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1. Introduction 

As for many other people my age, computer games are an inseparable part of my 

childhood. I used to play all kinds of games, from Donkey Kong to The Battle for 

Middle-earth. Because of this, I decided to try and create a game which combines 

aspects of two types of computer games that are my favourites – strategic games and 

action games.  
 However, my aim in this thesis was not to create a big game with a broad 

range of spells, items, and characters that could compete with other games. That 

would have been borderline impossible, given that these games are usually 

developed by teams of experts over years. Instead, my goal was to create an easily 

expandable skeleton of such a game. 

 More specifically, the goals of my project were: 

1.) Create a basic real-time strategy game with a few types of units 

and buildings. 

2.) The game should include one human player and at least one A.I. 

3.) Provide the player with the option of playing for any fighter unit 

individually, as if he/she were playing an action game. 

4.) When commanding units individually, the combat system should 

be interesting enough to be entertaining. 

5.) Implement a system of casting spells. 

6.) Implement a system of collecting and using items. 

7.) Make the whole game easily expandable. Adding new items, 

spells, units, etc. should be straightforward. 
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2. Analysis 

In this section, I first go over the structure of real-time strategy games (RTS games 

for short) and action games, and then I describe the structure of my own game. 

However, seeing as both of these genres are very broad and probably contain 

hundreds or even thousands of different games, it is impossible to discuss them in 

detail. I therefore only go over the most basic concepts that are either almost 

universally present in the genre, or important for the purposes of this thesis. 
2.1. Language conventions 

Before getting into the analysis, I have to explain some basic terms and concepts to 

avoid misunderstandings. First, the word ‘player’ could be used to refer to both the 

human playing this game and any agent acting in the game (be it a human or an A.I.). 

To avoid confusion, I refer to the latter kind of player as an agent. 
Next, when it comes to creative things like games, it is almost impossible to 

say that something holds for every example of a given type of game, musical style, 

etc. Therefore, any time I say that something is done a certain way in RTS or action 

games, I mean that it is so in most cases. 
The last thing I need to mention is that one of the aims of my project is easy 

expandability, so even though the possibilities of the actual game are quite limited, I 

often use more general terms. 

2.2. RTS games 

2.2.1. Design & controls 

In RTS games, the screen is divided into a map area displaying the game world and a 

minimap which provides an overview of the entire map. An agent is provided with a 

view of the world which, in more modern games, is done via a free-roaming camera 

which provides an aerial point of view. Players mainly scroll the screen and issue 

commands with the mouse or using keyboard shortcuts. 

2.2.2. Entities 

There are two basic types of entities in RTS games – units and buildings. There are 

usually one or more types of units which can be used for creating buildings and/or 

gathering resources, while the other types are used in combat, either as direct fighters 

or as support units. 
Some RTS games have special types of units, often called ‘heroes’, of which 

there can always be only one unit alive at a time and which are more powerful than 

other units. These, and sometimes also other units, can level up by fighting. 
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 Buildings are mostly used for generating different things like units, upgrades, 

or resources, although some can be used for protection or offense. 

2.2.3. Gameplay 

The gameplay consists of the player (and other agents, human or artificial) being 

positioned somewhere on the map with a few units or a building. These allow the 

agent to create more units and buildings. Often, but not always, an agent must build 

specific structures to unlock more advanced units and structures. RTS games require 

an agent to build an army, the normal size of which can vary from less than 10 to 

hundreds of units. This army is used to either defend the agent from attacks or to 

eliminate enemies who possess bases with unit production capabilities of their own. 

Resource gathering is often the main focus of RTS games, but some titles of 

the genre place higher gameplay significance on how units are used in combat. Some 

games impose a ceiling on the number of simultaneously existing troops, while other 

titles have no such unit cap. 

2.3. Action games 

In action games, players control a single character and use it to advance through 

levels that present them with challenges with increasing difficulty. The player’s 

avatar has various abilities and means of overcoming these challenges. 
 Often, the player can collect different items which can either be used for 

some specific purpose (like unlocking a door), or which temporarily or permanently 

improve some of the avatar’s abilities. 

 The avatar has some sort of hit-marker or health which can be depleted by 

enemies or obstacles and, once it runs out, the avatar dies. The avatar usually has 

some number of lives, which allow the player to start over from a checkpoint or the 

start of a level. 

 In 3D action games, the player’s perspective is tied to the avatar from either 

first- or third-person perspective. In these games, the player can control the avatar by 

changing its direction with the mouse and using the keyboard to move it. The mouse 

is also often used to attack or perform some other action by clicking one of its 

buttons or scrolling its wheel. 

 Action games tend to keep track of the player’s score, which can be gained 

by completing challenges or killing enemies. 

2.4. My implementation 

2.4.1. Application design 

When designing this game, my primary aim was to create a playable RTS game. My 

secondary aim was to add elements of action games to it. This resulted in this game 

having two modes of playing – strategic mode and 3rd person mode. In the strategic 

mode, the game is like most other RTS games. The player is provided with an aerial 
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view and a minimap and can command units with the mouse. There is also a menu in 

the lower right corner of the screen which can display various clickable icons. For 

example, the buildings that a worker can build are displayed there. 
In 3rd person mode, the camera through which the player sees is tied to a 

single unit and the player loses control of all other units. On the other hand, the 

player gains access to the unit’s spells. Also, the unit’s attacks stop being automated. 

Instead, the player has to trigger each attack him-/herself. Playing in this mode is 

similar to playing an action game, however, contrary to typical action games, there is 

no protagonist unit in this game. Because of this, I omitted some of the game aspects 

that are often found in action games. Each unit has only one life for example. 

2.4.2. Rules 

In this aspect, the game is a watered-down version of the RTS games that inspired 

me (Warcraft III and The Battle for Middle-earth I and II). The player starts out with 

a single building, called the Base, which allows him/her to create units called 

Workers. Those in turn allow him/her to create other buildings which fulfil different 

functions. The goal is to destroy all the enemy’s buildings and units. 
 I decided to forgo implementing any methods of resource gathering by units 

and instead opted for the approach used in The Battle for Middle-earth – having 

resource-generating buildings. 
The 3rd person mode isn’t necessary or even essential for winning the game, 

so it can be played just like a classic RTS. However, the more detailed coordination 

of a single unit that the mode provides can give the player an advantage. 

2.4.3. Gameplay 

The essence of every game is presenting the player with some sort of challenge and 

giving him/her some means of overcoming it. In my case, the challenge is to defeat 

the enemy army and destroy their buildings. The means of overcoming the challenge 

is making your own army and buildings. This forms the backbone of the gameplay. 
 Besides the mentioned factors, there could be a lot of other aspects of the 

game that could influence the gameplay. For example, there could be different kinds 

of environments and different kinds of resources to be gathered. I didn’t include 

these in my game because I didn’t see them as essential to the kind of game I wanted 

to create. Something I did implement though (or the basis of it at least), is the 

gathering of items and the concept of spells. 

 The actual number of items in my game is very limited – there are three 

weapons and two potions. However, the functionality of gathering and 

using/equipping items is fully implemented and, while not being an essential part of 

the gameplay, gathering the potions can help one win. 

 As far as spells go, every unit has two, although the spellbar has space for 

ten. Once again, I didn’t implement more, because my primary goal was 

implementing the functionality of adding and using spells. 
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 I also implemented the concept of gathering experience. Every fighter unit 

can gather experience by destroying enemies. When it gathers a certain amount, it 

levels up, which increases its power, amount of health, and other properties. Once it 

levels up, the amount of experience necessary to level up again increases by 50. 

2.4.4. Programming language & environment 

Games can be programmed in any programming language, although some are better 

suited for it than others. The best would probably be C++, seeing as it is quite a low-

level language. That allows for quicker execution of code which is essential for 

games. However, my foremost criterion when choosing the programming language 

that I would create this project in was, that I wanted to have some experience with it 

to avoid unexpected setbacks caused by a lack of understanding of the language. 

This limited my possibilities to just three languages: C#, Java and Pascal. Pascal lags 

behind the first two in just about every aspect though, so I was really just choosing 

from the first two. 

 Between those two choices, it came down to what I’d had more experience 

with at first. That is because the languages are quite similar as far as both semantics 

and performance go, although C# has a bit of an edge on Java in the latter aspect. For 

this reason, I first decided on Java and looked for a game engine that would allow 

me to create a 3D game programmed in that language. 

I found jMonkeyEngine [1], a free and open-source game engine made 

especially for modern 3D game development in Java. It is a collection of libraries, 

but an official SDK exists for it, which is based on the NetBeans platform. This 

platform seemed to have the necessary tools for creating this project – a physics 

engine, tools for creating a 3D environment and 3D entities to place in that 

environment, and, most importantly, tools for programming the behaviour of those 

entities. However, I found the documentation lacking, and since it isn’t such a well 

know engine, there wasn’t much information to be found about it elsewhere. 

I then switched to the Unity engine [2], for a few reasons. First, Unity is one 

of the most used and well-known game development softwares in the world and it 

allows the user to create all manner of games, both 2D and 3D. That means that it 

both provides the means for creating a basic RTS, such as the one I was aiming for, 

and that there is an abundance of information about it on the Internet, both official 

and unofficial. Second, it is very user friendly. And third, my brother had already 

had some experience with it, so I had someone to show me the ropes. 

Unlike jMonkeyEngine, the primary development language in Unity is C#, 

but that still fit with my previous requirement for a language which I’d had 

experience with. There are also other languages that can be used to make games in 

Unity, like UnityScript (derived from JavaScript) or Boo, but C# is definitely the 

language of Unity, since all of its libraries are programmed in it. This is because 

Unity uses Mono, a cross-platform implementation of Microsoft’s .NET, of which 

C# is the primary language. 
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Besides Unity, there were many other well-known engines that I could have 

used. For example, the Unreal Engine [3], which you can find topping many lists of 

best game engines (with Unity often close behind). A great advantage of this engine 

is that it uses C++ which, as I’ve said before, is the language best suited for making 

video games. Other notable examples include GameMaker, Godot, CryEngine, and 

many more, however, all of these either aren’t as user friendly as Unity, or don’t use 

either of the two languages I was looking for. 

2.4.5. Aesthetics 

The aesthetics of my project are a result of the possibilities provided by Unity. When 

I started designing this game, I first tried downloading units, buildings, and other 

things from the Unity asset store [4]. However, manipulating models that I didn’t 

design myself proved to be quite challenging, especially given the fact that I was a 

complete novice at Unity. Another issue was that the game’s aesthetics would be 

inconsistent unless I found some package which contained all the objects that I 

needed. 

 In the end, I decided to create my own objects. These objects are just 

comprised of basic geometric shapes offered by Unity, like cubes and spheres. 

However, since they were created by me, it was easy for me to work with them. 

They are also aesthetically consistent and tailored to the specific requirements of my 

game. One downside of this approach though, is the fact that some objects aren’t 

rendered quite properly. I believe this is a fault in the Unity environment, not in my 

design. 
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3. Game design 

3.1. The Unity engine 

Like any good game engine, Unity supplies its user with the tools to create games 

quickly and effectively. It provides an environment in which the user can create 

various 2D and 3D objects and assign them properties and behaviours. In this 

section, I go over the basic tools that Unity has to offer. More information about any 

of these components can be found in the Unity user manual [5]. 

3.1.1. GameObjects 

According to the Unity documentation, “the GameObject is the most important 

concept in the Unity Editor”. Every object in a project is a GameObject. 
Every GameObject has two important pieces of information associated with it 

– a tag and a layer. Tags are arbitrary strings that the user can use to identify objects. 

Layers are sets of objects which should share some common characteristic, although 

this is not enforced in any way by the engine. They are used to restrict operations 

like raycasting only to relevant objects. 

The user can combine different GameObjects into hierarchies, forming 

larger, more complex GameObjects. 

GameObjects can fulfil a variety of different functions, but by themselves 

they are blank canvases. To add functionality to them, you need to add components. 

3.1.2. Components 

Components are the functional pieces of every GameObject, they define their 

properties and behaviours. An important property of some components – most 

notably the Script component – is that they can be disabled. This allows the 

properties/behaviours which they grant the GameObject to be turned on/off while the 

game is running. 
In this section, I describe the most important of the many components that 

Unity has to offer. 

Transform 

The Transform component determines the position, rotation and scale of every object 

in the scene. Every 3D GameObject has this component. 

Rect Transform 

A 2D counterpart of the Transform component. While Transform represents a single 

point, Rect Transform represents a rectangle that a UI element can be placed inside. 
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Collider 

This component defines the shape of an object for the purposes of physical 

collisions. A Collider is invisible and it isn’t necessarily the same shape as the object 

to which it is attached. All the Colliders that I have used in this project are of the 

primitive kind – Box, Sphere, and Capsule Colliders – with the exception of the 

Terrain Collider. 
Colliders can interact with each other in different ways, based on their 

settings as well as the settings of the Rigidbody component (discussed next), if one is 

attached. For the purposes of this thesis, it suffices to mention one important 

property that influences this behaviour – the isTrigger boolean flag. If a Collider has 

this flag set to true, it only detects when it intersects another Collider. If it is set to 

false, intersecting with another Collider creates a collision which can move the 

objects to which the two Colliders belong. The former kind is called a trigger 

Collider, while the latter is called a non-trigger Collider. 

Rigidbody 

A Rigidbody is a component that simulates physical behaviour for a GameObject. It 

goes hand in hand with Colliders – there are very few cases in which a GameObject 

should have a Collider but not a Rigidbody (one such exception is a static, 

immovable object, like a wall). Rigidbodies allow GameObjects to be moved by 

Collisions detected by the Colliders. If it is necessary for an object to detect 

Collisions without being moved by them, the isKinematic flag of the attached 

Rigidbody should be set to true. 

Mesh Filter & Mesh Renderer 

These two components allow the object to be rendered inside the scene. The Mesh 

Filter defines the geometry of the object, while the Mesh Renderer takes and renders 

it at the position defined by the Transform component. 

Nav Mesh Agent 

A Nav Mesh is a data structure which Unity generates to approximate the walkable 

areas of the environment. A Nav Mesh Agent uses this data structure to navigate the 

world and avoid obstacles. Nav Mesh Agents are also capable of avoiding each 

other. 

Nav Mesh Obstacle 

This component allows the user to describe moving obstacles that Nav Mesh Agents 

should avoid. 
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Material 

As the name suggests, this component defines the visual properties of the object to 

which it is attached. 

Script 

A core component for any game. A script is a piece of code. It allows the user to 

define the behaviours of GameObjects. For a script to be attachable as a component 

however, it needs to inherit from a built-in class called MonoBehaviour. This allows 

the programmer to use many useful Unity functions. 
 Seeing as scripts allow the user to define the behaviours of GameObjects, I 

discuss them extensively in the following chapter. Therefore, I need some way of 

distinguishing components and GameObjects from scripts, in case they have the 

same name. To this end, all the names of scripts, classes, methods and variables are 

written in cursive. 

Canvas 

A Canvas is a component which defines the area that all UI components, like 

Buttons, Sliders, or text fields, should be inside. Through its Render Mode setting, it 

can be made to always overlay the currently used Camera, as if it was stuck onto it 

(Screen Space - Overlay), to always be placed in front of a given Camera (Screen 

Space - Camera), or to exist independently of Cameras (World Space). 
 When a Canvas GameObject (one of the predefined GameObjects in Unity) is 

created, it has more than just the Canvas component attached. It also has the Rect 

Transform, Canvas Scaler and Graphic Raycaster components. The function of the 

latter two is unimportant for the purposes of this thesis though. When I mention a 

Canvas GameObject, assume that all of the mentioned components are present. 

Canvas Renderer 

Renders a graphical UI object contained within a Canvas. 

Camera 

A Camera is exactly what one would expect – a component that captures and 

displays the world to a player. An important property of this component is the 

Culling Mask. This specifies the layers which the Camera is supposed to capture. If 

the culling mask of a Camera doesn’t include a GameObject’s layer, the Camera 

doesn’t capture the GameObject. 
 When a Camera GameObject (another predefined Unity GameObject) is 

instantiated, it also has an Audio Listener component attached. This component is an 

imitation of a microphone. It records the sounds around it and plays them through 

the speakers. Only one Audio Listener can be active in a scene at any given time. 
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Light 

Unity offers many kinds of lights – Point Light, Area Light, Directional Light, etc., 

the properties of which can differ. There are some properties that they all share 

though, and an important one of those is the Culling Mask, which describes which 

layers should be illuminated by this light. 

Animator 

This component allows the user to assign animations to a GameObject. 

3.1.3. Assets 

Besides its native 3D objects, Unity also supports using and, in some cases, even 

creating many additional assets. These include images, FBX models, animations, and 

audio files. Unity also comes equipped with a package of standard assets, like 

Cameras, effects, and Particle Systems, that are widely used by many users. 

3.2. Basic GameObjects of the game 

Before getting into the details of my implementation, I once again need to clear up 

some terminology. In the previous section, I explained some of the components that 

Unity has to offer. I refer to these often in the following pages. The problem is that, 

for example, the name ‘Camera’ can be used to describe both the component and the 

GameObject to which it is attached. In order to avoid confusion, I use the latter 

meaning. Any exception to this rule is explicitly stated. 

3.2.1. DirectionalLight 

A kind of Light which behaves as if the rays were coming from a source that is 

infinitely far away, so they travel in parallel which makes it a good approximation of 

the sun. It lights up the entire game world. 

3.2.2. Terrain 

The map on which the game is played is just one big GameObject called Terrain. It 

has a Terrain Collider but no Rigidbody, since it isn’t supposed to be able to move. It 

also has a special Terrain component which renders it. 

3.2.3. EventSystem 

Takes care of sending events to objects based on input. An object of this kind is 

generated automatically when the user adds a Canvas. 
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3.2.4. GM 

GM is short for game master. This object controls the initialization, pausing and 

resetting of the game. When the application starts, the GameMaster script in the root 

element of the GameObject’s composition hierarchy displays the Main menu. The 

functionality of all the buttons in this and every other menu is implemented in that 

script. 
 GM is comprised of several parts. First, there is the root element, which has 

just two components – a Transform component and the GameMaster script. Then 

there are the menus. They are all direct children of the root element and are in turn 

comprised of a Canvas, which is in the root element of the menu (not to be confused 

with the root element of GM), and buttons or other UI elements, all of which are 

children of the menu root element. 

 The rest of the GM GameObject is made up of four GameObjects that only 

have the Transform component attached. They are the starting points for the player, 

the A.I., and two groups of Monster units which don’t belong to either team. 

3.2.5. MapCamera 

This is a stationary Camera positioned high above the Terrain. Its role is to capture 

the whole Terrain. What it sees is then projected onto a texture in the lower left 

corner of the screen, forming a minimap. Its Culling Mask is set to only include the 

‘Minimap’ layer. This is a layer that all GameObjects that should only be visible on 

the minimap are supposed to have assigned. 

3.2.6. StrategicCamera 

This is the only player-controlled Camera, which isn’t connected to a specific unit. It 

provides an aerial view of the world which allows the player to see enough of the 

world to be able to make strategic decisions. 

This GameObject is comprised of two elements – the root element, to which 

the Camera component is attached, and a child element called MinimapLight. This 

element has a Light component attached to it, the type of which is Spot and the 

Culling Mask of which is set to the ‘Minimap’ layer. The result is that this light is 

only visible on the minimap, the utility of which is that the Player is able to see 

where on the map the Camera currently is. 

3.2.7. MinimapTerrain 

This is a copy of the Terrain GameObject with 2 differences. The first is that 

MinimapTerrain doesn’t have a Terrain Collider component. The second is that the 

layer to which it is assigned is ‘Minimap’, as opposed to the ‘Terrain’ layer, to which 

Terrain is assigned. The reason behind that is the reason why I created this 

GameObject in the first place – it is a copy of the Terrain, which is illuminated by 



13 

 

the Light from the Camera currently being used, letting the player know on which 

part of the world he/she is looking. 

3.2.8. Music 

This is a GameObject to which an Audio Source component is attached. This is a 

component capable of producing sound. In this case, it is responsible for playing 

music. 

3.3. Buildings and associated objects 

All the buildings have these components attached to their root elements: Transform, 

Nav Mesh Obstacle, Box Collider with isTrigger set to false, Rigidbody with 

isKinematic set to true, Stats script, Healthbar script, a script that inherits from the 

Building script and which has the same name as the building, and PlayerBuilding 

script or a script that inherits from it. 
 As far as structure goes, they all have some renderable objects in their 

hierarchy which comprise the visual representation of the building in the game. 

Besides that, all the buildings have a MinimapIcon element which creates a 2D circle 

around the building through its Sprite Renderer component. This element’s layer is 

set to ‘Minimap’, the result of which is that buildings are shown as coloured circles 

on the minimap. 

 All the buildings also have a Canvas element with one child called 

HealthSlider. This HealthSlider has a Slider component attached to it, which is used 

to display the amount of hit points (HP for short) that the building has left. When a 

building has no HP left, it is destroyed. The Healthbar script controls the behaviour 

of this Slider. 

The Stats script contains data about different stats (properties) that the given 

building has, like amount of HP, armour, power, etc. 

All building GameObjects have a ‘Building’ tag. 

3.3.1. Farm 

The Farm is used for generating resources. This property is ensured by its Farm 

script. 

3.3.2. Tower 

The Tower is an offensive building capable of shooting at enemies that are within a 

certain radius of it. To this end, it has an extra trigger Collider attached. It is a Sphere 

Collider and its purpose is the detection of enemy units and buildings in the Tower’s 

attack radius. Once such an entity is detected, the tower starts attacking it. This 

functionality is implemented in the Tower script. 
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 Due to the fact that this building has another Collider, I had to set the layer of 

its root element to ‘Ignore Raycast’. This is because raycasting is used in this game 

whenever the player wants to click on something, and if the Tower’s root element 

wasn’t ignored by this operation, the ray would always be stopped by it. This is also 

the reason why the Tower has another trigger Collider on its Body element. The 

layer of this element is ‘Default’, so its Collider can be picked up by raycasting. 

3.3.3. UnitCreationProcess 

This object has a script with the same name attached to it. It is responsible for the 

creation of units. Every building capable of creating units instantiates one 

UnitCreationProcess for every type of unit that it can create. 
The reason I made a separate GameObject for creating units is that I wanted 

each unit type to have its own creation queue. That means that units of the same type 

are created serially, while units of different types are created in parallel. To achieve 

this, each unit type had to have some kind of queue associated with it. 

A straightforward solution would have been to hard-code the necessary 

number of queues into the script of each building. However, that would have made 

adding new unit types quite difficult. Therefore, I needed some kind of object that 

could be instantiated as many times as necessary and that, given a type of unit, 

would be able to manage the creation queue of that type. 

To manage this queue, I needed some kind of way of creating a unit after a 

specific time interval. I tried to use the C# Timer class, but I couldn’t get it to work 

because it deals with C# delegates and events. I had no experience with these 

concepts, so I opted for MonoBehaviour functions instead. However, 

MonoBehaviour or a class inheriting from it shouldn’t be instantiated through the 

new keyword. Rather, it should be created as a part of a GameObject when it is 

instantiated. Because of this, I created the UnitCreationProcess GameObject. 

3.3.4. Base & Barracks 

The Base and the Barracks are very similar, since they are both buildings for creating 

units. The Base generates Workers, while the Barracks can generate fighter units. 

Besides all the things that they have in common as buildings, they share two more 

elements in their composition hierarchy – SpawnDestination and SpawnPoint. 

SpawnPoint determines where the created units are be instantiated and 

SpawnDestination where they head right after instantiation. 

3.3.5. Outlines 

Every building has a corresponding outline object. This object copies the shape of 

the building but retains almost none of its components. The purpose of these objects 

is twofold. First, they serve as placeholders for buildings that are to be built. When a 

Worker is going to build a building at some location, an outline of that building is 
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placed there first, so that the other Workers cannot put their buildings there. Second, 

these objects are used by the player to decide where to build a building. 
These two objectives are accomplished thanks to two components attached to 

every outline’s root element - a Box Collider and an Outline script. The Collider 

allows the outline to be detected by Workers, preventing them from trying to build a 

building there. The Outline script makes the outline turn red whenever the player 

places it in a spot where the corresponding building cannot be built. It also prevents 

the player from building on that spot. 

3.3.6. BuildingPointer 

An object only used by the player. It is a pointer which starts hovering above a 

building if the player selects it. It has an Animator component in its root element 

which ensures that it moves up and down. 

3.3.7. Smoke 

This GameObject serves as a placeholder for a building while it is being created. 

When the Worker starts building a building, this GameObject is instantiated and 

stays in the scene until either the building is finished or the object is destroyed. 
 Since it is supposed to be a stand-in for a building, it is similar to one in 

many ways. Its root element has a Rigidbody, Box Collider, Stats script, Healthbar 

script and PlayerBuilding script attached. Also, the Smoke script inherits from 

Building and one of the children of this GameObject’s root element is a Canvas with 

a Slider for measuring HP. 

 The smoke effect itself is generated by a Particle System (a built in Unity 

effect). 

 During the building process, the Smoke’s health slider fills up. It can be 

attacked and take damage during this process and if its HealthSlider hits zero, the 

building process is terminated. If it doesn’t, the building isn’t instantiated with a full 

HealthSlider. Instead, the amount of damage that the Smoke received is subtracted. 

3.4. Units 

Every unit GameObject has a ‘Unit’ tag. 

3.4.1. Warrior, Archer & Mage 

These are three types of units that an agent can create and use for offense. They have 

different abilities, but structurally they are almost the same. They consist of the 

following – a root element which supplies most of the functionality, a Camera, a 

Body, left and right hands (LHand and RHand respectively) with the right being 

equipped with an aiming Camera, a Canvas, Highlight, MinimapIcon, LevelCanvas, 
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and three empty GameObjects called BodyItem, TopItem and Trinket, which serve 

as holders for different kinds of items. 
The Canvas and MinimapIcon fulfil the same functions as they do in 

buildings, but units also have a ManaSlider as one of the children of the Canvas. 

The Highlight is just a translucent outline of the body of the unit. It serves to 

show the player when he/she has selected the unit. 

The LevelCanvas is a Canvas on which the level of the unit is displayed 

when in 3rd person mode. It also has a slider which shows how much experience the 

unit has gained since levelling up. The important difference between this Canvas and 

the unit’s other Canvas is that the LevelCanvas has its Render Mode set to Screen 

Space – Overlay, while the other one has it set to WorldSpace. This is so that the 

health- and manabars are supposed to move with their corresponding units, while the 

LevelSlider is supposed to be permanently stuck to the screen. 

The two hands don’t have any renderable components attached to them, they 

are just Transforms that signify where weapons should go. The Camera on the right 

hand is used for aiming by units with range weapons. 

The root element has many components, including a Rigidbody and two 

Colliders (one for colliding and another, larger one, for the detection of enemies) and 

also the Nav Mesh Agent component. Furthermore, the root element has the 

following scripts – Spellbar, Healthbar, Manabar, Stats, Equipment, SpellbarGUI, 

EquipmentGUI, PlayerControls and UnitAI. Exactly one of the last two scripts is 

active at any time, depending on whether the unit belongs to the player or to an A.I. 

One of the few structural differences between these units is that they each 

have a unique script attached, which is named after them. 

The Body has three important components – a Death script, an Animator and 

a Collider. The Death script says what is supposed to happen when a unit dies. It has 

to be attached to the Body, not the root element. This is so, so that its Die function 

can be invoked from the death animation. For this to be possible, it has to be attached 

to the same element as the Animator component. 

The Collider attached to the Body is a trigger Collider. It is used to detect 

when the player has clicked on the unit. It is not attached to the root element, 

because the layer of the root element is set to ‘Ignore Raycast’. This is for the same 

reason as with the Tower. 

3.4.2. Monster 

A Monster unit is basically a watered-down version of the other fighter units. As far 

as structure goes, it is missing the Highlight, both hands, and the three item holders. 

The LevelCanvas and Camera components are present only for convenience, since 

the AdvancedUnitFunctions script, which all unique unit scripts inherit from, works 

with these elements.  
As far as other unit scripts go, the Spellbar script is missing, as are the 

PlayeControls and UnitAI scripts, and both of the GUI scripts. 
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Simlarly to other units, the Monster also has a unique script which is named 

after it. Among other things, it ensures that, when not engaging an enemy, the 

Monster moves randomly within a certain radius from some given point. 

3.4.3. Worker 

A worker only consists of the root element, a Body, a MinimapIcon and a Canvas. 

The Body has the same components as the Bodies of other units, except for the fact 

that, instead of the Death script, it uses the WorkerDeath script. This is necessary 

because the death of a Worker is different in two aspects. First, no Loot Box (3.7.1.) 

is left behind. Second, a part of the Worker’s Body is a Particle System, which I 

chose to stop via a script because it looks better than just destroying it. 
 The Worker’s root element has a Worker script attached to it. This script 

allows it to build buildings. The root element also has two other scripts not used 

anywhere else attached – the WorkerControls script, which inherits from 

PlayerControls, and the WorkerAI script. Only one of these can be active at any 

given time. 

3.5. Icons 

Unlike all the previous entities that I’ve talked about, icons aren’t GameObjects, just 

plain C# objects. They can be divided into 3 categories – spells, items and 

building/unit icons. 
 Every icon has a variable of type Texture2D. An image is stored in this 

variable, which can be shown to the player. The player can then activate this icon’s 

functionality by left- and/or right-clicking the image. 

3.5.1. Spell icons 

These icons are used to trigger spells. Their corresponding images appear in the spell 

bar at the bottom of the screen when the player is playing in 3rd person mode. Each 

fighter unit, except for the Monster, has two unique spells. The Monster has no 

spells. 

Archer’s spells 

Damaging Aura – Instantiates a GameObject called DamagingAuraSpell, which has 

a Light component and a Sphere Collider attached. It also has a script named after it 

attached. This script keeps damaging enemy units that have entered the Sphere 

Collider. 

Teleport – Instantiates a GameObject called TeleportEffect and destroys it after 1 

second. The GameObject has a TeleportEffect script attached which ensures that the 

unit is teleported to the nearest friendly building when the object is destroyed. 
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Mage’s spells 

Strength and Durability Buff – Finds nearby friendly units and temporarily increases 

their ‘Armour’ and ‘Power’ stats. It also creates a SpellTimer GameObject which 

stops the spell after a given amount of time. 

The reason why I created this GameObject was similar to why I created the 

UnitCretionProcess GameObject – I needed to use one of the MonoBehaviour 

functions to stop spells after a given amount of time. However, icons do not inherit 

from MonoBehaviour, so I needed to create another object which did. 

Heal – When the player left-clicks on this spell’s icon, a HealSpellProxy object is 

created. This object has the HealSpellProxy script attached which ensures that when 

the player left-clicks on a unit which is on the same team, it gets healed. Right-

clicking anywhere deactivates the spell. This object was created for the same reason 

as the SpellTimer object. While a HealSpellProxy object exists, a small plus sign is 

drawn next to the mouse cursor. 

Warrior’s spells 

Rage – Temporarily increases the Warrior’s ‘Power’ stat. Also creates a SpellTimer 

which stops the spell after 30 seconds. 

Shield – Instantiates the Shield GameObject and increases the unit’s ‘Armour’ stat.  

3.5.2. Items 

Items are icons that can be stored inside an inventory. These icons can also be 

stacked, that is, if there are two items with the same name, they aren’t be stored 

separately. Instead, the counter in the top right corner of the icon’s image is 

incremented. 
There are five items in this game. The first two are potions – a health potion 

and a mana potion, which replenish some of the unit’s health or mana respectively. 

The other three are the different weapons used by the three different kinds of units. 

They all have a GameObject of their corresponding weapon stored inside them. That 

GameObject is instantiated when the weapon is equipped. 

3.5.3. Building/Unit Icons 

These icons serve to create or destroy buildings and units. They are always shown in 

the menu, just like the inventories of units. When it comes to Unit Icons, they are 

displayed when the player either clicks on a Base, or a Barracks and left-clicking 

them causes a unit to start being created, while right-clicking them causes one to stop 

being created. 
 The building icons, on the other hand, are displayed when the player clicks 

on a Worker. When one of them is left-clicked, an Outline of the building appears 
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and when the player left-clicks somewhere on the Terrain where the building can be 

built, the Worker heads over there and start building. 

 Lastly, there is the Destruction Icon. Every building has this Icon and by left-

clicking it, the user can destroy the building and receive back 1/3 of the amount of 

resources used to build it. 

3.6. Weapons 

There are three weapons in this game – one for each type of unit. The Warrior uses a 

melee weapon called Basic Sword. The Archer uses a range weapon called Basic 

Bow, which shoots Arrow GameObjects. Lastly, the Mage uses a mid-range weapon 

called Basic Staff, which shoots MagicBall GameObjects. 

The Basic Sword and both kinds of projectiles have the WeaponEnd script 

attached to some element of their composition hierarchy. This script is necessary to 

allow fighting in 3rd person mode. 

3.7. Other GameObjects 

3.7.1. Loot Boxes 

Every unit besides the Worker has one loot box associated with it. The structure is 

always the same and quite simple – an empty root element, a Body, and a Particle 

System. The root element is present because I wanted the bodies of the Loot Boxes 

to spin, while the Particle Systems stayed stationary. 
The body has three scripts – LootBox, ItemDatabase and ItemDatabaseGUI. 

The first just takes care of the animation and of destroying the Box after 30 seconds. 

The second takes care of storing items in the Loot Box. The last allows the player to 

display the items in a Loot Box and allows manipulation with them. 

The Particle System is present just for decoration. 

3.7.2. CoreController 

Every agent has one CoreController associated with it. It stores the strategic 

functions of the agent in two scripts. The first is called StrategicData. It stores 

important data about the agent, like the number of units it currently has. It also has 

all the general functions that both an A.I. and the human player are supposed to have, 

like checking if there are enough resources to do some action. The other script is 

either the PlayerStratControls script or the AIMain script. The former has all the 

functions that the player uses to manipulate and interact with his units and buildings. 

The latter is the core of the basic A.I. that I have implemented in this game. 
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3.7.3. PlayerCanvas 

This GameObject is instantiated from within the PlayerStratControls script and it is 

comprised of a root element and three children. The root element contains the 

Canvas component. The first of its children is called Minimap. This element contains 

a component called Raw Image which has a texture onto which the field of view of 

the MinimapCamera is projected. 
 The second is the Resources element which contains a Text component and 

an Outline component (not to be confused with the Outline script that the outlines of 

buildings have). It uses these components to display the amount of resources that the 

player currently has. 

 The third is called Notifications. Similarly to Resources, it also has the Text 

and Outline components attached. Its purpose is to allow notifications like 

“Insufficient resources” to be shown in the middle of the screen. 
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4. Developer documentation 

In this chapter, I go over most of the scripts used in this game and explain what each 

of them does. I start with the GameMaster script which is in a category of its own 

because it takes care of setting up the game. I then explain some basic scripts that are 

used by various GameObjects and that are necessary to understand the parts that 

follow. After that I divide the scripts into these categories: buildings, units, A.I. 

scripts, player scripts, icons, weapons, spells and other scripts, and go over each of 

them individually. 
 I chose to describe them in this order because I think it best illustrates the 

structure of my game. I explain the workings of the basic building blocks of this 

game – buildings and units – after explaining some scripts that are necessary to both 

of these categories. I then explain how the A.I. and the player control these entities 

and then go on to explain additional parts of this game. 

Before I do any of that however, I need to explain some Unity classes and 

some of the functions they offer. 

4.1. Unity functions 

4.1.1. MonoBehaviour message functions 

The MonoBehaviour class is a class from which every script that is to be used as a 

component must inherit. Therefore, unless stated otherwise, assume that any class 

mentioned in the following sections inherits from MonoBehaviour. 
This class allows the user to use functions that are a part of the Unity life 

cycle – a loop which goes over some of the functions offered by MonoBehaviour in a 

specific order every frame of the game. There are a lot of these functions, so I only 

mention the ones that I’ve used in my implementation here. An illustration of the life 

cycle can be found in the Unity user manual [6]. 

void Awake() 

This is the first function called in the Unity life cycle. It is called when the script 

instance is being loaded and is usually used to initialize variables. It is automatically 

called once for every script, though that doesn’t stop the user from also calling it 

through different scripts. 

void Start() 

Start is also only called once for every script, unless called additionally by the user. 

It is called on the frame when the script is enabled for the first time just before any 

methods concerned with updating but after the Awake function. The initialization of 
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different scripts can be interdependent, so knowing that one initialization function is 

definitely called before/after the other can be useful. 

void OnTriggerEnter(Collider other) 

This function is triggered by a Collider intersecting with another Collider. It allows 

the user to define ways of reacting to these intersections. For this method to be 

called, two conditions must be met. First, the GameObject to which a script with this 

method is attached must also have a trigger Collider attached. And second, at least 

one of the colliding GameObjects has to also have a Rigidbody attached. 
 The parameter passed to this function is the Collider which the GameObject’s 

trigger Collider has intersected with. 

void OnTriggerExit(Collider other) 

Just like the previous function, only it gets called when two Colliders stop 

intersecting each other. 

void Update() 

This function gets called once every frame. It allows updating of the game state, 

which makes it essential for any game. 

void OnGUI() 

Used for rendering and handling GUI events (like user input or events that have 

something to do with rendering). It can be called multiple times per frame, once for 

every event. 

void OnDestroy(), void OnDisable(), void OnEnable() 

Get called when the script in which they are implemented gets destroyed, disabled, 

or enabled respectively. 

4.1.2. Other MonoBehaviour functions 

Some of these functions are implemented in one of the classes from which 

MonoBehaviour inherits, which means that they are present in other classes as well. 

For example, the GetComponent function is implemented in the Component class, 

from which Transform also inherits. I explain these functions only once though, 

since they always do the same thing. If, at some point, I call a MonoBehaviour 

method from a class that doesn’t inherit from MonoBehaviour, assume that the 

method is implemented in some common ancestor of those two classes. 
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void Invoke(string methodName, float time) 

Invokes a function. methodName specifies the name of the function to be invoked, 

while time specifies the time delay after which it should be invoked. 

void InvokeRepeating(string methodName, float time, float repeatRate) 

Invokes a function repeatedly. The first two arguments are the same as in Invoke and 

fulfil the same function, while the third determines the time delay between repeated 

callings of the invoked method. 

static void Destroy(Object obj, float t) 

Destroys a given Object after t seconds. This can be a GameObject, component, or 

asset. t is 0 by default. 

static void Instantiate(Object original, Transform parent) 

Takes a component, asset or GameObject as an argument and returns its clone. This 

clone’s parent is defined by the second argument. The string “(Clone)” is added to 

the clone’s name. 

static void Instantiate(Object original, Vector3 position, Quaternion 

rotation) 

This overload of the Instantiate method works in much the same way as the previous 

one. The difference is that it doesn’t set the clone’s parent and that it uses the 

position and rotation arguments to set its position and rotation. 

T GetComponent() 

Probably the most essential method besides the message methods. It returns a 

component of type T which is attached to the GameObject, or null if there is no such 

component. 

Besides this function, there also exists a GetComponents function, which 

returns an array of all attached components of the given type. There are also 

variations of both of these methods which search not just the element to which they 

are attached, but also all of its children using depth-first search. They are called 

GetComponentInChildren and GetComponentsInChildren. 

Coroutine 

A coroutine is not a function, rather, it is a kind of function. Normal functions 

happen within one frame, which makes it impossible to use them to implement 

gradual changes, unless they are coupled with some of the Unity message functions 

that I’ve mentioned. 
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A coroutine is basically a function that has the ability to pause execution but 

then continue where it left off later. It is declared with a return type of IEnumerator 

and with the ‘yield return’ statement included somewhere in the body. That 

statement is the point at which execution pauses and resumes later. 

Coroutine StartCoroutine(IEnumerator routine) 

This overload of the StartCoroutine function can be used to start a coroutine by 

passing the function a variable of type IEnumerator, which corresponds to a 

coroutine. 

Coroutine StartCoroutine(string methodName, object value) 

This overload can be used to start a coroutine by passing it the name of the coroutine 

and passing its argument in value. An obvious downside of this approach is that the 

coroutine to be started has to take only one argument. Also, this version has a higher 

runtime overhead than the previous version. 

void StopCoroutine(IEnumerator routine) 

This method stops the coroutine stored in routine. Should only be used to stop a 

coroutine which was started by the overload of StartCoroutine which takes a 

parameter of type IEnumerator. 

void StopCoroutine(string methodName) 

Stops a coroutine called methodName. Should only be used to stop a coroutine which 

was started by the overload of StartCoroutine which takes a parameter of type string. 

4.1.3. Resources 

static T Load(string path) 

Allows the user to load assets like prefabs (a predefined GameObject stored as an 

asset) or images. For this function to work, a folder called Resources has to be 

created, within which the assets are stored. 

4.1.4. Transform 

Transform Find(string n) 

Finds a child named n and returns it, or returns null if no such child is found. Unlike 

GetComponentInChildren though, this function searches only the immediate children 

of the element to which it is attached. 

 



25 

 

Transform GetChild(int index) 

Returns a child of the Transform at the given index or generates a “Transform child 

out of bounds” error, if the index is too large. 

void LookAt(Transform target) 

Rotates the GameObject so that it points towards target. 

void Rotate(Vector3 eulers, Space relativeTo) 

Rotates the GameObject around the x, y and z axes according to the angles given in 

eulers (a variable of type Vector3, which is a 3D vector). The second argument 

determines whether the GameObject should be rotated around its own axes or the 

world’s axes. By default, the GameObject’s own axes are used. 

void Rotate(float xAngle, float yAngle, float zAngle, Space relativeTo) 

Works the same as the previous overload, only it takes the amount by which the 

object should be rotated around each axis from the first three parameters instead of a 

vector. 

void Translate(Vector3 translation, Space relativeTo) 

Moves the GameObject in the direction and by the distance given by translation. 

Just like with the Rotate function, the movement can be applied in relation to the 

world’s axes, or the GameObject’s axes, depending on the second argument. 

4.1.5. GUI 

This class provides various functions for drawing GUI elements like boxes or 

textures. Its methods often use the Event class, which contains information about 

GUI events like user input. 

4.1.6. Input 

Provides an interface for reading input data. 

4.2. GameMaster 

This is the script that starts running when the application is started. It takes care of 

setting up the game and it stores all the information necessary to do so. It provides 

static data and methods that should be accessible to all agents at all times. The 

functions which are called by the UI elements in each menu are also implemented in 

this script. 
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Important Variables: 

bool playing – If this boolean is true, the game is in progress. 

List<StrategicData> agents – A list of StrategicData (4.3.5.) of all the agents. 

List<GameObject> exceptions – A list of GameObjects that aren’t supposed to be 

deleted when the game is restarted. 

Important Functions: 

void Start() – Initializes all the variables and ensures that, out of all the menus, only 

the Main menu remains active. 

void Play() – The Play button in the Main menu calls this function. It starts up the 

game. First, it creates 2 agents in opposing corners of the map, one A.I. and one 

human. Then it creates two batches of 5 monsters each in the remaining two corners. 

Finally, it deactivates the Main menu and sets the playing boolean to true, indicating 

that the game has started. 

void GameOver() – Checks whether the game has ended. It does so by cycling 

through agents and checking whether they still have any buildings or units left. 

void Update() – Takes care of pausing the game when the player presses the escape 

key. Also keeps checking whether the game hasn’t ended using the GameOver 

function. If it has, this function stops time in the game and displays the Game Over 

menu. 

static bool CameraOnTerrain() – Checks whether the strategic Camera is within the 

bounds of the Terrain and whether it isn’t too close. 

4.3. Basic scripts 

This section goes over the scripts which do not belong in any of the other categories, 

but are often necessary to understand the scripts in them. 

4.3.1. Stats 

Contains an entity’s stats – numerical values that represent an entity’s properties, 

like power or amount of health. 

Important Variables: 

List<BaseStat> statsList – Stores all the stats of the given entity as BaseStats 

(4.3.2.). 
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4.3.2. BaseStat 

Stores the value of one stat of some entity. 

Important Variables: 

List<StatBonus> baseAdditives – Stores all the bonuses added to this stat. The 

StatBonus type is explained next. 

int baseValue – The initial value of the stat. 

string statName – The name of the stat. 

float modifier – The value by which the stat is supposed to be multiplied when the 

entity levels up. 

Important Functions: 

int GetCalculatedStatValue() – Returns a sum of baseValue  and the values of all the 

bonuses in baseAdditives. 

4.3.3. StatBonus 

Contains a bonus that is to be added to some stat. 

4.3.4. PlayerOrAISetup 

This script is used to set up whether the given entity belongs to the player or to an 

A.I. 

Important Functions: 

bool PlayerOrAI() – Returns true if the entity belongs to a player. 

void SetPlayerOrAI(bool flag) - Either activates all of the given GameObject’s 

player scripts and deactivate its AI scripts, or vice versa. 

4.3.5. StrategicData 

Inherits from PlayerOrAISetup. It is attached to the CoreController GameObject 

(3.7.2.). It holds information about the agent, manages its resources and also takes 

care of setting up the agent’s base at the beginning of the game. 

Important Variables: 

int team – The team to which this agent belongs. 

int player – The agent’s id. 
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int resources – The amount of resources that the agent has. 

List<GameObject> buildings – A list of all the buildings belonging to this agent. 

List<GameObject> units – A list of all the units belonging to this agent. 

Important Functions: 

void SetUpBase() – Sets up the agent’s base at the beginning of the game. 

bool CheckResources(int amount) – Checks whether there is enough resources for 

some task. 

4.3.6. IDamageObserver 

An interface implemented by classes that need to be notified when an entity receives 

damage. 

4.3.7. CommonFunctions 

Inherits from PlayerOrAISetup. It is an abstract class which contains the common 

functionality used by both units and buildings. 

Important Variables: 

GameObject coreController – Stores the CoreControler GameObject (3.7.2.) of the 

agent to which the entity belongs. 

int team – An id of the team to which the entity belongs. 

int player – An id of the player to which the entity belongs. 

List<IDamageObserver> observers – A list of objects that are supposed to be 

notified when the entity takes damage. 

Important Functions: 

void ReceiveDamage(int dmg, GameObject attacker) – Drains the corresponding 

amount of the units health and notifies all the objects in observers. The amount of 

drained health doesn’t have to be equal to dmg though – an entities ‘Armour’ stat can 

decrease it. If the entity’s healthbar is fully drained by receiving dmg and attacker is 

a unit, attacker receives some experience. The amount is defined by the entities 

‘exp’ stat. 

abstract void SetColor(Color c) – Used to colour the GameObject. 

abstract void Terminate() – Used to define what should happen when the entity is to 

be killed/destroyed. 
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virtual void SetStats() – Sets the entities stats in Stats script. The reason this method 

is virtual and not abstract is that the stats of the entity can only be set from its unique 

script. Therefore it would just be left empty in the classes that inherit directly from 

CommonFunctions. 

4.3.8. Valuebar 

An abstract class that controls some kind of slider. 

Important Variables: 

Slider slider – The slider which this script controls. 

string statName – The name of the stat which determines how fast slider should 

regenerate itself. 

Important Functions: 

void Update() – Updates slider’s value and keeps it turned towards the camera. 

void Regenerate() – Increments the value of the slider by 1. Is called via 

InvokeRepeating in Start with a period that is computed based on the entities stat 

statName. 

bool Empty() – Returns true if the slider’s value is 0. 

4.3.9. Healthbar 

Inherits from Valuebar, controls an entity’s HealthSlider element. 

4.4. Buildings 

4.4.1. BuildingType 

An enum of the different kinds of buildings. 

4.4.2. Building 

Inherits from CommonFunctions. Every building has a script which inherits from 

this one attached to it. 

Important Variables: 

BuildingType type – Stores the type of the building. 
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4.4.3. Farm 

Inherits from Building. 

Important Functions: 

void Update() – Keeps the Farm’s Canvas element turned towards the camera. 

void MakeResources() – Creates 50 resource units and displays that number in a text 

above the Farm. It is called every 20 seconds via InvokeRepeating in the Start 

method. 

4.4.4. Tower 

Inherits from Building. 

Important Variables: 

List<GameObject> targets – A list of enemies that are within the tower’s range. 

Important Functions: 

void OnTriggerEnter(Collider other) – If an enemy enters the Tower’s trigger 

Collider, it is added to targets. 

void OnTriggerExit(Collider other) – Removes the GameObject that has exited the 

trigger from targets. 

void Attack() – Chooses a random target from targets and shoots at it. It is called in 

the Start function via InvokeRepeating with a 2 second period. 

4.4.5. UnitCreationProcess 

A script responsible for creating units. 

Important Variables: 

GameObject unitType – A prefab of the type of unit that this UnitCreationProcess 

can create. 

int creationTime – The time it takes to create the given unit type. 

IIcon icon – An icon associated with the given type of unit. The IIcon type is 

described at (4.8.1). 
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Important Functions: 

IEnumerator MakeUnit() – A coroutine that makes a new unit every creationTime 

seconds, while the count variable in icon isn’t 0. 

void AddUnit() – Increments the count variable in icon. If the MakeUnit coroutine 

currently isn’t in progress, this function starts it. 

void StopCreating() – Decrements icon.count and returns the resources allocated for 

creating the unit. 

4.4.6. UnitCreatorBuilding 

Inherits from Building. Any building that is capable of creating units has a script that 

inherits from this script attached. 

Important Variables: 

Dictionary<UnitType, int> unitCosts – Stores the costs of all the UnitTypes (4.5.1.) 

which this building can create. 

Dictionary<UnitType, UnitCreationProcess> unitCreationProcesses – A dictionary 

which associates the different UnitCreationProcesses with their UnitTypes. 

Important Functions: 

void AddUnitType(UnitType id, GameObject go, int index, string name, string 

description, GameObject building) – Adds a new type of unit that the building can 

create and creates its icon. 

void CreateUnit(UnitType id) – Creates a unit of the given type if there are enough 

resources for it. 

4.4.7. Barracks 

Inherits from UnitCreatorBuilding. Sets the stats of the building in the Awake 

function and sets the building’s type in the Start function. The Start function also 

defines the types of units that it can create. 

4.4.8. Base 

Just like the Barracks script, it is an overlay of UnitCreatorBuilding. It provides the 

settings that enable the base to fulfil its functions. 
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4.4.9. Outline 

Important Variables: 

int triggerCounter – Stores the number of intrusions into the outline’s Collider. 

bool buildable – Indicates whether the corresponding building can be built at the 

place where the outline is currently positioned. 

Important Functions: 

void OnTriggerEnter(Collider other) – This function colours the outline red when its 

Collider intersects with the Collider of a building or that of another outline. It also 

increments triggerCounter. 

void OnTriggerExit(Collider other) – If the outline’s Collider stops intersecting with 

another Collider which belongs to either a building or another outline, 

triggerCounter is decremented. If its value is zero, that means that there are no more 

objects preventing the corresponding building from being built on that spot. As a 

result, the outline is coloured green and the buildable boolean is set to true. 

4.4.10. Smoke 

Inherits from Building and implements the IDamageObserver interface. 

Important Variables: 

int amount – The amount of health that is to be replenished in every iteration of the 

HealthFillUp coroutine. 

GameObject worker – The Worker working on the building for which the Smoke 

object is a placeholder. 

Important Functions: 

void Update() – Keeps changing the alpha value of the MinimapIcon element’s 

colour. 

IEnumerator HealthFillUp(float t) – Fills up the Smoke’s healthbar by adding 

amount of health to it in every iteration. When it finishes filling it up, it calls the 

Worker’s FinishBuilding function. 

void OnDestroy() – Reactivates the Worker upon being destroyed. This is only 

necessary for the case when the Smoke is destroyed by enemies, not when the 

building is finished. In that case, the Worker is reactivated before the Smoke is 

destroyed. 
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4.5. Units 

4.5.1. UnitType 

An enum of the different types of units. The fighter units creatable by an agent have 

been assigned prime numbers which provides an easy way of checking whether an 

item can be equipped by a given unit. Multiply the numbers of units that the item can 

be equipped by and then divide by the number of the unit which wants to equip the 

item. If the remainder is 0, then the item can be equipped by the given unit.  

4.5.2. IEngage 

An interface which declares the Engage function which is used to define how a unit 

should behave when an enemy comes within a certain distance of it. 

4.5.3. BasicUnitFunctions 

A set of functions that every unit must have. It inherits from CommonFunctions. 

Important Variables: 

Transform target – The Transform of a unit with which the unit is engaged in battle. 

bool onMyWay – If this boolean is true, it means that the unit should ignore all 

enemies until it gets to its destination. 

Important Functions: 

override void Terminate() – Deselects the unit, removes it from CoreController’s 

(3.7.2.) list of units and triggers the unit’s death animation. 

void GoToPoint(Vector3 p) – Sends the unit to the given point. To do this, it just sets 

the destination of the NavMeshAgent component which then takes care of 

pathfinding. In strategic mode, units are navigated exclusively through this function. 

void OnTriggerEnter(Collider other) – If an enemy enters the unit’s trigger Collider, 

the unit tries to engage it using the Engage function of a component which 

implements the IEngage interface. 

Transform FindClosestEnemyInRadius(float radius) – This function finds all the 

enemy units and buildings in a given radius. It does so by using the 

Physics.OverlapSphere function which takes two arguments – a point and a radius. It 

then finds all the Colliders within the sphere defined by those parameters. It is a 

function supplied by Unity. 
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float TrueDistance(Transform other) – Returns the distance between the centre of the 

GameObject and the closest point on other’s non-trigger Collider. This is necessary 

because if a unit were to measure the distance between it and its target based on the 

distances between their centres, it might never get ‘close enough’ to a building to 

attack it. 

4.5.4. Worker 

Inherits from BasicUnitFunctions. Also implements the IEngage interface, but 

leaves the Engage function empty. This is because the Worker has no means of 

attacking. 

Important Variables: 

GameObject toBuild – Stores a prefab of the building that is to be built. 

GameObject smoke – Stores the Smoke GameObject. 

bool buildingInitiated – If this boolean is true, the Worker has been sent to create a 

building. 

Important Functions: 

void SetBuildingSite(Vector3 point) – Sets the place where a building is to be built 

and sends the Worker there. Also sets buildingInitiated to true. 

void Build() – This method starts the building process. After checking whether there 

are enough resources to build a certain building, it instantiates a Smoke GameObject 

and sets all of its settings. It then subtracts the amount of resources necessary to 

create the given building and deactivates the Worker. 

void FinishBuilding() – Finishes the building process by instantiating the building 

stored in toBuild, setting all of its necessary settings, destroying smoke and 

activating the Worker. It is called from within the Smoke script. 

4.5.5. AdvancedUnitFunctions 

Inherits from BasicUnitFunctions and implements the IDamageObserver and 

IEngage interfaces. Every unit capable of fighting has a script which inherits from 

this script attached to it. 

Important Variables: 

int experience – The amount of experience that the unit has gained since last 

levelling up. 

float aggroRadius – The radius within which the unit registers and attacks enemies. 
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float fleeRadius – If the unit is engaged in a battle, but the distance between it and its 

target becomes larger than fleeRadius, the unit stops targeting the other unit. 

float attackDistance – The minimum distance that has to be between a unit and its 

target for it to be able to attack. 

Important Functions: 

void Update() – Takes care of deciding how a unit should behave if it has a target. 

Makes the unit always turn towards the target. If the target is within attackDistance, 

the unit starts attacking. If it is within fleeRadius, it tries to follow it. If it is further 

than fleeRadius and it isn’t a building, the unit stops targeting it. 

void DealDamage() – If the unit has a target and a weapon, this function gets the 

units ‘Power’ stat and passes it to the target’s ReceiveDamage function along with 

the GameObject of the unit. 

IEnumerator AttackEnumerator(float t) – This method is called as a coroutine. It 

makes sure that the unit deals damage to its target if it is close enough by calling the 

DealDamage function. It also fires the attack animation. If the unit loses its target, 

this function tries to find another enemy within aggroRadius using the 

FindClosestEnemyInRadius function. If one is found, the unit engages it. Otherwise, 

the coroutine ends. 

void Attack() – Starts the AttackEnumerator coroutine with a period of 2 seconds. 

void Engage(Transform other) – If the unit has no target, hasn’t been commanded to 

go somewhere else (onMyWay is false), and other is an enemy, the unit sets other as 

its target and goes to attack it. 

void DamageReceived(int amount, GameObject attacker) – If the unit’s 3rd person 

mode isn’t currently being used, this calls the Engage function on attacker’s 

Transform. 

void AddExp(int amount) – Increases the unit’s experience by amount, which is 

reflected by its level slider. Also causes the unit to level up when experience reaches 

the necessary value. 

4.5.6. Archer, Mage & Warrior 

These scripts inherit from AdvancedUnitFunctions. They set up all of the given unit 

type’s unique settings. 
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4.5.7. Monster 

Inherits from AdvancedUnitFunctions. Like the other fighter unit scripts, it sets up 

the unit’s settings. Besides that, it also ensures that the Monster moves around 

randomly within a certain area. 

Important Variables: 

Vector3 startingPoint – The point which is at the centre of the area in which the 

Monster can randomly move. 

float distance – The maximum distance that the Monster can go from startingPoint 

in both x and z directions (separately – this makes the are within which the Monster 

can move a square). If the Monster is attacked, this restriction no longer applies. 

Important Functions: 

void Update() – Once the Monster’s Nav Mesh Agent has stopped moving, this 

function invokes the Move function with a 1 second delay. 

void Move() – Chooses a random point which is at most distance away from 

startingPoint in both x and z directions and sends the Monster there. 

4.5.8. Death 

This script is attached to the body element of every fighter unit. It ensures that the 

unit leaves behind a Loot Box. 

Important Variables: 

GameObject lootBox – Stores the prefab of the Loot Box associated with the given 

unit. 

Important Functions: 

void TransferItems(ItemDatabase lootBox) – Removes all the items from the units 

inventory and equipment and stores them in the Loot Box. The ItemDatabase type is 

described at (4.11.2.). 

void Die() – Instantiates the Loot Box, colours it the same colour as the unit had and 

transfers the unit’s items to it using the TransferItems function. It is called from 

within the unit’s death animation. 
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4.5.9. WorkerDeath 

The Worker has to have a different script for dying than other units because it 

doesn’t leave behind a loot box. The functions of this script are called from within 

the Worker’s death animation. 

Important Functions: 

void Die() – Simply destroys the Worker. 

4.5.10. Equipment 

A script that all fighter units have. It stores and manages their equipment. 

Important Variables: 

List<IEquippable> parts – A list of all the equipped icons. The IEquippale type is 

described at (4.8.7.). 

Dictionary<int, Transform> itemHolders – A Dictionary which binds together the 

numbers of body parts with the Transforms used for holding them. 

Dictionary<int, GameObject> equippedItems – A Dictionary which binds together 

the numbers of body parts with the GameObjects of items assigned to them. 

Important Functions: 

void Equip(IEquippable toEquip) – Equips an item. If an item has already been 

equipped to the body part to which toEquip can be equipped, it is unequipped. 

void Attack() – In the case of the Monster, its attack animation is triggered. In the 

case of other units, this function triggers the attack animations of the weapons that 

the unit has equipped in its hands. 

4.5.11. Manabar 

Inherits from Valuebar. Controls a unit’s mana slider. 

4.5.12. Spellbar 

Stores the unit’s spell icons. 

4.6. A.I. 

A.I. for games can range from incredibly simplistic binary decision-making agents to 

complex pieces of software that can rival the human mind. The best A.I. have to be 

able to learn and respond quickly to a wide variety of scenarios far greater than they 
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could hope to store in their memory. However, seeing as the purpose of my thesis 

wasn’t to create a ground-breaking A.I., I opted for a more simplistic state-based 

approach. 

I first wanted to implement this concept using a finite-state machine. 

However, when I tried to plan what states the game should have, I realised that this 

was more complex than necessary for my game. 

Instead of a finite-state machine, every A.I. script in this game, with the 

exceptions of AI and UnitAI, has a coroutine called ActionCycle. This coroutine 

repeats itself after a set number of seconds. The period at which is does so is mostly 

arbitrary and differs between scripts. It checks some conditions and chooses how to 

act based on them. The UnitAI script uses the Update function for this purpose. 

The A.I. in this game doesn’t use spells. This is so for two reasons. The first 

is that it would be quite hard to come up with conditions under which each of the six 

spells implemented in this game should be cast. The second is that it would give it an 

unfair advantage over the player, who couldn’t cast spells on more than one unit at 

once. I therefore decided to not let the A.I. use spells and make them available to the 

player only in 3rd person mode. 

4.6.1. AI 

An empty class that every AI script inherits from, so that it can be disabled/enabled 

via the SetPlayerOrAI function in PlayerOrAISetup. I decided to make it a class 

instead of an interface so that functions could be added to it in case of expansion. 

4.6.2. AIMain 

This script is attached to the CoreController GameObject (3.7.2.) and controls the 

A.I. units as well as providing some functions that other A.I. components use. 

Important Variables: 

Vector3 centre – The centre of a circle within which the Workers can build 

buildings. 

float radius – The radius of the circle. 

Important Functions: 

IEnumerator ActionCycle – A coroutine which is started in the Start function with a 

period of 15 seconds. It monitors the number of units that the A.I. has that aren’t 

currently attacking the enemy. If there are at least 5, it sends them to attack. 

4.6.3. BaseAI 

A script that controls the Base building. 
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Important Functions: 

IEnumerator ActionCycle(float t) – This coroutine keeps checking whether the agent 

owns three workers. If not, it creates one. 

void Start() – Starts the ActionCycle coroutine with a period of 11 seconds. This 

period isn’t quite arbitrary – I needed to make it longer than the building time of a 

Worker (10 seconds), otherwise it would run again before the Worker finished being 

created and would start creating another one. 

4.6.4. BarracksAI 

Important Functions: 

IEnumerator ActionCycle(float t) – A coroutine that runs every 5 seconds. It decides 

what unit should be created next based on the ratios between the already created 

types of units. It tries to keep the number of existing units of all types equal. 

4.6.5. WorkerAI 

Important Variables: 

GameObject outline – Stores an outline of the building that the Worker is going to 

build. 

Important Functions: 

IEnumerator ActionCycle(float t) – Looks at the number of Farms and Barracks and, 

based on that, decides what building the Worker should build next. It tries to keep 

the ratio between these two types of buildings at 5 Farms to 1 Barracks. 

void OnEnable() – Starts the ActionCycle coroutine with a period of 5 seconds. This 

happens every time the Worker is activated after finishing a building. 

void OnDisable() – When this script is disabled, that means that the Worker has 

either died or started building. In both cases, the outline that the Worker has created 

needs to be destroyed which is what this function does. 

void Build(string type) – Loads the building given by the type parameter from 

resources, then checks whether there is enough resources to build it. If so, tries to 

find a location where it can be built. If one is found, an outline of the building is 

instantiated there and the Worker is sent there to build the building. 

4.6.6. UnitAI 

A script used by every fighter unit belonging to an A.I. 
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Important Variables: 

bool patrol – If this boolean is true, then the unit should keep moving around the A.I. 

camp. If it is false, it should attack the enemy. 

Important Functions: 

void Update() – Either keeps the unit moving from place to place within the camp or 

sends it to attack the nearest enemy unit, depending on the value of the patrol 

variable. Also makes it use its health potion, if its health is low. 

4.7. Player 

The scripts in this category provide the player with means of interacting with the 

game environment and issuing commands to units and buildings. 

4.7.1. Player 

A class which every script that is only used by the player inherits from, so that it can 

be disabled/enabled by the PlayerOrAISetup script. Unlike the AI script, this script 

isn’t empty. It contains a Start function and some functions for creating GUI. 

4.7.2. PlayerStratControls 

Allows the player to control units and buildings in strategic mode as well as move 

the camera. 

Important Variables: 

List<IIcon> slots – The menu slots which can be filled up with icons of different 

entities. The IIcon type is described at (4.8.1.). 

Important Functions: 

void Update() – Calls the LeftMouseButtonDown, LeftMouseButtonUp and 

CameraMovementControl functions. Also ensures that pressing tab performs a 

switch between the strategic camera and a unit’s camera, and that right-clicking 

somewhere on the map sends the selected units there. 

void OnGUI() – Takes care of drawing all the 2D GUI elements. 

void FillSlots(bool flag, List<IIcon> icons) – Fills the slots in the menu with the 

entities icons. 

Vector2 MinimapToWorld(Vector2 pos) – Converts minimap coordinates to world 

coordinates. 
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void CameraMovementControl() – Allows the player to control the movement of the 

Camera. 

void LeftMouseButtonDown() – Reacts to the left mouse button being clicked. 

void LeftMouseButtonUp() – Reacts to the player letting go of the left mouse button. 

4.7.3. PlayerBuilding 

A script used by every building which belongs to the player. 

Important Variables: 

GameObject pointer – A prefab of the BuildingPointer (3.3.6.).  

bool selected – If this boolean is true, that means that the given building is currently 

selected by the player. 

Important Functions: 

virtual void Select() – Sets selected to true, activates pointer and fills the menu slots 

with this building’s icons. 

4.7.4. PlayerUnitCreatorBuilding 

Inherits from PlayerBuilding. 

Important Functions: 

void Update() – If the building is selected, this function places the SpawnDestination 

element on any place on the map where the player right-clicks. 

override void Select() – Calls PlayerBuilding’s Select function but then also 

activates/deactivates the SpawnDestination element. 

4.7.5. PlayerControls 

A script that allows the player to control a given unit. 

Important Functions: 

void ThirdPersonControls() – Implements all the ways that a player can control the 

unit in 3rd person mode. 

void Update() – If the player is playing for this unit in 3rd person mode and its 

healthbar drains completely, this function performs the switch to strategic mode. In 

3rd person mode, it also calls the ThirdPersonControls function. If strategic mode is 
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currently being used, this method ensures that when the player right-clicks 

somewhere while the unit is selected, it is sent to that spot. 

void StrategicCamSwitch(bool flag) – Performs the switch between the strategic 

camera and the unit’s main camera. If flag is true, the switch is from strategic to third 

person. It also takes the MinimapLight element (mentioned at 3.2.6.) of the currently 

used camera and attaches it to the camera to which the switch is being performed. 

void AimSwitch(bool flag) – This function switches between the unit’s main camera 

and aim camera. If flag is true, the switch is to the aim camera. 

virtual void GoToDestination(Ray ray) – Sends the unit to the destination which is 

pointed at by ray. 

4.7.6. WorkerControls 

Inherits from PlayerControls. Takes care of Instantiating the building outline when 

the player wants to build a building and of providing the player with ways of 

interacting with it. 

Important Variables: 

GameObject outline – The outline of the building that is to be built. 

Important Functions: 

void Update() – Allows the user to place outline somewhere on the map or to destroy 

it by right-clicking anywhere. 

void GoToDestination(Ray ray) – This function overrides the one declared in 

PlayerControls, adding a condition. The Worker is only sent somewhere if it doesn’t 

currently have an outline instantiated. 

void OnDisable() – Destroys the outline of the building that is to be built. This 

ensures that the outline is destroyed both when the Worker starts building and when 

it is killed. 

4.7.7. UnitCamera 

Allows the player to control a unit’s main camera. 

4.7.8. AimCamera 

Allows the player to control a unit’s aim camera. 
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Important Variables: 

Vector3 mouseDelta – The difference between the position of the mouse when 

Update is called and its position when Update was previously called. 

Important Functions: 

void Update() – Uses the mouseDelta value to move the aim camera in the direction 

in which the player moved his/her mouse. 

4.7.9. ItemDatabaseGUI 

Implements the GUI through which the player interacts with loot boxes. 

Important Functions: 

void Update() – Computes whether the database should be shown. 

void OnGUI() – Draws the database as well as the descriptions of the different items 

in it. 

4.7.10. EquipmentGUI 

Provides GUI through which the player can interact with a unit’s equipment.  

4.7.11. SpellbarGUI 

Provides the GUI through which the player interacts with the spellbar. 

4.8. Icons 

Icons are all plain C# objects, they don’t inherit from MonoBehaviour. They are an 

important part of the GUI. They allow the user to interact with spells, items, or issue 

commands to units and buildings. 

4.8.1. IIcon 

An interface which every icon implements. It declares all of the important properties 

that every icon must have. 

Important Variables: 

Texture2D icon – The image which represents the icon to the player. 
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Important Functions: 

void Click(bool button) – If button is true, it was left-clicked, otherwise, it was right-

clicked. 

4.8.2. BuildingIcon 

An icon that can be used to create a building. 

Important Functions: 

void Click(bool button) – If button is true, an outline of the corresponding building 

as well as the building itself are loaded via Resources.Load and passed to the 

Worker. 

4.8.3. DestructionIcon 

An icon that can be used to destroy a building. 

Important Functions: 

void Click(bool button) – If button is true, the building is destroyed and 1/3 of the 

resources used to build it are returned to the player. 

4.8.4. UnitIcon 

An icon that can be used to create a unit. 

Important Variables: 

UnitType id – The type of unit that can be created by this icon. 

Important Functions: 

void Click(bool button) – If button is true, a unit starts being created. Otherwise, a 

unit stops being created. 

4.8.5. PotionIcon 

An abstract class. It represents an icon of a potion that can somehow be applied. 

Important Functions: 

void Click(bool button) – If button is true (the icon was left-clicked), the potion is 

applied. Otherwise, the potion is destroyed. 

abstract void ApplyPotion() – Determines what applying the potion should mean. 
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4.8.6. HealthPotionIcon & ManaPotionIcon 

Both inherit from PotionIcon. The former replenishes health while the latter 

replenishes mana. 

4.8.7. IEquippable 

An interface that inherits from IIcon and that is implemented by any equippable 

item’s icon. 

4.8.8. WeaponIcon 

An abstract class which implements IEquippable. It is an icon which corresponds to 

an equippable weapon. Every weapon in this game has an icon associated with it 

which inherits from this class. 

Important Variables: 

bool equipped – This variable determines whether the item represented by this icon 

has been equipped. 

Important Functions: 

void Click(bool button) – If button is true and equipped is false, the item is equipped 

and removed from the inventory. If button is false and equipped is false, the item is 

destroyed. If button is false and equipped is true, the item is unequipped and placed 

inside the unit’s inventory. 

4.8.9. ISpellIcon 

An interface which inherits from IIcon Most importantly, it declares the CastSpell 

and StopSpell methods. Every spell in this game has an icon associated with it which 

implements this interface. 

4.9. Weapons 

4.9.1. IWeapon 

An interface which all weapons implement. 

Important Functions: 

void Attack() – Starts the attack animation. 

void StopAttack() – Stops the attack animation. 
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void Toggle3rdPersonMode(bool flag) – Switches to 3rd person mode of attacking. 

4.9.2. IRangeWeapon 

An interface implemented by range weapons. Inherits from IWeapon. 

Important Variables: 

Transform projectileSpawn – The point at which the weapon’s projectiles are 

supposed to be instantiated. 

GameObject projectile – A prefab of the projectile that this weapon is supposed to 

shoot. 

Transform targetTransform – The Transform of the entity at which the weapon is 

supposed to be shooting. 

Vector3 target – The point at which the weapon is supposed to be aiming. 

Important Functions: 

void CastProjectile() – Shoots a projectile at the target. 

4.9.3. IMidRangeWeapon 

An interface implemented by mid-range weapons. Inherits from IRangeWeapon. 

Adds two overloads of the Switch function, which is used to switch between the 

weapon’s melee and range form of attack. 

4.9.4. WeaponEnd 

This script is enabled when the unit is in 3rd person mode. It enables the weapon to 

deal damage by hitting another GameObject. It is used by every weapon in this 

game. 

Important Variables: 

List<GameObjects> cutObjects – A list of objects that the weapon has already 

intersected. This list is used to ensure that the weapon doesn’t deal damage to a 

GameObject twice. 

Important Functions: 

void OnTriggerEnter(Collider other) – If the script is enabled and other is a non-

trigger Collider which belongs to an enemy GameObject, the enemy receives 

damage. 
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4.9.5. Arrow 

Important Variables: 

Vector3 direction – The direction in which the arrow is supposed to be fired. 

Important Functions: 

void Start() – Uses the AddForce function, which is a function of the Rigidbody 

component. It takes a Vector3 argument and applies that vector as a force to the 

Rigidbody. 

4.9.6. ArrowTip 

A script attached to the tip of an arrow. It is used to stop the arrow when it hits 

something. 

Important Variables: 

GameObject exception – Stores the GameObject of the unit that shot the arrow, since 

the Arrow isn’t supposed to be affected by that unit’s Colliders. 

Important Functions: 

void OnTriggerEnter(Collider col) – Stops the arrow if other is a non-trigger 

Collider which doesn’t belong to exception. 

4.9.7. MagicBall 

Important Variables: 

GameObject boomEffect – A prefab of the effect that is to be instantiated when the 

ball hits something. 

GameObject exception – Stores the GameObject of the unit that shot the ball, since it 

isn’t supposed to be affected by that unit’s Colliders. 

Important Functions: 

void OnTriggerEnter(Collider col) - Destroys the ball if other is a non-trigger 

Collider which doesn’t belong to exception. Also instantiates boomEffect at the point 

of collision. 
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4.9.8 BasicSword 

Important Functions: 

void ClearCutObjects() – Clears the cutObjects variable of the WeaponEnd script 

attached to the tip of the sword. Is called from the sword’s attack animation. 

4.10. Spells 

4.10.1. SpellTimer 

This script is used to stop a spell after a given time interval. 

Important Functions: 

void StopSpell() – Stops the spell and destroys the SpellTimer GameObject. 

void StopAfterTime(ISpellIcon icon, int time) – After the given amount of time, it 

invokes the StopSpell method. 

4.10.2. DamagingAuraSpell 

A spell which damages nearby enemy units. 

Important Variables: 

List<BasicUnitFunctions> enemies – A list of the BasicUnitFunctions components 

of enemies that have entered the spell’s range. 

Important Functions: 

void Drain() – Drains the casters mana. 

void DealDamage() – Deals damage to units in enemies. 

void Awake() – Invokes the Drain and DealDamage functions repeatingly. Drain 

repeats every 0.5 seconds and starts after 0.5 seconds, while DealDamage repeats 

every 3 seconds and start immediately. 

void OnTriggerEnter(Collider other) – If other belongs to an enemy unit, its 

BasicUnitFunctions are added to enemies. 

void OnTriggerExit(Collider other) – other is removed from enemies. 
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4.10.3. TeleportEffect 

This script teleports the unit when the effect to which it is attached is destroyed. This 

is done through its OnDestroy method. 

4.10.4. HealSpellProxy 

Important Functions: 

void Update() – This function ensures two things. First, if the player left-clicks on a 

friendly unit, the Heal spell is cast on that unit. Second, if the player right-clicks 

somewhere or presses the tab key (thus exiting 3rd person mode), the spell gets 

deactivated. 

void OnGUI() – Draws the heal icon next to the mouse cursor. 

4.10.5. ShieldSpell 

A script that ensures that the shield changes its alpha value, drains the casters mana 

and gets destroyed once the caster’s mana runs out. 

4.11. Other scripts 

4.11.1. BodyPart 

An enum of the body parts of a fighter unit. It is used by the icon scripts of the three 

weapons to determine what body part the weapon should be attached to. 

4.11.2. ItemDatabase 

This script is used by Loot Boxes (3.7.1.). It stores the icons of items that the Loot 

Box contains. 

Important Variables: 

List<IIcon> slots – A list of icons stored in the database. It is initially filled with 16 

nulls (they represent empty slots). 

4.11.3. LootBox 

This script is used to spin the body of a Loot Box and to destroy it at the appropriate 

time. It is attached to the body of a Loot Box, not its root element. 

Important Variables: 

bool readyToGo – Indicates that the Loot Box has existed for 30 seconds. 
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Important Functions: 

void Update() – Keeps spinning the body of the Loot Box. Also destroys the Box if 

readyToGo is true and no unit is currently viewing its contents. 
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5. Conclusion 

5.1. Fulfilment of goals 

In the introduction, I have stated seven goals that I wanted my game to fulfil. Here, I 

go over how well I managed to do that. 

5.1.1. Create a basic RTS (goal #1) 

My game fulfils the requirements of a playable RTS game. It allows the player to 

create buildings and units that he/she can use to beat the enemy. One common 

feature which is missing, and which would have made the ‘strategy’ part of the game 

more essential, is a more complex way of resource gathering. Although this was 

never a necessity, it does take away from the overall enjoyment value of the game. 

5.1.2. One human player and at least one A.I. (goal #2) 

There is one of each and more could easily be added with the CreateAgent function 

implemented in the GameMaster script. 

5.1.3. 3rd person mode & combat system (goals #3 & #4) 

These are the points at which I failed the most. I had originally intended for the 3rd 

person mode to be an essential part of the gameplay. As I was implementing the 

game though, I realised that for that to be possible, my game would have to be far 

more complex. This is because the main advantage of controlling a single character 

from up-close is that it can offer the player far more detailed manipulation of the 

character and of the environment. For that to be useful though, the character or 

environment have to be sufficiently complex. 

 The result is that all the fighter units do offer the option of playing for them 

in 3rd person mode, but it doesn’t have much usefulness or entertainment value. 

5.1.4. Spell & item systems (goals #5 & #6) 

I have successfully implemented systems for storing and interacting with spells and 

items as well as a few instances of spells and items. 

5.1.5. Expandability (goal #7) 

My implementation offers straightforward ways of adding new kinds of buildings, 

weapons, items, units and spells. Creating new scripts for new entities should also be 

straightforward, given the way I separated the classes. 
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5.2. Possible Improvements 

5.2.1. Combat system 

As I have stated in the previous section, the combat system of my game could be 

greatly improved upon. Its strategic mode version works well, although there are 

some details that could be tweaked. For example, units always follow their targets 

unless either the target gets too far or the player commands the unit to stop. 

However, the more crucial part is the 3rd person version.  

This version could be improved in many ways. For example, letters could 

appear somewhere on the screen which would indicate what button the player has to 

press to avoid an attack. Or there could be different kinds of attacks and each one 

could be countered by a specific defence move. Or there could be attack combos, or 

a myriad of other things. The main point would be requiring some sort of hand-eye 

coordination, as is common in action games. 

The usage of range weapons could also be improved by providing a better 

way of aiming. 

5.2.2. A.I. 

The artificial intelligence in my game is very simplistic and can be easily defeated 

once the player knows how it works. One of the ways it could be made better would 

be by providing it with a broader range of reactions to different states of the game. 

This could be done via a finite-state machine. Each A.I. entity would have a set of 

states and conditions under which it would switch from one state to another. This is 

the technique which is usually used in RTS games. 

 Another approach that could be used here is called goal oriented action 

planning [7]. In this approach, an agent has a set of states and a set of actions. When 

given a goal, the agent searches the actions and picks a path that leads it to the goal. 

This approach is mostly used to control non-player characters in games, so it could 

probably be used to control the units in this game and maybe somehow combined 

with a finite-state machine which would control the strategic decisions and issue 

goals to the units. 

5.2.3. Aesthetic changes 

There are many aesthetic aspects of this game that could be improved. For example, 

the health- and manabars are always turning to look at the camera, which causes 

them to not be parallel to the top and bottom of the screen. Another example would 

be that when buildings are destroyed, they simply disappear, without some animation 

like units have. Yet another would be the fact that projectiles shot from range and 

mid-range weapons don’t necessarily hit their targets. 
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5.2.4. Expansion 

Because I didn’t aim to make a small but well-developed game, but rather chose to 

create only the basis of a bigger game, I only implemented the bare minimum of 

things necessary for this game to be playable. Therefore, a possible improvement 

would simply be – add more. Especially more spells and items, since they could 

greatly diversify the game and also make the 3rd person mode more interesting. 

5.2.5. Developing the environment 

The only function of the environment in my implementation is that it provides 

something for the units to move on and for the buildings to stand on. This means 

there is a lot of room for improvement. There are three main things that could be 

added – different types of environment, random objects that could be manipulated, 

and resources. The first two of these additions would provide the agents with more 

tools that could be used to defeat the enemy. They could also be used to make the 3rd 

person mode combat system more entertaining. As far as the resources go, there 

could be different types, like in Warcraft III, different combinations of which would 

be necessary to make different things. 

5.2.6. Different maps 

An important factor when considering the entertainment value of a game is how long 

it can take a person to discover all of it. Which is why it is good to have different 

maps – it makes the gameplay less repetitive. Every map adds some sort of novelty 

to the experience. It would therefore be good to add some maps to my game, since it 

only has one. 

5.2.7. Levelling up 

As it is, my system of levelling up just causes the unit’s stats to increase. A better 

version could offer the player abilities of the unit that he/she could choose to unlock 

or stats that he/she could choose to improve. 

5.2.8. Settings 

The settings that I set in this game, like the time it takes to build individual 

buildings, or the amount of health each unit has, could be tweaked in a million 

different ways. I designed mine to make the game playable, but I am sure that a 

much better result could be achieved. For example, if I made the creation time of 

buildings and units long, that would give the player time and incentive to level up 

some of his/her units while he/she waits, which could make the gameplay more 

interesting. But maybe it would just make it boring because player’s would have to 

wait around for long stretches of time for their buildings to be completed. 
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Attachment B: Archive description 

The CubeFighter.zip file contains a folder called Scripts and a file called 

CubeFighter.unitypackage. 

The Scripts folder contains all the scripts that I programmed for this game. 

They are split into the same categories that I used in chapter 4. 

The CubeFighter file contains my entire Unity project. I made this project on 

Windows 10 in Unity version 2018.2.11f1, so trying to open it in any other 

environment may cause problems. A different operating system shouldn’t be much 

of an issue, but a different version of Unity could cause some deficiencies. The 

version of Unity I used can be downloaded from the Unity archive [8]. The version of 

Visual studio I used was Visual studio 2017 15.7.5, but using a different version 

should cause no problem, since Unity has its own compiler. 

In order to open this project on another device, first create a new Unity 

project. Then import the file through Assets > Import package > Custom package. 

Once the project is opened, the assets folder is shown at the bottom of the 

screen. It contains these folders and files: 

 

Animations – Contains animators and animations.  

Materials and Textures 

Resources – Contains prefabs and icon images. 

Scenes – A folder generated by Unity. Contains the games scene data. 

Scripts 

B13a – The song used in this game. 

MinimapTexture – The texture onto which the image that the MapCamera 

sees is projected. 

New Terrain – Data about the game’s terrain. 
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Attachment C: User documentation 

Requirements 

The game was developed for and tested on Windows 10. However, it should work on 

some macOS and Linux systems too. The specific system requirements for running 

Unity games such as this one can be found at the official Unity system requirements 

page [9]. 

Installation 

This game requires no installation. 

Starting the game 

The Fighter.exe file starts up the application. Upon starting, a window is displayed 

which allows the user to choose graphics settings like resolution and quality. The 

user can start up the game by clicking the ‘Play!’ button in the lower right corner of 

the window. The window also allows changing some input settings, but these don’t 

actually change any settings of the game, so they can be ignored. 

Menus 

All the UI elements in the menus can be interacted with by using the left mouse 

button to click or drag them. 

Main menu: Appears automatically when the game is launched. Contains 3 buttons 

– the ‘play’ button which starts the game, the ‘settings’ button which transfers the 

user to the Settings menu, and the ‘quit’ button which quits the application. 

Settings menu: Can only be accessed through other menus. Contains a slider and a 

‘return’ button. The slider controls the volume of the music being played (it is set to 

zero by default). The ‘return’ button returns the user to the previously displayed 

menu. 

Pause menu: Appears if the user presses the escape key during the game. Contains 3 

buttons – the ‘continue’ button which resumes the game and the ‘settings’ and ‘quit’ 

buttons which fulfil the same function as in the Main menu. The user can leave the 

menu by pressing the escape key again. 

Game Over menu: Appears when only one team remains. Contains 3 buttons – the 

‘play again’ button which restarts the game and the ‘settings’ and ‘quit’ buttons 

which fulfil the same function as in the Main and Pause menus. 
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Game environment 

GUI 

Minimap: The minimap is a square situated in the lower left corner of the screen. It 

provides the player with a view of the entire game world. The player’s units and 

buildings are displayed on the map as blue dots, while the enemy’s units and 

buildings are red dots. The Monster units, which don’t belong to either team, are 

violet dots. 

Menus: In the lower right corner of the screen is the main game menu (MGM for 

short). This menu consists of 9 squares which can display different icons that the 

player can interact with. Besides MGM, there are 3 other menus that appear in the 

game under various conditions. They are: the spellbar, the equipment menu and the 

item database. They all consist of slots like the ones in MGM which can be filled 

with icons. The spellbar appears at the bottom of the screen while the equipment 

menu and the item database appear in the centre. 

Sliders: In the upper right corner of the screen, a unit’s level slider can appear which 

displays the unit’s current level and the amount of experience that it has gained since 

last levelling up. Above each unit are its health- and manabars which show how 

much health and mana the unit has left. The healthbars are also present above 

buildings. 

Text fields: In the upper left corner of the screen, the amount of the player’s 

resources is displayed in white text. If the player tries to do some action which 

requires more resources than he/she currently has, a notification appears in red text 

in the middle of the screen. 

Entities 

There are two basic types of entities in this game which form the backbone of the 

gameplay – units and buildings. 

Units: 

- Worker: The only unit incapable of fighting. It allows the player to build all 

the buildings available in this game. Can be created in a Base building. 

- Warrior: A melee fighter unit. Can be created in a Barracks building. 

- Archer: A range fighter unit. Can be created in a Barracks building. 

- Mage: A mid-range fighter unit. Can be created in a Barracks building. 
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- Monster: A melee fighter unit. The only unit that cannot be created in any 

building. Units of this type don’t belong to any team. 

Buildings: 

- Base: The sturdiest building. Allows the player to create Workers. 

- Barracks: Allows the creation of fighter units. 

- Farm: Produces resources. The most vulnerable building. 

- Tower: An offensive structure. Can attack enemy units/buildings by shooting 

arrows at them. 

Rules 

The goal of this game is to destroy all of the enemy’s units and buildings. In the 

beginning, every agent starts out with a single Base and 1000 resource units. These 

units are a sort of currency that can be exchanged for the creation of units and 

buildings. In order to win, the player must make use of the units and buildings that 

he/she creates to destroy the enemy. 

 All fighter units can level up by killing other units which increases their stats, 

like power, speed, or amount of health points. This means, that besides just using 

resources to generate more units and overpower the enemy with numbers, the player 

can fight quantity with quality. 

Game controls 

The game consists of two modes – the strategic mode and the 3rd person mode. Each 

offers different ways of interacting with the world and each has different controls. 

Strategic mode 

In this mode, the mouse is the player’s most important means of communication 

with the game. 

Selecting entities: By left-clicking a unit or a building, the player can select it. By 

left-clicking and dragging the mouse cursor, the player can create a rectangle and 

select all the units inside it. This works only for units though, not buildings. Left-

clicking causes the selected entities to be deselected. A selected unit has a green 

highlight around it. A selected building has an orange arrow hovering above it. 

Menu: If the player has selected a single entity, be it a unit or a building, the entity’s 

icons are shown in the main game menu. The player can interact with these icons by 

left- and sometimes also right-clicking them, although these two actions are never 

interchangeable. It could be loosely said that left-clicking an icon means activating 
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it, while right-clicking means deactivating it. Pointing at an icon with the mouse 

cursor causes its description to appear. 

 If the selected entity is a building, one of the displayed icons is the ‘destroy 

building’ icon, which allows the player to destroy that building by left-clicking the 

icon. The Base and the Barracks also display other icons, which allow the creation of 

units. Left-clicking these icons causes a unit to start being created, while right-

clicking them causes a unit to stop being created. 

 If the selected entity is a Worker, the displayed icons are the buildings that it 

is capable of building. Left-clicking these icons causes an outline of the building to 

appear. The player can then either command the Worker to go build that building by 

left-clicking somewhere on the map where the building can be built (indicated by the 

fact that the outline remains green), or just make the outline disappear by right-

clicking anywhere. If the outline turns red, it means that the corresponding building 

cannot be built there. If the player commands the Worker to go build a building, but 

then right-clicks somewhere while still having the Worker selected, the Worker 

ignores the command to build. 

 Finally, if the selected entity is a fighter unit, the icons displayed in the main 

game menu are the items in its inventory. They can be used/equipped by left-clicking 

them and destroyed by right-clicking. 

Navigating units: Once the player has one or more units selected, he/she can 

navigate them across the map by right-clicking on the place he/she wants them to go. 

Even if the player sends some units to some destination, they can still end up 

engaging in a battle with some enemy, if they get too close to it. However, if the 

player sends them to some destination while they are fighting, they go there without 

engaging in further battle. 

 If the player right-clicks on an enemy building/unit while having fighter units 

selected, they go attack that entity. However, only if the entity is a building do they 

not engage in battle with other enemy entities that they might meet along the way. 

Camera movement: The player can move the camera in 4 ways. First, by placing 

the mouse cursor near any of the edges of the screen causes the camera to move in 

that direction. The camera cannot be moved outside of the map though. Second, the 

player can transport the camera to any point on the map by clicking on the desired 

location on the minimap. Third, by holding down the R key and then pressing any of 

the arrow keys, the player can rotate the camera. Finally, by scrolling the mouse 

wheel, the player can make the camera zoom in/out. The camera cannot zoom in/out 

arbitrarily though. If zooming out any further would cause it to get outside of the 

bounds of the map, it stops, and there is also a limit to how close it can get by 

zooming in. 

Base and Barracks: When the player has either a Base or a Barracks selected and 

right-clicks somewhere on the map, the building’s ‘spawn destination marker’ is 

moved there. This element tells the units where they should go after being 

instantiated. 

In this mode, the player can switch to a unit’s 3rd person mode by selecting only that 

unit and pressing the tab key. 



60 

 

3rd person mode 

In this mode, the keyboard becomes much more significant. 

Movement and attack: The unit which the player is controlling can be moved by 

pressing the W, A, S and D keys (W – go forward, A – turn left, S – go back, D – 

turn right). 

The player can trigger the unit’s attack by clicking the left mouse button. If 

the unit has a range or a mid-range weapon equipped, the weapon shoots a projectile 

at the point on which the player has clicked, unless he/she hasn’t clicked on any 

GameObject. In that case the weapon fires in the last direction in which it has fired. 

If the given unit has a range weapon equipped, pressing the Q key causes it to 

switch to the aim camera. This camera can be moved simply by moving the mouse. 

The player can still move the unit with the W, A, S and D keys while using this 

camera and fire projectiles using the left mouse button. 

Menus: The main game menu permanently shows items in the unit’s inventory. 

They can be interacted with the same way as in the strategic mode – left-clicking 

them uses/equips them, right-clicking them destroys them. 

Pressing E causes the equipment menu to appear which shows what items are 

equipped by what parts of the unit’s body. In this case, left-clicking the item icons 

does nothing while right-clicking them unequips them and places them inside the 

unit’s inventory. 

In this mode, the player can also interact with the unit’s spellbar, which is 

displayed at the bottom of the screen. It displays icons corresponding to different 

spells, which can be cast by left-clicking the icons and, in some cases, deactivated by 

right-clicking them. 

 

Camera: Pressing any of the arrow keys causes the camera to rotate. However, 

unlike in the strategic mode, the camera rotates around the unit, not around itself. 

The camera can also be zoomed in/out by scrolling the mouse wheel. 

Loot Boxes: In 3rd person mode, the player can inspect the insides of loot boxes. 

This can be done by getting close enough to the loot box and left-clicking it. A 4 by 

4 matrix of squares then appears in the middle of the screen, some of which have 

item icons in them. The player can store these items inside the unit’s inventory by 

left-clicking them. 

In this mode, the player can switch back to strategic mode by pressing tab. 

 

 


