracketing should be set up similar to what we see in Figure A.5.
You can alter the number of exposures (7×2 EV ), if your scene has high/low
dynamic range. Overcast days will not require 7 exposures. As a rule of
thumb, 7×2 EV with 1/8000 F22 start should be good on sunny days (row
1 and 3) and on overcast days use 6 × 2 EV 1/2000 instead. You should
keep to 2 EV steps, unless you need to shoot really fast (very fast moving
skies – in high winds) and a high dynamic range (exposed sun as row 1 or
3) at the same time. If that is the case, 5 × 3 EV is equivalent to 7 × 2 EV
in exposure value.

Intervalometer must be ON, with the interval you want to shoot. Shooting
every 2 minutes is a good start, yielding 30 HDR images per hour. If you are
shooting a fast-changing scene like fast moving clouds, sunsets or sunrises, use a
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smaller interval – 1 minute or 30 seconds. In many cases, clouds are moving fast
enough to use 30 second steps.

With the exposures we already mentioned (1/8000 F22 ISO 100 and 1/2000
F22 ISO 100), the camera can easily take the sequence every 30 seconds. If you
need longer exposures for low light, consider increasing the aperture (F22 → F16
or more) rather than the time.

Once you exit out of MagicLantern, you should see this screen (as can be seen
in Figure A.6). Notice the new box, covering our format setting. This informs
you that the next image will be shot in 101 seconds, and you have so far taken
one shot. You can cancel the shoot by pressing the preview button.

Figure A.6: An illustration of the intervalometer in action, once the shoot starts.
This window informs us that the next image will be shot in 101 seconds, and we
have so far taken one shot.

Mount the camera on the tripod, make sure to lock it tight in the upright
position. Also make sure the end of the panoramic head is not visible in the
shot. Do not forget to remove the lens covers: both the protective cover and the
”sun screen”. Also make sure to double check the leveling just before you start
to shoot. The final assembled camera can be seen in Figure A.7.

We also include a one page checklist which covers every single part of the
shoot we mentioned here. It is available in Attachment A.1.

Processing the photos
The first thing to do is to download the photos from the CF card and back them
up. After that, you can start with the post-processing steps.

Delete any photos taken by mistake. Also delete the photos you took when
you were guessing the correct exposure (if you took any). If you leave the photos
now, not only will they get processed in vain, they will also confuse PtGUI and
require more manual work later.

At this point, you should have N exposures per shot, and no other extra
photos. To make sure, check if the number of files in your folder can be divided
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Figure A.7: The camera correctly setup on the tripod.

by N . The N is the HDR bracketing setting from MagicLantern, i.e. the 7 in
7 × 2 EV .

Process the photos with RawTherapee [Horváth, 2019]. This is a very simple
process, but takes a lot of time to do, so use the best machine you have for
this. RawTherapee is free and open-source, so you can download it on as many
machines as you want.

The process is as follows:

1. Open RawTherapee, and navigate to your taken photos

2. Select all the photos you want to process.

3. Apply our custom correction profile using right-click context menu. This is
a custom profile that you can find in the digital attachments and place into
/c:/Users/<USER>/AppData/Local/RawTherapee/profiles/. This step
is illustrated in Figure A.8.

4. After a while, a check-mark will appear on the photos you selected.

5. Select them again, and choose Put to Queue.

6. Now, on the right side, go into the Queue manager, select TIFF-16bit,
compressed and not-float, specify the target folder, which we call /pa-
th/converted and start the queue.

After you have converted the .CR2 data into .TIF by using RawTherapee, you
are now ready to stitch them with PtGUI [B.V.]. Unlike RawTherapee, PtGUI
requires a license to use.
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Figure A.8: A screenshot from the processing pipeline – applying our custom
preset in RawTherapee.

Having your converted .TIFs in /path/converted, the next step is to convert
the projection using PtGui.

First, you need to create a template for your shoot. Take the first sequence
(first N shots), and load them into PtGui. Apply the template from Attach-
ment A.1 and edit the Metadata tab of PtGUI – input the GPS coordinates and
the heading of the camera to 0 (because you aligned the camera’s flash mount
to north). This template is created for N = 7, if you have 6 photos (e.g. if you
started on 1/2000), use this template and double check the result.

If you have more photos (8 or more) you only need to link the last image
together with the rest in the Source Images tab of PtGui. You can find a more
detailed description of PtGui’s settings at the end of this manual.

Save the template as your own – named beautiful location 8mm N. Once
you save the template, you can close the project without saving. Now you can
apply this template to all sequences at the same time:

1. Open PtGUI

2. From Tools select Batch Builder. You can also use Alt + Shift + B.

3. Click Detect Panoramas, and set up the detection similar to what you see
in Figure A.9.

4. Click Detect panoramas. You should now see all of your taken series in a
list below each other.

5. Select the new template you just created – beautiful location 8mm N.
Make sure that batch builder detected the panoramas correctly - N shots
per row, as illustrated if Figure A.10.

6. Click Generate projects, and after PtGUI is done generating, confirm again
to stitch them all using batch stitcher.

You should now have a folder nearby with all shots correctly merged into both
.JPG and .EXR formats. All photos should be 1024 × 1024 in size, ready to be
processed by the network pipeline and used to train.
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Figure A.9: Setting up the panorama detection in PtGui software. This setting
should detect all panoramas we have taken.

Clean up – you might want to delete all the intermediate data, such as the
.TIF files, as they take a lot of space, RawTherapee .pp3 profiles, etc. Keep the
.RAW data for further backup.

PtGui settings The following short list describes each sub-menu in PtGui in
regards to our template. It lists everything you need to know to better navigate
our template.

1. Source images – link a number of exposures (referred to as N in this section).

2. Lens settings – should be loaded by default from EXIF.

3. Crop – the default crop is too restrictive, so if you are making a new one,
extend this one a little. Make sure all the quality data (bottoms of trees,
houses, etc) is included, but the refractions of the lens is not.

4. Mask – do not touch, no need to mask anything.

5. Image parameters, Control Points, Optimizer – do not touch.

6. Exposure/HDR – Select Group bracketed exposures, and then True HDR.

7. Project settings – deselect ”Do Align Images” in Batch Stitcher, also make
sure everything is checked in Template Behavior.

8. Preview – do not touch, no need to.

9. Metadata – GPS and heading is important here.
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Figure A.10: Detected panoramas in PtGui. We then set the correct template
below the preview window and click Generate projects.

10. Create panorama – Width and height (usually 1024), .JPG and .EXR, check
both tonemapped panorama and HDR panorama.

11. Panorama Editor – brought up by pressing Ctrl + E, we select stereographic
down in the projections list, and then use the numerical transform setting
to change the view to stereographic up, by rotating it by 180°.
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